next up previous
Next: C. Interacting, closed electric Up: ElectricMagneticDuality Previous: A. Definitions


B. Magnetic Field Strength

We shall exploit the arbitrariness in the choice of ${\mathcal{N}}$ by introducing a new gauge symmetry of the system in the following way. Suppose ${\mathcal{U}}$ and ${\mathcal{V}}$ represent two distinct $(D-p-2)$-branes ``attached'' to the magnetic brane. Let ${\mathcal{O}}$ be a $(D-p-1)$-open brane having ${\mathcal{U}}$, ${\mathcal{V}}$ and the magnetic brane history as its boundary. If
$\displaystyle \Omega ^{\, \mu _{1} \dots \mu _{D-p-1}} ( x ; {\mathcal{O}} )$ $\textstyle =$ $\displaystyle \,
\int _{\Omega} d ^{D-p-1}\, \omega\,
O^{\, \mu _{1}}\wedge \do...
...^{\mu _{D-p-1}}
\,
\delta ^{D)} \left[\, x - O \left( \omega \right) \, \right]$  

is the current with support over the $(D-p-1)$-dimensional history $\Omega$, then, by definition
\begin{displaymath}
g _{D-p-4}\,
\partial \, \Omega ^{\, (D-p-1)} \left( x \, ...
...
N ^{\, (D-p-2)} \left( x \, ; {\mathcal{V}} \right)
\quad .
\end{displaymath} (66)

Moreover, the condition
\begin{displaymath}
\partial _{\, \mu _{1}}
\partial _{\, \mu _{2}}
\Omega ^{\, \mu _{1} \mu _{2} \dots \mu _{D-p-1}}
=
0
\end{displaymath} (67)

is guaranteed by the following equalities
\begin{displaymath}
\partial N ^{\, (D-p-2)} \left( x \, ; {\mathcal{U}} \right...
...{J} ^{\, (D-p-3)} \left( x \, ; {\mathcal{M}} \right)
\quad .
\end{displaymath} (68)

Thus, we are led to the following relation between the currents associated with two different Dirac branes sharing the same boundary:
$\displaystyle N ^{\, (D-p-2)} \left( x ; {\mathcal{U}} \right)$ $\textstyle =$ $\displaystyle N ^{\, (D-p-2)} \left( x ; {\mathcal{V}} \right)
+
g _{D-p-4 \, }\,
\partial \Omega ^{\, (D-p-1)} \left( x ; {\mathcal{O}} \right)
\quad ,$ (69)
$\displaystyle \partial {\mathcal{O}}$ $\textstyle =$ $\displaystyle {\mathcal{U}} - {\mathcal{V}}
\quad .$  

Equation (69) takes the more conventional form of a ``gauge transformation'' if one switches to the dual currents:
\begin{displaymath}
(^{\ast} N) ^{\, (p+2)} \left( x \, ; {\mathcal{U}} \right)...
...) ^{\, (p+1)}\,) \left(x \, ; {\mathcal{O}}
\right)
\quad .
\end{displaymath} (70)

Since it is convenient to work with the dual of the $N$ field, we introduce a magnetic brane field strength, $G ^{\, (p+2)}$, as the dual of the magnetic current $N ^{\, (D-p-2)}$:


$\displaystyle G _{(p+2)} \left(\, x \ ; W(\gamma)\, \right)$ $\textstyle \equiv$ $\displaystyle (- 1)^ { D(p+1)}
\left(\, {} ^{\ast} N \,\right)_{(p+2)}$  
  $\textstyle \equiv$ $\displaystyle { g _{D-p-4 }\over (D-p-2)! } \,
\epsilon _{\mu _{1} \dots \mu _{p+2} \nu_{1} \dots \nu _{D-p-2}}
\times$  
    $\displaystyle \qquad \qquad \times
\int _{\Gamma} d ^{D-p-2} \gamma\,
n^{\nu_1}...
...-2}}
\delta ^{D)} \left[ \, x - n \left( \gamma ^{i} \right) \, \right]
\quad .$ (71)

The main property of the magnetic field strength is the way it transforms under (70), i.e.,
\begin{displaymath}
G _{\, (p+2)} ( x ; {\mathcal{U}} )
=
G _{\, (p+2)} ( x ;...
...^{\ast} ( d \Omega _{\, (p+1)}) ( x ; {\mathcal{O}} )
\quad .
\end{displaymath} (72)

The transformation law (72) allows us to introduce a new gauge symmetry which we shall discuss in a short while. Presently, we can write the action for a system of electric and magnetic branes as follows
\begin{displaymath}
S [ \, A , G ; J \, ]
=
\int
\left [ \,
- \frac{1}{2}
...
...+
e _{p}\,
A _{\, (p+1)} J ^{\, (p+1)}
\,
\right]
\quad ,
\end{displaymath} (73)

where, in the magnetic case, we recall that $\overline{F} = F - G$, and that the tensor potential accounts only for the non-singular part of $\overline{F}$, i.e. $F = d A$. The action (4) leads to classical field equations for $A$ which are dual to the Bianchi identities for the whole field strength $\overline{F} = F - G$:
$\displaystyle \partial
\left[
\,
F ^{\, (p+2)} ( A )
-
G ^{\, (p+2)} ( x ; {\mathcal{N}} )
\,
\right]$ $\textstyle =$ $\displaystyle e _{p}\,
J ^{\, (p+1)}$ (74)
$\displaystyle \partial
\left[
\,
(^{\ast} F) ^{\, (D-p-2)} ( A )
-
(^{\ast} G) ^{\, (D-p-2)} ( x ; {\mathcal{N}} )
\,
\right]$ $\textstyle =$ $\displaystyle g _{D-p-4 \, }
\overline{J} ^{\, (D-p-3)}
\quad .$ (75)

The symmetry of the two sets of equations (74) and (75) under the transformations
$\displaystyle F ^{\, (p+2)} ( A )
-
G ^{\, (p+2)} ( x ; {\mathcal{N}} )$ $\textstyle \longleftrightarrow$ $\displaystyle (^{\ast} F) ^{\, (D-p-2)} ( A )
-
(^{\ast} G) ^{\, (D-p-1)} ( x ; {\mathcal{N}} )$ (76)
$\displaystyle e _{p}\,
J ^{\, (p+1)}$ $\textstyle \longleftrightarrow$ $\displaystyle g _{D-p-4 \, }
\overline{J} ^{\, (D-p-3)}$ (77)

is now manifest.


next up previous
Next: C. Interacting, closed electric Up: ElectricMagneticDuality Previous: A. Definitions

Stefano Ansoldi