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In a recent trilogy we proposed a Statistical Theory of General Relativity spacetime. Here we
apply our new theory to determine the (energy) “density” and (virial) “temperature” dependence
of the structure of the spacetime quantum vacuum working on the simple case of a real massless
scalar field in a local Lorentz frame.
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I. INTRODUCTION

In a recent trilogy [1–3] we proposed a Statistical Theory of Gravity. This allowed us to determine a “virial
temperature” of the spacetime metric tensor field. Albeit still under refinement, the theory is already able to offer
some measurable predictions. In fact, as we will see in this work, it influences the energy density structure of the
spacetime vacuum. Unfortunately, with the current equipment we are unable to directly measure these structure
variations due to the temperature. But we can hope in some indirect observations of the consequences on the Hubble
rate of expansion of the Universe, the parameter H = ȧ/a, where a > 0 is the scale factor which enters the spatial
components of the cosmological metric tensor field and is proportional to the average separation between objects,
such as galaxies, and the dot denotes a derivative with respect to the cosmological time. As Edwin Hubble discovered
in 1929 the parameter H is a measurable quantity. For example the current Hubble parameter, the Hubble constant,
is estimated to be H0 ≈ 7%/Gyr. Hubble constant is made of two contributions: a gravitational one and one due to
the cosmological constant. Wheeler’s spacetime foam [4, 5] suggests that a foamy structure leads to the cosmological
constant we see today. Cosmological models for the metric tensor field began with the one of Friedmann-Lemâıtre-
Robertson-Walker and were refined in various ways [6] in order to take care of the inhomogeneity and anisotropy of
spacetime predicted by a quantum vacuum. These calculations have macroscopic consequences at the level of the
description of the Universe evolution. In the sense that a(t) can have various different functional forms: respect
to the current situation it can remain constant, it can grow exponentially or with other laws, or it can even bend
downwards with some law. Through the Universe exploration we can hope to be able to at least have some indirect
insight on the effect of temperature on the spacetime vacuum. One crucial step in our formulation is assuming that
the vacuum energy density and its temperature are constant in cosmological time and uniform in cosmological space.
In this respect the energy density of the spacetime vacuum ρvacuum is conceptually different from the energy density of
matter ρmatter in the Universe: while the matter mass has to be considered a constant during the Universe evolution
so that ρmatter ∝ a(t)−3 the vacuum is created or destroyed during the Universe expansion or contraction with ρvacuum
kept constant. In other words the spacetime vacuum behaves like a fluid occupying a larger or smaller volume but
keeping its density constant. So it behaves like a cosmological constant in the Universe evolution. We may consider
this fluid as the source of dark energy.

Our virial temperature is conceptually different from the Davies-Unruh [7, 8] local temperature. The latter is in fact
defined as TDU = h̄g/2πckB ≈ 4.06× 10−21 Ks2m−1 × g where g is the proper uniform acceleration of a detector in
vacuum. Therefore while our virial temperature is a gravitational one ascribed to the spacetime by the stress-energy
tensor, the one of Davies-Unruh is not, it cannot be derived from the Einstein field equations since the detector is not
following a geodetic of the spacetime.

The fluids in nature (photon liquid, electron liquid, neutron liquid, ...) carry a temperature which through the
stress-energy tensor determines the “virial temperature” of spacetime [1] which in turn excites the pure state of the
quantum vacuum stimulating particle-antiparticle production and recombination. We can then talk of the temperature
of the quantum vacuum of spacetime.

We will now first discuss about the structural properties of the quantum vacuum for a real massless scalar field
permeating the spacetime of a Local Lorentz Frame (LLF) and later extend our discussion to the case of General
Relativity (GR). From our recent work [1] follows that ⟨R⟩β ≈ 16πGT /c4ῡ where the term on the left hand side is
the thermal average of R, the Ricci curvature scalar, and, on the right hand side, G is Newton universal gravitation
constant, c is the speed of light, T is our “virial temperature” of spacetime and ῡ is a constant carrying the dimensions
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of length squared divided by energy. So in flat space R = 0, T = 0 and the Minkowsky spacetime quantum vacuum
structure will not depend on temperature. On the other hand in GR we will be able to determine an approximation
that takes care of the dependence of the vacuum spacetime structure from our temperature T .

II. DISCUSSION

In Ref. [6] the simple case of a real massless scalar field in flat Minkowski spacetime is considered 1

ϕ(t, r) =

∫
dk

(2π)3/2
√
2ω

[
ake

−i(ωt−k·r) + a†ke
i(ωt−k·r)

]
, (2.1)

where the temporal frequency ω and the spatial frequency k are related by ω = |k| in natural units h̄ = c = 1.
The vacuum pure state |0⟩ is defined by

ak|0⟩ = 0 ∀k (2.2)

and a†k|0⟩ = |ω,k⟩ with ⟨ω,k′|ω,k⟩ = δ(k − k′) so that the vacuum expectation value of the square modulus of the
field, ⟨ϕ2(t, r)⟩0 = ⟨0|ϕ2(t, r)|0⟩ = Λ2/8π2 with |k| = Λ a high-energy (ultraviolet) cutoff. In Eq. (2.1) the first term
creates an antiparticle in the sense of Dirac and the second a particle.

