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We compare two kinds of affine localizations in physics: the localization in a short range polaron
and the one in a Wick rotated Anderson stochastic model. The conditions on the interaction
potential necessary to see the transnational symmetry breaking localization phase transition is
identical in the two problems. We therefore suggest that they should belong to the same universality
class of the renormalization group for the localization phase transition.
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I. INTRODUCTION

In physics, phase transitions occur in a many body system only in the mathematical thermodynamic limit. In a
one body system it is necessary, on the other hand, to imagine a background that drives the body change of behavior
in correspondence of the phase transition. In this short work we will consider two examples of backgrounds. A
deterministic one made of a ionic crystal in the thermodynamic limit upon which the polaron moves and a stochastic
one made of a disordered medium with probability amplitudes of sites occupation. The former is the problem of a
polaron [1] and the latter is Wick rotation of the Anderson problem [2] where the thermodynamic limit is substituted
with a probabilistic description of the sites occupation. The change in behavior for the body observed in both systems
is that from an extended state to a localized state where we have a translational symmetry breaking. The existence of
the phase transition requires a short range interaction potential in both cases: the retarded potential for the polaron
and the site-site potential for the Anderson problem. The transition from one state to the other depends on the
temperature in both problems and on the coupling constant with the background, in the deterministic polaron case,
and on the width of the probability distribution of the stochastic noise giving rise to the “kinetic” energy contributing
for the jumps between sites, and on the sites density, in the Anderson case. In particular in order to have localization
in the polaron problem the temperature has to be small and/or the coupling large and in the Wick rotated Anderson
problem again the temperatures has to be small in order to observe the long imaginary time behavior, the variance
of the noise responsible for the random kick between sites has to be large, and the sites density has to be large.

We will then describe first the polaron localization problem and then theWick rotated Anderson localization problem
and suggest that the two should belong to the same universality class of the renormalization group describing the
physical localization phase transition. The scaling transformation generating the semigroup consist in a scaling of
the polaron position vector or of the site probability amplitudes vector. The former is d-dimensional with d the
dimensions of the space in which the polaron moves and the latter is N -dimensional with N the number of sites of
the random medium in the d-dimensional space.

It is no surprise that the Anderson problem has played a relevant role in the modellization of the Metal-to-Insulator-
Transition (MIT) [3, 4].

II. TWO KINDS OF LOCALIZATIONS

In this section we compare two kinds of affine localizations in physics: the localization in a short range (deterministic)
polaron and the one in the (Wick rotated) Anderson stochastic model.

A. Polaron localization

A polaron is an electron in a ionic crystal of volume Ω. The electron polarizes the lattice in its neighborhood. The
dispersion in a crystal has two branches: an optical branch ω(k) = ω > 0 independent of k and an acoustic branch
ω(k) = vk, with v > 0 the sound velocity, as k → 0. For concreteness we will carry on our discussion assuming a
three dimensional crystal.
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The Hamiltonian H = Hele + Hlat + Hint for the electron of mass m and the lattice is due to Fröhlich [1, 5, 6]

H =
p̂2

2m
+Ω

∫
dk

(2π)3
h̄ω(k)a†kak + iα

√
h̄

mv4
Ω

∫
dk

(2π)3
ω3/2(k)

k

[
a†ke

−ik·r − ake
ik·r

]
, (2.1)

where r is the electron position, p̂ = −ih̄∇ its conjugate momentum, a†k, ak are the creation and annihilation operators
for a phonon of dispersion relation ω(k) and momentum h̄k, and α is the adimensional coupling constant. We will
adopt units such as h̄ = m = v = 1.

Next we recall that the positions and momenta of the phonons are given by

qk =

√
1

2ω(k)
(a†k + a−k), (2.2)

pk = i

√
ω(k)

2
(a†−k − ak), (2.3)

defining a′k = −ia−k we find q′k = pk and p′k = −qk above and we can rewrite, dropping the primes,

H =
p̂2

2
+ Ω

∫
dk

(2π)3
1

2

[
p2k + ω(k)2q2k

]
+

√
2αΩ

∫
dk

(2π)3
ω2(k)

k
qke

ik·r, (2.4)

where we accomplished the task of rewriting the interaction term as a function of the electron and phonons positions
only.

