next up previous
Next: Bibliography Up: Classical and Quantum Shell Previous: 10. Basic Integral for

   
11. Comparison with Parke

Parke's result for the bounce action is[17]

 \begin{displaymath}B = B _0\, r \left [
\left(
\frac{\bar{\rho} _0}{2 \Lambda...
...) ^{2}
,
\frac{\Lambda ^{2}}{\lambda ^{2}}
\right ]
\quad ,
\end{displaymath} (141)

where

\begin{displaymath}r \left [ x , y \right ]
=
\frac{
2 \left [ \left ( 1 + x ...
...)
\left( 1 + 2 x y + x ^{2} \right) ^{\frac{1}{2}}
}
\quad .
\end{displaymath} (142)

Moreover

\begin{displaymath}\bar{\rho} _0 = \frac{3 S _1}{U _{f} - U _{t}}
\end{displaymath} (143)

is the critical radius in the absence of gravity, and

\begin{displaymath}U _{f/t} = U \left( \phi _{f/t} \right)
\end{displaymath} (144)

represent the extremal points of the potential $U \left( \phi \right)$ for the scalar field $\phi$, which is minimally coupled to gravity; they correspond to the false and true vacuum respectively. The quantities $\Lambda$ e $\lambda$ are related to these parameters by the following relations7
    $\displaystyle \Lambda ^{2} = \left [
\frac{ 8 \pi \left( U _{f} - U _{t} \right)}{3}
\right ] ^{-1}$ (145)
    $\displaystyle \lambda ^{2} = \left [
\frac{ 8 \pi \left( U _{f} + U _{t} \right)}{3}
\right ] ^{-1}$ (146)

and

\begin{displaymath}B _0 = \frac{27 \pi ^{2} S _1 ^{4}}
{2 \left( U _{f} - U _{t} \right) ^{3}}
\end{displaymath} (147)

represents the bounce action in the absence of gravity.

On the other hand, our result is

 
    $\displaystyle B = \frac{\pi \xi _{N} ^{3}}{2}
\frac{y _1 y _2}{y _0}
\left\{
\l...
...c{1}{2} }
\left( y _1 - y _0 \right)
\left( y _1 - y _2 \right) ^{-1}
+
\right.$  
    $\displaystyle \qquad \qquad \qquad \qquad +
\left.
\left( \frac{y _2 }{y _2 - 1...
...\left( y _2 - y _0 \right)
\left( y _2 - y _1 \right) ^{-1}
-
1
\right\}\quad ,$ (148)

in terms of the parameters defined in eqs.(74-75)-(83)-(88- 90). The correspondence between our cosmological constants and the false vacuum/true vacuum energies is given by the relations:
  $\textstyle \epsilon _{in} = U _{f} \quad ,$   (149)
  $\textstyle \epsilon _{out} = U _{t} \quad ,$   (150)

with
  $\textstyle \Lambda _{in} = 8 \pi \epsilon _{in} \quad ,$   (151)
  $\textstyle \Lambda _{out} = 8 \pi \epsilon _{out}
\quad .$   (152)

Furthermore,

\begin{displaymath}R _0 = \frac{3 \vert \rho \vert }{\vert \Delta \epsilon \vert...
...ac{2}{\vert 4 \pi \rho \vert} \frac{1}{\vert 1 - \gamma \vert}
\end{displaymath} (153)

corresponds to $\bar{\rho} _0$ which, in turn, enables us to identify:
  $\textstyle S _1 \to \rho$   (154)
  $\textstyle \Delta \epsilon \to U _{f} - U _{t}
\quad .$   (155)

