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Preface

Short biography of the author: Born in Livorno on the 30 August 1970 lived in Pisa until
1995 where graduated with the highest grade (110/110 cum laude) from the department of
Physics of the University under the supervision of Prof. Mario Pio Tosi. Then moved to the
University of Illinois at Urbana/Champaign until 2000 and in 1997 got a Master in Physics
under the supervision of Prof. David Ceperley. Moved to Trieste and in 2004 got a Ph.D.
in Physics under the supervision of Prof. Giorgio Pastore. From 2005 to 2008 worked at
the Chemical Physics department of the University of Venice as a postdoctoral fellow in the
research group of Prof. Domenico Gazzillo and Prof. Achille Giacometti. From 2009 to 2011
worked at the National Institute for Theoretical Physics of the University of Stellenbosch as
a postdoctoral fellow.

Description of the Collection: This book is a collection of the 75 research articles pub-
lished by Dr. Riccardo Fantoni during the period 1995-2022. It covers various aspects of
the statistical physics of classical (non-quantum) and quantum fluids. The application of
the results is mainly in the fields of biophysics and condensed matter physics. Various fluid
models are taken under exam like the Jellium fluid, the one and two component plasma, the
hard sphere fluid, the non additive hard sphere mixture, the Widom-Rowlinson fluid, the
sticky hard sphere fluid in his isotropic and patchy version, one component and multicom-
ponent or even polydispersed versions, the Kern-Frenkel fluid, the Janus fluid, and various
fluid and polymer mixtures. The results are mainly concerned with the vapor-liquid-solid
phase transition, percolation transition, and clustering properties. The quantities being cal-
culated are mainly the correlation functions for the structure with particular attention to the
pair distribution function and the structure factor, and the thermodynamic properties, like
the reconstruction of the phase diagram through the use of integral equations approximate
techniques and (Path Integral) Monte Carlo experiments.

Aim of the research is to develop analytical and computational methods for condensed and
soft matter starting from the fundamental many-body equations. Apart from the few ana-
lytically exactly solvable models our principal instruments, guided by the various sum-rules,
are Integral Equation Theory, Density Functional Theory, Thermodynamic Perturbation
Theory, Association Theory, and Monte Carlo simulations which can find exact properties
of many-body systems. We are combining these approaches to create new methods and to
test the accuracy of calculations on materials. Current studied materials include colloidal
suspensions, ionic liquids, polymer mixtures, the electron fluid, the polaron, and boson fluids
(like 4He, 4He-H2 mixtures, ...). We investigate the structure and thermodynamic properties
of the materials including their phase transitions like the gas-liquid-(glass)-solid first order
ones and the superfluid-superconducting second order ones, the percolation threshold, the
clustering, the localization, the demixing, the polydispersity, and surface properties.
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In the latest years we started working on relativistic quantum field theories through
Path integral Monte Carlo of lattice field theory subject to different kinds of quantization
procedures

The publications cover the following topics:

Non-Equilibrium Statistical Mechanics: From the Liouvillian dynamics to the Fokker-Planck
equation. From the Fokker-Planck equation to the Smoluchowski equation. The
Langevin equation. Monte Carlo solution of the Smoluchowski equation.

Statistical Mechanics: Sum rules in many body systems, many body models soluble exactly
analytically, integral equation theories for fluids (Percus-Yevick, hypernetted chain,
mean spherical approximation, rational function approximation,. . .), thermodynamic
perturbation theories, Monte Carlo methods, stochastic processes.

Condensed and Soft Matter Physics: Coulomb liquids, the polaron, Bosons fluids, colloidal
suspensions, polymers.

Quantum fluid models: The Jellium in one, two, and three spatial dimensions and the po-
laron problem. The Jellium on parallel planes and on a sphere. Square-well Bosons as
a model of cold atoms. The 4He in three and two dimensions. 4He-H2 mixtures.

Classical fluid models: The one-dimensional nearest-neighbor fluids, the one- and two-component
plasma living in one-, two-, and three-dimensions, the one- and two-component plasma
living on curved surfaces, the hard-sphere fluid, the penetrable square-well fluid in
one-, two-, and three-dimensions, the non-additive hard-sphere mixture, the Widom-
Rowlinson model, the sticky-hard-sphere one- and two-component fluid, the restricted
primitive model for charged hard spheres, patchy spheres fluids (the Janus fluid, etc
. . .).

Quantum field theory: Path integral Monte Carlo of lattice field theory subject to different
kinds of quantization procedures.

Numerical methods (NM) of interest: The solution of integral equation theories and the
Monte Carlo methods to perform computer experiments.

NM for the solution of integral equation theories: The Newton Raphson algorithm (with con-
jugated gradient method) and the Picard algorithm.

NM for Monte Carlo simulations: Ground state Monte Carlo simulations (variational and
diffusion), path integral Monte Carlo simulations (conventional and worm algorithm),
classical Monte Carlo simulations (NVT, NPT, grand canonical, Gibbs ensemble).

I would like to thank all my collaborators with whom it has been a pleasure to work in
team: Prof. Mario Pio Tosi, Prof. Bernard Jancovici, Prof. Angel Alastuey, Prof. Gabriel
Téllez, Prof. Giorgio Pastore, Prof. Domenico Gazzillo, Prof. Achille Giacometti, Dr. Peter
Sollich, Dr. Mark Miller, Prof. Andrés Santos, Dr. Alexandr Malijevský, Dr. Miguel
Angel Maestre, Prof. Francesco Sciortino, Prof. Kristian K. Müller-Nedebock, Prof. Bert
Klumperman, Dr. Johannes W. O. Salari, Prof. Saverio Moroni, Prof. John R. Klauder.

This is the second edition of the Collection. The author took care of the editorial process
preparing the book in .
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Chapter 1

Decay of correlations and related sum
rules in a layered classical plasma

Fantoni R. and Tosi M.P., Nuovo Cimento, 17D, 155 (1995)
Title: “Decay of correlations and related sum rules in a layered classical plasma”
Abstract: The asymptotic behaviours of particle correlation functions and the related sum
rules are discussed for a layered classical plasma with e2/r interactions in the fluid state, in
dependence on the number of layers. These properties derive from consistency conditions
imposed by screening on the hierarchical equations, as already treated by A. Alastuey and
Ph.A. Martin (J. Stat. Phys., 39, 405 (1985)) for various Coulomb fluids. The main results
concern i) the type of clustering of correlations needed for the validity of multipolar sum rules
at various orders, ii) the proof that the pair correlation function in a finite multilayer may
carry an electric dipole moment and the calculation of its partioning among the layers, and
iii) the dimensionality crossover in an infinitely extended or periodically repeated multilayer
with varying interlayer spacing and wave vector.
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IL NUOVO CIMENTO VOL. 17 D, N. 2 Febbraio 1995 

Decay of Correlations and Related Sum Rules 
in a Layered Classical Plasma. 

R. FANTONI and M. P. TosI 

Scuola Normale Superiore - Piazza dei Cavalieri 7, 1-56126 Pisa, Italy 

(ricevuto il 22 Novembre 1994; approvato il 30 Gennaio 1995) 

Summary. --  The asymptotic behaviours of particle correlation functions and the 
related sum rules are discussed for a layered classical plasma with e 2/r interactions 
in the fluid state, in dependence on the number of layers. These properties derive 
from consistency conditions imposed by screening on the hierarchical equations, as 
already treated by A. Alastuey and P. A. Martin (J. Stat. Phys., 39, 405 (1985)) for 
various Coulomb fluids. The main results concern i) the type of clustering of 
correlations needed for the validity of multipolar sum rules at various orders, ii) the 
proof that the pair correlation function in a finite multilayer may carry an electric 
dipole moment and the calculation of its partioning among the layers, and iii) the 
dimensionality crossover in an infinitely extended or periodically repeated 
multilayer with varying interlayer spacing and wave vector. 

PACS 61.20.Gy - Statistical theories of liquid structure. 

1.  - I n t r o d u c t i o n .  

Systems of electrons with two-dimensional dynamics have long been useful as 
models for a variety of physical systems such as inversion layers in semiconductors 
and semiconductor heterostructures [1, 2], surface electrons on liquid He[3], inter- 
calated graphite[4] and transition-metal dichalcogenides[5]. The thermodynamic 
states of physical interest may range from extreme degeneracy to quasi-classical, and 
the electronic system may be confined to a single layer or form a multiplicity of layers 
up to a periodic stacking. While most of the theoretical treatments in the literature 
have taken account of intralayer correlations, specific attention has recently been 
brought to the role of the interlayer correlations in two-layer structures in relation to 
Wigner crystallization [6] and collective excitations [7]. 

Correlations in both homogeneous and inhomogeneous Coulomb fluids have a 
number of exactly determinable asymptotic properties, which may be conveniently 
expressed in the form of sum rules arising as consistency relations imposed by the 
long-range Coulomb interactions[8]. In particular, Alastuey and Martin[9] have 
shown that correlations in a two-dimensional classical plasma with e 2 / r  interactions 
have an algebraic r-3 decay as an exact lower bound. In the present work we extend 

Decay of correlations and related sum rules in a layered classical
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their treatment to a system consisting of an arbitrary number Np of equispaced layers 
confining a classical one-component plasma with e2 / r  interactions. In view of the 
known differences in the asymptotic behaviours of correlations in the classical and 
quantal three-dimensional plasma [10,11] we do not expect that our results should be 
generally applicable without further analysis to layered systems of electrons in the 
quantal regime. 

2. - Equi l ibr ium equat ions  and mul t ipo lar  s u m  rules.  

The model consists of a stack of Np layers with interlayer spacing d, each layer 
having area S and containing a classical fluid of N point-like charges embedded in a 
uniform neutralizing background. The normal to the stack is taken along the 
z-direction and the z-coordinate of each layer is denoted by md with m an integer. All 
vectors are decomposed into their in-plane and z components, with the notation R = 
= (r, z) and K = (k, k~). The medium has a uniform dielectric constant equal to unity, 
so that image forces are absent and the particles interact via the potential e 2 r {R] ) = 
= e2(r 2 + z 2 )  -1/2, with Fourier transform r z) = ( 2 7 : / k ) e x p [ - k l z  { ]. 

The usual assumption is made that in the thermodynamic limit (N--. ~ and 
S -* ~ at fLxed average density p = N / S )  the instantaneous density correlation func- 
tions exist and continue to obey the equilibrium equations of the Born-Green-Yvon 
(BGY) hierarchy. Starting from the n-body density distribution functions, 

(2.1) ~:(R1 . . . .  , R~) = <IN(R1 )... N(Rn )]SL >, 

where N ( R )  is the particle density operator and the suffix SL indicates that the 
self-terms are omitted, we introduce [8] the density of excess particles at R when n 
particles are fixed at R1, ..., Rn as 

(2.2) ~:e(R{RI, . . .Rn) -= ~(R, Ri . . . .  , Rn) - 

-~ (R)9 (R1  . . . .  , R n )  + ~ 6'(R - Ri)t:(R 1 . . . .  , R n ) .  
i=1  

Furthermore, denoting by Q = (R2, ..., Rn) the positions of a set of (n - 1) particles 
we define the truncated n-body and (n + 1)-body correlation functions by 

(2.3) pT(R1, Q) = ~(R1, Q) - t z (R1)p(Q)  

and 

(2.4) ~T(R, R1, Q) = ~(R, R1, Q) - ~(R)~T(R1, Q) - ~(R1)pT(R, Q) - ~(Q)~(R, R1). 

The equilibrium equations of the BGY hierarchy can then be written as 

(2.5) (/~e2)-IVn/:T(R1, Q) = ~(R1)EI{(R 1 {Q) + ~ F,L(R 1 - Ri)pT(R1, Q) + 
i = 2  

+ ~ I d r m F , , ( R 1 - R ~ ) ~ T ( R m ,  R 1 , Q ) ,  

where/~ = (kB T) -1 and R~ denotes the position of a particle in the m-th layer. In eq. 
(2.5) we have defined F,, (R) = -Vr  r and introduced the electric field E,, (R1 }Q) 

Decay of correlations and related sum rules in a layered classical
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generated at R1 when (n - 1) particles are at positions Q, 

(2.6) E, ,(R11q)= ~ ~ dr~Fr~(R1 - Rm)Pe(Rm ]q). 

The absolute convergence of the integral in eq. (2.6) and of the last integral on the 
right-hand side of eq. (2.5) requires that the correlations between a particle and any 
set of other particles should vanish as the particle is moved to infinite distance. The 
appropriate clustering condition is 

(2.7) ]~(R~, RI, Q) -p(R~)p(R~, Q)I <~ MIr,~ [ -~ 

with M finite and V > 0. We also note that 

(2 .8)  I drmPe(Rm IR1 . . . .  , Rn) = O, 

from the normalization condition relating the integral of the (n + 1)-body distribution 
function to the n-body one. Both these properties will be taken to be valid to all 
orders in what follows. 

Additional sum rules, relating to multipolar moments of correlations, can be 
shown to be valid [12, 13] if the decay of correlations is sufficiently rapid. Specifically, 
assume that the clustering conditions 

(2.9) ]D~w(R1, . . . ,Rn)] ~<M< r162 D = s u p ( I R i - R j l )  
i,j 

hold for n = 2, ..., no + 1 and V > 2 + lo (for Np finite) or V > 3 + l0 (for Np--~ ~). 
Then the (l, n) multipolar sum rules, 

[ (2.10) ~ drmpe(Rm I Q) (Rm.V) l 

where g is a unit vector in the plane of the layers, hold for 0 ~< 1 ~< Io and 1 ~< n ~< no. 
Equation (2.8) ensures that the charge sum rules (eq. (2.10) for 1 = 0) are always 
valid. If lo = 1 the dipole sum rules 

(2 .11 )  ~ I drmrm~e(Rm Iq) : 0 

also hold for the correlation functions up to the no-body one. 
Proposition (2.9), (2.10) follows from studying the asymptotic behaviour of 

the BGY equations for R1 = (2~, 0) with 2 -o  ~.  An integration over the area 
A of a circle C(2~, r0) centred in R1 and of given radius r0 is first carried 
out to handle the gradient terms, yielding in particular 

(2.12) f dr~ Vrl ~T (El, Q) = ~ dy ~T (~.U § g, Q) = 0(2 -~' ) 
J 

A C 

for the term on the left-hand side of eq. (2.5). It is easily seen that the second 
term on the right-hand side decays faster than ~(-~, while it shown in appendix 
A that the third term decays faster than 2-(~+2) irrespectively of the number 
of layers. Hence, the electric potential ~(R1 I Q) associated with the field Ell (R1 [Q) 

Decay of correlations and related sum rules in a layered classical
plasma 6



158 R. FANTONI and M. P. TOSI 

must also decay faster than ~-(~+e). Comparison with a multipolar expansion 
yields eq. (2.10) for all 1 <~ lo. 

We shall focus in the following sections on the two-body correlation function. It  is 
therefore useful to show at this point the form taken by the above general formalism 
in this case. We have 

(2.13) pw(Rm, R~, ) = p(Rm)p(R' ,  )[g(Rm, R~, ) - 1] 

and 

(2.14) ~ ( R ~  ]R~,) = ~w(Rm, R ' , )  + p(Rm) 6(Rm - R ' , ) ,  

the first particle being in the m-th layer and the second in the m' - th  layer, and 
g(R, R ' )  being the usual pair distribution function. Equation (2.8) yields 

(2.15) I drmpw (Rm, R~, ) = - p ~m, m' , 

which may be viewed as a set of charge sum rules holding layer by layer. Finally, the 
appropriate BGY equilibrium equation involves the three-body correlation 
function, 

(2.16) (fle2)-lVr~PT(Rm, R~, )=~(Rm)EH(R m JR ' , )  +Fl l (Rm-R(n , )pw(Rm,  R ~ , ) +  

+ I drm. V,,(Rm- Rm, ). 

The electric field E~ entering eq. (2.16) is to be determined from the Poisson equation. 
It should also be remarked that in the limit N v --. ~,  according to the proof of 
proposition (2.9), (2.10) given above and in appendix A, an algebraic decay of 
two-body correlations implies a slower algebraic decay of the electric field. 
Therefore, an algebraic decay would not be compatible with eq. (2.16) if the 
three-body correlations were to decay more rapidly than the two-body ones. 

For a homogeneous fluid confined to a single layer Alastuey and Martin [9] have 
shown that under appropriate clustering conditions on the two, three- and four-body 
correlation functions the structure factor S(k) at long wavelengths is related to the 
interaction potential by 

(2.17) lira S( k ) = [pfle2"r k, 0)] -1 = k / kD 
k--.-,O 

with kD --- 2=~e 2. However, such a behaviour of S(k) implies that the asymptotic form 
of the pair correlations contains a term behaving like r -3, which contradicts the 
assumed validity of the clustering conditions. While the charge sum rule suffices to 
ensure that S(k) vanishes for k--* 0, a dipole moment arising from the three-body 
correlation function must supplement the k~ 1 term in determining the value of S(k) /k  
for k --. 0. 

Taking S(k) /k  as a finite constant for k --. 0 and bearing in mind the possibility of 
other singularities arising at finite k, the conclusion is that the pair correlations 
cannot decay asymptotically faster than r -3. According to the BGY equation for the 
pair correlation function, the excess potential ~(r, z) associated with the field E(r,  z) 

Decay of correlations and related sum rules in a layered classical
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then cannot decay faster than r -3 for z = 0. In fact, from the Poisson equation 

1 
[rEi, (r, z)] + =:- (2.18) - - -  Ez (r, z) = 4r~ ' (z)~z e ( r [  0) 

r Dr Oz 

and assuming only the charge sum rule, the first two terms of a multipolar expansion 
for ~(r, z) have the form Pl ( I cos 01 )/IRI (t + 1) where 1 = 1 or 2, cos 0 = z~ I R I and Pl (x) 
are the Legendre polynomials. Using P1 (0) = 0 and P1 (1) = 1 one sees that ~(r, 0) 
decays like r -3 and ~(0, z) decays like [zl -2. These behaviours were derived in early 
work by Fetter  [14] within a hydrodynamic approach, which reduces in the static case 
to the Debye-Hfickel approximation and thus assumes that the relation in eq. (2.17) is 
valid. The magnitude of the dipole moment associated with the pair correlation 
function is given in this approximation by the Debye screening length 1/kD. 

The important point to be stressed is that for a monolayer, at variance from the 
case of the three-dimensional classical plasma, an algebraic decay of correlations and 
an algebraic decay of the potential are mutually consistent. We carry out below the 
same analysis for a multilayered system. 

3. - Asymptotic behaviour of  correlations in a multilayered plasma: the case of  
finite Np. 

We have seen in sect. 2 that the type of clustering which ensures the validity of 
multipolar sum rules up to order (lo, no) is independent of the number Np of layers 
provided that Np is finite. We examine in this section the asymptotic behaviour of the 
pair correlations in this case. The limit N~--~ ~ will be discussed in the next 
section. 

As a first step we rewrite the BGY eq. (2.16) as 

(3.1) (fle2)-lVrPT(R~, O) = ~EIj(R,~ I0) + Win(r), 

where one of the particles has been taken at the origin and we have defined 

W,~ (r) = ~ ~ dr' F~ (R~, ) H(R~, R~, ) 
~t F J 

(3.2) 

with 

(3.3) H(Rm, R ' ,  ) = pW(/~, R~, , O) + ~(r - r' )$m,~,pw(R~, 0). 

Use has been made of the symmetry properties of the three-body correlation 
function. 

We introduce the structure factor S(K) as 

S(K) = ~ Sm (k) exp [ - ikz md],  
m 

(3.4) 

where 

(3.5) S i n ( k )  = ~mO -}- ~ - 1  f drexp [ - i k  "r]pT (R~, 0)  

are the partial structure factors describing intralayer (m = 0) and interlayer (m ;~ 0) 
correlations. Using eq. (2.6) for the excess electric field, the Fourier transform of 

Decay of correlations and related sum rules in a layered classical
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eq. (3.1) then is 

(3.6) Sin(k) - ~,~o = - ( k D / k ) ~ e x p [ - I m  - m 
m' 

' [kd] Sin' (k) + kD Am (k), 

where 

(3.7) Am(k) = - i (27:peke)-~Z I d r e x p [ - i k ' r ]  I dr' k .F , , (R~, )H(R~,  R~,) .  
?q~t 

Hence, 

( 3 . 8 )  Sm(k)/k=Zm,Amlm,(k)[ 8 m ' ~  kD +/lm,(k)], 

where A,~,  (k) is the inverse of a matrix Am~, (k) which is defined by 

(3.9) Atom' (k) = (k/kD) 8mm' + exp [ - I m - m ' I kd]. 

The charge sum rule (2.15) yields 

(3.10) lim S~ (k) = 0 
k ~ 0  

for all values of m. Using it in eq. (3.6) we find 

(3.11) lira ~ S,~,(k) _ ~ o  + limLlm(k). 
k--*O m'  k kD k--)O 

Clearly, the quantity on the right-hand side of this equation must be independent of 
the index m. We denote it thereafter by the symbol A. Namely, 

(3.12) A = l i m ~  S~(k) _ 1 + lim Ao(k)= limzlm~o(k). 
k--.0 m k kD k-~0 k--.0 

It is evident from eqs. (3.12) and (3.5) that A gives the length of the electric dipole 
moment associated with the total pair correlation function ~6e(Rm 10)/t:. Equation 

m 

(3.12) implies very strong correlations: we can obtain the dipole moment of the whole 
stack from a three-body correlation function involving a particle in anyone of the 
layers and the particle at the origin, provided that we add the quantity kg 1 when the 
first particle lies in the same layer as the particle at the origin. 

We can now examine the solution of eq. (3.6) in the long-wavelength limit. Using 
eq. (3.12) in eq. (3.8) we have 

Sin(k) 
(3.13) lira - -  - areA, 

k ~ 0  k 

where the coefficients am are given by 

(3.14) ~m = lira Z A , ~ ,  (k) 
k---)Om' 

and satisfy the sum rule ~ am = 1. For instance, for a bilayer am = 1/2, while for a 
m 

Decay of correlations and related sum rules in a layered classical
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trilayer we find 

(3.15) 

and 

(3.16) 

1 + 3 dkD + 2(dkD)e 

3 + 8 dk D + 4(dkD)2 

~ 0  -~  

1 + 2 dkD 

3 + 8 dkD + 4(dkD)2 

We see that the partitioning of the total dipole moment A among the various layers is 
exactly known from eq. (3.13) and (3.14). The coefficients a,~ are functions of dkD 
which depend only on the number of layers. 

The values taken by the quantities ~,~(k) at long wavelengths remain to be 
discussed. It is evident from eq. (3.12) that they cannot be all equal to zero. A more 
formal argument, relating the behaviour of ~ A ~ ( k - ~ 0 )  to the clustering of cor- 

m 
relation functions, is given in appendix B. The result is that, if A ~ 0, the intralayer and 
interlayer pair correlation functions cannot decay asymptotically faster than r -3. 

The discussion given in appendix B does not exclude the possibility A = 0. This 
would imply/Ira (k--) 0) = 0 for all m ~ 0 and A o (k--~ 0) = - k ~  1. Evidently, the linear 
term in the low-k expansion of the intralayer and interlayer structure factors would 
then be absent and the leading term would presumably have a regular k 2 behaviour, 
completely invalidating a Debye-Hfickel approximation. As is shown in appendix B, 
in such a case a slow asymptotic decay would still be present in the three-body 
and /o r  four-body correlation functions. 

4. - Asymptotic behaviour of correlations in the limit Np--, ~ .  

We return to eqs. (3.6) and (3.7), in which we have to take the limit Np --) ~ in the 
sums over the layer index m' .  We first take Fourier transforms with respect to the 
z-coordinate, by multiplying both sides of eq. (3.6) by exp [ - ikz  md] and summing 
over the layer index m. In the limit Np--) ~ we find 

(4.1) S(K) - 1 = - ( kD/k )  ~ F~(K)Sm(K)  + kDA(K), 

where 

(4.2) Fro(K) = exp[ - ik~md]  ~ e x p [ - i k ~ m ' d -  k]m'  ]d] = 
m '  = - r  

= exp [ - ik~ rod] 

and 

(4.3) ~I(K) = - i (2 r :~k2)  -1 ~ f d r ' k . F , , ( R ; , ) .  
m '  = - r 1 6 2  

sinh (kd) 

cosh (kd) - cos (kz d) 

exp[ - ik~md]  ~ d r e x p [ - i k . r ] H ( R ~  
m = - ~  

, R ~ , ) .  

We have assumed that the two integrals in eq. (3.7) can be interchanged (see 

Decay of correlations and related sum rules in a layered classical
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appendix B). The sum over m in eq. (4.1) can now be carried out, with the 
result 

(4.4) 

where [15] 

S(K) - 1 = -pflv(K)S(K) + kDA(K), 

(4.5) v(K) - 
2rze 2 sinh (kd) 

k cosh(kd) - cos(k~d) 

We may remark that the same result (4.4) is obtained when, instead of taking the 
limit N p - .  ~ ,  one imposes periodic boundary conditions along the z-direction on a 
stack of Np layers. In this case S(K) and A(K) are the sums of S,~(k, ks) and of 
zl,~(k, k~) over the layers included in the Born-yon Karman periodicity cell. 

The effective potential v(K) in eq. (4.5) shows dimensional crossover with varying 
d, tending to 2=e 2/k in the limit d --. ~ (an infinite stack of independent monolayers) 
and to 4=e 2/(K2d) in the limit d--. 0 (a three-dimensional plasma with mean particle 
density p/d and two-dimensional dynamics). In the latter limit the Poisson equation 
becomes a local differential equation and one can apply the argument developed by 
Martin[8] to analyse the clustering of correlations in a fully three-dimensional 
plasma. In brief, if one assumes an algebraic decay of the total charge density, the 
Poisson equation yields a slower algebraic decay of the total electric field. This result 
is not compatible with the asymptotic behaviour of the BGY equation for the pair 
correlation function, leading to the conclusion that correlations must asymptotically 
decay more rapidly than any finite inverse power of the distance. 

Expression (4.5) for v(K) yields v ( K ) ~  47:e 2/(k2d) in the limit k-~ 0 at k~ = 0, for 
any finite value of the layer spacing d. Equation (4.4) yields 

2 S(k, O) 1 
(4.6) lim - -  - + lira A(k, 0). 

k-~0 d k 2 k D k~0 

This relation should be contrasted with the analogous relation which can easily be 
obtained for the case of a finite number of layers from the results in sect. 3, 

S(k, O) 1 
(4.7) li~noN' k - kD + k-~olimA(k' 0). 

The charge sum rules suffice to ensure that the last term on the right-hand side of 
eq. (4.6) is at most a finite constant, so that S(k, 0) is proportional to k 2 in the limit 
kd << 1. Such an analytic behaviour of S(k, 0) at the origin precludes the possibility of 
drawing conclusions on the existence of algebraic terms in the asymptotic behaviour 
of the pair correlations. If in addition the dipole sum rule holds for the three-body 
correlation function ~,H(R,~, R~,) in eq. (4.3), then zl(k--* 0, 0) vanishes and the 
further sum rule 

(4.8) lim - -S (k '  O) = L~ 
k--~0 k 2 

holds. Here, 

(4.9) LD = (4rz•fle 2/d) -1/2 

Decay of correlations and related sum rules in a layered classical
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is the three-dimensional Debye screening length. Equation (4.8), which may also be 
written as the integral relation 

(4.10) m=~-~ P I drr2[g(r' m d ) -  1] = -4L~) 

on the total pair correlation function, is the form presently taken by the 
Stillinger-Lovett sum rule [16,17]. It ensures that the plasma is capable of screening 
completely any static distribution of external charges having spatial dependence of 
the form Pext(r). 

The partial structure factors Sm (k) are related to the total structure factor S(K) 
by 

(4.11) 

~/d 

Sin(k) = 7 dkz exp[ik~md]S(K), 
r 1 6 2  

- z / d  

thus requiring full knowledge of the kz dependence of S(K) even in the limit k --) 0. 
The multipolar sum rules provide no information on the behaviour of d(0, k~). On the 
assumption that A(K) can be neglected, Fetter[15] has solved eqs. (4.4) and (4.11) in 
conjunction with the Poisson equation. Within this approximation he has shown that 
the partial pair correlation function ~T (r, z) decays exponentially both as a function of 
r at fixed z and as a function of z at fLxed r, such a decay being anisotropic except in 
the limit dkD << 1. 

4"1. Dynamical implications. - We next wish to point out how the foregoing 
discussion may be related to the dynamics of the classical layered plasma at long 
wavelengths. The effective potential v(K) determines a characteristic frequency 
oJ0(K) given by 

(4.12) o~02 (K) = v(K), 

where M is the mass of the particles. In the limit k --~ 0 the dispersion relation (4.12) 
describes an optic mode at kz = 0 and an acoustic one at kz ~ O. The hydrodynamic 
treatment given by Fetter [15] leads to a collective mode with a dispersion relation 
given by (4.12) supplemented by a k 2 term with a coefficient determined by the 
adiabatic free-gas speed of sound. Olego et al. [18] have found that the dispersion 
relation (4.12) is in good agreement with the results of their inelastic light scattering 
experiments from GaAs-(A1Ga)As heterostructures. 

A simple connection between structure and dynamics can be made on the 
assumption that the f-sum rule on the dynamic structure factor S(K; co), 

k2 
(4.13) do) ~o2 S(K; ~o) = - - ,  

27: tiM 
- - c o  

is exhausted by a single collective mode. Since S(K) is the integral of S(K; (o) over 
frequency, this would lead one to express S(K) in terms of the collective-mode 
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frequency as 

k 2 
(4.14) S ( K )  = 

Comparison of eq. (4.14) with eq. (4.4) shows that such a single-mode representation 
of the spectrum is allowed in the limit k--, 0 only if k z -  0, where ~l(k--, 0, 0) 
vanishes. In fact, the work of Totsuji[19] on the dynamics of a classical 
two-dimensional plasma shows that excitational electron-electron collisions give a 
relevant spectral contribution at long wavelengths (a Landau-type contribution 
associated with single-particle excitations is exponentially small in this limit). The 
collisional damping of the collective mode as calculated by Totsuji is linear in k for 
k ~ 0, i.e. of the same order as the frequency of the acoustic mode. It thus appears 
that a single-mode representation of the spectrum at kz ;~ 0 is invalid for a layered 
classical plasma. 

5. - Summary and concluding remarks. 

In this work we have applied to a layered classical plasma methods of analysis 
previously developed to examine the asymptotic behaviours of the correlation 
functions in Coulomb fluids and the sum rules that are consistent with these 
behaviours. Our main results concern the conditions for the validity of multipolar 
sum rules, the dipolar structure of a finite multilayer and the dimensionality 
crossover in an infinitely extended (or periodically repeated) multilayer with varying 
interlayer spacing and wave vector. 

The theoretical possibility of crystalline order is notoriously related to poor 
clustering of particle correlations and has drawn considerable attention for Coulomb 
systems in low dimensionalities. In particular, from an analysis of the BGY hierarchy 
for a monolayer Gruber and Martin[20] have shown that the pair or three-body 
correlation functions should decay asymptotically more rapidly than r -8 in order to 
exclude crystallinity. Their analysis is easily extended to a finite multilayer, leading 
to the same conclusion. However, Requardt and Wagner [21] have recently been able 
to obtain more stringent conditions through the use of the Mermin inequality for a 
variety of Coulomb systems including the monolayer with r-1 interactions. 

* * *  

Sponsorship and support by the Istituto Nazionale di Fisica della Materia is 
gratefully acknowledged. 

A P P E N D I X  A 

Asymptotic behaviour of  the (n + 1)-body term in the BGY equations for layered 
plasmas. 

We prove in this appendix that the (n + 1)-body term in eq. (2.5), under the 
clustering condition (2.9), decays faster than 2 -(~ § 2) when R1 = ()~u, 0) with ~--~ ~ ,  
irrespectively of the number Np of layers. Since the group of particles at Q is kept 
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fLxed in taking the limit, it is sufficient to examine the behaviour of the three-body 
term. 

In the indicated limit we can write the following inequality: 

~IdrmF,,(R~)~w(Au, Rm, O) l <" 

<<. ~ I drm rm M + I drmr~2 [pT(A~e, rm, O)l , 
o IR~ 13 [sup(A, [Rm I ) ]  ' 

where, from the results of Gruber et al. [12], the second term on the right-hand side 
decays like A-7. Hence, 

(AA) I~Idrr~F,,(Rm)pT(A~e, Rm, O) l <~ ~ I drr-2 M +O(A_V)" 
m ~ 0 [sup(A, r)]~ 

r >~ Imld 

In the case where Np is finite, it is evident that  the first term on the right-hand side of 
eq. (&l)  also decays like A-~, i.e. faster than A -(~ § 2) if V > l0 + 2. 

In the case Np--* ~ ,  on the other hand, the above term can be rewritten as 

= 1 [sup (A, r)] ~ 
r~>md 

] } =47:[m~'= [A-V l r-idr+Jr-(:+~)dr md m = [)~/d] ~ + r - ( 1  + ~ ) d r  " 

For  A--, ~ we have 

A ~ A I f(x)d x ~f(md/A)m = d f(n)An ~ -~ 

with n = md/A and An = d/A --) 0, if f(x) does not change appreciably with x in the 
range An. Hence, in the case N p - - ) ~  the (n + 1)-body term decays faster than 

A -(~ +2) if ~ > 10 + 3. 

A P P E N D I X  B 

Clustering of correlations and behaviour of Am (k) at long wavelengths. 

Starting from the definition of Am(k) in eq. (3.7), we first prove that ~Am(k --)0) = 
m 

= 0 if i) the clustering condition (2.9) holds for V > 3 and n = 2, 3 and 4; and ii) for 

Ixl we have Ixl~[dypT(XyO)<.M < ~, x and y being any two sufficiently large 
position coordinates in the layers. 

Following the line of argument  given by Alastuey and Martin [9] for a similar 
proposition regarding a monolayer, we use the condition ii) above to interchange the 
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order of the two integrals in eq. (3.7). We can then write 

(B.1) = -i(2= 2k2)-l  f dr ' k .F, , (R~,)  I d r e x p [ - i k . r J H ' ( R m ,  R~, ) ,  
m s 

where 

(B.2) H'  (Rm, R~, ) = H(R,~, R~, ) + ~ o  r pW (R&,, O) = 

= pe(Rm J R ' , ,  0)  - ~p~(Rm [ R ~ , )  - p~e(Rm I 0 ) .  

The difference between H '  and H in eq. (B.2) does not contribute to the integral in 
eq. (B.1) and has been included so that we may make use of the multipolar sum rules 
given in eq. (2.10). After expanding the factor e x p [ - i k . r ]  in eq. (B.1) and using the 
charge sum rules, we find 

r f o., f o(1). 

However, under the condition i) the dipolar sum rule holds for both two-body and 
three-body correlation functions, so that the first term on the right-hand side of 
eq. (B.3) vanishes. 

By summing eq. (3.11) over all layers we then find that 

Sm (k) 
(B.4) A - lim m = (NpkD) -] + o(1) 

k-,0 k 

under the same conditions i) and ii) stated above. It would be natural to assume this 
result in a Debye-Hiickel treatment, its implication being that the dipole moment as 
read from the large-z behaviour of the electric potential created by a stack of Np 
layers is that of a monolayer with particle density Np~. However, it follows from 
eq. (B.4) that the asymptotic form of the total pair correlation function ~,pw(Rm, 0) 
would contain a term behaving like r -3. We have thus reached a contradiction: the 
clustering condition i) must hold for the validity of eq. (B.4), but eq. (B.4) refutes the 
validity of condition i). 

We therefore conclude that 

(B.5) lim ~ A ~ ( k )  = O(1) 
k ---* 0 m 

and that the clustering cannot be faster than r -3 for at least one among the two-, 
three- and four-body correlation functions. It would seem reasonable to expect that 
the higher-body correlations should not decay more slowly than the two-body ones, 
leading to the conclusion that the asymptotic decay of the total pair correlation 
function should not be faster than r-3. In such a case, A ~ 0 and the discussion given 
in the main text shows that each one of the partial pair correlations cannot decay 
faster than r-3. However, it seems to us that the possibility A = 0, implying slow 
decay of correlations at higher order, cannot be excluded. 

Decay of correlations and related sum rules in a layered classical
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Chapter 2

Coordinate space form of interacting
reference response function of
d-dimensional jellium

Fantoni R. and Tosi M.P., Nuovo Cimento, 17D, 1165 (1995)
Title: “Coordinate space form of interacting reference response function of d-dimensional
jellium.”
Abstract: The interacting reference response function χ3

I(k) of three-dimensional jellium
in k space was defined by Niklasson (1974) in terms of the momentum distribution of the
interacting electron assembly. Here the Fourier transform F d

I (r) of χ
d
I(k) is studied for the

jellium model with e2/r interactions in dimensionality d = 1, 2 and 3, in an extension of
recent work by Holas, March and Tosi for the case d = 3. The small-r and large-r forms
of F d

I (r) are explicitly evaluated from the analytic behaviour of the momentum distribution
nd(p). In the appendix, a model of nd(p) is constructed which interpolates between these
limits.
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Summary. - -  The interacting reference response function X~3](k) of three- 
dimensional jellium in k space was def'med by Niklasson in terms of the momentum 
distribution of the interacting electron assembly. Here the Fourier transform 
Fibril(r) of x~d](k) is studied for the jellium model with e2/r interactions in 
dimensionality d = 1, 2 and 3, in an extension of recent work by Holas, March and 
Tosi for the case d = 3. The small-r and large-r forms of F~ d] (r) are explicitly 
evaluated from the analytic behaviour of the momentum distribution n d (p). In the 
appendix, a model of ng(p) is constructed which interpolates between these limits. 

PACS 71.45 - Collective effects. 

1. - Introduction.  