Assume now that the system is in thermal equilibrium at an inverse temperature β = 1/kBT with kB the Boltzmann
constant and T the absolute temperature. We will also assume to be at very low temperature. We can then use a
path integral [6] to manipulate the polaron density matrix ρ = e−βH and write the partition function

Z = Tr
(
e−βH

)
=

∫
r(0)=r(β)
qi(0)=qi(β)

e−S Dr(u)Dq1(u)Dq2(u) · · · , (2.5)

where Tr(·) is the operator trace and the action integral S is

S =

∫ β

0

{
ṙ2(u)

2
+ Ω

∫
dk

(2π)3
1

2

[
q̇2k + ω(k)2q2k

]
+
√
2αΩ

∫
dk

(2π)3
ω2(k)

k
qke

ik·r
}

du. (2.6)

The path integral over the phonons in (2.5) can easily be performed [6] because q̇k and qk both appear quadratically
and linearly in the action (2.6). The result is 1

Z = Tr
(
e−βH

)
=

∫
r(0)=r(β)

e−SH Dr(u), (2.7)

SH =
1

2

∫ β

0

ṙ2(u) du− α2

2

∫ β

0

∫ β

0

Ω

∫
dk

(2π)3
ω3(k)

k2
eik·[r(t)−r(s)]e−ω(k)|t−s| dtds. (2.8)

For example for an optical polaron one finds [6] for the effective retarded interaction potential,

V eff
opt = −Ωα2ω3

8π

e−ω|t−s|

|r(s)− r(t)|
, (2.9)

whereas for an acoustic polaron one would get [7, 8],

V eff
aco = − Ωα2

(2π)2
1

|r(s)− r(t)|

∫ k0

0

dk k2 sin(k|r(s)− r(t)|)e−k|t−s|, (2.10)

where k0 is the Debye cutoff.
But one is free to choose even more exotic dispersion relations. For example for ω3(k)/k2 ∝ kγ−d as k → 0 then

V eff ∝ ∆r−γ for ∆r = |r(s) − r(t)| → ∞ with 0 < γ < d, γ ̸= d − 2 where d is the space dimension. Moreover V eff

will decay faster than any inverse power of ∆r whenever ω3(k)/k2 is analytic as k → 0 [9].

1 Here we are assuming to be working at low temperature when β is large. The exact result would require to substitute the term e−ω(k)|t−s|

with e−ω(k)|t−s|/[1− e−ω(k)β ] + eω(k)|t−s|e−ω(k)β/[1− e−ω(k)β ].
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The effective Hamiltonian for the polaron, after tracing out the phonons degrees of freedom, would then be

Hpol =
p̂2

2
+ V eff(∆r,∆t). (2.11)

with ∆r = |r − r′| and ∆t = |t− t′|. And the density matrix satisfies the effective Bloch equation

− ∂ρ

∂β
= Hpolρ. (2.12)

where the coordinate representation of the density matrix ρ(r, r′;β) satisfies the initial condition ρ(r, r′; 0) = δ(r−r′).

B. Anderson localization

We may think at the effective retarted interaction potential of the polaron problem as the Anderson site-site
potential V And [2] which determines the dynamics of his probability amplitude a(r, t). On the continuum, Anderson
equation reads

i
∂a(r, t)

∂t
= HAnda(r, t) = E(r, t)a(r, t) +

∫
dr′ V And(|r − r′|)a(r′, t), (2.13)

where E(r, t) is a stochastic variable 2 with unconditional probability p(E, r; t)dE that E(r, t) assumes values in
[E(r, t), E(r, t) + dE]. This probability distribution has a width W . Anderson discretizes the d-dimensional space
r = (x1, x2, . . . , xd) into a lattice made of N sites at rj for j = 1, 2, . . . , N in a volume Ω, with sites density n = N/Ω.

