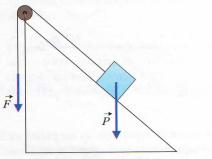
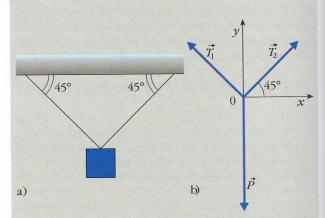

ESERCIZI

attrito statico fra il piano e il blocco, quale dei seguenti diagrammi di corpo libero è corretto?



23 Nella figura sono rappresentate tre forze che si fanno equilibrio, di cui \vec{F}_1 ha intensità 100 N. Calcolare le intensità di \vec{F}_2 ed \vec{F}_3 .


[200 N; 173 N]

▶ 24 In figura è rappresentato un piano inclinato di lunghezza 1 m e altezza x, privo di attrito, col quale una forza F equilibra un corpo di peso 10 N. Dopo aver espresso F in funzione di x eseguire una rappresentazione grafica riportando x in ascisse ed F in ordinate. Per quale valore di x è F = 6 N?

[F = (10 N/m) x; 0.6 m]

La figura mostra un blocco di peso uguale a 200 N appeso a due fili inestensibili identici, di massa trascurabile, che formano entrambi un angolo di 45° con il sostegno orizzontale cui sono fissati. Determinare le tensioni dei due fili.

Soluzione

Il blocco è in equilibrio sotto l'azione delle due forze di tensione \vec{T}_1 e \vec{T}_2 e della forza peso \vec{P} . Fissato un sistema di assi Oxy, come in figura, imponiamo che le componenti cartesiane della forza risultante sul blocco siano entrambe nulle. Per la componente x otteniamo:

$$-\frac{\sqrt{2}}{2}T_1 + \frac{\sqrt{2}}{2}T_2 = 0$$

da cui

$$T_1 = T_2$$

e per la componente y:

$$\frac{\sqrt{2}}{2}T_1 + \frac{\sqrt{2}}{2}T_2 - P = 0$$

da cui, tenendo conto della *:

$$T_1 = T_2 = \frac{\sqrt{2}}{2}P = \frac{\sqrt{2}}{2}(200 \text{ N}) = 100\sqrt{2} \text{ N}$$

Una valigia è posta su un piano inclinato di 60° rispetto all'orizzontale. Sapendo che il coefficiente di attrito statico fra valigia e piano vale 0,4, stabilire se la valigia è in equilibrio giustificando la risposta.

[No]

Due piani inclinati, rispettivamente di 30° e 60°, sono accostati come in figura. I due blocchi C_1 e C_2 , legati da una fune inestensibile di peso trascurabile, so-