The linear density response function X~el(k, co) of the jellium model in 
dimensionality d is customarily wri t ten in the form of an RPA-like expression 
involving a single-particle reference susceptibility and a local field fac tor[ l ] .  While 
the reference susceptibility is usually taken as the Lindhard function for the ideal 
Fermi  gas, Niklasson [2] introduced for d = 3 an interacting reference susceptibility 
which is defined in a similar way as the Lindhard function but  with the ideal Fe rmi  
momentum distribution replaced by the t rue momentum distribution of the 
interacting electron assembly. This involves, of course, a redefinition of the local field 
factor, which acquires the appealing feature of tending to a constant at large wave 
number  k instead of being asymptotically proportional to k s [3, 4]. 

In recent  work Holas, March and Tosi [5], hereaf ter  re fe r red  to as HMT, have 
evaluated the r-dependence of the Four ier  t ransform of Niklasson's interacting 
reference susceptibility in the static case for d -- 3, using known analytic propert ies  of 
the t rue momentum distribution. The present  work extends their  approach to lower 
dimensionalities (d = 2 and 1) and contrasts  the results with those obtained for 
d = 3 .  

1165 
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2. - I n t e r a c t i n g  r e f e r e n c e  s u s c e p t i b i l i t y  a n d  l o c a l  f i e ld  fac tor .  

2"1. Definition of interacting reference susceptibility in k space. - The interacting 
reference susceptibility in the static case (w = 0) is defined in k or reciprocal space as 

2(3-d) m f rid(P) 
(2.1) z~dl(k) -- z d P daP k 2 + 2k 'p  

where m is the electronic mass and nd(p) is the momentum distribution function of 
the interacting electron fluid. Owing to the isotropy of the homogeneous phase of 
jellium, the angular integration in eq. (2.1) can be carried out to yield 

m fdppn3   lnlk+2p I 
z2 k k 2p 

0 

zc  

4m f dppn2(p) O(k - 2p) 
(2.3) ~/~2] (k) - zk ~ / ~  _ 4p2 

0 

and 

r162 

I 1 (2.4) X~l](k ) = 8m dpnl(p) k2 
- 4p 2 

0 

"When the true momentum distribution in eqs. (2.2)-(2.4) is replaced by the ideal 
Fermi distribution, one recovers the well-known Lindhard results: 

(2.5) ;/~3](k)- m k F [ l +  (2kF) 2 - k e  I k + 2 k F  [] 
2z 2 4kF k In -- , k 2kr 

(2.6) X~ 21(k)= - m  1 - O ( k -  2kF) 1 -  

and 

4 m  
(2.7) Z~I] (k) - 

z k  

k + 2kF 
- -  In 

k - 2kF 

The Fermi momentum kF is related to the particle number density ~)d by 

(2.8) rkdr(d 1 kF = 2 ~  1/2 [ 4 \ 2 ) Qd] �9 

2"2. Local field factor. - The density response function X~dl(k, ~) is written in 
terms of the interacting reference susceptibility X~ dl (k, ~o) and of a local field factor 

Coordinate space form of interacting reference response function
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G~(k, co) as 

X~d~(k, oJ) 
(2.9) ~/[dJ (k, w) = 

1 - Vd(k)[1 -- Gd(k, ~o)]x~d](k, w) 

Here, Vd(k) is the d-dimensional Fourier transform of the e2/r Coulomb repulsive 
interaction, given by 4ze2/k 2 for d = 3 and by 2ze2/k for d = 2. In the jellium model 
for electrons in a quantum wire the Coulomb matrix element can be taken as 

(2.10) v~ (k) = e 2 h(kRo), 

where Ro is the effective radius of the wire and the function h(x) can be of various 
forms depending on the type of transverse confinement. We shall take it to have the 
asymptotic behaviours 

(2.11) 

and 

h(x --~ O) = C_ (Ro ) In (x) 

4~e 2 
(2.12) h(x -o oo ) = C+ (Ro) - - ,  

X 2 

the latter being valid when both transverse confinement lengths are finite [6]. C_ (Ro) 
and C+ (Ro) in eqs. (2.11) and (2.12) are confinement-dependent functions. 

It was first shown by Niklasson[2] from the equations of motion for the 
single-particle and two-particle density matrices that, in regions of the (k, ~o)-plane 
well outside the particle-hole continuum, the local field factor introduced in eq. (2.9) 
satisfies two exact relations in particular limits (see also [7]). These relations are 
easily expressed in terms of the following function: 

(2.13) GeVtk ' =  l d  , J ~ k~, [,/(k'k'/2Vd(k')k2 ] ~d(k-) ( k ' ( k + k ' ) ) 2 V d ( ' k + k " ) }  ( S d ( k ' ) - i ) ' k  z Vd(k) 

Here, Sd (k) is the static structure factor of d-dimensional jellium, related to the pair 
distribution function gd (r) by 

1 
(2.14) 1 - gd (r) = ~ ~a [ 1 - Sd (k)] exp [ik" r]. 

G Pv (k) in eq. (2.13) is the form taken in d-dimensional jeUium by the static local field 
factor first introduced by Pathak and Vashishta[8]. Precisely, for l(o+_k2/2ml>> 
>> kF/2m one has 

(2.15) 

at finite ~ and 

(2.16) 

lim G~(k, ~) PV = G~ ( ~ )  
k - - )  ar 

lira Gd(k, ~) PV = Gd (k) 
o ) - - ~  oa 

at finite k. 

2"3. Asymptotic behaviour of local field factors for large k. - Equations (2.13) and 
(2.15) yield the following exact asymptotic values of the local field factor for large 
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wave number and finite frequency: 

(2.17) Gd(k---) ~ , ~) = 

2 
~ [ 1  - gs(0)] for d = 3,  

1 - g2(0) for d = 2,  

1 - gl (0) + (R~/4zQ 1 C+ ) I dq q2 h(qRo )[$1 (q) - 1] 

f o r d =  1. 

An alternative form of the local field factor needs to be introduced when one 
replaces X~ dl (k, ~o) in eq. (2.9) with the Lindhard function ~dl ~ ~o ~ ,  ~o), namely 

(2.18) Gd(k, w) = 1 + [Vd(k)z[dl(k, (o)] -1 -- [Vd(k)Z[od](k, ~)]-1 = 

-- Gd(k, ~o) + [v~(k)x~d](k, w)] -1 - [vd(k):~dl(k, w)]-I . 

Following the analysis given by Holas [3], the static Lindhard function has the 
large& expansion 

(2.19) Z[od](k) = - 4 m ~ d k - 2 [ 1  + 4C~dl<p2>~d~k-2 + l~(~[d]l~a4\[d]k-4 T .], 
~ 2  ',/~ /0  " '  

where 

(2.20) 

and the notation 

(2n + 1) -1 

Cn ~dj = (2n - 1)!!/(2n)!! 

1 

f o r d = 3 ,  

f o r d = 2 ,  

f o r d =  1 

(2.21) 
2 

<f(P)>[o dl = -~ ~ n~ 

has been used, n~ being the ideal Fermi-momentum distribution. In particular, 

d (2.22) <p2n >~dl _ _ _  k~n. 
2 n + d  

With the notation <...>~dl for the average in eq. (2.21) when n ~ (p) is replaced by nd (p), 
and using the normalization condition ~ n ~  ~ n d ( p ) =  N/2, we reach the 
result P P 

(2.23) Gd(k, O) = Gd(k, O) + 
mQdVd(k) 

+ ~ [(<p4 >id~ _ <p4 >~d~) c ~  _ ((<p2 >i~ )2 _ (<p2 >~1)2)(c~d~)2 ] + o(k -4)} .  

Taking into account eq. (2.17), we conclude that  the leading term in the high-k 
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expansion of Gd (k, 0) is given by 

(2.24) Gd (k, 0) { 
A~]k2/(6zqse 2) 

A~]k/(2zQ2e 2) 

A IT 1] (R0 k) 2 / (2z  ~ 1 e 2 C+ ) 

for d = 3 ,  

for d = 2 ,  

f o r d =  1, 

where A[T dl= (T)~ d ] -  (T}~ d] and T= p2/2m is the kinetic energy operator. 

2"4. Asymptotic behaviour of Gd(k, w)for large w. - Following Iwamoto [9], the 
asymptotic form of the Lindhard function at high frequency can be given in terms of 
the frequency-moment sum rules, namely 

(2.25) 
T. [d] 

lim z[d](k, w) = ~V+l(k)  
w - ~  ~ j =  l O) 2j 

The first two moments in eq. (2.25) are 

(2.26) L~d](k) = Qd k2 

and 

(2.27) L[~d](k)- Qdk2[( k2 ) 2 12['r\[d] k~ ] 
m -~m + d \-/o -~m " 

The analogous expansion for X~ ~] (k, co) is obtained by replacing (...}~dj with (...)[o d] in 
the frequency moments. By substituting these expansions into eq. (2.18) we find 

(2.28) Gd (k, w ~ ) PV = = Gd (k) 
[d] 12 A T 

d 2QdVd(k) 

Comparison of eqs. (2.23) and (2.28) shows that  their leading terms differ only by a 
numerical factor. 

3. - C o o r d i n a t e  space  r e s p o n s e  f u n c t i o n  F~ d] (r). 

The response function F~ d] (r) in coordinate space is defined as the d-dimensional 
Fourier transform of X~ ~ (k). Angular integration yields 

ao  

(3.1) F~ 3j (r) - 1 I dk kx~ ~] (k) sin (kr), 
2z2r 

o 

(3.2) if F~2](r) = ~ dkkx~2](k)Jo(kr) 
o 
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and 

(3.3) 

Qc 

~.[1](r) = 1 I ~1] (kr).  " I --  d k k z  (k)cos 
2r 

o 

Using eqs. (2.2)-(2.4) in eqs. (3.1)-(3.3) and two definite integrals given by 
Gradshteyn and Ryzhik[10] we find 

(3.4) F ~ l ( r  ) _ m I d p p n 3 ( p ) s i n ( 2 p r  ) 
2~3r 2 

0 

c c  

(3.5) F~2](r ) _ m I dpn2(p)[zPrJ~ Y~ 
~ 2 f  

0 

and 

: r  

I nl (P) (3.6) F~ 1](r) = 2m dp sin(2pr).  
z p 

0 

Upon inserting the ideal Fermi distribution in place of the true momentum 
distribution in eqs. (3.1)-(3.3), we recover results for the Lindhard function in 
r-space [11]: 

(3.7) F~31(r ) _ mk~  j l (2kFr )  , 
2 z  3 r 2 

k~ m 
(3.8) F~ 2] (r) - 

2z  
- - [ J o ( k F r ) Y o ( k F r )  + J l (kFr)  Yl(kFr)] 

and 

(3.9) F~I] (r)  _ 2m Si(2kFr).  

In these equations j ,  (x) is the spherical Bessel function [sin (x) - x cos (x)]/x 2, Jn (x) 
and Yn (x) are the n-th-order Bessel functions of the first and the second kind and 
Si(x) is the sine integral. 

Of course, n~(p) tends to the ideal Fermi distribution in the limit of coupling 
strength tending to zero. However, at finite coupling strength the momentum 
distribution acquires a high-momentum taft and its discontinuous jump across the 
Fermi surface is reduced below unity. Numerical determinations of nd (p) by quantal 
simulation methods are available both for d = 2 [12] and d = 3 [13]. In the following 
sections we shall use the above-mentioned properties of n~(p) to determine the 
behaviours of F[ al (r) at small and large r. 
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4. - S m a l l - r  e x p a n s i o n  o f  i n t e r a c t i n g  s u s c e p t i b i l i t y .  

The small-r properties of F~ dj (r) are determined by the behaviour of nd (p) at large 
momenta. This is known to be 

4zQ3 2 
(4.1) n s ( p ) =  --~o ] gs(0)P-S + @ I I 

for d = 3, from the work of Kimball [14, 15] and 

[ 2ze2 ~2 . . .  
(4.2) n2(p) ) g2 ' P ~ + 

for d = 2, from the work of Rajagopal and Kimball [16]. In these equations a0 is the 
Bohr radius and gd(0) is the value of the pair distribution function gd(r) evaluated at 
separation r = 0. This value is related to the asymptotic behaviour of the structure 
factor Sd (k) according to 

(4.3) g3(O) - 3zao lira ka(1 - Ss(k)) 
8k~ k-~. 

and 

a0 lira k s(1 - S2(k)). (4.4) g2(0) = 2k---~ k-~ 

The asymptotic behaviour of the momentum distribution for the case d -- 1 has 
been evaluated in [6]. The result is 

( 4Z~)lC+ )2 
(4.5) nl (p) = aoR~ gl (O)p -s + . . . .  

where 

(4.6) g l ( O )  - aoR~ lim ka(1 - S ~ ( k ) ) .  
4ZkF C+ k-~ | 

Using eq. (4.1) in eq. (3.4) HTM find 

[ 41T\[3],,~.2 1 ~ as } (4.7) F~J( r  ) = m__~Q~ 1 - 3 \ - / i  .... + (Te)~ 3]m2r4 - r5 + . . . .  
z r  45 z~ 3 

where as is the coefficient of p - s  in eq. (4.1) and (T~)~ dl is the n-th moment of the 
kinetic energy T. 

For the other dimensionalities we obtain the following expressions by the same 
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method. For  d = 2 we get 

(4.8) F[2](r) - 2me2jr {[(~ - ln(2)) + (ln(p)>~ 2]] + 

[(1 ) ] } 
+ ln(r)  + ~ - 7 + ln(2) m(T>~ 21 - (T ln(p)>~ 21 r 2 A- m(T>I2]r 2 ln(r)  + ... , 

where ~ = 0.57721 ... is Euler's constant. For  d = 1 we find 

aw } (4.9) F~l](r) = - 2 m e l r  <T~>~l}r2~ + (2r) 7 + . . . .  
0 (2n + 1)! 8!~)1 

where aw is the coefficient of p - s  in eq. (4.5). 
It should be noticed that higher-order terms in the expansions given in eqs. (4.7)- 

(4.9) cannot be evaluated without knowledge of the high-momentum behaviour of 
nd (p) going beyond that  explicitly shown in eqs. (4.1), (4.2) and (4.5). The coefficients 
of such higher-order terms may diverge for some forms of nd(p). 

5. - L o n g - r a n g e  b e h a v i o u r  o f  F[ d] (r). 

In order to determine the behaviour of F~l(r)  at large r, HMT rewrite the 
right-hand side of eq. (3.4) in the form of the one-dimensional Fourier t ransform of the 
function O(p)p n3 (p) and apply the Lighthill technique for the asymptotic estimation 
of such Fourier  transforms [17]. 

The momentum distribution in the homogeneous phase of d-dimensional jellium is 
known to have a discontinuity (reduction by a jump) of magnitude ZF at p = k F and 
most probably discontinuities in its derivatives there. One can thus express nd(p) as 

(5 .1)  na(p) = sgn (p - kF) (p -- k~)**+ analytical t e rms ,  
: o -~- . ,  

with b~o dl= --ZF/2.  Moreover, we assume that  the expansion 

(5 .2)  
C[d] 

nd(p ) = vn p~ + analytical terms 
n=0 n! 

holds for rid(p) near p = 0. 
HMT conclude from such behaviours of n3(p) 

expansion for F~ 81 (r) has an oscillatory part  
that  the asymptotic large-r 

(5.3) [F~S](r)] ~ - : r3r~Im exp[2ikTr] n=0 ~ (kFbnE3] + nb~31 1)n+1 

with leading term --[mkFb~S]/2z3]cos(2kFr)/r 3, as well as a non-oscillatory 
contribution 

(5.4) [F~ 81 (r)] n~176 - -  
2nc[3] m ( _ l ) n  2n 1 

2~3r  2 n = l  ~ + 1  ' 
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where only the odd terms in the power series expansion (5.2) contribute, with leading 
term [mc~ 8] / ( 2 z )  8 ]/r 8. 

In the following two subsections we shall apply these arguments to determine the 
long-range behaviour of F~2](r) and F~l](r). 

5"1. Two-dimensional jellium. - The analysis of the large-r behaviour of F~ e] (r) on 
the basis of the behaviours of n2 (p) in eqs. (5.1) and (5.2) is quite complex. There does 
not seem to be an asymptotic expansion for the product J0 (x) Yo (x) in eq. (3.5) having 
a simple expression for its coefficients. 

We start by defining the function f o ( x )=  zx[Jo(x)Yo(x)]  for x i> 0 and its 
successive integrals 

(5.5) ~ ( x ) =  [ f i ( t ) d t  = ~x2[J~176 + J l ( x ) Y l ( x ) ]  = ] f i ( t ) d t  
0 

and 
X 

(5.6) fn (x) = ]fn - 1 (t) dt .  

These functions possess an upper bound (Ifn (x) l <<" constant) and have the following 
asymptotic expansions: 

i) the large-x expansion 

cos 2x [ 1+ 1282~ +o x 25642x  + 

and for any n > 0 

(5.8) f~(x) ~ [ 
X - - - >  oo 

( - -  )n/2 + 1 

n COS (2X) + ... for even n ,  

(_)(n - 1)/2 

n sin (2x) + ... for odd n ; 

ii) the small-x expansion 

(5.9) fi  (x) = 2x In (2x) + O(x) 

and for any n > 0 

2 d~ x n+l in(x) + ~ X n - i  (5.10) fn (X) > 
x-~0 ( n + l ) !  ~=1 (n - - i ) !  

Here, the coeefficients di are the integration constants needed to connect with the 
large-x behaviour in eq. (5.8). For example, we have di = 0 (see eq. (5.5)) and d2 
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Fig. 1. - Plot of the function (z/2) x 2 I[Jo (t) Yo (t) + J1 (t) Y1 (t)] dt (lower curve) compared with 
cos(2x)/4 (upper curve). 0 

-0.196344.. .  (see fig. 1). In general d n can be obtained by a limiting process, 

(5.11) d,~ 

(2j + 1)(~/4)  

I fn (t) dt 1 

= lim o 
j ~ oo j (~ /2 )  

I f ,~_l( t )d t  
0 

for even n ,  

for odd n .  

Given these definitions, the long-range behaviour of F~el(r) can be obtained by  
successive integration by parts on eq. (3.5). A first integration by parts yields 

(5.12) F~ 2](r) - m I 215(p ( z r )  2 (2b~ - kF) 
0 

+ [DF ~ n2 ](P))fi (pr) dp = 

m ( 2b[oe]f~(kF 
yg2T ) if[ + -- D n2 ](P)fi (pr) dp , 

0 

where we have introduced the notation [D F n2 ](p) for the derivative of ne (p) at p > k F 
and p < kF and have made use of the fact that  n2 (p) f i  (pr) vanishes both at infinity 
and in the origin. From eqs. (5.8) and (5.12) we thus find 

(5.13) F~e](r) = mb~2] s in(2kFr)  0 [ 1 / / \  
(arr) 2 + \ / ' ~ -  " 
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After N integrations by parts, we obtain 

(5.14) F121 (r) - z-yr 1( __ )n r n - n=lZ ( - )n _ _ r  n _{_ . . . .  

Evidently, in analogy with the case d = 3 the large-r asymptotic expansion of 
F~ 2j (r) can be divided into the sum of an oscillatory part and a non-oscillatory part. 
The former is given by the first term on the right-hand side of eq. (5.14) and its 
leading term is 

(5.15) 
[F~2 ] (r)] ~162 ~ mb[o z] sin (2kF r) 

( z r )  2 

The non-oscillatory part is given by the second term on the right-hand side of 
eq. (5.14) and its leading term is 

(5.16) [F~ 2] (r)] n~176 ~ - -  
m d  2 c~ 2] 

$g2r3 

5"2. One-dimensional jellium. - In order to apply the Lighthfll technique to 
determine the long-range behaviour of Fit lj (r), we first rewrite eq. (3.6) in the form of 
a one-dimensional Fourier transform, 

(5.17) F~lJ(r ) = 2m Im I dpO(p)nl (P)  exp[2ipr] 
Jr p 

Because of the 0 function the integrand in eq. (5.17) is non-analytic at p = 0. This 
may lead to a non-oscillatory contribution to the large-r expansion. From expansion 
(5.2) we obtain [  .Eij 
(5.18) [Fi[1](r)]non_os c = _ __2m C01113/: "~- t.2n+l 

Z 2 n=0 (2n + 1)! 

1] 
The singularity of nl(p)  at p = k F is instead responsible for an oscillatory 

contribution, following from eq. (5.1) as 

b[1] f pn 
(5.19) [F~l](r)] ~ 2m~ Im 0 d p s g n ( p ) p + k F  exp[2ipr] e x p [ - 2 i k F r ] .  

To leading order the result is 

(5.20) [F~l](r)] ~ = 2mb[~ c~ + 0 ( 1 )  
ZkF r r-2 " 

5"3. Comparison of results in various dimensionalities. - In summary, table I 
compares the leading terms of the large-r asymptotic expansion of F[d](r) in 
the various dimensionalities. Evidently, the leading term in the asymptotic expansion 
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TABLE I . -  Leading terms of the large-r asymptotic expansion for the oscillating and 
non-oscillating parts of F~ d] (r). 

F~ d] (r--) ~ ) Oscillating term Non-oscillating term 

mkF b [3] cos (2kF r) m c~ 3] 
d = 3  

d = 2  

d = l  

2(zrr) 3 (2 z)3r ~ 

m bo ~2] sin (2k F r) md,2 c~ 21 

(z r )  2 z2r3 

2mb~ 1] cos (2k F r) 
-mc~  1] 

ZkF r 

is the oscillating one for d = 3 and d = 2, while in the quantum wire the 
non-oscillating te rm is dominant. 

6. - Conclus ions .  

The main results of the present  work concern i) the asymptotic behaviours of the 
local field factors Gd (k, ~o) and Gd (k, ~) in eqs. (2.17), (2.24) and (2.28); ii) expressions 
(3.4)-(3.6) for the interacting reference susceptibility F~ dl (r) in the form of a single 
integral and iii) the small-r and large-r  expansions of F~ dl (r) in eqs. (4.7)-(4.9), (5.3), 
(5.4), (5.14) and (5.18)-(5.20). These results were already known in the l i terature [3-5] 
for d = 3, but  are mostly new for d = 2 and d = 1. 

In the Appendix we have evaluated a model for the momentum distribution nd (r), 
which leads to a model for F~d~(r) allowing an interpolation between the limiting 
behaviours discussed in sect. 4 and 5. 

APPENDIX 

Evaluat ion  of  F[ dl (r) u s i ng  a model  n~ (r). 

Following HMT we consider a model momentum distribution given for d = 2 
and d = 3 by 

(A.1) nd(p) = ndA (p) + riB(p) = v~(kF -- p)(ad + fldp 2) + 
a2(d + 1) 

( ~  + p 2 ) d + l  ' 

and for d = l  by 

a w (A.2) nl(p)  = ~(kF - -p ) (a l  + ]~lp 2) + (~2 + p2)4 ' 

eqs. (A.1) and (A.2) satisfy propert ies (4.1), (4.2) and (4.5). Of their  five parameters ,  
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kF and as, a6 and au have an obvious meaning, while ad, fld and ~d can be 
determined from three requirements on the momentum distribution: 

i) it satisfies the normalization condition 2 ~ n d ( p ) =  N, leading to 
P 

(~3) 

3 2 3z as 
as + ~f iskF + for d = 3, 

32 kFS~ 

1 2 1 a~ 
1 = a2 + ~fl2kF + --2 - - k ~  4 for d = 2, 

+ 1 f l l k 2  + 5~ a ~  
32 kF ~ 17 for d = 1 ; " 1  

3 

ii) it reproduces the value of the mean kinetic energy (T)~ d~, leading to 

5z as 

<T)~d] ~ a6 
(A.4) ~ - a2 + fl2k~ + ~kf~2 f o r d = 2 ,  

3 z  aw 

f o r d = 3 ,  

f o r d =  1; 

iii) it reproduces the discontinuity ZF at p = kF, leading to 

(A.5) ad + k~fld = ZF �9 

After inserting the model n~(p) of eqs. (A.1) and (A.2) into eqs. (3.4)-(3.6), all 
integrations can be performed analytically. The results are reported in the following 
subsections. 

A'I. Three-dimensional jellium. - HMT find for d = 3 

(A.6) F~SP(r) - 4~zr)a - ( a s  + k~.fls) + --2r 2 cos(2kFr) + 

and (assuming ~s > 0) 

+[a~+3k~fis 3fls ] } 
2kFr 4kFr s sin (2kF r) 

(A.7) 
4 ) 

F~SJ~(r) = - 32~2~  r 1 + 2~sr + (~3r) 2 e x p [ - 2 ~ 3 r ] .  

The model reference susceptibility is the sum of the two contributions in eqs. (A.6) 
and (A.7). 

The small-r and large-r expansions of this model F~8](r) agree with those 
given in eq. (4.7) and in eqs. (5.3) and (5.4). The contribution due to F~3~(r) 
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is exponentially small at large r and non-oscillatory terms are absent because 
even powers only enter the small-p expansion of the model n3 (p) in eq. (A.1). 

A'2. Two-dimensional jellium. - For d = 2 we obtain, from well-known properties 
of the Bessel functions [18], 

(A.8) F~2~ (r) - ma2 { 2 } ~ t J o ( k F r )  Yo(kFr) + Jl (kFr) Yl (kFr)] - 

mfi2[~[3Jo(kFr)Yo(kFr)+2Jl(kFr)Yl(kFr)-J2(kFr)Y2(kFr)]}zr 4 ~-~> 

sin (2 kF r) 
> m(a2 + k~fl2) 

~_~ ~ 2(~r) 2 

and (assuming ~2 > 0) 

(A.9) F~2~(r)- ~2a6 [ 1 d ]2[H(o1)(i~r)]2 25 r ~2 d~2 

where 1t(o 1) (x) = Jo (x) + iYo (x) is the zeroth-order Bessel function of the third kind. 
The asymptotic large-r behaviour of this function is 

2 
(A.10) [Ho (1) (i~2r)] 2 --~ - - -  exp [ -2~2r ] .  

z~2 r 

Finally, we have the model reference susceptibility 

(A.11) F[ 21 (r) = F[ 2]A (r) + F[ 218 (r). 

It is readily verified that the smaU-r and large-r expansions of this function agree 
with those given in eq. ~4.8) and in eqs. (5.15) and (5.16). As in the case d = 3, the 
contribution due to F[ 2~ (r) is exponentially small at large r. 

A'3. One-dimensional jellium. - For d = 1 we obtain 

(A'12) F~I]A(r)- 2mal si(2krr) mfll [ kF c~ - sin(2kFr) r 2r 2 

and (assuming ~1 > 0) 

(A.13) F~]B( r ) -  maw[  ( ~81 "4  ~1~ 11 3 6 1( ) _2~1r] ] 1 -- 1 + + ~ ( ~ r ) 2 +  ~ r )  s exp[ 

Finally, we have the model response function 

(A.14) F~ 11 (r) = r~ lt4 (r) + F~ 1~ (r). 

Again it is readily verified that the small-r and large-r expansions of this 
function agree with those in eq. (4.9) and in eqs. (5.18) and (5.20). Contrary 
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to the other  cases the te rm F[i1]8(r) contributes to the leading te rm in the large-r  
expansion of will = - i  (r), its magnitude being -mc{o ~1 w i t h  C0 [11 ai + aw/~Sl. 
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Abstract 

The asymptotic behaviours of the momentum distribution, the static structure factor and the local field factor at large 
momenta are evaluated for the jellium model of an interacting electron fluid confined in a quantum wire. The dependence 
of the results on the character of the confinement and their relevance to models of the dielectric screening function are 
discussed. 

1. Introduction 

Recent developments in fabrication techniques of 
quantum wires have made available for experi- 
mental study systems in which the conduction elec- 
trons can be described by a quasi-one-dimensional 
Fermi liquid (1DEL) model [1, 2]. The role of the 
electron-electron interactions in determining the 
observed electronic excitation spectra in these sys- 
tems has been accounted for within the random 
phase approximation (RPA: see Ref. I-3] and refer- 
ences given therein). 

In such quantum wires the many-body effects are 
still small, because of the relatively high effective 
electron density and the relative large effective wire 
radius. One may expect, however, that with further 
developments in the production of semiconductor 
wire structures these system parameters may be 
varied into a range where the short-range electron- 
electron correlations that are neglected in the RPA 
would become relevant. 

* Corresponding author. 

In the present paper we study some exact asymp- 
totic behaviours of short-range correlations in 
a 1DEL. Specific attention is given to the behaviour 
of the momentum distribution at high momenta  
and to those of the structure factor and of the local 
field factor in dielectric screening at high wave 
numbers. Our  approach is taken from earlier work 
on three-dimensional (3D) and two-dimensional 
(2D) electron liquids I-4]. The results emphasize the 
dependence of short-range correlations in a 1DEL 
on the nature of the confinement. 

2. The model 

We consider a quantum wire of length L extend- 
ing in the £ direction. It contains N electrons which 
are free to move along the wire axis in the effective 
mass sense, but are confined in the ~-)3 plane by 
a potential well Uc(x/ax,  y /a  r) where ax and a r are 
the characteristic lengths of the confinement along 
the 2 and )3 directions. The electronic system at zero 
temperature is characterized by an effective width 

0921-4526/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 0921-4526(95)00451-3  
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Ro and by the one-dimensional carrier density 
Pll = N/L. All vectors will be decomposed into their 
in-plane and 2 components, with the notations 
R -- (r, z) for position vectors and K - (k, kz) for 
wave vectors. 

The Hamilton±an H is the sum of a transverse 
part Hs ,  a longitudinal part Hii and the 3D elec- 
tron-electron Coulomb interaction V~_~: H =  
HII + H i  + V~_~. The many-body wave function 
may be expanded in terms of the eigenfunctions ~b~ 
of HII and g~ of H±, 

T(R1 .. . . .  RN) = ~ Ci.j~)i(zl, ... ,zN)Xj(rl . . . . .  rN). (1) 
i,j 

If the combination of energy level spacing due to 
the confinement and linear carrier density is such 
that (H±)>>(V~_~),  one may neglect any contri- 
bution from excited subband states. The wave func- 
tion takes the form 

~(R,  . . . . .  RN) ~ ~P(Zx . . . . .  ZN) ]--[ )~(ri), (2) 
i 

where ~P(zl . . . . .  ZN) =ZiCi ,  oC~i(Zl,...,ZN) and we 
have set Xo(rl, ... ,rN) = [Iix(ri; ax, ay). The nor- 
malized single-particle ground state x(ri; a~, ay) is 
completely determined by the confining potential. 
The electron density in the wire is then given by 
pw(R) = PllP±(r), where p±(r) = ]g(r; a~, ay)] 2. 

The approximation (2) allows one to formally 
define a purely one-dimensional jellium problem 
[5] in terms of the many-body wave function 
~k(zl . . . . .  ZN), the effective interactions in the limit 
L ~ ~ being weighted with p±(r) according to 

v(kz)=2e2fd2rfd2r'p±(r)p±(r')Ko(k~,r-r ' l ) .  

(3) 

Here, Ko(x) is the zeroth-order modified Bessel 
function of the second kind and 2e2Ko (k~ l al) is the 

Fourier transform of eE/k/z 2 + o 2. We recall that 
Ko(x) = - ln(x) for x<< 1 and Ko(x) = exp( - x) 

x ~ / 2 x  for x>> I. For  the 1DEL model we define the 
dimensionless length r~--(2&ao) -1 with ao the 
Bohr radius and the Fermi wave number 
k F = rcpll/2. 

Eq. (3) can be rewritten as 

e2 f l P ± ( k ) l  2 2. 
/)(kz) - - / ~ d  x, (4) 

where we have indicated with p±(k) the Fourier 
transform of p±(r). If both confinement lengths ax 
and ay are non-vanishing, and noticing that 
SIp; (k)[ 2 d2k = (2n) 2 t iP± (r)[ 2 d2r < oo, we can use 
the dominated convergence theorem [6] to evalu- 
ate the asymptotic large-kz behaviour of the inte- 
gral in Eq. (4). We obtain 

4he 2 
v(kz) --, (5) 

where Q2 = flp±(r)l 2d2r. However, if one of the 
confinement lengths (ay say) vanishes, i.e. in the case 
p±(r) = px(X)6(y) we can first perform the kr integ- 
ration in Eq. (4) and subsequently apply the domin- 
ated convergence theorem. We then obtain 

2~e 2 
v(k=) ~ k ~ Q , ,  (6) 

where QI = ~lpx(X)] 2dx. We shall refer to these 
two cases in the following as a 3D-like and a 2D- 
like quantum wire and use them to emphasize the 
role of the type of confinement in determining the 
short-range correlations between the electrons. 

3. The  stat ic  structure factor  

The pair distribution function gw(R~, R2) in the 
quantum wire is the probability of finding a pair of 
electrons at points R~ and R2, namely 

gw(R1, R2) 

_ S ( S -  1) f N 
pw~-S~-~2x.l~,.ijpwt.X ,.J ~ ( g l  . . . . .  RN)[2 H d3Ri"  (7) 

i=3 

Upon inserting Eq. (2) in Eq. (7) we find the pair 
distribution function for the 1DEL, 

N(N - 1 ) f  N 
g ( z ,  - z2) - . . . , z N ) l  2 H dz, .  (8) 

3 Pll i=3 

The static structure factor Sw(K) of the quantum 
wire is related to the pair distribution function by 

f[Sw(k, kz) 1] exp( 
daK 

- - iK R) (2g)  3 

= ~llfd2r2Pw(r2 +r)pw(r2)[g,(R2 + R, R 2 ) -  1] 

l 
- - -  [G(R) - l(g)].  (9) 

Pll 
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For the 1DEL we define S(kz)  = Sw(O, kz) so that 
Eq. (9) becomes 

f ~  [ S(kz) - l ] e x p (  - ikzz)d2~ = p,,[g(z) - l].  

(10) 

3.1. Large k~ behaviour in the 1DEL 

Yasuhara [7] has shown for 3D jellium that the 
electron--electron ladder interactions at all orders 
determine the asymptotic form of the structure fac- 
tor at large momenta. Following his method it is 
easily shown that S(k~) in the 1DEL has the follow- 
ing exact asymptotic form for large k~ (kz>>kF): 

v(k~) ,,,, 
1 - S(kz)  = e--~) PllOtO) + ..., (11) 

with e(kz) = k~/2m. Therefore, if the 1DEL is con- 
fined in a 3D-like quantum wire, by inserting 
Eq. (5) in Eq. (11) we get 

where G(IRI) - I(IRI) is the average of G(R)  - 
I (R)  taken over the sphere of radius IRI. The 
analogous expression for a 2D wire is 

lim (tK) 3 [Sw(tk~, tkz) - 1] 
[ ~ o t 3  

= - 2xPlld~Ri [G([RI) - I'(IR[)] [R[ = 0  (15) 

Since I (R)  is completely determined from the 
knowledge of the confining potential, the same will 
be true for (d /d lR l ) I ( IR l ) l lRb= o. On the other 
hand, (d /d IRI )G(IRI ) I IRI= o must be proportional 
to G(0) as a consequence of the cusp theorem [10]. 
This yields 

d G(IRI)IRI 1 = --G(0)  (16) 
dIRI =o ao 

for a 3D-like wire and 

d G(IR[)IRI 2 = - -G(0)  (17) 
dlRI =0 ao 

for a 2D-like one. 

1 - S(kz) _ 80._rcr, ' 1,~ 
O2g(o) + 

ao tCz 
(12) 

If instead the 1DEL is confined in a 2D-like quan- 
tum wire we should use Eq. (6) in Eq. (11), thus 
obtaining 

1 -- S(k~) - 4~tpll 1 
ao [k~l 3Q19(0)  + """ (13) 

The power law for the asymptotic approach of the 
structure factor to unity in Eq. (12) resembles that 
found by Kimball [8] for 3D jellium. Similarly, the 
form of Eq. (13) resembles that for 2D jellium [9]. 

3.2. Large kz behaviour in a quantum wire 

More generally, for a 3D quantum wire Eq. (9) 
yields 

lim ( tK)4[Sw( tkx ,  tk r, tkz) - 1] 

d I (14) = - 8rcplld-~ [8(IRI)  - I(IRI)] IRI =0' 

4. The momentum distribution 

The probability nw(K) of finding an electron with 
momentum K in the quantum wire, per unit trans- 
verse area, can be written as 

= Pll fexp [ iK (R - R')] ~* (R,  R2, . . . ,  RN) nw(g) 

N 

x ~P(R', R2 . . . . .  RN) d R  dR '  1-[ dRi .  
i = 2  

(18) 

In the IDEL approximation nw(K) takes the form 

nw(K) = Iq~(k)12n(kz) (19) 

where ~b(k) is the Fourier transform of the single- 
particle ground state for the motion in the trans- 
verse direction and n(kz) is the momentum distribu- 
tion in the IDEL. From Eq. (2) we have 

Oil fexp[ik~ (z - z')] O*(z, z2 . . . . .  ZN) n(kz) 

N 

x ~O(z', zz . . . . .  ZN) dz  dz' I~ dzi .  (20) 
i = 2  
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4.1. Large kz behaviour in the 1DEL 

As was shown for 3D jellium by Yasuhara and 
Kawazoe [11], the electron-electron ladder dia- 
grams also determine the asymptotic form of the 
momentum distribution at large momenta. We fol- 
low their approach for the one-electron momentum 
distribution in the 1DEL. It is easily shown that 
n(k~) has for large k~ (kz>>kF) the asymptotic 
form 

n(kz) = (PllV(k,)~2g(0) + .... 
\ 2e(kz) J 

(21) 

Therefore, if the 1DEL is confined in a 3D-like 
quantum wire, using Eq. (5) in Eq. (21) yields 

(22) n(k:) = g(O) + "".  

If instead the 1DEL is confined in a 2D-like quan- 
tum wire we should use Eq. (6) in Eq. (21), with the 
result 

(23) n(k~) = g(O) + .... 

The power-law decays of the momentum distribu- 
tion in Eqs. (22) and (23) are the same as for 3D and 
2D jellium. These were derived by Kimball [12] 
and by Rajagopal and Kimball [9], respectively, 
through an alternative argument that we apply to 
a quantum wire immediately below. 