When studied in imaginary time t → −iβ, with β = 1/kBT the inverse temperature, through a Wick rotation,
Anderson equation (2.13) can be thought as the Bloch equation for a thermal density matrix aj at each lattice site.
Also, it is a Langevin equation where the first term on the right hand side is a noise term and the second term is a
drift term

−∂aj(β)

∂β
= Ej(β)aj(β) +

∑
i̸=j

V And
ji ai(β). (2.14)

We can then use Ito calculus [10] to write the Fokker-Planck equation corresponding to the stochastic differential
equation (2.14), which describes the time evolution of the transition probability p(a,a0;β − β0) that the stochastic
process assumes the values a = (a1, a2, . . . , aN ) at time β when it had assumed the values a0 at time β0.
Assuming that the noise term is characterized by Gaussian white noise Ej = ξj and calling W = ζ (see Appendix

A) one finds [10] 3

∂p(a,a0;β − β0)

∂β
= Λp(a,a0;β − β0), (2.15)

Λ =
∑
i̸=j

V And
ji ai

∂

∂aj
+

∑
i

∂2

∂a2i
a2i , (2.16)

p(a0,a0; 0) = 1, (2.17)

Where Λ is made up of two differential operators acting on p. The unconditional probability for the realization of
a1,a2, . . . at times β1, β2, . . . will then be p(a0,a1,a2, . . .) = p(a0;β0)p(a1,a0;β1 − β0)p(a2,a1;β2 − β1) . . . with
p(a0;β0) the unconditional probability at the initial time. Given the unconditional probability and the transition
probability we can completely characterize the Markov process. In particular we will be interested in the long
imaginary time, or low temperature, regime.

In Ref. [7, 8] we studied the low temperature properties of an acoustic polaron through Path Integral Monte Carlo
(PIMC) and we found the existence of a phase transition from an extended state to a localized state as the phonons-
electron coupling constant α is increased at constant temperature or as the temperature is decreased at constant
α.

2 Note that Anderson chooses E independent of time [2] whereas we here adopt this more general point of view. So in Anderson point of
view we would not need to specify a conditional probability any further.

3 Note, that the Fokker-Planck equation (2.15) holds for the stochastic differential equation (2.14) only within the framework of Ito
calculus. The relation between (2.14) and the Fokker-Planck equation is slightly different when Stratonovitch calculus is applied. Note
also that the amplitude ζ of the stochastic kick does not enter in (2.15) for our particular choice of the Gaussian white noise, but for
more general stochastic variables Ej(β) this may not be the case anymore.
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Comparing the polaron and the Wick rotated Anderson problems we see that the interaction terms in the stochastic
differential equation (2.14) and in the partial differential Bloch equation (2.12) are similar and the kinetic term is
deterministic in the polaron case and stochastic in the Anderson case. Therefore the probability amplitude in the
Anderson problem, a, is a stochastic vector determined by the conditional probability p(a,a′;β). This probability
distribution in the Anderson problem and the coordinate representation of the density matrix in the polaron problem,
ρ(r, r′;β), play parallel roles. We may then propose the following identification between the two problems

p ↔ ρ Λ ↔ Hpol a ↔ r, (2.18)

where the probability amplitude vector a in the Anderson problem plays the role of the polaron position vector r. In
the two problems, the solution of the Bloch equation for the density matrix of the polaron problem and the solution
of the Fokker-Planck equation for the conditional probability of the amplitude vector a require a path integral. In
fact if one is only interested in the probability distribution of the ending value of the probability amplitude vector at
a large β one has to compute

p(a;β) =

∫
da0da1da2 . . . p(a0;β0)p(a1,a0; ∆β)p(a2,a1; ∆β) . . . p(a,aM−1; ∆β) (2.19)

=

∫
da0p(a0;β0)

