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We give a brief description of differential Geometry and exterior calculus ending with their role
in the formulation of Einstein theory of Gravitation [I} 2] and Maxwell theory of Electromagnetism
[3] respectively. We conclude with some other possible extensions not supported by experiment [4].
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I. PREAMBLE ON DIFFERENTIAL TOPOLOGY

Consider a manifold .# of dimension n.
A curve on A

C(A) Ais an affine parameter. (1.1)
The tangent vector to C
dC(N)
0= — . 1.2
A basis of vectors {€,} with
€ = 0z, = Oa. (1.3)

A change of basis vectors is realized as follows
€o = LYy €4, (1.4)

where the primed indexes are for the vectors in the new basis and a summation over the repeated index is tacitly
assumed here and everywhere else in these manuscript.
In a coordinate basis

(1.5)

a = = 7 = ﬂa/ = L aﬂa/, ]. 6
€ or> ox® Oz~ or™ € € (1.6)
with
Oé/ 81:0/ (e} (e}
LY=75 L sLP., =5, (1.7)

where [|6%,|| = diag(1,1,...,1) is the identity matrix and ||[L%g|| = ||L7 4|7 .
A transformation of coordinates of a vector
G =u" 8y = u"€y = u"LY o&u, (1.8)
with
u = L jul. (1.9)

The I-form o in the dual space of the tangent vector space

(o, 1) = a real number, (1.10)



where (-, -) is a bilinear two slots machine such that

(@7, &0) =8 (1.11)
with {&"} a basis of 1-forms.
So if
U = u"€q, 1.12)
& =030", 1.13)
we will have
u® = (0%, u), (1.14)
op = (0,€g), (1.15)
oout = (o, u) (1.16)
A change of basis 1-forms is realized as follows
o =LY %%, (1.17)
and for the 1-form components
O = L%y104. (1.18)
A particularly important 1-form is the gradient, d f, with f a scalar (a function), defined like so
(df, i) = 0gf = uOuf = u®fa, (1.19)
where we use the comma to denote a partial derivative
fo={df &) =0e,f = 0alf. (1.20)
So
df = [0 (1.21)
In a coordinate basis
fa = %, (1.22)
and {dz*} is dual to {8/8z}
(dz®,0/02%) = ga® = 02" _ 5% 5. (1.23)
oxb
A tensor H of rank (:l) is a linear machine with n input slots for 1-forms, o, ;\, . ,B, and m input slots for vectors,
U, v, ..., w, which returns a real number
H(E‘,X,...,E],ﬁ,ﬁ,...,ﬂ’)) = real number, (1.24)

Up to here we did not use a metric at all so we woked in differential topology. We will introduce a metric only

later. For the time being let us take a detour on exterior calculus.

II. EXTERIOR CALCULUS IN BRIEF

(Chapter 4 in Ref. [I]) We may define a p-form as a completely antisymmetric tensor with all indexes “downstairs”.

More formally, in our n-dimensional manifold .#, we define it like so

~ 1

_ ~ K1 ~ K2 ~Hp
o= =0y, @ AW ALLLLAW

p'

= Oy pigoo i |¥

FEAGM2 AL AP



where the vertical bars around the indexes means that the summation extends only over p; < pe < ... < p, and A
is the wedge product which is defined by its action on any two 1-forms, &, 3 (or on any two vectors), as
arB=awB-Boa, (2.2)

where ® denotes a direct product. So that & A B = —B Aa and a A a = 0. Given any three 1-forms, &7,5'7% (or any
three vectors), the wedge product has the following properties

(ad+bB)AF =aa AJ +bB A7, (2.3a)
@AB)AT=an(BAY)=aABA7T, (2.3b)
anB=a,fe" NS = %(aﬂﬁy — B NG (2.3¢)

and if & is a p-form and B is a g-form with p and ¢ greater than 1, then a A B = (—1)1"1B A Q.
Analogously for a p-vector we will have

1
a= p| — Oy g, € NET N LU NENT. (2.4)
A contraction of the p-form & of Eq. ) and the p-vector @ of Eq. (2.4) is
<a7 a> = a|,u1/t2~~/tp|aﬂlu2mup' (25)

For example the jacobian determinant of a set of p functions f*(z',x2,...,2") with respect to p of their arguments is

<Ef1/\2lf2/\.../\ﬁfp,£l/\8/\...Aa>—d tH( f“)H M (2.6)

Ox? OxP La2 ..., zP)

A. Exterior derivative

The exterior derivative is defined by induction:
i. if & is a p-form d& is a (p + 1)-form;
ii. a function f is a O-form and df = faw™;
iii. if & is a p-form and B is a g-form then &(& A E}) =da B+ (—DPa A dg.

~— 2
It can easily be verified that dd =d = 0.

B. Integration

We just require a “differentiable manifold” calm with or without a metric. In order to integrate a p-form in an
n-dimensional manifold one may go through the following steps:

i. consider in a coordinate basis

o= U|uw2___up|(x17x2, R x")&x’“ Adzh2 A LA &x“l’; (2.7)
ii. substitute a parameterization of the p-dimensional surface of the form, z#(A', A\2,..., \P), so that
=oAL A2 A AA A A2 AL A AN, (2.8)
iii. integrate
/a—/< A 8>Mwﬁ AP,
TN 8)\2 ONP
= /U(/\l,/\27 L APYANY AN AP, (2.9)

using the elementary definition of integration.



iv. Stokes theorem

/QE&:/OQ&’ (2.10)
/QE *&:/m *G, (2.11)

where 0f) is the closed p-dimensional boundary of the (p + 1)-dimensional surface 2 and = stands for the dual
form described in the next Section [TCl

and Gauss theorem

C. Dual of a p-form

In an n-dimensional manifold ., the dual of a p-form & is an (n — p)-form xo with components

(2.12)

where ¢ is the Levi-Civita tensor, the completely antisymmetric rank n tensor. On a positively oriented basis {€,},
€12.., = €(€1,€9,...,6,) = +1 andE|

_ _|riv2emy|
*0#1#2“'#n—p =0 v Euy-

0 unless p1, pa, ..., uy are all different
Epipepin = [H1s 2, -+ n] = ¢ +1 for even permutations of 1,2,...,n (2.13)
—1 for odd permutations of 1,2,...,n
so that given any matrix A
Eprpin-pn NTAL? - AL = det [|[A¥5]]. (2.14)
The dual has the following property
o Axo = ||o||%, (2.15)
where
10112 = Olpun gy | 0714217, (2.16)

is the norm of the p-form.

III. THE METRIC TENSOR

Now we will introduce a metric and dwell into differential geometry or more specifically into Riemannian geometry.
E| We will then work on a smooth manifold .#, i.e. a Riemannian manifold. The metric gy is a rank 2 symmetric
tensor. In its (g) form

g(éaaéﬂ) = €u ' €5 = Jup;
@ = dis® = gopo" 20", (3.2)
where in a coordinate basis @ = dz®. If E = dx®é, is a displacement vector then
9(€.&) =& €= g.30" © &’ (d2"&,, dr’ )
= gap(@”, da7€,)(&", da’&s)
= gapda?da® (&, €,) (", &)
= gopdrdz’
= ds”. (3.3)

In other words

I In a manifold with a metric, that will be introduced in the next Section € should be corrected as in Eq. (3.66) (Ex. 8.3 of Ref [I]
and Exs. 3.20, 3.21 of Ref. [2])

2 Riemannian geometry originated with the vision of Georg Friedrich Bernhard Riemann (Breselenz, 17 September 1826 — Selasca, 20
July 1866) expressed in his inaugural lecture “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen” (“On the Hypotheses on
which Geometry is Based”).



i. Interval between two unspecified displacements dis? = gg;

ii. Interval between two unspecified displacements ds® = g(g7 E),
as for

i. Unspecified direction d f;

ii. Specified direction df = (df, @) = 95f = v f a.

We use g to establish a correspondence between 1-forms and vectors

u < 4 ifand only if (uw,d) =4 -d=g(d,ad) Vad.

B

In components u = ugw” and

SO we use gog to lower indexes.
Also @® is dual to €,. Call € the 1-form corresponding to €, then

(€%,€5) = €q - €3 = gap = (Jary @, €p),

~ ~7 _ .«
SO € = oW =w.

@ in its (}) form

@ in its (g) form
g = 9@, &),
and
9% = 9" 9up = 0%

or [|g°?|| = llgagl| -
Consider for example a tensor H of rank (%), then

H(w", €3, €y) = Hg,,
H=H &, 0a" @7,
Hopy = H’ 3950
Horpryr = Laa’LﬂB’va’ afy;

where the last equation is the change of basis.

A. The global (non coordinate) orthonormal frame

Through a change of basis L’lu we can always diagonalize the symmetric metric tensor globally, thanks to the

spectral theorem, so to realize an orthogonal frame

LN[LLV[/Q;W = E[Lf/,

(3.14)

with [|gus|| = diag{A;, Xs,...,As}. Furthermore, it is always possible to rescale each vector (or 1-form) of the
orthogonal basis to get ||gus|| = ||nu0]| = diag{1,1,...,1} so that ds? = n@" @ @” with @" = &"\/A;. This at the
price of having a non coordinate basis. We will call this the global Lorentz frame (LF) E|01" the global (non coordinate)

orthonormal frame.