4.2. Large kz behaviour in a quantum wire 

The momentum distribution is obtained from 
Eq. (18) as the Fourier transform of a function 
which is bilinear in the many-electron wave func- 
tion and its asymptotic form at large momenta is 
determined by the points of non-analyticity in the 
wave function. On the other hand, when two elec- 
trons are very close to each other their mutual 
repulsion dominates over the interactions with the 
other electrons and hence the dominant behaviour 
of the wave function can be determined from the 
two-body Schr6dinger equation. Such a constraint 
implies that the many-electron wave function is 
everywhere continuous with its derivative excepts 

at points in phase space which correspond to zero 
interparticle separation. 

By developing this argument, which is originally 
due to Kimball [12], we find 

nw(k, kz) ' 7.8 [P±(r)12g~( R, g ) d r  
~ o ~  k ao / kz 
k fixed 

(24) 

for a 3D-like quantum wire and 

nw(k, kz) 
/2npll'~ 2 1 /', . ,  

k _, ~' !,,-~o ) ~ j  Ip±tOI2gwtR,R)dr  
k fixed 

(25) 

for a 2D-like one. 

5. The local field factor 

The linear density response function Z(kz, to) of 
the 1 DEL can be written in terms of the interacting 
reference susceptibility zl(kz, ~o) and of a local field 
factor G(k:, o9) as 

zl(k~, m) 
z(kz, o9) = 1 - v(k~)[1 - (~(kz, m)]z~(k~, co)" (26) 

The interacting reference susceptibility, first intro- 
duced by Niklasson [13] for 3D jellium, is defined 
in a similar way as the Lindhard free-electron 
response function but with the ideal Fermi mo- 
mentum distribution replaced by the true mo- 
mentum distribution of the interacting electron as- 
sembly. 

Following the method used by Niklasson [13] it 
can be shown that for points in the (kz, 09) plane 
well outside the region of particle-hole excitations, 
the local field factor in Eq. (26) satisfies two exact 
limiting behaviours. These are expressed in terms of 
the function 

1 
GaV(kz) ~np, f_dq[,q%(q) 

(q + k:)2v(q + k~)) 
-- k2v(k: ) ~ [S(q) -- 1]. (27) 

Some properties of short-range correlations for electrons in
quantum wires 39



R. Fantoni, M.P. Tosi/Physica B 217 (1996) 35-40 39 

GPV(k~) is the form taken in the 1DEL by the static 
local field factor first introduced by Pathak and 
Vashishta [14,] for 3D jellium. 

Niklasson's method involves a study of the equa- 
tions of motion for the single-particle and the two- 
particle density matrices, which allow a full evalu- 
ation of the interacting reference susceptibility 
in the limit of large K or large co. It is easily shown 
that the following limit must hold for 
l co + k2z/2ml >> k2/2m and co finite, 

lim (~(kz, co) = GPV(oo). (28) 
kz --* oc 

Using Eqs. (5) and (6) in Eqs. (27) and (28) we find 

G(k~ --* oc, co) = 1 -- 0(0) 

1 [ "  2 

+ 8rtZeTpl I / d q  q v(q) IS(q) - 1] O~ 3 

(29) 

for a 1DEL obtained from 3D confinement and 

G(kz --, oe, o) = 1 - g(0) (30) 

for a 1DEL with 2D confinement. Eq. (30) coincides 
with the result obtained by Santoro and Giuliani 
[15] for 2D jellium. 

Finally, it is also easily shown by the same 
method that 

lim (~(kz, co) = GPV(kz) (31) 
o)~oo  

for Lco - k2~/2ml>>k2/2m and k~ finite. 
A final remark concerning the asymptotic behav- 

iour of static dielectric screening at large wave 
numbers is in order. After rewriting Eq. (26) in 
terms of the Lindhard function Zo(k~, co) and of 
a new local field factor G(k~, co), 

Zo(k~, co) 
Z(kz, co) 1 - v(kz)[1 - G(k~)Xo(kz, co)] ' (32) 

it is easily shown from our results that G(kz, O) 
increases as k~ at large momenta in a 1DEL with 
3D-like confinement and as I k~l when the confine- 
ment is 2D-like. These behaviours reproduce those 
first pointed out by Holas [16] for 3D and 2D 
jellium. 

6. Concluding remarks 

The Coulomb interaction potential between elec- 
trons in a quantum wire would not have a Fourier 
transform if both confinement lengths were taken 
as vanishingly small, because of its divergence at 
vanishing separation. The transverse density form 
factor p~(r), with Fourier transform pl(k), therefore 
is a crucial element of the theory and through it the 
nature of the confinement enters to determine the 
effective I D electron-electron interaction in Eqs. 
(3) and (4). The Coulomb matrix element at large 
momentum transfers takes in general a 3D-like 
form as in Eq. (5), reducing to the 2D-like form of 
Eq. (6) in the case where one of the confinement 
lengths can be taken as vanishingly small. These 
asymptotic forms arise from transverse averaging 
of the Bessel function in the integrand in Eq. (3), 
which by itself would lead to an exponential decay 
factor at large momenta. 

The asymptotic behaviours of the momentum 
distribution, the static structure factor and the local 
field factor that we have explicitly evaluated at 
large momenta reflect the above nature of the 
Coulomb matrix element. Dimensional cross-over 
in these behaviours is to be expected as one of the 
confinement lengths is squeezed down. Even in the 
case of 3D-like confinement, however, the short- 
range correlations reflect the confinement through 
the magnitude of the parameter Q2. 
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curvature) is considered. In the case of a flat space, it is known that, for a one-component
plasma, there are several reasonable definitions of the pressure, and that some of them are
not equivalent to each other. In the present paper, this problem is revisited in the case of
a pseudosphere. General relations between the different pressures are given. At one special
temperature, the model is exactly solvable in the grand canonical ensemble. The grand
potential and the one-body density are calculated in a disk, and the thermodynamic limit
is investigated. The general relations between the different pressures are checked on the
solvable model.
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The classical (i.e., non-quantum) equilibrium statistical mechanics of a two-
dimensional one-component plasma (a system of charged point-particles
embedded in a neutralizing background) living on a pseudosphere (an infinite
surface of constant negative curvature) is considered. In the case of a flat space,
it is known that, for a one-component plasma, there are several reasonable
definitions of the pressure, and that some of them are not equivalent to each
other. In the present paper, this problem is revisited in the case of a pseudo-
sphere. General relations between the different pressures are given. At one
special temperature, the model is exactly solvable in the grand canonical
ensemble. The grand potential and the one-body density are calculated in a disk,
and the thermodynamic limit is investigated. The general relations between the
different pressures are checked on the solvable model.

KEY WORDS: Pseudosphere; negative curvature; two-dimensional one-com-
ponent plasma; pressure; exactly solvable models.

1. INTRODUCTION

Coulomb systems such as plasmas or electrolytes are made of charged
particles interacting through Coulomb’s law. The simplest model of a
Coulomb system is the one-component plasma (OCP), also called jellium:
an assembly of identical point charges, embedded in a neutralizing uniform
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background of the opposite sign. Here we consider the classical (i.e., non-
quantum) equilibrium statistical mechanics of the OCP. Although many
features of more realistic systems are correctly reproduced, this model has
the peculiarity that there are several reasonable definitions of its pressure,
and some of these definitions are not equivalent to each other. (1, 2)

The two-dimensional version (2D OCP) of the OCP has been much
studied. Provided that the Coulomb potential due to a point-charge is
defined as the solution of the Poisson equation in a two-dimensional world
(i.e., is a logarithmic function − ln r of the distance r to that point-charge),
the 2D OCP mimicks many generic properties of the three-dimensional
Coulomb systems. Of course, this toy logarithmic model does not describe
real charged particles, such as electrons, confined on a surface, which
nevertheless interact through the three dimensional Coulomb potential 1/r.
One motivation for studying the 2D OCP is that its equilibrium statistical
mechanics is exactly solvable at one special temperature: both the thermo-
dynamical quantities and the correlation functions are available. (3)

How the properties of a system are affected by the curvature of the
space in which the system lives is a question which arises in general relati-
vity. This is an incentive for studying simple models. Thus, the problem of
a 2D OCP on a pseudosphere has been considered. (4) A pseudosphere is
a non-compact Riemannian surface of constant negative curvature. Unlike
the sphere it has an infinite area and it is not embeddable in the three
dimensional Euclidean space. The property of having an infinite area
makes it interesting from the point of view of Statistical Physics because
one can take the thermodynamic limit on it.

For this 2D OCP on a pseudosphere, the problem of studying and
comparing the different possible definitions of the pressure also arises. This
is the subject of the present paper. In Section 2, we give some basic prop-
erties of the pseudosphere and of a 2D OCP on it. In Section 3, we define
the different pressures and derive general relations between them. In
Section 4, we illustrate the general properties by considering the special
temperature at which all properties can be explicitly and exactly calculated.

2. PSEUDOSPHERE AND ONE-COMPONENT PLASMA

2.1. The Pseudosphere

There are at least three commonly known sets of coordinates to
describe a pseudosphere of Gaussian curvature − 1/a2. The one which
renders explicit the resemblance with the sphere is qF=(q1, q2)=(qy, qj)=
(y, j) with y ¥ [0, .[ and j ¥ [0, 2p[, the metric being

ds2=gab dqa dqb=a2(dy2+sinh2 y dj2) (2.1)

28 Fantoni et al.
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Another set of coordinates often used is (r, j) with r/(2a)=tanh(y/2).
They are the polar coordinates of a disk of radius 2a. The metric in terms
of these new coordinates is

ds2=
dr2+r2 dj2

[1 − (r2/4a2)]2 (2.2)

The disk with such a metric is called the Poincaré disk. Through an
appropriate conformal transformation, the Poincaré disk can be mapped
onto the upper half-plane with some metric, the Poincaré half-plane, but
this latter representation will not be used here. The geodesic distance d01

between any two points qF0=(y0, j0) and qF1=(y1, j1) on the pseudosphere
is given by

cosh(d01/a)=cosh y1 cosh y0 − sinh y1 sinh y0 cos(j1 − j0) (2.3)

Given the set of points at a geodesic distance from the origin less than
or equal to d, that we shall call a disk of radius d, we can easily determine
its circumference

C=2pa sinh 1d
a
2 ’

d Q .
paed/a (2.4)

and its area

A=4pa2 sinh2 1 d
2a
2 ’

d Q .
pa2ed/a (2.5)

The Laplace–Beltrami operator on the pseudosphere is

D=
1
a2
1 1

sinh y

“

“y
sinh y

“

“y
+

1
sinh2 y

“
2

“j2
2 (2.6)

2.2. The One-Component Plasma

The 2D OCP which is considered here is an ensemble of N identical
point particles of charge q, constrained to move in a disk of radius d=ay0

by an infinite potential barrier on the boundary of this domain y=y0. The
average particle number density is n=N/A, where A is the area (2.5).
There is a background with a charge density rb=−qnb uniformly smeared
on the disk (rb is 0 outside the disk). It is convenient to introduce the
number of elementary charges in the background: Nb=nbA. The total
charge is not necessarily 0, thus in general nb ] n.

Pressures for a One-Component Plasma on a Pseudosphere 29

Pressures for a One-Component Plasma on a Pseudosphere 48



The pair Coulomb potential v(d) between two unit charges, a geodesic
distance d apart, satisfies the Poisson equation on the pseudosphere,

Dv(d)=−2pd (2)(d) (2.7)

where d (2)(d) is the Dirac delta function on the curved manifold. This
Poisson equation admits a solution vanishing at infinity,

v(d)=−ln 5tanh 1 d
2a
26 (2.8)

The electrostatic potential of the background w(qF) satisfies

Dw(qF)=−2prb (2.9)

By symmetry, this electrostatic potential is only a function of y. Expressing
the Laplacian (2.6) in terms of the variable cosh y, and requesting the
solution to be regular at y=0 and to have the correct value at y=y0

(corresponding to the background total charge), one finds the solution

w(y)=2pa2qnb
3 ln 51 − tanh2(y0/2)

1 − tanh2(y/2)
6+sinh2(y0/2) ln[tanh2(y0/2)]4

(2.10)

Let dS=2pa2 sinh y dy be an area element. The self energy of the
background is

v0=1
2 F

y < y0

rbw(y) dS

=(2pa2qnb)2 {sinh2(y0/2) − ln[cosh2(y0/2)]

− sinh4(y0/2) ln[tanh2(y0/2)]} (2.11)

The total potential energy of the system is

U=v0+vpb+vpp (2.12)

where vpp is the potential energy due to the interactions between the
particles,

vpp=1
2 C

N

i, j=1
i ] j

q2v(dij) (2.13)
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and vpb is the potential energy due to the interaction between the particles
and the background,

vpb= C
N

i=1
qw(yi) (2.14)

3. THE DIFFERENT PRESSURES AND THEIR RELATIONS

In the case of a flat system, the pressure which is often considered,
termed the thermal pressure, is defined from the free energy F by the stan-
dard relation P (h)=−(“F/“A)b, N, Nb

, where b is the inverse temperature.
In the case of a flat neutral (N=Nb) 2D OCP, this thermal pressure is
given by the simple exact expression bP (h)=n[1 − (bq2/4)]. (5, 6) Thus, this
thermal pressure becomes negative for bq2 > 4, i.e., at low temperatures.
This pathology of the OCP occurs also in three dimensions; it is related to
the presence of an inert background without kinetic energy. Indeed, the
uniform background can be considered as the limit of a gas of negative
particles of charge − E and number density n, when E Q 0, n Q ., for
a fixed value of the charge density − En. In this limit, the ideal-gas part
(kinetic part) of the background average energy density becomes infinite. In
the OCP Hamiltonian, this infinite energy density is omitted. The price paid
for this omission is that the corresponding (infinite) ideal-gas contribution
to the pressure is omitted, and the remaining pressure may be negative.4

4 In the case of a two-dimensional two-component plasma made of point-particles, the pres-
sure also becomes negative when extrapolated to low temperatures bq2 > 4. However, now
bq2 > 4 is outside the domain of definition of the partition function.

Unhappy with this negativeness, Choquard et al. (1) and Navet et al. (2)

have introduced another pressure, the kinetic pressure P (k), which is the
pressure exerted on the wall by the particles of charge q only. This kinetic
pressure turns out to be also the one which is obtained through the use of
the virial theorem. Although for usual fluids the thermal and kinetic pres-
sures are equivalent, in the presence of a background they are different,
with the kinetic pressure being always positive. This positiveness led the
above authors to argue that the kinetic pressure is the ‘‘right’’ one.
Anyhow, a detailed comparison of the diverse possible definitions of the
pressure of a flat OCP has been done. (1)

In the present paper, it is this comparison that we extend to the case of
a 2D OCP on a pseudosphere. We shall restrict ourselves to the case of a
domain in the shape of a disk. We are especially interested in the thermo-
dynamic limit, i.e., when the disk radius becomes infinite, for fixed values
of b, n, nb.
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3.1. Kinetic and Virial Pressures

The average force exerted by the particles on a perimeter element ds is
(1/b) n (1)(y0) ds, where n (1)(y) is the one-body density at the distance ay

from the origin. Therefore, the kinetic pressure is

P (k)=(1/b) n (1)(y0) (3.1)

We assume that this quantity has a limit when y0 Q .. In Section 4, this
assumption will be checked in the special case bq2=2. It will now be
shown that the virial pressure P (v), i.e., the pressure computed from the
virial theorem, is the same as P (k).

In terms of the 2N coordinate components qN and 2N conjugate
momentum components pN, the Hamiltonian of our OCP of N particles is

H(qN, pN)=T(qN, pN)+Ū(qN) (3.2)

where Ū=U+confining potential and the kinetic energy T is

T=
1

2m
C
N

i=1
gab(qFi) pia pib (3.3)

The Roman indices label the particles, and the lower or upper Greek
indices denote covariant or contravariant components, respectively. As
usual, a sum over repeated Greek indices is tacitly assumed. The equations
of motion for particle i are

˛ q̇a
i =

“H
“pia

=
1
m

gab(qFi) pib

ṗia=−
“H
“qa

i

=−
1

2m
“gbc

“qa
i

pib pic −
“Ū
“qa

i

(3.4)

where the dot stands for total derivative with respect to time. If we take the
time derivative of ;i qy

i piy=;i yi piy, we find5

5 One may be tempted to start with the time derivative of ;i qa
i pia=;i (yi piy+ji pij). Note

however that this quantity does not remain finite at all times. This is because, when one
follows the motion of a particle colliding with the boundary, it may go around the origin
indefinitely, and ji (which must be defined as a continuous variable, without any 2p jumps)
may increase indefinitely. Thus the time average of the time derivative of this quantity does
not vanish.

d
dt

C
i

yi piy=
1
m

C
N

i=1
gyb(qFi) piy pib −

1
2m

C
N

i=1
yi

“gbc

“yi
pib pic − C

N

i=1
yi

“Ū
“yi

(3.5)
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where the last term is called the virial of the system. Since the system is
confined in a finite domain, the coordinates yi(t) and their canonically
conjugated momenta piy(t) remain finite at all times. Thus,

7 d
dt

C
N

i=1
yi piy

8
t
=0 (3.6)

where O · · ·Pt denotes a time average. Assuming that the system is ergodic,
we can replace time averages by microcanonical averages. Assuming the
equivalence of ensembles in the thermodynamic limit, we can as well use
canonical or grand-canonical averages O · · ·P. In the present section, we use
canonical averages. The average of the r.h.s. of (3.5) vanishes. Separating
in the last term of (3.5) the contribution from the forces exerted by the
walls, which is, in the average, − ay0CP (v), we obtain

ay0CP (v)=7 1
m

C
N

i=1
gyb(qFi) piy pib

8−7 1
2m

C
N

i=1
yi

“gbc

“yi
pib pic

8−7 C
N

i=1
yi

“U
“yi

8

(3.7)

We now calculate the three terms in the r.h.s. of (3.7). The first one is
the average of twice a contribution to the Hamiltonian, which is quadratic
in the N variables piy (g is diagonal); since the average of a quadratic term
in the Hamiltonian is 1/(2b), the first term in the r.h.s. of (3.7) is

7 1
m

C
N

i=1
gyy(qFi)(piy)28=

N
b

(3.8)

The second term reduces to −O(1/2m) ;N
i=1 yi(“gjj/“yi)(pij)2P.

Averaging first on pij replaces (pij)2/2m by 1/[2bgjj(yi)]. The second
term becomes

1
b
7 C

N

i=1

yi

tanh yi

8=
1
b

F
y < y0

n (1)(y)
y

tanh y
dS (3.9)

Finally, since

dn (1)(y1)
dy1

=−bN
> e−bU(“U/“y1) dS2 · · · dSN

> e−bU dS1 dS2 · · · dSN
(3.10)

the third term can be written as

− N 7y1
“U
“y1

8=
1
b

F
y1 < y0

y1
dn (1)(y1)

dy1
dS1 (3.11)
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Putting together the contributions (3.8), (3.9), and (3.11) gives for (3.7)

ay0CP (v)=
N
b

+
1
b

F
y0

0

5n (1)(y)
y

tanh y
+y

dn (1)(y)
dy

6 2pa2 sinh y dy (3.12)

After an integration by parts, (3.12) becomes

P (v)=
1
b

n (1)(y0)=P(k) (3.13)

3.2. The Thermal Pressure

The thermal pressure is defined as

P (h)=−1 “F
“A

2
b, N, Nb

(3.14)

where F is the free energy. This expression is appropriate for the canoni-
cal ensemble, since F is related to the canonical partition function Z by
bF=−ln Z.

3.2.1. The Thermal Pressure in the Grand Canonical Ensemble

In the following, we shall also need an expression of the thermal
pressure appropriate for the grand canonical ensemble. It should be
remembered that, for a flat OCP in three dimensions, the grand canonical
partition function must be defined (7) as an ensemble of systems with any
number N of particles in a fixed volume and with a fixed background charge
density − qnb (using an ensemble of neutral systems, i.e., varying nb together
with N would give a divergent grand partition function). In two dimen-
sions, b times the free energy for a neutral flat system (3) behaves as
[1 − (bq2/4)] N ln N as N Q ., and therefore the neutral grand canonical
partition function diverges if bq2 > 4. This indicates that, in the present
case of a 2D OCP on a pseudosphere, a similar divergence might occur for
an ensemble of neutral systems, and we prefer to use an ensemble with a
fixed background (which, furthermore, will be seen to be exactly solvable at
bq2=2). Thus, the grand partition function X and the corresponding
grand potential W=−(1/b) ln X are functions of b, A, z, nb, where z is the
fugacity. The usual Legendre transformation from F to W and from N to z

changes (3.14) into

P (h)=−1 “W

“A
2

b, z, Nb

(3.15)
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We assume that, even on a pseudosphere, the grand potential is extensive,
i.e., of the form W=Aw(b, z, nb). Since w depends on A through nb=
Nb/A, Eq. (3.15) becomes

P (h)=−w+nb
“w

“nb
(3.16)

Note the difference with an ordinary fluid, without a background, for
which P (h)=−w.

3.2.2. The P (h) −P (k ) Difference

For a OCP, the thermal pressure is different from the kinetic pressure.
In the case of a 2D OCP in a flat disk, in the thermodynamic limit, the
boundary becomes a straight line and the difference was found to be (1)

P (h) − P (k)=−2pq2nb F
.

0
[n (1)(x) − nb] x dx (3.17)

where n (1)(x) is the density at distance x from the boundary. Using the
Poisson equation, one can write (3.17) in the equivalent form (8)

P (h) − P (k)=qnb[fsurface − fbulk] (3.18)

where fbulk and fsurface are the electric potential in the bulk and on the disk
boundary, respectively.6

6 In the original papers, (1, 8) the derivations of (3.17) and (3.18) have been done in the case of a
neutral system. However, these derivations can be easily extended to systems carrying a total
non vanishing charge.

Equation (3.18) can be proven as follows. Either in the flat case, or in
the case of a pseudosphere, let us consider a large disk of area A, filled
with a 2D OCP. For compressing it infinitesimally, changing the area by
dA < 0, at constant b, N, Nb, we must provide the reversible work dW=
−P (h) dA. We may achieve that compression in two steps. First, one
compresses the particles only, leaving the background behind; the corre-
sponding work is dW (1)=−P (k) dA, since P (k) is the force per unit length
exerted on the wall by the particles alone. Then, one compresses the back-
ground, i.e., brings the charge qnb dA from a region where the potential is
fsurface into the plasma where the potential is f(r), spreading it uniformly;
the corresponding work is dW(2)=qnb dA[(1/A) > f(r) dS − fsurface], where
f(r) is the potential at distance r from the center. Therefore,

P (h) − P (k)=qnb
5fsurface −

1
A

F f(r) dS6 (3.19)
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We expect f(r) to differ from fbulk only in the neighborhood of the
boundary circle.

In the case of a flat disk, the contribution of this neighborhood to the
integral in (3.19) is negligible in the thermodynamic limit, f(r) can be
replaced by the constant fbulk, and one obtains (3.18). On a pseudosphere,
(3.19) [with f(y) instead of f(r)] is still valid. However, now, in the large-
disk limit, the integration element dS=2pa2 sinh y dy makes the boundary
neighborhood dominant, and we rather have

P (h) − P (k) ’ qnb
5f(y0) − e−y0 F

y0

0
f(y) ey dy6 (3.20)

After some manipulations, in the thermodynamic limit, (3.20) can be
shown to be equivalent to

P (h) − P (k)=−2pa2nbq2 F
.

0
[n (1)(s) − nb] se−s ds (3.21)

where we have introduced the variable s=y0 − y and n (1)(s) now denotes
the particle density at distance as from the boundary. Indeed, in (3.21),
n (1)(y) − nb can be expressed in terms of f(y) through the Poisson equation
Df(y)=−2pq[n(1)(y) − nb]. Since the charge density is localized at large y,
we can use for the Laplacian D ’ a−2[d2/dy2+d/dy]. After integrations by
parts, (3.20) is recovered.

In conclusion, (3.17) valid for a large flat disc generalizes into (3.21)
on a pseudosphere. In the limit a Q ., s Q 0, as=x, Eq. (3.21) does
reproduce (3.17).

3.3. The Mechanical Pressure

Choquard et al. (1) have also defined a mechanical pressure, in terms of
the free energy F, as

P (m)=−1 “F
“A

2
b, N, nb

(3.22)

In terms of the grand potential W, a Legendre transformation now gives

P (m)=−1 “W

“A
2

b, z, nb

(3.23)
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If the grand potential is extensive, of the form W=Aw(b, z, nb), (3.23) gives

P (m)=−w (3.24)

The difference P (m) − P (k) can be obtained by a slight change in the
argument of Section 3.2.2. Again, we consider a large disk filled with a
2D OCP of area A, and we compress it infinitesimally, changing its area
by dA < 0, now at constant b, N, nb, providing the reversible work
dW=−P (m) dA, in two steps. Again, first one compresses the particles
only, leaving the background behind, and the corresponding work is
dW (1)=−P (k) dA. Then, one must withdraw the leftover background
charge qnb dA, bringing it from the surface where the potential is fsurface to
infinity where the potential vanishes. The corresponding work is dW (2)=
−qnb dA fsurface. Therefore, for a disk on a pseudosphere, P (m) − P (k)=
qnbfsurface.7

7 This result is identical with the one obtained by Choquard et al. (1) in the case of a flat disk.
However, their general formula might make difficulties in two dimensions, because the
Coulomb potential − ln(r/L) does not vanish at infinity and involves an arbitrary constant
length L. These difficulties do not arise on a pseudosphere.

In the thermodynamic limit, fsurface Q 2pa2q(n − nb) and

P (m) − P (k)=2pa2q2nb(n − nb) (3.25)

This difference vanishes for a neutral system (n=nb).
The relations (3.21) and (3.25) between the different pressures

obtained here by means of electrostatic arguments can also be obtained in
a more formal way following Choquard et al., (1) using the dilatation
method (doing a change of variable y=y0 ỹ in the partition function to
explicitly show the area A dependence) and the BGY equations to replace
the two-body density terms that appear in the calculations by one-body
density terms.

3.4. The Maxwell Tensor Pressure

On a pseudosphere, since the area of a large domain is of the same
order as the area of the neighborhood of the boundary, all the above defi-
nitions of the pressure depend on the boundary conditions. In previous
papers, a definition of a bulk pressure independent of the boundary con-
ditions has been looked for. After an erroneous attempt, (4) it has been
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argued (9, 10) that a bulk pressure PMaxwell could be defined from the Maxwell
stress tensor (11) at some point well inside the fluid. The result was

bPMaxwell=nb
11 −

bq2

4
2 (3.26)

That same equation of state holds for the 2D OCP on a plane, a sphere, or
a pseudosphere.

4. EXACT RESULTS AT bq 2=2

When the Coulombic coupling constant is bq2=2, all the thermo-
dynamic properties and correlation functions of the two-dimensional one-
component plasma can be computed exactly in several geometries (3, 12, 13)

including the pseudosphere. (4) In ref. 4 the density and correlation func-
tions in the bulk, on a pseudosphere, were computed. Here we are inter-
ested in these quantities near the boundary. In ref. 4 the calculations were
done for a system with a − ln sinh(d/2a) interaction and it was shown that
this interaction gives the same results as the real Coulomb interaction
− ln tanh(d/2a), as far as the bulk properties are concerned. The argument
in favor of this equivalence no longer holds for the density and other
quantities near the boundary; therefore we shall concentrate on the real
Coulomb system with a − ln tanh(d/2a) interaction. This system was
briefly considered in the Appendix of ref. 4. For the sake of completeness,
we revisit here the reduction of the statistical mechanics problem to the
study of a certain operator.

4.1. The Grand Potential

Working with the set of coordinates (r, j) on the pseudosphere (the
Poincaré disk representation), the particle i-particle j interaction term in
the Hamiltonian can be written as (4)

v(dij)=−ln tanh(dij/2a)=−ln : (zi − zj)/(2a)
1 − (zi z̄j/4a2)

: (4.1)

where zj=rje ijj and z̄j is the complex conjugate of zj. This interaction (4.1)
happens to be the Coulomb interaction in a flat disc of radius 2a with ideal
conductor walls. Therefore, it is possible to use the techniques which have
been developed (14, 15) for dealing with ideal conductor walls, in the grand
canonical ensemble.
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The grand canonical partition function of the OCP at fugacity z with a
fixed background density nb, when bq2=2, is

X=C0
51+ C

.

N=1

1
N!

F D
N

k=1

z(rk) rk drk djk

[1 − (r2
k/4a2)]

D
i < j

: (zi − zj)/(2a)
1 − (zi z̄j/4a2)

: 26 (4.2)

where for N=1 the product <i < j must be replaced by 1. We have defined
a position-dependent fugacity z(r)=z[1 − r2/(4a2)]4pnba2 − 1 eC which includes
the particle-background interaction (2.10) and only one factor [1−r2/(4a2)]−1

from the integration measure dS=[1 − r2/(4a2)]−2 dr. This should prove
to be convenient later. The eC factor is

eC=exp 54pnba2 1 ln cosh2 y0

2
− sinh2 y0

2
ln tanh2 y0

2
26 (4.3)

which is a constant term coming from the particle-background interaction
term (2.10) and

ln C0=
(4pnba2)2

2
5ln cosh2 y0

2
+sinh2 y0

2
1 sinh2 y0

2
ln tanh2 y0

2
− 126 (4.4)

which comes from the background-background interaction (2.11). Notice
that for large domains, when y0 Q ., we have

eC ’ 5ey0+1

4
64pnba2

(4.5)

and

ln C0 ’ −
(4pnba2)2 ey0

4
(4.6)

Let us define a set of reduced complex coordinates ui=(zi/2a) inside the
Poincaré disk and its corresponding images ug

i =(2a/z̄i) outside the disk.
By using Cauchy identity

det 1 1
ui − ug

j

2
(i, j) ¥ {1,..., N}2

=(−1)N(N − 1)/2 <i < j (ui − uj)(ug
i − ug

j )
<i, j (ui − ug

j )
(4.7)

the particle-particle interaction term together with the [1 − (r2
i /4a2)]−1

other term from the integration measure can be cast into the form

D
i < j

: (zi − zj)/(2a)
1 − (zi z̄j/4a2)

: 2 D
N

i=1
[1 − (r2

i /4a2)]−1=det 1 1
1 − ui ūj

2
(i, j) ¥ {1,..., N}2

(4.8)
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The grand canonical partition function then is

X=51+ C
.

N=1

1
N!

F D
N

k=1
d2rk z(rk) det 1 1

1 − ui ūj

26 C0 (4.9)

We shall now show that this expression can be reduced to an infinite
continuous determinant, by using a functional integral representation
similar to the one which has been developed for the two-component
Coulomb gas. (16) Let us consider the Gaussian partition function

Z0=F Dk Dk̄ exp 5F k̄(r) M−1(z, z̄Œ) k(rŒ) d2r d2rŒ6 (4.10)

The fields k and k̄ are anticommuting Grassmann variables. The Gaussian
measure in (4.10) is chosen such that its covariance is equal to8

8 Actually the operator M should be restricted to act only on analytical functions for its
inverse M−1 to exist.

Ok̄(ri) k(rj)P=M(zi, z̄j)=
1

1 − ui ūj
(4.11)

where O · · ·P denotes an average taken with the Gaussian weight of (4.10).
By construction we have

Z0=det(M−1) (4.12)

Let us now consider the following partition function

Z=F Dk Dk̄ exp 5F k̄(r) M−1(z, z̄Œ) k(rŒ) d2r d2rŒ+F z(r) k̄(r) k(r) d2r6

(4.13)

which is equal to

Z=det(M−1+z) (4.14)

and then

Z
Z0

=det[M(M−1+z)]=det[1+K] (4.15)
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where

K(r, rŒ)=M(z, z̄Œ) z(rŒ)=
z(rŒ)

1 − uūŒ
(4.16)

The results which follow can also be obtained by exchanging the order of
the factors M and M−1+z in (4.15), i.e., by replacing z(rŒ) by z(r) in (4.16),
however using the definition (4.16) of K is more convenient. Expanding the
ratio Z/Z0 in powers of z we have

Z
Z0

=1+ C
.

N=1

1
N!

F D
N

k=1
d2rk z(rk)Ok̄(r1) k(r1) · · · k̄(rN) k(rN)P (4.17)

Now, using Wick theorem for anticommuting variables, (16) we find that

Ok̄(r1) k(r1) · · · k̄(rN) k(rN)P=det M(zi, z̄j)=det 1 1
1 − ui ūj

2 (4.18)

Comparing Eqs. (4.17) and (4.9) with the help of Eq. (4.18) we conclude that9

X=C0
Z
Z0

=C0 det(1+K) (4.19)

9 Actually, the determinants Z0 and Z are divergent quantities, since the eigenvalues of M
(restricted to act on analytical functions) are easily found to be 4pa2/(a+1), with a any non-
negative integer. However, the ratio Z/Z0 turns out to be finite.

The problem of computing the grand canonical partition function has
been reduced to finding the eigenvalues of the operator K. The eigenvalue
problem for K reads

F zeC

11 −
rŒ

2

4a2
24pnba2 − 1

1 −
zz̄Œ

4a2

F(rŒ) rŒ drŒ djŒ=lF(r) (4.20)

For l ] 0 we notice from Eq. (4.20) that F(r)=F(z) is an analytical func-
tion of z. Because of the circular symmetry it is natural to try F(z)=
Fa(z)=za=rae iaj with a a non-negative integer (the functions za form a
complete basis for the analytical functions). Expanding

1

1 −
zz̄Œ

4a2

= C
.

n=0

1 zz̄Œ

4a2
2n

(4.21)
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and replacing Fa(z)=za in Eq. (4.20) one can show that Fa is actually an
eigenfunction of K with eigenvalue

la=4pa2zeCBt0
(a+1, 4pnba2) (4.22)

with t0=r2
0/(4a2)=tanh2(y0/2) and

Bt0
(a+1, 4pnba2)=F

t0

0
(1 − t)4pnba2 − 1 ta dt (4.23)

the incomplete beta function. So we finally arrive to the result for the grand
potential

bW=−ln X=−ln C0 − C
.

a=0
ln(1+4pa2zeCBt0

(a+1, 4pnba2)) (4.24)

with eC and ln C0 given by Eqs. (4.3) and (4.4). This result is valid for any
disk domain of radius ay0. Later, in Section 4.3, we will derive a more
explicit expression of the grand potential for large domains y0 Q ..

4.2. The Density

As usual one can compute the density by doing a functional derivative
of the grand potential with respect to the position-dependent fugacity:

n (1)(r)=11 −
r2

4a2
22

z(r)
d ln X

dz(r)
(4.25)

The factor [1 − (r2/4a2)]2 is due to the curvature, (4) so that n (1)(r) dS is the
average number of particles in the surface element dS=[1−(r2/4a2)]−2 dr.
Using a Dirac-like notation, one can formally write

ln X=Tr ln(1+K)+ln C0=F Or| ln(1+z(r) M) |rP dr+ln C0 (4.26)

Then, doing the functional derivative (4.25), one obtains

n (1)(r)=11 −
r2

4a2
22

z(r) Or| (1+K)−1 M |rP

=4pa 11 −
r2

4a2
22

z(r) G̃(r, r) (4.27)
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where we have defined G̃(r, rŒ) by10 G̃=(1+K)−1 M/(4pa). More expli-

10 The factor 4pa is there just to keep the same notations as in ref. 4.

citly, G̃ is the solution of (1+K) G̃=M/(4pa), that is

G̃(r, rŒ)+zeC F G̃(rœ, rŒ)

11 −
rœ

2

4a2
24pnba2 − 1

1 −
zz̄œ

4a2

drœ=
1

4pa 51 −
zz̄Œ

4a2
6

(4.28)

and the density is given by

n (1)(r)=4pazeC 11 −
r2

4a2
24pnba2+1

G̃(r, r) (4.29)

From the integral Eq. (4.28) one can see that G̃(r, rŒ) is an analytical func-
tion of z. Thus the solution is of the form

G̃(r, rŒ)= C
.

a=0
aa(rŒ) za (4.30)

and Eq. (4.28) yields

G̃(r, rŒ)=
1

4pa
C
.

a=0

1 zz̄Œ

4a2
2a 1

1+4pa2zeCBt0
(a+1, 4pnba2)

(4.31)

Then the density is given by

n (1)(r)=zeC 11 −
r2

4a2
24pnba2+1

C
.

a=0

1 r2

4a2
2a 1

1+4pa2zeCBt0
(a+1, 4pnba2)

(4.32)

After some calculation (see Appendix A), it can be shown that, in the limit
a Q ., the result for the flat disk in the canonical ensemble (17)

n (1)(r)
nb

=exp(−pnbr2) C
Nb − 1

a=0

(pnbr2)a

c(a+1, Nb)
(4.33)

is recovered, up to a correction due to the non-equivalence of ensembles in
finite systems. In (4.33), c is the incomplete gamma function

c(a+1, x)=F
x

0
tae−t dt (4.34)
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In that flat-disk case, in the thermodynamic limit (half-space), n (1)(r0)=
ncontact Q nb ln 2.

4.3. Large Domains

We are now interested in large domains y0 Q .. In this thermo-
dynamic limit we will show that the sums in Eqs. (4.24) and (4.32) can be
replaced by integrals. For pedagogical reasons we will first consider the
case 4pnba2=1 in which the calculations are simpler, and afterwards deal
with the general case.

4.3.1. The Case 4pnba2=1

In this case the incomplete beta function that appears in Eqs. (4.24)
and (4.32) simply is

Bt0
(a+1, 1)=

ta+1
0

a+1
=

[tanh2(y0/2)]a+1

a+1
(4.35)

When y0 Q . we have

Bt0
(a+1, 1) ’

exp(−4(a+1) e−y0)
a+1

(4.36)

Then the sum appearing in the grand potential (4.24) takes the form

C
.

a=0
ln 11+

ze
nb

exp(−4(a+1) e−y0)
4(a+1) e−y0

2 (4.37)

where we have used the asymptotic expression (4.5) for eC. This sum can be
seen as a Riemann sum for the variable x=4(a+1) e−y0. Indeed, for large
values of y0, the variable x varies in small steps dx=4e−y0. The sum (4.37)
then converges, when y0 Q ., to the integral

F
.