∫
a(β0)=a0

a(β)=a

e−SΛDa(t), (2.20)

where in Eq. (2.19) we discretized also the imaginary time so that ∆β = (β − β0)/M = τ . In the limit of M very
large we can rewrite this equation in terms of a path integral as in Eq. (2.20) where we indicated with SΛ the “action”
which determines the dynamics (2.15) of the stochastic probability amplitude vector a 4. As is shown in Appendix B
the short time propagator p(a,a′; τ) is made up of three terms, two delta functions and a Gaussian. In reconstructing
the path integral, the product of all the first delta functions in Eq. (B1) will simply contribute to the probability for
the path to remain fixed at a0. The weight of the product of these deltas contains powers of eN which suggests that
a high N at fixed volume Ω favors localization and no diffusion can take place 5. All the other product terms will be
responsible for the probability of a jump between one site and another. The second delta in Equation (B1) contains
the site-site interaction potential alone and the third term is a purely diffusion one. So we see how the Anderson
site-site interaction potential is responsible for reshuffling of the site probability amplitudes 6.
There is no exact analytic solution for the polaron problem, so one must resort to an exact numerical solution like

PIMC for example. In Ref. [7, 8] we performed some PIMC simulations showing that an acoustic polaron path r(t)
becomes localized as one lowers the temperature, β large, or increases the coupling constant, α large, as predicted
in 1933 by Landau [12–14]. The localization has not yet been observed in an optical polaron. It is believed that
the existence of a localized or self-trapped path depends crucially on the dispersion relation. In the optical case
ω3(k)/k2 ∝ 1/k2 which is the special Coulombic case among the various long range cases which seem to prevent the
self-trapped-state (TS) in favor of an extended-state (ES). On the other hand it is believed that a dispersion relation
giving rise to a short range effective interaction, V eff ∝ ∆r−γ with γ > d, would sustain the localization. This same
connection that occurs between the existence of the translational symmetry breaking between the ES and the TS
and the asymptotic behavior of the effective interaction in the polaron problem surprisingly holds also in the real
time Anderson problem [2] and so also in its Wick rotation in imaginary time β. Here the path a(β) is described by

stochastic jumps amongst the different lattice sites and the localization occurs when
∑N

j=1 aj(β)j remains bounded
from above, uniformly in β.

Recent work has shown that a non interacting Anderson localized system can become many body localized. On the
other hand theoretical treatments have been extended from one polaron to many polaron systems [15–17]. Already
two polarons are expected to have counter intuitive properties like attraction between the two electrons due to the
energy lowering as the two electrons come together therefore sharing their deformations of the underlying crystal. This
could lead to a bound bipolaron. For strong attraction, bipolarons may be small. Small bipolarons have integer spin
and thus share some of the properties of bosons. If many bipolarons form without coming too close, they might be
able to form a Bose-Einstein condensate. This has led to a suggestion that bipolarons could be a possible mechanism
for high-temperature superconductivity.

4 Note that the use of Trotter formula [11] requires that the two addend operators in Λ of Eq. (2.16) be bounded from below.
5 Note that in the real time Anderson problem the exact opposite behavior takes place. It is at small sites density n = N/Ω that no
diffusion takes place.

6 If V̄ And
ij is the matrix V And

ij with all 4 + 1/τ on the diagonal then if det{V̄ And} ̸= 0 there will be a one to one correspondence between

a and a′.
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III. RENORMALIZATION GROUP

The findings of the previous section should not be so surprising after all and certainly suggest that the polaron
localization problem and the Anderson localization problem belong to the same universality class of the Renormal-
ization Group (RG) [18] with a fixed point corresponding to the localization phase transition. We can then think of a
reduced Hamiltonians very large space H [Q;K] to which the two physical Hamiltonians Hpol and Λ belong. Where
Q stands for the “coordinate variables”, r for the polaron problem and a for the Anderson problem, and K are the
various thermodynamic fields like the temperature that can be controlled directly by the experimenter and others that
embody details of the physical system that are fixed by nature, like the coupling constant α for the polaron or the
density n and the noise width W for the Anderson problem. At the heart of RG theory there is the renormalization of
the “coordinates” via Q → Q′ = bQ with b > 1 7 . Iterating this scaling transformation n times we can introduce the
flow parameter n = logb(Q

