next up previous
Next: F. Acknowledgments Up: WKB Metastable States Previous: D. Character of the


E. Parameter dependence of the Action

We consider the action integral (24). Expanding the integrand we get

\begin{displaymath}
x
\tanh ^{-1}
\left\{
\frac{x \sqrt{x ^{4} - 4 \vert \Th...
...{1}{2 \vert \Theta \vert} x ^{3}
+
{\mathcal{O}} (x ^{4})
;
\end{displaymath}

Then the upper integration limit, $x (\Theta)$, can be expanded as

\begin{displaymath}
x ( \Theta )
=
\Theta
+
{\mathcal{O}} ( \Theta ^{2})
\end{displaymath}

so that when both expansions hold, we can write

\begin{displaymath}
\bar{S} (\Theta)
\sim
\frac{11 \vert \Theta \vert ^{3}}{12}
+
{\mathcal{O}} (\Theta ^{4})
.
\end{displaymath}

We thus see that the leading term for small $\vert \Theta \vert$ is $\sim \vert \Theta ^{3} \vert$.



Stefano Ansoldi