0
ln 11+

ze
nb

e−x

x
2 dx

4e−y0
(4.38)

This expression together with Eq. (4.6) for the constant ln C0 gives the
grand potential in the thermodynamic limit y0 Q .

bW ’ −
ey0

4
5F

.

0
ln 11+

ze
nb

e−x

x
2 dx − 16 (4.39)
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We notice that the grand potential is extensive as expected. The area of the
system being A=4pa2 sinh2(y0/2) 4 pa2ey0, we find that the grand poten-
tial per unit area w=W/A is given by

bw=−nb
5F

.

0
ln 11+

ze
nb

e−x

x
2 dx − 16 (4.40)

Similar calculations lead from Eq. (4.32) to the density n (1)(s) near the
boundary as a function of the distance from that boundary as=a(y0 − y),

n (1)(s)=ze e2s F
.

0

e−xes

1+
ze
nb

e−x

x

dx (4.41)

After the change of variable xes
Q x, this can be written as

n (1)(s)
nb

=F
.

0

xe−x dx
xe−s

(ze/nb)
+e−xe − s

(4.42)

The average density n=N/A can be obtained integrating the density
profile (4.42) or by using the thermodynamic relation N=−bz(“W/“z).
We find

n
nb

=F
.

0

e−x dx
x

(ze/nb)
+e−x

(4.43)

4.3.2. The General Case

With the case 4pnba2=1 we have illustrated the general procedure for
computing the thermodynamic limit. Now we proceed to compute it in the
more general case where 4pnba2 has any positive value. To simplify the
notations let us define a=4pnba2. The main difficulty is to find a suitable
asymptotic expression of the incomplete beta function

Bt0
(a+1, a)=F

t0

0
(1 − t)a − 1 ta dt (4.44)

when t0 Q 1 which is valid for large a. As we have noticed in the previous
section the main contribution from the sum in a that appears in the grand
potential comes from large values of a which are of order ey0. For these
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values of a the integrand in the definition of the beta function (1 − t)a − 1 ta is
very peaked around t=t0 and decays very fast when t Q 0. So the main
contribution to the incomplete beta function comes from values of t near t0.
It is then natural to do the change of variable in the integral t=t0 − v
where with the new variable v the integral is mainly dominated by small
values of v. Then we have

Bt0
(a+1, a)=F

t0

0
(1 − t0+v)a − 1 ea ln(t0 − v) dv (4.45)

Replacing t0 by its asymptotic value t0 ’ 1 − 4e−y0 and taking into account
that v is small (of order e−y0), we find, at first order in e−y0,

Bt0
(a+1, a) ’

1
a

a
C(a, x) (4.46)

where we have introduced once more the variable x=4ae−y0 (at first order
in e−y0 it is the same variable x=4(a+1) e−y0 introduced in the case a=1)
and

C(a, x)=F
.

x
ya − 1e−y dy (4.47)

is an incomplete gamma function. With this result and Eq. (4.5) the term
eCBt0

(a+1, a) in the expressions (4.24) and (4.32) appears as a function of
the continuous variable x=4ae−y0

eCBt0
(a+1, a) ’ ea

C(a, x)
xa

(4.48)

With this result we can replace the sums for a in Eqs. (4.24) and (4.32) by
integrals over the variable x and we find the following expressions for the
grand potential per unit area

bw=
1

4pa2
3(4pnba2)2 − F

.

0
ln 51+4pa2ze4pnba2 C(4pnba2, x)

x4pnba2
6 dx4 (4.49)

and the density

n (1)(s)=ze4pnba2
e (4pnba2+1) s F

.

0

e−xes

dx

1+4pa2ze4pnba2 C(4pnba2, x)

x4pnba2

(4.50)
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In particular the contact value of the density, that is when s=0, is

ncontact=n (1)(0)=ze4pnba2 F
.

0

e−x dx

1+4pa2ze4pnba2 C(4pnba2, x)

x4pnba2

(4.51)

After some calculation (see Appendix A), it can be shown that, in the
limit a Q ., the result for the flat disk in the thermodynamic limit
ncontact=nb ln 2 is again recovered.

An alternative expression for the density which we will also use is
obtained by doing the change of variable xes

Q x and introducing again
a=4pnba2

n (1)(s)
nb

=F
.

0

xae−x dx
xae−as

(zea/nb)
+aC(a, xe−s)

(4.52)

From this expression it can be seen that in the bulk, when s Q . and
e−s

Q 0, the density is equal to the background density, n (1)(s) Q nb. The
system is neutral in the bulk. The excess charge, which is controlled by the
fugacity z, concentrates as usual on the boundary.

The average total number of particles N and the average density
n=N/A can be computed either by using the thermodynamic relation

N=−bz
“W

“z
(4.53)

or by integrating the density profile (4.50)

N=F
y < y0

n (1)(s) dS=pa2ey0 F
.

0
n (1)(s) e−s ds (4.54)

The two methods yield the same result, as expected,

n=
N
A

=ze4pnba2 F
.

0

C(4pnba2, x) dx

x4pnba2
+4pa2ze4pnba2

C(4pnba2, x)
(4.55)

The ratio of the average density and the background density can be put in
the form

n
nb

=F
.

0

C(a, x) dx
xa

(zea/nb)
+aC(a, x)

(4.56)
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As seen on Eqs. (4.52) and (4.56) the density profile n (1)(s) and the average
density n are functions of the parameter g=ze4pnba2

/nb. Different values
of this parameter g give different density profiles and mean densities.
Depending on the value of g the system can be globally positive, negative
or neutral. From Eq. (4.56) it can be seen that the average density is a
monotonous increasing function of the fugacity, as it should be. Therefore
there is one unique value of the fugacity for which the system is globally
neutral. For the case 4pnba2=1, we have determined numerically the value
of g needed for the system to be neutral, n=nb. This value is g=ze/nb

=1.80237.
It may be noted that, in the case of a flat disk in the grand canonical

ensemble, the 2D OCP remains essentially neutral (the modulus of its total
charge cannot exceed one elementary charge q), whatever the fugacity z

might be; (18, 19) this is because the Coulomb interaction − ln(r/L) becomes
infinite at infinity and bringing an excess charge from a reservoir at infinity
to the system already carrying a net charge would cost an infinite energy.
On the contrary, in the present case of a 2D OCP on a pseudosphere, the
Coulomb interaction (2.8) has an exponential decay at large distances, and
varying the fugacity does change the total charge of the disk.

Figure 1 shows several plots of the density n (1)(s) as a function of the
distance s from the boundary (in units of a), for different values of g, in
the case a=4pnba2=1. It is interesting to notice that for g [ 1 the density

Fig. 1. The density profile n (1)(s) (in units of nb) as a function of the distance from the
boundary s (in units of a) for different values of the parameter g=ze/nb in the case
4pnba2=1. From bottom to top, in full line g=0.5, 1.5, 2.5, 5.0, 10.0 and in dashed line g=1
(change of behavior between monotonous increasing profile and oscillating profile),
g=1.80237 (globally neutral system) and g Q ..
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is always an increasing function of s. Far away from the boundary, the
density approaches the background density nb from below. On the other
hand when g > 1, but not too large, the density profile shows an oscilla-
tion: n (1)(s) is no longer a monotonous function of s. Far away from the
boundary, s Q ., the density now approaches the background density
from above. Finally, when g is large enough, the density profile is again
monotonous, now a decreasing function of s.

The change of behavior as s Q . can actually be shown analytically.
Let us define u=e−s. From Eq. (4.52) we have

“

“u
1n (1)(s)

nb

2=F
.

0

ax2aua − 1e−x − xu

1 (xu)a

g
+aC(a, xu)2

2
51 −

exu

g
6 dx (4.57)

The first term in the integral is always positive. The second term,
1 − (exu/g), in the limit s Q . (u Q 0) is 1 − (1/g). If g < 1 it is negative,
then “n (1)/“u is negative and n (1)(s) is then an increasing function of s

when s Q . as it was noticed in the last paragraph.
Also, in this case a=1, when z Q . the density profile (4.42) can be

computed explicitly

n (1)(s)
nb

=
1

(1 − e−s)2 (4.58)

It is clearly a monotonous decreasing function of s.

4.4. Relations Between the Different Pressures

From the explicit expressions (4.49) and (4.52) for the grand potential
and the density profile, we can check the relations between the different
pressures obtained in Section 3. The mechanical pressure simply is
P (m)=−w and it is given by Eq. (4.49). This expression can be transformed
by doing an integration by parts in the integral giving

bP (m)=−
1

4pa2
˛F

.

0

4pa2xze4pnba2 d
dx

5C(4pnba2, x)

x4pnba2
6

1+4pa2ze4pnba2 C(4pnba2, x)

x4pnba2

dx+(4pnba2)2ˇ
(4.59)
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By the replacement

d
dx

5C(4pnba2, x)

x4pnba2
6=−

e−x

x
− 4pnba2 C(4pnba2, x)

x4pnba2+1
(4.60)

in Eq. (4.59), one recognizes the expressions (4.51) and (4.55) for the
contact density and the average density, thus giving

bP (m)=n(1)(0)+4pnba2(n − nb) (4.61)

which is precisely, when bq2=2, the relation (3.25) between the mechanical
pressure P (m) and the kinetic pressure P (k)=(1/b) n (1)(0) obtained in
Section 3.

The thermal pressure is

P (h)=−w(z, nb)+nb
1“w(z, nb)

“nb

2
z

(4.62)

The last term in this equation is given by

bnb
“w

“nb
=

1
4pa2

˛2a2 − F
.

0

4pa2z

1+
4pa2zeaC(a, x)

xa

a
“

“a
5eaC(a, x)

xa
6 dxˇ (4.63)

Making the replacement

a
“

“a
5eaC(a, x)

xa
6=aea 1C(a, x)

xa
+

“

“a
5C(a, x)

xa
62 (4.64)

in Eq. (4.63), one recognizes in the first term the average density n, thus
obtaining

bnb
“w

“nb
=a(2nb − n) − aI (4.65)

where

I=F
.

0

zea

1+
4pa2zeaC(a, x)

xa

“

“a
5C(a, x)

xa
6 dx (4.66)
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So the thermal pressure is given by

bP (h)=n(1)(0)+anb − aI (4.67)

On the other hand the integral appearing in the general relation (3.21)
between the thermal pressure and the kinetic pressure

J=F
.

0
(n (1)(s) − nb) e−ss ds (4.68)

can be split into two parts

J=−nb+IŒ (4.69)

with

IŒ=F
.

0
n (1)(s) se−s ds (4.70)

Using the actual integral representation for the density profile given by
Eq. (4.50) yields

IŒ=F
.

0

zea

1+
4pa2zeaC(a, x)

xa

3F
.

0
ease−xes

s ds4 dx (4.71)

The integral over s can be cast in the form

“

“a
5F

.

0
ease−xes

ds6 (4.72)

By doing the change of variable y=xes one immediately recognizes the
integral representation of the incomplete gamma function. The above
expression is then equal to

“

“a
5C(a, x)

xa
6 (4.73)

Thus we have proven that IŒ=I and finally we have the relation

b(P (h) − P (k))=−4pnba2 F
.

0
(n (1)(s) − nb) e−ss ds (4.74)

which is relation (3.21) in the solvable case bq2=2.
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5. CONCLUSION

In a flat space, the neighborhood of the boundary of a large domain
has a volume which is a negligible fraction of the whole volume. This
is why, for the statistical mechanics of ordinary fluids, usually there is a
thermodynamic limit: when the volume becomes infinite, quantities such as
the free energy per unit volume or the pressure have a unique limit, inde-
pendent of the domain shape and of the boundary conditions. However,
even in a flat space, the one-component plasma is special. For the OCP, it
is possible to define several non-equivalent pressures, some of which, for
instance the kinetic pressure, obviously are surface-dependent even in the
infinite-system limit.

Even for ordinary fluids, statistical mechanics on a pseudosphere is
expected to have special features, which are essentially related to the prop-
erty that, for a large domain, the area of the neighborhood of the boundary
is of the same order of magnitude as the whole area. Although some bulk
properties, such as correlation functions far away from the boundary, will
exist, extensive quantities such as the free energy or the grand potential are
strongly dependent on the boundary neighborhood and surface effects. For
instance, in the large-domain limit, no unique limit is expected for the free
energy per unit area F/A or the pressure − (“F/“A)b, N.

In the present paper, we have studied the 2D OCP on a pseudosphere,
for which surface effects are expected to be important for both reasons:
because we are dealing with a one-component plasma and because the
space is a pseudosphere. Therefore, although the correlation functions far
away from the boundary have unique thermodynamic limits, (4) many other
properties are expected to depend on the domain shape and on the bound-
ary conditions. This is why we have considered a special well-defined
geometry: the domain is a disk bounded by a plain hard wall, and we have
studied the corresponding large-disk limit. Our results have been derived
only for that geometry.

We have been especially interested by different pressures which can
be defined for this system. It has been shown that the virial pressure P (v)

(defined through the virial theorem) and the kinetic pressure P (k) (the force
per unit length that the particles alone exert on the wall) are equal to each
other. We have also considered the thermal pressure P (h), the definition of
which includes contributions from the background. It should be noted that
this thermal pressure is also dependent on surface effects, since it is defined
by (3.14) and (3.15) in terms of the free energy or the grand potential, and
the corresponding partition functions include relevant contributions from
the surface region. The thermal pressure is not equal to the previous ones.
We have also considered the so-called mechanical pressure P (m) which
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differs from the kinetic one only for charged systems. General relations
among these different pressures have been established.

One of the referees of the present paper has asked which one of these
different pressures is the ‘‘right’’ one, i.e., which one would be measured
by a barometer. The answer, based on the previous paragraph, is that it
depends on which kind of ‘‘barometer’’ is used. For instance, the measured
pressure would not be the same if the barometer, placed on the wall, mea-
sures only the force exerted on it by the particles alone, or if it also feels the
force exerted by the background.

When bq2=2, the model is exactly solvable, in the grand canonical
ensemble. Explicit expressions have been obtained for the grand potential,
the density profile, and the pressures. The general relations between the
different pressures have been checked.

A bulk pressure, independent of the surface effects, can be defined
from the Maxwell stress tensor. It is not astonishing that this bulk pressure
is different from the previous ones, all of which depend on surface effects.

APPENDIX A. THE FLAT LIMIT

In this Appendix we study the flat limit a Q . of the expressions
found for the density in Section 4. We shall study the limit a Q . for a
finite system and then take the thermodynamic limit and compare to the
result of taking first the thermodynamic limit and then the flat limit a Q ..
Since for a large system on the pseudosphere boundary effects are of the
same order as bulk effects it is not clear a priori whether computing these
two limits in different order would give the same results. We shall show
that, indeed, the same results are obtained.

For a finite disk of radius d=ay0, we have in the flat limit a Q .,
d ’ r0. In Eq. (4.32), in the limit a Q ., the term eC given by (4.3) becomes

eC ’ 1 r2
0

4a2
2−Nb

eNb (A.1)

where Nb=pnbr2
0 is the number of particles in the background in the flat

limit. Since for large a, t0=r2
0/(4a2) is small, the incomplete beta function

in Eq. (4.32) is

Bt0
(a+1, a)=F

t0

0
e (a − 1) ln(1 − t) ta dt

’ F
t0

0
e−(a − 1) t ta dt ’

c(a+1, Nb)
aa+1 (A.2)
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Expanding (1 − (r2/4a2))4pnba2
’ exp(−pnbr2) in Eq. (4.32) we finally find

the density as a function of the distance r from the center

n (1)(r)=nbe−pnb r2 C
.

a=0

(pnbr2)a

aa − NbNNb
b e−Nb(nb/z)+c(a+1, Nb)

(A.3)

When a Q . the terms for a > Nb in the sum vanish because aa − Nb Q ..
Then

n (1)(r)=nbe−pnb r2 C
E(Nb) − 1

a=0

(pnbr2)a

c(a+1, Nb)
+Dn (1)(r) (A.4)

The first term is the density for a flat OCP in the canonical ensemble with
a background with E(Nb) elementary charges (E(Nb) is the integer part
of Nb). The second term is a correction due to the inequivalence of the
ensembles for finite systems and it depends on whether Nb is an integer or
not. If Nb is not an integer

Dn (1)(r)=nb
(pnbr2)E(Nb) e−pnb r2

c(E(Nb)+1, Nb)
(A.5)

and if Nb is an integer

Dn (1)(r)=nb
(pnbr2)Nb e−pnb r2

NNb
b e−Nb(nb/z)+c(Nb+1, Nb)

(A.6)

In any case in the thermodynamic limit r0 Q ., Nb Q ., this term Dn (1)(r)
vanishes giving the known results for the OCP in a flat space in the canon-
ical ensemble. (3, 17) Integrating the profile density (A.4) one finds the
average number of particles. For a finite system it is interesting to notice
that the average total number of particles N is

N=E(Nb)+1 (A.7)

for Nb not an integer and

N=Nb+
1

1+
NNb

b e−Nbnb

zc(Nb+1, Nb)

(A.8)

for Nb an integer. In both cases the departure from the neutral case N=Nb

is at most of one elementary charge as it was noticed before. (18, 19)
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Let us now consider the other order of the limits. We start with the
expression (4.51) for the contact density in the thermodynamic limit in the
pseudosphere and show that in the limit a Q . the value of the contact
density reduces to the known expression for a neutral OCP in a flat space
at a hard wall. (17) We also show that in that limit the average density is
independent of the fugacity and equal to the background density n=nb.

Equation (4.51) can be rewritten as

ncontact

nb
=F

.

0

xae−x dx
nb

z
xae−a+aC(a, x)

(A.9)

For large a, the numerator of the integrand in (A.9) has a sharp peak at
x=a and can be expanded as

xae−x ’ e
a ln a − a − 1 x − a

`2a
22

(A.10)

In the denominator, using the large a expansion of the incomplete gamma
function, (20) and neglecting 1 with respect to a, we obtain

aC(a, x) ’ aae−a =pa

2
51 − erf 1x − a+1

`2a
26 (A.11)

where

erf(t)=
2

`p
F

t

0
e−u2

du (A.12)

is the error function. Using (A.10) and (A.11) in (A.9) gives

ncontact

nb
’ F

.

0

e
− 1 x − a

`2a
22

dx

nb

z
1x

a
2a

+=pa

2
51 − erf 1x − a+1

`2a
26

(A.13)

For x > a, the first term in the denominator goes to infinity for large a and
the integrand goes to zero. On the other hand, when x < a, this same first
term goes to zero, thus, after the change of variable t=(x − a)/`2a,

ncontact

nb
’

2

`p
F

0

−`a/2

e−t2
dt

1 − erf 1 t+
1

`2a
2

(A.14)
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Finally, as a Q .,

ncontact

nb
Q F

0

−.

d erf(t)
dt

1 − erf(t)
dt=ln 2 (A.15)

This is the known value (17) for the contact density at a hard plain wall for a
neutral OCP.

Following the same lines, Eq. (4.56) for the average density becomes in
the limit a Q .

n
nb

’ =2
a

F
0

−`a/2

[1 − erf(t)] dt
1 − erf(t)

=1 (A.16)

The average density is equal to the background density and it is indepen-
dent of the fugacity. Whatever value the fugacity has, the system cannot be
charged in the flat case in the thermodynamic limit.
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Chapter 5

Generating functionals, consistency,
and uniqueness in the integral
equation theory of liquids

Fantoni R. and Pastore G., J. Chem. Phys., 119, 3810 (2003)
Title: “Generating functionals, consistency, and uniqueness in the integral equation theory
of liquids.”
Abstract: We discuss and illustrate through numerical examples the relations between gen-
erating functionals, thermodynamic consistency (in particular the virial-free energy one),
and uniqueness of the solution, in the integral equation theory of liquids. We propose a new
approach for deriving closures automatically satisfying such characteristics. Results from a
first exploration of this program are presented and discussed.
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We discuss and illustrate through numerical examples the relations between generating functionals,
thermodynamic consistency~in particular the virial-free-energy one!, and uniqueness of the solution
in the integral equation theory of liquids. We propose an approach for deriving closures
automatically satisfying such characteristics. Results from a first exploration of this program are
presented and discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1590642#

I. INTRODUCTION

Integral equation theories~IETs! of liquid-state statistical
mechanics are valuable tools for studying structural and ther-
modynamic properties of pairwise interacting fluid sys-
tems.1,2 Many of these approximations to the exact relation
between pair potential and pair correlation functions have
been proposed in the last half century, starting from the pio-
neering works3–5 to the most refined and modern approxi-
mations6–10 which may approach the accuracy of computer
simulation with a negligible computational cost.

The functional method in statistical mechanics1 provides
the most general and sound starting point to introduce IETs
as approximations of the exact functional relations, and it is
the classical statistical mechanics counterpart of the quantum
density functional theory.

Notwithstanding the success of present IETs to describe
the structure of simple one-component systems, considerable
work is still devoted to derive improved approximations
which could accurately describe the thermodynamics as well.
Also applications to nonsimple or multicomponent systems
are still subject of current studies.

Actually, the description of thermodynamics is one weak
point of IET approaches: reasonable and apparently harmless
approximations to the potential-correlation relations usually
result in a dramatically inconsistent thermodynamics where
many, if not all, among the exact sum rules derived from
statistical mechanics, are violated.

The problem of thermodynamic inconsistency—i.e., the
inequivalence between different routes to thermodynamics—
actually plagues the IET approach to the point that the degree
of inconsistency between different formulas for the same
quantity is used as an intrinsic measurement of the quality of
a closure.

In the past, some discussion of the thermodynamic con-
sistency appeared in the literature. The hypernetted chain
~HNC! approximation was recognized as a closure directly
derivable from an approximation for the free-energy
functional,11 thus exhibiting consistency between the virial

formula and the thermodynamic expression for the pressure.
However, this limited consistency is not enough to guarantee
a unique and faithful description of the phase diagram. Apart
from the problem of the remaining inconsistencies, the de-
scriptions of the critical points and spinodal lines are seri-
ously inadequate.

Extensive work on HNC~Refs. 12–14! showed that in
place of a true spinodal line, it is more appropriate to de-
scribe the numerical results as due to a region in the thermo-
dynamic plane where no real solution of the integral equation
exists. In particular, Belloni12 showed that the disappearance
of the solution originates from a branching point where two
solutions merge, instead of from a line of diverging com-
pressibility. Thus, we have direct evidence that the HNC ap-
proximation may have multiple solutions, at least in part of
the phase diagram.

Empirical improvements on HNC have been pro-
posed6,9,10providing in many cases excellent results for one-
component simple fluids. However, although reduced, the
thermodynamic inconsistency problem remains and the
multiple-solution problem is completely untouched.

In this work we start an investigation of a new approach
to IETs directly addressing the two points of uniqueness of
the solution and thermodynamic consistency. The basic idea
is to constrain the search for new closures within the class of
generating functionals which are strictly convex free-energy
functionals, thus enforcing the virial-energy consistency as
well as the uniqueness of the solution.

In particular, in the present paper we try to answer the
following questions:~i! Does at least one strictly convex
free-energy functional of the pair correlation function exist?
~ii ! What is the nature of the resulting spinodal line~if any!?
~iii ! What is the quality of the resulting thermodynamic and
structural results?~iv! Does the simultaneous requirement of
consistency and uniqueness automatically provide improved
results?

As we will show, we have a positive answer for~i!, a
thorough and interesting characterization for~ii !, some inter-
esting indications for~iii !, and a partly negative answer for
~iv!.

However, we can show that it is possible to exploit the
a!Electronic mail: rfantoni@ts.infn.it
b!Electronic mail: pastore@ts.infn.it
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control provided by the generating functional approach to
easily generate new closures and we feel our procedure could
be the basis of a more systematic approach to IETs.

In Sec. II we recall the connections between closures,
generating functionals, thermodynamic consistency, and
uniqueness of solutions and we illustrate them in the well-
known case of HNC approximation. In Sec. III we introduce
two straightforward extensions of the HNC approximation
intended to cure its problems. In Sec. IV numerical results
are presented and discussed. In Sec. V we show two possible
improvements of the closures studied.

II. THERMODYNAMIC CONSISTENCY AND
UNIQUENESS OF THE SOLUTION OF INTEGRAL
EQUATIONS

Since the work by Olivares and McQuarrie,15 it is known
the general method to obtain the generating functional whose
extremum with respect to variations of the direct@c(r )# or
total @h(r )# correlation functions results in the closure rela-
tion, provided the Ornstein–Zernike~OZ! equation is satis-
fied.

For example, if we have a closure of the form

r2c~r !5C$h~r !,bf~r !%, ~1!

wheref(r ) is the pair interaction potential andC is an ar-
bitrary function, the functional

Q@h~r !,bf~r !#5
1

2br S E dk

~2p!3 $rh~k!2 ln@12rh~k!#%

2E dr h~r !

3E
0

1

dt C$th~r !,bf~r !%1constD ~2!

is such that the extremum condition

dQ

dh~r !
50 ~3!

is equivalent to

r2h~r !5C$h~r !,bf~r !%

1rE h~ ur2r 8u!C$h~r 8!,bf~r 8!% dr 8. ~4!

Olivares and McQuarrie also showed how to find the
generating functional if the closure is expressed in the form

r2h~r !5C$c~r !,bf~r !%. ~5!

In Appendix A we discuss the extension of their method
to the case of a closure written as

r2c~r !5C$g~r !,bf~r !%, ~6!

whereg(r )5h(r )2c(r ) is the indirect correlation function.
Notice that most of the modern closures correspond to this
last case.

The possibility of translating the original integral equa-
tion into an extremum problem allows us to get an easy
control on two important characteristics of the approxima-

tion: thermodynamic consistency between energy and virial
routes to the thermodynamics and uniqueness of the solution.

Indeed, once we get the generating functionalQ, due to
the approximations induced by the closure, there is no guar-
antee that its value at the extremum is an excess free energy.
In order to be a free energy, the functional should satisfy the
condition

dQ

df~r !
5

r

2
g~r !, ~7!

whereg(r )5h(r )11 is the pair distribution function.
Even if this condition is not new and mention to it is

present in the literature,16 we discuss it in Appendix B as
well as its consequences on the thermodynamic consistency
between the virial pressure and the density derivative of the
free energy.

Another issue where the generating functional approach
is useful is the problem of multiple solutions of the integral
equations.12 In particular, the analysis of the convexity prop-
erties of the generating functional is a very powerful
tool.17,18

Let us illustrate this technique in the case of HNC clo-
sure. It is well known11,15 that the HNC equation, with
closure

c~r !5h~r !2 ln@g~r !ebf(r )#, ~8!

can be derived from the variational principle

dF@h#

dh~r !
50, ~9!

where

F@h#5FOZ@h#1FHNC@h#, ~10!

with

FOZ@h#5E dk

~2p!3 $rĥ~k!2 ln@11rĥ~k!#%, ~11a!

FHNC@h#5r2E dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/2%. ~11b!

Let us call h̄(r ) the extremum ofF, solution of the
variational principle~9!. It can be shown~see Appendix B!
that, within an additive constant,F@ h̄#/(2br) is the excess
Helmholtz free energy per particle of the liquid. This ensures
thermodynamic consistency between the route to the pres-
sure going through the partial derivative of the free energy
and the one going through the virial theorem~see Appen-
dix B!. In addition, it allows us to get a closed expression
for the excess chemical potential without further approxima-
tions.19,20 This feature is highly desirable for applications of
IETs to the determination of the phase diagrams.

Moreover, if we can prove thatF, defined on some con-
vex set of trial correlation functionsDc , is a strictly convex
functional, then we know that if a solution to Eq.~9! exists,
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it corresponds to a minimum and is unique. A functionalF is
strictly convex if, for ally(r )PDc andy(r )Þ0, we have

A5E y~r !
d2F@h#

dh~r !dh~r 8!
y~r 8! dr dr 8.0. ~12!

We calculate the second functional derivatives as follows:

d2FOZ@h#

dh~r !dh~r 8!
5r2E dk

~2p!3
e2 ik•(r1r8)

1

@11rĥ~k!#2
,

~13a!

d2FHNC@h#

dh~r !dh~r 8!
5r2d~r2r 8!S 1

g~r !
21D . ~13b!

Recalling that the static structure factorS(k)511rĥ(k), we
find, for A,

A/r25E dk

~2p!3

ŷ2~k!

S2~k!
1E dr y2~r !S 1

g~r !
21D . ~14!

Now, the most interesting results would be to show the strict
convexity of the HNC functional over the convex set of all
the admissible pair correlation functions@all the h(r )>21
and properly decaying to zero at large distance#.

However, this is not the case for HNC. It has not been
possible to show the positive definiteness of Eq.~14! and it
has been shown12 that in some region of the thermodynamic
plane the HNC approximation does exhibit multiple solu-
tions.

The best we can do is to obtain a more limited result.
Calling g15supg(r ) (g1.1 is the height of the first peak of
the pair distribution function! and using Parseval theorem,
we find

A/r2.E dk

~2p!3 ŷ2~k!S 1

S2~k!
211

1

g1
D , ~15!

from which we deduce thatA.0 on the following set of
functions:

D5$h~r ! u0,S~k!,Ag1 /~g121!;k%. ~16!

We conclude thatF defined on any convex set of functions
Dc,D is strictly convex. Near the triple point we are sure
we are out from such set since the first peak of the pair
distribution function for the Lennard-Jones fluid isg1.3
~Ref. 21!, so thatAg1 /(g121).1.2. The first peak of the
static structure factor is also close to 3. Then we are not
inside D and the HNC approximation may have multiple
solutions.12

Instead, if we are in the weak-coupling regime, the pre-
vious conditions tell us that there is a range where the branch
of solutions going to the perfect gas limit is unique and quite
isolated from other solutions.

III. EXTENSIONS OF THE HNC APPROXIMATION

The generating functional approach can be used in a sys-
tematic way to look for better closures. We think that this
way we can obtain a less empirical search method for im-
proving closures.

In the following we report some preliminary analysis we
have done. As a first test of our program, we have restricted

our investigations to simple modifications of the HNC func-
tional. As we will discuss later, such a choice is certainly not
optimal. However, we can learn enough to consider the ap-
proach worthwhile of further investigations and we feel the
results are interesting in order to reveal more details about
the characteristics of the solutions of the highly nonlinear
IETs.

A. HNCÕH2 approximation

We want to modify the HNC closure in order to have an
integral equation with a generating functional which is
strictly convex without having to restrict its definition do-
main. We choose, as our modified HNC~HNC/H2! closure,22

c~r !5h~r !2 ln@g~r !#2bf~r !2ah2~r !, ~17!

with a a parameter to be determined. The new closure gen-
erating functional is

FHNC/H2@h#5r2E dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/21ah3~r !/3%. ~18!

Its second functional derivative with respect toh is

d2FHNC/H2@h#

dh~r !dh~r 8!
5r2d~r2r 8!F 1

g~r !
2112ah~r !G . ~19!

Recalling thath5g21 andg(r ).0 for all r , we see that,
for a51/2,

1

g
2112ah5

~12g!2

g
>0 ;g. ~20!

ThenFHNC/H2 is a convex functional, and sinceFOZ is un-
changed and strictly convex~see Appendix C!, their sum, the
generating functional of the integral equation, is strictly con-
vex.

Moreover, $FOZ@ h̄#1FHNC/H2@ h̄#%/(2br) continues to
be the excess Helmholtz free energy per particle of the liquid
since Eq.~7! holds ~see Appendix B!.

We have then an integral equation which is both thermo-
dynamically consistent~the pressure calculated from the
virial theorem coincides with that one calculated from the
Helmholtz free energy! and with a solution which, when it
exists, is unique.

B. HNCÕH3 approximation

In the same spirit as in Sec. III A we can try to add a
term h3 in the HNC/H2 closure

c~r !5h~r !2 ln@g~r !#2bf~r !2ah2~r !2gh3~r !, ~21!

with a andg parameters to be determined. We call this ap-
proximation HNC/H3. The closure generating functional is

FHNC/H3@h#5r2E dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/21ah3~r !/31gh4~r !/4%. ~22!

Its second functional derivative with respect toh is
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d2FHNC/H3@h#

dh~r !dh~r 8!
5r2d~r2r 8!F 1

g~r !
2112ah~r !13gh2~r !G

5r2d~r2r 8!
12g~r !

g~r !
$122ag~r !13gg~r !

3@12g~r !#%. ~23!

In order to have the right-hand side of this expression posi-
tive for g.0 the only choice we have is to seta51/2. In
this way,

~12g!@122ag13gg~12g!#5~12g!2~113gg!,
~24!

and we see thatFHNC/H3 is a convex functional if we addi-
tionally chooseg.21/@3supg(r )#.

Once again$FOZ@ h̄#1FHNC/H3@ h̄#%/(2br) is the excess
Helmholtz free energy per particle of the liquid and the ther-
modynamic consistency virial free energy is ensured.

IV. NUMERICAL RESULTS

To solve numerically the OZ plus closure system of non-
linear equations we used Zerah’ s algorithm23 and Fourier
transforms were done using fast Fourier transform. In the
code we always work with adimensional thermodynamic
variablesT* 51/(be), r* 5rs3, andP* 5Ps3/e, wheres
and e are the characteristic length and characteristic energy
of the system, respectively. We always used 1024 grid points
and a step sizeDr 50.025s.

The thermodynamic quantities were calculated accord-
ing to the statistical mechanics formulas for the excess inter-
nal energy per particle,

Uexc/N52prE
0

`

f~r !g~r !r 2dr; ~25!

the excess virial pressure

bPv/r2152
2

3
pbrE

0

` df~r !

dr
g~r !r 3dr; ~26!

the bulk modulus calculated from the compressibility equa-
tion,

Bc5
b

rxT
5

1

S~k50!
, ~27!

where xT is the isothermal compressibility; and the bulk
modulus calculated from the virial equation,

Bp5b
]Pv

]r
.

For the calculation ofBp onceg(r ) andc(r ) had been cal-
culated, Lado’s scheme for Fourier transforms24 was used to
determine]ĝ(k)/]r. Even if slow, this allows us to explic-
itly calculate and later invert the coefficients matrix of the
linear system of equations which enters the calculation of
]ĝ(k)/]r.

A. Inverse power potentials

The general form of the inverse power potential is

f~r !5eS s

r D n

, ~28!

where 3,n,`. For this class of fluids the thermodynamics
depends only on the dimensionless coupling parameter

z5~rs3/& !~be!3/n. ~29!

In this paper we choose to fixr* 51 so that Eq.~29! gives
the relation betweenz andT* .

We performed our calculations on then512, 6, and 4
fluids at the freezing point. We compared three kind of clo-
sures: the one of Rogers and Young25 ~RY! with thermody-
namic consistency virial compressibility and known to be
very close to the simulation results, the hypernetted chain
closure, and the HNC/H2 described in Sec. III A. In each
case we compared our data with the Monte Carlo~MC! re-
sults of Hansen and Schiff.26

1. Inverse 12th-power potential

The freezing point for this fluid is atz50.813. The RYa
parameter to achieve thermodynamic consistency at this
value of z is 0.603. Notice that we expressa in units of s
and not of a5(3/4pr)1/3 as in the original Rogers and
Young’ s paper.25

In Table I we compare various thermodynamic quantities
~the excess internal energy per particle, excess virial pres-
sure, bulk moduli! obtained from the MC simulation of
Hansen and Shiff,26 the RY, HNC, and HNC/H2 closures.

In Fig. 1 we compare the MC, HNC, and HNC/H2 re-
sults for the pair distribution function.

2. Inverse 6th-power potential

The freezing point for this fluid is atz51.54. The RYa
parameter to achieve thermodynamic consistency at this
value ofz is 1.209.

In Table II we compare various thermodynamic quanti-
ties ~the excess internal energy per particle, excess virial
pressure, bulk moduli! obtained from the MC simulation of
Hansen and Shiff,26 the RY, HNC, and HNC/H2 closures.

3. Inverse 4th-power potential

The freezing point for this fluid is atz53.92. The RYa
parameter to achieve thermodynamic consistency at this
value ofz is 1.794.

TABLE I. We compare various thermodynamic quantities as obtained from
the MC simulation of Hansen and Shiff, the RY, HNC, and HNC/H2 clo-
sures, for the inverse 12th-power fluid at the freezing point (z50.813).
Uexc/(Ne) is the excess internal energy per particle,bP(v)/r21 the excess
virial pressure, andBc and Bp are the bulk moduli calculated from the
compressibility and the virial equations, respectively.

Closure Uexc/(Ne) bP(v)/r21 Bc Bp

MC 2.675 18.7 - 72.7
RY ~a50.603! 2.626 18.36 69.78 70.13

HNC 3.009 21.04 45.28 80.43
HNC/H2 3.200 22.37 52.66 87.26
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In Table III we compare various thermodynamic quanti-
ties ~the excess internal energy per particle, excess virial
pressure, bulk moduli! obtained from the MC simulation of
Hansen and Shiff,26 the RY, HNC, and HNC/H2 closures.

In Fig. 2 we compare the MC, HNC, and HNC/H2 re-
sults for the pair distribution function.

B. Spinodal line

In this subsection we study a pair potential with a mini-
mum. In particular we chose the Lennard-Jones potential

f~r !54eF S s

r D 12

2S s

r D 6G , ~30!

wheree ands are positive parameters. The critical point for
this fluid is at27 Tc* 51.312060.0007, rc* 50.31660.001,
andPc* 50.127960.0006.

Integral equations usually fail to have a solution at low
temperature and intermediate densities: i.e., in the two-
phases unstable region of the phase diagram. In particular it
is well known that the HNC approximation is unable to re-
produce thespinodal line, the locus of points of infinite com-
pressibility in the phase diagram.12 This is due to the loss of
solution as one approaches the unstable region on an iso-
therm from high or from low densities. The line of loss of
solution, in the phase diagram, is called thetermination line.

