next up previous
Next: 5 Interferometric detection of Up: HeuristicGravFluctuations Previous: 3 Fluctuations of the


4 Correlation functions

We have already assumed that the number fluctuations at different space-time positions are uncorrelated, i.e., we have assumed that in spacetime volumes $\Delta V_{1,2} \Delta t_{1,2}$

\begin{displaymath}
\langle \Delta \left[n({\vec{x}}_{1},t_{1})\Delta V_{1}\Delt...
...}-{\vec{x}}
_{2})\delta (t_{1}-t_{2})\Delta V_{1}\Delta t_{1};
\end{displaymath}

then
$\displaystyle \left\langle {\Delta \Phi ({\vec{x}}_{1},t_{1})
\Delta \Phi ({\vec{x}}_{2},t_{2})}%
\right\rangle$ $\textstyle =$ $\displaystyle \left( {{\frac{{G\hbar c}}{{2c^{2}}}}}\right) ^{2}\sum\limits_{{\...
...})^{2}}}}}\right) \left( {{\frac{1}{{c^{2}(t_{1}-t^{\prime })^{2}}}}}\right)
}}$  
    $\displaystyle \qquad
\times \sum\limits_{{\vec{x}}^{\prime \prime }\in S}{\
\s...
...prime }) \Delta n({\vec{x}}^{\prime \prime },t^{\prime \prime })}
\right\rangle$  
  $\textstyle =$ $\displaystyle \left( {{\frac{{G\hbar c}}{{2c^{2}}}}}\right) ^{2}n_{0}\int\limit...
...{2}(t_{1}-t)^{2}}}}}\right) \left( {{\frac{1}{{
c^{2}(t_{1}-t)^{2}}}}}\right) }$  
    $\displaystyle \qquad
\times \left( {3-{\frac{r_{2}^{2}}{{c^{2}(t_{2}-t)^{2}}}}}\right)
\left( {{\frac{1}{{c^{2}(t_{2}-t)^{2}}}}}\right) ,$ (7)

where the shorthand notation $r_{1}=\left\vert {{\vec{x}}_{1}-{\vec{x}}}\right\vert $ and $r_{2}=\left\vert {{\vec{x}}_{2}-{\vec{x}}}\right\vert $ has been used, $S$ is the range of acceptable values of ${\vec{x}}_{1}$ and ${\vec{x}}_{2}$ - i.e., values such that $r_{{\mathrm{min}}}<r_{1,2}<r_{{\mathrm{max}}}$ - and $T^{\prime }$ and $T^{\prime\prime }$ are the ranges of $t^{\prime}$ and $t^{\prime \prime }$, i.e., $T^{\prime}=(-\infty,t_{1}-r_{1}/c)$ and $T^{\prime \prime}=
(-\infty,t_{1}-r_{2}/c)$.

Because of the axial symmetry about the ${\vec{x}}_{1}-{\vec{x}}_{2}$ direction and because of the approximate stationarity of the random process, the integral 7 can be partly simplified and we obtain

$\displaystyle \left\langle {\Delta \Phi ({\vec{x}}_{1},t_{1})
\Delta \Phi ({\vec{x}}_{2},t_{2})}
\right\rangle$ $\textstyle \approx$ $\displaystyle \left( {{\frac{{G\hbar }}{{2c}}}}\right) ^{2}\frac{
\pi }{4\ell }...
...c{r_{2}^{2}}{{
c^{2}(t-\tau )^{2}}}}}\right) {{\frac{1}{{c^{2}(t-\tau )^{2}}}}}$  
    $\displaystyle \qquad
+
\left. \int_{\max (-\ell ,-c\tau )}^{+\ell }\left( u^{2}...
...^{2}}{{
c^{2}(t-\tau )^{2}}}}}\right) {{\frac{1}{{c^{2}(t-\tau )^{2}}}}}\right]$  

where $\ell =\left\vert {{\vec{x}}_{1}-{\vec{x}}}_{2}\right\vert $ is the (nonzero) spatial separation between the space-time points 1 and 2, $t_{2}>t_{1}$ (so that $\tau >0)$ and the radial distances are expressed as functions of the new integration variables $u$, $v$: $r_{1}=(u+v)/2$, $r_{2}=(u-v)/2$.

We may also consider the fluctuation at a well specified position in space but at different times to obtain the time correlation function

