next up previous
Next: 2.1.2 p=0, D=4, Relativistic Up: 2.1 Special cases Previous: 2.1 Special cases

2.1.1 p=0, D=3, Non-Relativistic Point-Particle


$\displaystyle p=0, \quad V_p=0,\quad \sigma^{ \mu_1\dots \mu_{p+1}}\equiv 0$ $\textstyle \longrightarrow$ $\displaystyle \hbox{pointlike particle}$ (2)
$\displaystyle D=3$ $\textstyle \longrightarrow$ $\displaystyle \hbox{euclidean $3$-space}$ (3)
$\displaystyle m_{p+1} V_p$ $\textstyle \longrightarrow$ $\displaystyle M_0 = \hbox{particle's mass}$ (4)
$\displaystyle \Omega_1=\int_0^T d\tau e(\tau)$   $\displaystyle \hbox{proper time interval}$ (5)
$\displaystyle e( \tau )=1\rightarrow \Omega_1= T$ $\textstyle \longrightarrow$ $\displaystyle \mathrm{\lq\lq gauge fixed''\ proper\ time\ interval}$ (6)
    $\displaystyle (\sim \mathrm{non-relativistic\ time\ interval})$  
$\displaystyle Z_{\phi , A}\equiv 1,$   $\displaystyle \hbox{Quenching}$ (7)

The triviality of $Z^{\mathrm{BULK}}$ follows from the classical equations of motion
\begin{displaymath}
{d P_i\over dt }=0
\end{displaymath} (8)

and the entire dynamics of the system is governed by the zero mode alone
\begin{displaymath}
P_i(t)= {\mathrm{const.}} \equiv q_i\ .
\end{displaymath} (9)

No other modes contribute to the bulk path-integral which is simply the unit constant. Accordingly, the propagation kernel from $\vec x_0$ to $\vec x$, in a lapse of time $T$, can be computed as proposed in [16] and turns out to have the form
\begin{displaymath}
K_0\left[\, \vec x - \vec x_0\ ; T \, \right]=\left[\,
{M_0\...
...vec x -\vec x_0
\, \right)^{2}-i{M_0\over 2 }\, T\, \right\}
,
\end{displaymath} (10)

from which we obtain the corresponding, non-relativistic, propagator
$\displaystyle G\left[\, \vec x -\vec x_0\ ; E \, \right]$ $\textstyle =$ $\displaystyle \int_0^\infty dT\exp\left\{\,
i\, T\, E\, \right\}\,
\left[ \, {M...
...t\{\, {i M_0\over 2 T}\,
\left(\, \vec x - \vec x_0\, \right)^{ 2} \, \right\},$ (11)
$\displaystyle E$ $\textstyle \equiv$ $\displaystyle \Lambda - {M_0\over 2} .$ (12)


next up previous
Next: 2.1.2 p=0, D=4, Relativistic Up: 2.1 Special cases Previous: 2.1 Special cases

Stefano Ansoldi