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We give a brief description of differential Geometry and exterior calculus ending with their role
in the formulation of Einstein theory of Gravitation [1, 2] and Maxwell theory of Electromagnetism
[3] respectively. We conclude with some other possible extensions not supported by experiment [4].
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I. PREAMBLE ON DIFFERENTIAL TOPOLOGY

Consider a manifold M of dimension n.
A curve on M

C(λ) λ is an affine parameter. (1.1)

The tangent vector to C

u⃗ =
dC(λ)

dλ
= ∂u⃗. (1.2)

A basis of vectors {e⃗α} with

e⃗α = ∂e⃗α
= ∂α. (1.3)

A change of basis vectors is realized as follows

e⃗α′ = Lα
α′ e⃗α, (1.4)

where the primed indexes are for the vectors in the new basis and a summation over the repeated index is tacitly
assumed here and everywhere else in these manuscript.

In a coordinate basis

e⃗α = ∂e⃗α
= ∂α =

∂

∂xα
. (1.5)

For a transformation of coordinates xα
′
= xα

′
(xβ)

e⃗α =
∂

∂xα
=
∂xα

′

∂xα
∂

∂xα′ =
∂xα

′

∂xα
e⃗α′ = Lα′

αe⃗α′ . (1.6)

with

Lα′

α =
∂xα

′

∂xα
, Lα

βL
β
γ = δαγ , (1.7)

where ||δαγ || = diag(1, 1, . . . , 1) is the identity matrix and ||Lα
β || = ||Lβ

α||−1.
A transformation of coordinates of a vector

u⃗ = uα
′
e⃗α′ = uαe⃗α = uαLα′

αe⃗α′ , (1.8)

with

uα
′
= Lα′

αu
α. (1.9)

The 1-form σ̃ in the dual space of the tangent vector space

⟨σ̃, u⃗⟩ = a real number, (1.10)
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where ⟨·, ·⟩ is a bilinear two slots machine such that

⟨ω̃β , e⃗α⟩ = δβα (1.11)

with {ω̃β} a basis of 1-forms.
So if

u⃗ = uαe⃗α, (1.12)

σ̃ = σβω̃
β , (1.13)

we will have

uα = ⟨ω̃α, u⃗⟩, (1.14)

σβ = ⟨σ̃, e⃗β⟩, (1.15)

σαu
α = ⟨σ̃, u⃗⟩. (1.16)

A change of basis 1-forms is realized as follows

ω̃α′
= Lα′

α ω̃α, (1.17)

and for the 1-form components

σα′ = Lα
α′σα. (1.18)

A particularly important 1-form is the gradient, d̃f , with f a scalar (a function), defined like so

⟨d̃f, u⃗⟩ = ∂u⃗f = uα∂αf = uαf,α, (1.19)

where we use the comma to denote a partial derivative

f,α = ⟨d̃f, e⃗α⟩ = ∂e⃗α
f = ∂αf. (1.20)

So

d̃f = f,αω̃
α. (1.21)

In a coordinate basis

f,α =
∂f

∂xα
, (1.22)

and {d̃xα} is dual to {∂/∂xα}

⟨d̃xα, ∂/∂xβ⟩ = ∂βx
α =

∂xα

∂xβ
= δαβ . (1.23)

A tensor HHH of rank
(
n
m

)
is a linear machine with n input slots for 1-forms, σ̃, λ̃, . . . , β̃, and m input slots for vectors,

u⃗, v⃗, . . . , w⃗, which returns a real number

H(σ̃, λ̃, . . . , β̃, u⃗, v⃗, . . . , w⃗) = real number, (1.24)

Up to here we did not use a metric at all so we woked in differential topology. We will introduce a metric only
later. For the time being let us take a detour on exterior calculus.

II. EXTERIOR CALCULUS IN BRIEF

(Chapter 4 in Ref. [1]) We may define a p-form as a completely antisymmetric tensor with all indexes “downstairs”.
More formally, in our n-dimensional manifold M , we define it like so

α̃ =
1

p!
αµ1µ2···µpω̃

µ1 ∧ ω̃µ2 ∧ . . . ∧ ω̃µp

= α|µ1µ2···µp|ω̃
µ1 ∧ ω̃µ2 ∧ . . . ∧ ω̃µp , (2.1)
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where the vertical bars around the indexes means that the summation extends only over µ1 < µ2 < . . . < µp and ∧
is the wedge product which is defined by its action on any two 1-forms, α̃, β̃ (or on any two vectors), as

α̃ ∧ β̃ = α̃⊗ β̃ − β̃ ⊗ α̃, (2.2)

where ⊗ denotes a direct product. So that α̃∧ β̃ = −β̃ ∧ α̃ and α̃∧ α̃ = 0. Given any three 1-forms, α̃, β̃, γ̃ (or any
three vectors), the wedge product has the following properties

(aα̃+ bβ̃) ∧ γ̃ = aα̃ ∧ γ̃ + bβ̃ ∧ γ̃, (2.3a)

(α̃ ∧ β̃) ∧ γ̃ = α̃ ∧ (β̃ ∧ γ̃) = α̃ ∧ β̃ ∧ γ̃, (2.3b)

α̃ ∧ β̃ = αµβνω̃
µ ∧ ω̃ν =

1

2
(αµβν − ανβµ)ω̃

µ ∧ ω̃ν . (2.3c)

and if α̃ is a p-form and β̃ is a q-form with p and q greater than 1, then α̃ ∧ β̃ = (−1)pqβ̃ ∧ α̃.
Analogously for a p-vector we will have

a⃗ =
1

p!
aµ1µ2···µp

e⃗µ1 ∧ e⃗µ2 ∧ . . . ∧ e⃗µp . (2.4)

A contraction of the p-form α̃ of Eq. (2.1) and the p-vector a⃗ of Eq. (2.4) is

⟨α̃, a⃗⟩ = α|µ1µ2···µp|a
µ1µ2···µp . (2.5)

For example the jacobian determinant of a set of p functions fk(x1, x2, . . . , xn) with respect to p of their arguments is〈
d̃f1 ∧ d̃f2 ∧ . . . ∧ d̃fp,

∂

∂x1
∧ ∂

∂x2
∧ . . . ∧ ∂

∂xp

〉
= det

∣∣∣∣∣∣∣∣(∂fµ∂xν

)∣∣∣∣∣∣∣∣ = ∂(f1, f2, . . . , fp)

∂(x1, x2, . . . , xp)
. (2.6)

A. Exterior derivative

The exterior derivative is defined by induction:

i. if σ̃ is a p-form d̃σ̃ is a (p+ 1)-form;

ii. a function f is a 0-form and d̃f = f,αω̃
α;

iii. if α̃ is a p-form and β̃ is a q-form then d̃(α̃ ∧ β̃) = d̃α̃ ∧ β̃ + (−1)pα̃ ∧ d̃β̃.

It can easily be verified that d̃d̃ = d̃
2
= 0.

B. Integration

We just require a “differentiable manifold” calm with or without a metric. In order to integrate a p-form in an
n-dimensional manifold one may go through the following steps:

i. consider in a coordinate basis

σ̃ = σ|µ1µ2···µp|(x
1, x2, . . . , xn)d̃xµ1 ∧ d̃xµ2 ∧ . . . ∧ d̃xµp ; (2.7)

ii. substitute a parameterization of the p-dimensional surface of the form, xµ(λ1, λ2, . . . , λp), so that

σ̃ = σ(λ1, λ2, . . . , λp)d̃λ1 ∧ d̃λ2 ∧ . . . ∧ d̃λp; (2.8)

iii. integrate ∫
σ̃ =

∫ 〈
σ̃,

∂

∂λ1
∧ ∂

∂λ2
∧ . . . ∧ ∂

∂λp

〉
dλ1dλ2 . . . dλp,

=

∫
σ(λ1, λ2, . . . , λp)dλ1dλ2 . . . dλp, (2.9)

using the elementary definition of integration.
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iv. Stokes theorem ∫
Ω

d̃σ̃ =

∫
∂Ω

σ̃, (2.10)

and Gauss theorem ∫
Ω

d̃ ⋆ σ̃ =

∫
∂Ω

⋆ σ̃, (2.11)

where ∂Ω is the closed p-dimensional boundary of the (p+ 1)-dimensional surface Ω and ⋆ stands for the dual
form described in the next Section IIC.

C. Dual of a p-form

In an n-dimensional manifold M , the dual of a p-form σ̃ is an (n− p)-form ⋆σ̃ with components

⋆σµ1µ2···µn−p
= σ|ν1ν2···νp|εν1···νpµ1···µn−p

, (2.12)

where ε is the Levi-Civita tensor, the completely antisymmetric rank n tensor. On a positively oriented basis {e⃗µ},
ε12···n = ε(e⃗1, e⃗2, . . . , e⃗n) = +1 and 1

εµ1µ2···µn = [µ1, µ2, . . . , µn] =

 0 unless µ1, µ2, . . . , µn are all different
+1 for even permutations of 1, 2, . . . , n
−1 for odd permutations of 1, 2, . . . , n

, (2.13)

so that given any matrix Λ

εµ1µ2···µnΛ
µ1

1̄
Λµ2

2̄
· · ·Λµn

n̄ = det ||Λµ
ν̄ || . (2.14)

The dual has the following property

σ̃ ∧ ⋆σ̃ = ||σ||2ε, (2.15)

where

||σ||2 = σ|µ1µ2···µp|σ
µ1µ2···µp , (2.16)

is the norm of the p-form.

III. THE METRIC TENSOR

Now we will introduce a metric and dwell into differential geometry or more specifically into Riemannian geometry.
2 We will then work on a smooth manifold M , i.e. a Riemannian manifold. The metric gg is a rank 2 symmetric
tensor. In its

(
0
2

)
form

g(e⃗α, e⃗β) = e⃗α · e⃗β = gαβ , (3.1)

gg = ddss2 = gαβω̃
α ⊗ ω̃β , (3.2)

where in a coordinate basis ω̃α = d̃xα. If ξ⃗ = dxαe⃗α is a displacement vector then

g(ξ⃗, ξ⃗) = ξ⃗ · ξ⃗ = gαβω̃
α ⊗ ω̃β(dxγ e⃗γ , dx

δe⃗δ)

= gαβ⟨ω̃α, dxγ e⃗γ⟩⟨ω̃β , dxδe⃗δ⟩
= gαβdx

γdxδ⟨ω̃α, e⃗γ⟩⟨ω̃β , e⃗δ⟩
= gαβdx

αdxβ

= ds2. (3.3)

In other words

1 In a manifold with a metric, that will be introduced in the next Section III, ε should be corrected as in Eq. (3.66) (Ex. 8.3 of Ref [1]
and Exs. 3.20, 3.21 of Ref. [2])

2 Riemannian geometry originated with the vision of Georg Friedrich Bernhard Riemann (Breselenz, 17 September 1826 – Selasca, 20
July 1866) expressed in his inaugural lecture “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen” (“On the Hypotheses on
which Geometry is Based”).
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i. Interval between two unspecified displacements ddss2 = gg;

ii. Interval between two unspecified displacements ds2 = g(ξ⃗, ξ⃗);

as for

i. Unspecified direction d̃f ;

ii. Specified direction df = ⟨d̃f, v⃗⟩ = ∂v⃗f = vαf,α.

We use gg to establish a correspondence between 1-forms and vectors

ũ ↔ u⃗ if and only if ⟨ũ, a⃗⟩ = u⃗ · a⃗ = g(u⃗, a⃗) ∀ a⃗. (3.4)

In components ũ = uβω̃
β and

uβ = ⟨ũ, e⃗β⟩ = g(u⃗, e⃗β) = g(uαe⃗α, e⃗β) = uαgαβ , (3.5)

so we use gαβ to lower indexes.
Also ω̃α is dual to e⃗α. Call ẽ

α the 1-form corresponding to e⃗α, then

⟨ẽα, e⃗β⟩ = e⃗α · e⃗β = gαβ = ⟨gαγω̃γ , e⃗β⟩, (3.6)

so ẽα = gαγω̃
γ = ω̃α.

gg in its
(
1
1

)
form

gαβ = g(ω̃α, e⃗β) = ⟨ω̃α, e⃗β⟩ = δαβ . (3.7)

gg in its
(
2
0

)
form

gαβ = g(ω̃α, ω̃β), (3.8)

and

gαβ = gαµgµβ = δαβ (3.9)

or ||gαβ || = ||gαβ ||−1.

