next up previous
Next: 4. The string kernel Up: String Propagator: a Loop Previous: 2. Functional Jacobi equation

   
3. Feynman and Jacobi path integrals

The path integral approach to string-dynamics is not only a useful check of the quantization procedure, but gives a new insight into the quantum theory itself. In particular, it gives a better insight into the meaning of the equivalence between the Nambu-Goto action and the Schild action. Furthermore, it provides a physically transparent relationship between the Feynman ``sum over histories'' integral and the Jacobi path integral. However, to see how this comes about, one must keep in mind that the momenta $p _{\mu \nu}$ and $\pi _{ab}$ cannot vary freely, because $\pi _{ab}$ is merely a shorthand notation for the function $\epsilon _{ab} H (p)$, and thus must satisfy the constraint equation

 \begin{displaymath}\pi _{ab} - \epsilon _{ab} H (p) = 0 \ .
\end{displaymath} (13)

This constraint may be incorporated in the action (3) by means of a Lagrange multiplier $N ^{ab} (\sigma)$
    $\displaystyle S [ x (\sigma) , p (\sigma) , \xi (\sigma) , N (\sigma) ; A]
=
\frac{1}{2}
\int _{X ( \sigma )}
p _{\mu \nu} d x ^{\mu} \wedge d x ^{\nu}
+$  
    $\displaystyle \qquad \qquad +
\frac{1}{2}
\int _{\xi (\sigma)}
\pi _{ab} d \xi ...
...{2} \sigma
N ^{ab} (\sigma)
\left[
\pi _{ab}
-
\epsilon _{ab}
H (p)
\right]
\ ,$ (14)

and its physical meaning can be read out of the classical equation of motion obtained by varying $\pi _{ab}$:

\begin{displaymath}N ^{ab} (\sigma)
=
\epsilon ^{mn}
\partial _{m} \xi ^{a}
\partial _{n} \xi ^{b}
\ .
\end{displaymath} (15)

Thus, N ab is the transformed $\epsilon$-tensor in the new coordinate system. Then, apart from an over all normalization constant 4, the amplitude for the initial string C 0 to ``evolve'' into the final string C in a lapse of ``time A'', can be represented by the path integral
 
    $\displaystyle K [ x (s) , x _{0} (s) ; A ]
=
\int _{ x _{0} (s)} ^{x (s)}
\int ...
...(s)} ^{\xi (s)} [D \mu (\sigma)]
e ^{i S [ x , p , \xi , \pi , N ; A ] / \hbar}$  
    $\displaystyle [D \mu (\sigma)]
\equiv
[D x ^{\mu} (\sigma)]
[D \xi ^{a} (\sigma)]
[D p _{\mu \nu} (\sigma)]
[D \pi _{ab} (\sigma)]
[D N _{cd} (\sigma)]
\ .$ (17)

At the classical level, H, or $\pi _{ab}$, is independent of the coordinates $\sigma ^{m}$ because of the balance equation (4). The same result is obtained at the quantum level by integrating out the $\xi ^{a} ( \sigma )$ fields:
 
    $\displaystyle \int _{\xi _{0} (s)} ^{\xi (s)} [D \xi ^{a} (\sigma)]
\exp
\left\...
...\hbar}
\int _{\xi (\sigma)} d \xi ^{a} \wedge d\xi ^{b}
\,
\pi _{ab}
\right\}
=$  
    $\displaystyle \qquad \qquad =
\delta
\left[ \epsilon ^{mn} \partial _{m} \pi _{...
...ar}
\int _{\xi (\sigma)} d \left( \pi _{ab} \xi ^{a} d \xi ^{b} \right)
\quad .$ (18)

The functional Dirac-delta requires $\pi _{ab}$ to satisfy the classical equation of motion, i.e. $
\pi _{ab}
=
\epsilon _{ab}
\times
\mathrm{const.}
\equiv
\epsilon _{ab} E
$. Therefore,
    $\displaystyle \int \! [D \pi _{ab}]
\delta
\left[
\epsilon ^{mn}
\partial _{m} ...
... _{\Sigma} \! \! \! d ^{2} \sigma
N ^{ab} (\sigma) \pi _{ab}
\right]
\right\}
=$  
    $\displaystyle \qquad \qquad \qquad =
\int _{0} ^{\infty} d E
e ^{i E A / \hbar}...
...{2 \hbar}
\int _{\Sigma} d ^{2} \sigma
N ^{ab} (\sigma)
\epsilon _{ab}
\right\}$ (19)

where we have assumed that the Hamiltonian is bounded from below and is normalized in such a way that $E \ge 0$. Then, the Feynman path integral can be written as follows
 