3 Hendrik Antoon Lorentz (Arnhem, 18 July 1853 - Haarlem, 4 February 1928)



B. Commutators

Consider two vectors 4 and ¥. We want to prove that
[U, V] f = 0305 f — 0504 f = vector, (3.15)

for example on a scalar f.
We will prove this in a coordinate basis and then extend the result in a general non coordinate basis:

i. In a coordinate basis €, = 9, = 9/9z% and

[, ] = u®0a(v°05) — vPDp(u®8y)
= u? ——— tu’?
00028 © 9P
02 0
P9 By, O
0P oz 7Oz
0
= (uPv®p —1)5uo‘,5)axC¥7 (3.16)
where we used the commutation of the partial derivatives. For basis vectors [€n, €3] = [0u, 5] = 0;
ii. In a non coordinate basis we will have instead
[éa, éﬁ] = Caﬁ’yé’w, (317)
so that
[G, D] = [u®€,, v ]
= (v g —vPu g+ uTvP e 5Y)E,. (3.18)

C. Covariant derivative

When taking a derivative on .# we need to take care also of how the basis vectors and 1-forms change. E| Such a
derivative is called a covariant derivative for which we will use interchangeably the following three symbols

D...
W , 'U/ava... 5 U‘X(...>;a. (319)
Let us distinguish four cases:
i. On a scalar f
Vof=0af or fo=Ffa. (3.20)
ii. On a vector vv®é,. We will prove later that
vaég = 8aég = Iwagé'—y, (321)

where the T" are some coefficients called connection coefficients for a non coordinate (anholonomic) basis and
Christoffel symbols for a coordinate basis (holonomic). E|

4 In other terms, when taking a derivative of a vector on .# we come across the problem of comparing two vectors at two different points
of .. This is solved with the procedure of parallel transport where we simply compare the two vectors either at the initial or at the
final point after having “copied” the components of the vector respect to the basis at one point on its components respect to the basis
at the other point.

5 Our definition for the connection coefficients is different from the one of Ref. [I] where Vo€ = I'Y go€y. This difference is only relevant
for a non coordinate basis.



Then
Vot = Va(vﬁe,@)
= (0av”)E5 + 17005
= Uﬁ,aeg + ’UBFIYC,CQ(-LY
= (v% o +0v'T7,,) €5, (3.22)
or
(Vo0)? = vﬂ;a = vﬁ,a + Fﬂavv'y. (3.23)
iii. On a 1-form & = o,@“
(6,84) = 05(@”,€,) = 050° = 04, (3.24)

taking the covariant derivative of this expression

Valo,€s) = 05,0 (3.25)

(Vao,€p) + (0,0.€3) = 0p.a (3.26)
(Va&, éﬁ) = O’ﬁ)a — <5’, F’ya,@éﬁﬁ (3.27)

(Va0)s = 0p;0a = 08,0 — I aposy, (3.28)

where we see how the correction due to the change of the basis vector enters with a minus sign.

iv. On a tensor H of rank (Z)

(VQH)MUM“'HT — HMMT”MTV“/Q---VS;Q — Hul#Z”‘“"'l/ll/z“'l/s7Oé
_|_I‘ﬂ1’yaH'Y.U‘2-..Mryly2mys + ...+ FHTWOCH#UJQ-..'YV]V

_I“’YVIOCHMALT“#T’Y - +... = F’YVSQHMALT“#TUIVTMY. (3.29)

ViVa Vs
2 Vs

v2

The connection coefficients

We now want to prove Eq. (3.21]) and determine the expression of the connection coefficients in terms of the metric
tensor. Start again from the definition (3.21)

g(vaéﬁa é"y) =9 (Féaﬁééa é’y) = Flsaﬁ g5~ - (3.30)

Then consider the partial derivative of the metric tensor
9avy,a = 9(Va€s, €y) + g(€s, VaE,). (3.31)

Rewrite Eq. (3.31)) in the following 3 equivalent ways

9Bv,a = g(éﬁv v’yéa) + 9(677 Vaéﬁ) - 9(657 [évv éaDv (3.32a)
9va,B3 = g(éav vﬁéw) + 9(677 vaéﬁ) - g(éva [éaa é’ﬁ})v (332b)
9opy = 9(€a, Vp€y) + g(€p, V,€0n) — g(€a, [€5,E,]), (3.32¢)
where we used the symmetry of the metric tensor g7 and the definition of the commutator [-,-]. Adding (3.32a)) and

(3.32b)) and subtracting (3.32c}), and using the definitions (3.21)) and (3.17)) for the I and ¢ coefficients respectively,

we find

29(€y,Va€s) = gpy.a + Gyas ~ Japy + Cyas + Capy — Chya: (3.33)
Using Egs. (3.30) and (3.17)) we find for the connection coefficients

1
Lyap = 5{%%& + Gva,8 = Gapy + Crap + Capy = Coyal- (3.34)



Note that the indexes of the ¢ commutation coefficients enter in the 3 terms in cyclical order moving from one term
to the next. In a coordinate basis all ¢ are zero and we find the so called Christoffel symbols

1
Pas = 5198v.a + Jar.p = Gasa s (3.35)

which is clearly symmetric in its last two indexes.
An important property of the metric tensor is to be covariantly constant, i.e. Vg = 0. In fact in an orthonormal
frame g, 4= Nap and in the next Section we will see that it is also always possible to choose a local coordinate

orthonormal frame on .# such that g, 545 =0 (and of course c 4, =0 on the coordinate frame), then I', 45 = 0s0
that 9554 = 9apz = 0-
We will now prove 3 properties of I':

i. Since the metric is covariantly constant

0= gapry = Japy — M argup — T gy gap

= 9apy — Loy = Tapy, (3.36)
so that
1
298 = Liapyy, (3.37)

where the round parenthesis contain indexes on which one symmetrizes. So I' is antisymmetric on its first
two indexes in the local coordinate orthonormal frame described in the next Section |IIID|or in a global (non
coordinate) orthonormal frame described in Section [[IT A|for which, in both cases, g aBA = 0.

ii. From the definition of the commutator (3.17)) and the connection coefficient (3.21]) follows

= Cag €, 3.38
B €y

so that

1

5Capy = Tylag); (3.39)

where the square parenthesis contain indexes on which one antisymmetrizes. So I' is symmetric on its last two
indexes in a coordinate reference frame where c,g, = 0.

iii. I" is not a tensor. In fact let’s see how I' transforms

Va€s =TI wg€y =Vie a,(L 5€5) = L% Va(L’ 5€p)
= Lo‘a/L%/vaé’ﬂ + Laa/Lﬂﬁ/,aéﬁ
= Laa/Lﬁg/F7a567 -+ Laa/Lﬁﬁ/’aL’ylrgév/, (340)

so that
0 g = Lo LP g LV T g + Lo LY s LP g1 o, (3.41)

where the last term is in general different from zero.
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Useful identities

(Ex. 7.7 in Ref. [I]) We will here enunciate and prove 7 useful identities:

i. From the definition follows
9o = 99" Guv.a = =99 9" o (3.42)
To prove this identity we first note that for any diagonalizable matrix A the following identity holds
detA = trinA4) (3.43)

which clearly holds when A is in its diagonal form. So

0o = [etranngwnq

= gltr(In|guv )],

= gtr[(In{|guvl]).a]

= gt (/g || M| guval )
= 99" Gpv,a

= —99uw9""

ye’

where in the last equality we used Eq. (3.9).

All the remaining identities require a coordinate basis.

ii. Contraction of first two indexes of Christoffel symbol
[0 = D5 = (ln \/|g|>ﬁ. (3.44)

From Eq. (3.35) and identity [i.] follows

1, 1
D0 = 59" gas = 50.5/9 = (0/lol) |

)

(3.45)

iii. Contraction of last two indexes of Christoffel symbol

g™, = —\/1@ (go‘”\/@) : (3.46)

From Eq. (3.35) follows

(03 1 «
I = 59 B{Qﬁm,v + 9 — Guv,p s (3.47)
using property [i.]
Hra 1 af K
9" = 59 {298" — 9.5/9}- (3.48)

On the other hand sine the contracted index is mute

1 1
— (¢*"Vlgl) =—= (9™ Vgl +99./2/19]) = ¢°* ., + 9°9.5/29, (3.49)
varl v /gl

and using Eq. (3.9)
0=(9""gpu)." = 9" 980" + 9" .- (3.50)

Putting together (3.48)), (3.49), and (3.50) gives identity [iii.].



iv. Divergence of a vector

4% = (Vi)

From the definition of covariant derivative (3.22)) and identity [ii.] follows
A%, = A%\ + T, AP
(\/ Ig\)
1o A
Vgl

=A%+

v. Divergence of a rank (3) antisymmetric tensor

Aaﬁ;ﬁ = \/lm (\/@A“ﬁ>ﬁ~

From the definition of covariant derivative (3.29)) and identity [ii.] follows
AP g = A% g 4 T g VT g A
= A 5+ 17,547

- \/1|?| (\/EAQB),,B ’

11

(3.51)

(3.52)

(3.53)

(3.54)

where in the first equality we used the symmetry of the Christoffel symbol respect to its last two indexes and

in the last equality we used identity [ii.].

vi. Divergence of a rank (i) tensor

APy = (\/@Aaﬁ) — T A,

Vlal z

From the definition of covariant derivative (3.29)) and identity [ii.] follows

Al g = AP 5+ TP AN — T, ANF

=L (BA) P

Vlal z

where again in the last equality we used identity [ii.].

vii. Laplacian

08 = 5, = \/1@ (\/@S,ﬁ)ﬁ,

where S is a scalar. Since the metric is covariantly constant

Sa® = (S,a)-ﬁ gﬂa = (Svagﬂa);ﬁ - (S’ﬂ>;5 NV

\F

where in the last equality we used identity [iv.].