Consider for example a tensor HHH of rank
(
1
2

)
, then

H(ω̃α, e⃗β , e⃗γ) = Hα
βγ , (3.10)

HHH = Hα
βγ e⃗α ⊗ ω̃β ⊗ ω̃γ , (3.11)

Hαβγ = Hδ
βγgδα (3.12)

Hα′β′γ′ = Lα
α′Lβ

β′Lγ
γ′Hαβγ , (3.13)

where the last equation is the change of basis.

A. The global (non coordinate) orthonormal frame

Through a change of basis Lµ̂
µ we can always diagonalize the symmetric metric tensor globally, thanks to the

spectral theorem, so to realize an orthogonal frame

Lµ
µ̂L

ν
ν̂gµν = g̃µ̂ν̂ , (3.14)

with ||g̃µ̂ν̂ || = diag{λ1̂, λ2̂, . . . , λn̂}. Furthermore, it is always possible to rescale each vector (or 1-form) of the

orthogonal basis to get ||g̃µ̂ν̂ || → ||ηµ̂ν̂ || = diag{1, 1, . . . , 1} so that ds2 = ηµ̂ν̂ω̃
µ̂ ⊗ ω̃ν̂ with ω̃µ̂ = ω̃µ√λµ̂. This at the

price of having a non coordinate basis. We will call this the global Lorentz frame (LF) 3 or the global (non coordinate)
orthonormal frame.

3 Hendrik Antoon Lorentz (Arnhem, 18 July 1853 - Haarlem, 4 February 1928)
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B. Commutators

Consider two vectors u⃗ and v⃗. We want to prove that

[u⃗, v⃗]f = ∂u⃗∂v⃗f − ∂v⃗∂u⃗f = vector, (3.15)

for example on a scalar f .
We will prove this in a coordinate basis and then extend the result in a general non coordinate basis:

i. In a coordinate basis e⃗α = ∂α = ∂/∂xα and

[u⃗, v⃗] = uα∂α(v
β∂β)− vβ∂β(u

α∂α)

= uαvβ
∂2

∂xα∂xβ
+ uαvβ,α

∂

∂xβ
−

vβuα
∂2

∂xβ∂xα
− vβuα,β

∂

∂xα

= (uβvα,β − vβuα,β)
∂

∂xα
, (3.16)

where we used the commutation of the partial derivatives. For basis vectors [⃗eα, e⃗β ] = [∂α, ∂β ] = 0;

ii. In a non coordinate basis we will have instead

[⃗eα, e⃗β ] = cαβ
γ e⃗γ , (3.17)

so that

[u⃗, v⃗] = [uαe⃗α, v
β e⃗β ]

= (uβvα,β − vβuα,β + uγvβcγβ
α)e⃗α. (3.18)

C. Covariant derivative

When taking a derivative on M we need to take care also of how the basis vectors and 1-forms change. 4 Such a
derivative is called a covariant derivative for which we will use interchangeably the following three symbols

D . . .

∂λ
, uα∇α . . . , uα(. . .);α. (3.19)

Let us distinguish four cases:

i. On a scalar f

∇αf = ∂αf or f;α = f,α. (3.20)

ii. On a vector v⃗vαe⃗α. We will prove later that

∇αe⃗β = ∂αe⃗β = Γγ
αβ e⃗γ , (3.21)

where the Γ are some coefficients called connection coefficients for a non coordinate (anholonomic) basis and
Christoffel symbols for a coordinate basis (holonomic). 5

4 In other terms, when taking a derivative of a vector on M we come across the problem of comparing two vectors at two different points
of M . This is solved with the procedure of parallel transport where we simply compare the two vectors either at the initial or at the
final point after having “copied” the components of the vector respect to the basis at one point on its components respect to the basis
at the other point.

5 Our definition for the connection coefficients is different from the one of Ref. [1] where ∇αe⃗β = Γγ
βαe⃗γ . This difference is only relevant

for a non coordinate basis.
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Then

∇αv⃗ = ∇α(v
β e⃗β)

= (∂αv
β)e⃗β + vβ∂αe⃗β

= vβ,αe⃗β + vβΓγ
αβ e⃗γ

=
(
vβ,α + vγΓβ

αγ

)
e⃗β , (3.22)

or

(∇αv⃗)
β = vβ ;α = vβ,α + Γβ

αγv
γ . (3.23)

iii. On a 1-form σ̃ = σαω̃
α

⟨σ̃, e⃗α⟩ = σβ⟨ω̃β , e⃗α⟩ = σβδ
β
α = σα, (3.24)

taking the covariant derivative of this expression

∇α⟨σ̃, e⃗β⟩ = σβ,α (3.25)

⟨∇ασ̃, e⃗β⟩+ ⟨σ̃, ∂αe⃗β⟩ = σβ,α (3.26)

⟨∇ασ̃, e⃗β⟩ = σβ,α − ⟨σ̃,Γγ
αβ e⃗γ⟩ (3.27)

(∇ασ̃)β = σβ;α = σβ,α − Γγ
αβσγ , (3.28)

where we see how the correction due to the change of the basis vector enters with a minus sign.

iv. On a tensor HHH of rank
(
r
s

)
(∇αH)µ1µ2···µr

ν1ν2···νs
= Hµ1µ2···µr

ν1ν2···νs;α = Hµ1µ2···µr
ν1ν2···νs,α

+Γµ1
γαH

γµ2···µr
ν1ν2···νs + . . .+ Γµr

γαH
µ1µ2···γ

ν1ν2···νs

−Γγ
ν1αH

µ1µ2···µr
γν2···νs

+ . . .− Γγ
νsαH

µ1µ2···µr
ν1ν2···γ . (3.29)

The connection coefficients

We now want to prove Eq. (3.21) and determine the expression of the connection coefficients in terms of the metric
tensor. Start again from the definition (3.21)

g(∇αe⃗β , e⃗γ) = g
(
Γδ

αβ e⃗δ, e⃗γ
)
= Γδ

αβ gδγ . (3.30)

Then consider the partial derivative of the metric tensor

gβγ,α = g(∇αe⃗β , e⃗γ) + g(e⃗β ,∇αe⃗γ). (3.31)

Rewrite Eq. (3.31) in the following 3 equivalent ways

gβγ,α = g(e⃗β ,∇γ e⃗α) + g(e⃗γ ,∇αe⃗β)− g(e⃗β , [⃗eγ , e⃗α]), (3.32a)

gγα,β = g(e⃗α,∇β e⃗γ) + g(e⃗γ ,∇αe⃗β)− g(e⃗γ , [⃗eα, e⃗β ]), (3.32b)

gαβ,γ = g(e⃗α,∇β e⃗γ) + g(e⃗β ,∇γ e⃗α)− g(e⃗α, [⃗eβ , e⃗γ ]), (3.32c)

where we used the symmetry of the metric tensor gg and the definition of the commutator [·, ·]. Adding (3.32a) and
(3.32b) and subtracting (3.32c), and using the definitions (3.21) and (3.17) for the Γ and c coefficients respectively,
we find

2g(e⃗γ ,∇αe⃗β) = gβγ,α + gγα,β − gαβ,γ + cγαβ + cαβγ − cβγα. (3.33)

Using Eqs. (3.30) and (3.17) we find for the connection coefficients

Γγαβ =
1

2
{gβγ,α + gγα,β − gαβ,γ + cγαβ + cαβγ − cβγα}. (3.34)
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Note that the indexes of the c commutation coefficients enter in the 3 terms in cyclical order moving from one term
to the next. In a coordinate basis all c are zero and we find the so called Christoffel symbols

Γγαβ =
1

2
{gβγ,α + gαγ,β − gαβ,γ}, (3.35)

which is clearly symmetric in its last two indexes.

An important property of the metric tensor is to be covariantly constant, i.e. ∇gg = 0. In fact in an orthonormal
frame gα̂β̂ = ηα̂β̂ and in the next Section IIID we will see that it is also always possible to choose a local coordinate

orthonormal frame on M such that gα̂β̂,γ̂ = 0 (and of course cα̂β̂γ̂ = 0 on the coordinate frame), then Γα̂β̂γ̂ = 0 so

that gα̂β̂;γ̂ = gα̂β̂,γ̂ = 0.

We will now prove 3 properties of Γ:

i. Since the metric is covariantly constant

0 = gαβ;γ = gαβ,γ − Γµ
αγgµβ − Γµ

βγgαµ

= gαβ,γ − Γβαγ − Γαβγ , (3.36)

so that

1

2
gαβ,γ = Γ(αβ)γ , (3.37)

where the round parenthesis contain indexes on which one symmetrizes. So Γ is antisymmetric on its first
two indexes in the local coordinate orthonormal frame described in the next Section IIID or in a global (non
coordinate) orthonormal frame described in Section IIIA for which, in both cases, gα̂β̂,γ̂ = 0.

ii. From the definition of the commutator (3.17) and the connection coefficient (3.21) follows

[⃗eα, e⃗β ] = ∇αe⃗β −∇β e⃗α

= (Γγ
αβ − Γγ

βα)e⃗γ

= cαβ
γ e⃗γ , (3.38)

so that

1

2
cαβγ = Γγ[αβ], (3.39)

where the square parenthesis contain indexes on which one antisymmetrizes. So Γ is symmetric on its last two
indexes in a coordinate reference frame where cαβγ = 0.

iii. Γ is not a tensor. In fact let’s see how Γ transforms

∇α′ e⃗β′ = Γγ′

α′β′ e⃗γ′ = ∇Lα
α′ e⃗α

(Lβ
β′ e⃗β) = Lα

α′∇α(L
β
β′ e⃗β)

= Lα
α′Lβ

β′∇αe⃗β + Lα
α′Lβ

β′,αe⃗β

= Lα
α′Lβ

β′Γγ
αβ e⃗γ + Lα

α′Lβ
β′,αL

γ′

β e⃗γ′ , (3.40)

so that

Γγ′

α′β′ = Lα
α′Lβ

β′Lγ′

γΓ
γ
αβ + Lα

α′Lγ′

βL
β
β′,α, (3.41)

where the last term is in general different from zero.
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Useful identities

(Ex. 7.7 in Ref. [1]) We will here enunciate and prove 7 useful identities:

i. From the definition (3.65) follows

g,α = ggµνgµν,α = −ggµνgµν,α. (3.42)

To prove this identity we first note that for any diagonalizable matrix A the following identity holds

detA = etr(lnA), (3.43)

which clearly holds when A is in its diagonal form. So

g,α =
[
etr(ln ||gµν ||)

]
,α

= g[tr(ln ||gµν ||)],α
= gtr[(ln ||gµν ||),α]
= gtr(||gµν ||−1||gµν,α||)
= ggµνgµν,α

= −ggµνgµν,α

where in the last equality we used Eq. (3.9).

All the remaining identities require a coordinate basis.

ii. Contraction of first two indexes of Christoffel symbol

Γα
βα = Γα

αβ =
(
ln

√
|g|

)
β
. (3.44)

From Eq. (3.35) and identity [i.] follows

Γα
βα =

1

2
gανgαν,β =

1

2
g,β/g =

(
ln

√
|g|

)
,β
. (3.45)

iii. Contraction of last two indexes of Christoffel symbol

gµνΓα
µν = − 1√

|g|

(
gαν

√
|g|

)
ν
. (3.46)

From Eq. (3.35) follows

Γα
µν =

1

2
gαβ{gβµ,ν + gβν,µ − gµν,β}, (3.47)

using property [i.]

gµνΓα
µν =

1

2
gαβ{2gβµ,µ − g,β/g}. (3.48)

On the other hand sine the contracted index is mute

1√
|g|

(
gαν

√
|g|

)
ν
=

1√
|g|

(
gαν,ν

√
|g|+ gανg,ν/2

√
|g|

)
= gαν,ν + gαβg,β/2g, (3.49)

and using Eq. (3.9)

0 = (gαβgβµ),
µ
= gαβgβµ,

µ + gαν,ν . (3.50)

Putting together (3.48), (3.49), and (3.50) gives identity [iii.].