Using this translation code, one can verify that Parke's expression for the nucleation coefficient in the absence of gravity corresponds to

 \begin{displaymath}B _0 = \frac{27 \pi ^{2} S _1 ^{4}}
{2 \left ( U _{f} - U _{...
...c{\pi ^{2}}{2} R _0 ^{3} \left \vert \rho \right \vert
\quad ,
\end{displaymath} (156)

which is exactly our result. Passing to the more general case, we note that:
  $\textstyle \displaystyle
\Lambda ^{2}
\to
\left ( \frac{\Lambda _{in} - \Lambda _{out}}{3} \right ) ^{-1}
=
\frac{1}{\kappa ^{2} \left ( 1 - \gamma \right )}$   (157)
  $\textstyle \displaystyle
\lambda ^{2}
\to
\left ( \frac{\Lambda _{in} + \Lambda...
...3} \right ) ^{-1}
=
\frac{2}{\kappa ^{2} \left ( 2\gamma - 2 + \alpha
\right )}$   (158)

from which we deduce,
  $\textstyle \displaystyle
\frac{\Lambda ^{2}}{\lambda ^{2}}
\to
\frac{2 \gamma - 2 + \alpha}{2 \left ( 1 - \gamma \right)}$   (159)
  $\textstyle \displaystyle
\frac{\bar{\rho} _0 ^{2}}{4 \Lambda ^{2}}
\to
\frac{R _0 ^{2}}{4} \kappa ^{2} \left ( 1 - \gamma
\right )$   (160)

and, as a consequence,
  $\textstyle \displaystyle
x
\to
\frac{1}{1 - \gamma}$   (161)
  $\textstyle \displaystyle
y
\to
\frac{2 \gamma - 2 + \alpha }{2 \left ( 1 - \gamma \right )}$   (162)
  $\textstyle \displaystyle
x ^{2}
\to
\frac{1}{\left ( 1 - \gamma \right ) ^{2}}$   (163)
  $\textstyle \displaystyle
x y
\to
\frac{2 \gamma - 2 + \alpha }{2 \left ( 1 - \gamma \right ) ^{2}}$   (164)
  $\textstyle \displaystyle
1 + xy
\to
\frac{2 \gamma ^{2} - 2 \gamma + \alpha}
{2...
... ) ^{2}}
=
\frac{\alpha + \gamma ^{2}}{2 y _0 \left ( 1 - \gamma \right ) ^{2}}$   (165)
  $\textstyle \displaystyle
\sqrt{1 + 2 x y + x ^{2}}
\to
\frac{\sqrt{\alpha + \gamma ^{2}}}{\vert 1 - \gamma \vert }$   (166)
  $\textstyle \displaystyle
y ^{2} - 1
\to
\frac{\alpha \left ( 4 \gamma - 4 + \al...
...\alpha + \gamma ^{2} \right )}
{4 y _2 \left( 1 - \gamma \right ) ^{2}}
\quad .$   (167)

Substituting all of the above in Eq.(141), we find
 
    $\displaystyle B ({\rm Parke}) \to$  
  $\textstyle \to$ $\displaystyle B _0
\frac{ 2
\left [ \displaystyle
\frac{\alpha + \gamma ^{2}}
{...
... \right ) ^{2}}
\frac{\sqrt{\alpha + \gamma ^{2}}}
{\vert 1 - \gamma \vert}
}
=$  
  = $\displaystyle B _0
\frac{8 \left ( 1 - \gamma \right ) ^{4} y _2}
{\alpha \left...
... 1 - \gamma \right \vert
\left ( \alpha + \gamma ^{2} \right )
}
- 1
\right ]
=$  
  = $\displaystyle B _0
\frac{
4 \left \vert 1 - \gamma \right \vert ^{3}
\left( 2\g...
...\vert \sqrt{\alpha + \gamma ^{2}}}
{2\gamma ^{2} - 2\gamma + \alpha}
\right ]
=$  
  = $\displaystyle 4 B _0 \frac{y _2 y _1}{y _0}
\frac{\left \vert 1 - \gamma \right...
...rt{\alpha + \gamma ^{2}}}
{2\gamma - 2\gamma ^{2} - \alpha}
-
1
\right ]\quad .$ (168)