(3.55)

(3.56)

(3.57)

(3.58)
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D. The local (coordinate) orthonormal frame

(Ex. 13.3 in Ref. [I]) A local (coordinate) orthonormal frame is “tangent” to the manifold .# on its point Z.
We will call this a Local Lorentz Frame (LLF). It is the closest thing to a global (non coordinate) orthonormal frame
“near” Py. It satisfies the following recipes:

L gap(P0) = Nap;
ii. galgﬂ(z@o) = 0;
i, gap6(Po) # 0 in general;

with [[nas|| = diag{1,1,...,1}. It is customary to denote the indexes in a LLF with a hat, like so 7,5, but we will
not adopt this convention in this section and simply use unprimed indexes to denote the LLF.

We will now prove that it is always possible to choose a coordinate system such that [i.] and [ii.] hold at an arbitrary
point.

Let’s first count the number of independent components in a symmetric tensor of dimension n and rank r. For
r =2 we have (3) + (]) = w independent components. For r = 3 we have (3) +2(3) + (]) = M.
independent components. So for example in GR n = 4 and we find 10 for » = 2 and 20 for r» = 3.

Consider now an arbitrary change of coordinates 2 = fo‘/(xo‘). Taylor expand around &, at the origin
’ ’ 1 ’ 1 ’
v = f* ot + §f(’ T + gfa w,/\ac“ac”acA +.... (3.59)

The/n we can count the independent components of the various cpefﬁcient/s. For example in n = 4 the linear term

M®*, = f* , has 4 x4 =16 components, the quadratic term N* ,, = f*  has 4 x 10 = 40 components, and the

cubic term P, = f¢ A has 4 x 20 = 80 components. Recall that

Lo _ 02
B g

At the origin we want g,,, (%) = 7, but in general

’ ’ ]_ ’
=My + N ya? + S P° PVt (3.60)

7 ’ 1 ’
glLl/(‘gzo) = |:Ma n +Na lu,yfry + §Pa uy)\IVSCA +.. :| X
’ ’ 1 !
[Mﬁ w4+ NPt + §Pﬁ saTha + } Gor - (3.61)

Then we conclude the following:

i. The condition on the metric requires
9ur(P0) = My = M .M” g, (3.62)

which can always be accommodated and for example in GR we have 10 independent components in 7, and
4 x4 =16 in M“g. So we have 6 degrees of freedom left over for a Lorentz transformation (3 boosts and 3
rotations) to determine MY ,.

ii. The condition on the first derivative of the metric requires
0= gur(P) = M* MMB vGarg a + (N MM/a L+ NP M w)Garprs (3.63)

which can also be always accommodated with no degrees of freedom left. For example in GR g,,,,,» has 4 x10 = 40
independent components then we will always be able to find the exactly 40 components of N*g.,.

iii. The condition on the second derivative of the metric g,,,1,(Z%) = 0 cannot in general be satisfied. For example
in GR g2, has 10 x 10 = 100 independent components but P g5 has only 80, so 20 degrees of freedom cannot
be specified. We will see in Section [[ITF] that these are exactly the degrees of freedom of the Riemann curvature
tensor.

6 In this context Nag is also known as the Minkowski tensor.



13

So we can say that a LLF is the closest thing possible to a global orthonormal frame at a particular point &, of
the Riemannian manifold .#, being the tangent space to .# at Z,.
Upon taking the determinant of L* ,L” ,g,,» = 1., we find

, 2
det HL“ L det [lgull = 1. (3.64)

We will denote
g = det|[gu||. (3.65)

In Section we will see that in General Relativity (GR) .# is a pseudo-Riemannian 4-dimensional manifold
with ||7,, || = diag{—1,1,1,1} and det||L" .|| = 1//—g.
The Levi-Civita tensor in a general basis becomes

— JH1 H2 .y

= LM L2y L e
— Iz

= det||L* 1w |l€ g pom

= V19l €pappuns (3.66)

where in the first equality we used the fact that the Levi-Civita tensor is defined as the completely antisymmetric

tensor of Eq. (2.13]), in the second equality we used property (2.14]), and in the last equality we used properties (3.64]),
(B:63), and (L.7);

Eplphepal, 5

E. Geodesics

A geodesic is a curve on the manifold .# that parallel transports its tangent vector along itself
Vau =0, (3.67)
i.e. the tangent vector 4 is covariantly constant along the curve
uu’ 5 =0, (3.68)
u® (u’ g+ TP u) =0, (3.69)

d2zP dx® dx”
/8 —_—
d\? T ey d\ d\ 0, (3.70)

where 2 is a coordinate system on .# and u® = dx®/d)\ with A = a) + b is an affine parameter (the proper time in
GR) with a and b two real numbers giving the units (of time) and the origin (of time) respectively.

The geodesic equation is a second order differential equation. For a solution it is then necessary to give the
initial conditions z*(0) and z*(0), where the dot stands fro a derivative respect to A . Through each point of .#
exists a unique geodesic in each direction. .

All affine parameters are related by a linear transformation. In fact, let A\ = A(A), then d/d\ = Ad/d\ and

d2/dX2? = Ad/dX + (\)2d?/dN2. So Eq. (3.70) becomes

d?zP 5\ dxP 3 dz® dx”

X Gea T a

= 0. (3.71)

Since the change in the affine parameter must not change the geodetic equation then the second term in Eq. ([3.71])
must cancel. This occur if A =0 or A = a\ + b.

From a variational principle

Alternatively we can define a geodesic as a curve of extremal length. The length of a curve C(X) is given by

dz® dzf
— — I — Y oY 72
5 /Cds /c\/gaﬂ(x) X )\d/\ /,,%(Jc,x)d)\, (3.72)
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where A is any parameter along the curve. The curve of extremal length is the one obtained through the stationary
variational principle §.7[z7, 7] = 0. We then find

d (0%g\ 0%
lokel ox™
where € is the geodesic. We will from now on forget about this subscript. Since 0.£/9i% = gagzicﬁ /£ then Eq.

(13.73) becomes

=0, (3.73)

d (1 .
dx (ggoﬁxﬁ> ggvﬁ 0?3’ =0, (3.74)
or
1 d¥ . 1 .
_@Kgaﬁm a8, ~T 7P 4 ygagxﬁ 23975 Qi7i% =0, (3.75)
or, reordering terms,
. 1 oy 1d¥ .
gaﬁlﬁ + 5{9&677 + 9avy,8 — g'y&a}x’ylﬁ = gﬁgaﬂxﬁv (376)
recalling the definition ([3.35|) for the Christoffel symbol
1 d.,iﬂ
Japi? + Topyali? = o (3.77)

On the extremal curve . = d.¥ /d\ =constant so d.Z/d\ = 0 and we recover the geodesic Eq. (3.70). E]

F. Curvature

(Chapter 11 in Ref. [I]) We will use a geometric introduction.

-UAa
T [U,V]Aa Ab

R

VAb
VAb

P UAa Q

FIG. 1. Closed curve on . of infinitesimal area.

7 Einstein believed that the geodesic equation of motion can be derived from the field equations for empty space, i.e. from the fact that
the Ricci curvature vanishes. He wrote [5]:

It has been shown that this law of motion — generalized to the case of arbitrarily large gravitating masses — can be derived from
the field equations of empty space alone. According to this derivation the law of motion is implied by the condition that the field be
singular nowhere outside its generating mass points.

and [6]

One of the imperfections of the original relativistic theory of gravitation was that as a field theory it was not complete; it introduced
the independent postulate that the law of motion of a particle is given by the equation of the geodesic.

A complete field theory knows only fields and not the concepts of particle and motion. For these must not exist independently from
the field but are to be treated as part of it.

