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We propose a new Quantum Simulation Method for a many Fermions liquid at finite (non-zero)
temperature. The new scheme expands the high temperature density matrix on the overcomplete
set of single particles coherent states of John Rider Klauder instead of plane waves as is usually done
in conventional path integral methods. One is free to tune the elastic constant or the mass of the
Harmonic Oscillator subtending the coherent states so as to maximize the computational efficiency
of the numerical algorithm. We suggest that by choosing the oscillator extremely stiff could realize
this maximization and thereby allow the use of larger timesteps.

I. INTRODUCTION

We describe a new algorithm able to simulate a quantum liquid at finite temperature through the cooperation of
Coherent States (CS) [1–6] and the Path Integral Monte Carlo (PIMC) method [7]. The algorithm, that we will call
Coherent States Path Integral Monte Carlo (CSPIMC), reconstructs the equilibrium hot thermal density matrix of
a many body system of particles at each small imaginary time step thanks to the properties of the single particle
coherent states that form an overcomplete set [1–6]. The coherent state is a state of minimal uncertainty which is
defined to be the (unique) eigenstate of the annihilation operator of a Harmonic Oscillator (HO) and as such it is
described by a wave function whose probability distribution is a Gaussian. The information on the thermal density
matrix after a sufficiently big number of sufficiently small imaginary time steps τ , so to reach the desired finite
inverse temperature β, is then reconstructed into a path integral through the PIMC calculation. As usual we take
β = 1/kBT = Mτ with kB Boltzmann’s constant, T the absolute temperature, and M the number of time steps
discretizations between 0 and β.
We suggest that this way of simulating a Quantum Many Body (QMB) system of Fermions may allow to choose

larger timesteps τ which will make the Monte Carlo algorithm more efficient. This will not solve the sign problem
of Feynman [8, 9] which is still an open problem in statistical physics. In particular we see, as is clearly shown in
Appendix C, that choosing the HO mass big enough allows to work at larger timesteps.

Our novel Quantum Monte Carlo (QMC) algorithm adds to the rich variety of similar methods for a finite tem-
perature numerical experiment starting from the conventional simulations of D. M. Ceperley [7], passing to the
worm-algorithm of M. Boninsegni [10], to end to the pair-product approximation used by E. W. Brown [11]. All these
Monte Carlo methods hinge on the Metropolis algorithm [12, 13].

If, from one side, we do not need to specify further the primitive approximation [7] for the potential energy action,
on the other side, we will make a rather brute force approximation for the kinetic action that hinges on the peculiar
properties of coherent states. We will worry about the mathematical rigor of the primitive approximation proposed
here or about its refinements [7] in future works. This could be important also to further reduce the computational
efficiency of the simulation.

II. THE ALGORITHM

Let us consider a many body system of N Fermions with positions Q = (q1, q2, . . . , qN ) and momenta P =
(p1,p2, . . . ,pN ) at thermal equilibrium at a finite temperature T .
The equilibrium statistical mechanics description of the many body Fermions requires the knowledge of the thermal

density matrix operator ρ̂ = exp(−βĤ) where Ĥ is the Fermions Hamiltonian operator, β = 1/kBT is the “inverse
temperature”, and kB is the Boltzmann’s constant.
The thermal density matrix satisfies to the Bloch equation

∂ρ̂

∂β
= −Ĥρ̂. (1)

If we know the eigenstates and eigenvalues of the Hamiltonian, |Ψi⟩ and Ei, we can use the completeness of this
system of orthonormal states to write the position representation of the density matrix as follows

ρ(Q,Q′;β) = ⟨Q|ρ̂|Q′⟩ =
∑
i

⟨Q|Ψi⟩e−βEi⟨Ψi|Q′⟩. (2)
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Otherwise, in the high temperature limit we can neglect terms of orders higher than one in the small τ in the
Baker–Campbell–Hausdorff formula to find [7]

ρ(Q,Q′; τ) = ⟨Q|e−τĤ |Q′⟩ ≈ ⟨Q|e−τT̂ e−τV̂ |Q′⟩, (3)

where Ĥ = T̂ + V̂ = P̂ 2/2m + V (Q), m is the particles mass, and P̂ = −i(∇q1
,∇q2

