... 1
E-mail address: ansoldi@trieste.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Aurilia2
E-mail address: aaurilia@csupomona.edu
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... 3
E-mail address: spallucci@vstst0.ts.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Smailagic4
E-mail address: anais@etfos.hr
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... undefined5
Here $p$ stands for the number of world indices, or rank, of the gauge potential, and $d$ represents the number of spacetime dimensions. The metric is Minkowskian and our signature convention is $(\, -\,+\,+\,+\,\dots\, +\,)$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... empty6
In a Riemannian spacetime, with non zero curvature, that arbitrary constant cannot be set, in general, equal to zero, and plays the physical role of a ``cosmological constant'' [4]. As a matter of fact, the role of that constant is of paramount importance in most models of cosmic inflation [5].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... form7
In the following discussion we have suppressed all indices in order to simplify the notation. Thus, the Hodge dual of a $(p+1)$-form, including the appropriate combinatorial factor, is simply indicated by $ F^{\,*}\equiv {1\over
(p+1)!} \epsilon^{\mu_1\dots\mu_{d-p-1}\dots\mu_d} \,
F_{\mu_{d-p-1}\dots\mu_d}$, while the product of two $p$-forms becomes: $A\, B\equiv {1\over
p!}\,A_{\mu_1\dots \mu_p}\, B^{\mu_1\dots \mu_p}$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... zero-form8
We have chosen the symbol $J^*$ for the zero-form to order to match the notation in the parent Lagrangian (19). Note that the same reasoning applies to the `` magnetic '' current $K$ in the absence of an `` electric '' current $J$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.