The vacuum state is an eigenstate of the Hamiltonian H =
∫
dr T00 = 1

2

∫
dkω (aka

†
k + a†kak), where T00(t, r) =

1
2 [ϕ̇

2 + (∇ϕ)2]. But it is not an eigenstate of the energy density T00. This fact gives rise to a non trivial vacuum
structure. Direct calculation (See appendix A of Ref. [6]) shows that the pair correlation function

g(x, x′) = 1− ρ(2)(x, x′)
2
3ρ

2
, (2.3)

where x = (x0, x1, x2, x3) = (t, r), x′ = (t′, r′) are two spacetime events and

ρ = ρ(1)(x) = ⟨T00(x)⟩0, (2.4a)

covariance(ρ) = ρ(2)(x, x′) = ⟨{[T00(x)− ρ(1)(x)][T00(x
′)− ρ(1)(x)]}⟩0. (2.4b)

where {AB} = 1
2 (AB + BA) for any two operators A and B, and a simple calculation shows that ρ = Λ4/16π2

is a constant over spacetime and can be considered as the energy “density” of spacetime vacuum. After a lenghty
calculation we 2 find the following result

ρ(2)(x, x′) =
1

2

∫
dk dk′

(2π)6
(ωω′ − k · k′)2

2ω2ω′ cos[(ω − ω′)∆t− (k + k′) ·∆r], (2.5)

where ∆t = t− t′ and ∆r = r − r′.
As can be seen from Fig. 1 the pair correlation function of (2.3) reveals an inhomogeneous and anisotropic spacetime

vacuum. It can also be easily shown that ρ(2)(x, x) = 2
3ρ

2 so that g(0) = 0 which can be pictured as a spacetime
vacuum hole at events contact and on the other hand g → 1 at large events separation which can be interpreted as
a decorrelation among spacetime events of the vacuum which becomes uniform and isotropic on a large spacetime
scale. From the figure we see how both the time like pair correlation function at |r − r′| = 0 and the space like one
for t− t′ = 0 grow monotonously towards the uniform and isotropic spacetime at large events separation.
In this picture there is no space left for a “temperature” of the vacuum. Instead we expect the structure of the

spacetime vacuum to feel and depend on temperature too.
In a recent work [1] we introduced and defined a “virial temperature” of General Relativity (GR) spacetime. Aim of

the present work is to determine how that temperature can affect the structure of the quantum vacuum of spacetime.
Note that the result of Eq. (2.3) and Fig. 1 looses any value in GR. In fact the covariance of Eq. (2.4b) is inherently

non local and its calculation in a LLF will not be useful in GR.
Now in GR the stress-energy tensor for the massless scalar field ϕ becomes, for a generic spacetime metric gµν ,

Tµν = ϕ,µϕ
†
,ν − 1

2
gµνϕ

,αϕ†
,α (2.6)

1 Note that the integral measure here is chosen to be not Lorentz invariant in order to simplify the later structure calculation of the
vacuum.

2 We found a sign error in their Eq. (A3).
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FIG. 1. The LLF pair correlation function g(ξ) of Eq. (2.3): when the separation of the events x and x′ is time-like for r = r′,
∆ξ = |t− t′| and when it is space-like for t = t′, ∆ξ = |r − r′|.

where a comma stands for a partial derivative and we allow the field to be complex for the sake of more generality.
According to Einstein field equations the stress-energy tensor of the scalar field will induce a curvature of the

spacetime

⟨Gµν⟩0 = 8π⟨Tµν⟩0, (2.7)

where Gµν is Einstein tensor and we are using Planck natural units h̄ = c = G = kB = 1. Once again ⟨. . .⟩0 stands
for a quantum vacuum expectation value ⟨0| . . . |0⟩. In our previous work [1] we defined the most natural thermal
average for spacetime that we will here indicate with the notation ⟨. . .⟩β where β = 1/T is the inverse temperature
3 . We will then more correctly need to average Eq. (2.7) like so

⟨⟨Gµν⟩0⟩β = 8π⟨⟨Tµν⟩0⟩β . (2.8)

Note that while the thermal average ⟨. . .⟩β acts only on the spacetime metric gµν the vacuum expectation value ⟨. . .⟩0
acts only on the field on the right hand side of Eq. (2.7). On the left it has no effect and we can then rewrite

⟨Gµν⟩β = 8π⟨⟨Tµν⟩0⟩β . (2.9)