On the basis of the description of a particle without singularity, one has the possibility of a logically more satisfactory treatment of
the combined problem: The problem of the field and that of the motion coincide.
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Consider a closed curve on . of infinitesimal area as in Fig. We start at P then move to Q to end in R. We
then move from P to T to S. The two paths are then closed by moving from R to S. We then consider the change J A

- field

in a vector field A from parallel transporting itself along the path P—T—S or parallel transporting itself along
- — field — field

the path P—Q—R and closing the gap to reach S. At P we will have a vector Ap = APe where APe is our vector

field at P. When we move from P to Q we can compare the vector field at Q with the parallel transported vector

at Q, (5P_>QA _ Azeld . APAQ = Aavqjﬁ. We then move to R to find 5Q_)R($p_>QA = AaAbV,;VﬁA Going

from P to T to S we find 5T_>35p_>TA = AaAbV,;V;,A. We then go from R to S to close the curve and we find
dr—»sA = AaAbV g 5 A. So the change of the vector field around the curve is

§A =60 r0p QA + 0 5A —6p_r0r_5A

—

= AaAb(V3Vg —VgVg — V[gﬂ]) A (3.78)
= AaAbZ(V,4d)A, (3.79)

where
Z#(u,¥) = VgVs — VsVa — Vig e, (3.80)

is the curvature (local) operator.
We will now give 3 properties of this operator:

i. For any 3 vectors u, ¥, w, and a scalar f

Z(4,0)fw = f%(ud, V)W, (3.81)
R(fi, 8)® = (i, ), (3.82)
Z(u, fo)w = fZ(u, V)W (3.83)
ii. Z is linear
(@ +b,8)w = Z(a@,8)w + Z(b,6)w, (3.84)
R(6,d+ b)Y = Z(4,a)% + Z(6, b)w, (3.85)
%(4,0)(d+ b) = %(i,6)d + % (i, D)b. (3.86)
iii. £ is local
@0
b9
(i + d, 0 + b) (@ + &) =9 %(u, 0)w. (3.87)
These 3 properties imply that Z (4, ¥)w is a tensor.
G. The Riemann tensor
The Riemann tensor R is defined in terms of the curvature tensor as follows
R(c,¢ a,b) = (5,%(a,b)e). (3.88)

The components of Riemann are as follows

3.89
3.90
3.91
3.92
3.93

R%g.5 =R(@0", €p, €., €5)
= (0", Z(€,,€5)€p)
= (@, V,Vsés — VsV,€E5 — V[éméé]é’m
< “ (Fﬂéﬁeu) - Vs (Fuvﬁéu) - V(cwﬂéu)é’@
<w(x, [ 55,€u+TH5p07 €0 — T 5 5€ — TH 517580 — 15" T yp€o),

A/_\,_\,_\,_\
—~ — — —
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SO
R%y5 = g, + T5sT% 0 = T% 5.5 = THpT%50 — 35" T g, (3.94)

which for GR are 4 x 4 x 4 x 4 = 256 components and we expect a reduction to 20 (see Section [LII D)).

Note that in a flat space gog = 1as globally, so all R*g.5 = 0.

We give now 4 symmetry properties of Riemann. We will prove these working in a LLF (see Section [[II D). Since
Riemann is local these properties will hold globally. In a LLF g.5,, = 0 and the Christoffel symbols vanish, so we
find

Rapys = JouB gy = Gou(T5p.7 —T"35.6) = Taspy = Tanp.s- (3.95)
Using the symmetry of the Christoffel symbol (see Section [III C)) we easily prove the following:

i. Antisymmetry in the last two indexes

Rapys = —Rapsy- (3.96)
ii. Cyclic identity
Ropv8) = Rapys + Ranysp + Raspy = 0. (3.97)
iii. Antisymmetry in the first two indexes
Rogys = —Rpanys- (3.98)
iv. Pair symmetry
Rapys = Rysap- (3.99)

We can then count the number of independent components of Riemann in an n-dimensional manifold .#. Due to
properties [i.] and [iii.] the number of independent components on these pair of indexes is M = n(n — 1)/2; due to
property [iv.] the number of independent components reduces to M (M + 1)/2; and we yet have to subtract (Z) to
the counting since due to properties [i.], [il.], and [iii.] the 4 indexes cannot be all different. We are then left with
n?(n? —1)/12 independent components. For example for n = 2 (sphere, see Section we have only 1 component,
for n = 2 we have 6, and for n = 4 (GR, see Section we have 20.

Commutation of covariant derivatives

(Ex. 16.3 in Ref. [I]) Covariant derivatives do not generally commute. For any vector B we will prove that
B"..3 — B".go = —R' 0 B". (3.100)
To prove this we work in a LLF
Bap = (B"a) s = (B" o +I"5aB") g = B ap + I"'ya s B7, (3.101)
where in the last equality we used the fact that the Christoffel symbol vanish in a LLF. Then in a LLF
B*. g — B*. 3o = (T" a8 —T*18,0)B" = R* 3o B” = —R*,0pB". (3.102)

See (Ex. 9.8 of Ref. [2]) for the extension to tensors.

8 Note that Zf = 0 for a scalar f as can be easily proven from the properties (3.20), (3.22) of the covariant derivative, the definition

(3.17), and the property (3.39) of the connection coefficients .



17
Bianchi identities

The following Bianchi identities hold
R%gy5: = 0. (3.103)
These can be proven working in a LLF where
R%gy5:e = Rys.e = T80 — T .5c, (3.104)

and using the fact that partial derivatives commute.

The Ricci tensor

The Ricci curvature tensor is defined as
Rog = R oq3- (3.105)
It is a symmetric tensor
Rog =R ovg = 9" Reavp = 97 Rygea = Raas (3.106)

where we used the pair symmetry of Riemann (property [iv.] in Section [[II GJ).

The scalar curvature

The scalar curvature is the trace of Ricci

R=R", (3.107)

The FEinstein tensor

The Einstein tensor G has the following components
1
Gap = Rap — 59apR- (3.108)

The Einstein tensor is covariantly constant VG = 0 or
GP 5 =0, (3.109)
which are also known as the contracted Bianchi identities. These can be proven using the Bianchi identities
R gys:c + R geyis + R psesy = 0. (3.110)

Contract « and v and use antisymmetry of Riemann in last two indexes (property [i.] of Section [[II G|) in the second
term

R/%;E - Rﬁe;é + Raﬁée;a =0. (3111)

Contract $ and § and use antisymmetry of Riemann in first two indexes (property [iii.] of Section [III G)) in the third
term

5

R.—RP,.5— Ruoe.® = Re — 2Rue.™ = 0, (3.112)
so that
1

Goe® = Roe” = 59acR" = 0. (3.113)
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The Weyl conformal tensor

(Ex. 13.131 in Ref. [1] and Chapter 9 in Ref. [2]) The Weyl conformal tensor is defined as follows
(0% {07 [e3 ]' «@
C%s = R%5 = 20, Ry + 50,05 R. (3.114)
The Weyl conformal tensor has the following properties:

i. Has same symmetries of Riemann;

ii. Is completely trace-free, i.e. contraction of C,s,5 on any two indexes vanishes. It can be considered as the
trace-free part of Riemann.

iii. In a manifold .# of dimension n, its number of independent components can be inferred by the two properties
above. Recalling the counting for Riemann of Section [III G| and noticing that property [ii.] above requires that
contracting any two indexes we are left with only other two indexes with the proper symmetry constraints we

2 2
conclude that the number of independent components of the Weyl tensor is given by * (22_1) - n(n;l) forn >3
so it must be 0 for n < 3. Thus for n < 3 we may assume that the Weyl tensor is identically zero and the

Riemann tensor is completely determined by its trace, the Ricci tensor,

iv. C*f_5 = 0 if and only if ./ is conformally flat, i.e. if and only if it is reducible to Minkowski (Aleksotas, 22 June
1864 - Gottinga, 12 January 1909) space by a conformal transformation, i.e. if and only if it exists a coordinate
frame where

ds? = 2*@)p  sdrdx?, (3.115)

with ¢ a scalar. The function e? is called the conformal factor.

H. Geodesics deviation

Consider a congruence of geodesics ©* = z*(\,m) with 4 = 9/0X, m = 9/0m, and Vg4 = 0. This is pictorially
shown in Fig.

n= - 0l A=1
n= n=2 "

Il
=

FIG. 2. Congruence of geodesics. A =affine parameter (proper time in GR), 7 =connecting vector which connects points of
equal X\ on different geodesics.

By definition of a connecting vector [7i,4] = 0, so 71 and @ form a coordinate basis with coordinates n and A
respectively. Then Vg7 = Vau and Z(u4, 1) = VgVia — VaVa. So
Va(Vagn) =VgVatd = ViVad + Z(4,n)u = Z(u, 1), (3.116)

where in the last equality we used the geodesic equation Vgu = 0. We then reached the equation for the geodesics
deviation

<
S
<
S
1
I

R (4, 7)d, (3.117)
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which in components (w”, VzVgn) + (0%, Z(7i, 4)u) = 0 becomes

= wuPn® 5, = R* g5 ulu’n?. (3.118)

I. Cartan structure equations

Cartan, taking profit from the forms language (see Section , devised a very useful way to calculate the component
of the Riemann tensor in a simple way. Cartan structure equations are 3, they need a metric and are true in any
frame (coordinate or non coordinate). We will first enunciate them and then proceed to their proof.

i.

ii.

Introduce the connection 1-form
&0‘5 = <u~;a7Vé'5> = Famiﬂ, (3.119)

where the covariant derivative symbol V has an empty index. Also the T we use here is the one of Ref. [I] with
the last two indexes interchanged respect to our (this affects only a non coordinate basis, see footnote [5]).

Then the first Cartan structure equation is

do® = o N&". (3.120)

We will now outline the proof. Let @ = L% BCJ'B . Then, taking the exterior derivative,

do® =L%5.,&" A&
=L, L7 5" A&
=L (L7, — L7, LF3)a" 0 & (3.121)
Now

0% A&’ = -T9%,&" A&

([ — T p)@" © &

= —c5,°0" @ @7, (3.122)
where in the last equality we used Eq. (3.39).
But
€3,8,] = cp, s (3.123)
= [LP505,L7,05]
= LPsL7, 505 — L7,LP 5505
= (L7LP, 5 — L7 L5 ;) L% 5€a, (3.124)
and since LO‘EL57 = 0%, we have LO‘BL[;%— = —LO‘B,;YLBAY therefore
cpy® = LG (L, LP 5 — L75LP.). (3.125)

Substituting (3.125)) in (3.121)) and using (3.122)) gives the desired equation ({3.120)).

