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We propose a new Quantum Simulation Method for a many Fermions liquid at finite (non-zero)
temperature. The new scheme expands the high temperature density matrix on the overcomplete
set of single particles coherent states of John Rider Klauder instead of plane waves as is usually done
in conventional path integral methods. One is free to tune the elastic constant or the mass of the
fiducial Harmonic Oscillator subtending the coherent states so as to maximize the computational
efficiency of the numerical algorithm. We suggest that by choosing the oscillator extremely stiff
could realize this maximization and thereby alleviate the Fermi sign problem of Feynman.
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I. INTRODUCTION

We describe a new algorithm able to simulate a quantum liquid at finite temperature through the cooperation of
Coherent States (CS) [1–3] and the Path Integral Monte Carlo (PIMC) method [4]. The algorithm, that we will call
Coherent States Path Integral Monte Carlo (CSPIMC), reconstructs the equilibrium hot thermal density matrix of
a many body system of particles at each small imaginary time step thanks to the properties of the single particle
coherent states that form an overcomplete set [1, 2]. The coherent state is a state of minimal uncertainty which
is defined to be the (unique) eigenstate of the annihilation operator of a fiducial Harmonic Oscillator and as such
it is described by a wave function whose probability distribution is a Gaussian. The information on the thermal
density matrix after a sufficiently big number of sufficiently small imaginary time steps τ , so to reach the desired
finite inverse temperature β, is then reconstructed into a path integral through the PIMC calculation. As usual we
take β = 1/kBT =Mτ with kB Boltzmann’s constant, T the absolute temperature, and M the number of time steps
discretizations between 0 and β.
We suggest that this way of simulating a Quantum Many Body (QMB) system of Fermions may overcome the

infamous sign problem of Feynman [5, 6] which is still an open problem in statistical physics. In particular we see
that choosing the product of the HO mass and its angular frequency big we will increase the importance of correlation
effects over the exchange effects in the numerical experiment.
Our novel Quantum Monte Carlo (QMC) algorithm adds to the rich variety of similar methods for a finite tem-

perature numerical experiment starting from the conventional simulations of D. M. Ceperley [4], passing to the
worm-algorithm of M. Boninsegni [7], to end to the pair-product approximation used by E. W. Brown [8]. All these
Monte Carlo methods hinge on the Metropolis algorithm [9, 10].

If we do not need to specify further the primitive approximation [4] for the potential energy action we will expand
the kinetic action up to order one in τ . We will worry about refinements of the algorithm in future works. In particular
considering higher orders expansions in τ may allow to diminish the computational cost of the simulation.
As is clearly shown in Appendix C it is convenient to work with a stiff HO, i.e. one for which the angular frequency

is small but the product of its mass and its angular frequency is big.

II. THE ALGORITHM

Let us consider a many body system of N Fermions with positions Q = (q1, q2, . . . , qN ) and momenta P =
(p1,p2, . . . ,pN ) at thermal equilibrium at a finite temperature T .
The equilibrium statistical mechanic description of the many body Fermions requires the knowledge of the thermal

density matrix operator ρ̂ = exp(−βĤ) where Ĥ is the Fermions Hamiltonian operator, β = 1/kBT is the “inverse
temperature”, and kB is the Boltzmann’s constant.
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The thermal density matrix satisfies to the Bloch equation

∂ρ̂

∂β
= −Ĥρ̂. (2.1)

If we know the eigenstates and eigenvalues of the Hamiltonian, |Ψi⟩ and Ei, we can use the completeness of this
system of orthonormal states to write the position representation of the density matrix as follows

ρ(Q,Q′;β) = ⟨Q|ρ̂|Q′⟩ =
∑
i

⟨Q|Ψi⟩e−βEi⟨Ψi|Q′⟩. (2.2)

Otherwise, in the high temperature limit we can use the primitive approximation to the density matrix [4]

ρ(Q,Q′; τ) = ⟨Q|e−τĤ |Q′⟩ ≈ ⟨Q|e−τT̂ e−τV̂ |Q′⟩, (2.3)

where Ĥ = T̂ + V̂ = P̂ 2/2m+ V (Q), m is the particles mass, and P̂ = −i(∇q1
,∇q2

, . . . ,∇qN
), where here and in the

following we choose h̄ = 1. In the last approximation we simply neglected the terms of order τ2 and higher in the
Baker–Campbell–Hausdorff formula.
Taking τ = β/M withM a large integer we can then reconstruct the finite temperature density matrix using Trotter

formula as follows

ρ(Q,Q′;β) =

∫
ρ(Q,Q1; τ) · · · ρ(QM−1, Q

′; τ) dQ1 · · · dQM−1. (2.4)

