next up previous
Next: C..3 Result for the Up: C. Explicit computation of Previous: C..1 Infrared limit


C..2 Ultraviolet limit

To tackle the problem of the ultraviolet behavior of the energy density, we analyze the limit in which $r \to \infty$, $\rho \to
\infty$. As already discussed we will first set $r = \rho = \Lambda$ and then approximate the various quantities as $\Lambda \to \infty$. For the relevant expressions, already encountered above, we get6

$\displaystyle \mbox{\boldmath$A$}$ $\textstyle =$ $\displaystyle - 4 \kappa \Lambda ^{2} \left( 1 - \frac{( \kappa + m
_{\mathrm{A...
...ppa + m _{\mathrm{A}} ^{2} ) ^{2}}{2 \kappa \Lambda
^{2}} \right) , \quad \dots$ (49)
$\displaystyle \mbox{\boldmath$B$}$ $\textstyle =$ $\displaystyle 4 \kappa \Lambda ^{2} \left( 1 + \frac{m _{\mathrm{A}}
^{4}}{4 \k...
...t( 1 + \frac{m _{\mathrm{A}} ^{4}}{2
\kappa \Lambda ^{2}} \right) , \quad \dots$ (50)
$\displaystyle \mbox{\boldmath$C$}$ $\textstyle =$ $\displaystyle - 4 \Lambda ^{2} \left( 1 - \frac{ m _{\mathrm{A}}
^{2}}{4 \Lambd...
...^{2} \left( 1 - \frac{ \kappa + m _{\mathrm{A}} ^{2}}{4
\Lambda ^{2}} \right) ,$  
    $\displaystyle \qquad \qquad ( \kappa + \mbox{\boldmath$C$}) ^{-1} \sim - \frac{...
...1 + \frac{ \kappa + m _{\mathrm{A}} ^{2}}{4
\Lambda ^{2}} \right) , \quad \dots$ (51)
$\displaystyle \mbox{\boldmath$D$}$ $\textstyle =$ $\displaystyle 4 \Lambda ^{4} \left( 1 - \frac{m _{\mathrm{A}} ^{2}}{2
\Lambda ^{2}} \right) ,$  
    $\displaystyle \qquad \qquad \log ( - \kappa \ \rho ^{2} + \mbox{\boldmath$D$}) ...
...da
^{2}} - \frac{( \kappa + 2 m _{\mathrm{A}} ^{2} ) ^{4}}{32 \Lambda
^{2}} \,.$ (52)

Moreover we also have the well known expansions
$\displaystyle {\mathrm{Arctanh}} \left( x \right)$ $\textstyle =$ $\displaystyle x + \frac{x ^{3}}{3} +
\frac{x ^{5}}{5} + {\mathcal{O}} (x ^{7})$ (53)
$\displaystyle \arctan \left( x \right)$ $\textstyle =$ $\displaystyle x - \frac{x ^{3}}{3} + \frac{x
^{5}}{5} + {\mathcal{O}} (x ^{7}) \,,$ (54)

which we are going to use in the following. In particular we can consider in generality the expansion of the following expression
$\displaystyle - \frac{w ^{3/2}}{2} \ln \left( \frac{z - w ^{1/2}}{z + w ^{1/2}}
\right)$ $\textstyle =$ $\displaystyle w ^{3/2} {\mathrm{Arctanh}} \left( \frac{w
^{1/2}}{z} \right)$  
  $\textstyle =$ $\displaystyle \cases{ \vert w\vert ^{3/2} {\mathrm{Arctanh}} \displaystyle\left...
...w\vert ^{1/2}
\quad
\mbox{and$\quad w ^{3/2} = - \imath \vert w\vert ^{3/2}$} }$  
  $\textstyle =$ $\displaystyle \cases{ \vert w\vert ^{3/2} {\mathrm{Arctanh}} \displaystyle\left...
...playstyle\left( \frac{\vert w\vert ^{1/2}}{z} \right)
\quad
\mbox{if $w <
0$} }$  
  $\textstyle =$ $\displaystyle \cases{ \vert w\vert ^{3/2} {\mathrm{Arctanh}} \displaystyle\left...
...playstyle\left( \frac{\vert w\vert ^{1/2}}{z} \right)
\quad
\mbox{if $w <
0$} }$  
  $\textstyle =$ $\displaystyle \vert w\vert ^{3/2} \Biggl [ \left( \frac{\vert w\vert ^{1/2}}{z}...
...thrm{sign}} (w) \frac{1}{3} \left( \frac{\vert w\vert ^{1/2}}{z} \right)
^{3} +$  
    $\displaystyle \hphantom{\vert w\vert ^{3/2} \Biggl [}
+ \frac{1}{5} \left( \fra...
...sign}} (w) \left( \frac{\vert w\vert ^{1/2}}{z} \right) ^{7} +
\cdots \Biggr] ,$  