The second Cartan structure equation is
dgos = Dap + Dpa- (3.126)
This can easily be proven as follows
Gap +@pa = Lapy + Tsay)@” = gapr@ = dgag, (3.127)

where in the second last equality we used Eq. (3.37). Note that even if we proved the Cartan Eq. (3.126]) for a
coordinate basis it holds generally.
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ili. The curvature 2-form is defined as follows
X5 = do"s + &%, N5 (3.128)

The third Cartan structure equation is
o L ~Y A 0
X5 = §R Brow ' ANw . (3.129)

We will now outline the proof of this equation. Let us develop the two terms on the right hand side of Eq.
(3.128)). The first

= 1“"55,7&7 A\ &6

= (M0 —[%5,.6)0" @ &°. (3.130)
The second

@ NGy =T%&" AT 356"

= (T %55 — 15T 3,)@” @ &°. (3.131)
The right hand side in the Cartan Eq.
lpo, v e R 5 0&
5 1% 150 ANW" = RY%sw’ @w", (3.132)
due to the antisymmetry of Riemann respect to its last two indexes.

Putting together Egs. (3.130), (3.131), and (3.132)) and recalling the expression (3.94]) for the components of

the Riemann tensor in a coordinate basis proves Cartan equation (3.129)).

J. The sphere

A sphere is the surface of constant positive curvature.

Spherical coordinates in flat space

Spherical coordinates in flat space are as follows

e, = BQ , 1 radius
€y = % , 0 polar angle (3.133)
é, = 37 » ¢ azimuthal angle

This is a coordinate basis and [€,, €3] = 0 for any choice of a and 8. The metric already diagonal and is given by

ds* = dr?® +r* df* + r? sin® 0 dp? (3.134)
so that
10 0
lgapll = 0 7* 0 : (3.135)
0 0 r?sin’¢

with g = 7*sin? 6.
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With a (non coordinate) orthonormal basis

(Ex. 8.6 in Ref. [I]) We find the orthonormal (non coordinate) frame by rescaling the basis vector (3.133)) like so

&=g
> _ 1
T 9
€% = T sing ©
so that g, 5 = 1,5 but [€s, €] # 0 whenever & # . Tt can easily be verified that
S P o
(€7, €5] = =165 =55
€7, €5] = € = cig?¥ (3.137)
[eé7e§5] = _rtaHGeVA’ - cg@‘P

Note that J. D. Jackson book of “Classical Electrodynamics” [3] uses the orthonormal basis. For example the
gradient of a scalar v

V"/J = éaw,a = é)agaﬁw,ﬁ

o0y 1oy , 1 0y
= é; G — f——— —. 3.138
€ 8r+e‘9r 00 e‘prsmé’&p ( )
where we used the fact that g®# is the inverse matrix of g,s.
For the divergence of a vector A= A48, = A%é, with
A’i = A"
AY = A8 (3.139)
A? = rsinA¥
we find
- 1
VA=At = o (VIgla®)
:iWN)+Jf@wﬁ)+]'M (3.140)
r2 T rsinf 0 rsin® ¥ '
where we used identity [iv.] in the subsection “Useful identities” of Section [III C
For the Laplacian of a scalar v
1
V27f’ =" = ﬁ (\/ |g|¢,a) N
1, 1 1
= 72 ) o+ g (O o+ g e (3141

where we used identity [vii.] in the subsection “Useful identities” of Section [[II C

Cartesian coordinates

A sphere can be embedded in the 3 dimensional flat space. Here we can as usual choose a Cartesian coordinate

system
z =rsinfcosp r=/z?+y?+2?
Yy = rsin@singp 0 = arctan (‘ /x2 + y2/z) (3.142)

z=rcosf ¢ = arctan (y/x)

From Eq. (1.6)) we can determine the basis vectors

S5 o - yz - Vz2+y?

€9 =€ Yy 3 (3 143)
7nz\/332_|_y2 r2 \/m2+y2 .

- 5 y - g

€y, =€y TZ4y? + €y o



22

and for the versors

oL
S

|ér‘:\/:§+ "l‘ii—l

F=r=
[€:]
hy__ & - 222 y22? 2+y =1
0= \é'z\ ‘eg| = \/r4(w2+y2) + (22 1y?) + = - (3144)
s 8 1zl y2 N
p=r l€l= \/<zz+y2)2 + @ = e

Curvature of the sphere in a simple way

We will here use the results of Section [[TTT] to determine with the Cartan structure equations, in a rapid and simple
way, the 1 independent component of the Riemann tensor for the sphere, the surface for which r is constant.
The 1-form orthonormal basis

= rdf
3.145
{ &% = rsinfdy ( )

so that ds? = 1, ,&" ® @”. From Cartan structure equation (3.126)) it must be & 5 + @p. 4 = 0 or & + &, = 0 s0
that

S =% —0
{ CoTWe ) (3.146)

~0 o~ 0 ~p
W, =-—w, = wé—O

From the propertles of the external derivative and from Cartan structure equation 1' it must be d@’ = a(rEO) =

rddd =0 = —&" PEA &%. So it must be either w% =0 or w9<p o &?. The other basis 1-form gives

dw? = d(rsin Odyp)
= rcos Odf A Ego
t0 o o
N
,
= % xa’ (3.147)

So we find that
5% _ cot 9&3“’
0 r

From Cartan structure equation (3.129) and using the result of Eq. (3.146)) then follows

(3.148)

A5 = di®,

_3 (_ cot 9&¢>
r

= d(— cos 0 dy)
=sin6df A cNigp

1 6 <5
= 5w A @*
,

1 5 ~& ~B
= §R9¢d5w NG, (3.149)

So we reach the result that the only independent Riemann component is

R ;. =1/r% (3.150)

The scalar curvature is then

R=RY 5 =2R%; =2/r" (3.151)
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Curvature of the sphere in a hard way

We work in the global (non coordinate) frame (3.136]). Due to the antisymmetry of Riemann R 446 Tespect to its

first two indexes 1D and respect to its last two indexes 1' for & = B or for 4 = 5 Riemann vanishes. Recall
that Riemann is given by Eq. (3.94)

Rapss = Ripas + 55 aan — T3 s T 5 — €55 Tapps (3.152)
Rapss = Lasps — Lasps (3.153)
where by Eq. (3.34)
1
Paps = 51p5 T+ C83a — Crapt- (3.154)
Remember that we can freely bring up or down indexes since 9s3 = MNsp and note that the 3 indexes of the ¢

commutation coefficients in I' appear cyclically. Moreover R must have the same symmetry properties of Riemann.
From the commutation coefficients of Eq. li the only relevant commutation coefficients c is Copgy = — COb 0/r
where we have antisymmetry in the first two indexes. Due to the above mentioned symmetry properties of Riemann
its only non-zero component is R ;-
For the connection coefficients (3.154) we find

Lope = Cope
i =0, (3.155)
¢pd = T e

where the components with 2 or all 3 indexes equal to 6 or with all 3 indexes equal to ¢ must vanish. From the results

of Eq. (3.155)). We can easily verify that Ré@% — Ré¢é¢ = 0.
In order to determine R%é@ = Récﬁé@ = F%@’é — Fé%#) we need to calculate
0 [(—%) rsin&] 1 9
Ré¢é¢ = Cé@@é = Y rsind = 1/7" 5 (3.156)

where in order to carry out the derivative respect to 6 we had to use the change of basis of Eq. (3.145)). An even
harder route is the calculation in the usual polar coordinates basis.

IV. PHYSICS

According to Einstein (Ulma, 14 March 1879 - Princeton, 18 April 1955) the arena for Physics is a pseudo Rieman-

nian 4-dimensional manifold .# where a point &2 = (2%, 2!, 22, 2*) describes an event at a given time ¢t = z%/c in

a given place in space r = (2!, 22, 23), where c is the speed of light constant. On the tangent LLF, at a &, Special
Relativity (SR) holds with Minkowski metric 7,5 = diag(—1,1,1,1). On a global frame General Relativity (GR)
holds with gag(z”) a metric field determined by Einstein field equations described in Section In this section

bold face letters without any other decoration describe 3-dimensional vectors.

A. Electromagnetism

According to Einstein strong equivalence principle (SEP) all laws of Physics should be written in the same form
in a LLF or in a global frame on the manifold ..

FElectrostatics

Charles-Augustin de Coulomb (Angouléme, 14 June 1736 - Paris, 23 August 1806) discovered the mathematical law
of interaction between two charges of electrical charge ¢; nd g2 separated by a distance r. Coulomb force (in Gauss
units)

4192

F12 :T'TT7 (41)
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gives rise to an electric field around charge one E(r) = F12/g2. The electric field is generated by an electric potential
E(r) = —V(r) with ¢(r) = ¢/r, the Coulomb potential. The Coulomb potential satisfies to the equation of Baron
Simén Denis Poisson (Pithiviers, 21 June 1781 - Paris, 25 April 1840) ﬂ

V3p(r) = —4mwqd®(r), (4.4)

where 62 is a Dirac delta function in 3 dimensions. Poisson equation is the equation of Pierre-Simon, Marquis de
Laplace (Beaumont-en-Auge, 23 March 1749 - Paris, 5 March 1827) with a source term due to the charge ¢g. Later
Johann Carl Friedrich Gauss (Braunschweig, 30 April 1777 - Gottinga, 23 February 1855) discovered that
drg = —/ Vip(r)dr = —/ n-Vo(r)dsS = n-E(r)dS =g, (4.5)
Q o0 a9

which states the important mathematical result that the flux ®g of the electric field through any closed surface
containing charge ¢ is fixed. In Eq. dr is the infinitesimal volume integral, ndS is the infinitesimal surface
element with n its outward normal versor, €) is the volume region considered in the volume integral, and 02 is its
bounding surface.

