next up previous
Next: 11. Comparison with Parke Up: Classical and Quantum Shell Previous: 9. Hamiltonian for ,

   
10. Basic Integral for the de Sitter-de Sitter case.

The calculation of the integral (91) is performed in the complex plane by considering the function

\begin{displaymath}f ( z ) = \sqrt{z}
\sqrt{z - 1}
\left( z - y_0 \right)
\left( z - y_1 \right) ^{-1}
\left( z - y_2 \right) ^{-1}
\quad
\end{displaymath} (127)

which has two branch points (z=0 and z=1), and two simple poles (z=y1 and z=y2). Accordingly, we integrate along the path $\Gamma _{\epsilon _1 \, , \: \epsilon _2}$:
$C_{\epsilon _1 }(0)$ : a clockwise circumference of radius $ \epsilon _1 $ and center z=0;
$0+ \epsilon _1 \rightarrow 1 - \epsilon _2$: an oriented line segment of the x-axis in the upper half of the complex plane;
$C_{\epsilon _2 } (1)$: a clockwise circumference of radius $\epsilon _2$ and center z=1;
$0+ \epsilon _1 \leftarrow 1 - \epsilon _2$: an oriented line segment of the x-axis in the lower half of the complex plane
with

\begin{displaymath}0 \leq \arg \left( z \right) < 2 \pi
\end{displaymath} (128)


\begin{displaymath}0 \leq \arg \left( z - 1 \right) < 2 \pi
\quad .
\end{displaymath} (129)


  
Figure: Integration path $\Gamma _{\epsilon _1 \, , \: \epsilon _2}$.
\begin{figure}\centerline{\fbox{\psfig{figure=fig_8.eps}}}
\medskip
\end{figure}

Then, we have

 \begin{displaymath}
\lim _{\epsilon _1 \, , \: \epsilon _2 \to 0}
\int _{\Gamm...
...
{\cal R}{\rm {}es} \left\{ f , y_2 \right\}
\right]
\quad .
\end{displaymath} (130)

It is also true that

\begin{displaymath}\lim _{\epsilon _1 \, , \: \epsilon _2 \to 0}
\int _{\Gamma ...
...n _2}} dz f(z)
=
\int _0^1 dz f_+(z)
-
\int _0^1 dz f_-(z)
\end{displaymath} (131)

with
f + ( z ) $\textstyle \! = \!$ $\displaystyle \left [ \vert z \vert \right ] ^{\frac{1}{2} }
\left [ \vert z - ...
...^{i \pi } \right ] ^{-1}
\left [ \vert z - y _2 \vert e^{i \pi } \right ] ^{-1}$  
  $\textstyle \! = \!$ i f(y) (132)


f - ( z ) $\textstyle \! = \!$ $\displaystyle \left [ \vert z \vert e^{2 i \pi } \right ] ^{\frac{1}{2} }
\left...
...^{i \pi } \right ] ^{-1}
\left [ \vert z - y _2 \vert e^{i \pi } \right ] ^{-1}$  
  $\textstyle \! = \!$ $\displaystyle - i f(y)
\quad .$ (133)

Therefore,

\begin{displaymath}\lim _{\epsilon _1 \, , \: \epsilon _2 \to 0}
\int _{\Gamma _{\epsilon _1 \, , \: \epsilon _2}} dz f(z)
=
2 i I
\end{displaymath} (134)

with

\begin{displaymath}I = \pi \left [
{\cal R}{\rm {}es} \left\{ f , +\infty \righ...
... {\cal R}{\rm {}es} \left\{ f , y_2 \right\}
\right ]
\quad .
\end{displaymath} (135)

The residue of the function at infinity is found from its asymptotic expansion in powers of z-1:


f(z) = $\displaystyle z^{\frac{1}{2} }
\frac{1}{\left( z - 1 \right) ^{\frac{1}{2}}}
\left( z - y_0 \right)
\frac{1}{z - y_1}
\frac{1}{z - y_2}$  
  = $\displaystyle z ^{\frac{1}{2} }
\frac{1}
{\displaystyle
z ^{\frac{1}{2}}
\left(...
...{y_1}{z} \right)
}
\frac{1}
{\displaystyle
z \left( 1 - \frac{y_1}{z} \right)
}$  
  $\textstyle \sim$ $\displaystyle \frac{1}{z}
\left( 1 +
\frac{1}{2z} +
\frac{3}{8z ^{2}} +
{\cal O} \left( z^{-3} \right)
\right)
\cdot$  
    $\displaystyle \qquad \qquad \qquad \cdot
\left( 1 +
\frac{y_1}{z} +
\frac{y_1^{...
...
\frac{y_2}{z} +
\frac{y_2^{2}}{z^{2}} +
{\cal O} \left( z^{-3} \right)
\right)$  
  $\textstyle \sim$ $\displaystyle \frac{1}{z} + {\cal O} \left( \frac{1}{z^{2}}
\right)$ (136)

The opposite of the coefficient of z -1 yields the result:

\begin{displaymath}{\cal R}{\rm {}es} \left\{ f , +\infty \right\} = -1
\quad .
\end{displaymath} (137)

Next, the residues at the poles z=y1 , y2 are given by

\begin{displaymath}{\cal R}{\rm {}es} \left\{ f , y_1 \right\}
=
y_1^{\frac{1}...
...{2}}
\left( y_1 - y_0 \right)
\left( y_1 - y_2 \right) ^{-1}
\end{displaymath} (138)


\begin{displaymath}{\cal R}{\rm {}es} \left\{ f , y _2 \right\}
=
y_2^{\frac{1...
...eft( y_2 - y_0 \right)
\left( y_2 - y_1 \right) ^{-1}
\quad .
\end{displaymath} (139)

Then, summing up our results, we finally obtain the expression of the integral

I = $\displaystyle \pi \left\{
\left( \frac{y_1 }{y_1 - 1} \right) ^{\frac{1}{2} }
\left( y_1 - y_0 \right)
\left( y_1 - y_2 \right) ^{-1}
+
\right.$  
    $\displaystyle \qquad \qquad \qquad +
\left.
\left( \frac{y_2 }{y_2 - 1} \right)...
... }
\left( y_2 - y_0 \right)
\left( y_2 - y_1 \right) ^{-1}
-
1
\right\}
\quad .$ (140)


next up previous
Next: 11. Comparison with Parke Up: Classical and Quantum Shell Previous: 9. Hamiltonian for ,

Stefano Ansoldi
Department of Theoretical Physics
University of Trieste
TRIESTE - ITALY