Since for the high temperature density matrix we can neglect the commutator of the kinetic part of the Hamiltonian

and the potential energy so that ρ̂ ≈ e−τT̂ e−τV̂ =
∏

α e
−τT̂αe−τV , where T̂α is the kinetic energy of particle α and

the exponential containing the potential is diagonal in position space and just a multiplicative factor. Then the many
body state |Υa⟩ factorizes into a product of single particle states

∏
α |ψa

α⟩

|Υa⟩ =
N∏

α=1

|ψa
α⟩, (2.5)

where a labels the set of many body states which inherit the overcompleteness of the single particles coherent states.
Antisymmetrizing so to satisfy Fermi statistics, we find

|Υa⟩⟨Υa| =
∑
P

(−)P
N∏

α,β=1

|ψa
α⟩⟨ψa

Pβ | = det|| |ψa
α⟩⟨ψa

β | ||, (2.6)

where P is any of the N ! permutations of the N particles.
Now we can take as the single particle states |ψa

α⟩ the coherent states [1–3]

|ψa
α⟩ ≡ |qa,pa⟩ = e−iqa·p̂αeipa·q̂α |0⟩, (2.7)

where |0⟩ is the ground state of the fiducial three dimensional Harmonic Oscillator of elastic constant k along all three
components. The coordinate representation of this state is

ψa(qα) ≡ ⟨Q|qa,pa⟩ =
(mh.o.ω

π

)3/4
e
−mh.o.ω

2

[
qα−

√
2

mh.o.ω
Re(a)

]2
+iqα·

√
2mh.o.ωIm(a)−iRe(a)·Im(a)

, (2.8)

a =
1√

2mh.o.ω
(mh.o.ωqa + ipa), (2.9)

where ω =
√
k/mh.o. is the angular frequency of the Harmonic Oscillator of elastic constant k and mass mh.o..

This is an alternative way to obtain the thermal density matrix at an inverse temperature β which still requires the
convolution integral (2.4), but with

ρ(Q,Q′; τ) ≈ e−K(Q,Q′;τ,m,k)e−τV (Q′) (2.10)

= e−τV (Q′)
∑
P

(−)P
∏
α

ζα

[
qPα|q′

α; τ,m, k,mh.o.

]
, (2.11)
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where K is the kinetic part of the semiclassical action depending on the expansion of |Υa⟩ on the single particle
coherent states of Eq. (2.6), ζ is defined in Eq. (A9) in Appendix A, k is the elastic constant of the Harmonic
Oscillator, and mh.o. is its mass.
So that in the M → ∞ limit the Trotter formula (2.4) becomes a path integral made of the M high temperature

density matrices at each time step.
Note that if we choose an extremely stiff Harmonic Oscillator, i.e. one with a big mass, mh.o. → ∞, so that ω → 0

and mh.o.ω → ∞, then the Gaussian |ψa
α(q)|2 of Eq. (2.8) reduces to a Dirac δ centered on the position q only. We

suggest that this may alleviate the Fermi sign problem [5, 6] of Feynman. In fact in that case Eq. (2.4) reduces to
a path integral with no kinetic entanglement between the single electrons subject to Pauli exclusion principle. And
correlation dominates over exchange.
As usual in order to measure an observable Ô we need to calculate ⟨Ô⟩ = tr(ρ̂Ô)/tr(ρ̂). This requires to impose

periodic boundary conditions on the imaginary time so that ρ(Q,Q′; t) = ρ(Q,Q′; t+ β).
Moreover in a simulation we want to mimic the thermodynamic limit as close as possible and this is usually obtained

enforcing spatial periodic boundary conditions juxtaposing an infinite number of identical copies of the simulation
box of volume Ω = L1L2L3 along the three dimensions. This can be easily obtained by taking for each particle
qα + L = qα, i.e a periodic box. Of course as Ω increases we will mimic the thermodynamic limit closer and closer.
One usually refers to this feature of a computer experiment as the finite size error. This can be obtained with the
expansion in coherent states by taking the following infinite sum [11] at the end

ζα → ζLα =
∞∑

i,j=−∞
ζα

[
q + iL|q′ + jL; τ,m, k,mh.o.

]
, (2.12)

where we assumed L1 = L2 = L3 = L for simplicity.

