next up previous
Next: C. Explicit computation of Up: RealImaginaryMass Previous: A. Eigenvectors and eigenvalues


B. Determination of the propagator

To determine the propagator in the covariant $\alpha$-gauge, ${{\mathcal{D}} ^{-1}} ^{\mu \nu} (k ;
\alpha)$, with the four dimensional quantities that are at our disposal we consider the ansatz:

\begin{displaymath}
A \left( g ^{\mu \nu} - \frac{k ^{\mu} k ^{\nu}}{k ^{2}} \ri...
...bar{k} ^{\nu} + D \frac{k
^{\mu} k ^{\nu}}{(k ^{2}) ^{2}} \,.
\end{displaymath}

To determine the coefficients $A$, $B$, $C$, $D$ we can now compute ${{\mathcal{D}} ^{-1}} ^{\mu \nu} ( k ; \alpha ) {{\mathcal{D}} ^{-1}}
_{\nu \alpha} ( k ; \alpha )$:
$\displaystyle {\mathcal{D}} ^{-1 \, \mu \nu} {\mathcal{D}} _{\nu \alpha}$ $\textstyle =$ $\displaystyle \left[ \left( k ^{2} g ^{\mu \nu} - k ^{\mu} k ^{\nu} \right) -
\...
...\mu} \bar{k} ^{\nu} \right) +
\frac{1}{\alpha} k ^{\mu} k ^{\nu} \right] \times$  
    $\displaystyle \times \left[ A \left( g _{\nu \alpha} - \frac{k _{\nu} k
_{\alph...
..._{\nu} \bar{k} _{\alpha} + D \frac{k _{\nu} k _{\alpha}}{(k ^{2})
^{2}} \right]$  
  $\textstyle =$ $\displaystyle A k ^{2} \delta ^{\mu} _{\alpha} - A k ^{\mu} k _{\alpha} -
\frac...
...r{k} ^{\mu} \bar{k} _{\alpha}
\right) + \frac{A}{\alpha} k ^{\mu} k _{\alpha} -$  
    $\displaystyle - \, A k ^{\mu} k _{\alpha} + A k ^{\mu} k _{\alpha} +
\frac{\kap...
...}} \bar{k} ^{\mu} k _{\alpha} \right) -
\frac{A}{\alpha} k ^{\mu} k _{\alpha} +$  
    $\displaystyle + \, B k ^{2} \bar{\delta} ^{\mu} _{\alpha} - B k ^{\mu} \bar{k}
...
...{\mu}
\bar{k} _{\alpha} \right) + \frac{B}{\alpha} k ^{\mu} \bar{k}
_{\alpha} +$  
    $\displaystyle + \, C k ^{2} \bar{k} ^{\mu} \bar{k} _{\alpha} - C \bar{k} ^{2} k...
... _{\alpha} \right)
+ \frac{C}{\alpha} \bar{k} ^{2} k ^{\mu} \bar{k} _{\alpha} +$  
    $\displaystyle + \, D \frac{k ^{\mu} k _{\alpha}}{k ^{2}} - D \frac{k ^{\mu} k
_...
...u} k
_{\alpha} \right) + \frac{D}{\alpha} \frac{k ^{\mu} k _{\alpha}}{k
^{2}} .$  

Now comparing terms with the same tensorial character
$\displaystyle \delta ^{\mu} _{\alpha}$ $\textstyle :$ $\displaystyle A k ^{2} = 1$  
$\displaystyle k ^{\mu} k _{\alpha}$ $\textstyle :$ $\displaystyle \frac{D}{\alpha} \frac{1}{k ^{2}} = A$  
$\displaystyle \bar{\delta} ^{\mu} _{\alpha}$ $\textstyle :$ $\displaystyle B k ^{2} - \frac{\kappa (A +
B) \bar{k} ^{2}}{k ^{2} - m _{\mathrm{A}} ^{2}} = 0$  
$\displaystyle k ^{\mu} \bar{k} _{\alpha}$ $\textstyle :$ $\displaystyle - B - C \bar{k} ^{2} = 0$  
$\displaystyle \bar{k} ^{\mu} \bar{k} _{\alpha}$ $\textstyle :$ $\displaystyle C k ^{2} - \frac{\kappa ( B + A
)}{k ^{2} - m _{\mathrm{A}} ^{2}} = 0 \,.$  

An independent subset of (four of) these gives (consistently with the remaining equation) the final result for the coefficients:
$\displaystyle A$ $\textstyle =$ $\displaystyle \frac{1}{k ^{2}}$  
$\displaystyle B$ $\textstyle =$ $\displaystyle \frac{\kappa \bar{k} ^{2} A} { k ^{2} \left( k ^{2} - m
_{\mathrm{A}} ^{2} \right) - \kappa \bar{k} ^{2} }$  
  $\textstyle =$ $\displaystyle \frac{\kappa \bar{k} ^{2}} { k ^{2} \left( k ^{2} \left( k
^{2} - m _{\mathrm{A}} ^{2} \right) - \kappa \bar{k} ^{2} \right) }$  
$\displaystyle C$ $\textstyle =$ $\displaystyle - \frac{\kappa} { k ^{2} \left( k ^{2} \left( k
^{2} - m _{\mathrm{A}} ^{2} \right) - \kappa \bar{k} ^{2} \right) }$  
$\displaystyle D$ $\textstyle =$ $\displaystyle \alpha \,,$  

so that we can finally write
$\displaystyle {\mathcal{D}} ^{\mu \nu} ( k ; \alpha )$ $\textstyle =$ $\displaystyle \frac{1}{k ^{2}}
\left( g ^{\mu \nu} - \frac{k ^{\mu} k ^{\nu}}{k...
... \left( k ^{2} - m _{\mathrm{A}} ^{2} \right) - \kappa
\bar{k} ^{2} \right) } -$  
    $\displaystyle - \, \frac{\kappa \bar{k} ^{\mu} \bar{k} ^{\nu}} { k ^{2} \left( ...
...kappa
\bar{k} ^{2} \right) } + \alpha \frac{k ^{\mu} k ^{\nu}}{(k
^{2}) ^{2}} .$  


next up previous
Next: C. Explicit computation of Up: RealImaginaryMass Previous: A. Eigenvectors and eigenvalues

Stefano Ansoldi