$\displaystyle R(\tau )$ $\textstyle =$ $\displaystyle \left\langle {\Delta \Phi ({\vec{x}},0)\Delta \Phi ({\vec{x}},\tau )}
\right\rangle$  
  $\textstyle =$ $\displaystyle \left( {{\frac{{G\hbar }}{{2c}}}}\right) ^{2}
\!\!
n_{0}
\!\!
\in...
...rac{{r^{2}}}{{c^{2}(t-\tau )^{2}}}}}\right) {{\frac{1}{{c^{2}(t-\tau )^{2}}
}}}$  
  $\textstyle =$ $\displaystyle {\frac{{G^{2}\hbar ^{2}\pi }}{{c^{2}}}n_{0}}\left\{ \frac{2}{35c^...
...ln {\frac{{r_{{\mathrm{max}} }}}{{
r_{{\mathrm{max}} }+c\tau }}}\right. \right.$  
    $\displaystyle \qquad
\left.
-\left( 50r_{{\mathrm{min}} }^{7}-84r_{{\mathrm{min...
...\ln {\frac{{r_{{\mathrm{max}} }+c\tau }}
{{r_{{\mathrm{min}} }+c\tau }}}\right]$  
    $\displaystyle \qquad \qquad
+\left( \frac{20}{7}\frac{r_{{\mathrm{max}} }^{6}}{...
...{3}{\tau }^{2}}-\frac{239}{105}
\frac{r_{{\mathrm{max}} }}{c^{2}{\tau }}\right)$  
    $\displaystyle \qquad \qquad
-\left( \frac{20}{7}\frac{r_{{\mathrm{min}} }^{6}}{...
...3}{\tau }^{2}}-\frac{239}{105}
\frac{r_{{\mathrm{min}} }
}{c^{2}{\tau }}\right)$  
    $\displaystyle \qquad \qquad \qquad
\left. -\frac{\tau }{r_{{\mathrm{max}} }+c\t...
...}{3r_{{\mathrm{min}} }^{2}+6r_{{\mathrm{min}} }c\tau +
3c^{2}\tau ^{2}}\right\}$  
  $\textstyle \approx$ $\displaystyle \frac{68}{35}{\frac{{G^{2}\hbar ^{2}\pi }}{{c^{3}}}n_{0}}\ln {
\frac{{r_{{\mathrm{max}} }+c\tau }}{{r_{{\mathrm{min}} }+c\tau }}},$  

where we have assumed, in the last step, that $r_{{\mathrm{max}} }\gg c\tau \gg
r_{{\mathrm{min}} }.$ The mean square fluctuation can be computed using the Wiener-Kintchine theorem:
$\displaystyle \left\langle {\left\vert \Delta \Phi (f)\right\vert }^{2}\right\rangle$ $\textstyle =$ $\displaystyle \int\limits_{-\infty }^{+\infty }{R(\tau )\mathrm{e} ^{-2\pi \mathrm{i} f \tau }\mathrm{d} \tau}$  
  $\textstyle =$ $\displaystyle 2\int_{0}^{\infty }{R(\tau )\cos (2\pi f\tau )\mathrm{d} \tau }$  
  $\textstyle \approx$ $\displaystyle \frac{136}{35}{\frac{{G^{2}\hbar ^{2}\pi }}{{c^{3}}}n_{0}\int_{0}...
...} }+c\tau }}{{r_{{\mathrm{min}} }+c\tau }}
\cos (2\pi f\tau
)\mathrm{d} \tau }}$  
  $\textstyle \approx$ $\displaystyle \frac{34}{35}{\frac{{G^{2}\hbar ^{2}n_{0}\pi }}{{c^{3}}}}
\frac{1}{{f}},$ (8)

which is, notably, one of those ubiquitous $1/f$ spectra that appear again and again in many different contexts. The space correlation at equal time and $\ell \neq 0$ can also be computed with a long but straightforward integration:
$\displaystyle \left\langle {\Delta \Phi ({\vec{x}}_{1},0)\Delta \Phi ({\vec{x}}_{2},0)}
\right\rangle$ $\textstyle \approx$ $\displaystyle \left( {{\frac{{G\hbar }}{{2c}}}}\right) ^{2}n_{0}
\frac{\pi }{4\...
...}\left( {3-{\frac{r_{2}^{2}}{{c^{2}t^{2}}
}}}\right) {{\frac{1}{{c^{2}t^{2}}}}}$  
    $\displaystyle \qquad
+
\left.
\int_{0}^{+\ell }\left( u^{2}-v^{2}\right) \mathr...
... {3-{\frac{r_{2}^{2}}{{
c^{2}t^{2}}}}}\right) {{\frac{1}{{c^{2}t^{2}}}}}\right]$  
  $\textstyle \approx$ $\displaystyle \frac{68}{35}\frac{G^{2}\hbar ^{2}\pi }{c^{3}}n_{0}\ln \frac{\ell
+2r_{{\mathrm{max}} }}{\ell +2r_{{\mathrm{min}} }},$  

where we have assumed, in the last step, that $r_{{\mathrm{max}} }\gg \ell
\gg r_{{\mathrm{min}}
}$.

The general case requires more laborious calculations, and one must also distinguish between the two cases $\ell >c\tau $ and $\ell <c\tau $: we report here only the simpler result for $r_{{\mathrm{max}} }\gg \ell >c\tau \gg r_{{\mathrm{min}} }$, i.e.,

$\displaystyle \left\langle {\Delta \Phi ({\vec{x}}_{1},0)\Delta \Phi ({\vec{x}}_{2},\tau )}%
\right\rangle$ $\textstyle \approx$ $\displaystyle \frac{G^{2}\hbar ^{2}\pi }{c^{3}}n_{0}\left[ \frac{%
\left( 5\ell...
...ll )}{(2r_{{\mathrm{max}} }+\ell )(2r_{{\mathrm{max}} }+2c\tau -
\ell )}\right.$  
    $\displaystyle \qquad
\left. +\frac{34}{35}\ln \frac{(2r_{{\mathrm{max}} }+2c\ta...
...r_{{\mathrm{max}} }+2c\tau
+\ell )}{4(r_{{\mathrm{min}} }+c\tau )^{2}}\right] .$  


next up previous
Next: 5 Interferometric detection of Up: HeuristicGravFluctuations Previous: 3 Fluctuations of the

Stefano Ansoldi