III. CONCLUSIONS

We propose a new Quantum Simulation Method for a many Fermions liquid. The method creates a bridge between
Coherent States (CS) [1, 2] and conventional Path Integral Monte Carlo (PIMC) [4] merged together into a Coherent
State Path Integral Monte Carlo (CSPIMC) method. The idea hinges upon expanding the high temperature density
matrix on the overcomplete set of single particles coherent states of John Rider Klauder [1, 2]. As the stiffness of
the subtending Harmonic Oscillator (HO) varies from low values to very high values the coherent states probability
distribution changes from Gaussian to Dirac delta like. We believe that going towards a more and more stiff fiducial
HO the resulting extremely spiked coherent states could render the Quantum Monte Carlo (QMC) simulation less
and less subject to the yet unsolved Fermi sign problem of Feynman.
We are often interested in the ensemble thermal average ⟨Ô⟩ = tr(ρ̂Ô)/tr(ρ̂) of an observable O at a given finite

inverse temperature β. Using the coordinate representation for the density matrix ρ̂, as in Eq. (2.4), we find the sought
for path integral expression. A key ingredient is the high temperature density matrix at a small inverse temperature
τ . This is made up of two factors: a kinetic energy factor and a potential energy factor. We find the explicit analytic
form (up to order one in τ) of the kinetic factor. Being this a product of single particles kinetic energy factors it is
possible to expand it in the overcomplete set of single particles Klauder coherent states. The result is summarized
into the ζ function of Eq. (C1).

Our calculation shows that for a very stiff HO the high temperature kinetic energy factor tend to become exponen-
tially small. We suggest that this could reduce the sign problem for Fermions since the kinetic coupling due to two
exchanging Fermions is dumped and therefore each term in the alternating series in the path integral mainly feels the
potential energy coupling. This means that correlation dominates over exchange. The loss in efficiency due to the
Fermi-Dirac statistics could be reduced by tuning the fiducial HO so as to have a stiff one during the simulation, i.e.
one for which mh.o. is big so that ω is small and mh.o.ω =

√
kmh.o. is big.

Appendix A: Determination of K in Eq. (2.10)

From Eq. (2.3) and inserting the resolution of the identity from Eq. (2.6) in terms of the complete set of coherent
states two times we find [12]

ρ(Q,Q′; τ) ≈
∑
a,b

⟨Q|det|| |ψa
α⟩⟨ψa

β | ||e−τT̂det|| |ψb
α⟩⟨ψb

β | || |Q′⟩e−τV (Q′). (A1)
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Now the two antisymmetrizations are redundant and one can safely keep just one of the two. Moreover the only left
antisymmetrization can be transferred from the quantum numbers labeling the coherent single particle states to their
positions. We then find

ρ(Q,Q′; τ) ≈
∑
P

(−)P
∑
a,b

∏
α,β

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

β |e−τT̂α |ψb
α⟩⟨ψb

β |Q′⟩e−τV (Q′)

=
∑
P

(−)P
∑
a,b

∏
α

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

α|e−τT̂α |ψb
α⟩⟨ψb

α|Q′⟩e−τV (Q′), (A2)

(A3)

where we decided to keep the antisymmetrization only on the left positions and in the last equality we used the
following orthogonality condition among single particle coherent states

⟨ψa
β |ψb

α⟩ = Ga,bδα,β , (A4)

where δ is a Kronecker delta symbols and

Ga,b = e−
1
2 (|a|

2+|b|2)+a∗
α·b+ i

2 (qa·pa−qb·pb), (A5)

a =
1√

2mh.o.ω
(mh.o.ωqa + ipa), (A6)

b =
1√

2mh.o.ω
(mh.o.ωqb + ipb), (A7)

where ω =
√
k/mh.o. is the angular frequency of the Harmonic Oscillator of elastic constant k and mass mh.o..

where remember that |0⟩ stands for the ground state of the Harmonic Oscillator of elastic constant k. This is
calculated in Appendix B.

We then find from Eq. (2.10)

e−K(Q,Q′;τ,m,k) =
∑
P

(−)P
∏
α

∑
a,b

⟨qP1, . . . , qPN |ψa
α⟩⟨ψa

α|e−τ p̂2
α/2m|ψb

α⟩⟨ψb
α|q′

1, . . . , q
′
N ⟩ (A8)

≡
∑
P

(−)P
∏
α

ζα

[
qPα|q′

α; τ,m, k,mh.o.

]
, (A9)

where ⟨Q|ψa⟩ = ⟨Q|qa,pa⟩ is the position representation of the single particle coherent states. The function ζ is
defined in Eq. (A9) and determined in Appendix C.