According to the discussion of Sec. II, the loss of solution for
the HNC approximation can be traced back to the loss of
strict convexity of the generating functional.28 Indeed, using
the HNC approximation, we computed the bulk modulus
from the compressibility equationBc on several isotherms as
a function of the density. At low temperatures we found that
at both high density and low density we were unable to con-
tinue the isotherm at low values ofBc . Zerah’ s algorithm
either could not get to convergence or it would converge at a
nonphysical solution~with a pole in the structure factor at
some finite wave vectork). Since HNC/H2 has, by construc-
tion, an always strictly convex generating functional, we ex-
pect it to be able to approximate a spinodal line~there should
be no termination line!.

In Fig. 3 we show the behavior ofBc on several iso-
therms as a function of density, calculated with the HNC/H2
approximation. We see that now there are no termination
points. Bc never becomes exactly zero, and the low-
temperature isotherms develop a bump in the intermediate-
density region. The same plot for the bulk modulus calcu-
lated from the virial pressureBp shows that at low
temperatures this bulk modulus indeed becomes zero along
the isotherms both at high and low densities.

In Fig. 4 the pressure is plotted as a function of the
density on several isotherms for the HNC/H2 approximation.
Apart from the fact that we find negative pressures, the iso-
therms have a van der Waals—like behavior.

The graphical analysis of the pressure plotted as a func-
tion of the chemical potential shows that the coexistence of
the two phases~points where the curve crosses itself! is pos-
sible and is lost betweenT* 51.1 andT* 51.2. There gen-
erally are two points of coexistence.

V. IMPROVING THE CLOSURES

The numerical results for HNC/H2 exhibit interesting
features as far as the coexistence region is concerned but
show unambiguously a worst agreement with the MC struc-
tural data in correspondence with a marginal improvement in
the thermodynamics.

We feel that the main problem is the difficulty of an
accurate description of the bridge functions in terms of pow-
ers of the pair correlation function. Recent investigations of
improved closures seem to point to the indirect correlation
function g(r ) or some renormalized version of it as the best

TABLE III. We compare various thermodynamic quantities as obtained
from the MC simulation of Hansen and Shiff, the RY~notice that the bulk
moduli were not given in the Rogers and Young’s paper and the value of the
virial pressure as reported in our table was not corrected to take into account
the long-range nature of the potential!, the HNC and HNC/H2 closures, for
the inverse 4th-power fluid at the freezing point (z53.92).Uexc/(Ne) is the
excess internal energy per particle,bP(v)/r21 the excess virial pressure,
andBc andBp are the bulk moduli calculated from the compressibility and
the virial equations, respectively.

Closure Uexc/(Ne) bP(v)/r21 Bc Bp

MC 8.233 107.7 - 156
RY ~a51.794! 8.001 104.7 250.1 242.9

HNC 8.047 105.3 223.3 244.2
HNC/H2 8.068 105.5 227.0 257.7

FIG. 1. Comparison of the Monte Carlo~MC!, HNC, and HNC/H2 results
for the pair distribution function of the inverse 12th-power fluid atz
50.813.

TABLE II. We compare various thermodynamic quantities as obtained from
the MC simulation of Hansen and Shiff, the RY, HNC, and HNC/H2 clo-
sures, for the inverse 6th-power fluid at the freezing point (z51.54).
Uexc/(Ne) is the excess internal energy per particle,bP(v)/r21 the excess
virial pressure, andBc and Bp are the bulk moduli calculated from the
compressibility and the virial equations, respectively.

Closure Uexc/(Ne) bP(v)/r21 Bc Bp

MC 4.090 38.8 - 110.1
RY ~a51.209! 4.114 39.03 111.0 111.4

HNC 4.235 40.18 84.02 113.7
HNC/H2 4.283 40.64 88.29 115.8
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starting point for progress. However, before moving to more
complex relations or functional dependences, we have ex-
plored two possible directions for improving the HNC/H2
closure. In the first approach we have tried to follow the
reference hypernetted chain~RHNC! approach by Lado.29 In
the second we have explored the possibilities of optimization
offered by the numerical coefficient of the cubic term in the
generating functional.

A. Pseudobridge functions for HNC ÕH2

From the graphical analysis of the pair distribution func-
tion it is known1 that g(r ) may be written as

g~r !5exp@2bf~r !1g~r !1B~r !#, ~31!

where g(r )5h(r )2c(r ) is the sum of all the series-type
diagrams andB(r ) the sum of bridge-type diagrams. If we
take

B~r !52
1

2
h2~r !1G~r !, ~32!

we have that our HNC/H2 approximation amounts to setting
G(r )50. Rosenfeld and Ashcroft6 proposed thatB(r )
should be essentially the same for all potentialsf(r ). We
now make a similar proposal for theG function, and we will
refer to it as thepseudobridge function. In the same spirit of
the RHNC approximation of Lado29 we will approximate
G(r ) with theG function of a short-range~reference! poten-
tial f0(r ). Assuming known the properties of the reference
system, we can calculate theG function as follows:

G0~r !5 ln@g0~r !ebf0(r )#2g0~r !1
1

2
h0

2~r !. ~33!

The reference HNC/H2~RHNC/H2! approximation is then

g~r !5expS 2bf~r !1g~r !2
1

2
h2~r !1G0~r ! D . ~34!

An expression for the free-energy functional can be ob-
tainedturning onthe potentialf(r ) in two stages: first, from
the noninteracting state to the reference potentialf0(r ) and
then from there to the full potentialf(r ). To this end we
write

f~r ;l0 ,l1!5l0f0~r !1l1Df~r !, ~35!

with Df(r )5f(r )2f0(r ). Following the same steps as in
Ref. 7 we obtain, for the excess free energy per particle,

f exc5 f 11 f 21 f 3
(0)1D f 3 , ~36!

where the first two terms were already encountered in
Sec. II:

b f 15
1

2
rE dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/21h3~r !/6%, ~37!

b f 25
1

2r E dk

~2p!3 $rĥ~k!2 ln@11rĥ~k!#%. ~38!

The third term is assumed known:

b f 3
(0)52

1

2
rE drE

0

1

dl0G~r ;l0,0!
]g~r ;l0,0!

]l0

5b~ f (0)2 f 1
(0)2 f 2

(0)!; ~39!

here, f (0) is the excess free energy per particle of the refer-

FIG. 2. Comparison of the Monte Carlo~MC!, HNC, and HNC/H2 results
for the pair distribution function of the inverse 4th-power fluid atz53.92.

FIG. 3. Behavior ofBc of the Lennard-Jones fluid, on several isotherms as
a function of the density for the HNC/H2 approximation.

FIG. 4. Behavior of the pressure of the Lennard-Jones fluid, on several
isotherms as a function of the density for the HNC/H2 approximation.
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ence system andf 1
(0) , f 2

(0) are defined as in Eqs.~37!, ~38! for
the reference potential and its corresponding correlation
functions. The last term is

bD f 352
1

2
rE drE

0

1

dl1G~r ;1,l1!
]g~r ;1,l1!

]l1
. ~40!

According to our proposal,G is insensitive to a change in
potential fromf0 to f. We may then approximate this last
term as follows:

bD f 3'2
1

2
rE drG0~r !@g~r !2g0~r !#. ~41!

Now that we have the free energy we may consider it as
a functional of bothh(r ) and G0(r ) and take its variation
with respect to these functions. We find

bd f exc5
1

2
rE dr$c~r !2h~r !1h2~r !/21 ln@g~r !ebf(r )#

2G0~r !%dh~r !2
1

2
rE dr @g~r !2g0~r !#dG0~r !.

~42!

It follows that the free energy is minimized when both the
RHNC/H2 closure@Eq. ~34!# is satisfied and when the con-
straint

E dr @g~r !2g0~r !#dG0~r !50 ~43!

is fulfilled.
Taking the second functional derivative off exc with re-

spect toh(r ) we find that also this free energy is a strictly
convex functional of the total correlation function. This
property was lacking in the RHNC theory and constitutes the
main feature of the RHNC/H2 closure. As already stressed in
Sec. III A it ensures that if a solution to the integral equation
exists it has to be unique.

The constraint, as for RHNC, gives a certain thermody-
namic consistency to the theory~see Ref. 7!. If we choose a
hard sphere reference potentialf0(r )5f0(r ;s) which de-
pends on the length scales, the optimum values of the pa-
rameters that makes the generating functional a free energy
can be determined by the constraint~43! which becomes

E dr @g~r !2g0~r !#
]G0~r !

]s
50. ~44!

However, neither the hard-sphere pseudobridge functions nor
some empirical attempt to model the unknown function via a
Yukawa function provided useful results.

B. Optimized HNC ÕH3 approximation

For g50 HNC/H3 reduces to HNC/H2. Forg.0 the first
peak of the pair distribution function is dumped with respect
to the one of the pair distribution function calculated with
HNC/H2. Forg,0 the first peak increases giving in general
a better fit to the simulation data.

In Fig. 5 we compare the pair distribution function of the
Lennard-Jones fluid near its triple point, calculated with a
molecular dynamic simulation,21 the HNC/H2 approxima-

tion, the approximation HNC/H3 withg520.203 ~at lower
values ofg Zerah’s algorithm would fail to converge!, and
the approximation HNC/H3 withg520.1 ~when the gener-
ating functional of HNC/H3 is still strictly convex!. As we
can see HNC/H3 fits the simulation data better than HNC/H2
even if the first peak is still slightly displaced to the left of
the simulation data, a well-known problem of the HNC
approximation.6

The best results are given by HNC/H3 withg520.203.
Note that the HNC/H3 generating functional at this value of
g is not strictly convex~strict convexity is lost forg&21/9!.
The first peak of the static structure factor is atks.6.75 and
has a magnitude of 2.41, a quite low value for a liquid near
the triple point. We have calculated the pressure and the in-
ternal energy. We foundbP/r.3.87 and Uexc/(Ne).
25.72 @very close to the HNC resultsbP/r.3.12 and
Uexc/(Ne).25.87] to be compared with the simulation
results30 0.36 and26.12, respectively. The bulk moduli are
Bc.11.74 andBp.36.61 which shows that at the chosen
value of g we do not have the thermodynamic consistency
virial compressibility and we do not improve on HNC incon-
sistency~using HNC we findBc.7.09 andBp.32.72).

VI. CONCLUSIONS

In this paper we have analyzed the relations between
generating functionals, thermodynamic consistency, and
uniqueness of the solution of the integral equations of liquid-
state theory. We think that the requirement of deriving from a
free energy and the uniqueness of the solution are two im-
portant ingredients to enforce in the quest for better closures.
The former requirement is of course crucial to get virial-
energy consistency. But it is also important to get integral
equations able to provide a closed formula for the chemical
potential without additional approximations. This last issue

FIG. 5. Comparison of the pair distribution function of a Lennard-Jones
fluid at r*50.85 andT* 50.719, computed from the molecular dynamic
~MD! simulation of Verlet, the HNC/H2 approximation, and the HNC/H3
approximation. For HNC/H3 we present results obtained settingg520.1
~when the generating functional of the approximation is still strictly convex!
andg520.203~which gives the best fit possible to the simulation data but
does not ensure the strict convexity of the generating functional!.
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looks highly desirable for applications of IET to the determi-
nation of phase diagrams. The latter is certainly a useful
constraint from the numerical point of view but it is also a
very strong condition, probably able to avoid some non
physical behavior in the coexistence region, although this
point would deserve further investigation. Most of the exist-
ing closures fail to satisfy the condition of uniqueness of the
solution. Among them, only the optimized random phase ap-
proximation by Andersen and Chandler18,31 satisfies both
constraints although they were not used in the original deri-
vation of the approximation. One obvious question is
whether the enforcement of these constraints automatically
results in improved closures.

In this work, we have started an exploration of the capa-
bilities of the combined requirement of consistency and
uniqueness, starting with simple modifications to the HNC
closure, corresponding to the addition of a square and a cubic
power ofh(r ) in the HNC functional. We found a couple of
approximations~HNC/H2 and HNC/H3!, which have built in
the virial-free-energy thermodynamic consistency and have a
unique solution.

We numerically tested these closures on inverse power
and the Lennard-Jones fluid. From the tests on the inverse-
power potential fluids one can see that the HNC/H2 approxi-
mation is comparable to HNC for the thermodynamic quan-
tities and performs worse than RY and even HNC for
structural properties. The tests on the Lennard-Jones fluid
revealed that this approximation does not suffer from the
presence of a termination line~present in HNC and almost
all the existing closures!. This allowed us to follow isotherms
from the low-density to the high-density region, and this be-
havior would be very useful in the study of the phase coex-
istence. However, the thermodynamic results show only a
marginal improvement on HNC and the structure is definitely
worse.

Our trials to improve HNC/H2 in the same spirit of the
modified HNC approaches did not succeed. We feel that the
main reason is in the difficulty of modeling the real bridge
functions through a polynomial in the functionh(r ). In this
respect, approaches based on generating functionals depend-
ing on the indirect correlation functiong(r ) look more
promising but we have not tried them yet.

Much better results for the structure are found with
HNC/H3 as is shown in Fig. 5. However, probably for the
same reasons just discussed, one has to give up to have an
approximation with a strictly convex generating functional
depending onh(r ). The thermodynamics reproduced by
HNC/H3 is not yet satisfactory: due to the slight left shift of
the main peak of theg(r ), the calculated pressure misses the
simulation result. Nonetheless, the presence of the free pa-
rameterg in HNC/H3 leaves open the possibility of impos-
ing the thermodynamic consistency virial compressibility. If
the value of the parameter needed to have the consistency is
bigger than21/@3supg(r )#, then we would have an approxi-
mation which is completely thermodynamically consistent
and have a unique solution. This strategy may eventually
lead us to discover that the price we have to pay to have a
completely thermodynamically consistent approximation is
the loss of strict convexity of the generating functional.

APPENDIX A: GENERATING FUNCTIONALS OF g

Often in the numerical solution of the OZ plus closure
integral equation use is made of the auxiliary functiong(r )
5h(r )2c(r ). Suppose that the closure relation can be writ-
ten as

r2c~r !52C$g~r !%, ~A1!

where C is a local function of the functiong and has a
dependence on the value of the pair potential not explicitly
shown.

We want to translate the integral equation into a varia-
tional principle involving functionals ofg(r ). Then we in-
troduce a closure functionalFcl@g# such that

dFcl@g#

dg~r !
5C$g~r !% ~A2!

and an OZ functionalFOZ,c@g# such that, whenc(r ) and
g(r ) satisfy the OZ equation, we have

dFOZ,c@g#

dg~r !
5r2c~r !. ~A3!

Then when both the closure and the OZ relations are satis-
fied, the functionalF5Fcl1FOZ,c is stationary with respect
to variations ofg(r ): i.e.,

dF@g#

dg~r !
50. ~A4!

This is the variational principle sought.
Now, we want to findFOZ,c . The OZ equation ink

space is

r ĉ2~k!1rĝ~k!ĉ~k!2ĝ~k!50. ~A5!

When we solve it forĉ we find two solutions

ĉ5
2Ĝ6AĜ214Ĝ

2r
, ~A6!

whereĜ(k)5rĝ(k) is always positive since

Ĝ5r2ĥĉ5r2
ĥ2

11rĥ
5r2

ĥ2

S~k!
, ~A7!

S(k) being the liquid static structure factor which is positive
definite for all k. Since ĉ(k) is a function which oscillates
around 0, whereĉ is negative we have to choose the solution
with the minus sign, where it is positive the one with the plus
sign. In particular, if the isothermal compressibility of the
liquid xT is smaller than the one of the ideal gas,xT

0 , we
have that

ĉ~0!5
1

r S 12
xT

0

xT
D ,0, ~A8!

and we have to start with the minus sign.
The functional we are looking for is then@see Eq.~30! in

Ref. 15, with the constant set equal to zero#
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FOZ,c@g#5E
0

1

dtE dr g~r !E dk

~2p!3

r

2
eik"r

3@2tĜ~k!1sc~k!At2Ĝ2~k!14tĜ~k!#, ~A9!

wheresc(k) is 11 when ĉ(k)>0 and21 when ĉ(k),0.
Rearranging the integrals and making the change of variable

y5tĜ we find

FOZ,c@g#5
1

2 E dk

~2p!3 E
0

Ĝ(k)
dy@2y1sc~k!Ay214y#

5E dk

~2p!3 $2Ĝ2/41sc~k!

3„~11Ĝ/2!A~11Ĝ/2!221

2 ln@11Ĝ/21A~11Ĝ/2!221#…%. ~A10!

If the closure relation has the form

r2h~r !52C$g~r !%, ~A11!

we can derive the corresponding functional using the same
procedure. The final result is a functionalFOZ,h@g# which
differs from Eq. ~A10! for a plus sign in front of the first
term in the integral.

However, by examining their second functional deriva-
tives, we notice that bothFOZ,c@g# and FOZ,h@g# are not
certainly convex or concave. Thus, any check of the convex-
ity properties of generating functionals of theg(r ) function
should be done on the full functional.

APPENDIX B: THERMODYNAMIC CONSISTENCY

For a homogeneous liquid interacting through a pair po-
tential f(r ), the Helmholtz free energy per particle,f , can
be considered a functional off. Indeed, in the canonical
ensemble, one has

b f @f#5b f 0

2
1

N
lnS 1

VNEexpF2b
1

2 (
iÞ j

f~r i j !Gdr1¯drND ,

~B1!

where f 0 is the free energy per particle of the ideal gas
~f50! and V is the volume of the liquid. Taking the func-
tional derivative with respect tobf(r ) one finds

db f @f#

dbf~r !
5

r

2
g~r !. ~B2!

Imagine that we found a functionalA(@h#,@f#,r,b) that
has an extremum for those correlation functions that solve
the OZ and the closure system of equations. Suppose further
that such functional has the property

dbA
dbf~r !

5
r

2
g~r !, ~B3!

which can be rewritten more explicitly as follows:

dbA
dbf~r !

U
[h],r,b

1E dr 8
dbA

dh~r 8!
U

[f],r,b

dh~r 8!

dbf~r !
5

r

2
g~r !.

~B4!

Evaluating this expression on the correlation functionh̄ so-
lution of the OZ plus closure system of equations, which is
an extremum forA, we find

dbA
dbf~r !

U
[ h̄],r,b

5
r

2
ḡ~r !. ~B5!

Then we can write

bA~@ h̄#,@f#,r,b!5E dr
dbA

dbf~r !
U

[ h̄],r,b

bf~r !

1D~@ h̄#,r,b!, ~B6!

with D a functional independent off. Changing variables to
adimensional ones,r5r* r21/3 and using Eq.~B5! we find

bA~@ h̄* #,@f#,r,b!5
1

2 E dr* ḡ* ~r * !bf~r * r21/3!

1D~@ h̄* #,r,b!, ~B7!

where we defined new distribution functionsg* (r * )
5g(r * r21/3). If D has no explicit dependence onr, then
one readily finds

r
]bA~@ h̄* #,@f#,r,b!

]r

52
r

6 E dr* ḡ* ~r * !bf8~r * r21/3!r * r24/3

52
r

6 E dr ḡ~r !bf8~r !r 5bPexc/r, ~B8!

where again we used the fact thatA has an extremum for
h5h̄. We used a prime to denote a derivative with respect to
the argument, andPexc is the excess pressure of the liquid.

If D has no explicit dependence onb, we also find

]bA~@ h̄* #,@f#,r,b!

]b
5

r

2 E dr ḡ~r !f~r !5Uexc/N,

~B9!

whereUexc is the excess internal energy.
If D has no explicit dependence on bothb and r,

D(@ h̄* #,r,b)5D(@ h̄* #), we conclude from Eqs.~B8! and
~B9! that

A~@ h̄* #,@f#,r,b!5 f exc~r,b!1const, ~B10!

where f exc is the excess free energy per particle of the fluid.
Under these circumstances we see from Eq.~B8! that we
have thermodynamic consistency between the route to the
pressure going through the partial derivative of the free en-
ergy and the route to the pressure going through the virial
theorem.
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APPENDIX C: STRICT CONVEXITY OF FOZ†h ‡

It can be proved that the functional

FOZ@h#5E dk

~2p!3 $rĥ~k!2 ln@11rĥ~k!#%, ~C1!

defined on the convex set

Dc5$h~r !uS~k!.0 ;k%, ~C2!

is a strictly convex functional. The strict convexity is a trivial
consequence of the strict convexity of the integrand in Eq.
~C1!.

It remains to prove thatDc is a convex set. Given two
elements of this seth8 and h9, we need to show thath
5lh81(12l)h9 is an element ofDc for all lP@0,1#.
Since

S~k!511rĥ~k!

511r@lĥ8~k!1~12l!ĥ9~k!#

511l@S8~k!21#1~12l!@S9~k!21#

5lS8~k!1~12l!S9~k!.0 ;lP@0,1#, ~C3!

thenDc is a convex set.
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Chapter 6

Stability of the iterative solutions of
integral equations as one phase
freezing criterion

Fantoni R. and Pastore G., Phys. Rev. E, 68, 046104 (2003)
Title: “Stability of the iterative solutions of integral equations as one phase freezing crite-
rion.”
Abstract: A recently proposed connection between the threshold for the stability of the iter-
ative solution of integral equations for the pair correlation functions of a classical fluid and
the structural instability of the corresponding real fluid is carefully analyzed. Direct calcu-
lation of the Lyapunov exponent of the standard iterative solution of HNC and PY integral
equations for the 1D hard rods fluid shows the same behavior observed in 3D systems. Since
no phase transition is allowed in such 1D system, our analysis shows that the proposed one
phase criterion, at least in this case, fails. We argue that the observed proximity between
the numerical and the structural instability in 3D originates from the enhanced structure
present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it
seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for
predicting a thermodynamic phase transition.
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A recently proposed connection between the threshold for the stability of the iterative solution of integral
equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding
real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution
of hypernetted chain and Percus-Yevick integral equations for the one-dimensional~1D! hard rods fluid shows
the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our
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the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.
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I. INTRODUCTION

When studying the structure and thermodynamics of clas-
sical fluids, one is often faced with the task of solving the
nonlinear integral equation which stems out of the combina-
tion of the Ornstein-Zernike equation and an approximate
relation between pair potential and correlation functions~the
closure! @1#. Integral equations can be generally written in
the form

g~r !5Ag~r !, ~1!

whereg(r )PS may be the total correlation functionh(r ),
the direct correlation functionc(r ), or a combination of the
two, S is a set of a metric space of functions, andA:S→S is
a nonlinear operator mappingS into itself.

Numerical analysis of integral equations suggests the use
of the following combination

g~r !5h~r !2c~r !, ~2!

sinceg is a much smoother function thanh or c, especially in
the core region.

It has been pointed out by Malescio and co-workers@2–4#
that, amongst the different numerical schemes that one may
choose to solve~1!, the simple iterative scheme of Picard
plays a special role. Picard’s scheme consists in generating
successive approximations to the solution through the rela-
tionship

gn115Agn , ~3!

starting from some initial valueg0. If the sequence of suc-
cessive approximations$gn% converges toward a valueg!,
theng! is a fixed point for the operatorA, i.e., it is a solution
of Eq. ~1!, g!5Ag!. Banach’ s fixed point theorem~see
chapter 1 in Ref.@5# especially theorem 1.A! states that,
given an operatorA:S→S, whereS is a closed nonempty set

in a complete metric space, the simple iteration~3! may con-
verge towards the only fixed point inS(A is k contractive! or
it may not converge (A is nonexpansive!. So the simple it-
erative method can be used to signal a fundamental change
in the properties of the underlying operator.

The operatorA will, in general, depend on the thermody-
namic state of the fluid. In order to determine the properties
of the operator at a given state we can proceed as follows.
First, we find the fixed pointg! using a numerical scheme
~more refined than the Picard’s! capable of converging in the
high density region. Next, we perturb the fixed point with an
arbitrary initial perturbationd0(r ) so that

A~g!1d0!.Ag!1
]A

]g U
g!

d05g!1Md0 , ~4!

where we have introduced the Floquet matrixM. Now d1
5Md0 may be considered as the new perturbation. We then
generate the succession$dn% where

dn5Mdn21 . ~5!

If the succession converges to zero then the operatorA is k
contractive, if it diverges the operator is nonexpansive.
Malescio and co-workers call$dn% fictitious dynamicsand
associate it to the resulting fate of the initial perturbation the
nature of thestructural equilibriumof the fluid. If the suc-
cession converges to zero they say that the fluid isstructur-
ally stableandstructurally unstableotherwise. We will call
r inst the density where the transition between a structurally
stable and unstable fluid occurs.

Following Malescio and co-workers it is possible to de-
fine a measurefor the structural stability of the system as
follows. We define

Si5
uuMd i~r !uu
uud i~r !uu

, ~6!*Electronic address: rfantoni@ts.infn.it
†Electronic address: pastore@ts.infn.it
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whereuu f (r )uu5A( i 51
N f 2(r i) is the norm of a functionf de-

fined over a mesh ofN points. We assume that the norm of
the perturbation depends exponentially on the number of it-
erations

uudnuu5uud0uu2ln, ~7!

wherel is the Lyapunov exponent related to the fictitious
dynamics. Then one can write the average exponential
stretching of initially nearby points as

l5 lim
n→`

1

n
log2S )

i 50

n21

Si D . ~8!

Malescio and co-workers have calculated the dependence
of l on the density for various simple three-dimensional liq-
uids ~and various closures!: hard spheres@2#, Yukawa, in-
verse power, and Lennard-Jones potentials@3#. For all these
systems they found thatl increases with the density and the
density at whichl becomes positive,r inst , falls close to the
freezing densityr f of the fluid system. This occurrence leads
them to propose this kind of analysis as a one-phase criterion
to predict the freezing transition of a dense fluid and to esti-
mate r f . However, we think that there are some practical
and conceptual difficulties with such one-phase criterion.

First of all, it does not depend only on the closure adopted
but also on the kind of algorithm used to solve the integral
equation. Indeed, different algorithms give differentr inst and
Malescio and co-workers choose to use as instability thresh-
old for their criterion the one obtained using Picard algo-
rithm, thus giving it a special status. However, it is hard to
understand why the particular algorithm adopted in the solu-
tion of the integral equation should be directly related to a
phase boundary.

Moreover, one would expect that the estimate ofr inst
would improve in connection with improved closures. This is
not the case, at least in the one-component hard-sphere fluid.

Even a more serious doubt about the validity of the pro-
posed criterion comes from its behavior in one-dimensional
systems. In this paper we present the same Lyapunov expo-
nent analysis on a system of hard rods in one dimension
treated using either the Percus-Yevick~PY! or the hypernet-
ted chain~HNC! approximations. What we find is that the
Lyapunov exponent as a function of density has the same
behavior as that of the three-dimensional system~hard
spheres!: it becomes positive beyond a certainr inst . Since it
is known @6# that a one-dimensional fluid of hard rods does
not have a phase transition, our result sheds some doubts on
the validity of the proposed criterion.

II. TECHNICAL DETAILS

As numerical scheme to calculate the fixed point we used
Zerah’ s algorithm@7# for the three-dimensional systems and
a modified iterative method for the hard rods in one dimen-
sion. In the modified iterative method input and output are
mixed at each iteration

gn115Amixgn5aAgn1~12a!gn , ~9!

wherea is a real parameter 0,a,1. Note that while for a
nonexpansive operatorA the Picard iterative method~3!
needs not converge, one can prove convergence results on an
Hilbert space for the modified iterative method with fixeda
~see proposition 10.16 in Ref.@5#!. In all the computations
we used a uniform grid ofN51024 points with a spacing
dr 50.025. Generally, we observed a marginal increase of
r inst by loweringN.

A method to find a Lyapunov exponent, equivalent but
more accurate than the one of Malescio co-workers~8!, goes
through the diagonalization of the Floquet matrix. Note that
in general this matrix is nonsymmetric, thus yielding com-
plex eigenvalues. A Lyapunov exponent can then be defined
as @8#

l85 log@max
i

~ARe~ei !
21Im~ei !

2!#, ~10!

where ei is the i th eigenvalue. In our numerical computa-
tions we always used Eq.~10! to calculate the Lyapunov
exponents since it is explicitly independent from the choice
of an initial perturbation.

We constructed the Floquet matrix in the following way
@9#. In a Picard iteration we start fromg(r ), we calculate
c(r ) from the closure approximation, we calculate its Fourier
transform c̃(k), we calculateg̃(k) from the OZ equation,
and finally we antitransformg̃ to getg8(r ). For example for
a three-dimensional system a PY iteration in discrete form
can be written as follows:

ci5~11g i !~e2bf i21!, ~11!

c̃ j5
4pdr

kj
(
i 51

N21

r i sin~kj r i !ci , ~12!

g̃ j5r c̃ j
2/~12r c̃ j !, ~13!

g i85
dk

2p2r i
(
j 51

N21

kj sin~kj r i !g̃ j , ~14!

wherer i5 idr are theN mesh points inr space,kj5 j dk are
the N mesh points ink space, with dk5p/(Ndr ), ci

5c(r i), g i5g(r i), c̃ j5 c̃(kj ), g̃ j5g̃(kj ), andf i5f(r i) is
the interparticle potential calculated on the grid points. The
Floquet matrix will then be

Mi j 5
]g i8

]g j
5 (

m51

N21 ]g i8

]g̃m

]g̃m

] c̃m

] c̃m

]cj

]cj

]g j

5
drdk

p S r j

r i
D ~e2bf j21!~Di 2 j2Di 1 j !, ~15!

where

Dl5 (
m51

N21

cos~kmr l !F 2r c̃m

12r c̃m

1S r c̃m

12r c̃m
D 2G . ~16!
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The HNC case can be obtained replacing in Eq.~15!
@exp(2bfj)21# with @exp(2bfj1gj)21#.

To derive the expression for the Floquet matrix valid for
the one-dimensional system and consistent with a trapezoidal
discretization of the integrals, we need to replace Eqs.~11!
and ~13! with

c̃ j52dr S (
i 51

N21

cos~kj r i !ci1
1

2
c0D , ~17!

g i85
dk

p S (
i 51

N21

cos~kj r i !g̃ j1
1

2
g̃0D . ~18!

III. NUMERICAL RESULTS

We checked our procedure for a three-dimensional hard-
spheres fluid and a Lennard-Jones fluid at a reduced tempera-
ture T* 52.74. Our results, obtained using Eq.~10!, were in
good agreement with those of Malescioet al. @2,3# which
used recipe~8! instead ~another difference between our
analysis and theirs is that we used forg the indirect correla-
tion function ~2! while they were using the total correlation
function h). For the Lennard-Jones fluid our results were
indistinguishable from those of Malescioet al. @3#. We found
a reduced instability densityr inst* around 1.09 in the PY ap-
proximation and around 1.06 in the HNC approximation. For
the three-dimensional hard-sphere fluid we found slightly
larger (4%)values forr inst . We found ah inst5r instpd3/6
of about 0.445 in the PY approximation and around 0.461 in
the HNC approximation. We also checked the value corre-
sponding to the Martynov-Sarkisov@10# closure and we
found h inst50.543.

We feel that the differences are within what we can expect
on the basis of small numerical differences in different
implementations. We think that it is more worthy of notice
that closures providing better structural and thermodynamic
properties, like PY or MS do not provide a better value of
h inst .

We looked at the structure of the Floquet matrix too but
from direct inspection we can conclude that it is not diago-
nally dominated.

Then, we have calculated the Lyapunov exponent~10! as
a function of the density for a fluid of hard rods in one
dimension using both PY and HNC closures. The results of
the calculation are shown in Fig. 1 and Fig. 2. The curves
show the same qualitative behavior as the ones for the three-
dimensional fluid. From Fig. 1 we can see how the slope of
the curves starts high at low densities and decreases rapidly
with r. At high densities the Lyapunov exponent becomes
zero at r inst . As expected, to find the fixed point forr
*r inst it is necessary to choosea,1 in the modified itera-
tive scheme~9!. Before reaching the instability threshold the
curves show a rapid change in their slope atrc,r inst . Fig-
ure 2 shows a magnification of the region aroundrc from
which we are led to conclude that, within the numerical ac-
curacy of the calculations, the slope of the curvesdl8/dr
undergoes a jump atrc .

IV. CONCLUSIONS

The fictitious dynamics associated to the iterative solution
of an integral equation can signal the transition of the map of
the integral equation fromk contractive to nonexpansive. If
the Lyapunov exponent is negative the map isk contractive,
if it is positive the map is nonexpansive.

Since it is possible to modify, in an arbitrary way, the
fictitious dynamics keeping the same fixed point, it is diffi-
cult to understand a deep direct connection between the sta-
bility properties of the map and a one-phase criterion for a
thermodynamic transition.

Admittedly, the correlations shown by Malescioet al. are
striking. We calculated the Lyapunov exponent as a function
of the density for various fluids~hard spheres in one and
three-dimensions and three-dimensional Lennard-Jones
fluid! both in the HNC and PY approximations. For the
three-dimensional fluids the instability density falls close to
the freezing densityr f . For example, the Lennard-Jones
fluid studied with HNC should undergo a freezing transition
at r* .1.06 or atr* .1.09, if studied with PY , rather close
to the freezing densityr f* .1.113. For hard spheresr inst* is
about 10% smaller thanr f* ;0.948. The Hansen-Verlet
‘‘rule’’ states that a simple fluid freezes when the maximum
of the structure factor is about 2.85@11#. According to this
rule the three-dimensional hard-spheres fluid studied with
HNC should undergo a freezing transition atr.1.01 while
when studied with PY the transition should be atr.0.936.

FIG. 1. For a fluid of hard rods in one dimension, we show the
Lyapunov exponent as a function of the reduced density (r* 5rs
wheres is the rods width! as calculated using the PY and the HNC
closures.

FIG. 2. We show a magnification of Fig. 1 in a neighborhood of
the instability threshold.
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The corresponding estimates obtained throughr inst* , 0.879
~HNC! and 0.850~PY! are poorer and, more importantly, are
not consistent with the well known better performance of PY
in the case of hard spheres.

In one dimension, a fluid of hard spheres~hard rods!,
cannot undergo a phase transition@6#. From Fig. 1 we see
that the system still becomes structurally unstable. This can
be explained by observing that the structural stability as de-
fined by Malescioet al. is a property of the mapA and in
particular of the algorithm used to get the solution of the
integral equation under study. As such, it is not directly re-
lated to the thermodynamic properties even at the approxi-

mate level of the theory~there is no direct relation between
the contractiveness properties ofA and the thermodynamics!.
It looks more reasonable that the increase of the correlations
would be the common origin of the numerical instability of
the Picard iteration and, whenever it is possible, of thermo-
dynamic phase transitions.
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Chapter 7

Direct correlation functions of the
Widom-Rowlinson model

Fantoni R. and Pastore G., Physica A, 332, 349 (2004)
Title: “Direct correlation functions of the Widom-Rowlinson model.”
Abstract: We calculate, through Monte Carlo numerical simulations, the partial total and
direct correlation functions of the three dimensional symmetric Widom-Rowlinson mixture.
We find that the differences between the partial direct correlation functions from simulation
and from the Percus-Yevick approximation (calculated analytically by Ahn and Lebowitz)
are well fitted by Gaussians. We provide an analytical expression for the fit parameters as
function of the density. We also present Monte Carlo simulation data for the direct corre-
lation functions of a couple of non additive hard sphere systems to discuss the modification
induced by finite like diameters.
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Abstract

We calculate, through Monte Carlo (MC) numerical simulations, the partial total and direct
correlation functions of the three dimensional symmetric Widom–Rowlinson mixture. We .nd
that the di/erences between the partial direct correlation functions from simulation and from
the Percus–Yevick approximation (calculated analytically by Ahn and Lebowitz) are well .tted
by Gaussians. We provide an analytical expression for the .t parameters as function of the
density. We also present MC simulation data for the direct correlation functions of a couple of
non-additive hard sphere systems to discuss the modi.cation induced by .nite like diameters.
c© 2003 Elsevier B.V. All rights reserved.

PACS: 61.20.Ja; 61.20.Gy

Keywords: Widom–Rowlinson model; Direct correlation function

1. Introduction

Fluid binary mixtures may exhibit the phenomenon of phase separation. The simplest
system able to undergo a demixing phase transition is the model introduced by Widom
and Rowlinson [1] some years ago. Consider a binary mixture of non-additive hard
spheres (NAHS). This is a Auid made of hard spheres of species 1 of diameter R11 and
number density �1 and hard spheres of species 2 of diameter R22 and number density
�2, with a pair interaction potential between species i and j that can be written as

∗ Corresponding author. Tel.: +39-040-2240608; fax: +39-040-224601.
E-mail addresses: rfantoni@ts.infn.it (R. Fantoni), pastore@ts.infn.it (G. Pastore).
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follows:

vij(r) =

{
∞; r ¡Rij ;

0; r ¿Rij ;
(1)

where R12=(R11+R22)=2+�. The Widom–Rowlinson (WR) model is obtained choosing
the diameters of the spheres equal to 0,

R11 = R22 = 0 ; (2)

so that there is no interaction between like spheres and there is a hard core repulsion of
diameter � between unlike spheres. The symmetry of the system induces the symmetry
of the unlike correlations [h12(r) = h21(r); c12(r) = c21(r)]. The WR model has been
studied in the past by exact [2] and approximate [3–6] methods and it has been shown
that it exhibits a phase transition at high density. More recently, additional studies
have appeared and theoretical predictions have been con.rmed by Monte Carlo (MC)
computer simulations [7–10].

In this paper we will study the three-dimensional symmetric Widom–Rowlinson mix-
ture for which �1 = �2 = �=2, where � is the total number density of the Auid, and

h11(r) = h22(r) ; (3)

c11(r) = c22(r) : (4)

Moreover, we know from (1) that the partial pair correlation function gij=hij+1 must
obey

gij(r) = 0 for r ¡Rij : (5)

Our main goal is to focus on the direct correlation functions (dcf) of the WR
model as a simpli.ed prototype of NAHS systems. The reasons to focus on the
dcf’s is twofold: on the one hand, they are easier functions to model and .t. On
the other hand, they play a central role in approximate theories like the Percus–
Yevick approximation or mean spherical approximation (MSA) [11]. We hope that
a better understanding of the dcf’s properties in the WR model, could help in devel-
oping accurate analytical theories for the NAHS systems.

