Next: 11. Comparison with Parke Up: Classical and Quantum Shell Previous:
9. Hamiltonian for ,
10. Basic Integral for the de Sitter-de Sitter case.
The calculation of the integral (91) is performed
in the complex plane by considering the function
![\begin{displaymath}f ( z ) = \sqrt{z}
\sqrt{z - 1}
\left( z - y_0 \right)
\left( z - y_1 \right) ^{-1}
\left( z - y_2 \right) ^{-1}
\quad
\end{displaymath}](img292.gif) |
(127) |
which has two branch points (z=0 and z=1), and two simple
poles (z=y1 and z=y2). Accordingly, we integrate along the
path
:
-
:
a clockwise circumference of radius
and center z=0;
-
:
an oriented line segment of the x-axis in the
upper half of the complex plane;
-
:
a clockwise circumference of radius
and center z=1;
-
:
an oriented line segment of the x-axis in the
lower half of the complex plane
with
![\begin{displaymath}0 \leq \arg \left( z \right) < 2 \pi
\end{displaymath}](img300.gif) |
(128) |
![\begin{displaymath}0 \leq \arg \left( z - 1 \right) < 2 \pi
\quad .
\end{displaymath}](img301.gif) |
(129) |
Figure:
Integration path
.
![\begin{figure}\centerline{\fbox{\psfig{figure=fig_8.eps}}}
\medskip
\end{figure}](img302.gif) |
Then, we have
![\begin{displaymath}
\lim _{\epsilon _1 \, , \: \epsilon _2 \to 0}
\int _{\Gamm...
...
{\cal R}{\rm {}es} \left\{ f , y_2 \right\}
\right]
\quad .
\end{displaymath}](img303.gif) |
(130) |
It is also true that
![\begin{displaymath}\lim _{\epsilon _1 \, , \: \epsilon _2 \to 0}
\int _{\Gamma ...
...n _2}} dz f(z)
=
\int _0^1 dz f_+(z)
-
\int _0^1 dz f_-(z)
\end{displaymath}](img304.gif) |
(131) |
with
Therefore,
![\begin{displaymath}\lim _{\epsilon _1 \, , \: \epsilon _2 \to 0}
\int _{\Gamma _{\epsilon _1 \, , \: \epsilon _2}} dz f(z)
=
2 i I
\end{displaymath}](img309.gif) |
(134) |
with
![\begin{displaymath}I = \pi \left [
{\cal R}{\rm {}es} \left\{ f , +\infty \righ...
... {\cal R}{\rm {}es} \left\{ f , y_2 \right\}
\right ]
\quad .
\end{displaymath}](img310.gif) |
(135) |
The residue of the function at infinity is found from its
asymptotic expansion in powers of z-1:
The opposite of the coefficient of z -1 yields the result:
![\begin{displaymath}{\cal R}{\rm {}es} \left\{ f , +\infty \right\} = -1
\quad .
\end{displaymath}](img317.gif) |
(137) |
Next, the residues at the poles
z=y1 , y2 are given by
![\begin{displaymath}{\cal R}{\rm {}es} \left\{ f , y_1 \right\}
=
y_1^{\frac{1}...
...{2}}
\left( y_1 - y_0 \right)
\left( y_1 - y_2 \right) ^{-1}
\end{displaymath}](img318.gif) |
(138) |
![\begin{displaymath}{\cal R}{\rm {}es} \left\{ f , y _2 \right\}
=
y_2^{\frac{1...
...eft( y_2 - y_0 \right)
\left( y_2 - y_1 \right) ^{-1}
\quad .
\end{displaymath}](img319.gif) |
(139) |
Then, summing up our results, we finally obtain the expression of the
integral
I |
= |
![$\displaystyle \pi \left\{
\left( \frac{y_1 }{y_1 - 1} \right) ^{\frac{1}{2} }
\left( y_1 - y_0 \right)
\left( y_1 - y_2 \right) ^{-1}
+
\right.$](img320.gif) |
|
|
|
![$\displaystyle \qquad \qquad \qquad +
\left.
\left( \frac{y_2 }{y_2 - 1} \right)...
... }
\left( y_2 - y_0 \right)
\left( y_2 - y_1 \right) ^{-1}
-
1
\right\}
\quad .$](img321.gif) |
(140) |
Next: 11. Comparison with Parke Up: Classical and Quantum Shell Previous:
9. Hamiltonian for ,
Stefano Ansoldi
Department of Theoretical Physics
University of Trieste
TRIESTE - ITALY