The representation of the electron as a pointwise particle poses the problem of an infinite self-energy diverging
as 1/r. On the other side the electrostatic energy for assembling a system on N point charges of charge ¢; is that
required to bring them close together from infinity

1 & 4iq;
= — 71 J 4~
& 5 E " - (4.6)

But again a divergence problem arises as soon as one introduces a charge density p(r) to rewrite this energy with a

continuous expression
1 pr)p(r)
== [d dr' =22 4.
[ o [ r—v 7

where one readily recognize a divergence for a linear, planar, or spatial charge density. Also in these cases is necessary
to deal with infinities.

Mazxwell equations

From the first discoveries of electrostatics soon enough James Clerk Maxwell (Edimburgh, 13 June 1831 — Cambridge,
5 November 1879) wrote his equations for electrodynamics. The most synthetic way to write these important equations
describing electromagnetism is through the geometric language of the differential forms (here we use Gauss units and
set additionally the speed of light ¢ = 1)

dF =0, (4.8)
d «F =4m xJ. (4.9)

Here d stands for an exterior derivative (see Section , * is the Hodge star that stands for the dual, F' = dA is the
Faraday two form that subtend the electromagnetic antisymmetric tensor F,,, containing the electric and magnetic
fields (6 components, 6 basis 2-forms)

-~ 1 ~ ~

F= §P;ﬂdx@/\dmﬁ (4.10)
— E,dz Adt + E,dy A dt + E.dz A dt +

Bzay/\&quByEz/\aerBzﬁx/\Ey, (4.11)

9 For charges living [7] in n-dimensions we have

1/r n=3
o) =q{ —In(r/t) n=2 | (4.2)
—r n=1
where £ is a length. And the Poisson equation becomes
4T n=3
V3p(r) = —qs"(r){ 27 n=2 , (4.3)
2 n=1

where 0" is a Dirac delta function in n dimensions.
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A= (p, A) is the electromagnetic 4-potential one form where ¢ is the electric scalar potential for the electric field
E =—-Vyp—0A/0t and A the magnetic vector potential for the magnetic field B = V x A, +F is Maxwell two form
dual to Faraday, and *J is the charge three form with J= (p, J) the 4-current density one form with p the electric
charge density and J the electric current density. So that the total charge () inside a three dimensional hypersurface
region . is Q = [ & *J. Also from ddx F = 0 follows dx J = 0 which is the law of conservation of charge. Eq.
summarizes Faraday’s law and the non-existence of magnetic monopoles and it is a consequence of the general result
that dd = 0. Eq. summarizes Ampere’s law with Maxwell’s correction to take into account of the displacement
current and Gauss’s law. The importance of the formulation of Egs. — lies in the fact that written in the
differential form language, Maxwell equations have the same form in Special Relativity or in General Relativity thanks
to the strong equivalence principle. This is tantamount to assume that such formulation is appropriate also in any
riemannian manifold.

The Maxwell equations are invariant under the gauge transformation A — A + Vi and ¢ — ¢ — 9 /0t with the
gauge function (¢, r) any scalar. Which means that electromagnetism has U(1) gauge freedom.

Now, start with the scalar ¢. Its gradient dcp is a one form. Take its dual to get the three form *dcp Take its
exterior derivative to get the four form dxdy. Take its dual, to get the scalar — *d*dcp O = —(0%p/0t?) + V3.
This is the Jean-Baptiste le Rond d’Alembert (16 November 1717 - 29 October 1783) wave operator.

Start with the one form A. Get the two form dA. Take its dual to get the two form xdA. Take its exterior derivative
to get the three form dxdA. Take its dual, to get the one form AnJ = «d x dA. This is the wave equation for the
electromagnetic 4-potential. And from here follow the electromagnetic waves. For example for the zero component
in vacuum in absence of charges one finds [J¢ = 0 whose solution with forward and backward propagation along the
direction k is of the form p(t,7) = f(k-r —wt) + g(k - r + wt), where w = 27 /T is the angular frequency of the wave
of period T, k = 27/\ is the wave vector for a wavelength A, the speed of the wave is w/k = A\/T =c =1, and f, g
are arbitrary functions. In spherical symmetry E one would otherwise have a spherical wave solution of the following
kind, (¢, r) = [F(kr —wt) + G(kr + wt)]/r with F, G arbitrary functions. Or a Green function G(t,r) = §(kr — wt)/r
forward solution of O G = —4mxé™ (Z).

In flat spacetime, express the coordinates of one electron as a function of his proper time as a*(7). The density-
current 4-vector for this electron is then

JHZ) = e / W[z — a(r)] a*dr, (4.12)

where & = (t,7) and as usual we denote with the dot a partial time derivative. This density-current drives the
electromagnetic field or F. Then Maxwell equation becomes F, #”’V = 4mJ, where as usual the comma stands
for a partial derivative. Or A” ,,, —n"*A, o = 47J, where 7, is the metric of the Lorentz coordinate system of the
flat spacetime. Make use of the gauge freedom to set Lorentz gauge, AY , =0, to get

OA, = —4rJ,. (4.13)
This can be solved through the Green’s function method rewriting A*(Z) = e [ G[Z — d(7)] a*dr. The causal solution

Eq. (4.13) is then given in terms of the retarded potential

/
A (t,7) :/G(t—t’, |r—r’|)Ju(t’,'r’)dr’dt’=/Mdr', (4.14)

lr— 7|
tretarded =t — ‘T - 'I°/|, (415)

where remember that we chose the speed of light ¢ = 1 and we carried out the integration over ¢'.

B. Gravitation

According to Einstein weak equivalence principle (WEP) the laws of motion should be written in the same form
in a LLF or in a global frame on the manifold .Z .

(Chapter 16 of Ref. [I]) Consider a 4-dimensional pseudo Riemannian manifold .# describing our “spacetime”.
Let the “geometry of spacetime” describe the “gravitational field”: gog,I'*s~, R*84s, ... And consider the Riemann
tensor as the “true gravitational field”.

10 Note that in spherical symmetry Eq. (3.141) for the Laplacian reduces to V2t = (1)) r /7.
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A measure of g,p then is a measure of the gravitational field. Measure I'“ ., from geodesics (see Section and
R g5 from geodesics deviation (see Section . A point of the manifold describes an event at a given time ¢ in a
point of space r, Z = (2%, 2,22, 23) = (t,7). At a point & we can always choose a LLF (see Section where
9 = Npss P55 = 0 and Special Relativity (SR) holds.

In the spirit of a field theory we regard a “test particle” as structureless and moving on a unique straight line in a
LLF or a geodesic globally, i.e. “freely falling”. Spacetime is filled with a congruence of test particles geodesics. One
and only one at each point in each direction.

The stress-energy tensor

(Chapter 5 of Ref. [2]) A proper description of the energy, momentum, and stress of a relativistic fluid or field uses
the symmetric tensor T, the stress-energy tensor or energy-momentum tensor. It describes the momentum density
and energy “flux” at each point in spacetime. The contravariant components of this tensor in a LLF of an observer
are related by the measurements of that observer as follows

T% = p = mass-energy density _
TY% = j-component of energy flux (=) T7° = j-component of momentum density (4.16)
T% = components of the ordinary stress tensor

where we denote with a roman index just the three spatial components.

Newton (Colsterworth, 25 December 1642 - London, 20 March 1727) equations of motion F' = ma in an infinitesimal
cubic box @ around a point &y gives T () = 0. And the rate of change of energy in the box T% ((Z) has to
equal the energy flux through the box —7% (). Summarizing we conclude that if T describes all particles, fluids,
fields, ... the interrelation of momentum and energy change is summarized by the following equation of motion

™, =0. (4.17)
For example (¢ = 1):

i. For an isolated particle with rest mass m, on a curve Z(7), a 4-velocity 4 = dZ/dr, and trajectory q(t)

T (t,r) = m/u“u”5(4) (% — Z(7)) dr

= my(0)o* (5P (r — (1)), (4.18)

where u® = v = 1/y/1 =02, ¥ = (1,dq/dt) is the velocity vector and §() is the n-dimensional Dirac delta
function.

ii. For a “swarm” of particles: a region of spacetime filled with particles all of the same rest mass m and 4-velocity
4. Let n be the proper number density measured in a comoving frame where 4 = (1,0), then

™ = mnu*u". (4.19)

iii. For a perfect fluid
" = (p +p)uu” + pg"”, (4.20)

where p is the mass density in the isotropic frame, p is the isotropic pressure, |E| and u” is the fluid 4-velocity
which satisfies u*u”g,, = —1.

11 For example the component 799 measures the pressure (force per unit area) on the face of the box orthogonal to the direction j.