We calculate through MC simulations the like g(MC)11 (r) and unlike g(MC)12 (r) pair
distribution functions for a system large enough to allow a meaningful determination of
the correspondent partial dcf c(MC)11 (r) and c(MC)12 (r), using the Ornstein–Zernike equation
[11]. We compare the results for the unlike dcf with the results of the Percus–Yevick
(PY) analytic solution found by Ahn and Lebowitz [3,4]. In the same spirit as the work
of Grundke and Henderson [12] for a mixture of additive hard spheres, we propose a
.t for the functions �c11(r) = c

(MC)
11 (r) and �c12(r) = c

(MC)
12 (r) − c(PY )12 (r).

At the end of the paper, we also show the results from two MC simulations on
a mixture of NAHS with equal diameter spheres R11 = R22 = R12=2 and on one with
di/erent diameter spheres R11 = 0 and R22 = R12 to study the e/ect of non zero like
diameters on the WR dcf’s.
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2. MC simulation and PY solution

The MC simulation was performed with a standard NVT metropolis algorithm [13]
using N =4000 particles. Linked lists [13] have been used to reduce the computational
cost. We generally used 5:2×108 MC steps where one step corresponds to the attempt
to move a single particle. The typical CPU time for each density was around 20 h
(runs at higher densities took longer than runs at smaller densities) on a Compaq
Alpha Server 4100 5/533.

We run the simulation of WR model at 6 di/erent densities O�= ��3 = 0:28748, 0.4,
0.45, 0.5, 0.575, and 0.65. Notice that the most recent computer simulation calculations
[9,10] give consistent estimates of the critical density around 0.75. Our data at the
highest density (0.65) are consistent with a one-phase system.

The MC simulation returned the gij(r) over a range not less than 9:175� for the dens-
est system. In all the studied cases, pair distribution functions attained their asymptotic
value well inside the maximum distance they were evaluated. Thus, it has been possible
to obtain accurate Fourier transforms of the correlation functions [hij(k)]. To obtain
the cij(r) we used Ornstein–Zernike equation as follows:

c11(k) =
h11(k)[1 + (�=2)h11(k)] − (�=2)h212(k)

[1 + (�=2)h11(k)]2 − [(�=2)h12(k)]2
; (6)

c12(k) =
h12(k)

[1 + (�=2)h11(k)]2 − [(�=2)h12(k)]2
: (7)

From the hij(k) and cij(k), we get the di/erence �ij(k) = hij(k) − cij(k) which is the
Fourier transform of a continuous function in real space. So it is safe to transform
back into real space [to get �ij(r)]. Finally, the dcf’s are obtained from the di/erences
hij(r) − �ij(r).
While for a system of NAHS in three-dimensions a closed-form solution to the PY

approximation is still lacking, Ahn and Lebowitz have found an analytic solution of
this approximation for the WR model (in one and three dimensions).

The PY approximation consists of the assumption that cij(r) does not extend beyond
the range of the potential

cij(r) = 0 for r ¿Rij : (8)

Combining this with the exact relation (5) and using the Ornstein–Zernike equation, we
are left with a set of equations for cij(r) and gij(r) which have been solved analytically
by Ahn and Lebowitz.

Their solution is parameterized by a parameter z0. They introduce the following two
functions of z0 (which can be written in terms of elliptic integrals of the .rst and third
kind):

I1 ≡
∫ ∞

z0

dz

z
√
z3 + 4z=z0 − 4

; (9)

I2 ≡
∫ ∞

z0

dz√
z3 + 4z=z0 − 4

(10)
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Fig. 1. Top panel: partial dcf’s obtained from the MC simulation (points) with the c(PY )12 (r) obtained from the
PY approximation (line) at a density ��3=0:28748. Bottom panel: partial pair distribution functions obtained
from the MC simulation compared with the ones obtained from the PY approximation at the same density.
The open circles and the dashed line: the like correlation functions. Closed circles and the continuous line:
the unlike correlation functions.

and de.ne z0 in terms of the partial densities �1 and �2 as follows:

� ≡ 2�
√
�1�2 =

(I2=2)3

cos I1
: (11)

They then de.ne the following functions (note that in the last equality of Eq. (3.76)
in Ref. [4] there is a misprint):

Oc12(k)≡ − 2√
�1�2

√
1 + Y

z30Y 3 + 4Y + 4

×sin


1
2

√
z30Y 3 + 4Y + 4

∫ ∞

1

dz

(z + Y )
√
z30z3 + 4z − 4


 ; (12)
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Fig. 2. Same as in Fig. 1 at a density ��3 = 0:4.

Oh12(k) ≡ Oc12(k)[1 − �1�2 Oc12(k)] ; (13)

where Y ≡ (2k=I2)2.
We also realized that some other misprint should be present in the Ahn and Lebowitz

paper since we have found empirically that the PY solution (with k in units of �) should
be given by

c12(k) = Oc12(ks) ; (14)

where s is a scale parameter to be determined as follows:

s= −[ Oh12(r = 0)]1=3 : (15)

Notice that for the symmetric case �1 = �2 = �=2 and � = �� = 0:90316 : : : we .nd
z0 = 1 and s= 1.

In Figs. 1–3 we show three cases corresponding to the extreme and one intermediate
density. In the .gures, we compare the MC simulation data with the PY solution for
the partial pair distribution functions and the partial dcf. Our results for the partial
pair distribution functions at ��3 = 0:65 are in good agreement with the ones of Shew
and Yethiraj [9]. The .gures show how the like correlation functions obtained from
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Fig. 3. Same as in Fig. 1 at a density ��3 = 0:65.

the PY approximation are the ones that di/er most from the MC simulation data. The
di/erence is more marked in a neighborhood of r = 0 and becomes more pronounced
as the density increases.

3. Fit of the data

From the simulations we found that c(MC)12 (r)¡ 8×10−3 for r ¿� at all the densities
studied. This allows us to say that �c12(r) � 0 for r ¿�. Moreover we found that both
�c12(r) for r ¡�, and �c11(r) are very well .tted by Gaussians

�c11(r) � b11 exp[ − a11(r + d11)2] for all r ¿ 0 ; (16)

�c12(r) � b12 exp[ − a12r2] for 0¡r¡� : (17)

In Figs. 4 and 5 we show the behaviors of the parameters of the best .t (16)
and(17), with density. In order to check the quality of the .t, we did not use the data
at O�=0:45 in the determination of the parameters. The points for a12 and b12 are well
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Fig. 4. We plot, for .ve di/erent values of the density, the parameters a12 (diagonal crosses) and b12
(starred crosses) of the best Gaussian .t (17) to �c12(r) for r ¡�, and .t them with parabolae (lines). The
parameters at ��3 = 0:45 where not used for the parabolic .t and give an indication of the quality of the .t.

.tted by a straight line or a parabola. As shown in Fig. 4 the best parabolae are

a12( O�) = 0:839 + 0:096 O�− 1:287 O�2 ; (18)

b12( O�) = −0:155 + 0:759 O�− 0:159 O�2 : (19)

Fig. 5 shows how the parameters for �c11(r) are much more scattered and hard to .t.
The quartic polynomial going through the .ve points, for each coePcient, are

a11( O�) = −55:25 + 504:8 O�− 1659: O�2 + 2364: O�3 − 1236: O�4 ; (20)

b11( O�) = 171:4 − 1556: O�+ 5166: O�2 − 7421: O�3 + 3906: O�4 ; (21)

d11( O�) = 128:9 − 1144: O�+ 3747: O�2 − 5328: O�3 + 2782: O�4 : (22)

The diPculty in .nding a good .t for these parameters may be twofold: .rst we are
.tting �c11(r) with a three (instead of two) parameter curve and second, the partial
pair distribution functions obtained from the MC simulation are less accurate in a
neighborhood of the origin (due to the reduced statistics there). This inaccuracy is
ampli.ed in the process of .nding the partial dcf’s. Such inaccuracy will not a/ect
signi.cantly �c12(r) which has a derivative very close or equal to zero near the origin,
but it will signi.cantly a/ect �c11(r), which is very steep near the origin.

In order to estimate the quality of the .t we have used the simulation data at
O�= 0:45. From Fig. 4 we can see how the parabolic .t is a very good one. In Fig. 5
the point at O� = 0:45 gives an indication of the accuracy of the quartic .t. We have
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Fig. 5. We plot, for .ve di/erent values of the density, the parameters a11; b11 and d11 (stars) of the
best Gaussian .t (16) to �c11(r), and draw the quartic polynomial (lines) through them. The parameters
at ��3 = 0:45 where not used to determine the quartic polynomial and give an indication of the quality of
the .t.

also compared the pair distribution and dcf’s obtained from the .t with those from
MC: both the like and unlike distribution functions are well reproduced, while there
is a visible discrepancy in the dcf from the origin up to r = 0:5�. However we expect
that moving on the high-density or low-density regions (where the quartic polynomial
becomes more steep), the quality of the .t will get worst. In particular, the predicted
negative values for a11, in those regions, are completely unphysical and the .t should
not be used to extrapolate beyond the range 0:28¡ O�¡ 0:65.

4. From WR to NAHS

In order to see how the structure, and in particular the dcf’s of the WR model
change as one switches on the spheres diameters we have made two additional MC
simulations. In the .rst one we chose �1 = �2 = 0:65=R312 and R11 = R22 = R12=2. The
resulting partial pair distribution functions and partial dcf are shown in Fig. 6. From a
comparison with Fig. 3, we see how in this case the switching on of the like diameters
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Fig. 6. Monte Carlo results at a density �= �1 = �2 = 0:65=R312 for the partial dcf’s (on top) and the partial
pair distribution function (below) of a mixture of NAHS with R11 = R22 = R12=2. The open circles denote
the like correlation functions. The closed circles denote the unlike correlation functions.

causes both c12(r) for r ¡R12 and g12(r) for r ¿R12 to approach r=R12 with a slope
close to zero.

In the second simulation we chose �1 = �2 = 0:65=R312 and R11 = 0, R22 = R12. The
resulting partial pair distribution functions and partial dcf’s are shown in Fig. 7. From
a comparison with Fig. 3 we see how in this case the switching on of the like di-
ameters causes both g11(0) and c11(0) to increase, and c12(r) to lose the nearly zero
slope at r = 0. As in the previous case, g12(r) for r ¿R12 approaches r = R12 with
a slope close to zero. The like 22 correlation functions for r ¿R12 vary over a range
comparable to the one over which vary the like 11 correlation functions of the WR
model.

For both these cases, there is no analytic solution of the PY approximation available
and a better understanding of the behavior of the direct correlation functions may help
in .nding approximate expressions [14].
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Fig. 7. MC results at a density � = �1 = �2 = 0:65=R312 for the partial dcf’s (on top) and the partial pair
distribution function (below) of a mixture of NAHS with R11 =0 and R22 =R12. The open circles denote the
like 11 correlation functions. The open triangles denote the like 22 correlation functions. The closed circles
denote the unlike correlation functions.

5. Conclusions

In this paper, we have evaluated the direct correlation functions (dcf) of a Widom–
Rowlinson mixture at di/erent densities through Monte Carlo (MC) simulation and we
have studied the possibility of .tting the di/erence between MC data and the PY dcf’s.
We found a very good parameterization of c12(r) for r ¡� (see Eqs. (17)–(19)) and
a poorer one for c11(r) (see Eqs. (16) and (20)–(22)). The diPculty in this last case
probably arises from the necessity of using three parameters [instead of just two needed
for parameterizing c12(r)], although it cannot be completely excluded some e/ect of
the decreasing precision of the simulation data near the origin.

In the last part of the paper, we have illustrated with additional MC data the changes
induced in the WR dcf’s by a .nite size of the excluded volume of like correlations.
These results are meant to provide a guide in the search of a manageable, simple
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analytical parameterization of the structure of mixtures of non additive hard spheres
which is still not available although highly desirable.
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Chapter 8

Computer simulation study of the
closure relations in hard sphere fluids

Fantoni R. and Pastore G., J. Chem. Phys., 120, 10681 (2004)
Title: “Computer simulation study of the closure relations in hard sphere fluids.”
Abstract: We study, using Monte Carlo simulations, the cavity and the bridge functions
of various hard sphere fluids: one component system, equimolar additive and non additive
binary mixtures. In particular, we numerically check the assumption of local dependency of
the bridge functions from the indirect correlation functions, on which most of the existing
integral equation theories hinge. We find that this condition can be violated either in the
region around the first and second neighbors shell, or inside the hard core, for the systems
here considered. The violations manifest themselves clearly in the so called Duh-Haymet
plots of the bridge functions versus the indirect correlation functions and become amplified
as the coupling of the system increases.
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We study, using Monte Carlo simulations, the cavity and the bridge functions of various hard sphere
fluids: one component system, equimolar additive, and nonadditive binary mixtures. In particular,
we numerically check the assumption of local dependency of the bridge functions from the indirect
correlation functions, on which most of the existing integral equation theories hinge. We find that
this condition can be violated either in the region around the first and second neighbors shell, or
inside the hard core, for the systems here considered. The violations manifest themselves clearly in
the so-called Duh–Haymet plots of the bridge functions versus the indirect correlation functions and
become amplified as the coupling of the system increases. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1739392#

I. INTRODUCTION

A central problem in the theory of the static structure of
classical liquids is to find a simple and efficient way to ob-
tain the pair correlation functions from the interparticle
forces in pairwise interacting fluids. Exact statistical
mechanics1,2 allows us to write the formal solution of such
problems as the coupled set of equations:

11hi j ~r !5exp@2bf i j ~r !1hi j ~r !2ci j ~r !1Bi j ~r !#
~1!

and

hi j ~r !5ci j ~r !1(
l

r lE dr 8cil ~r 8!hl j ~ ur2r 8u!, ~2!

wherehi j (r ) andci j (r ) are the~total! and direct correlation
functions for atomic pairs of speciesi andj, r l is the number
density of thelth component andb51/kT. The functions
Bi j (r ), named bridge functions after their diagrammatic
characterization1 arefunctionalsof the total correlation func-
tions, i.e., their value at distancer depends on the values of
all the correlation functions at all distances.

The basic difficulty with Eqs.~1! and ~2! is that we do
not have an explicit and computationally efficient relation
betweenBi j (r ) and the correlation functions, so we have to
resort to approximations. The results of the last three decades
of research have shown that it is possible to make progress
by approximating the bridge functionalsBi j (r ) by functions
of the indirect correlation functionsg i j (r )5hi j (r )2ci j (r )
~approximate closures!. Once we have an explicit form for
Bi j (g i j (r )), the resulting integral Eqs.~1! and ~2!, although
approximate, can provide excellent results for the static
structure of liquids. Moreover, besides the original focus on

the structural properties, in recent years interest has grown
toward using approximate integral equations to obtain ther-
modynamics and the phase diagrams of liquids and liquid
mixtures.3

In particular, Kjellander and Sarman4 and Lee5 have de-
rived an approximate but useful formula for the chemical
potential of a fluid requiring only the knowledge of the cor-
relation functions at the thermodynamic state of interest.
Their formula is based on two main approximations. The first
is the same assumption from which integral equations are
derived, i.e., that the bridge functionsBi j (r ) are local func-
tions of the corresponding indirect correlation functions. The
second stronger assumption is that the only dependence of
the bridge functions from the thermodynamic state is through
the indirect correlation functions. Thus, the functional depen-
dence ofBi j (g i j ) is the same for all the states.

In this paper we want to investigate via direct numerical
computer simulation the two approximations.

Up to now, numerical studies of the bridge functions and
of the accuracy of the local approximation have been limited
to the case of one component systems6,7 or electrolytic
solutions.8 We feel that two-component systems deserve
more interest for many reasons:~i! there are strong indica-
tions that the approximate universality of the bridge
functions9 is not valid in multicomponent systems,~ii ! the
phase diagrams of multicomponent systems are richer and
more interesting than those of pure fluids, and~iii ! it turns
out that modeling the bridge functions for multicomponent
systems is much more difficult than for pure systems.

We have studied, through Monte Carlo simulation, the
bridge functions of a few systems of nonadditive hard
spheres~NAHS! mixtures, including the limiting cases of
additive~AHS! mixtures and one component system. In par-
ticular we are interested in a direct check of the local hypoth-
esis for the functional relations between bridge and correla-
tion functions in binary mixtures. To this aim we use the so

a!Electronic mail: rfantoni@ts.infn.it
b!Electronic mail: pastore@ts.infn.it
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called Duh–Haymet plots.8 These are plots of the partial
bridge functionsBi j as a function of the partial indirect cor-
relation functionsg i j .

The paper is organized as follows: In Sec. II we summa-
rize the equations we used to evaluate the cavity correlation
functions from which the bridge functions can be easily ob-
tained and we provide the relevant technical details of the
numerical calculations. In Sec. III we present and discuss our
numerical results.

II. CALCULATION OF THE CAVITY
AND BRIDGE FUNCTIONS

A. Theory

The binary NAHS system is a fluid made of hard spheres
of two species. One specie, here named 1, with diameterR11

and number densityr1 and another specie~2! with diameter
R22 and number densityr2 , with a pair interaction potential
that can be written as follows:

fab~r !5H ` r ,Rab ,

0 r .Rab ,
~3!

whereR125(R111R22)/21a, with a being the nonadditiv-
ity parameter. We will also study various special cases as the
one component system, and the binary mixture of additive
hard spheres~AHS! a50. We can rewrite Eq.~1! to obtain
the partial bridge functions

Bab~r !5 ln yab~r !2gab~r !, ~4!

whereyab(r ) are the partial cavity functions

yab~r !5gab~r !exp@bfab~r !#. ~5!

Here gi j (r )511hi j (r ) are the partial radial distribution
functions. Notice that both the cavity functions and the indi-
rect correlation functions are everywhere continuous, and so
is the bridge.

In the region outside the hard cores, in a hard sphere
~HS! system, the cavity correlation functions coincide with
the pair distribution functionsgi j (r ). In order to determine

the relationship between the partial bridge functions and the
partial indirect correlation functions within the hard cores,
we need to calculate the partial cavity functions. There are
two distinct methods for calculating them:6 the one which
uses Henderson’s equation10 and the direct simulation
method of Torrie and Patey.11 We decided to use the first
method which is accurate at smallr.

For a binary mixture the like cavity functions can be
obtained from the following canonical average:

yaa~r 1a2a
!5

Vza

Na
ȳaa~r 1a2a

!

5
Vza

Na
K expH 2bF (

i a.2

Na11

faa~r 1ai a
!

1 (
i b51

Nb

fab~r 1ai b
!G J L

N1 ,N2 ,V,T

, ~6!

where a, b51, 2 with bÞa, r i aj b
is the distance between

particle i of specie a and particle j of specie b, za

5exp(bma)/L
3 is the activity of speciea, ma its chemical

potential, andL the de Broglie thermal wavelength,V is the
volume,Na the number of particles of speciea, so that the
prefactor Vza /Na5exp(bma

exc), where ma
exc is the excess

chemical potential of speciea. The notation^¯&N1 ,N2 ,V,T

indicates the canonical average at fixed number of particles,
volume, and temperature.

So to calculateȳaa(r ) we need to introduce in the sys-
tem of Na1Nb particles labeled 1b ,...,Nb , 2a ,...,(N11)a

a test particle 1a placed a distancer from particle 2a and
calculate, at each Monte Carlo step, the interaction of this
particle with all the particles of the system except particle
2a .

We immediately realize that whenr 50 we must have

ȳaa~0!51, ~7!

since the configurations where particle 2a overlaps with
other particles of the system are forbidden. Moreover, by

FIG. 1. The first two graphs are Duh–Haymet plots~dots!, outside the hard core region, for the one component HS system~the lines show the behavior of
integral equation closures!. On the leftr50.650, on the rightr50.925.
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taking into account thatyab(r )5gab(r ) for r .Rab and from
the asymptotic value of the partial pair distribution functions
follows that

lim
r→`

ȳaa~r !5e2bma
exc

. ~8!

The unlike cavity functions can be obtained from the
following canonical average:

y12~r 1112
!5

Vz1

N1
ȳ12~r 1112

!

5
Vz1

N1
K expH 2bF (

i 2.1

N2

f12~r 11i 2
!

1 (
i 1.1

N111

f11~r 11i 1
!G J L

N1 ,N2 ,V,T

. ~9!

So to calculateȳ12(r ) we need to introduce in the system
of N11N2 particles labeled 12 ,...,N2 , 21 ,...,(N11)1 a test
particle 11 placed a distancer from particle 12 and calculate,

at each Monte Carlo step, the interaction of this particle with
all the particles of the system except particle 12 .

Now there is no simple argument to guess the contact
value of ȳ12. All we can say is that we must haveȳ12(0)
<1. At larger we still have

lim
r→`

ȳ12~r !5e2bm1
exc

. ~10!

B. Numerical implementation

Monte Carlo simulations were performed with a stan-
dard NVT Metropolis algorithm12 using N54000 particles.
Linked lists12 have been used to reduce the computational
cost. To calculate the partial pair distribution functions we
generally used 5.23108 Monte Carlo steps, where one step
corresponds to the attempt to move a single randomly chosen
particle, and incremented the histograms once every 20
34000 steps. To calculate the partial cavity functions we

FIG. 2. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! compared with some of the most common integral
equation theories~lines! for the equimolar binary mixture of AHS at two different densities~in the second and third plot only results at the highest density are
shown!. R1151, R1250.8, andR2250.6. The insets shows the portion of the bridge function outside the hard cores.
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used 1.63109 Monte Carlo steps and incremented the histo-
grams once every 234000 steps. The acceptance ratio was
adjusted to values between 10% and 40%.

The Monte Carlo simulation returned thegab(r ) over a
range not less than 8.125R11 for the densest system. In all the
studied cases, the pair distribution functions attained their
asymptotic value well inside the maximum distance they
were evaluated. Thus, it has been possible to obtain accurate
Fourier transforms of the total correlation functions@ ĥab(k)#
@it was necessary to cure the cusps at contact in the partial
pair distribution functions by adding to themH(Rab

2r )gab(Rab), H being the Heaviside step function, before
taking the Fourier transform and removing its analytical Fou-
rier transform afterwards#. To obtain the partial indirect cor-
relation functions we first calculated the partial direct corre-
lation functions@ ĉab(k)# using the Fourier transform of the
Ornstein–Zernike Eq.~2! and then we got the Fourier trans-
form of the indirect correlation functionsĝ i j (k)5ĥi j (k)
2 ĉi j (k) which is the transform of a continuous function in
real space and then is safe to transform back numerically to
obtaingab(r ).

FIG. 3. Cavity functions inside the hard core for the equimolar binary mix-
ture of AHS~at the same conditions as in Fig. 2 at the highest density!. The
plot shows the behavior of the functions defined in Eqs.~6! and~9! ~notice
the logarithmic scale on the ordinates!, the triangles denote the 22 function,
the open circles the 11 function, and the closed circle the 12 function.

FIG. 4. Bridge functionsBab(r ) for the equimolar binary mixture of AHS~at the same conditions as in Fig. 2 at the highest density!. The insets shows
magnifications of the regions just outside of the hard cores.
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III. NUMERICAL RESULTS

We carried on simulations on the following systems:~A!,
one component HS;~B!, equimolar binary mixture of AHS;
~C!, equimolar binary mixture of NAHS with equal like di-
ameters and negative nonadditivity;~D!, equimolar binary
mixture of NAHS with equal like diameters and positive
nonadditivity; and~E!, equimolar binary mixture of NAHS
with different like diameters. In all these cases we have
drawn the corresponding Duh–Haymet plots, i.e., we plot,
for each distance, the pairs (Bi j (r ),g i j (r )).

When we are outside the hard core the partial bridge
functions~4! reduces to

Bab~r !5 ln gab~r !2gab~r ! ~11!

and we can obtain the bridge functions directly from the pair
correlation functions solving the OZ Eq.~2! to get the partial
indirect correlation functionsgab .

To realize the Duh–Haymet plots when we are within
the hard core regions, we first calculated the cavity functions
ȳab as explained in Sec. II and then the bridge functions~up
to an additive constant, the excess chemical potentialbma

exc)
from their definition~4!. Estimating the excess chemical po-
tential from the long range behavior of the cavity functions
@see Eqs.~8! and ~10!# we were able to find the full bridge
functions. Since the cavity functions in proximity ofRab

becomes very small, they are subject to statistical errors. In
order to obtain smooth Duh–Haymet plots we needed to
smooth the cavity functions obtained from the simulation.
We did this by constructing the cubic smoothing spline
which has as small a second derivative as possible.

A. One component HS

We carried out two simulations atr1.0.650 ~with a
packing fraction of h5pr1R11

3 /650.340) and r1

.0.925 (h50.484), the former corresponding to an inter-
mediate density case and the latter to a liquid close to the
freezing point. In our simulations we useR11 as a unit of
length.

Inside the hard core, the bridge and the indirect correla-
tion functions are monotonic and, for the cases here consid-
ered, there are no nonlocalities in the Duh–Haymet plots
inside the core. Thus, to search for nonlocalities it is enough
to analyze results in the external region. The resulting curves
in the (B,g) plane corresponding to points outside the hard
core region are shown in Fig. 1. On the left the intermediate
density case and on the right the high density one. We see
that, as the density increases, the nonlocality becomes more
accentuated. Of course, the quality of a local approximation
does depend on the choice of the correlation functions used

FIG. 5. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! and by some of the most common integral equation
theories~lines! for the equimolar binary mixture of NAHS with equal like diameters and negative nonadditivitya520.351, atr150.589.R115R2251 and
R1250.649. The insets shows the portion of the bridge function outside the hard cores.

FIG. 6. Cavity functions for the equimolar binary mixture of NAHS with
equal like diameters and negative nonadditivity~at the same conditions as in
Fig. 5!. The graph shows the behavior of the functions defined in Eqs.~6!
and ~9! ~notice the logarithmic scale on the ordinates!, the open circle de-
notes the like functions and the closed circle the unlike one.
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as independent variable: plotting the bridge function as a
function of the direct correlation function we observed the
opposite behavior.

In order to compare the computer simulation results with
the local approximateB(g) relations used in the integral
equations, we have plotted the curves corresponding to dif-
ferent closures: the hypernetted chain~HNC!:1

B~g!50, ~12!

the Percus–Yevick~PY!:1

B~g!5 log~11g!2g, ~13!

the Martynov Sarkisov~MS!,13 and its generalization by Bal-
lone, Pastore, Galli, and Gazzillo~BPGG!:14

B~g!5~11ag!1/a2g21, ~14!

~MS! corresponds toa52, in the BPGG generalizationa
could be used as state dependent parameter to enforce ther-
modynamic consistence, here a fixed value of 15/8 has been
used as suggested in~Ref. 14!, and the modified Verlet
~MV !:15

B~g!5
2g2

2@110.8g#
. ~15!

We can see that the best closures~MS, BPGG, and MV!,
although not passing through the simulation curve, tend to
follow its slope and curvature. When looking at Fig. 1 one
should also bear in mind that the values of the bridge func-

FIG. 7. Bridge functionsBab(r ) for the equimolar binary mixture of NAHS with equal like diameters and negative nonadditivity~at the same conditions as
in Fig. 5!. The insets shows magnifications of the regions just outside of the hard cores.

FIG. 8. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! and by some of the most common integral equation
theories~lines! for the equimolar binary mixture of NAHS with equal like diameters and positive nonadditivitya510.2, atr150.200.R115R2251 and
R1251.2. The insets shows the portion of the bridge function outside the hard cores.

10686 J. Chem. Phys., Vol. 120, No. 22, 8 June 2004 R. Fantoni and G. Pastore

Downloaded 26 May 2004 to 140.105.16.2. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Computer simulation study of the closure relations in hard
sphere fluids 115



tion outside the hard core are not the most relevant for the
quality of the structural and thermodynamic results of the
closures.

B. Equimolar binary mixture of AHS

We carried out a simulation atr15r2.0.589@h
5p(r1R11

3 1r2R22
3 )/650.375# and r150.5. We choseR11

51, R1250.8, andR2250.6.
The results outside the hard core region are shown in the

insets of the plots of Fig. 2. There are non-localities in a
neighborhood of the origin which corresponds to the larger
region. These are more evident in the high density case.

The most interesting feature shown in the figure is the
difference between the curves at the two different densities.
If the hypothesis of closures defined by a unique function
B(g) would be exact data for different densities should col-
lapse into a unique curve in these plots. The data shown in
Figs. 1 and 2 indicate clearly that this is not strictly true.
However, at low and intermediate densities the quantitative
effect of the changing functional form is not dramatic. And
even at the highest liquid densities, the success of closures
such as MV, MS, or BPGG can be probably explained in
term of a higher sensitivity of the theory to localized~near
the contact! features of the bridge functions more than to the
behavior over the whole range of distances.

Inside the hard core region the Duh–Haymet plots do
not have nonlocalities. In Fig. 3 we show the results for the
cavity functionsȳab for the system at the highest density.
The plot for the unlike functions is more noisy than the plots
for the like functions becauseȳ12 being smaller thanȳaa for
a51, 2 is more subject to statistical error.

In Fig. 2 we show the full Duh–Haymet plots for the
system at the highest density, from the simulation~dots! and
from integral equation theories~lines!. The plots show how
the MV approximation is the best one for this system. The
unlike bridge function starts atr 50 close to the MV ap-
proximation, stays close to this approximation asr increases
and at some point have a smooth change in behavior and get
closer to the PY curve.

Figure 4 shows the full bridge functions as a function of
r for the system at the highest density. It is worth of notice
the almost flat region of the unlike bridge near the origin.

C. Equimolar binary mixture of NAHS: R11ÄR22 , aË0

We carried out a simulation atr15r2.0.573 (h
50.6). We chose R115R2251 and R1250.649 (a
520.351). These radii values would be suitable for a refer-
ence system to model correlation in molten NaCl.16

FIG. 9. Cavity functions for the equimolar binary mixture of NAHS with
equal like diameters and positive nonadditivity~at the same conditions as in
Fig. 8!. The graph shows the behavior of the functions defined in Eqs.~6!
and ~9! ~notice the logarithmic scale on the ordinates!, the open circle de-
notes the like functions, and the closed circle the unlike functions.

FIG. 10. Bridge functionsBab(r ) for the equimolar binary mixture of NAHS with equal like diameters and positive nonadditivity~at the same conditions as
in Fig. 8!. The insets shows magnifications of the regions just outside of the hard cores.
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The results outside the hard core region are shown in the
insets of the plots of Fig. 5. There are nonlocalities in the
neighborhood of the origin corresponding to the larger re-
gion.

In Fig. 6 we show the results for the cavity functions
ȳab .

In Fig. 5 we show the full Duh–Haymet plots from the
Monte Carlo simulation~dots! and from the most common
integral equation theories~lines!. The approximation which
seems to be closer to the like bridge function is MV: only at
big r the bridge functions is well approximated by PY, MS,
BPGG, and MV. The unlike bridge function starts atr 50
close to the PY approximation but asr increases it has a
sudden change in behavior which displaces it away from all
the approximations. Inside the hard core region the Duh–
Haymet plots for the unlike functions exhibit significant non-
localities in correspondence with the non monotonic behav-
ior of the unlike cavity function~black dots in Fig. 6!.

Figure 7 shows the full bridge functions as a function of

r. The unlike bridge function shows oscillations in a neigh-
borhood of the origin.

D. Equimolar binary mixture of NAHS: R11ÄR22 , aÌ0

We carried out a simulation atr15r2.0.200 (h
50.209). We choseR115R2251 andR1251.2 (a510.2).
Notice that this system undergoes phase separation whenr
52r1.0.42.

The results outside the hard core region are shown in the
insets of the plots of Fig. 8. There are nonlocalities in a
neighborhood of the origin corresponding to large distances.

Also for this system, inside the hard core region the
Duh–Haymet plots for the unlike functions have nonlocali-
ties in a neighborhood ofr 50. These are smaller in extent
than the ones found for system C. In Fig. 9 we show the
results for the cavity functionsȳab .

In Fig. 8 we show the full Duh–Haymet plots from the
simulation~dots! and from the most common integral equa-

FIG. 11. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! and by some of the most common integral equation
theories~lines! for the equimolar binary mixture of NAHS with different like diametersR1151 andR125R2250.6, atr150.589. The insets shows the portion
of the bridge function outside the hard cores.
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tions ~lines!. The approximations which seem to be closer to
the like bridge function is MV and BPGG even if there is
always a gap between the approximations and the simulation.
The unlike bridge function starts atr 50 far away from all
the approximations but asr increases it has a smooth change
in behavior approaching the BPGG curve.

Figure 10 shows the full bridge functions as a function
of r. Again, the unlike bridge function have an almost flat
behavior in a neighborhood of the origin.

E. Equimolar binary mixture of NAHS: R11ÅR22

We carried out a simulation atr15r2.0.589 (h
50.375). We choseR1151 andR125R2250.6 (a520.2).

The results outside the hard core region are shown in the
insets of the plots of Fig. 11. There are nonlocalities in a
neighborhood of the origin which corresponds to the bigr
region.

Inside the hard core region the Duh–Haymet plots have
no nonlocalities. In Fig. 12 we show the results for the cavity
functionsȳab .

FIG. 12. Cavity functions for the equimolar binary mixture of NAHS with
different like diameters~at the same conditions as in Fig. 11!. The graph
shows the behavior of the functions defined in Eqs.~6! and ~9! ~notice the
logarithmic scale on the ordinates!, the triangles denote the 22 function, the
open circles the 11 function, and the closed circle the 12 function.

FIG. 13. Bridge functionsBab(r ) for the equimolar binary mixture of NAHS with different like diameters~at the same conditions as in Fig. 11!. The insets
shows magnifications of the regions just outside of the hard cores.
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In Fig. 11 we show the full Duh–Haymet plots from the
simulation~dots! and from the most common integral equa-
tions ~lines!. The approximation which is closer to the 11
bridge function is the MV. The one that is closer to the 22
bridge function is the BPGG. The 12 bridge function starts at
r 50 far away from all the 5 approximations and asr in-
creases has a sudden change in behavior and starts following
the BPGG approximation.

Figure 13 shows the full bridge functions as a function
of r. The unlike bridge function shows again a qualitatively
different behavior near the origin.

IV. CONCLUSIONS

From our analysis it follows that the nonlocalities in the
function relationship between the bridge functions and the
indirect correlation functions may appear either outside of
the hard core regions or inside of it. While the nonlocalities
outside the hard core appear both in the like and in the unlike
functions, the ones inside the hard core appear only in the
unlike functions~see Fig. 5 and Fig. 8!, for the systems that
we have studied. Their appearance can be directly related to
the peculiar behavior of the unlike cavity correlation func-
tion inside the hard core.

As is shown by a comparison of the plots of Fig. 1 and
from Fig. 2 the nonlocalities become more accentuated as we
increase the coupling~the density! of the system. Nonethe-
less Fig. 8 shows that the nonlocalities may appear even in a
weakly coupled system~in this case symmetric NAHS with
positive non additivity!. Among the systems studied the one
which presents the worst nonlocalities is the equimolar sym-
metric NAHS with negative nonadditivity~see Fig. 5!. For
this system the Duh–Haymet plot for the unlike bridge func-
tion is nonlocal both in the hard core region~in a neighbor-
hood of r 50) and outside of it~at larger!.

We can conclude that the two hypothesis of a local func-
tion approximation for the bridge functionals of the indirect
correlation functions and the stronger hypothesis of unique
functional form independent on the state, are not strictly sup-
ported by the numerical data. For the one component system,
this finding is consistent with the observed density depen-
dence of the bridge function reported in Ref. 17. We observe
clear violations of both the assumptions increasing with the
density. This negative statement should be somewhat miti-
gated by realizing that the violations of the locality, in the

systems studied, are limited to the small and large distances
regions. The latter, corresponding to the region of the fast
vanishing of the bridge functions affect very little the ther-
modynamic and structural properties of the systems. The
former are presumably more important for the level of ther-
modynamic consistence of the theory but have small effect
on quality of the structural results. The well known success
of closures like MS, BPGG, and MV supports such point of
view.