′/Q) ≥ 0 from which we can derive a differential or continuous RG flow as dH /dn = BH .
So that starting from the physical critical point on the physical manifold H , after the nth iteration we reach the

nth renormalized critical point for H (n)[Q(n);K(n)] on the nth renormalized manifold H (n). Repeating many times
the scaling transformation we can then follow the critical trajectories of the various subsequent renormalized critical
points and eventually reach a nontrivial fixed point H ∗ such that BH ∗ = 0. All physical Hamiltonians whose critical
trajectories converge to the same fixed point belong to the same universality class. We can then choose an expansion
[19–25] on the tangent space to the smooth Hamiltonian space at the fixed point H ∗ to determine the various critical
exponents. In fact we expect that something similar to what happens for the (short range) Ising model, which share
the same critical exponents [26], should also happen here with the usual strong dependence on dimensionality 8. One
could, for example, use the RG scaling transformation to calculate the negative maximal Lyapunov exponent [27]
attracting the RG critical flow to the fixed point [28].

IV. CONCLUSIONS

We compared the localization that occurs in a short range polaron and the Anderson localization that occurs for a
short range site-site interaction. We put the two systems side by side on the “mirror” of the renormalization group
suggesting that they should belong to the same universality class. It would be extremely interesting to carry out a
PIMC calculation for the Wick rotated Anderson problem so to assess unambiguously its localization properties. From
the other side it would be interesting to find other physical Hamiltonians whose critical flows for the translational
symmetry breaking of the localization phase transition fall on the same fixed point. It would also be interesting to
study the dependence on dimensionality of the fixed point in all these problems and calculate their negative maximal
Lyapunov exponent.
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Appendix A: Gaussian noise

An important idealized stochastic process is the so-called Gaussian white noise. This process, denoted by ξi, is not
characterized through unconditional and conditional probabilities, but only through the following statistical moment
and correlation function

⟨ξi(β)⟩ = 0, (A1)

⟨ξi(β)ξj(β′)⟩ = ζ2δ(β − β′) δij , (A2)

7 Note that for the polaron localization problem iteration of such scaling would simply bring the TS into an ES and in the Anderson
localization problem it will affect the site probability amplitudes again producing delocalization.

8 For example 2 is expected to be the lower critical dimension of the real time Anderson localization problem.
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the term Gaussian implies that all cumulants higher than of second order are 0. The term white is connected with the
fact that the imaginary time Fourier transform of (A2) is a constant, i.e., entails all frequencies with equal amplitude
just as white radiation. The importance of the process ξ stems from the fact that many other stochastic processes
are described through stochastic differential equations with a (white) noise term ξ. The integral of white noise over
imaginary time is a Wiener process ω(β) with dω = ξdβ and unconditional and conditional probabilities distributions

pW(ω;β) =
1√

2πζ2β
e−ω2/2ζ2β , (A3)

pW(ω, ω′;β − β′) =
1√

2πζ2∆β
e−(∆ω)2/2ζ2∆β , (A4)

with ∆ω = ω − ω′ and ∆β = β − β′ > 0. So that

⟨ωi⟩ = 0, (A5)

⟨ωi(β)ωj(β
′)⟩ = ζ2β′ δij , (A6)

and again all cumulants higher than of second order are 0. It is this last process that enters into Ito calculus [10]
integrating in imaginary time Anderson stochastic differential equation (2.14).

Appendix B: Anderson “action”

Using, as usual, the set of orthonormal plane waves, we find for the Anderson short time conditional probability in
Eq. (2.19) the following expression

p(a,a′; τ) ∝
N∏
i=1

eτ2Nδ(ai − a′i) + δ

(1 + 4τ)ai + τ
∑
i̸=j

V And
ij aj − a′i

+

√
2π

τa2i
e−(1−a′

i/ai)
2/τ

 , (B1)

where δ is a one dimensional Dirac delta.
The unconditional probability of Eq. (2.20) and the averages stemming from it can then be numerically computed

exactly through the Path Integral Monte Carlo (PIMC) method [29], for example.
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