12 We will have p = mn~y and p = pv?/3, so that for example for photons p — (1/3)p (see the “black-body radiation” section §63 of Ref. [§])
and for non relativistic fluids p — mn(1+v2/2 +...) so that p — mnv?/3 — (2/3)(p — mn) < p (remember that for the equipartition
theorem [9], for an ideal gas, & = (3/2)kpT, where & is the average kinetic energy, and the equation of state is p = nkpT) where
p—mn — &.
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iv. For a source-free electromagnetic field
o = L Frog,sFYP — 1g/‘”F g FoP (4.21)
47_(_ «@ 4 [e3% )

which is clearly traceless and we can easily see that given an electric field E and a magnetic field B [10]

7% = (E? + B%) /87
Toj = (E X B)]/47T = Sj (422)
T'L’j — TOO

where S is the Poynting vector. In the presence of sources J

]' v
ArT,P 5 = <FW?«“/3H — Z&fFWF“ ) ,

1
= Fop g F2 4 Fay F™ g = 5007 Fru g F™
v 1 v
=Fou P —AnF,, J" — §FM,,,QF“

1
= —47‘1’fWCWJ'u - iF'LW(Fau,V + Fua,u + Fuu,oc)
= —4nF,,J", (4.23)

where in the third equality we used Maxwell equation (4.9)) and in the last equality we used Maxwell equation
(4.8). So that

TP 5= —F*"],. (4.24)

The “comma goes to semicolon” rule

To implement the SEP one uses the “comma goes to semicolon” rule
) — : (4.25)

For example the stress-energy tensor T is divergenceless in SR

SR

vr=0 2B 7w, -9 <K

T 5 =0, (4.26)

then it is divergenceless also in GR.
Another example are Maxwell equations of ElectroMagnetism described in the previous Section [V'A] which are

written in the same form (4.8)), (4.9) in a LLF and in ..

“ “

Some caution is needed when applying the “, — ;“ rule because in a LLF partial derivatives commute but
globally covariant derivatives do not, as is shown in subection “Commutation of covariant derivatives” of Section
@ For example Faraday F),, = A,,, — A,,, with A the 4-potential. The 4 Maxwell equations in components

Fr,1=0
{20 (a21)
So the last 2 equations become in a LLF A" * — A*Y = d4xJt or AV M — A* )V = 4nJH, but globally AV./ =
AV P+ RF,AY according to Eq. (3.100) and the definition of Ricci (3.105). The last term is a curvature coupling
which is experimentally negligible. In any case the former form is regarded as the correct one conventionally. Other
examples are the ones where you cannot treat the system as localized in a LLF (Ex. 11.8 and 11.9 in Ref. [2]).
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FEinstein field equations

(Chapter 17 of Re. [I]) We want to determine the response of a gravitational field to matter. The mass-energy
density, p = uQUgTaﬁ for some observer i, is the source of gravity. We then generally think at the stress-energy tensor
T as the machine encompassing all sources of gravity which will linearly determine the response of the gravitational
field like so

H = T, (4.28)
where H will be a second rank symmetric tensor characterizing the spacetime geometry

H= H(gab’a 9aB,vsGaB,yss - - ) (429)

Equation cannot determine all 10 components of g, uniquely because exist 4 differentiable functions (z* =
2% (2)) to make coordinate transformation leaving ds? = g,pdr®dz? invariant. But VT = 0 are 4 equations. So we
will have only 6 independent field equations. This solves the dilemma: 6 constraints on 10 components g,g leaving
only 4 components of g, to be determined by coordinate transformation.

Since in a LLF go5~, = 0 (see Section in H we need at least second derivatives of g,g otherwise it would
reduce to g itself and multiples thereof and one would not be able to recover the Newtonian (weak field) limit where
V2 = 471Gp with ¢ the gravitational field, p the mass density, and G Newton gravitation universal constant, as
shown in the next subsection. The only tensor that can be constructed from gag, gag,y, and gag, s is Riemann R.
But the only tensor that:

i. is second rank and symmetric;
ii. is constructed linearly from R and gj;
iii. has vanishing derivatives;
is Einstein tensor

Gag -+ Agag, (4.30)

where A is a cosmological constantE and G is defined in subsection “The Einstein tensor” of Section |[ILG| For T = 0
spacetime must be flat and G = 0 (also set A = 0). So it must be

Gap = XTas, (4.31)

which are FEinstein field equations.

13 That Einstein considered “its biggest mistake”.
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Newtonian limit

Simplicio Quanto alle stelle nuove, I’Antiticone se ne sbriga benissimo in
quattro parole, dicendo che tali moderne stelle nuove non son parti certe de
i corpi celesti, e che bisogna che gli avversari, se voglion provare lassu esser
alterazione e generazione, dimostrino mutazioni fatte nelle stelle descritte
gia tanto tempo, delle quali nissuno dubita che sieno cose celesti, il che non
possono far mai in veruna maniera. Circa poi alle materie che alcuni dicono
generarsi e dissolversi in faccia del Sole, ei non ne fa menzione alcuna;
ond’io argomento ch’e’ ’abbia per una favola, o per illusioni del
cannocchiale, o al piu per affezioncelle fatte per aria, ed in somma per ogni
altra cosa che per materie celesti.

Salviati Ma voi, signor Simplicio, che cosa vi sete immaginato di
rispondere all’opposizione di queste macchie importune, venute a
intorbidare il cielo, e piu la peripatetica filosofia? egli ¢ forza che, come
intrepido difensor di quella, vi abbiate trovato ripiego e soluzione, della
quale non dovete defraudarci.

Galileo Galilei
Dialogo sopra i due massimi sistemi del mondo

It remains to determine the constant x in the Einstein field equations (4.31]). We will accomplish this by proving how
in the weak field and slow velocities limit the Einstein field equation must reduce to Newton equation of gravitation.

In the weak gravity regime |E|

Juv

In the slow velocities regime (¢ = 1)
o' <1

where 7 is the particle proper time.
Newton equation

with ¢ Newton gravitational potential energy.

WEP

Eq. (3.19)
Eq. (3.70) or “free fall”

slow velocity regime

Guv = Nuv

weak gravity regime and Eq. (3.35)

Vh =0 — hoio0 & —hoi,;07 279 order small

= Nuv + h;w |hl“/| < 1. (432)

1 dt

d?z? 0
@ o (434)
Then
RO N A2t B
a2~ dr?
D?z'  Du'
dr?2  dr
uWVgu' =
— T puuf ~
— T ~
— L0 =
1
§(h00,z’ — 2hgip) =
1
ihoo,z‘ (4.35)

So hoo,i = —2¢; or hog =~ —2¢ + ‘constant’ where the ‘constant’ must vanish since h,¢ — 0 as r — co. Then

goo ~ —(1 + 2¢). (4.36)

14 For the solar system for example from Eq. (4.36) follows |hyy| ~ [¢| ~ GMg/c?Re ~ 1076 so linearized gravity should be adequate.
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Now we can calculate Riemann components R%gs from g,,,, = 7, + hy and hoo = —2¢. Keeping in mind that on A
,0 < ,ione finds (Ex. 12.1 of Ref. [I])

0%¢
Oxtdzd’
Now from the definition (3.108)) of Einstein tensor R, — %gWR = xT,v, contracting 1 and v and recalling the

definition (3.107) of the scalar curvature, follows R = —xT with T' = T*, the trace of the stress-energy tensor. So
Ry = x(Tyw — 59 T) and

Riojo ~ (437)

2

1
X (Too + 2Too)

-3

1

= 5XP; (4.38)

1
Roo = x (Too - 900T>

where in the approximation we used the fact that 7%; is small in the small velocity regime.

But from the results (4.37) and (4.38) follows

; 1
Roo = R'ou0 ~ Rigio = V3¢ ~ SXP; (4.39)
Since we know from Newton equation that
V3¢ = 4nGp, (4.40)
we find
8rG
X= (4.41)

where we restored the speed of light constant c.

Ezxtension to the case of a charged particle

In a LLF a charged particle is subject to the Lorentz force (see Section [IV Al

@ g

= L pnbysy 4.42
dr m U N4 ( )
where m is the particle rest mass, g its charge, u” = dz” /dr, and n&éudug = —1. Then, according to SEP
Du# q
= = LF"Py%g,s, 4.43
= o gag (4.43)
and recalling the definition of the covariant dervative of Eq. (3.22)
dut q
— = D" guuf + S FMBy gy, 4.44
= guu’ + = u%gap ( )
with gopu®u? = —1. This shows how the electromagnetic field that determines the curvature of spacetime through

Einstein field equations also produces an acceleration of the charged particle which will not be in “free fall”
anymore. In particular, noticing that V(T™atter 4 Tem) = () where T™*'"e" is the stress-energy tensor of a charged
particle of rest mass m of Eq. and T°™ is the stress-energy tensor of the electromagnetic field satisfying Eq.
with the 4-current density J = qfﬁ6(4) (2 — Z(7))dr due to the charged particle at Z with velocity 4, and
using the rule for the covariant derivative of a tensor, we recover Eq. .