11

iv. Divergence of a vector

Aα
;α =

1√
|g|

(√
|g|Aα

)
,α
. (3.51)

From the definition of covariant derivative (3.22) and identity [ii.] follows

Aα
;α = Aα

,α + Γα
βαA

β

= Aα
,α +

(√
|g|

)
,α√

|g|
Aα

=
1√
|g|

(√
|g|Aα

)
,α
. (3.52)

v. Divergence of a rank
(
2
0

)
antisymmetric tensor

Aαβ
;β =

1√
|g|

(√
|g|Aαβ

)
,β
. (3.53)

From the definition of covariant derivative (3.29) and identity [ii.] follows

Aαβ
;β = Aαβ

,β + Γα
γβA

γβΓβ
γβA

αγ

= Aαβ
,β + Γβ

γβA
αγ

=
1√
|g|

(√
|g|Aαβ

)
,β
, (3.54)

where in the first equality we used the symmetry of the Christoffel symbol respect to its last two indexes and
in the last equality we used identity [ii.].

vi. Divergence of a rank
(
1
1

)
tensor

Aα
β
;β =

1√
|g|

(√
|g|Aα

β
)
,β
− Γλ

αµAλ
µ. (3.55)

From the definition of covariant derivative (3.29) and identity [ii.] follows

Aα
β
;β = Aα

β
,β + Γβ

µβAα
µ − Γλ

αµAλ
µ

=
1√
|g|

(√
|g|Aα

β
)
,β
− Γλ

αµAλ
µ. (3.56)

where again in the last equality we used identity [ii.].

vii. Laplacian

□S = S;α
α =

1√
|g|

(√
|g|S,

β
)
,β
, (3.57)

where S is a scalar. Since the metric is covariantly constant

S;α
α = (S,α);β g

βα =
(
S,αg

βα
)
;β

=
(
S,

β
)
;β

=
1√
|g|

(√
|g|S,

β
)
,β
. (3.58)

where in the last equality we used identity [iv.].
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D. The local (coordinate) orthonormal frame

(Ex. 13.3 in Ref. [1]) A local (coordinate) orthonormal frame is “tangent” to the manifold M on its point P0.
We will call this a Local Lorentz Frame (LLF). It is the closest thing to a global (non coordinate) orthonormal frame
“near” P0. It satisfies the following recipes: 6

i. gαβ(P0) = ηαβ ;

ii. gαβ,γ(P0) = 0;

iii. gαβ,γδ(P0) ̸= 0 in general;

with ||ηαβ || = diag{1, 1, . . . , 1}. It is customary to denote the indexes in a LLF with a hat, like so ηα̂β̂ , but we will

not adopt this convention in this section and simply use unprimed indexes to denote the LLF.
We will now prove that it is always possible to choose a coordinate system such that [i.] and [ii.] hold at an arbitrary

point.
Let’s first count the number of independent components in a symmetric tensor of dimension n and rank r. For

r = 2 we have
(
n
2

)
+

(
n
1

)
= n(n+1)

2 independent components. For r = 3 we have
(
n
3

)
+ 2

(
n
2

)
+

(
n
1

)
= n(n+1)(n+2)

6 .
independent components. So for example in GR n = 4 and we find 10 for r = 2 and 20 for r = 3.

Consider now an arbitrary change of coordinates xα
′
= fα

′
(xα). Taylor expand around P0 at the origin

xα
′
= fα

′

,µx
µ +

1

2
fα

′

,µνx
µxν +

1

6
fα

′

,µνλx
µxνxλ + . . . . (3.59)

Then we can count the independent components of the various coefficients. For example in n = 4 the linear term
Mα′

µ = fα
′

,µ has 4× 4 = 16 components, the quadratic term Nα′
µν = fα

′

,µν has 4× 10 = 40 components, and the

cubic term Pα′
µνλ = fα

′

,µνλ has 4× 20 = 80 components. Recall that

Lα′

µ =
∂xα

′

∂xµ
=Mα′

µ +Nα′

µνx
ν +

1

2
Pα′

µνλx
νxλ + . . . . (3.60)

At the origin we want gµν(P0) = ηµν , but in general

gµν(P0) =

[
Mα′

µ +Nα′

µνx
ν +

1

2
Pα′

µνλx
νxλ + . . .

]
×[

Mβ′

ν +Nβ′

νλx
λ +

1

2
P β′

νµλx
µxλ + . . .

]
gα′β′ . (3.61)

Then we conclude the following:

i. The condition on the metric requires

gµν(P0) = ηµν =Mα′

µM
β′

νgα′β′ , (3.62)

which can always be accommodated and for example in GR we have 10 independent components in ηµν and
4 × 4 = 16 in Mα

β . So we have 6 degrees of freedom left over for a Lorentz transformation (3 boosts and 3
rotations) to determine Mν

µ.

ii. The condition on the first derivative of the metric requires

0 = gµν,λ(P0) =Mα′

µM
β′

νgα′β′,λ + (Nα′

µλM
β′

ν +Nβ′

νλM
α′

µ)gα′β′ , (3.63)

which can also be always accommodated with no degrees of freedom left. For example in GR gµν,λ has 4×10 = 40
independent components then we will always be able to find the exactly 40 components of Nα

βγ .

iii. The condition on the second derivative of the metric gµν,λρ(P0) = 0 cannot in general be satisfied. For example
in GR gµν,λρ has 10×10 = 100 independent components but Pα

βγδ has only 80, so 20 degrees of freedom cannot
be specified. We will see in Section III F that these are exactly the degrees of freedom of the Riemann curvature
tensor.

6 In this context ηαβ is also known as the Minkowski tensor.
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So we can say that a LLF is the closest thing possible to a global orthonormal frame at a particular point P0 of
the Riemannian manifold M , being the tangent space to M at P0.

Upon taking the determinant of Lµ′
µL

ν′
νgµ′ν′ = ηµν we find

det
∣∣∣∣∣∣Lµ′

µ

∣∣∣∣∣∣2 det ||gµ′ν′ || = 1. (3.64)

We will denote

g = det||gµ′ν′ ||. (3.65)

In Section IVB we will see that in General Relativity (GR) M is a pseudo-Riemannian 4-dimensional manifold

with ||ηµν || = diag{−1, 1, 1, 1} and det||Lµ′
µ|| = 1/

√
−g.

The Levi-Civita tensor in a general basis becomes

εµ′
1µ

′
2···µ′

n
= Lµ1

µ′
1
Lµ2

µ′
2
· · ·Lµn

µ′
n
εµ1µ2···µn

= det||Lµ
µ′ ||εµ1µ2···µn

=
√

|g| εµ1µ2···µn
, (3.66)

where in the first equality we used the fact that the Levi-Civita tensor is defined as the completely antisymmetric
tensor of Eq. (2.13), in the second equality we used property (2.14), and in the last equality we used properties (3.64),
(3.65), and (1.7).

E. Geodesics

A geodesic is a curve on the manifold M that parallel transports its tangent vector along itself

∇u⃗u⃗ = 0, (3.67)

i.e. the tangent vector u⃗ is covariantly constant along the curve

uαuβ ;β = 0, (3.68)

uα
(
uβ,β + Γβ

αγu
γ
)
= 0, (3.69)

d2xβ

dλ2
+ Γβ

αγ
dxα

dλ

dxγ

dλ
= 0, (3.70)

where xα is a coordinate system on M and uα = dxα/dλ with λ = aλ̄+ b is an affine parameter (the proper time in
GR) with a and b two real numbers giving the units (of time) and the origin (of time) respectively.

The geodesic equation (3.70) is a second order differential equation. For a solution it is then necessary to give the
initial conditions xα(0) and ẋα(0), where the dot stands fro a derivative respect to λ . Through each point of M
exists a unique geodesic in each direction.

All affine parameters are related by a linear transformation. In fact, let λ̄ = λ̄(λ), then d/dλ = ˙̄λd/dλ̄ and

d2/dλ2 = ¨̄λd/dλ̄+ ( ˙̄λ)2d2/dλ̄2. So Eq. (3.70) becomes

d2xβ

dλ̄2
+

¨̄λ

( ˙̄λ)2

dxβ

dλ̄
+ Γβ

αγ
dxα

dλ̄

dxγ

dλ̄
= 0. (3.71)

Since the change in the affine parameter must not change the geodetic equation then the second term in Eq. (3.71)

must cancel. This occur if ¨̄λ = 0 or λ̄ = aλ+ b.

From a variational principle

Alternatively we can define a geodesic as a curve of extremal length. The length of a curve C(λ) is given by

S =

∫
C

ds =

∫
C

√
gαβ(xγ)

dxα

dλ

dxβ

dλ
dλ =

∫
LC(x

γ , ẋγ) dλ, (3.72)
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where λ is any parameter along the curve. The curve of extremal length is the one obtained through the stationary
variational principle δS [xγ , ẋγ ] = 0. We then find

d

dλ

(
∂LC

∂ẋα

)
− ∂LC

∂xα
= 0, (3.73)

where C is the geodesic. We will from now on forget about this subscript. Since ∂L /∂ẋα = gαβ ẋ
β/L then Eq.

(3.73) becomes

d

dλ

(
1

L
gαβ ẋ

β

)
− 1

2L
gγδ,αẋ

γ ẋδ = 0, (3.74)

or

− 1

L 2

dL

dλ
gαβẋ

β +
1

L
gαβ,γ ẋ

γ ẋβ +
1

L
gαβẍ

β − 1

2L
gγδ,αẋ

γ ẋδ = 0, (3.75)

or, reordering terms,

gαβẍ
β +

1

2
{gαβ,γ + gαγ,β − gγβ,α}ẋγ ẋβ =

1

L

dL

dλ
gαβ ẋ

β , (3.76)

recalling the definition (3.35) for the Christoffel symbol

gαβẍ
β + Γαβγ ẋ

β ẋγ =
1

L

dL

dλ
ẋα, (3.77)

On the extremal curve L = dS /dλ =constant so dL /dλ = 0 and we recover the geodesic Eq. (3.70). 7

F. Curvature

(Chapter 11 in Ref. [1]) We will use a geometric introduction.

P Q

R

S

T

u � a

v�b

a-u�

b-v �

[u , v] ��a b

FIG. 1. Closed curve on M of infinitesimal area.

