next up previous
Next: B. Magnetic Field Strength Up: ElectricMagneticDuality Previous: 4 Conclusion


A. Definitions

The vacuum amplitude in the presence of an external $p$-brane current can be written as a path-integral over the gauge field configurations


$\displaystyle Z [ \, J \, ]$ $\textstyle =$ $\displaystyle {1 \over Z[ \, 0 \, ]}
\int [ {\mathcal{D}}A ] \,
e^{- S [ \, A , J \, ]}$ (57)
$\displaystyle S [\, A , J \, ]$ $\textstyle =$ $\displaystyle \int
\left[
\,
- \frac{1}{2}
F _{(p+2)} ( A )
F ^{\, (p+2)} ( A )
+
e _{p}\,
A _{(p+1)}
J ^{\, (p+1)}
\,
\right]
\quad ,$ (58)

where $ F _{(p+2)}\equiv d A _{(p+1)}$, and the $p$-brane current is given by
\begin{displaymath}
J ^{\, (p+1)} \left(\, x\, ;\, E(\xi)\, \right)
=
\int _{...
...}
\, \delta ^{D)} \left[ \, x - E ( \xi ) \, \right]
\quad ,
\end{displaymath} (59)

where $E$ is the image manifold in the target spacetime, through the embedding $x=E(\xi)$ , of a ``fiducial'' $(p+1)$-dimensional domain $\Xi$, parametrized by $p+1$ world coordinates $\xi ^{i}$.
The tensor gauge potential $A_{\, \mu_1\dots \mu_{p+1}}(x)$ is assumed to be a single-valued and integrable function,

$\displaystyle \partial _{\, [\, \lambda _{1}}
\partial _{\lambda _{2} \, ]}
A _{\, \mu _{1} \dots \mu _{p+1}}
=
0$
(60)
$\displaystyle \partial _{\, [\, \lambda _{1}}
\partial _{\lambda _{2} \, ]}
\Lambda _{\, \mu _{2} \dots \mu_{p+1}}=0$
(61)

where $\Lambda_{(p+1)}$ is the gauge function.

Following Dirac[7], we can introduce extended magnetic objects as those singular manifolds where the Bianchi are broken:

\begin{displaymath}
(\, {}^{\ast} d \overline{F}) ^{\, (D-p-3)}
=
g _{D-p-4 \, }\,
\overline{J} ^{\, (D-p-3)}
\quad .
\end{displaymath} (62)

Here
\begin{displaymath}
\overline{J} ^{\, \mu _{1} \dots \mu _{D-p-3}} \left(\, x \...
...,
\delta ^{D)} \left[ \, x - M ( \sigma ) \, \right]
\quad ,
\end{displaymath} (63)

and

For the benefit of the reader, the symbols associated with the definition of the world-manifold, fiducial space, parametrization, embedding functions and tangent elements of the various objects are listed in Table 1. Thus, in a way completely analogous to the electric case, ${\mathcal{M}}$ represents the world-manifold of the magnetic brane, with fiducial manifold $\Sigma$, parameters $\sigma
^{i}$, embedding functions $M ^{\mu}$, and tangent element $\dot{M} ^{\, \mu _{1} \dots \mu _{D-p-3}}$.

The violation of the Bianchi identities implies that one cannot associate a single valued gauge potential with a magnetic brane. Then, the simplest way to incorporate an extended magnetic object in the action (58) is to follow Dirac's prescription and introduce an open $(D-p-2)$-brane ${\mathcal{N}}$ having as its only boundary the magnetic brane trajectory ${\mathcal{M}}$:

$\displaystyle N ^{\, \mu _{1} \dots \mu _{D-p-2}} \left( x \ ; n(\gamma) \right)$ $\textstyle =$ $\displaystyle g _{D-p-4 \, }
\int _{\Gamma} d ^{D-p-2} \gamma\,
n^{\mu _1}\wedg...
... _{D-p-2}}\,
\delta ^{D)} \left[ \, x - n \left( \gamma ^{i} \right) \, \right]$ (64)
$\displaystyle \partial_{\, \mu _1 } N ^{\, \mu _{1} \mu _{2}\dots \mu _{D-p-2}}$ $\textstyle =$ $\displaystyle g _{D-p-4 \, }
\overline{J} ^{\mu _1 \mu _{2} \dots \mu _{D-p-2} }
\quad .$ (65)


next up previous
Next: B. Magnetic Field Strength Up: ElectricMagneticDuality Previous: 4 Conclusion

Stefano Ansoldi