Appendix B: Calculation of the element of Eq. (A8)

We want here calculate explicitly the matrix element of Eq. (A8). We then find

⟨ψa
α|e−τT̂α |ψb

α⟩ =
⟨0|e−ipa·q̂αeiqa·p̂αe−τ p̂2

α/2me−iqb·p̂αeipb·q̂α |0⟩ = (B1)

⟨0|e−ipa·q̂αeiqa·p̂αe−iqb·p̂αeipb·q̂αe−τ [p̂α+pb]
2/2m|0⟩ = (B2)

⟨0|e−ipa·q̂αeiqa·p̂αe−iqb·p̂αeipb·q̂αe−τ [p̂2
α+2p̂α·pb+p2

b ]/2m|0⟩ = (B3)∑
n=0

⟨0|e−ipa·q̂αeiqa·p̂αe−iqb·p̂αeipb·q̂α |n⟩⟨n|1− τ [p̂2
α + 2p̂α · pb + p2

b ]/2m|0⟩+ o(τ) = (B4)[
1− τ

(
p2
b

2m
+
ω

4

)]
Ga,b + τ

√
2
ω

4
⟨0|e−ipa·q̂αeiqa·p̂αe−iqb·p̂αeipb·q̂α |2⟩+ o(τ). (B5)

where in the second equality we used Hadamard lemma

e−ipq̂eiqp̂f(q̂, p̂)e−iqp̂eipq̂ = f(q̂ + q, p̂+ p), (B6)

valid for any function f(q̂, p̂). In the fourth equality we used the fact that τ is small and the completeness of the

eigenstates |n⟩ of the Harmonic Oscillator of angular frequency ω =
√
k/mh.o., elastic constant k, and mass mh.o.. In

the last equality we used the orthogonality condition of Eq. (A5) for the coherent states.
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The last term of Eq. (B5) can be calculated expanding on the Fock states

⟨0|e−ipa·q̂αeiqa·p̂αe−iqb·p̂αeipb·q̂α |2⟩ =
e

i
2 (qa·pa−qb·pb)− 1

2 |b|
2

×∑
n,m=0

3∏
i=1

(a∗i )
n

√
n!

bmi√
m!

(⟨n|m+ 2⟩ − ⟨n|m+ 1⟩
√
2bi + ⟨n|m⟩

√
2b2i /2) = (B7)

e
i
2 (qa·pa−qb·pb)− 1

2 |b|
2

×∑
n,m=0

3∏
i=1

(a∗i )
n

√
n!

bmi√
m!

(
δn,m+2

√
(m+ 1)(m+ 2)

2
− δn,m+1

√
2(m+ 1)b∗i + δn,m

1√
2
b∗i

2

)
= (B8)

e
i
2 (qa·pa−qb·pb)− 1

2 |b|
2+a∗·b (a

∗ − b∗)2√
2

= (B9)

Ga,be
1
2 |a|

2 (a∗ − b∗)2√
2

, (B10)

where in the second equality we used the orthonormality of the Hermite polynomials ⟨n|m⟩ = δn,m and in the last
equality we used the definition of Ga,b of Eq. (A5).

So putting all this together we finally find

⟨ψa
α|e−τT̂α |ψb

α⟩ =
{
1− τ

[
p2
b

2m
+

3ω

4

(
1 + e

1
2 |a|

2

(a∗ − b∗)2
)]}

Ga,b + o(τ). (B11)

Appendix C: Determination of ζ

We have from the definition in Eq. (A9)

ζα

[
q|q′; τ,m, k,mh.o.

]
≡
∑
a,b

⟨q|ψa
α⟩⟨ψa

α|e−τT̂α |ψb
α⟩⟨ψb

α|q′⟩ (C1)

=

∫
dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)⟨ψa

α|e−τT̂α |ψb
α⟩ (C2)

=
∑
n=0

τnζ(n)α

[
q|q′;m, k,mh.o.

]
. (C3)

where ψa
α(q) is the coordinate representation of the single α particle coherent state of Eq. (2.8) and the propagator

⟨ψa
α|e−τT̂α |ψb

α⟩ has been determined in Eq. (B11) of Appendix B.

We immediately see that to order zero in τ we find for ζ
(0)
α ,

ζ(0)α

[
q|q′;m, k,mh.o.

]
=∫

dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)Ga,b =(

4

√
mh.o.ω

5π

)3

e−
mh.o.ω

10 (33q2−64q·q′+33q′2). (C4)

To first order in τ we find for ζ
(1)
α ,

ζ(1)α

[
q|q′;m, k,mh.o.

]
=

−
∫
dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)Ga,b

[
p2
b

2m
+
ω

4

(
1 + e

1
2 |a|

2

(a∗ − b∗)2
)]
.
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In the high mh.o. limit at fixed k we have ω → 0 and one finds

ζ(1)α

[
q|q′;m, k,mh.o.

]
→

−
∫
dqa dpa

(2π)3
dqb dpb

(2π)3
ψa
α(q)ψ

b
α

∗
(q′)Ga,b

p2
b

2m
=

1

2m

(
8

25

√
(mh.o.ω)3

5π

)3

e−
mh.o.ω

10 (33q2−64q·q′+33q′2)
3∏

i=1

[−55 +mh.o.ω(288q
2
i − 624qiq

′
i + 338q′2i )]. (C5)

To a first approximation for the high temperature density matrix we will neglect higher orders in τ .
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