... production1
To appear in the Proceedings of the 6th International Symposium on Frontiers in Fundamental and Computational Physics (FFP6), September 26-29, Udine, ITALY
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Sindoni2
potenzo17@yahoo.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Ansoldi3
Email: ansoldi@trieste.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... S. Ansoldi3 4
Webpage: http://www-dft.ts.infn.it/$\sim$ansoldi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... brane5
In the mathematical treatment of the classical situation the brane has, in fact, zero radius; from the physical point of view, with quantum gravity in mind, we can imagine this brane as a result of zero point quantum fluctuations.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... brane6
We are going to consider $R$ as a function $R (\tau)$ of the proper time $\tau$ of an observer sitting on the brane and denote by an overdot the derivative with respect to $\tau$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... spacetime7
Since the compact notation could be misleading, we remember that we have two spacetimes with different cosmological constants $\Lambda _{\pm}$ and, thus, two metric functions $f _{\pm} (R)$; please, also remember the meaning of the square brackets defined above.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.