, . . . ,∇qN
); here and in the

following we choose h̄ = 1.
Taking τ = β/M withM a large integer we can then reconstruct the finite temperature density matrix using Trotter

formula in the following successive ‘convolutions’ [7, 14] as usual

ρ(Q,Q′;β) =

∫
ρ(Q,Q1; τ) · · · ρ(QM−1, Q

′; τ) dQ1 · · · dQM−1. (4)

Since ρ̂ ≈ e−τT̂ e−τV̂ =
∏

α e
−τT̂αe−τV , where T̂α is the kinetic energy of particle α and the exponential containing

the potential is diagonal in position space and just a multiplicative factor, then the many body state |Υa⟩ factorizes
into a product of single particle states

∏
α |ψa

α⟩

|Υa⟩ =
N∏

α=1

|ψa
α⟩, (5)

where a labels the set of many body states which inherit the overcompleteness of the single particles states.
Antisymmetrizing so to satisfy Fermi statistics, we find

|Υa⟩⟨Υa| =
1

N !

∑
P

(−)P
N∏

α,β=1

|ψa
α⟩⟨ψa

Pβ | =
1

N !
det|| |ψa

α⟩⟨ψa
β | ||, (6)

where P is any of the N ! permutations of the N particles.
Now we can take as the single particle states |ψa

α⟩ the coherent states [1–6]

|ψa
α⟩ ≡ |qa,pa⟩ = e−iqa·p̂αeipa·q̂α |0⟩, (7)

where |0⟩ is the ground state of the three dimensional Harmonic Oscillator of elastic constant k along all three
dimensions. The coordinate representation of this state is

ψa(qα) ≡ ⟨Q|qa,pa⟩ =
(mh.o.ω

π

)3/4

e
−mh.o.ω

2

[
qα−

√
2

mh.o.ω
Re(a)

]2
+iqα·

√
2mh.o.ωIm(a)−i2Re(a)·Im(a)

, (8)

a =
1√

2mh.o.ω
(mh.o.ωqa + ipa), (9)

where ω =
√
k/mh.o. is the angular frequency of the Harmonic Oscillator of elastic constant k and mass mh.o..

This way we obtain the thermal density matrix at a finite inverse temperature β through the multiple-‘convolution’
integral (4), but with

ρ(Q,Q′; τ) ≈ e−K(Q,Q′;τ,m,k,mh.o.)e−τV (Q′) (10)

= e−τV (Q′) 1

N !

∑
P

(−)P
∏
α

ζα

[
qPα|q′

α; τ,m, k,mh.o.

]
, (11)

where K is the kinetic part of the semiclassical action depending on the expansion of |Υa⟩ on the single particle
coherent states of Eq. (6), ζ is defined in Eq. (A8) in Appendix A and its primitive approximation is determined in
Eqs. (C3), of Appendix C, k is the elastic constant of the Harmonic Oscillator, and mh.o. is its mass.
So that in the M → ∞ limit the Trotter formula (4) becomes a path integral made of the M high temperature

density matrices at each time step [14].
Note that if we choose an extremely stiff Harmonic Oscillator, i.e. one such that mh.o.ω → ∞, then the Gaussian

|ψa
α(q)|2 of Eq. (8) reduces to a Dirac δ centered on the position q only. We suggest that this may allow the use of

larger timesteps in Eq. (4) that reduces to the path integral. And this will increase the efficiency of the MC algorithm.
As usual in order to measure an observable Ô we need to calculate ⟨Ô⟩ = tr(ρ̂Ô)/tr(ρ̂). This requires to impose

periodic boundary conditions on the imaginary time so that ρ(Q,Q′; t) = ρ(Q,Q′; t+ β).



3

Moreover in a simulation we want to mimic the thermodynamic limit as close as possible and this is usually obtained
enforcing spatial periodic boundary conditions juxtaposing an infinite number of identical copies of the simulation
box of volume Ω = L1L2L3 along the three dimensions. This can be easily obtained by taking for each particle
qα + L = qα, i.e a periodic box. Of course as Ω increases we will mimic the thermodynamic limit closer and closer.
One usually refers to this feature of a computer experiment as the finite size error. This can be obtained with the
expansion in coherent states by taking the following infinite sum [15] at the end

ζα → ζLα =

∞∑
i,j=−∞

ζα

[
q + iL|q′ + jL; τ,m, k,mh.o.

