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INTRODUCTION7

We propose a new horizontal theory which brings to-8

gether statistical physics and general relativity.9

We give statistical physics [1] foundation basis in order10

to determine the consistency of our theory, already put11

forward in Ref. [2], for a statistical gravity description.12

The key logical point is the connection between ther-13

modynamics and statistical physics made possible by the14

statistical concept of entropy and its derivative with re-15

spect to energy. This defines the temperature. In our16

statistical gravity theory the energy content is due to17

matter and electromagnetic fields and the entropy is a18

count of the quantum states of a quasi closed subregion19

of spacetime which can be considered closed for a period20

of time that is long relative to its relaxation time, with21

energy in a certain interval. Feynman will describe this22

in chapter 1 of his set of lectures [3] saying “If a system is23

very weakly coupled to a heat bath at a given ‘tempera-24

ture,’ if the coupling is indefinite or not known precisely,25

if the coupling has been on for a long time, and if all the26

‘fast’ things have happened and all the ‘slow’ things not,27

the system is said to be in thermal equilibrium”.28

Our Eq. (2) has long been studied by John Klauder29

[4] and the form chosen here is just representative and30

in substitution of the much more rigorous one offered by31

that author. Other alternative points of view are also32

present today [5].33

This theory based on the mathematical properties of a34

Wick rotation would open a new sight of the statistical35

properties of spacetime as a physical entity.36

Our theory can be considered a first step towards a37

more sophisticated and dignified description of space-38

time.39

GENTROPY40

Let us define a subregion of a macroscopic spacetime41

region as a part of spacetime that is very small respect42

to the whole Universe yet macroscopic.43

The subregion is not closed. It interacts with the other44

parts of the Universe. Due to the large number of degrees45

of freedom of the other parts, the state of the subregion46

varies in a complex and intricate way.47

In order to formulate a statistical theory of gravity we48

need to determine the statistical distribution of a subre-49

gion of a macroscopic spacetime region.50

Since different subregions “interact” weekly among51

themselves then:52

1. It is possible to consider them as statistically in-53

dependent, i.e. the state of a subregion does not54

affect the probability of the states of another sub-55

region. If ρ̂12 is the density matrix of the subregion56

composed by the subregion 1 and by the subregion57

2 then58

ρ̂12 = ρ̂1ρ̂2, (1)

where ρ̂i is the density matrix of the subregion i.59

2. It is possible to consider a subregion as closed for a60

sufficiently small time interval. The time evolution61

of the density matrix of the subregion in such an62

interval of time is63

∂

∂t
ρ̂i =

i

h̄
[ρ̂i, Ĥi], (2)

where Ĥi is the Hamiltonian of the quasi closed64

subregion i.65

3. After a sufficiently long period of time the space-66

time reaches the state of statistical equilibrium in67

which the density matrices of the subregions must68

be stationary. We must then have69

[
∏
i

ρ̂i, Ĥ] = 0, (3)

where Ĥ is the Hamiltonian of the closed macro-70

scopic spacetime. This condition is certainly satis-71

fied if72

[ρ̂i, Ĥ] = 0, (4)

for all i.73

We then find that the logarithm of the density matrix74

of a subregion is an additive integral of motion of the75

spacetime.76

This is certainly satisfied if77

ln ρ̂i = αi + βiĤi. (5)
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In the time interval in which the subregion can be con-78

sidered closed it is possible to diagonalize simultaneously79

ρ̂i and Ĥi. We then find80

ln ρ(i)n = αi + βiE
(i)
n , (6)

where the probabilities ρ
(i)
n = w(E

(i)
n ) represent the dis-81

tribution function in statistical gravity.82

If we consider the closed spacetime as composed83

of many subregions and we neglect the “interactions”84

among them, each state of the entire spacetime can be85

described specifying the state of the various subregions.86

Then the number dΓ of quantum states of the closed87

spacetime corresponding to an infinitesimal interval of88

his energy must be the product89

dΓ =
∏
i

dΓi, (7)