7 Einstein believed that the geodesic equation of motion can be derived from the field equations for empty space, i.e. from the fact that
the Ricci curvature vanishes. He wrote [5]:

It has been shown that this law of motion — generalized to the case of arbitrarily large gravitating masses — can be derived from
the field equations of empty space alone. According to this derivation the law of motion is implied by the condition that the field be
singular nowhere outside its generating mass points.

and [6]
One of the imperfections of the original relativistic theory of gravitation was that as a field theory it was not complete; it introduced

the independent postulate that the law of motion of a particle is given by the equation of the geodesic.
A complete field theory knows only fields and not the concepts of particle and motion. For these must not exist independently from

the field but are to be treated as part of it.
On the basis of the description of a particle without singularity, one has the possibility of a logically more satisfactory treatment of

the combined problem: The problem of the field and that of the motion coincide.
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Consider a closed curve on M of infinitesimal area as in Fig. 1. We start at P then move to Q to end in R. We

then move from P to T to S. The two paths are then closed by moving from R to S. We then consider the change δA⃗

in a vector field A⃗
field

from parallel transporting itself along the path P→T→S or parallel transporting itself along

the path P→Q→R and closing the gap to reach S. At P we will have a vector A⃗P = A⃗
field

P where A⃗
field

P is our vector
field at P. When we move from P to Q we can compare the vector field at Q with the parallel transported vector

at Q, δP→QA⃗ = A⃗
field

Q − A⃗
P

||→Q
= ∆a∇u⃗A⃗. We then move to R to find δQ→RδP→QA⃗ = ∆a∆b∇v⃗∇u⃗A⃗. Going

from P to T to S we find δT→SδP→T A⃗ = ∆a∆b∇u⃗∇v⃗A⃗. We then go from R to S to close the curve and we find

δR→SA⃗ = ∆a∆b∇[u⃗,v⃗]A⃗. So the change of the vector field around the curve is

δA⃗ = δQ→RδP→QA⃗+ δR→SA⃗− δP→T δT→SA⃗

= ∆a∆b
(
∇v⃗∇u⃗ −∇u⃗∇v⃗ −∇[v⃗,u⃗]

)
A⃗ (3.78)

= ∆a∆bR(v⃗, u⃗)A⃗, (3.79)

where

R(u⃗, v⃗) = ∇u⃗∇v⃗ −∇v⃗∇u⃗ −∇[u⃗,v⃗], (3.80)

is the curvature (local) operator.
We will now give 3 properties of this operator:

i. For any 3 vectors u⃗, v⃗, w⃗, and a scalar f

R(u⃗, v⃗)fw⃗ = fR(u⃗, v⃗)w⃗, (3.81)

R(f u⃗, v⃗)w⃗ = fR(u⃗, v⃗)w⃗, (3.82)

R(u⃗, f v⃗)w⃗ = fR(u⃗, v⃗)w⃗. (3.83)

ii. R is linear

R(a⃗+ b⃗, v⃗)w⃗ = R(a⃗, v⃗)w⃗ + R (⃗b, v⃗)w⃗, (3.84)

R(u⃗, a⃗+ b⃗)w⃗ = R(u⃗, a⃗)w⃗ + R(u⃗, b⃗)w⃗, (3.85)

R(u⃗, v⃗)(a⃗+ b⃗) = R(u⃗, v⃗)a⃗+ R(u⃗, v⃗)⃗b. (3.86)

iii. R is local

R(u⃗+ a⃗, v⃗ + b⃗)(w⃗ + c⃗)

a⃗→0⃗
b⃗→0⃗
c⃗→0⃗−→ R(u⃗, v⃗)w⃗. (3.87)

These 3 properties imply that R(u⃗, v⃗)w⃗ is a tensor.

G. The Riemann tensor

The Riemann tensor RRR is defined in terms of the curvature tensor as follows

RRR(σ̃, c⃗, a⃗, b⃗) = ⟨σ̃,R(a⃗, b⃗)⃗c⟩. (3.88)

The components of Riemann are as follows

Rα
βγδ = RRR(ω̃α, e⃗β , e⃗γ , e⃗δ) (3.89)

= ⟨ω̃α,R(e⃗γ , e⃗δ)e⃗β⟩ (3.90)

= ⟨ω̃α,∇γ∇δe⃗β −∇δ∇γ e⃗β −∇[⃗eγ ,⃗eδ]e⃗β⟩ (3.91)

= ⟨ω̃α,∇γ (Γ
µ
δβ e⃗µ)−∇δ (Γ

µ
γβ e⃗µ)−∇(cγδ

µe⃗µ)e⃗β⟩ (3.92)

= ⟨ω̃α,Γµ
δβ,γ e⃗µ + Γµ

δβΓ
σ
γµe⃗σ − Γµ

γβ,δe⃗µ − Γµ
γβΓ

σ
δµe⃗σ − cγδ

µΓσ
µβ e⃗σ⟩, (3.93)
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so

Rα
βγδ = Γα

δβ,γ + Γµ
δβΓ

α
γµ − Γα

γβ,δ − Γµ
γβΓ

α
δµ − cγδ

µΓα
µβ , (3.94)

which for GR are 4× 4× 4× 4 = 256 components and we expect a reduction to 20 (see Section IIID).
Note that in a flat space gαβ = ηαβ globally, so all Rα

βγδ = 0.
We give now 4 symmetry properties of Riemann. We will prove these working in a LLF (see Section IIID). Since

Riemann is local these properties will hold globally. In a LLF gαβ,γ = 0 and the Christoffel symbols vanish, so we
find

Rαβγδ = gαµR
µ
βγδ = gαµ(Γ

µ
δβ,γ − Γµ

γβ,δ) = Γαδβ,γ − Γαγβ,δ. (3.95)

Using the symmetry of the Christoffel symbol (see Section III C) we easily prove the following:

i. Antisymmetry in the last two indexes

Rαβγδ = −Rαβδγ . (3.96)

ii. Cyclic identity

Rα[βγδ] = Rαβγδ +Rαγδβ +Rαδβγ = 0. (3.97)

iii. Antisymmetry in the first two indexes

Rαβγδ = −Rβαγδ. (3.98)

iv. Pair symmetry

Rαβγδ = Rγδαβ . (3.99)

We can then count the number of independent components of Riemann in an n-dimensional manifold M . Due to
properties [i.] and [iii.] the number of independent components on these pair of indexes is M = n(n − 1)/2; due to
property [iv.] the number of independent components reduces to M(M + 1)/2; and we yet have to subtract

(
n
4

)
to

the counting since due to properties [i.], [ii.], and [iii.] the 4 indexes cannot be all different. We are then left with
n2(n2 − 1)/12 independent components. For example for n = 2 (sphere, see Section III J) we have only 1 component,
for n = 2 we have 6, and for n = 4 (GR, see Section IVB) we have 20.

Commutation of covariant derivatives

(Ex. 16.3 in Ref. [1]) Covariant derivatives do not generally commute. For any vector B⃗ we will prove that 8

Bµ
;αβ −Bµ

;βα = −Rµ
γαβB

γ . (3.100)

To prove this we work in a LLF

Bµ
;αβ = (Bµ

;α),β = (Bµ
,α + Γµ

γαB
γ),β = Bµ

,αβ + Γµ
γα,βB

γ , (3.101)

where in the last equality we used the fact that the Christoffel symbol vanish in a LLF. Then in a LLF

Bµ
;αβ −Bµ

;βα = (Γµ
γα,β − Γµ

γβ,α)B
γ = Rµ

γβαB
γ = −Rµ

γαβB
γ . (3.102)

See (Ex. 9.8 of Ref. [2]) for the extension to tensors.

8 Note that Rf = 0 for a scalar f as can be easily proven from the properties (3.20), (3.22) of the covariant derivative, the definition
(3.17), and the property (3.39) of the connection coefficients .
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Bianchi identities

The following Bianchi identities hold

Rα
β[γδ;ϵ] = 0. (3.103)

These can be proven working in a LLF where

Rα
βγδ;ϵ = Rα

βγδ,ϵ = Γα
δβ,γϵ − Γα

γβ,δϵ, (3.104)

and using the fact that partial derivatives commute.

The Ricci tensor

The Ricci curvature tensor is defined as

Rαβ = Rγ
αγβ . (3.105)

It is a symmetric tensor

Rαβ = Rγ
αγβ = gγϵRϵαγβ = gϵγRγβϵα = Rβα, (3.106)

where we used the pair symmetry of Riemann (property [iv.] in Section IIIG).

The scalar curvature

The scalar curvature is the trace of Ricci

R = Rα
α (3.107)

The Einstein tensor

The Einstein tensor GGG has the following components

Gαβ = Rαβ − 1

2
gαβR. (3.108)

The Einstein tensor is covariantly constant ∇GGG = 0 or

Gαβ
;β = 0, (3.109)

which are also known as the contracted Bianchi identities. These can be proven using the Bianchi identities

Rα
βγδ;ϵ +Rα

βϵγ;δ +Rα
βδϵ;γ = 0. (3.110)

Contract α and γ and use antisymmetry of Riemann in last two indexes (property [i.] of Section IIIG) in the second
term

Rβδ;ϵ −Rβϵ;δ +Rα
βδϵ;α = 0. (3.111)

Contract β and δ and use antisymmetry of Riemann in first two indexes (property [iii.] of Section IIIG) in the third
term

R;ϵ −Rβ
γ;β −Rαϵ;

α = R;ϵ − 2Rαϵ;
α = 0, (3.112)

so that

Gαϵ;
α = Rαϵ;

α − 1

2
gαϵR;

α = 0. (3.113)
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The Weyl conformal tensor

(Ex. 13.131 in Ref. [1] and Chapter 9 in Ref. [2]) The Weyl conformal tensor is defined as follows

Cαβ
γδ = Rαβ

γδ − 2δ[γ
[αRδ]

β] +
1

3
δ[γ

[αδδ]
β]R. (3.114)

The Weyl conformal tensor has the following properties:

i. Has same symmetries of Riemann;

ii. Is completely trace-free, i.e. contraction of Cαβγδ on any two indexes vanishes. It can be considered as the
trace-free part of Riemann.

iii. In a manifold M of dimension n, its number of independent components can be inferred by the two properties
above. Recalling the counting for Riemann of Section IIIG and noticing that property [ii.] above requires that
contracting any two indexes we are left with only other two indexes with the proper symmetry constraints we

conclude that the number of independent components of the Weyl tensor is given by n2(n2−1)
12 − n(n+1)

2 for n ≥ 3
so it must be 0 for n ≤ 3. Thus for n ≤ 3 we may assume that the Weyl tensor is identically zero and the
Riemann tensor is completely determined by its trace, the Ricci tensor,

iv. Cαβ
γδ = 0 if and only if M is conformally flat, i.e. if and only if it is reducible to Minkowski (Aleksotas, 22 June

1864 - Gottinga, 12 January 1909) space by a conformal transformation, i.e. if and only if it exists a coordinate
frame where

ds2 = e2ϕ(x
α)ηαβdx

αdxβ , (3.115)

with ϕ a scalar. The function eϕ is called the conformal factor.

H. Geodesics deviation

Consider a congruence of geodesics xα = xα(λ,m) with u⃗ = ∂/∂λ, m⃗ = ∂/∂m, and ∇u⃗u⃗ = 0. This is pictorially
shown in Fig. 2.

���

���

���

���

n=1n=2n=3
n=4

u

n

FIG. 2. Congruence of geodesics. λ =affine parameter (proper time in GR), n⃗ =connecting vector which connects points of
equal λ on different geodesics.

By definition of a connecting vector [n⃗, u⃗] = 0, so n⃗ and u⃗ form a coordinate basis with coordinates n and λ
respectively. Then ∇u⃗n⃗ = ∇n⃗u⃗ and R(u⃗, n⃗) = ∇u⃗∇n⃗ −∇n⃗∇u⃗. So

∇u⃗(∇u⃗n⃗) = ∇u⃗∇n⃗u⃗ = ∇n⃗∇u⃗u⃗+ R(u⃗, n⃗)u⃗ = R(u⃗, n⃗)u⃗, (3.116)

where in the last equality we used the geodesic equation ∇u⃗u⃗ = 0. We then reached the equation for the geodesics
deviation

∇u⃗∇u⃗n⃗ = R(u⃗, n⃗)u⃗, (3.117)
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which in components ⟨ω̃α,∇u⃗∇u⃗n⃗⟩+ ⟨ω̃α,R(n⃗, u⃗)u⃗⟩ = 0 becomes

D2nα

dλ2
= uγuβnα;βγ = Rα

βδγu
βuδnγ . (3.118)

I. Cartan structure equations

Cartan, taking profit from the forms language (see Section II), devised a very useful way to calculate the component
of the Riemann tensor in a simple way. Cartan structure equations are 3, they need a metric and are true in any
frame (coordinate or non coordinate). We will first enunciate them and then proceed to their proof.

i. Introduce the connection 1-form

ω̃α
β = ⟨ω̃α,∇e⃗β⟩ = Γα

βγω̃
γ , (3.119)

where the covariant derivative symbol ∇ has an empty index. Also the Γ we use here is the one of Ref. [1] with
the last two indexes interchanged respect to our (this affects only a non coordinate basis, see footnote 5).

