- ... 1
- E-mail address: ansoldi@trieste.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... Aurilia2
- E-mail address: aaurilia@csupomona.edu
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... 3
- E-mail address: spallucci@vstst0.ts.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... Smailagic4
- E-mail address: anais@etfos.hr
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
undefined5
- Here stands for the number of world indices, or rank,
of the gauge potential, and represents the number of spacetime
dimensions. The metric is Minkowskian and our signature convention is
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
empty6
- In a Riemannian spacetime, with non zero curvature,
that arbitrary constant cannot be set, in general, equal to zero, and plays
the physical role of a ``cosmological constant'' [4]. As a matter of
fact, the role of that constant is of paramount importance in most
models of cosmic inflation [5].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... form7
- In the
following discussion we have suppressed all indices in order to simplify the
notation. Thus, the Hodge dual of a -form, including the appropriate
combinatorial factor, is simply indicated by
,
while the product of two -forms becomes:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... zero-form8
- We have chosen the symbol for the zero-form to
order to match the notation in the parent Lagrangian (19). Note that
the same reasoning applies to the `` magnetic '' current in the absence
of an `` electric '' current .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.