]
, (12)

where we assumed L1 = L2 = L3 = L for simplicity.

III. CONCLUSIONS

We propose a new Quantum Simulation Method for a many Fermions liquid. The method creates a bridge between
Coherent States (CS) [1–6] and conventional Path Integral Monte Carlo (PIMC) [7] merged together into a Coherent
State Path Integral Monte Carlo (CSPIMC) method. The idea hinges upon expanding the high temperature density
matrix on the overcomplete set of single particles coherent states of John Rider Klauder [1–6]. As the stiffness of
the subtending Harmonic Oscillator (HO) varies from low values to very high values the coherent states probability
distribution changes from Gaussian to Dirac delta like. We believe that going towards a more and more stiff HO the
resulting extremely spiked coherent states could render the Quantum Monte Carlo (QMC) simulation more and more
efficient since one is allowed to work with larger timesteps.

We are often interested in the ensemble thermal average ⟨Ô⟩ = tr(ρ̂Ô)/tr(ρ̂) of an observable O at a given finite
inverse temperature β. Using the coordinate representation for the density matrix ρ̂, as in Eq. (4), we find the sought
for path integral expression. A key ingredient is the high temperature density matrix at a small inverse temperature
τ . This is made up of two pieces: a kinetic energy operator and a potential energy factor. We find the explicit
analytic primitive approximation form of the kinetic operator. Being this a product of single particles kinetic energy
operators it is possible to expand it in the overcomplete set of single particles Klauder coherent states. The result is
summarized into the ζ function of Eqs. (C3). In particular we see from that equation that is necessary to introduce
some ‘ghost variables’ along the path integral that will become

ρ(Q,Q′;β) =
1

N !

∑
P

(−)P
∫
Q(0)→PQ(β)
Qa(0)→Qb(β)
Pa(0)→Pb(β)

e−
∫ β
0

Pa(t)2

2m +V [Q(t)] dt

β∏
t=0

N∏
α=1

ψa
α(q

′)ψb
α

∗
(q)Ga,b

DQaDPa

(2π)3N
DQ, (13)

where Qa = (qa1, . . . , qaN ) and Pa = (pa1, . . . ,paN ), Qb = (qb1, . . . , qb1) and Pb = (pb1, . . . ,pbN ) are ‘ghost
variables’, Ga,b is the normalization factor of two coherent states as defined in Eq. (A4), and ψa

α(q) is the coherent
state as defined in Eq. (8). Notice that the antisymmetrization is only necessary on the real variable.

Our calculation shows that for a very stiff HO the high temperature kinetic energy density matrix tend to become
extremely peaked. We suggest that this could allow an improvement in the efficiency of the QMC algorithm where
one can use larger timesteps.

I would like to thank prof. John Rider Klauder for transmitting me the passion for coherent states and all the
‘family’ of the Physics Department in Gainesville at the University of Florida which invited me to participate at the
Memorial Conference held on 15 February 2025 in honor of the professor path in life and science. The professor passed
away on 24 October 2024 at 92 years of age.

Appendix A: Determination of K in Eq. (10)

From Eq. (3) and inserting the resolution of the identity from Eq. (6) in terms of the complete set of coherent
states two times we find [16]

ρ(Q,Q′; τ) ≈ 1

N !2

∑
a,b

⟨Q|det|| |ψa
α⟩⟨ψa

β | ||e−τT̂det|| |ψb
α⟩⟨ψb

β | || |Q′⟩e−τV (Q′). (A1)
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Now the two antisymmetrizations are redundant and one can safely keep just one of the two. Moreover the only left
antisymmetrization can be transferred from the quantum numbers labeling the coherent single particle states to their
positions. We then find

ρ(Q,Q′; τ) ≈ 1

N !

∑
P

(−)P
∑
a,b

∏
α,β

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

β |e−τT̂α |ψb
α⟩⟨ψb

β |Q′⟩e−τV (Q′)

=
1

N !