Then the first Cartan structure equation is

d̃ω̃α = −ω̃α
β ∧ ω̃β . (3.120)

We will now outline the proof. Let ω̃α = Lα
β̄ω̃

β̄ . Then, taking the exterior derivative,

d̃ω̃α = Lα
β̄,γ̄ω̃

γ̄ ∧ ω̃β̄

= Lα
β̄,γ̄L

γ̄
βL

β̄
γω̃

β ∧ ω̃γ

= Lα
β̄,γ̄(L

γ̄
βL

β̄
γ − Lγ̄

γL
β̄
β)ω̃

β ⊗ ω̃γ . (3.121)

Now

−ω̃α
β ∧ ω̃β = −Γα

βγω̃
γ ∧ ω̃β

= (Γα
βγ − Γα

γβ)ω̃
β ⊗ ω̃γ

= −cβγαω̃β ⊗ ω̃γ , (3.122)

where in the last equality we used Eq. (3.39).

But

[⃗eβ , e⃗γ ] = cβγ
αe⃗α (3.123)

= [Lβ̄
β∂β̄ , L

γ̄
γ∂γ̄ ]

= Lβ̄
βL

γ̄
γ,β̄∂γ̄ − Lγ̄

γL
β̄
β,γ̄∂β̄

= (Lγ̄
βL

β̄
γ,γ̄ − Lγ̄

γL
β̄
β,γ̄)L

α
β̄ e⃗α, (3.124)

and since Lα
β̄L

β̄
γ = δαγ we have Lα

β̄L
β̄
γ,γ̄ = −Lα

β̄,γ̄L
β̄
γ therefore

cβγ
α = Lα

β̄,γ̄(L
γ̄
γL

β̄
β − Lγ̄

βL
β̄
γ). (3.125)

Substituting (3.125) in (3.121) and using (3.122) gives the desired equation (3.120).

ii. The second Cartan structure equation is

d̃gαβ = ω̃αβ + ω̃βα. (3.126)

This can easily be proven as follows

ω̃αβ + ω̃βα = (Γαβγ + Γβαγ)ω̃
γ = gαβ,γω̃

γ = d̃gαβ , (3.127)

where in the second last equality we used Eq. (3.37). Note that even if we proved the Cartan Eq. (3.126) for a
coordinate basis it holds generally.
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iii. The curvature 2-form is defined as follows

Rα
β = d̃ω̃α

β + ω̃α
σ ∧ ω̃σ

β . (3.128)

The third Cartan structure equation is

Rα
β =

1

2
Rα

βγδω̃
γ ∧ ω̃δ. (3.129)

We will now outline the proof of this equation. Let us develop the two terms on the right hand side of Eq.
(3.128). The first

d̃ω̃α
β = d̃

(
Γα

βδω̃
δ
)

= Γα
βδ,γω̃

γ ∧ ω̃δ

= (Γα
βδ,γ − Γα

βγ,δ)ω̃
γ ⊗ ω̃δ. (3.130)

The second

ω̃α
σ ∧ ω̃σ

β = Γα
σγω̃

γ ∧ Γσ
βδω̃

δ

= (Γα
σγΓ

σ
βδ − Γα

σδΓ
σ
βγ)ω̃

γ ⊗ ω̃δ. (3.131)

The right hand side in the Cartan Eq. (3.129)

1

2
Rα

βγδω̃
γ ∧ ω̃δ = Rα

βγδω̃
γ ⊗ ω̃δ, (3.132)

due to the antisymmetry of Riemann respect to its last two indexes.

Putting together Eqs. (3.130), (3.131), and (3.132) and recalling the expression (3.94) for the components of
the Riemann tensor in a coordinate basis proves Cartan equation (3.129).

J. The sphere

A sphere is the surface of constant positive curvature.

Spherical coordinates in flat space

Spherical coordinates in flat space are as follows
e⃗r = ∂

∂r , r radius
e⃗θ = ∂

∂θ , θ polar angle
e⃗φ = ∂

∂φ , φ azimuthal angle
(3.133)

This is a coordinate basis and [⃗eα, e⃗β ] = 0 for any choice of α and β. The metric already diagonal and is given by

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 (3.134)

so that

||gαβ || =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (3.135)

with g = r4 sin2 θ.
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With a (non coordinate) orthonormal basis

(Ex. 8.6 in Ref. [1]) We find the orthonormal (non coordinate) frame by rescaling the basis vector (3.133) like so
e⃗r̂ = ∂

∂r

e⃗θ̂ = 1
r

∂
∂θ

e⃗φ̂ = 1
r sin θ

∂
∂φ

(3.136)

so that gα̂β̂ = ηα̂β̂ but [⃗eα̂, e⃗β̂ ] ̸= 0 whenever α̂ ̸= β̂. It can easily be verified that [⃗er̂, e⃗θ̂] = − 1
r e⃗θ̂ = cr̂θ̂

θ̂

[⃗er̂, e⃗φ̂] = − 1
r e⃗φ̂ = cr̂φ̂

φ̂

[⃗eθ̂, e⃗φ̂] = − 1
r tan θ e⃗φ̂ = cθ̂φ̂

φ̂
(3.137)

Note that J. D. Jackson book of “Classical Electrodynamics” [3] uses the orthonormal basis. For example the
gradient of a scalar ψ

∇ψ = e⃗αψ,
α = e⃗αg

αβψ,β

= e⃗r̂
∂ψ

∂r
+ e⃗θ̂

1

r

∂ψ

∂θ
+ e⃗φ̂

1

r sin θ

∂ψ

∂φ
. (3.138)

where we used the fact that gαβ is the inverse matrix of gαβ .

For the divergence of a vector A⃗ = Aα̂e⃗α̂ = Aαe⃗α with
Ar̂ = Ar

Aθ̂ = rAθ

Aφ̂ = r sin θAφ

(3.139)

we find

∇A⃗ = Aα
;α =

1√
|g|

(√
|g|Aα

)
,α

=
1

r2
(
r2Ar̂

)
,r
+

1

r sin θ

(
sin θAθ̂

)
,θ
+

1

r sin θ
Aφ̂

,φ, (3.140)

where we used identity [iv.] in the subsection “Useful identities” of Section III C.
For the Laplacian of a scalar ψ

∇2ψ = ψ;α
α =

1√
|g|

(√
|g|ψ,

α
)
,α

=
1

r2
(
r2ψ,r

)
,r
+

1

r sin θ
(sin θψ,θ),θ +

1

r2 sin2 θ
ψ,φφ. (3.141)

where we used identity [vii.] in the subsection “Useful identities” of Section III C.

Cartesian coordinates

A sphere can be embedded in the 3 dimensional flat space. Here we can as usual choose a Cartesian coordinate
system  x = r sin θ cosφ

y = r sin θ sinφ
z = r cos θ


r =

√
x2 + y2 + z2

θ = arctan
(√

x2 + y2/z
)

φ = arctan (y/x)

(3.142)

From Eq. (1.6) we can determine the basis vectors
e⃗r = e⃗x

x
r + e⃗y

y
r + e⃗z

z
r

e⃗θ = e⃗x
xz

r2
√

x2+y2
+ e⃗y

yz

r2
√

x2+y2
+ e⃗z

(
−
√

x2+y2

r2

)
e⃗φ = e⃗x

(
− y

x2+y2

)
+ e⃗y

x
x2+y2

(3.143)
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and for the versors 
r̂ = e⃗r

|⃗er| |⃗er| =
√

x2

r2 + y2

r2 + z2

r2 = 1

θ̂ = e⃗θ

|⃗eθ| |⃗eθ| =
√

x2z2

r4(x2+y2) +
y2z2

r4(x2+y2) +
x2+y2

r4 = 1
r

φ̂ =
e⃗φ

|⃗eφ| |⃗eφ| =
√

y2

(x2+y2)2 + x2

(x2+y2)2 = 1
r sin θ

(3.144)

Curvature of the sphere in a simple way

We will here use the results of Section III I to determine with the Cartan structure equations, in a rapid and simple
way, the 1 independent component of the Riemann tensor for the sphere, the surface for which r is constant.

The 1-form orthonormal basis {
ω̃θ̂ = rd̃θ

ω̃φ̂ = r sin θd̃φ
(3.145)

so that ds2 = ηµ̂,ν̂ω̃
µ̂ ⊗ ω̃ν̂ . From Cartan structure equation (3.126) it must be ω̃µ̂,ν̂ + ω̃ν̂,µ̂ = 0 or ω̃µ̂

ν̂ + ω̃ µ̂
ν̂ = 0 so

that {
ω̃θ̂

θ̂ = ω̃φ̂
φ̂ = 0

ω̃θ̂
φ̂ = −ω̃ θ̂

φ̂ = −ω̃φ̂

θ̂
= 0

(3.146)

From the properties of the external derivative and from Cartan structure equation (3.120) it must be d̃ω̃θ̂ = d̃(rd̃θ) =

rd̃d̃θ = 0 = −ω̃θ̂
φ̂ ∧ ω̃φ̂. So it must be either ω̃θ̂

φ̂ = 0 or ω̃θ̂
φ̂ ∝ ω̃φ̂. The other basis 1-form gives

d̃ω̃φ̂ = d̃(r sin θd̃φ)

= r cos θd̃θ ∧ d̃φ

=
cot θ

r
ω̃θ̂ ∧ ω̃φ̂

= −ω̃φ̂

θ̂
∝ ω̃θ̂. (3.147)

So we find that

ω̃φ̂

θ̂
=

cot θ

r
ω̃φ̂. (3.148)

From Cartan structure equation (3.129) and using the result of Eq. (3.146) then follows

R θ̂
φ̂ = d̃ω̃φ̂

θ̂

= d̃

(
−cot θ

r
ω̃φ̂

)
= d̃(− cos θ d̃φ)

= sin θ d̃θ ∧ d̃φ

=
1

r2
ω̃θ̂ ∧ ω̃φ̂

=
1

2
Rθ̂

φ̂α̂β̂ω̃
α̂ ∧ ω̃β̂ . (3.149)

So we reach the result that the only independent Riemann component is

Rθ̂
φ̂θ̂φ̂ = 1/r2. (3.150)

The scalar curvature is then

R = Rα̂β̂
α̂β̂ = 2Rθ̂φ̂

θ̂φ̂ = 2/r2. (3.151)
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Curvature of the sphere in a hard way

We work in the global (non coordinate) frame (3.136). Due to the antisymmetry of Riemann Rα̂β̂γ̂δ̂ respect to its

first two indexes (3.98) and respect to its last two indexes (3.96), for α̂ = β̂ or for γ̂ = δ̂ Riemann vanishes. Recall
that Riemann is given by Eq. (3.94)

Rα̂β̂γ̂δ̂ = R̄α̂β̂γ̂δ̂ + Γµ̂
δ̂β̂Γα̂γ̂µ̂ − Γµ̂

γ̂β̂Γα̂δ̂µ̂ − cγ̂δ̂
µ̂Γα̂µ̂β̂ , (3.152)

R̄α̂β̂γ̂δ̂ = Γα̂δ̂β̂,γ̂ − Γα̂γ̂β̂,δ̂, (3.153)

where by Eq. (3.34)

Γα̂β̂γ̂ =
1

2
{cα̂β̂γ̂ + cβ̂γ̂α̂ − cγ̂α̂β̂}. (3.154)

Remember that we can freely bring up or down indexes since gα̂β̂ = ηα̂β̂ and note that the 3 indexes of the c

commutation coefficients in Γ appear cyclically. Moreover R̄ must have the same symmetry properties of Riemann.
From the commutation coefficients of Eq. (3.137) the only relevant commutation coefficients c is cθ̂φ̂φ̂ = − cot θ/r

where we have antisymmetry in the first two indexes. Due to the above mentioned symmetry properties of Riemann
its only non-zero component is Rθ̂φ̂θ̂φ̂.

