Classical and Quantum Shell Dynamics, and Vacuum Decay
1
S.Ansoldi2
Dipartimento di Fisica Teorica dell'Università,
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
Strada Costiera 11, 34014-Trieste, Italy
A.Aurilia3
Department of Physics, California State Polytechnic University
Pomona, CA 91768, USA
R.Balbinot4
Dipartimento di Fisica dell'Università
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna,
via Irnerio 46, 40126-Bologna, Italy
E.Spallucci5
Dipartimento di Fisica Teorica dell'Università,
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste,
Strada Costiera 11, 34014-Trieste, Italy
Abstract:
Following a minisuperspace approach to the dynamics of a
spherically symmetric shell, a reduced Lagrangian for the radial degree
of freedom is derived directly from the Einstein-Hilbert
action. The key feature of this new Lagrangian is its
invariance under time reparametrization. Indeed, all classical and
quantum dynamics is encoded in the Hamiltonian constraint that
follows from that invariance. Thus, at the classical level, we show
that the Hamiltonian constraint reproduces, in a simple gauge,
Israel's matching condition which governs the evolution of the shell.
In the quantum case, the vanishing of the Hamiltonian (in a weak
sense), is interpreted as the Wheeler-DeWitt equation for the physical
states, in analogy to the corresponding case in quantum cosmology. Using
this equation, quantum tunneling through the classical barrier is
then investigated in the WKB approximation, and the connection to
vacuum decay is elucidated.