From comparison with the simulation data in the cases
we have studied, we conclude that the best approximations
of the true hard sphere bridge functions are provided by the
MV and BPGG even if, especially in the unlike bridge func-
tions, there are a wide variety of characteristic behaviors
which are not captured by any of the most popular integral
equation approximations. In this respect, we feel that a final
comment on the local functional approximation in the case of
multicomponent systems is in order. Indeed, density func-
tional theory allows to say that the bridge functionBi j should
be a functional of all the pair correlation functions, not only
the (i , j ) one. Thus, we could have a function approximation
Bi j (g11(r ),g12(r ),g22(r )) which would be local in space but
not with respect to the components. At the best of our knowl-
edge, up to now no attempt has been done to explore this
additional freedom to improve the modeling of the bridge
functions in multicomponent systems.
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Chapter 9

Stability boundaries, percolation
threshold, and two phase coexistence
for polydisperse fluids of adhesive
colloidal particles

Fantoni R., Gazzillo D., Giacometti A., J. Chem. Phys., 122, 034901 (2005)
Title: “Stability boundaries, percolation threshold, and two phase coexistence for polydis-
perse fluids of adhesive colloidal particles.”
Abstract: We study the polydisperse Baxter model of sticky hard spheres (SHS) in the mod-
ified Mean Spherical Approximation (mMSA). This closure is known to be the zero-order
approximation (C0) of the Percus-Yevick (PY) closure in a density expansion. The simplic-
ity of the closure allows a full analytical study of the model. In particular we study stability
boundaries, the percolation threshold, and the gas-liquid coexistence curves. Various possible
sub-cases of the model are treated in details. Although the detailed behavior depends upon
the particularly chosen case, we find that, in general, polydispersity inhibits instabilities,
increases the extent of the non percolating phase, and diminishes the size of the gas-liquid
coexistence region. We also consider the first-order improvement of the mMSA (C0) closure
(C1) and compare the percolation and gas-liquid boundaries for the one-component system
with recent Monte Carlo simulations. Our results provide a qualitative understanding of the
effect of polydispersity on SHS models and are expected to shed new light on the applicability
of SHS models for colloidal mixtures.
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We study the polydisperse Baxter model of sticky hard spheres~SHS! in the modified mean
spherical approximation~mMSA!. This closure is known to be the zero-order approximation C0 of
the Percus-Yevick closure in a density expansion. The simplicity of the closure allows a full
analytical study of the model. In particular we study stability boundaries, the percolation threshold,
and the gas-liquid coexistence curves. Various possible subcases of the model are treated in details.
Although the detailed behavior depends upon the particularly chosen case, we find that, in general,
polydispersity inhibits instabilities, increases the extent of the nonpercolating phase, and diminishes
the size of the gas-liquid coexistence region. We also consider the first-order improvement of the
mMSA ~C0! closure ~C1! and compare the percolation and gas-liquid boundaries for the
one-component system with recent Monte Carlo simulations. Our results provide a qualitative
understanding of the effect of polydispersity on SHS models and are expected to shed new light on
the applicability of SHS models for colloidal mixtures. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1831275#

I. INTRODUCTION

In sterically stabilized colloidal mixtures, particles are
coated with polymer brushes to prevent irreversible floccu-
lation due to van der Waals attraction.1 If the solvent is a
moderate one, a lowering of the temperature yields very
strong attraction with a range much less than the typical col-
loidal size. In microemulsions of polydispersed spherical wa-
ter droplets each coated by a monolayer of sodium di-2-
ethylhexylsulfosuccinate dispersed in a continuum of oil, the
droplets interact with each other via a hard core plus a short
range attractive potential, the strength of which increases
with temperature.2 For these systems, a very useful theoreti-
cal model is the sticky hard sphere~SHS! model proposed by
Baxter3 long time ago for atomic liquids. In the original Bax-
ter solution3,4 the one-component Ornstein-Zernike~OZ! in-
tegral equation was analytically solved within the Percus-
Yevick ~PY! approximation. Successive extension to
mixtures,5 however, proved to be a formidable task in view
of the fact that a large@infinite ~Ref. 6!# number of coupled
quadratic equations ought to be solved numerically in order
to have a complete understanding of both thermodynamics
and structure of the model. This is the reason why, to the best
of our knowledge, only binary mixtures have been explicitly
discussed so far in this framework.5 Moreover it has been
proven by Stell7 that sticky spheres of equal diameter in the
Baxter limit are not thermodynamically stable and size poly-
dispersity can be expected to restore thermodynamic
stability.

Motivated by this scenario, it was recently proposed8 a

simpler approximation@modified mean spherical approxima-
tion ~mMSA! closure# having the advantage that also the
multicomponent case could be worked out analytically.9,10

Further analysis and comparison with both Monte Carlo
~MC! and PY results8,11,12 in the one-component case, have
shown that the mMSA closure for Baxter model is a reliable
one up to experimentally significant densities. The price to
pay for this simplification is that only the energy equation of
state gives rise to a critical behavior, the other two routes
yielding either a noncritical behavior~compressibility!, or a
diverging equation of state~virial!.

In this work we pursue this investigation by studying the
multicomponent version of the model proposed in Ref. 8,
and analyzing various consequences. We first solve the mul-
ticomponent version of Baxter model within the mMSA clo-
sure, and show that the solution is equivalent to the one
derived in Ref. 9 for a companion SHS model. The solution,
derived in terms of an auxiliary function called Baxter factor
correlation, turns out to be formally similar to that derived
with the PY closure. However, and this is the crux of the
matter, the matrix function representing the stickiness param-
eters is unconstrained, unlike the PY counterpart. In order to
make further progress and derive the multicomponent energy
equation of state, a further assumption is necessary on the
matrix representing the stickiness parameters. As discussed
previously~see Ref. 9 for details! a remarkable simplification
occurs when the general element of this matrix has the form
of a sum of dyads~i.e., it is dyadic!. In these cases the nec-
essary matrix inversion can be carried out analytically and all
measurable quantities can then be computed. Physically, this
reduction to a dyadic form amounts to assume a relation
among polydispersity in size and polydispersity in stickiness,
that is on the adhesion forces. In addition to the two cases

a!Electronic mail: rfantoni@unive.it
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c!Electronic mail: achille@unive.it
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proposed in Ref. 9~denoted as cases I and II in the follow-
ing! and that proposed in Ref. 13~case IV!, we shall consider
two further cases. The first one~case III! is a physically
motivated variant of case I, whereas the second one~case V!
has its main justification in the simplifying features occur-
ring when one attempts to go beyond the mMSA closure
with a density perturbative approach~to first order this will
be called C1, as in Ref. 8, for reasons which will become
apparent in the rest of the paper!.

The main results of our analysis are the following. We
derive the instability curves in three of the considered cases
~cases I–III! within the mMSA approximation and analyze
the effect of polydispersity in some detail. In order to test the
reliability of the mMSA approximation, we also consider the
first-order correction C1 in the one-component case and
compare with the PY result.

Next we consider the effect of polydispersity on the per-
colation threshold. This is an interesting phenomenon on its
own right and has attracted considerable attention
recently,11,12,14–16being a paradigmatic example of floccula-
tion instability. In particular, recent Monte Carlo
simulations11,12 on monodisperse~one-component! spheres
with sticky adhesion have clearly tested the performance of
analytical calculations based on the PY approximation.15,16

We then study the percolation transition as a function of
polydispersity in all above mentioned cases within mMSA.
Again we can discriminate the effect of polydispersity on the
percolation line, and also compare it with the first-order cor-
rection C1, the PY approximation, and MC simulations in the
one-component case.

Next we consider phase equilibrium. A major obstacle to
the analysis of phase transition in polydisperse systems is
posed by the fact that, in principle, one has to deal with a
large~infinite! number of integral nonlinear equations corre-
sponding to the coexistence conditions among various
phases. In this model, however, as it also occurs in other
simpler models such as hard spheres~HS!,17 van der Waals
fluids18 and in more complex cases such as factorizable hard-
sphere Yukawa potentials,19,20 the task can be carried out in
full detail in view of the fact that the~excess! free energy
depends upon only a finite number of moments of the size
distribution function. In the particular case of two-phase co-
existence, we derive the cloud and shadow curves of all
cases in the mMSA approximation. We compare the results
with those derived earlier for a polydisperse van der Waals
fluid,17 and discuss analogies and differences in this respect.
Finally we compare the results of the mMSA one-component
case with the first-order correction, the PY approximation,
and the results of MC simulations.

The plan of the paper is as follows. In Sec. II we define
the multicomponent SHS model, give the solution for Baxter
factor correlation function in the mMSA~C0! approximation,

and define the various cases of polydispersion models taken
under exam; in Sec. III we give the solution for Baxter factor
correlation function in the C1 approximation and show how
case V is particularly suitable to study the polydisperse sys-
tem analytically; in Sec. IV we analytically derive the insta-
bility boundaries; in Sec. V we find analytically the percola-
tion thresholds; in Sec. VI we derive numerically the two-
phase coexistence curves; in Sec. VII we lay down our
conclusions and further developments.

II. BAXTER MODEL AND MODIFIED MSA SOLUTION

In Baxter model of SHS1, one starts adding to the HS
potential a square-well tail with21

f i j ~r !52kBT lnS 1

12t i j

Ri j

Ri j 2s i j
D , s i j <r<Ri j , ~1!

wheres i j 5(s i1s j )/2 (s i being the HS diameter of species
i ), Ri j 2s i j denotes the well width,kB is Boltzmann con-
stant, T the temperature, and the dimensionless parameter
t i j

21>0 measures the strength of surface adhesiveness or
‘‘stickiness’’ between particles of speciesi and j (t i j is also
an unspecified increasing function ofT). The sticky limit
corresponds to taking$Ri j %→$s i j %.

The Baxter form of the OZ integral equations for this
model admits a very simple analytic solution if one uses the
following mMSA:

ci j ~r !5 f i j ~r ! for r>s i j , ~2!

whereci j (r ) and f i j (r )5exp@2bfij(r)#21 are the direct cor-
relation function and the Mayer function, respectively@b
5(kBT)21#. This can be easily inferred by using the formal-
ism introduced in Ref. 8. As pointed out in that reference, the
mMSA closure can be reckoned as a zero-order approxima-
tion in a perturbative expansion, and hence it will also be
denoted as C0 henceforth. In terms of Baxter factor correla-
tion functionsqi j (r ), its extension to mixtures reads

qi j ~r !5H 1
2 ai~r 2s i j !

21~bi1ais i j !~r 2s i j !1Ki j , Li j 5~s i2s j !/2<r<s i j ,

0, elsewhere,
~3!

FIG. 1. Schematic diagram showing the area of the contact surface between
a particle of speciesi and a particle of speciesj .
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, ~4!
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p
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p
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p

6 (
m51

p

rmsmKim , D512j3 , ~5!

with p being the number of components,r i the number den-
sity of speciesi , and

Ki j
(mMSA)5

1

12t i j
s i j

2 [Ki j
0 . ~6!

We remark that although Eqs.~3!–~5! are formally iden-
tical to their PY counterpart, this result is in fact simpler in
such they differ in the quantityKi j , which in the PY ap-
proximation reads21

Ki j
(PY)5Ki j

0 yi j
(PY)~s i j ![

1

12
l i j s i j

2 , ~7!

whereyi j
(PY)(s i j ) is the contact value of the PY cavity func-

tion. In general, the parametersl i j can be determined only
numerically by solving a set ofp(p11)/2 coupled quadratic
equations,5,21 and this makes the multicomponent PY solu-
tion of limited interest from the practical viewpoint. In par-
ticular, a global analysis of the phase diagram proves to be a
formidable task within the PY approximation.5 On the other
hand, in view of the simplicity of Eq.~6! with respect to its
PY counterpart Eq.~7!, this is indeed possible within the
mMSA ~C0! approximation. The above results is, moreover,
fully equivalent to a parallel but different sticky HS model
~SHS3! studied by us in previous work.8,9 Hence, as dis-
cussed in those references, this analysis can be pursued ana-
lytically provided thatKi j has a dyadic form. To this aim, we
consider polydisperse fluids with HS diameters distributed
according to a Schulz distribution.22

As regards stickiness, we choose to keep it either con-
stant or related to the particle size. There are two main rea-
sons for this. First, one expects the adhesion forces to depend
upon the area of the contact surface between two particles
~see Fig. 1!, and hence on their sizes. Second and more prac-
tical reason is that this is a simple way of obtaining the
required factorization. As the stickiness-size relation is not
clearly understood, we consider five different possibilities,
denoted as cases I–V henceforth. The three simplest choices
are

1

t i j
5

1

t

^s&2

s i j
2 ,⇒@Ki j

(mMSA)#case I5
1

12t
^s&2, ~8!

1

t i j
5

1

t

s is j

s i j
2 ,⇒@Ki j

(mMSA)#case II5
1

12t
s is j , ~9!

1

t i j
5

1

t

^s2&
s i j

2 ,⇒@Ki j
(mMSA)#case III5

1

12t
^s2&, ~10!

where ^s& is the average HS diameter (^F&[( ixiFi , here
xi5r i /r is the molar fraction of speciesi with r5( ir i the
total number density!, andt is assumed to depend only on
the temperature, while the remaining factor int i j

21 is a mea-
sure of stickiness strength and is related to the particle sizes.

The physical interpretation of these choices is the following.
In case I the stickiness is assumed to be proportional to the
surface contact area of two colloidal particles having average
size ^s&, whereas in case II the adhesion of each particle is
linearly related to its size. Case III, finally, is a variant of
case I where one considers an average stickiness rather than
the stickiness of an average particle.

In all these cases theKi j
(mMSA) matrix can be factorized as

Ki j
(mMSA)5YiYj , ~11!

with Yi having dimensions of length@Yi5(A12t)21^s&,
Yi5(A12t)21 s i , andYi5(A12t)21 ^s2&1/2 in cases I, II,
and III, respectively#. Note that cases I and II have already
been exploited by us in previous work.9

We also consider a case similar to that proposed by Tut-
schka and Kahl13 ~henceforth denoted as case IV!

1

t i j
5

1

t
. ~12!

In this case theKi j
(mMSA) matrix can be written as a sum of

three factorized terms@as it can be immediately inferred by
expanding the squares i j

2 5(s i1s j )
2/4] and has the interest-

ing physical interpretation of being proportional to the area
of the actual contact surface 4ps i j

2 between particles of spe-
cies i and j . Finally, and for reasons related to the C1 ap-
proximation that will be further elaborated below, we con-
sider case V defined by the linear~rather than quadratic!
dependence

1

t i j
5

1

t

^s&
s i j

, ~13!

in this case theKi j
(mMSA) parameters can be written as a sum

of two factorized terms.

III. THE C1 APPROXIMATION

It was recently argued8 in the one-component case, that
the mMSA~C0! approximation can be improved by includ-
ing the next order term in the density expansion of the direct
correlation function. Its extention to multicomponent mix-
tures reads

ci j ~r !5 f i j ~r !F11(
m

rmg im j
(1) ~r !G , r>s i j , ~14!

where

g im j
(1) ~r !5E f im~ ur2r 8u! f m j~r 8!dr 8

5
2p

r E
0

`

ds s fim~s!E
ur 2su

r 1s

dt t fm j~ t !, ~15!

is the first-order coefficient in the density expansion of the
partial indirect correlation functionsg i j (r ). As discussed in
Ref. 8, if we retain in the PY closure only the terms corre-
sponding to the zero- and first-order expansion in density we
recover the C1 approximation~14!. It turns out that Baxter
factor correlation function can still be cast in the form, Eqs.
~3!–~5! but theKi j parameters have the form
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Ki j
(C1)5Ki j

0 yi j
(C1)~s i j !, ~16!

where the partial cavity functions at contact for this closure
are

yi j
(C1)~s i j !511(

m
rmg im j

(1) ~s i j !. ~17!

Using in Eq. ~15! f i j (r )52u(s i j 2r )1d(r 2s i j )s i j /
(12t i j ), we find after some algebra the following result

g im j
(1) ~s i j !5

2p

s i j
H s im

2

12t im
F2

1

2
~sm j

2 2L jm
2 !1

sm j
2

12tm j
G

1
2

3
s i j Lmi

3 1
sm j

2

12tm j

1

2
~Lmi

2 2smi
2 !

1 1
4 ~sm j

2 2s i j
2 !~smi

2 2Lmi
2 !

1
1

3
s i j ~smi

3 2Lmi
3 !2

1

8
~smi

4 2Lmi
4 !J . ~18!

Because of the presence of the factor 1/s i j in Eq. ~18!, Ki j
(C1)

cannot be expressed as a sum of factorized terms if we use
any of the cases I, II, or III. Case IV, on the other hand,
would be tractable, but it would yieldKi j

(C1) as a sum of 14
factorized terms~proportional tos i

ns j
m with n,m50,1,2,3

exceptn5m50,3) which is unmanageable in practice. In
case V, on the other hand, a great simplification occurs and
we find

Ki j
(C1)5k01~s i1s j !k11s is j k2 , ~19!

where

k05h
1

576

^s&3^s2&

^s3&

1

t3 , ~20!

k15
1

24
^s&

1

t
1hS 1

576

^s&4

^s3&

1

t3

2
1

48

^s&2^s2&

^s3&

1

t2 1
1

24
^s&

1

t D , ~21!

k25hS 1

576

^s&3

^s3&

1

t3 2
1

24

^s&3

^s3&

1

t2 1
1

8

^s&^s2&

^s3&

1

t D ,

~22!

whereh5j3 is the packing fraction. The expression~19! is
slightly more complicated than theKi j

(mMSA) treated with case
IV, because of thek0 term. This noteworthy feature is the
main justification for the particular form of case V.

IV. PHASE INSTABILITIES

Our first task is the analysis of the phase instabilities for
the polydisperse system only in the mMSA using cases I, II,
and III.

The next level of approximation C1 is considerably more
laborious ~since the calculations for the C1 approximation

even in the simple case of case V requires determinants of
n-dyadic matrices withn.4) and we shall limit ourselves to
the one-component case for simplicity.

A. mMSA approximation for the discrete polydisperse
system

For p-component mixtures, one can define the following
generalization of the Bhatia-Thornton concentration-
concentration structure factor:23–25

SCC~k!Y S)
m

xmD 5uS~k!u (
i , j 51

p

~xixj !
1/2Si j

21~k!, ~23!

where uS(k)u denotes the determinant of the matrix
S(k) whose elements are the Ashcroft-Langreth partial
structure factors.26 Furthermore, theSi j

21(k) functions are the
elements of the inverse ofS(k), which can be expressed as

Si j
21~k!5d i j 2~r ir j !

1/2c̃i j ~k!5(
m

Q̂mi~2k!Q̂m j~k!, ~24!

with c̃i j (k) three-dimensional Fourier transform ofci j (r ),
Q̂i j (k)5d i j 22p(r ir j )

1/2q̂i j (k), andq̂i j (k) being the unidi-
mensional Fourier transform ofqi j (r ) (k is the magnitude of
the exchanged wave vector,d i j the Kronecker delta!.

Phase instability corresponds to the divergence of the
long wavelength limitSCC(k50), which is related to the
concentration fluctuations. Taking into account the relations

(
i , j

~xixj !
1/2Si j

21~0!5(
i

xiai
25~rkBTKT!215S ]bP

]r D
T

,

~25!

uS~0!u5uI2C~0!u215uQ̂~0!u22, ~26!

@whereKT is the isothermal compressibility,I the unit matrix
of order p, andC has elements (r ir j )

1/2c̃i j (k)], SCC(k50)
can be reexpressed as

SCC~0!

)mxm

5
1

uQ̂~0!u2~rkBTKT!
. ~27!

For a one-component system the divergence ofKT sig-
nals mechanical instability, associated with a gas-liquid
phase transition or condensation. However, a multicompo-
nent fluid usually becomes unstable whileKT remains finite
and different from zero. In this case, it is the vanishing of
uQ̂(0)u which causes the divergence ofSCC(0) and produces
a phase instability.24,25 Indeed if one tries to calculate the
locus of points in the phase diagram~t,h! where ( ixiai

2

50, using cases I, II, or III, discovers that such curves dis-
appear~the quadratic equations int have a negative discrimi-
nant! as soon as we switch on the size polydispersity letting
^s2&Þ^s&2. We remark that the exact nature of this instabil-
ity requires a more involved analysis and it will be deferred
to a future work.

The computation ofuQ̂(0)u, which usually becomes a
formidable task with increasingp, is rather simple for the

034901-4 Fantoni, Gazzillo, and Giacometti J. Chem. Phys. 122, 034901 (2005)

Downloaded 02 Jan 2005 to 82.50.171.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Stability boundaries, percolation threshold, and two phase co-
existence for polydisperse fluids of adhesive colloidal particles 127



mMSA solution of Baxter model whenKi j is factorized as in
Eq. ~11!. In fact, Q̂(k) becomes ann-dyadic ~or Jacobi!
matrix

Q̂i j 5d i j 1 (
n51

n

Ai
(n)Bj

(n) ~ i , j 51,...,p!, ~28!

with the remarkable property that its determinant, which is of
order p, turns out to be equal to a determinant of ordern
(!p for polydisperse fluids!.9 The necessary expressions are
reported in Appendix A.

For factorizedKi j ’s, one finds

Q̂i j ~0!5d i j 1
p

6
~r ir j !

1/2F 1

D
s j

31s i

3

D S j2

1

D
s j

31s j
2D

212Yi S j1,1

1

D
s j

31s jYj D G , ~29!

with

jm,n5
p

6
r^smYn&, ~30!

~^¯& denotes a compositional average, i.e.,^FG&
[( ixiFiGi). Note thatjm,05jm .

We emphasize that the decomposition of Eq.~29! into
Ai

(n) andBj
(n) is not unique. However,Q̂i j (0) of cases I and

III is 3-dyadic ~i.e., it containsn53 dyadic terms!, while
Q̂i j (0) of case II is simply 2-dyadic. As a consequence, one
has to calculate at most a determinant of order 3. The general
result for all three cases is

uQ̂~0!u5
1

D2 @~112j3!~1212j1,2!136j2,1
2 #. ~31!

Physically admissible states must satisfy the inequality
uQ̂(0)u.0 ~Ref. 27! and the stability boundary is reached
when uQ̂(0)u50, which yields

t55
^s&3

^s3&
h2S ^s&^s2&

^s3& D 2 3h2

112h
~case I!,

h~12h!

112h
~case II!,

^s&^s2&

^s3&
h2

^s2&3

^s3&2

3h2

112h
~case III!.

~32!

If the HS diameters follow a Schulz distribution, then the
stability boundary of cases I and III can be expressed as

t55 hS 1

M1M2
2

1

M2
2

3h

112h D ~case I!,

hS 1

M2
2

M1

M2
2

3h

112h D ~case III!,

~33!

whereM j511 js2 with s5@^s2&2^s&2#1/2/^s& measuring
the degree of size polydispersity.

The fluid is stable at ‘‘temperatures’’t higher than those
given by the previous equations~since uQ̂(0)u.0). Let us
now compare two mixtures with the same packing fractionh
but different polydispersity degrees. As depicted in Fig. 2 at

small h values, increasings at fixed h lowers the stability
curve of cases I and III. As shown by the left branch of the
curve~the opposite trend on the right-hand side of the figure
is not acceptable, since the mMSA closure can be a reason-
able approximation only in the low density regime! the onset
of instability occurs at lowert. As expected, polydispersity
renders the mixture more stable with respect to concentration
fluctuations. Quite surprisingly, on the other hand, the stabil-
ity boundary does not depend ons at fixedh in case II, and
all mixtures with different polydispersity have the same sta-
bility boundary as the one-component case (s50).

B. C1 approximation for the one-component system

As remarked, the C1 approximation yields rather more
complex expressions and here we restrict to the one-
component case. Yet, this example provides a flavor of how
this approximation would work in the multicomponent case
and could be compared with the result given byuQ̂(0)u50.
For the one-component system phase instability coincides
with the divergence ofKT . As from Eq.~25!

~rkBTKT!215a25F 112h

~12h!2 2
1

t
y(C1)~s!

h

12hG50,

~34!

where@see Eqs.~17! and ~18!#

y(C1)~s!511y1~t!h, ~35!

with

y1~t!5
5

2
2

1

t
1

1

12t2 . ~36!

The curve for the onset of mechanical instability is
shown in Fig. 2 and compared with the PY one

t5
1029/~12h!114h

12~112h!
. ~37!

FIG. 2. Curves for the onset of phase instability~the fluid is stable above the
curves shown! as obtained from the mMSA approximation for a monodis-
perses50 system, and for a polydisperse system withs50.2, and polydis-
persity chosen as in cases I, II, and III@see Eq.~32!#. We also show for the
one-component system the curve for the onset of mechanical instability
predicted by the C1 approximation@see Eq.~34!# and the one predicted by
the PY approximation@see Eq.~37!#.
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One clearly sees that the C1 stability boundary lowers and
shifts to the left in agreement with the PY result.

V. PERCOLATION THRESHOLD

In view of the simplicity of the mMSA~C0! solution,
one might expect that other quantities, besides those dis-
cussed so far, can be computed analytically. We now show
that this is indeed the case. The problem we address in this
section iscontinuum percolation. This problem is far from
being new.28 However, new activity along this line has been
stirred by recent and precise Monte Carlo results for the one-
component case,11,12 and it is then rather interesting to con-
sider its multicomponent extension. For the sake of com-
pleteness we now recall the basic necessary formalism.14–16

In the sticky limit the partial Boltzmann factors read

ei j ~r !5u~r 2s i j !1
Ki j

0

s i j
d~r 2s i j !, ~38!

whereu is the Heaviside step function andd the Dirac delta
function.

When studying percolation problems in the continuum is
useful to rewrite the Boltzmann factor as the sum of two
terms14,28 ei j (r )5ei j* (r )1ei j

1(r ), where

ei j* ~r !5u~r 2s i j !, ~39!

ei j
1~r !5

Ki j
0

s i j
d~r 2s i j !. ~40!

The corresponding Mayer functions will bef i j (r )5 f i j* (r )
1 f i j

1(r ), with

f i j* ~r !5ei j* ~r !21, ~41!

f i j
1~r !5ei j

1~r !. ~42!

The procedure to obtain equations ofconnectednessand
blocking functions from the usual pair correlation functions
and direct correlation functions is best described through the
use of graphical language. If we substitutef i j* and f i j

1 bonds
for f i j bonds in the density expansions for these functions,
then the connectedness functions, which we will indicate
with a cross superscript, are expressed as the sums of those
terms that have at least onef i j

1 bond path connecting the two
root vertexes. The sums of the remaining terms in the expan-
sions give the blocking functions.

The percolation threshold corresponds to the existence
of an infinite cluster of particles and is given by the diver-
gence of the mean cluster size14,28

Scluster511r(
i , j

xixjE drhi j
1~r !5SNN

1 ~k50!

[(
i , j

~xixj !
1/2Si j

1~k50!, ~43!

wherehi j
1(r ) is the pair connectedness function~related to

the joint probability of finding a particle of speciesi and a
particle of speciesj at a distancer and that these two par-
ticles are connected! and

Si j
1~k![d i j 1~r ir j !

1/2h̃i j
1~k!. ~44!

Sincehi j
1(r ) is related to the so called direct connected-

ness functionci j
1(r ) through an OZ equation, one can use

Baxter formalism again, introducing a factor functionqi j
1(r ).

If we now defineQ̂1,i j (k)5d i j 22p(r ir j )
1/2q̂i j

1(k), then it
results that

Si j
1~k!5(

m
Q̂1,im

21 ~k!Q̂1, jm
21 ~2k! ~45!

and thus

Scluster5(
m

sm
2 ~0!, ~46!

where

sm~0!5(
i

AxiQ̂1,im
21 ~0!. ~47!

Clearly Q̂1,im
21 (0) diverges to infinity whenuQ̂1(0)u50, and

this relation defines the percolation threshold.
Another interesting and related quantity is the average

coordination number

Z̄54pr(
i , j

xixjE
0

s i j
hi j

1~r !r 2dr. ~48!

A. mMSA approximation

The mMSA closure forci j
1(r ) is

ci j
1~r !5 f i j

1~r !50, r .s i j . ~49!

On the other hand whenr<s i j we haveei j* (r )50 and
f i j

1(r )5ei j (r ), so we must have exactly

hi j
1~r !5ei j* ~r !yi j

1~r !1 f i j
1~r !yi j ~r !

5ei j ~r !yi j ~r !5
Ki j

0

s i j
yi j ~s i j !d~r 2s i j ! r<s i j . ~50!

Within the mMSA we have for the cavity function at
contact7

yi j ~s i j !51 for all i , j . ~51!

Following the same steps of Chiew and Glandt,15,16 we then
find ~see Appendix B for details!

qi j
1~r !5Ki j u~r 2Li j !u~s i j 2r !. ~52!

From which it follows

Q̂1,i j ~0!5d i j 22p~r ir j !
1/2Ki j s j . ~53!

Within cases I, II, and III

Q̂1,i j ~0!5d i j 1ai
1bj

1 , ~54!

ai
1522prAxiYi , ~55!

bj
15AxjYjs j . ~56!

Now from Eq. ~54! follows that Q̂1,i j (0) is a 1-dyadic
form. Using the properties of dyadic matrices~see Appendix
A! we then find
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Q̂1,i j
21 ~0!5

1

uQ̂1~0!u
Ud i j bj

1

ai
1 11a1

•b1
U , ~57!

where

uQ̂1~0!u511a1
•b151212j1,2. ~58!

From Eq.~47! we find

sm~0!5
1

uQ̂1~0!u
FAxm~11a1

•b1!2bm
1(

i
Axiai

1G ,

~59!

and from Eq.~46!

Scluster511
24

j0

j1,1j0,1

1212j1,2
1

144

j0

j2,2j0,1
2

~1212j1,2!
2 . ~60!

The percolation transition occurs when

t55
^s&3

^s3&
h5

1

M1M2
h ~case I!,

h ~case II!,

^s&^s2&

^s3&
h5

1

M2
h ~case III!.

~61!

The threshold is independent ofs at fixedh for case II,
but lowers with increasing size polydispersity in cases I and
III. The curve is simply a straight line, as a consequence of
the mean-field character of the mMSA~C0! closure. The
qualitative result found with cases I and III is, however, in-
teresting. For the average coordination number we find from
Eqs.~48! and ~50!

Z̄54pr(
i , j

xixjKi j s i j

5
24

j0
j1,1j0,1

5H 2
h

t

^s&3

^s3&
~case I!,

2
h

t

^s&^s2&

^s3&
~cases II and III!.

~62!

At the percolation transition we then find

Z̄5H 2 ~case I and III!,

2/M2 ~case II!.
~63!

Using case IVQ̂1 i j (0) turns out to be 3-dyadic; the
percolation transition occurs whenuQ̂1(0)u50, i.e.,

12
h

t
2

s2~417s2!

8~113s212s4! S h

t D 2

1
s6

16~11s2!~112s2!2 S h

t D 3

50. ~64!

The solutionh/t5p(s) such thatp(0)51 is a monoto-
nously decreasing function with

lim
s→`

p~s!50.756 431 ... . ~65!

Then with this case we find that increasing the polydispersity
the nonpercolating region of the phase diagram diminishes.

With case VQ̂1 i j (0) turns out to be 2-dyadic, and the
percolation transition occurs when

t5S ^s&^s2&

^s3&
1A^s&3

^s3&
D h

2
5S 1

M2
1A 1

M1M2
D h

2
,

~66!

which has the physical behavior already found with cases I,
II, and III.

B. C1 approximation with case V

As remarked, in case V we can work out the percolation
threshold equation even within the C1 approximation. From
Eq. ~51! we have exactly

hi j
1~r !5

Ki j
0

s i j
yi j

(C1)~s i j !d~r 2s i j !, r<s i j , ~67!

whereyi j
(C1)(s i j ) is given by Eq.~17!. For the closure con-

dition of the direct connectedness function we find again

ci j
1~r !5 f i j

1~r !1 f i j
1~r !(

m
rmg im j

(1) ~r !

1 f i j* ~r !(
m

rmg i jm
(1)1~r !50, r .s i j , ~68!

since f i j
1(r )5 f i j* (r )50 for r .s i j . To determineqi j

1(r ) we
then follow the same steps as for the mMSA case and we
find

qi j
1~r !5Ki j

0 yi j
(C1)~s i j !u~r 2Li j !u~s i j 2r !. ~69!

When we insertKi j from Eq.~19! into the expression for
Q̂1 i j (0) @see Eq. ~53!# this becomes a 4-dyadic matrix
whose determinant is

uQ̂1~0!u511(
i 51

6

qi~s,h!/t i , ~70!

where the coefficientsqi(s,h) are given in Appendix C.
The percolation threshold is the solution ofuQ̂1(0)u

50. This is an algebraic equation of order 6 int. We can plot
the correct roott~h! for different values of polydispersity, as
reported in Fig. 3. We see that increasing the polydispersity
increases the nonpercolating phase. One can clearly observe
a clear improvement from the mMSA~C0! approximation
although theh→0 limit is still qualitatively different from
the PY one-component case. It would be interesting to study
if the ‘‘true’’ percolation threshold passes through the origin
(h50,t50) ~as occur in the C0 or C1 approximations! or
has a finite limit (h50,t5t0) ~as it occur for monodisperse
fluids in the PY approximation witht051/12). Even if the
Monte Carlo results of Refs. 11 and 12 are inconclusive in
this respect, physically it is plausible to assume that at very
low density the average number of bonds per particle is not
sufficient to support large clusters at all and we would tend
to favor the first scenario.29

For the one-component system the average cluster size is
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Scluster511rh̃1~0!5
1

12r c̃1~0!

5
1

@Q̂1~0!#2
5

1

@12hy(C1)~s!/t#2
.

~71!

The percolation transition occurs whenhy(C1)(s)5t or

h5
2~23t21)t3/2A129t130t2!

1212t130t2 . ~72!

In Fig. 4 we compare our result for the one-component (s
50) system with the PY result of Chiew and Glandt15 and
the Monte Carlo simulation of Miller and Frenkel.11,12

The average coordination number becomes

Z̄52
h

t
y(C1)~s! ~73!

and at the percolation transition we findZ̄52.

VI. PHASE EQUILIBRIUM

Phase equilibrium is another interesting aspect which
can be analyzed in full details within our model. It was
pointed out in Ref. 10 that the equation of state derived from
the energy route for a one-component system of sticky hard
spheres in the mMSA approximation is van der Waals-like.
The same holds true for the system studied with the C1 ap-
proximation. It is worth stressing that the equation of state
derived from the compressibility route cannot yield a van der
Waals loop since from Eq.~25! @](bP)/]r#T.0.30 On the
other hand the equation of state derived from the virial equa-
tion has been shown to diverge for the mMSA
approximation8 and we anticipate that it also diverges for the
C1 approximation. This is the reason why we focus our
analysis on the energy route in the present work.

In this section we will find the binodal curves for the
polydisperse system treated with the mMSA~C0! approxi-
mation and for the one-component system treated with the
C1 approximation. The coexistence problem for a polydis-
perse system is, in general, a much harder task than its one-
component counterpart, since it involves the solution of a
large ~infinite! number of integral nonlinear equations. But
we will see that since our excess free energy is expressed in
terms of a finite number of moments of the size distribution
function ~a similar feature occurs for polydisperse van der
Waals models,18 for polydisperse HS~Ref. 17! and for
Yukawa-like potentials19,20! the coexistence problem can be
simplified and becomes numerically solvable through a
simple Newton-Raphson algorithm@see Eqs.~79!–~81!#. The
necessary formalism to this aim can be found in a recent
review,17 and we will briefly recall it next.

A. From a discrete to a continuous polydisperse
mixture

Consider a mixture made ofp components labeledi
51,...,p, containingN(0) particles and with densityr (0),
which separates, at a certain temperaturet, into m daughter
phases, where each phase, labeleda51,...,m, has a number
of particlesN(a) and densityr (a). Let the molar fraction of
the particles of speciesi of phasea be xi

(a) , a50 corre-
sponding to the parent phase. At equilibrium the following
set of constraints must be fulfilled:~i! volume conservation,
~ii ! conservation of the total number of particles of each spe-
cies, ~iii ! equilibrium condition for the pressures
P(a)(t,r (a),$xi

(a)%), and ~iv! equilibrium condition for the
chemical potentialsm i

(a)(t,r (a),$xi
(a)%). This set of con-

straints form a closed set of equations~see Appendix D for
details! for the (21p)m unknownsr (a), x(a)5N(a)/N(0),
and xi

(a) with i 51,...,p and a51,...,m. Extension to the
polydisperse case with an infinite number of components is
achieved by switching from the discrete index variablei to
the continuous variables using the followingreplacement
rule:

FIG. 3. Dependence of the percolation threshold, as calculated from the C1
approximation using case V~see Sec. V B!, from the polydispersity.

FIG. 4. Binodal curve and percolation threshold@see Eq.~73!#, for a one-
component system, in the C1 approximation. For comparison we also show
the percolation threshold of the Percus-Yevick approximation~Ref. 15!
~which exists fort>1/12), the one from the Monte Carlo simulation of
Miller and Frenkel~Ref. 12! ~circles are the simulation results and the fit,
the dot-dashed line, is only valid fort>0.095), the binodal curve of the
Percus-Yevick approximation~from the energy route! ~Ref. 4!, and the bin-
odal curve from the Monte Carlo simulation of Miller and Frenkel~Ref. 12!
~points with errorbars are the simulation results and the fit, the dot-dashed
line, is merely to guide the eye!.
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xi→F~s!ds, ~74!

whereF(s)ds is the fraction of particles with diameter in
the interval (s,s1ds). The functionF(s) will be called
molar fraction density functionor more simply size distribu-
tion function. Note that, due to this replacement rule, we also
have

P(a)~t,r (a),$xi
(a)%!→P(a)~t,r (a);@F (a)# !, ~75!

m i
(a)~t,r (a),$xi

(a)%!→m (a)~s,t,r (a);@F (a)# !, ~76!

i.e., the thermodynamic quantities become functionals of the
size distribution function and the equilibrium conditions~ii !–
~iv! has to be satisfied for all values of the continuous vari-
ables. The phase coexistence problem that now consists in
solving the constraints~i!–~iv! for the unknownsr (a), x(a),
andF (a)(s) for a51,...,m, turns out to be a rather formi-
dable task hardly solvable from a numerical point of view.
Fortunately, as outlined in the following section, for our
model a remarkable simplification occurs.

B. Truncatable excess free energy

As is described in the following section, the excess free
energy of our system istruncatable: it is only a function of
the three momentsj i , i 51,2,3 of the size distribution func-
tion @see Eq.~86! for cases I, II, III, IV, and V treated with
mMSA, and Eq.~100! for case V treated with C1#. So we
have the following simplification

P(a)~t,r (a);@F (a)# !→P(a)~t,r (a);$j i
(a)%!, ~77!

m (a)~s,t,r (a);@F (a)# !→m (a)~s,t,r (a);$j i
(a)%!, ~78!

where $j i
(a)% is a short-hand notation forj1

(a) ,j2
(a) ,j3

(a) . It
turns out that the two-phase (m52) coexistence problem,
the one in which we are interested~we are thus concentrating
on the high temperature portion of the phase diagram!, re-
duces to the solution of the following eight equations in the
eight unknownsr (1), r (2), $j i

(1)%, and$j i
(2)%,

j i
(a)5

p

6
r (a)E Q(a)~s,t,r (0),r (1),r (2);$j i

(1)%,$j i
(2)%!

3F (0)~s!s ids, i 51,2,3 a51,2, ~79!

15E Q(a)~s,t,r (0),r (1),r (2);$j i
(1)%,$j i

(2)%!F (0)~s!ds,

a51 or 2, ~80!