∑
P

(−)P
∑
a,b

∏
α

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

α|e−τT̂α |ψb
α⟩⟨ψb

α|Q′⟩e−τV (Q′), (A2)

where we decided to keep the antisymmetrization only on the left positions and in the last equality we used the
following orthogonality condition among single particle coherent states

⟨ψa
β |ψb

α⟩ = Ga,bδα,β , (A3)

where δ is a Kronecker delta symbols and

Ga,b = e−
1
2 (|a|

2+|b|2)+a∗·b+ i
2 (qa·pa−qb·pb), (A4)

a =
1√

2mh.o.ω
(mh.o.ωqa + ipa), (A5)

b =
1√

2mh.o.ω
(mh.o.ωqb + ipb), (A6)

here ω =
√
k/mh.o. is the angular frequency of the Harmonic Oscillator of elastic constant k and mass mh.o..

We then find from Eq. (10)

e−K(Q,Q′;τ,m,k) =
1

N !

∑
P

(−)P
∏
α

∑
a,b

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

α|e−τ p̂2
α/2m|ψb

α⟩⟨ψb
α|q′

1, . . . , q
′
N ⟩ (A7)

≡ 1

N !

∑
P

(−)P
∏
α

ζα

[
qPα|q′

α; τ,m, k,mh.o.

]
, (A8)

where ⟨Q|ψa⟩ = ⟨Q|qa,pa⟩ is the position representation of the single particle coherent state. The element

⟨ψa
α|e−τT̂α |ψb

α⟩ is founs in Appendix B. The function ζ is defined in Eq. (A8) and determined in Appendix C.

Appendix B: Calculation of the element of Eq. (A7)

We want here calculate explicitly the matrix element of Eq. (A7). We can then think that we find

⟨ψa
α|e−τT̂α |ψb

α⟩ ≈ ⟨ψa
α|ψb

α⟩e−τp2
b/2m (B1)

= Ga,be
−τp2

b/2m, (B2)

where in the second equality we used the exact normalization factor of Eq. (A4). The approximation in Eq. (B1)
is rather suggestive and extremely handy. We can think that it may be ‘washed away’ for small τ . In any case this
is a rather subtle issue that still asks for mathematical rigor. We need to think that this high temperature matrix
element should be able to reconstruct the finite temperature density matrix as an exact path integral [17].

Appendix C: Determination of ζ

We have from the definition in Eq. (A8)

ζα

[
q|q′; τ,m, k,mh.o.

]
≡

∑
a,b

⟨q|ψa
α⟩⟨ψa

α|e−τT̂α |ψb
α⟩⟨ψb

α|q′⟩ (C1)

=

∫
dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)⟨ψa

α|e−τT̂α |ψb
α⟩ (C2)

≈
∫
dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)Ga,be

−τp2
b/2m, (C3)
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where ψa
α(q) is the coordinate representation of the single α particle coherent state of Eq. (8) and the propagator

⟨ψa
α|e−τT̂α |ψb

α⟩ has been approximated in Eq. (B2) of Appendix B. Eq. (C3) can be integrated with a simple Monte
Carlo scheme (see Fig. 1) and this will give us a primitive approximation for ζ. These additional integrations over
(qa,pa) and (qb,pb) must be carried out at each timestep but Monte Carlo will not suffer critically since it is able
to treat highly multidimensional integrals. We will then reach a path integral both on the particles positions and
on ghost variables at two next time steps. The ghost variables are the canonical pair of labels from the continuous
representation of Klauder. As it should be, in the τ → 0 limit, also within the approximation (B1) we will have,

ζα

[
q|q′; τ,m, k,mh.o.

]
τ→0−−−→ ⟨q|q′⟩ = δ(q − q′), (C4)

where δ is a Dirac delta function. The τ → 0 limit washes away the k,mh.o. dependence. On the other hand choosing
a stiff harmonic oscillator, i.e. one with an high mass, the ζ function width diminishes, as is shown in Fig. 1. This
will allow to choose bigger timesteps in the path integral, thereby reducing the computational cost.
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FIG. 1. We show the one dimensional ζ1D(q|q′; τ,m, k,mh.o.) calculated with a Monte Carlo scheme using 107 (with the related
statistical error) sampling points and choosing smaller and smaller timestep τ . All the four integrations over the ghost variables
(qa, pa) and (qb, pb) were chosen in the interval [−10, 10] (with the related finite size error). On the left mh.o. = 1 on the right
mh.o. = 10.
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