Next, we proceed in the same fashion with our own result. First, we have

  $\textstyle \displaystyle
y _1 - y _0
=
\frac{
2 \gamma
\left ( 1 - \gamma \righ...
...a ^{2} \right )
}
{
\alpha \left ( 2 \gamma - 2 \gamma ^{2} - \alpha \right )
}$   (169)
  $\textstyle \displaystyle
y _1 - y _2
=
\frac{4 \left ( \gamma - 1 \right ) \left ( \alpha + \gamma ^{2} \right )}
{\alpha \left ( 4 \gamma - 4 + \alpha \right )}$   (170)
  $\textstyle \displaystyle
y _2 - y _0
=
\frac{
2 \left ( 2 - \gamma \right )
\le...
...amma - 4 + \alpha \right )
\left ( 2 \gamma - 2 \gamma ^{2} - \alpha \right )
}$   (171)
  $\textstyle \displaystyle
\frac{y _1}{y _1 - 1}
=
\frac{\alpha + \gamma ^{2}}{\gamma ^{2}}$   (172)
  $\textstyle \displaystyle
\frac{y _2}{y _2 - 1}
=
\frac{\alpha + \gamma ^{2}}{\left ( \gamma - 2 \right ) ^{2}}
\quad .$   (173)

Then, in the case in which $ \gamma < 0 $, or $\gamma > 2$ our expression for the nucleation coefficient becomes
 
B = $\displaystyle \frac{\pi \xi _{N} ^{3}}{2 \left ( 4 \pi \rho \right ) ^{2}}
\frac{y _1 y _2}{y _0} \cdot$  
    $\displaystyle \: \: \: \cdot
\left\{
\frac{\sqrt{\alpha + \gamma ^{2}}}
{\vert ...
...}
{
4 \left( \alpha + \gamma ^{2} \right)
\left( \gamma - 1 \right)
}
+
\right.$  
    $\displaystyle \quad
-
\frac{\sqrt{\alpha + \gamma ^{2}}}
{\vert 2 - \gamma\vert...
...a - 4 + \alpha \right)
\left( 2 \gamma - 2 \gamma ^{2} - \alpha \right)
}
\cdot$  
    $\displaystyle \qquad \qquad \quad
\left.
\cdot
\frac{\alpha \left( 4 \gamma - 4...
...left( \alpha + \gamma ^{2} \right )
\left ( \gamma - 1 \right)
}
-
1
\right\}
=$  
  = $\displaystyle \frac{\pi \xi _{N} ^{3}}{2 \left ( 4 \pi \rho \right ) ^{2}}
\fra...
...\sqrt{\alpha + \gamma ^{2}}}
{2 \gamma - 2 \gamma ^{2} - \alpha}
\cdot
\right .$  
    $\displaystyle \qquad \qquad
\left.
\cdot
\left(
\frac{\gamma}{\vert \gamma \ver...
...ight)
+
\frac{2 - \gamma}{\vert 2 - \gamma \vert} \alpha
\right)
- 1
\right ]
=$  
  = $\displaystyle \frac{\pi \xi _{N} ^{3}}{2 \left ( 4 \pi \rho \right ) ^{2}}
\fra...
... \alpha + \gamma ^{2}}}
{2\gamma ^{2} - 2\gamma + \alpha }
- 1
\right ]
\quad .$ (174)

Finally, comparing the expressions (168)-(174), one sees that their equivalence is related to the equivalence of the terms

\begin{displaymath}\frac{\pi \xi _{N} ^{3}}{2 \left ( 4 \pi \rho \right ) ^{2}}
...
... ( \alpha + \gamma ^{2} \right ) ^{\frac{3}{2}}}
B _0
\quad .
\end{displaymath} (175)

However, in view of the equivalence between eqs.(156) and (83), the only equality that needs to be proved is that between

\begin{displaymath}\frac{8 \pi }
{
2 \left ( 4 \pi \rho \right ) ^{2}
\left ...
... \right \vert ^{3} \left \vert 1 - \gamma
\right
\vert ^{3}}
\end{displaymath} (176)

which is trivially true.

In order to complete our discussion, we note that in the case $0 < \gamma < 2$ our result and that of Parke do not coincide. The reason for this discrepancy may be traced back to the fact that in the given interval of variation of $\gamma$, one finds $ \sigma _{in} = - \sigma _{out} $. Therefore, as discussed in the text, the shell configuration $R \equiv 0$ is no longer a classical solution so that no quantum tunneling can occur in the first place.


next up previous
Next: Bibliography Up: Classical and Quantum Shell Previous: 10. Basic Integral for

Stefano Ansoldi
Department of Theoretical Physics
University of Trieste
TRIESTE - ITALY