For the connection coefficients (3.154) we find 
Γθ̂φ̂φ̂ = cθ̂φ̂φ̂,

Γφ̂θ̂φ̂ = 0,

Γφ̂φ̂θ̂ = −cθ̂φ̂φ̂,
(3.155)

where the components with 2 or all 3 indexes equal to θ̂ or with all 3 indexes equal to φ̂ must vanish. From the results
of Eq. (3.155). We can easily verify that Rθ̂φ̂θ̂φ̂ − R̄θ̂φ̂θ̂φ̂ = 0.

In order to determine Rθ̂φ̂θ̂φ̂ = R̄θ̂φ̂θ̂φ̂ = Γθ̂φ̂φ̂,θ̂ − Γθ̂θ̂φ̂,φ̂ we need to calculate

Rθ̂φ̂θ̂φ̂ = cθ̂φ̂φ̂,θ̂ =
∂
[(
− cot θ

r

)
r sin θ

]
r∂θ

1

r sin θ
= 1/r2, (3.156)

where in order to carry out the derivative respect to θ̂ we had to use the change of basis of Eq. (3.145). An even
harder route is the calculation in the usual polar coordinates basis.

IV. PHYSICS

According to Einstein (Ulma, 14 March 1879 - Princeton, 18 April 1955) the arena for Physics is a pseudo Rieman-
nian 4-dimensional manifold M where a point P = (x0, x1, x2, x4) describes an event at a given time t = x0/c in
a given place in space r = (x1, x2, x3), where c is the speed of light constant. On the tangent LLF, at a P, Special
Relativity (SR) holds with Minkowski metric ηαβ = diag(−1, 1, 1, 1). On a global frame General Relativity (GR)
holds with gαβ(x

γ) a metric field determined by Einstein field equations described in Section IVB. In this section
bold face letters without any other decoration describe 3-dimensional vectors.

A. Electromagnetism

According to Einstein strong equivalence principle (SEP) all laws of Physics should be written in the same form
in a LLF or in a global frame on the manifold M .

Electrostatics

Charles-Augustin de Coulomb (Angoulême, 14 June 1736 - Paris, 23 August 1806) discovered the mathematical law
of interaction between two charges of electrical charge q1 nd q2 separated by a distance r. Coulomb force (in Gauss
units)

F 12 = r
q1q2
r3

, (4.1)
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gives rise to an electric field around charge one E(r) = F 12/q2. The electric field is generated by an electric potential
E(r) = −∇φ(r) with φ(r) = q/r, the Coulomb potential. The Coulomb potential satisfies to the equation of Baron
Simón Denis Poisson (Pithiviers, 21 June 1781 - Paris, 25 April 1840) 9

∇2φ(r) = −4πqδ3(r), (4.4)

where δ3 is a Dirac delta function in 3 dimensions. Poisson equation is the equation of Pierre-Simon, Marquis de
Laplace (Beaumont-en-Auge, 23 March 1749 - Paris, 5 March 1827) with a source term due to the charge q. Later
Johann Carl Friedrich Gauss (Braunschweig, 30 April 1777 - Gottinga, 23 February 1855) discovered that

4πq = −
∫
Ω

∇2φ(r) dr = −
∫
∂Ω

n ·∇φ(r) dS =

∫
∂Ω

n ·E(r) dS = ΦE , (4.5)

which states the important mathematical result that the flux ΦE of the electric field through any closed surface
containing charge q is fixed. In Eq. (4.5) dr is the infinitesimal volume integral, ndS is the infinitesimal surface
element with n its outward normal versor, Ω is the volume region considered in the volume integral, and ∂Ω is its
bounding surface.

The representation of the electron as a pointwise particle poses the problem of an infinite self-energy diverging
as 1/r. On the other side the electrostatic energy for assembling a system on N point charges of charge qi is that
required to bring them close together from infinity

E =
1

2

N∑
i̸=j=1

qiqj
|ri − rj |

, (4.6)

But again a divergence problem arises as soon as one introduces a charge density ρ(r) to rewrite this energy with a
continuous expression

E =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r − r′|
, (4.7)

where one readily recognize a divergence for a linear, planar, or spatial charge density. Also in these cases is necessary
to deal with infinities.

Maxwell equations

From the first discoveries of electrostatics soon enough James Clerk Maxwell (Edimburgh, 13 June 1831 – Cambridge,
5 November 1879) wrote his equations for electrodynamics. The most synthetic way to write these important equations
describing electromagnetism is through the geometric language of the differential forms (here we use Gauss units and
set additionally the speed of light c = 1)

d̃ F̃ = 0, (4.8)

d̃ ⋆ F̃ = 4π ⋆ J̃ . (4.9)

Here d̃ stands for an exterior derivative (see Section IIA), ⋆ is the Hodge star that stands for the dual, F = d̃A is the
Faraday two form that subtend the electromagnetic antisymmetric tensor Fµν containing the electric and magnetic
fields (6 components, 6 basis 2-forms)

F̃ =
1

2
Fαβd̃x

α ∧ d̃xβ (4.10)

= Exd̃x ∧ d̃t+ Eyd̃y ∧ d̃t+ Ezd̃z ∧ d̃t+

Bxd̃y ∧ d̃z +Byd̃z ∧ d̃x+Bzd̃x ∧ d̃y, (4.11)

9 For charges living [7] in n-dimensions we have

φ(r) = q

 1/r n = 3
− ln(r/ℓ) n = 2
−r n = 1

, (4.2)

where ℓ is a length. And the Poisson equation becomes

∇2φ(r) = −qδn(r)

 4π n = 3
2π n = 2
2 n = 1

, (4.3)

where δn is a Dirac delta function in n dimensions.
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A⃗ = (φ,A) is the electromagnetic 4-potential one form where φ is the electric scalar potential for the electric field

E = −∇φ−∂A/∂t and A the magnetic vector potential for the magnetic field B = ∇×A, ⋆F̃ is Maxwell two form

dual to Faraday, and ⋆J̃ is the charge three form with J̃ = (ρ,J) the 4-current density one form with ρ the electric
charge density and J the electric current density. So that the total charge Q inside a three dimensional hypersurface

region S is Q =
∫

S ⋆J̃ . Also from d̃d̃ ⋆ F̃ = 0 follows d̃ ⋆ J̃ = 0 which is the law of conservation of charge. Eq. (4.8)
summarizes Faraday’s law and the non-existence of magnetic monopoles and it is a consequence of the general result

that d̃d̃ = 0. Eq. (4.9) summarizes Ampere’s law with Maxwell’s correction to take into account of the displacement
current and Gauss’s law. The importance of the formulation of Eqs. (4.8)-(4.9) lies in the fact that written in the
differential form language, Maxwell equations have the same form in Special Relativity or in General Relativity thanks
to the strong equivalence principle. This is tantamount to assume that such formulation is appropriate also in any
riemannian manifold.

The Maxwell equations are invariant under the gauge transformation A → A+∇ψ and φ → φ− ∂ψ/∂t with the
gauge function ψ(t, r) any scalar. Which means that electromagnetism has U(1) gauge freedom.

Now, start with the scalar φ. Its gradient d̃φ is a one form. Take its dual to get the three form ⋆d̃φ. Take its

exterior derivative to get the four form d̃⋆ d̃φ. Take its dual, to get the scalar −⋆ d̃⋆ d̃φ = □φ = −(∂2φ/∂t2)+∇2φ.
This is the Jean-Baptiste le Rond d’Alembert (16 November 1717 - 29 October 1783) wave operator.

Start with the one form Ã. Get the two form d̃Ã. Take its dual to get the two form ⋆d̃Ã. Take its exterior derivative

to get the three form d̃ ⋆ d̃Ã. Take its dual, to get the one form 4πJ̃ = ⋆d̃ ⋆ d̃Ã. This is the wave equation for the
electromagnetic 4-potential. And from here follow the electromagnetic waves. For example for the zero component
in vacuum in absence of charges one finds □φ = 0 whose solution with forward and backward propagation along the
direction k is of the form φ(t, r) = f(k · r−ωt) + g(k · r+ωt), where ω = 2π/T is the angular frequency of the wave
of period T , k = 2π/λ is the wave vector for a wavelength λ, the speed of the wave is ω/k = λ/T = c = 1, and f, g
are arbitrary functions. In spherical symmetry 10 one would otherwise have a spherical wave solution of the following
kind, φ(t, r) = [F (kr−ωt)+G(kr+ωt)]/r with F,G arbitrary functions. Or a Green function G(t, r) = δ(kr−ωt)/r
forward solution of □G = −4πδ(4)(x⃗).
In flat spacetime, express the coordinates of one electron as a function of his proper time as aµ(τ). The density-

current 4-vector for this electron is then

Jµ(x⃗) = e

∫
δ(4)[x⃗− a⃗(τ)] ȧµdτ, (4.12)

where x⃗ = (t, r) and as usual we denote with the dot a partial time derivative. This density-current drives the

electromagnetic field or F̃ . Then Maxwell equation (4.9) becomes Fµ
ν
,ν = 4πJµ where as usual the comma stands

for a partial derivative. Or Aν
,νµ − ηναAµ,αν = 4πJµ where ηµν is the metric of the Lorentz coordinate system of the

flat spacetime. Make use of the gauge freedom to set Lorentz gauge, Aν
,ν = 0, to get

□Aµ = −4πJµ. (4.13)

This can be solved through the Green’s function method rewriting Aµ(x⃗) = e
∫
G[x⃗− a⃗(τ)] ȧµdτ . The causal solution

Eq. (4.13) is then given in terms of the retarded potential

Aµ(t, r) =

∫
G(t− t′, |r − r′|)Jµ(t′, r′) dr′dt′ =

∫
Jµ(tretarded, r

′)

|r − r′|
dr′, (4.14)

tretarded = t− |r − r′|, (4.15)

where remember that we chose the speed of light c = 1 and we carried out the integration over t′.

B. Gravitation

According to Einstein weak equivalence principle (WEP) the laws of motion should be written in the same form
in a LLF or in a global frame on the manifold M .

(Chapter 16 of Ref. [1]) Consider a 4-dimensional pseudo Riemannian manifold M describing our “spacetime”.
Let the “geometry of spacetime” describe the “gravitational field”: gαβ ,Γ

α
βγ , R

α
βγδ, . . .. And consider the Riemann

tensor as the “true gravitational field”.

10 Note that in spherical symmetry Eq. (3.141) for the Laplacian reduces to ∇2ψ = (rψ),rr/r.
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A measure of gαβ then is a measure of the gravitational field. Measure Γα
βγ from geodesics (see Section III E) and

Rα
βγδ from geodesics deviation (see Section IIIH). A point of the manifold describes an event at a given time t in a

point of space r, P = (x0, x1, x2, x3) = (t, r). At a point P we can always choose a LLF (see Section IIID) where
gµ̂ν̂ = ηµ̂ν̂ , Γ

µ̂
ν̂γ̂ = 0 and Special Relativity (SR) holds.

In the spirit of a field theory we regard a “test particle” as structureless and moving on a unique straight line in a
LLF or a geodesic globally, i.e. “freely falling”. Spacetime is filled with a congruence of test particles geodesics. One
and only one at each point in each direction.

The stress-energy tensor

(Chapter 5 of Ref. [2]) A proper description of the energy, momentum, and stress of a relativistic fluid or field uses
the symmetric tensor TTT, the stress-energy tensor or energy-momentum tensor. It describes the momentum density
and energy “flux” at each point in spacetime. The contravariant components of this tensor in a LLF of an observer
are related by the measurements of that observer as follows T 00 = ρ = mass-energy density

T 0j = j-component of energy flux (=) T j0 = j-component of momentum density
T ij = components of the ordinary stress tensor

(4.16)

where we denote with a roman index just the three spatial components.
Newton (Colsterworth, 25 December 1642 - London, 20 March 1727) equations of motion F = ma in an infinitesimal

cubic box 11 around a point P0 gives T jα
,α(P0) = 0. And the rate of change of energy in the box T 00

,0(P0) has to
equal the energy flux through the box −T 0j

,j(P0). Summarizing we conclude that if TTT describes all particles, fluids,
fields, . . . the interrelation of momentum and energy change is summarized by the following equation of motion

Tµν
,ν = 0. (4.17)

For example (c = 1):

i. For an isolated particle with rest mass m, on a curve z⃗(τ), a 4-velocity u⃗ = dz⃗/dτ , and trajectory q(t)

Tµν(t, r) = m

∫
uµuνδ(4)(x⃗− z⃗(τ)) dτ

= mγvµ(t)vν(t)δ(3)(r − q(t)), (4.18)

where u0 = γ = 1/
√
1− v2, v⃗ = (1, dq/dt) is the velocity vector and δ(n) is the n-dimensional Dirac delta

function.

ii. For a “swarm” of particles: a region of spacetime filled with particles all of the same rest mass m and 4-velocity
u⃗. Let n be the proper number density measured in a comoving frame where u⃗ = (1, 0⃗), then

Tµν = mnuµuν . (4.19)

iii. For a perfect fluid

Tµν = (ρ+ p)uµuν + pgµν , (4.20)

where ρ is the mass density in the isotropic frame, p is the isotropic pressure, 12 and uµ is the fluid 4-velocity
which satisfies uµuνgµν = −1.