of the numbers dΓi of the quantum states of the various90

subregions.91

We can then formulate the expression for the micro-92

canonical distribution function writing93

dw ∝ δ(E − E0)
∏
i

dΓi (8)

for the probability to find the closed spacetime in any of94

the states dΓ.95

Let us consider a spacetime that is closed for a pe-96

riod of time that is long relative to its relaxation time.97

This implies that the spacetime is in complete statistical98

equilibrium.99

Let us divide the spacetime region in a large number100

of macroscopic parts and consider one of these. Let ρn =101

w(En) be the distribution function for such part. In order102

to obtain the probability W (E)dE that the subregion103

has an energy between E and E + dE we must multiply104

w(E) by the number of quantum states with energies in105

this interval. Let us call Γ(E) the number of quantum106

states with energies less or equal to E. Then the required107

number of quantum states with energy between E and108

E + dE is109

dΓ(E)

dE
dE, (9)

and the energy probability distribution is110

W (E) =
dΓ(E)

dE
w(E), (10)

with the normalization condition111 ∫
W (E)dE = 1. (11)

The function W (E) has a well defined maximum in112

E = Ē. We can define the “width” ∆E of the curve113

W = W (E) through the relation114

W (Ē)∆E = 1. (12)

or115

w(Ē)∆Γ = 1, (13)

where116

∆Γ =
dΓ(Ē)

dE
∆E, (14)

is the number of quantum states corresponding to the117

energy interval ∆E at Ē. This is also called the statistical118

weight of the macroscopic state of the subregion, and its119

logarithm120

S = log∆Γ, (15)

is the entropy of the subregion. The entropy cannot be121

negative.122

We can also write the definition of entropy in another123

form, expressing it directly in terms of the distribution124

function. In fact we can rewrite Eq. (6) as125

logw(Ē) = α+ βĒ, (16)

so that126

S = log∆Γ = − logw(Ē) = −⟨logw(En)⟩
= −

∑
n

ρn log ρn = −tr(ρ̂ log ρ̂), (17)

where ‘tr’ denotes the trace.127

Let us now consider again the closed region and let us128

suppose that ∆Γ1,∆Γ2, . . . are the statistical weights of129

the various subregions, then the statistical weight of the130

entire region can be written as131

∆Γ =
∏
i

∆Γi, (18)

and132

S =
∑
i

Si, (19)

the entropy is additive.133

Let us consider again the microcanonical distribution134

function for a closed region,135

dw ∝ δ(E − E0)
∏
i

dΓi

dEi
dEi

∝ δ(E − E0)e
S
∏
i

dEi

∆Ei

∝ δ(E − E0)e
S
∏
i

dEi, (20)

where S =
∑

i Si(Ei) and E =
∑

i Ei. Now we know that136

the most probable values of the energies Ei are the mean137

values Ēi. This means that the function S(E1, E2, . . .)138

must have its maximum when Ei = Ēi for all i. But the139
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Ēi are the values of the energies of the subregions that140

correpond to the complete statistical equilibrium of the141

region. We then reach the important conclusion that the142

entropy of a closed region in a state of complete statistical143

equilibrium has its maximum value (for a given energy144

of the region E0).145

Let us now consider again the problem to find the dis-146

tribution function of the subregion, i.e. of any macro-147

scopic region being a small part of a large closed region.148

We then apply the microcanonical distribution function149

to the entire region. We will call the “medium” what re-150

mains of the spacetime region once the small macroscopic151

part has been removed. The microcanonical distribution152

can be written as153

dw ∝ δ(E + E′ − E0)dΓdΓ
′, (21)

where E, dΓ and E′, dΓ′ refer to the subregion and to the154

“medium” respectively, and E0 is the energy of the closed155

region that must equal the sum E+E′ of the energies of156

the subregion and of the medium.157

We are looking for the probability wn of one state of158

the region so that the subregion is in some well defined159

quantum state (with energy En), i.e. a well defined mi-160

croscopic state. Let us then take dΓ = 1, set E = En161

and integrate respect to Γ′
162

ρn ∝
∫

δ(En + E′ − E0)dΓ
′

∝
∫

eS
′

∆E′ δ(En + E′ − E0)dE
′

∝

(
eS

′

∆E′

)
E′=E0−En

. (22)