so that
\begin{displaymath}
- \frac{w ^{3/2}}{2} \ln \left( \frac{z - w ^{1/2}}{z + w ^...
...^{0 , \infty} \frac{w ^{n}}{(2 n
+ 1) z ^{2 n + 1}} \right] .
\end{displaymath} (55)

From the above result, if we identify
$\displaystyle w$ $\textstyle \longleftrightarrow$ $\displaystyle \mbox{\boldmath$B$}\,,$  
$\displaystyle z$ $\textstyle \longleftrightarrow$ $\displaystyle \mbox{\boldmath$C$}$  

and we consider an overall $1/(24 \kappa)$ factor, using properly (50) and the first equation of (51), we get
\begin{displaymath}
\frac{\mbox{\boldmath$B$}^{3/2}}{48 k} \ln \left( \frac{\mb...
...{2}}{6} +
\frac{\kappa ^{2} + 3 \kappa m ^{2} + 6 m ^{4}}{72}
\end{displaymath} (56)

for the second term in (38). In the same way, starting again from result (55), together with the identifications
$\displaystyle w$ $\textstyle \longleftrightarrow$ $\displaystyle \mbox{\boldmath$A$}\,,$  
$\displaystyle z$ $\textstyle \longleftrightarrow$ $\displaystyle \kappa + \mbox{\boldmath$C$}$  

and taking into account an overall $-1/(24 \kappa)$, (49) and (51), we obtain for the third term in (38)
\begin{displaymath}
- \frac{A ^{3/2}}{48 \kappa} \ln \left( \frac{\kappa + \mbo...
...} + \frac{4 \kappa ^{2} + 9 \kappa m
^{2} + 6 m ^{4}}{72} \,.
\end{displaymath} (57)

The last term in (38) has also a logarithmic part and, using (52), can be approximated as
    $\displaystyle \frac{1}{48} \left[ \kappa ^{2} + 3 \kappa m _{\mathrm{A}}
^{2} -...
...math$D$}\right] \ln
\left( - \kappa \rho ^{2} + \mbox{\boldmath$D$}\right) \sim$  
    $\displaystyle \qquad \qquad \sim \frac{\kappa ^{2} + 3 \kappa m
_{\mathrm{A}} ^...
...ambda ^{4} \right) + \frac{\Lambda
^{4}}{2} \ln \left( 4 \Lambda ^{4} \right) +$  
    $\displaystyle \hphantom{\qquad \qquad \sim}
+ \, \frac{( \kappa + 2 m _{\mathrm{A}} ^{2}) ^{2}}{64} -
\frac{\kappa + 2 m _{\mathrm{A}} ^{2}}{8} \Lambda ^{2} \,.$ (58)

We are now concerned with the easiest term in (38), namely the first, for which we get
\begin{displaymath}
\frac{ \rho ^{2} \left( \kappa + 3 \left( m _{\mathrm{A}} ^...
...athrm{A}} ^{2}}{24} \Lambda ^{2} - \frac{7}{8} \Lambda ^{4}\,.
\end{displaymath} (59)

Summing up equations (56), (57), (58), (59), we obtain
    $\displaystyle \Lambda ^{4} \left [ 2 \ln \Lambda + \ln 2 - \frac{7}{8}
\right ]...
...ppa + 2 m _{\mathrm{A}} ^{2}}{4} \left( 2 \ln
\Lambda + \ln 2 \right) \right] +$ (60)
    $\displaystyle + \, \frac{5 \kappa ^{2} + 12 \kappa m _{\mathrm{A}} ^{2} + 12 m
...
...m{A}}
^{2} + 3 m _{\mathrm{A}} ^{4}}{48} \left( 2 \ln \Lambda + \ln 2
\right) .$  


next up previous
Next: C..3 Result for the Up: C. Explicit computation of Previous: C..1 Infrared limit

Stefano Ansoldi