11 For example the component T jj measures the pressure (force per unit area) on the face of the box orthogonal to the direction j.
12 We will have ρ = mnγ and p = ρv2/3, so that for example for photons p→ (1/3)ρ (see the “black-body radiation” section §63 of Ref. [8])

and for non relativistic fluids ρ→ mn(1 + v2/2 + . . .) so that p→ mnv2/3 → (2/3)(ρ−mn) ≪ ρ (remember that for the equipartition
theorem [9], for an ideal gas, Ek = (3/2)kBT , where Ek is the average kinetic energy, and the equation of state is p = nkBT ) where
ρ−mn→ Ek.
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iv. For a source-free electromagnetic field

Tµν =
1

4π

(
FµαgαβF

νβ − 1

4
gµνFαβF

αβ

)
, (4.21)

which is clearly traceless and we can easily see that given an electric field E and a magnetic field B [10]

 T 00 = (E2 +B2)/8π
T 0j = (E ×B)j/4π = Sj

T ij = T 00
(4.22)

where S is the Poynting vector. In the presence of sources J̃

4πTα
β
,β =

(
FαµF

βµ − 1

4
δα

βFµνF
µν

)
,β

= Fαµ,βF
βµ + FαµF

βµ
,β − 1

2
δα

βFµν,βF
µν

= Fαµ,νF
νµ − 4πFαµJ

µ − 1

2
Fµν,αF

µν

= −4πFαµJ
µ − 1

2
Fµν(Fαµ,ν + Fνα,µ + Fµν,α)

= −4πFαµJ
µ, (4.23)

where in the third equality we used Maxwell equation (4.9) and in the last equality we used Maxwell equation
(4.8). So that

Tαβ
,β = −FαµJµ. (4.24)

The “comma goes to semicolon” rule

To implement the SEP one uses the “comma goes to semicolon” rule

, −→ ; (4.25)

For example the stress-energy tensor TTT is divergenceless in SR

∇TTT = 0
SR−→ T µ̂ν̂

,ν̂ = 0
GR−→ T µ̂ν̂

;ν̂ = 0, (4.26)

then it is divergenceless also in GR.

Another example are Maxwell equations of ElectroMagnetism described in the previous Section IVA which are
written in the same form (4.8), (4.9) in a LLF and in M .

Some caution is needed when applying the “, → ;“ rule because in a LLF partial derivatives commute but
globally covariant derivatives do not, as is shown in subection “Commutation of covariant derivatives” of Section
IIIG. For example Faraday Fµν = Aν,µ −Aµ,ν with A the 4-potential. The 4 Maxwell equations in components{

F[µν,ρ] = 0
Fµν

ν = 4πJµ (4.27)

So the last 2 equations become in a LLF Aν
,
µ
ν − Aµ

,
ν
ν = 4πJµ or Aν

,ν
µ − Aµ

,ν
ν = 4πJµ, but globally Aν

;
µ
ν =

Aν
;ν

µ + Rµ
νA

ν according to Eq. (3.100) and the definition of Ricci (3.105). The last term is a curvature coupling
which is experimentally negligible. In any case the former form is regarded as the correct one conventionally. Other
examples are the ones where you cannot treat the system as localized in a LLF (Ex. 11.8 and 11.9 in Ref. [2]).
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Einstein field equations

(Chapter 17 of Re. [1]) We want to determine the response of a gravitational field to matter. The mass-energy
density, ρ = uαuβT

αβ for some observer u⃗, is the source of gravity. We then generally think at the stress-energy tensor
TTT as the machine encompassing all sources of gravity which will linearly determine the response of the gravitational
field like so

HHH = χTTT, (4.28)

where HHH will be a second rank symmetric tensor characterizing the spacetime geometry

HHH = H(gαβ , gαβ,γ , gαβ,γδ, . . .). (4.29)

Equation (4.28) cannot determine all 10 components of gαβ uniquely because exist 4 differentiable functions (xᾱ =
xᾱ(xα)) to make coordinate transformation leaving ds2 = gαβdx

αdxβ invariant. But ∇TTT = 0 are 4 equations. So we
will have only 6 independent field equations. This solves the dilemma: 6 constraints on 10 components gαβ leaving
only 4 components of gαβ to be determined by coordinate transformation.

Since in a LLF gαβ,γ = 0 (see Section IIID) in HHH we need at least second derivatives of gαβ otherwise it would
reduce to gg itself and multiples thereof and one would not be able to recover the Newtonian (weak field) limit where
∇2ϕ = 4πGρ with ϕ the gravitational field, ρ the mass density, and G Newton gravitation universal constant, as
shown in the next subsection. The only tensor that can be constructed from gαβ , gαβ,γ , and gαβ,γδ is Riemann RRR.
But the only tensor that:

i. is second rank and symmetric;

ii. is constructed linearly from RRR and gg;

iii. has vanishing derivatives;

is Einstein tensor

Gαβ + Λgαβ , (4.30)

where Λ is a cosmological constant 13 and GGG is defined in subsection “The Einstein tensor” of Section IIIG. For TTT = 0
spacetime must be flat and GGG = 0 (also set Λ = 0). So it must be

Gαβ = χTαβ , (4.31)

which are Einstein field equations.

13 That Einstein considered “its biggest mistake”.
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Newtonian limit

Simplicio Quanto alle stelle nuove, l’Antiticone se ne sbriga benissimo in
quattro parole, dicendo che tali moderne stelle nuove non son parti certe de
i corpi celesti, e che bisogna che gli avversari, se voglion provare lassù esser
alterazione e generazione, dimostrino mutazioni fatte nelle stelle descritte
già tanto tempo, delle quali nissuno dubita che sieno cose celesti, il che non
possono far mai in veruna maniera. Circa poi alle materie che alcuni dicono
generarsi e dissolversi in faccia del Sole, ei non ne fa menzione alcuna;
ond’io argomento ch’e’ l’abbia per una favola, o per illusioni del
cannocchiale, o al più per affezioncelle fatte per aria, ed in somma per ogni
altra cosa che per materie celesti.

Salviati Ma voi, signor Simplicio, che cosa vi sete immaginato di
rispondere all’opposizione di queste macchie importune, venute a
intorbidare il cielo, e più la peripatetica filosofia? egli è forza che, come
intrepido difensor di quella, vi abbiate trovato ripiego e soluzione, della
quale non dovete defraudarci.

Galileo Galilei
Dialogo sopra i due massimi sistemi del mondo

It remains to determine the constant χ in the Einstein field equations (4.31). We will accomplish this by proving how
in the weak field and slow velocities limit the Einstein field equation must reduce to Newton equation of gravitation.

In the weak gravity regime 14

gµν = ηµν + hµν |hµν | ≪ 1. (4.32)

In the slow velocities regime (c = 1)

|vi| ≪ 1 γ =
1√

1− v2
≈ 1

dt

dτ
≈ 1, (4.33)

where τ is the particle proper time.
Newton equation

d2xi

dt2
= − ∂ϕ

∂xi
, (4.34)

with ϕ Newton gravitational potential energy. Then

d2xi

dt2
≈ d2xi

dτ2
=

D2xi

dτ2
=
Dui

dτ
=

uβ∇βu
i =

− Γi
αβu

αuβ ≈
− Γi

00 ≈
− Γi00 ≈
1

2
(h00,i − 2h0i,0) ≈

1

2
h00,i (4.35)

WEP

Eq. (3.19)

Eq. (3.70) or “free fall”

slow velocity regime

gµν ≈ ηµν

weak gravity regime and Eq. (3.35)

∇hh = 0 → h0i,0 ≈ −h0i,jv
j 2nd order small

So h00,i ≈ −2ϕ,i or h00 ≈ −2ϕ+ ‘constant’ where the ‘constant’ must vanish since h, ϕ→ 0 as r → ∞. Then

g00 ≈ −(1 + 2ϕ). (4.36)

14 For the solar system for example from Eq. (4.36) follows |hµν | ∼ |ϕ| ∼ GM⊙/c2R⊙ ∼ 10−6 so linearized gravity should be adequate.
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Now we can calculate Riemann components Rα
βγδ from gµν = ηµν + hµν and h00 ≈ −2ϕ. Keeping in mind that on h

, 0 ≪ , i one finds (Ex. 12.1 of Ref. [1])

Ri
0j0 ≈ ∂2ϕ

∂xi∂xj
. (4.37)

Now from the definition (3.108) of Einstein tensor Rµν − 1
2gµνR = χTµν , contracting µ and ν and recalling the

definition (3.107) of the scalar curvature, follows R = −χT with T = Tµ
µ the trace of the stress-energy tensor. So

Rµν = χ(Tµν − 1
2gµνT ) and

R00 = χ

(
T00 −

1

2
g00T

)
≈ χ

(
T00 +

1

2
T 0

0

)
= χ

(
ρ− 1

2
ρ

)
=

1

2
χρ, (4.38)

where in the approximation we used the fact that T i
i is small in the small velocity regime.

But from the results (4.37) and (4.38) follows

R00 = Rµ
0µ0 ≈ Ri

0i0 ≈ ∇2ϕ ≈ 1

2
χρ, (4.39)

Since we know from Newton equation that

∇2ϕ = 4πGρ, (4.40)

we find

χ =
8πG

c4
, (4.41)

where we restored the speed of light constant c.

Extension to the case of a charged particle

In a LLF a charged particle is subject to the Lorentz force (see Section IVA)

duµ̂

dτ
=

q

m
F µ̂β̂uα̂ηα̂β̂ , (4.42)

where m is the particle rest mass, q its charge, uµ̂ = dxµ̂/dτ , and ηα̂β̂u
α̂uβ̂ = −1. Then, according to SEP

Duµ

dτ
=

q

m
Fµβuαgαβ , (4.43)

and recalling the definition of the covariant dervative of Eq. (3.22)

duµ

dτ
= −Γµ

αβu
αuβ +

q

m
Fµβuαgαβ , (4.44)

with gαβu
αuβ = −1. This shows how the electromagnetic field that determines the curvature of spacetime through

Einstein field equations (4.31) also produces an acceleration of the charged particle which will not be in “free fall”
anymore. In particular, noticing that ∇(TTTmatter + TTTem) = 0 where TTTmatter is the stress-energy tensor of a charged
particle of rest mass m of Eq. (4.18) and TTTem is the stress-energy tensor of the electromagnetic field satisfying Eq.

(4.24) with the 4-current density J̃ = q
∫
u⃗δ(4)(x⃗ − z⃗(τ))dτ due to the charged particle at z⃗ with velocity u⃗, and

using the rule (3.29) for the covariant derivative of a tensor, we recover Eq. (4.43).
We then conclude that among all the fields in which particles move the gravitational one has a privileged role in

GR in the sense that it is the only one that only curves spacetime, according to the Einstein field equations (4.31),
but it does not accelerate particles. Particles are “freely falling” only in a gravitational field.
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Linearized gravity and gravitational wave equation

In the weak gravitational field regime of Eq. (4.32) we find

Gµν =
1

2
[hµα,ν

α + hνα,µ
α −□hµν − h,µν − ηµν(hαβ,

αβ −□h)], (4.45)

where h = hµ
µ is the trace of the perturbation.