We use now the fact that, since the subregion is small,163

its energy En will be small respect to E0164

S′(E0 − En) ≈ S′(E0)− En
dS′(E0)

dE0
. (23)

But we know that the derivative of the entropy with re-165

spect to the energy is β = 1/kBT where kB is Boltzmann166

constant and T is the temperature of the closed space-167

time region (that coincides with that of the subregion168

with which it is in equilibrium). So we finally reach the169

following result170

ρn ∝ e−βEn . (24)

which is the canonical distribution function.171

METRIC REPRESENTATION OF THE DENSITY172

MATRIX AND PATH INTEGRAL173

We then reach to the following expression for the den-174

sity matrix of spacetime175

ρ̂ ∝ e−βĤ , (25)
where Ĥ is the spacetime Hamiltonian. In the non-176

quantum high temperature regime we can let β → β/M177

withM a large integer. Then we can use for the high tem-178

perature density matrix the usual classical limit [2, 6–8]179

ρ(gµν , g
′
µν ; τ) ∝ exp

[
−τ

∫
Ω

(
1

2κ
R+ LF

) √
3g d3x

]
δ[gµν(x)− g′µν(x)], (26)

where gµν(x) is the spacetime metric tensor, x ≡180

(ct,x) = (x0, x1, x2, x3) is an event in space(x)time(t),181

τ = β/M is a small complex time step, R is the Ricci182

scalar of the spacetime subregion, κ = 8πGc−4 is Ein-183

stein’s gravitational constant (G is the gravitational con-184

stant and c is the speed of light in vacuum), Ω is the vol-185

ume of space of the subregion whose spacetime is curved186

by the matter and electromagnetic fields due to the term187

LF , and
3g is the determinant of the spatial block of the188

metric tensor. In Eq. (26) the δ is a functional delta [9].189

Using then Trotter formula [10] we reach to the path190

integral expression described in Ref. [2] for the finite191

temperature case, where the metric tensor path wan-192

ders in the spacetime subregion made of the complex193

time interval [0, h̄β/c[ with periodic boundary condi-194

tions and the spatial region Ω. The spatial region can195

be compact in the absence of black holes or not if any196

are present. In any case it can either include its out-197

ermost frontier or not but from a numerical point of198

view it is convenient to use periodic boundary conditions199

there in order to simulate a thermodynamic limit so that200

only the frontiers around eventual black holes matter.201

The metric tensor 10-dimensional space is an hypertorus202

with gµν(ct + β(x),x) = gµν(ct,x) and gµν(ct,x + ξ) =203

gµν(ct,x). In the classical regime, when β is small, and if204

the periodicities along different spatial dimensions are in-205

commensurable, i.e. ξi/ξj for i ̸= j cannot be written as206

rational numbers, then the Einstein field equations will207

let the metric tensor explore its phase space in a quasi-208

periodic fashion, so that one can use either a “molecular-209

” (or “hydro-”) dynamics numerical simulation strategy,210

since the imaginary time averages equals the ensemble211
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averages thanks to ergodicity, or a Monte Carlo numer-212

ical simulation strategy. In the quantum regime, when213

β is big, it is necessary to use the Path Integral Monte214

Carlo method described above.215

CONCLUSIONS216

We gave logical foundation to the statistical gravity217

horizontal theory we recently proposed [2, 6]. Our weak-218

ness in discussing Eq. (2) does not reflect a weakness in219

the current knowledge and studies around that equation220

but is just our lack of deep vertical awareness.221
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