    $\displaystyle K[ x (s) , x _{0} (s) ; A ]
=
\int _{0} ^{\infty} d E
e ^{i E A /...
... (s)}
[D x ^{\mu} (\sigma)]
[Dp _{\mu \nu} (\sigma)]
[DN _{cd} (\sigma)]
\times$  
    $\displaystyle \times
\exp
\left\{
\frac{i}{2 \hbar}
\int _{X (\sigma)}
p _{\mu ...
...}
\int _{\Sigma} d ^2 \sigma
N ^{ab} (\sigma)
\left[ E - H (p) \right]
\right\}$  
    $\displaystyle \qquad \qquad \qquad \quad \, \, \,
\equiv 2 i \hbar m ^{2}
\int _{0} ^{\infty} d E
e ^{ i E A / \hbar}
G[ C , C _{0} ; E]
\ ,$ (20)

where we have introduced the Jacobi path integral G[ C , C 0 ; E] as the amplitude for a string to propagate from C 0 to C, at fixed energy E.

The most important property of G[ C , C 0 ; E] is reparametrization invariance. If we integrate out the area momentum $p _{\mu \nu}$, we obtain

 
G[ C , C 0 ; E ]   $\displaystyle =
\int _{x _{0} (s)} ^{x (s)} [D x ^{\mu} (\sigma)][D N (\sigma)]
\times$  
    $\displaystyle \qquad \qquad \qquad \times
\exp
\left\{
-
\frac{i}{\hbar}
\int _...
...rac{m ^{2}}{4 N}
{\dot{x}}^{\mu \nu} {\dot{x}}_{\mu \nu}
+
N E
\right]
\right\}$ (21)

where $N (\sigma) \equiv \epsilon _{ab} N ^{ab} (\sigma) / 2$.
Equation (21) is manifestly invariant under reparametrization

\begin{displaymath}{\dot{x}}^{\mu \nu} (\sigma)
\rightarrow
\mathrm{det}
\le...
...artial u ^{a}}{\partial \sigma ^{m}}
\right)
N (\sigma)
\ .
\end{displaymath} (22)

Finally, if we estimate the path integral (21) around the saddle point $
\widehat N (\sigma)
=
\left(
-
m ^{2}
{\dot{x}}^{\mu \nu}
{\dot{x}}_{\mu \nu}
/
4 E
\right) ^{1/2}
$, we find

 \begin{displaymath}G[ C , C _{0} ; E ]
=
\int _{ x _{0} (s)} ^{x (s)} [ D x ^{...
...sqrt{- {\dot{x}}^{\mu \nu} {\dot{x}}_{\mu \nu}}
\right\}
\ ,
\end{displaymath} (23)

which is the usual path integral weighed by the Nambu-Goto action, once we fix E = m 2 / 2.
The result (23) suggests the following concluding remarks for this section:
1.
equation (23) could be assumed at the outset and taken as a starting point for string quantization by means of functional techniques. The advantage of our derivation is that it clarifies the physical meaning of such a reparametrization invariant path integral: it represents the string propagation amplitude at fixed ``area-energy'' $E = 1/4 \pi \alpha '$.
2.
We can invert the Fourier transform (20) and define the reparametrization invariant path integral in terms of the Feynman propagation amplitude at fixed ``area-lapse'' A

 \begin{displaymath}G[ C , C _{0} ; m ^{2} ]
\equiv
\frac{1}{2 i \hbar m ^{2}}
...
...
e ^{- i m ^{2} A / 2 \hbar} K[ x (s) , x _{0} (s) ; A]
\ .
\end{displaymath} (24)

Then, reparametrization offers an alternative definition of the sum over histories: first, sum over all world-sheets of fixed area; then, integrate over all possible values of the world-sheet area.
3.
Equation (20) represents the quantum counterpart of the classical equivalence [5] between the Nambu-Goto action and the Schild action.


next up previous
Next: 4. The string kernel Up: String Propagator: a Loop Previous: 2. Functional Jacobi equation

Stefano Ansoldi
Department of Theoretical Physics
University of Trieste
TRIESTE - ITALY