Now we observe that the perturbation hµν in Eq. (4.32) is not unique since it depends on the system of co-
ordinates used on M . We can always perform an infinitesimal coordinate transformation x′µ(P) = xµ(P) +
ξµ(P) that must leave invariant the various tensorial equations. For example for the perturbation tensor we have
h′µν = hµν − (ξν,µ + ξµ,ν) and h′ = h − 2ξµ,

µ, to first order in ξ. This freedom of choice is the gauge freedom for

gravity. If we now define h̄µν = hµν − 1
2hηµν we will have ¯̄hµν = hµν or hµν = h̄µν − 1

2 h̄ηµν so that Eq. (4.45) becomes

Gµν =
1

2
[−□h̄µν − ηµν h̄αβ,

αβ + h̄µα,ν
α + h̄να,µ

α]. (4.46)

We may then introduce h̄′µν = h′µν − 1
2h

′ηµν as well, so that for □ξµ = −h̄µν,ν 15 we find the condition h̄′µν,
ν = 0.

This is the harmonic gauge (Box 18.2 in Ref, [1]) also known as Lorenz gauge 16 for gravity (to be compared with
the Lorentz gauge for electromagnetism, Aν,

ν = 0, of subsection “Maxwell equations” of Section IVA). The Einstein
tensor reduces then to Gµν = − 1

2□h̄
′
µν and Einstein field equations (4.31) reduce to the following gravitational wave

equation

□h̄′µν = −2χTµν . (4.47)

On 14 September 2015, exactly 110 years from the Annus Mirabilis of Einstein setting up his SR theory [11] and
100 years from his publication of the 4 articles on GR [12–15] the first gravitational wave was detected by the twin
LIGO (Laser Interferometer Gravitational-wave Observatory) observatories in the United Sates. The signal, named
GW150914, came from two black holes merging about 1.3 billion light-years 17 away and confirmed a key prediction
of Einstein theory of general relativity. This detection marked the beginning of gravitational wave astronomy and
was notable for its unusually strong, “loud” signal.

The causal solution of Eq. (4.47) is then

h̄′µν(t, r) = 4G

∫
Tµν(tretarded, r

′)

|r − r′|
dr′, (4.48)

tretarded = t− |r − r′|, (4.49)

to be compared with the result (4.14), (4.15) in electromagnetism.

Schwarzschild metric in weak gravity

We will now use the weak gravity architecture to determine the perturbation tensor hµν for a static and spherical

body of mass M at the origin r = 0. Since the body is static Eq. (4.47) becomes □h̄′µν = ∇2h̄′µν = −16πGTµν . The
Poisson equation has solution

h̄′µν(r) = 4G

∫
Tµν(r

′)

|r − r′|
dr′. (4.50)

For a spherical body of mass M at the origin the stress energy tensor is given by Tµν(r) = ρuµuν with u0 ≈ 1 and

ui = 0 and ρ = Mδ(3)(r) (see subsection “The stress-energy tensor” in Section IVB). Then Eq. (4.50) becomes
h̄′00 = 4GM/r and all other components vanish. Then h̄′ = −4GM/r. Recalling that h′µν = h̄′µν − 1

2 h̄
′ηµν we find

h′µµ = 2GM/r and all other components vanish. Then we reach to the following metric (gauge invariant)

ds2 = −
(
1− rs

r

)
c2dt2 +

(
1 +

rs
r

)
(dr2 + r2dθ2 + r2 sin2 θdφ2), (4.51)

where rs = 2GM/c2 is Schwarzchild radius, where we restored the speed of light constant, and we used spherical
coordinates (see subsection “Spherical coordinates in flat space” in Section III J). This result agrees with the exact
Schwarzchild solution [16–18] for rs ≪ 1.

15 We will have an infinite number of solutions provided ξµ → ξµ + ξaddµ with □ξaddα = 0.
16 Without the “t”.
17 For c = 1, 1 year ≈ π × 107s ≈ 1016m.
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Eddington 1919 observation of bending of light by our Sun

In the equatorial plane (x, y) centered on the Sun, consider a light ray traveling, when unperturbed, along a straight
line y = b with equation of motion x(t) = t (c=1), i.e. the ray 4-momentum p⃗ = (p0, p0, 0, 0). The gravitational
field of the Sun will curve the spacetime so that the light ray in the equatorial plane (z = 0) will follow the geodesic
equation (3.70) whose y component becomes

dpy

dτ
+ Γy

00(p
0)2 + Γy

xx(p
x)2 + 2Γy

x0p
xp0 = 0. (4.52)

Foe a diagonal metric the Christoffel symbols are given in (Ex. 7.6 of Ref. [2]). Applied to our case of Eq. (4.51) one
finds


Γ0

0j = Γj
00 = GM

(x2+y2)3/2
xj

Γj
kl =

GM
(x2+y2)3/2

(xjδl
k − xkδl

j − xlδk
j)

Γj
0k = 0 j ̸= k

(4.53)

For the massless photon

0 = g(p⃗, p⃗) = −(p0)2(1− rs/r) + (px)2(1 + rs/r) + (py)2(1 + rs/r). (4.54)

For |py| ≪ |px| and to least orders in rs/r we have px ≈ p0. Then, using result (4.53), the geodesic equation (4.52)
becomes

dpy

dτ
+

2GMy

(x2 + y2)3/2
(px)2 = 0, (4.55)

A first perturbation effect due to the gravitational field of the Sun can be then found by

dpy

dτ
+

2GMb

(x2 + b2)3/2
px
dx

dτ
= 0, (4.56)

which can easily be integrated to find ∆py = py(x → ∞) − py(x → −∞) = −4GMpx/b. Then we predict that the
effect of the Sun gravitational field on the trajectory of the light ray will be to perturb its straight path bending it
by an angle

∆ϕ = arctan(|∆py|/px) ≈ 4GM/c2b = 2rs/b, (4.57)

where we restored the speed of light constant c and used the result of footnote 14. Observations of the total solar
eclipse of 29 May 1919 carried out by two expeditions, one to the West African island of Pŕıncipe and the other to the
Brazilian town of Sobral, lead Sir Arthur Stanley Eddington (Kendal, 28 December 1882 – Cambridge, 22 November
1944) to estimate a bending angle ∆ϕ ≈ 1.75′′ [19].
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V. FICTIONS

If I let my fingers wander idly over the keys of a typewriter it might happen
that my screed made an intelligible sentence. If an army of monkeys were
strumming on typewriters they might write all the books in the British
Museum. The chance of their doing so is decidedly more favourable than
the chance of the molecules returning to one half of the vessel.

Sir Arthur Stanley Eddington
The Nature of the Physical World

This thinker observed that all the books, no matter how diverse they might
be, are made up of the same elements: the space, the period, the comma,
the twenty-two letters of the alphabet. He also alleged a fact which
travelers have confirmed: In the vast Library there are no two identical
books. From these two incontrovertible premises he deduced that the
Library is total and that its shelves register all the possible combinations of
the twenty-odd orthographical symbols (a number which, though extremely
vast, is not infinite). [. . . ] The certitude that everything has been written
negates us or turns us into phantoms. [. . . ] I suspect that the human
species - the unique species - is about to be extinguished, but the Library
will endure: illuminated, solitary, infinite, perfectly motionless, equipped
with precious volumes, useless, incorruptible, secret. [. . . ] I venture to
suggest this solution to the ancient problem: The Library is unlimited and
cyclical.

Jorge Francisco Isidoro Luis Borges Acevedo
Ficciones (The Library of Babel)

But when I sit and gaze,
I imagine, in my thoughts, Endless spaces beyond the hedge,
An all encompassing silence and a deeply profound quiet,

Giacomo Leopardi
L’ Infinito

In this Section we will describe some possible extension of GR which could prove useful routes to explain yet
unsolved mysteries of Nature or to make the current theory more accessible (at least numerically) or to write an even
more elegant theory.

Embedding of spacetime (eGR)

Would it be possible to imagine spacetime M embedded (eGR) in a 5-dimensional manifold I ? If some entity
would live in such higher dimensional manifold I then it would be able to see the whole time line (of the peoples
living in M ) [7], it would have complete knowledge of the past, the present, and the future. Even if this we all would
really like it stayed a mystery, there are certain sort of people that would be ready to pay you enormous amount
of money for the mere realization of this sort of projects. So it could politically come handy to use these financial
support to carry on some other mathematical research, that is a good thing any case!

Imaginary time in General Relativity (wGR)

A Wick rotation changes time t into −iβ/ℏ and the metric in a LLF changes from Minkowski to Euclidean ηαβ =
diag(1, 1, 1, 1). This allows to define a statistical mechanics of spacetime (wGR), where ℏ is Planck constant and the
imaginary time β is an inverse temperature. This is illustrated in the trilogy of Refs. [20–22] where wGR was called
FEBB. Although we have no experimental evidence of the soundness of this recipe it could eventually offer a new
vision into yet unresolved questions that nature poses us like the mystery of dark energy in cosmology.
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Stochastic General Relativity (sGR)

We could consider the Einstein field deterministic equations (4.31) as the “Fokker-Planck-Einstein” equations for
a yet to be written corresponding stochastic differential field equations of “Langevin-Einstein” according to Ito or
Stratonovich calculus [23]. This route is expected to be rather promising in the field of numerical relativity [24, 25]
since it would call to the rescue the powerful machinery of Markov processes and Monte Carlo methods [26].

A theory of “more General” Relativity (mGR)

As we saw in subsection “Extension to the case of a charged particle” of Section IVB it would be desirable to have
a theory of more General Relativity that puts all fields (gravitational, electromagnetic, . . . ) on the same ground. For
example we could think at a higher dimensional space containing our spacetime and some other hidden dimensions
allowing for “free fall” of a test particle in any field of nature. Projecting then its motion into our spacetime.

[1] Charles W. Misner and Kip S. Thorne and John A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).
[2] Alan P. Lightman and William H. Press and Richard H. Price and Saul A. Teukolsky, Problem book in relativity and

gravitation (Princeton University Press, Princeton, 1975).
[3] John D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1962).
[4] Galileo Galilei, Dialogo sui due massimi sistemi del mondo (Stefano della Bella, 1632).
[5] Albert Einstein, The Meaning of Relativity (Routledge, 2003).
[6] A. Einstein and N. Rosen, The Particle Problem in the General Theory of Relativity, Phys. Rev. 48, 76 (1935).
[7] E. A. Abbott, Flatland: A Romance of Many Dimensions (Seeley & Co., London, 1884).
[8] L. D. Landau and E. M. Lifshitz, Statistical Physics, Course of Theoretical Physics, Vol. 5 (Butterworth Heinemann, 1951)

translated from the Russian by J. B. Sykes and M. J. Kearsley, edited by E. M. Lifshitz and L. P. Pitaevskii.
[9] J. P. Hansen and I. R. McDonald, Theory of simple liquids, 2nd ed. (Academic Press, Amsterdam, 1986) section 3.3.

[10] W. Pauli, Electrodynamics, 1st ed., Pauli Lectures on Physics, Vol. 1 (MIT Press, Cambridge, Massachusetts, 1973).
[11] Albert Einstein, Zur Elektrodynamik bewegter Körper, Annalen der Physik , 891 (1905).
[12] Albert Einstein, On the General Theory of Relativity, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) , 778 (1915).
[13] Albert Einstein, On the General Theory of Relativity (addendum), Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)

, 799 (1915).
[14] Albert Einstein, Explanation of the Perihelion Motion of Mercury from General Relativity Theory , Sitzungsber. Preuss.

Akad. Wiss. Berlin (Math. Phys.) , 831 (1915).
[15] Albert Einstein, Die Feldgleichungen der Gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) , 844 (1915).
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[17] K. Schwarzschild, Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Sitzungsber. Preuss. Akad. Wiss.
Berlin (Math. Phys.) 1, 424 (1916).
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