For example for the energy density we will find

⟨⟨T00⟩0⟩β = ⟨|ϕ̇|2⟩0 −
1

2
⟨g00 gµν⟩β⟨ϕµ

, ϕ
†ν
, ⟩0, (2.10)

where as usual there is a hidden summation over repeated lower and upper indexes.
In Ref. [1] we were also able to render explicit the temperature. One simply has to trace out the stress-energy

tensor like so

T = − ῡ

4
⟨Tµ

µ ⟩β , (2.11)

where Tµ
µ = −gµνϕ

µ
, ϕ

†ν
, is the stress-energy tensor trace. Taking a vacuum expectation value of this expression we

find

T =
ῡ

4
⟨gµν⟩β⟨ϕµ

, ϕ
†ν
, ⟩0. (2.12)

We will then redefine the first two n−points energy density correlation functions, now in GR

ρ = ρ(1)(x) = ⟨⟨T00(x)⟩0⟩β , (2.13a)

covariance(ρ) = ρ(2)(x, x′) = ⟨⟨{[T00(x)− ρ(1)(x)][T00(x
′)− ρ(1)(x)]}⟩0⟩β , (2.13b)

3 In Planck units the spacetime temperature T varies on Planck energy scale
√

h̄c5/G = 1.9561× 109 J.
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which extend Eqs. (2.4a)-(2.4b) to full GR. We will assume that the field can still be written as in Eq. (2.1). We can
then again easily calculate the two vacuum expectation values in Eq. (2.10)

⟨|ϕ̇|2⟩0 =
Λ4

16π2
, (2.14)

⟨ϕµ
, ϕ

†ν
, ⟩0 =

∫
dk

(2π)3
pµpν

2p0
, (2.15)

where p = (p0, p1, p2, p3) = (ω,k) is the four momentum. But we will now follow a different route. We will make the
following approximation in Eq. (2.10)

⟨g00 gµν⟩β ≈ ⟨g00⟩β⟨gµν⟩β (2.16)

which allows to use the result of Eq. (2.12) to find

ρ = ⟨|ϕ̇|2⟩0 −
2T

ῡ
⟨g00⟩β . (2.17)

Assuming furthermore that

⟨g00⟩β
ῡ

≈ κ, (2.18)

a constant independent from temperature, we finally reach the following result 4

ρ =
Λ4

16π2
− 2κT , (2.19)

where the two approximations (2.16) and (2.18) follow a mean tensor field spirit.
Repeating now the calculation carried on for the LLF we now find from Eq. (2.13b)

ρ(2)(x, x′) = −
∫

dk dk′

(2π)6

(
ωω′ − 1

2 ⟨g00⟩β⟨gµν⟩βp
µp′ν

)2
2ω2ω′ cos[(ω − ω′)∆t− (k − k′) ·∆r], (2.20)

which correctly reduces to (2.5) when gµν = ηµν = diag{−1, 1, 1, 1}.
We can further think about a third approximation in order to make some progress towards an insight on the pair

correlation function of the quantum vacuum of full GR spacetime. a first guess could be for example the following

ρ(2)(x, x′) ≈
∫

dk dk′

(2π)6

[
ωω′ − 2κ̄T k · k′/(kk′)

]2
2ω2ω′ cos[(ω − ω′)∆t− (k + k′) ·∆r], (2.21)

where κ̄ is a constant of dimension of energy. The pair correlation function,

g(x, x′) = 1− ρ(2)(x, x′)

ρ(2)(x, x)
, (2.22)

ρ(2)(x, x) ≈
(

Λ4

16π2

)2

+
Λ4(κ̄T )2

48π4
. (2.23)

is shown in Fig. 2. From the figure we see how at low temperature the temporal structure of the spacetime quantum
vacuum starts oscillating around the uniform and isotropic large separation limit. On the other hand the spatial
structure remains monotonic. We then see how GR allows for a “density” and “temperature” dependence of the
spacetime quantum vacuum. Notwithstanding the three approximations made and the assumption on the functional
form of the scalar field our final result could be of some value as an application of our Statistical Theory of Gravity
[1–3].

III. CONCLUSIONS

In this brief paper we showed how the unification of the Theory of General Relativity and of Statistical Physics
allows to treat the quantum vacuum as a spacetime “fluid” with a structure which depends on the (energy) density
and on our [1–3] (virial) temperature.

This “fluid” could offer a clue to the search for the dark energy which we today think is the missing ingredient
necessary to explain experimental observations of our cosmos.

4 Note that our virial temperature is a local quantity which can only [1] depend on space, so T = T (r) in the most general case. In a
cosmological model we will assume it to be uniform throughout the whole Universe.
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FIG. 2. The GR pair correlation function g(ξ) of Eq. (2.22) at two temperatures T = 0, 1: when the separation of the events
x and x′ is time-like for r = r′, ∆ξ = |t− t′| and when it is space-like for t = t′, ∆ξ = |r − r′|.
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