We then conclude that among all the fields in which particles move the gravitational one has a privileged role in
GR in the sense that it is the only one that only curves spacetime, according to the Einstein field equations ,
but it does not accelerate particles. Particles are “freely falling” only in a gravitational field.
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Linearized gravity and gravitational wave equation

In the weak gravitational field regime of Eq. (4.32)) we find

1 a a a
i[h,uoz,l/ + h’l/(x,[L - Dh/}.l/ - h,,uu - 77,uu (hozﬂ, A - Dh)]v (445)

where h = h," is the trace of the perturbation.

Now we observe that the perturbation h,, in Eq. is not unique since it depends on the system of co-
ordinates used on .#. We can always perform an infinitesimal coordinate transformation z, (%) = z,(%) +
£ () that must leave invariant the various tensorial equations. For example for the perturbation tensor we have
h;w =hu — (& +E€u) and B = h — 2, *, to first order in . This freedom of choice is the gauge freedom for

gravity. If we now define Buu = hu, — %hn,w we will have l:LW = hyy or hy, = Buu — %BUW so that Eq. 1) becomes

Gu =

1 7 7 a 7 a 7 a
G = 5[_Dhuu — Nuvhagp, f+ Ppow™ + hua,p I (4.46)

We may then introduce H/;w = hiw — lh/nw as well, so that for ¢, = —h,,,” |"°| we find the condition E’W’” =0.
This is the harmonic gauge (Box 18.2 in Ref, [I]) also known as Lorenz gauge ['°| for gravity (to be compared with
the Lorentz gauge for electromagnetism, A, Y =0, of subsection “Maxwell equations” of Section . The Einstein
tensor reduces then to G\, = — Dh;w and Einstein field equations reduce to the following gravitational wave
equation

Ok, = —2xTy0. (4.47)

On 14 September 2015, exactly 110 years from the Annus Mirabilis of Einstein setting up his SR theory [I1] and
100 years from his publication of the 4 articles on GR [T2HI5] the first gravitational wave was detected by the twin
LIGO (Laser Interferometer Gravitational-wave Observatory) observatories in the United Sates. The signal, named
GW150914, came from two black holes merging about 1.3 billion light-years E] away and confirmed a key prediction
of Einstein theory of general relativity. This detection marked the beginning of gravitational wave astronomy and
was notable for its unusually strong, “loud” signal.

The causal solution of Eq. (4.47) is then
L(t,r) =4G Tw (tretandca, ™) dr', (4.48)
r— 1]
tretarded = T — "I‘ -r |a (449)
to be compared with the result (4.14]), (4.15) in electromagnetism.

Schwarzschild metric in weak gravity

We will now use the weak gravity architecture to determine the perturbation tensor h,, for a static and spherical
body of mass M at the origin 7 = 0. Since the body is static Eq. 1) becomes DB;W = Vzi_ziw = —16wGTy,. The
Poisson equation has solution

=4G 4.50
[ (4.50)

For a spherical body of mass M at the origin the stress energy tensor is given by T, (r) = pu,u, with u ~ 1 and
u' = 0 and p = M3®)(r) (see subsection “The stress-energy tensor” in Section . Then Eq. (4.50) becomes
hl, = 4GM/r and all other components vanish. Then h' = —4GM/r. Recalling that S W, — 5h'nu, we find
h;m = 2G M /r and all other components vanish. Then we reach to the following metric (gauge invariant)

ds® = — (1 - L) 2dt? + (1 + ’"—) (dr? + r?d6* + r* sin® 0dp?), (4.51)
r T

where r, = 2GM/c? is Schwarzchild radius, where we restored the speed of light constant, and we used spherical
coordinates (see subsection “Spherical coordinates in flat space” in Section [[II J|). This result agrees with the exact
Schwarzchild solution [I6HIS] for rs < 1.

15 We will have an infinite number of solutions provided S — &+ 5“‘“ with Dfadd 0.
16 Without the “t”.
17 For c =1, 1 year ~ 7 x 107s ~ 1016m



32

Eddington 1919 observation of bending of light by our Sun

In the equatorial plane (z,y) centered on the Sun, consider a light ray traveling, when unperturbed, along a straight
line y = b with equation of motion z(t) = t (c=1), i.e. the ray 4-momentum p = (p°,p°,0,0). The gravitational
field of the Sun will curve the spacetime so that the light ray in the equatorial plane (z = 0) will follow the geodesic
equation whose y component becomes

dp¥
e+ TY00(p")? + [ (p7)? + 270p"p° = 0. (4.52)

Foe a diagonal metric the Christoffel symbols are given in (Ex. 7.6 of Ref. [2]). Applied to our case of Eq. (4.51]) one
finds

I‘Ooj =Ty = %xi
Dl = o (@06 — 267 — a6)7) (4.53)
[ =0 J#k
For the massless photon
0=g(B D) = -1 —ry/r)+ @)L +7rs/r) + )21 +rs/r). (4.54)

For |pY| < |p®| and to least orders in 74/r we have p® ~ p. Then, using result (4.53)), the geodesic equation (4.52)
becomes

dp¥ 2G My

T\2 _
i Ty ) =0 (4.55)

A first perturbation effect due to the gravitational field of the Sun can be then found by

dp¥ 2GMb dx
—_— wi = 4.
dr (22 + b2)3/2p dr 0 (4.56)

which can easily be integrated to find Ap?¥ = p¥(x — o0) — p¥(x — —o0) = —4GMp®/b. Then we predict that the
effect of the Sun gravitational field on the trajectory of the light ray will be to perturb its straight path bending it
by an angle

A¢ = arctan(|ApY|/p”) ~ 4GM/c*b = 2r, /b, (4.57)

where we restored the speed of light constant ¢ and used the result of footnote Observations of the total solar
eclipse of 29 May 1919 carried out by two expeditions, one to the West African island of Principe and the other to the
Brazilian town of Sobral, lead Sir Arthur Stanley Eddington (Kendal, 28 December 1882 — Cambridge, 22 November
1944) to estimate a bending angle A¢ ~ 1.75" [19).



33

V. FICTIONS

If I let my fingers wander idly over the keys of a typewriter it might happen
that my screed made an intelligible sentence. If an army of monkeys were
strumming on typewriters they might write all the books in the British
Museum. The chance of their doing so is decidedly more favourable than
the chance of the molecules returning to one half of the vessel.

Sir Arthur Stanley Eddington
The Nature of the Physical World

This thinker observed that all the books, no matter how diverse they might
be, are made up of the same elements: the space, the period, the comma,
the twenty-two letters of the alphabet. He also alleged a fact which
travelers have confirmed: In the vast Library there are no two identical
books. From these two incontrovertible premises he deduced that the
Library is total and that its shelves register all the possible combinations of
the twenty-odd orthographical symbols (a number which, though extremely
vast, is not infinite). [...] The certitude that everything has been written
negates us or turns us into phantoms. [...] I suspect that the human
species - the unique species - is about to be extinguished, but the Library
will endure: illuminated, solitary, infinite, perfectly motionless, equipped

with precious volumes, useless, incorruptible, secret. [...] I venture to
suggest this solution to the ancient problem: The Library is unlimited and
cyclical.

Jorge Francisco Isidoro Luis Borges Acevedo
Ficciones (The Library of Babel)

But when I sit and gaze,
I imagine, in my thoughts, Endless spaces beyond the hedge,
An all encompassing silence and a deeply profound quiet,

Giacomo Leopardi
L’ Infinito

In this Section we will describe some possible extension of GR which could prove useful routes to explain yet
unsolved mysteries of Nature or to make the current theory more accessible (at least numerically) or to write an even
more elegant theory.

Embedding of spacetime (eGR)

Would it be possible to imagine spacetime .# embedded (eGR) in a 5-dimensional manifold .#7 If some entity
would live in such higher dimensional manifold .# then it would be able to see the whole time line (of the peoples
living in .#) [1], it would have complete knowledge of the past, the present, and the future. Even if this we all would
really like it stayed a mystery, there are certain sort of people that would be ready to pay you enormous amount
of money for the mere realization of this sort of projects. So it could politically come handy to use these financial
support to carry on some other mathematical research, that is a good thing any case!

Imaginary time in General Relativity (wGR)

A Wick rotation changes time ¢ into —i8/h and the metric in a LLF changes from Minkowski to Euclidean 1,5 =
diag(1,1,1,1). This allows to define a statistical mechanics of spacetime (wGR), where A is Planck constant and the
imaginary time ( is an inverse temperature. This is illustrated in the trilogy of Refs. [20H22] where wGR was called
FEBB. Although we have no experimental evidence of the soundness of this recipe it could eventually offer a new
vision into yet unresolved questions that nature poses us like the mystery of dark energy in cosmology.
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Stochastic General Relativity (sGR)

We could consider the Einstein field deterministic equations as the “Fokker-Planck-FEinstein” equations for
a yet to be written corresponding stochastic differential field equations of “Langevin-Einstein” according to Ito or
Stratonovich calculus [23]. This route is expected to be rather promising in the field of numerical relativity [24] [25]
since it would call to the rescue the powerful machinery of Markov processes and Monte Carlo methods [26].

A theory of “more General” Relativity (mGR)

As we saw in subsection “Extension to the case of a charged particle” of Section [V B]it would be desirable to have
a theory of more General Relativity that puts all fields (gravitational, electromagnetic, ...) on the same ground. For
example we could think at a higher dimensional space containing our spacetime and some other hidden dimensions
allowing for “free fall” of a test particle in any field of nature. Projecting then its motion into our spacetime.
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