P(1)~t,r (1);$j i
(1)%!5P(2)~t,r (2);$j i

(2)%!, ~81!

with

r (a)Q(a)5r (0)
~r (1)2r (2)!~12d1a1d1aebDmexc

!

~r (1)2r (0)!1~r (0)2r (2)!ebDmexc , ~82!

and

Dmexc5mexc(2)~s,t,r (2);@F (2)# !

2mexc(1)~s,t,r (1);@F (1)# !, ~83!

where we indicate with the superscript exc the excess part
~over the ideal! of the chemical potential. For a complete
derivation of Eqs.~79!–~81! see Appendix D.

C. Thermodynamic properties

In order to obtain the equation of state of our model Eq.
~1! from the energy route, one exploits the following exact
result ~if t i j 5t/e i j with the e i j independent oft !;

]~bAexc/N!

]t
52pr(

i , j
xixjE ]@bf i j ~r !#

]t
gi j ~r !r 2dr

52pr(
i , j

xixjE
s i j

Ri j 1

t
ei j ~r !yi j ~r !r 2dr

52pr(
i , j

xixj

1

t Es i j

Ri j 1

12t i j

Ri j

Ri j 2s i j
yi j ~r !r 2dr.

Upon taking the sticky limit we find

]~bAexc/N!

]t
5

h

^s3&

1

t (
i , j

xixj

1

t i j
s i j

3 yi j ~s i j !. ~84!

1. mMSA approximation

Within the mMSA approximation the partial cavity func-
tions at contact are all equal to 1 so from Eq.~84!, after
integration overt from t5` ~hard sphere case!, we find

b~ASHS
exc 2AHS

exc!

N
j0

5

¦

2
1

t

j1
3

j0
~case I!,

2
1

t
j2j1 ~cases II and III!,

2
1

t

1

4
~3j1j21j0j3! ~case IV!,

2
1

t

1

2 S j1j21
j1

3

j0
D ~case V!.

~85!

The pressure can be found, frombP/r5h](bA/N)/]h

p

6
b@PSHS~t,r;$j i%!2PHS~t,r;$j i%!#

5
b~ASHS

exc 2AHS
exc!

N
j0 , ~86!

where forPHS we use an equation due to Boublı´k, Mansoori,
Carnahan, Starling, and Leland~Refs. 31 and 32! which re-
duces to the Carnahan-Starling one whens50,
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p

6
bPHS~t,r;$j i%!

5ZHSj05
j0

12j3
13

j1j2

~12j3!2 13
j2

3

~12j3!3

2
j3j2

3

~12j3!3 5j0H 1

12h
1

3h

~12h!2

1

M2

1F 3h2

~12h!3 2
h3

~12h!3G M1

M2
2 J . ~87!

The excess free energy of the polydisperse hard sphere
system is obtained integrating (ZHS21)/h over h, from h
50, and recalling that the excess free energy is zero when
h50. We then find33

bAHS
exc

N
5

h

~12h!2

M1

M2
2 1

3h

12h

1

M2
1FM1

M2
2 21G ln~12h!

5
j2

3

j0j3~12j3!2 13
j1j2

j0~12j3!

1S j2
3

j0j3
2 21D ln~12j3!. ~88!

Note that bothASHS
exc andAHS

exc depend upon only a finite num-
ber of momentsjn , and this is the crucial feature for the
feasibility of the phase equilibrium, as remarked.

For the chemical potentialbm i5](bA/V)/]r i we find
after some algebra

bmexc~s,t,r;$j i%!

5~mHS
[0]1Dm [0] !1~mHS

[1]1Dm [1] !s

1~mHS
[2]1Dm [2] !s21~mHS

[3]1Dm [3] !s3, ~89!

where

mHS
[0]52 ln~12j3!, ~90!

mHS
[1]53j2 /~12j3!, ~91!

mHS
[2]5S 3

j2
2

j3
2D ln~12j3!

13j1 /~12j3!1S 3
j2

2

j3
D Y (12j3)2, ~92!

mHS
[3]5S 22

j2
3

j3
3D ln~12j3!1S j02

j2
3

j3
2D Y ~12j3!

1S 3j1j22
j2

3

j3
2D Y ~12j3!21S 2

j2
3

j3
D Y ~12j3!3.

~93!

and

Dm [0]55
1

t

j1
3

j0
2 (case I),

0 (cases II and III),

2
1

t

j3

4
(case IV),

1

t

j1
3

2j0
2 (case V),

~94!

Dm [1]5

¦

2
1

t

3j1
2

j0
~case I!,

2
1

t
j2 ~cases II and III!,

2
1

t

3j2

4
~case IV!,

2
1

t

1

2 S j21
3j1

2

j0
D ~case V!,

~95!

Dm [2]55
0 ~case I!,

2
1

t
j1 ~cases II and III!,

2
1

t

3j1

4
~case IV!,

2
1

t

j1

2
~case V!,

~96!

Dm [3]55
0 ~case I!,

0 ~cases II and III!,

2
1

t

j0

4
~case IV!,

0 ~case V!.

~97!

It is noteworthy that if we retain in the expression~87!
for PHS, only the first term, then our case IV coincides with
the van der Waals model of Bellier-Castellaet al.18 with
n51, l 50, upon identifying 4t with the temperature used
by these authors.

2. C1 approximation with case V

In analogy with what we have done before, we now
consider the C1 approximation for case V. Using Eq.~17!
into Eq. ~84!

]~bAexc/N!

]t
512

h

t Fk0

^s&

^s3&
1k1S ^s2&1^s&2

^s3& D
1k2

^s2&^s&

^s3& G . ~98!

Integrating fromt5` we find
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b~ASHS
exc 2AHS

exc!

N

52
h

2

1

t S ^s&3

^s3&
1

^s&^s2&

^s3& D1
h2

2 F2
1

t S ^s&^s2&

^s3&

1
^s&3

^s3&
13

^s&2^s2&2

^s3&2 D1
1

t2 S 1

4

^s&2^s2&2

^s3&2

1
3

4

^s&4^s2&

^s3&2 D2
1

t3 S 1

72

^s&6

^s3&2 1
1

24

^s&4^s2&

^s3&2 D G .
~99!

For this case we limit ourselves to study the coexistence
problem for the one-component system. In Table I we com-
pare the critical parameters obtained through the energy
route for the mMSA, C1, PY approximations and MC simu-
lation, for the one-component system.

Note that, as already pointed out in Ref. 8, a density
expansion ofy(s) within the PY approximation gives to
zero order they(s) of the mMSA approximation and to first
order they(s) of the C1 approximation~as should be ex-
pected comparing the density expansions of the closures cor-
responding to these approximations!. So at low densities
ZSHS from mMSA, C1, and PY should be comparable. From
Table I we see that the true critical parameters are between
the PY and the C1 ones.

In Fig. 4 we depict the binodal curve obtained from the
C1 approximation for the one-component system and we
compare it with the PY binodal curve~obtained from the
energy route! Ref. 4 and the one resulting from the MC
simulation of Miller and Frenkel.12 Remarkably, the gas-
liquid coexistence curve predicted by C1 lies closer to the
MC data than the one predicted by PY on the gas branch and
further on the liquid branch.

D. Numerical results

In this section we describe the numerical results obtained
from the solution of Eqs.~79!–~81! for the SHS in the
mMSA, through a Newton-Raphson algorithm.

We first determined thecloud and shadowcurves by
solving Eqs.~79!–~81! for the particular case in which we set
r (0)5r (1) so thatF (1)(s)5F (0)(s). The cloud curverc(t)
is such that the solutionsr (1)(t), r (2)(t) of the full coexist-
ence problem given by Eqs.~79!–~81!, for a fixedr (0) ~the
coexistence or binodal curves!, have the property that for a
certain temperaturet0 , r (1)(t0)5rc(t0)5r (0), i.e, the den-
sity of phase 1 ends on the cloud curve. The shadow curve is
the set of pointsrs(t) in equilibrium with the corresponding

cloud curve, i.e.,r (2)(t0)5rs(t0), the density of phase 2
ends on the shadow curve. The interception between the
cloud and the corresponding shadow curve gives the critical
point (tcr ,rcr): when r (0)5rcr the two solutionsr (1)(t),
r (2)(t) meet at the critical point.

In order to find the cloud and shadow curves we choose
as the parent distributionF (0)(s) a Schulz distribution with
^s&51, and the initial conditions, for the Newton-Raphson
algorithm, in the high temperaturet* and low polydispersity
s* region. Our starting conditions for the solution are

r (a)5roc
(a) , ~100!

j1
(a)5

p

6
r (a), ~101!

j2
(a)5

p

6
r (a)~11s

*
2 !, ~102!

j3
(a)5

p

6
r (a)~11s

*
2 !~112s

*
2 !, ~103!

for a51,2, whereroc
(1) androc

(2) are the coexistence densities
at a temperaturet* for the one-component system. Once the
cloud and shadow curves are determined we proceed to find
the coexistence curves for a given mother density.

In Fig. 5 we depict the cloud and shadow curves ob-
tained with our case I for two representative values of poly-
dispersity,s50.1 ands50.3. For comparison the coexist-
ence curve of the one-component system (s50) is also
reported. As polydispersity increases, the critical point
moves to lower densities and lower temperatures (tcr

.0.094, rcr.0.249 at s50, tcr.0.093, rcr.0.24 at s
50.1, andtcr.0.085,rcr.0.197 ats50.3). Let us now fix
s50.3, a value corresponding to a moderate polydispersity.
Again in Fig. 5 we depict three coexistence curves upon
changing the mother densityr (0)50.08, r (0)50.25, and
r (0)50.197.rcr .

All these curves closely resemble the corresponding
ones obtained for the polydisperse van der Waals model,18 in

TABLE I. For the one-component system, we compare the critical param-
eters obtained from the mMSA, C1, and PY~Ref. 4! approximations with
the ones from the Monte Carlo simulation of Miller and Frenkel~Ref. 12!.

tc hc (ZSHS)c

mMSA 0.0943 0.13 0.36
C1 0.1043 0.14 0.37
PY 0.1185 0.32 0.32
MC 0.1133 0.27 ---

FIG. 5. Cloud and shadow curves for case I in the mMSA at two values of
polydispersity:s50.1 ands50.3. For the cases50.3 we also show three
coexistence curves~continuous lines! obtained settingr (0)50.08, r (0)

50.25, andr (0)50.197.rcr . For comparison the binodal of the monodis-
perse (s50) system has also been included.
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agreement with previous results. In Fig. 6 we show how the
two daughter distribution functions~at s50.3 and r (0)

5rcr) differ from the parent Schulz distribution~a process
usually calledfractionation!, for two different values of tem-
peraturet50.084 andt50.078.

Next we consider differences in the critical behavior
with respect to changement in the case. In Fig. 7 we show
the cloud and shadow curves obtained using cases I, IV, and
V at s50.3. While for cases I and V the critical point is
displaced at lower temperature and lower density respect to
the monodisperse system, the critical point of case IV is
displaced at higher temperatures and lower density. The
cloud curves of cases II and III have a low density branch
that does not meet the high density one as soon ass.0;
moreover, the cloud curve does not meet the corresponding
shadow curve, so there is no critical point. We are not aware
of similar features in other polydisperse models, although
this is of course to be expected in other cases as well.

VII. CONCLUSIONS

In this work we have performed an extensive analysis of
the phase diagram for Baxter SHS model in the presence of
polydispersity. In spite of its simplicity, this model has been
proven to be extremely useful in the theoretical characteriza-

tion of sterically stabilized colloids. These systems are, how-
ever, affected by intrinsic polydispersity in some of their
physical properties~size, species, etc.! and hence the effect
of polydispersity on the corresponding theoretical models
cannot be overlooked and is then a rather interesting point to
address. As only formal manipulations5 can be carried out for
the multicomponent Baxter SHS model within the PY ap-
proximation, we have resorted to a simpler closure mMSA to
which the PY closure reduces in the limit of zero density and
that was recently shown8 to reproduce rather precisely many
of the interesting features of its PY counterpart. Our analysis
has also been inspired by recent results by Miller and
Frankel12 who showed that Baxter SHS model coupled with
PY closure reproduced fairly well their MC data in the one-
component case. We have studied the effect of polydispersity
on phase stability boundaries, the percolation phase transi-
tion, and the gas-liquid phase transition. We have considered
five different cases of polydispersity. This is because there is
no general agreement on the way in which adhesion forces
are depending on the size of particles. Cases I and II had
already been discussed in previous work by us,9 case III is a
variant of case I, whereas a case similar to case IV had been
employed by Tutschka and Kahl.13 Finally case V has been
specifically devised to cope with approximation C1. In spite
of the apparent redundancy of all these subcases, we believe
that each of these examples has a reasonable interest on its
own, and hence we have included them all in our discussion.

We studied the instability boundaries and the two-phase
coexistence problem of polydisperse SHS system in the
mMSA ~C0!. The next level of approximation C1 would still
be feasible, but significantly more lengthly. We have laid
down the necessary formalism in Secs. III and VI.C.2, and
tested its effect on the one-component case, by comparing
the results against the PY approximation and MC data. We
derived the percolation threshold of the polydisperse system
both within mMSA~C0! closure~for all five cases! and in the
C1 approximation~using case V!.

We found that the effect of polydispersity on the stability
and phase boundaries slightly depends upon the chosen case,
but there are general features shared by all of them: polydis-

FIG. 6. Evolution of the size distribution of the coexisting phasesF (1)(s)
andF (2)(s), with temperature along the critical binodal of Fig. 5 (s50.3,
r (0)50.197.rcr). For comparison also the parent Schulz distribution is
shown~continuous line!.

FIG. 7. Cloud and shadow curves for cases I, IV, and V in the mMSA at
s50.3. For comparison the binodal of the monodisperse (s50) system has
also been included~continuous line!.
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persity renders the mixture more stable with respect to con-
centration fluctuations~in the small density region, see Fig.
2! with the exception of case II for which the stability bound-
ary is independent from the polydispersity; Eqs.~61!, ~64!,
and ~66! ~in the mMSA!, and Eq.~70! ~in the C1!, describe
its effect on the percolation threshold~see Figs. 4 and 3!.
Polydispersity increases the region of the phase diagram
where we have a nonpercolating phase, with the exception of
case IV, for which the opposite trend is observed, and of case
II for which the percolation threshold is independent from
the polydispersity; polydispersity reduces the region of the
phase diagram where we have a gas-liquid coexistence for
cases I and V, while the opposite trend is observed for case
IV ~see Fig. 7!. For cases II and III we obtained cloud curves
with a gap at high temperature, moreover the cloud curve
does not meet the corresponding shadow curve, so there is no
critical point, as soon as polydispersity is introduced.

In conclusion, the typical effect of polydispersity is to
reduce the size of the unstable region, the percolating region,
and the two-phase region of the phase diagram, although
exceptions to this general rule have been observed for cases
II, III, and IV.

For the one-component case we also compared the per-
colation threshold and binodal curve obtained from the C1
approximation with the results from the PY
approximation4,15 and the results from the Monte Carlo
simulation of Miller and Frenkel12 ~see Fig. 4!. The percola-
tion threshold from C1 appears to approach that from PY, but
is still significantly different from the results from the Monte
Carlo simulation~the zero density limit, on the other hand,
appears to be more physically sound than the PY one, and
this feature remains to be elucidated!. The gas-liquid coex-
istence curve predicted by C1 is better than the one given by
PY on the gas branch and worse on the liquid branch. Table
I shows how the true~from the Monte Carlo simulation of
Miller and Frenkel12! critical temperature and density for the
gas-liquid coexistence should lay between the ones predicted
by PY and the ones predicted by C1.

Future developments of the present work can be envis-
aged along the following lines:~i! as pointed out in
Ref. 24 on definingcG5)mxm /SCC(0) and c Â5)mxm /
@(rkBTKT)SCC(0)#, the conditioncG.0 is necessary but
not sufficient for the material stability of the system and the
conditionc Â.0 is necessary but not sufficient for the mixed
material and mechanical stability. It could happen that those
two conditions are satisfied but the system is nonetheless
unstable as occurs, for example, in the binary mixture stud-

ied by Chen and Forstmann.34 Even though a characteriza-
tion of the instability boundary in the spirit of Chen and
Forstmann seems unattainable for a polydisperse system, it
would be desirable, in the future, a more precise location of
the instability boundaries. Moreover the way we found the
instability boundaries for the polydisperse system was to
start from the instability condition valid for a discrete mix-
ture and take the limit of a continuous mixture on the insta-
bility boundaries of the discrete mixture. It would be inter-
esting to compare our analysis with the one given by Bellier-
Castella et al. ~see Sec. II C in Ref. 18! who take the
continuous limit from the outset;~ii ! all the percolation
thresholds that we have calculated have a low density branch
that enters the gas-liquid coexistence region. The same fea-
ture is observed for the one-component system studied
through Monte Carlo simulation.11,12 While it is clear that
continuum percolation is, strictly speaking, not a thermody-
namic phase transition, one could expect, from a ‘‘dynami-
cal’’ point of view, an interference between the formation of
infinite clusters of particles and phase separation, and a clari-
fication of this point would have interesting experimental
applications; and~iii ! the polydisperse system is expected to
display, in the low temperature region, other critical points
signaling the onset ofm.2 phase coexistence,18 and it
would be interesting to study their evolution with polydisper-
sity for our system.
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APPENDIX A: DETERMINANT AND INVERSE
OF A DYADIC MATRIX

Given then-dyadic matrix of Eq.~28!, its determinant is

uQ̂u5U11A(1)
•B(1) A(1)

•B(2)
¯ A(1)

•B(n)

A(2)
•B(1) 11A(2)

•B(2)
¯ A(2)

•B(n)

] ] ] ]

A(n)
•B(1) A(n)

•B(2)
¯ 11A(n)

•B(n)

U .

~A1!

Furthermore, any dyadic matrixQ̂ admits analytic inverse
for any numberp of components, with elements given by

Q̂i j
215

1

uQ̂uU d i j Bj
(1) Bj

(2)
¯ Bj

(n)

Ai
(1) 11A(1)

•B(1) A(1)
•B(2)

¯ A(1)
•B(n)

Ai
(2) A(2)

•B(1) 11A(2)
•B(2)

¯ A(2)
•B(n)

] ] ] ] ]

Ai
(n) A(n)

•B(1) A(n)
•B(2)

¯ 11A(n)
•B(n)

U . ~A2!
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APPENDIX B: DERIVATION OF EQ. „52…

The closure condition~49! justify the usual generalized
Wiener-Hopf factorization35

rci j
1~ ur u!52qi j

18~r !12p(
m

rmE
Lmi

`

dtqmi
1 ~ t !qm j

18~r 1t !,

~B1!

rhi j
1~ ur u!52qi j

18~r !12p(
m

rmE
Lim

`

dtqim
1 ~ t !~r 2t !

3hm j
1 ~ ur 2tu!, ~B2!

wherer .Li j , the prime denotes differentiation, andqi j
1(r )

are real functions with support on@Li j ,s i j # and zero every-
where else.

Let us determineqi j
1(r ). Using the exact condition~50!

in Eq. ~B2! we find for Li j ,r<s i j

qi j
18~r !52Ki j d~ ur u2s i j !12p(

m
rmE

Lim

s im
dtqim

1 ~ t !

3~r 2t !
Km j

sm j
d~ ur 2tu2sm j!. ~B3!

The second term on the right end side is equal to
2p(mrmqim

1 (r 2sm j)Km j which is zero whenr ,s i j . So
we simply have

qi j
18~r !52Ki j d~ ur u2s i j !, Li j ,r<s i j . ~B4!

Integrating this equation gives Eq.~52!.

APPENDIX C: COEFFICIENTS OF EQ. „70…

The coefficients in Eq.~70! are as follows:

q1~s,h!52
h~215h!~113s212s4!3

2~11s2!3~112s2!4 , ~C1!

q2~s,h!52
h2$241@h~21h!25#s2%~113s212s4!2

4~11s2!3~112s2!4 ,

~C2!

q3~s,h!5
h2$221@6h~11h!25#s222s4%

24~11s2!~112s2!3 , ~C3!

q4~s,h!52
h3s2@215h1~417h!s2#

96~11s2!2~112s2!4 , ~C4!

q5~s,h!50, ~C5!

q6~s,h!5
h4s4

2304~11s2!3~112s2!4 . ~C6!

APPENDIX D: PHASE COEXISTENCE CONDITIONS

In this Appendix we give a complete derivation of Eqs.
~79!–~81! in the main text.

Consider ap-component mixture. Each speciesi has
number densityr i

(0)5Ni
(0)/V(0), whereNi

(0) is the number of
particles of typei andV(0) the volume of the system.

We assume that at a certain temperaturet the system
separates intom daughter phases, where each phasea
51,...,m is characterized by a volumeV(a) and a number of
particles of speciesi , Ni

(a) .
At equilibrium the following set of constraints must be

fulfilled.

~1! Volume conservation

V(0)5 (
a51

m

V(a); ~D1!

~2! Conservation of the total number of particles of each
species

Ni
(0)5 (

a51

m

Ni
(a) , i 51,...,p, ~D2!

~3! equilibrium condition for the pressures

P(a)~t,V(a),$Ni
(a)%!5P(b)~t,V(b),$Ni

(b)%!; ~D3!

~4! equilibrium condition for the chemical potentials

m i
(a)~t,V(a),$Ni

(a)%!5m i
(b)~t,V(b),$Ni

(b)%!,

i 51,...,p, ~D4!

where$Ni
a% is a short-hand notation forN1

a ,...,Np
a .

It is convenient to use the following set of variables:t,
r (a)5N(a)/V(a), xi

(a)5Ni
(a)/N(a), i 51,...,p with N(a)

5( iNi
(a) . Introducingx(a)5N(a)/N(0) Eqs. ~D1!–~D4! can

be rewritten as follows:

1

r (0) 5(
a

1

r (a) x(a), ~D5!

xi
(0)5(

a
xi

(a)x(a), ~D6!

P(a)~t,r (a),$xi
(a)%!5P(b)~t,r (b),$xi

(b)%!, ~D7!

m i
(a)~t,r (a),$xi

(a)%!5m i
(b)~t,r (b),$xi

(b)%!, ~D8!

with the normalization condition

(
i

xi
(a)51, a51,...,m. ~D9!

Equations~D5!–~D9! form a set of closed equations for the
(21p)m unknownsr (a), x(a), xi

(a) with i 51,...,p and a
51,...,m. Note that whenm5p11 the densities of the vari-
ous phasesr (a) will be independent ofr (0), since relations
~D7!, ~D8!, and ~D9! form a closed set of equations for the
unknownsr (a), xi

(a) .
In the continuous polydisperse limit (p→`) we have to

take into account the substitution rule~74!. Then the thermo-
dynamic quantities will be rewritten as in Eqs.~75! and~76!,
and Eqs.~D5!–~D8! become

1

r (0) 5(
a

1

r (a) x(a), ~D10!

F (0)~s!5(
a

F (a)~s!x(a), ~D11!
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P(a)~t,r (a);@F (a)# !5P(b)~t,r (b);@F (b)# !, ~D12!

m (a)~s,t,r (a);@F (a)# !5m (b)~s,t,r (b);@F (b)# !, ~D13!

with the normalization condition

E F (a)~s!ds51, a51,...,m. ~D14!

Integrating Eq.~D11! over s and using Eq.~D14! we find

(
a

x(a)51. ~D15!

The set of Eqs.~D10!–~D14! forms a closed set of equations
for the unknownsr (a), x(a), andF (a)(s) with a51,...,m.
Note that, due to the substitution rule~74!, sum overi be-
comes integration overs and thermodynamic quantities be-
come functionals of the distribution function. We have indi-
cated such dependence with square brackets.

Two-phase coexistence

Let us now specialize ourselves to the two-phase (m
52) coexistence. We are thus concentrating on the high tem-
perature portion of the phase diagram, since coexistence with
m.2 ~Gibbs phase rule does not restrict the value ofm in a
system of infinitely many species! is expected to occur at
low temperatures. From Eqs.~D15! and ~D10! we find

x(1)5
r (0)2r (2)

r (1)2r (2)

r (1)

r (0) , ~D16!

x(2)5
r (1)2r (0)

r (1)2r (2)

r (2)

r (0) . ~D17!

Note thatx(1) and x(2) must be positive. So ifr (1),r (2),
then r (0) must lie betweenr (1) and r (2), if r (2),r (1), it
must lie betweenr (2) and r (1). Substituting these expres-
sions in Eq.~D11! we find

r (2)F (2)5r (0)F (0)
r (1)2r (2)

r (1)2r (0) 1r (1)F (1)
r (0)2r (2)

r (0)2r (1) .

~D18!

Next we divide the chemical potentials in their ideal and
excess componentsm5m id1mexc where

bm id(a)~s,t,r (a);@F (a)# !5 ln@L3r (a)F (a)~s!#, ~D19!

with L being the de Broglie thermal wavelength. Now Eq.
~D13! becomes

F (1)~s!5F (2)~s!
r (2)

r (1) ebDmexc
, ~D20!

Dmexc5mexc(2)~s,t,r (2);@F (2)# !

2mexc(1)~s,t,r (1);@F (1)# !. ~D21!

From Eqs.~D18! and ~D20! we find

F (a)~s!5F (0)~s!Q(a)~s,t,r (0),r (1),r (2);@F (1)#,@F (2)# !,

~D22!
where theQ(a) are defined by Eq.~82!.

Formally Eqs. ~D18!, ~D20!, and ~D12! with a51,
b52, and~D14! with a51 or 2, form a closed set of equa-
tions for the unknownsr (1), r (2), F (1)(s), andF (2)(s). In
our case the free energy of the system@cases I, II, III, IV, and
V treated with mMSA, see Eq.~85!, or case V treated with
C1, see Eq.~99!# is truncatable: it is only a function of the
three momentsj i , i 51,2,3 of the size distribution function
F. So the problem is mapped into the solution of the eight
Eqs.~79!–~81! in the eight unknownsr (1), r (2), j1

(1) , j2
(1) ,

j3
(1) , j1

(2) , j2
(2) , andj3

(2) .
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Chapter 10

The thermodynamic instabilities of a
binary mixture of sticky hard spheres

Fantoni R., Gazzillo D., Giacometti A., Phys. Rev. E, 72, 011503 (2005)
Title: “The thermodynamic instabilities of a binary mixture of sticky hard spheres.”
Abstract: The thermodynamic instabilities of a binary mixture of sticky hard spheres (SHS)
in the modified Mean Spherical Approximation (mMSA) and the Percus-Yevick (PY) ap-
proximation are investigated using an approach devised by X. S. Chen and F. Forstmann
[J. Chem. Phys. 97, 3696 (1992)]. This scheme hinges on a diagonalization of the matrix
of second functional derivatives of the grand canonical potential with respect to the particle
density fluctuations. The zeroes of the smallest eigenvalue and the direction of the rela-
tive eigenvector characterize the instability uniquely. We explicitly compute three different
classes of examples. For a symmetrical binary mixture, analytical calculations, both for
mMSA and for PY, predict that when the strength of adhesiveness between like particles is
smaller than the one between unlike particles, only a pure condensation spinodal exists; in
the opposite regime, a pure demixing spinodal appears at high densities. We then compare
the mMSA and PY results for a mixture where like particles interact as hard spheres (HS)
and unlike particles as SHS, and for a mixture of HS in a SHS fluid. In these cases, even
though the mMSA and PY spinodals are quantitatively and qualitatively very different from
each other, we prove that they have the same kind of instabilities. Finally, we study the
mMSA solution for five different mixtures obtained by setting the stickiness parameters equal
to five different functions of the hard sphere diameters. We find that four of the five mixtures
exhibit very different type of instabilities. Our results are expected to provide a further step
toward a more thoughtful application of SHS models to colloidal fluids.
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The thermodynamic instabilities of a binary mixture of sticky hard spheres �SHS� in the modified mean
spherical approximation �mMSA� and the Percus–Yevick �PY� approximation are investigated using an ap-
proach devised by Chen and Forstmann �J. Chem. Phys. 97, 3696 �1992��. This scheme hinges on a diago-
nalization of the matrix of second functional derivatives of the grand canonical potential with respect to the
particle density fluctuations. The zeroes of the smallest eigenvalue and the direction of the relative eigenvector
characterize the instability uniquely. We explicitly compute three different classes of examples. For a sym-
metrical binary mixture, analytical calculations, both for mMSA and for PY, predict that when the strength of
adhesiveness between like particles is smaller than the one between unlike particles, only a pure condensation
spinodal exists; in the opposite regime, a pure demixing spinodal appears at high densities. We then compare
the mMSA and PY results for a mixture where like particles interact as hard spheres �HS� and unlike particles
as SHS, and for a mixture of HS in a SHS fluid. In these cases, even though the mMSA and PY spinodals are
quantitatively and qualitatively very different from each other, we prove that they have the same kind of
instabilities. Finally, we study the mMSA solution for five different mixtures obtained by setting the stickiness
parameters equal to five different functions of the hard sphere diameters. We find that four of the five mixtures
exhibit very different type of instabilities. Our results are expected to provide a further step toward a more
thoughtful application of SHS models to colloidal fluids.
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I. INTRODUCTION

Thermodynamic instabilities are important to locate on
the phase diagram of a fluid system those regions where the
system cannot exist as a single phase.

For a one-component system with Helmholtz free energy
A, pressure P, in a volume V, at a temperature T, the condi-
tion for phase stability is ��2A /�V2�T,N=−��P /�V�T,N

=1/ �V�T��0. The points where the isothermal compressibil-
ity �T diverges define the so called spinodal line, or phase
instability boundary �1�, that separates the stable from the
unstable region of the phase diagram. In the stable region,
where �T�0, the system can exist in a single phase, while
inside the other region the free energy can be lowered by
phase separation into two phases with different densities.
This kind of instability is usually referred to as mechanical
instability, associated with a gas-liquid transition or conden-
sation �1–4�.

In a binary mixture the situation is more complex �1–6�.
The thermodynamic instability is located on the points of the
phase diagram where ��2G /�x2�T,P,N /�T=0, where x is the
concentration of one of the two species, and G is the Gibbs
free energy. The points where �T

−1=0 are instabilities of pure
condensation �and the Bhatia-Thornton �7� density-density
structure factor, S���k�, diverges at k=0�. The points where
��2G /�x2�T,P,N=0 are again instabilities of pure condensation
when �=��v1−v2�= ��V /�x�T,P,N /V diverges �� is the total

number density, vi the partial molar volume, per particle, of
species i. In this case all Bhatia-Thornton structure factors
diverge at k=0� and are instabilities of pure demixing when
�=0 �in this case the Bhatia-Thornton concentration-
concentration structure factor, Sxx�k�, diverges at k=0�. But,
in general �for an asymmetric mixture�, the kind of instabil-
ity may be in between one of pure condensation and one of
pure demixing, with � finite and different from zero �also in
this case all Bhatia-Thornton structure factors diverge at
k=0�. For the particular case of a binary symmetric mixture
the only allowed instabilities are the ones of pure condensa-
tion and of pure demixing, since �=0.

A different route was followed by Chen and Forstmann
�5� to characterize the instability uniquely in terms of an
angle �, function of the density and x.

The purpose of this work is to investigate the nature of
instabilities for a binary mixture of sticky hard spheres
�SHS�. The SHS one-component model was originally pro-
posed by Baxter �8–10�, who showed how it admitted an
analytic solution in the Percus–Yevick �PY� approximation.
The PY solution was later extended to mixtures �11–14� and
it is nowadays regarded as extremely useful in colloidal sys-
tems. In the SHS model one accounts for a very short range
attractive potential by defining an infinitely narrow and deep
square well. This limit is carried out in a suitable way so that
the second virial coefficient is finite. Due to its highly ideal-
ized nature, the one-component SHS model is not free of
pathologies �15�. Nonetheless this model has recently re-
gained considerable attention in studies of colloidal suspen-
sions �16–19� especially in its polydisperse version. Since
the PY solution of a p-component SHS mixture requires the
solution of p�p+1� /2 coupled quadratic equations which are
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hard to solve for high p, attempts have been made to treat the
model with “simpler” approximations �20,21�, which would
allow analytic solution even for polydisperse systems. One
of these approximations, that we will consider in this work,
is the modified mean spherical approximation �mMSA� �22�.

In the present work we apply the Chen and Forstmann
formalism to a binary SHS mixture, using both the mMSA
and the PY approximation. The former can be regarded as
the zero density limit of the latter and, hence, its predictions
must be accepted with care. However, it has its main merit in
the fact that it entitles analytical predictions even in the mul-
ticomponent case, unlike the PY closure.

Three classes of systems will be discussed in details. First
we consider the symmetric mixture, where equal-size
equimolar components interact with variable strength only in
the unlike part. This simplified case was already studied by
Chen and Forstmann for hard core particles with attractive
Yukawa interactions within the reference hypernetted chain
approximation. In this particular SHS case we are able to
perform a full characterization of the mixture both for
mMSA and PY. In a second class we discuss two paradig-
matic cases: �i� A fluid having HS interactions among like
particles and SHS interactions for the unlike �system A� and
�ii� a fluid formed by one SHS species and another HS one
�system B�. For PY both cases have been previously dis-
cussed by Barboy and Tenne �14�, by Penders and Vrij �23�,
and by Regnaut, Amokrane, and Heno �24,25� without, how-
ever, tackling the issue of the stability nature. Even in these
two cases a detailed analytical investigation can be carried
out. Building upon our recent work �26�, we finally discuss a
third class of examples involving a general binary mixture
where, however, the stickiness parameters are related to the
sizes of the particles according to some plausible prescrip-
tions �26�. Within the mMSA, we are then able to discuss the
nature of the instabilities previously calculated in Ref. �26�,
by evaluating numerically the Chen and Forstmann angle �.

The remainder of the paper is organized as follows. In
Sec. II we briefly outline Chen and Forstmann’s approach, in
Sec. III we report the PY and mMSA solutions for the Baxter
factor correlation function of the SHS mixture. Sec. IV is
dedicated to the binary symmetric mixture, whereas Secs. V
is dedicated to systems A and B. Section VI deals with five
binary mixtures obtained setting the stickiness parameters
equal to five different functions of the sphere diameters.

II. METHOD FOR ANALYZING THE INSTABILITY

For the sake of completeness, we briefly recall the main
steps of the method reported in Ref. �5�. In doing this, how-
ever, we shall follow the general density functional formal-
ism outlined in Ref. �27� which yields a clearer viewpoint.

A. The Chen and Forstmann formalism

Consider a binary mixture with N1 particles of species 1
with coordinates r1

1 , . . . ,rN1

1 and N2 particles of species 2
with coordinates r1

2 , . . . ,rN2

2 interacting through spherically
symmetric pair potentials. Define the microscopic densities
to be

�i�r� � �
�=1

Ni

��r − r�
i � i = 1,2 �1�

for each one of the two species.
Consider now the nonhomogeneous system with an exter-

nal potential �1�r� acting on the particles of species 1 and an
external potential �2�r� acting on the particles of species 2.
Let 	i and 
i be the chemical potential and the de Broglie
thermal wavelength, respectively, for species i, N=N1+N2
the total number of particles, and rN= ��r�

1� , �r�
2�� a short-

hand notation for the total set of coordinates. The grand
partition function of the system with total internal energy
W�rN� is a functional of the generalized potentials ui�r�
=��	i−�i�r��

��u1,u2� � �
N1=0




�
N2=0



1


1
3N1N1!

1


2
3N2N2!

�	 e−�W�rN�+�i=1
2 
ui�r��i�r�drdrN

= e−���u1,u2�, �2�

where � is the grand free energy. It can be proven �27� that
the functional � is strictly concave in u1 and u2 �if we op-
portunely restrict its domain of definition�. The equilibrium
number density of species i is given by

�i�r� � ��i�r�� = −
����u1,u2�

�ui�r�
. �3�

It follows that the following functional of ��i� and �ui�

�A��1,�2,u1,u2� � �
i=1

2 	 �i�r�ui�r�dr + ���u1,u2� , �4�

is also strictly concave in u1 and u2, so it admits a unique
maximum for ui= ūi, i=1,2, where the �ūi� can be deter-
mined univocally from Eq. �3� once the equilibrium densities
��i� are known.

We now set Ā��1 ,�2��A��1 ,�2 , ū1 , ū2�. Again one can
prove �27� that this Helmholtz free energy is a strictly con-
vex functional in �1 and �2.

Introduce the following “grand free energy functional” of
the densities

�����1,�2� � �Ā��1,�2� − �
i=1

2 	 �i�r�vi�r�dr , �5�

where �vi� are some given generalized potentials, indepen-
dent of the densities. Clearly only when vi= ūi, i=1,2, we
have ��=�, i.e., equilibrium.

Taking the first functional derivative of �� with respect to
the densities we find

������1,�2�
��i�r�

=
��Ā��1,�2�

��i�r�
− vi�r� = ūi�r� − vi�r� , �6�

where in the second equality Eqs. �3� and �4� where used. At
equilibrium we then have that the first functional derivatives

FANTONI, GAZZILLO, AND GIACOMETTI PHYSICAL REVIEW E 72, 011503 �2005�

011503-2

The thermodynamic instabilities of a binary mixture of sticky
hard spheres 141



of �� vanish and �� attains its minimum value.
The second functional derivatives of �� with respect to

the densities at equilibrium are �27�


 �2�����1,�2�
��i�r1��� j�r2�



equil.

= 
 �ūi�r1�
�� j�r2�



equil.

=
�ij��r1 − r2�

�i�r1�

− cij�r1,r2� , �7�

where cij�r1 ,r2� are the partial direct correlation functions of
the system.

So a Taylor expansion, up to the second order terms,
yields the fluctuation of �� around the equilibrium caused by
small density fluctuations

��� = ����1 + ��1,�2 + ��2� − ����1,�2�

=
1

2�
	 	 �

i,j
��ij��r1 − r2�

�i�r1�

− cij�r1,r2����i�r1��� j�r2�dr1dr2. �8�

If the system is homogeneous and isotropic at equilibrium
�i.e., ūi�r�=�	i, i=1,2�, so that

�i�r� =
Ni

V
= �i, �9�

cij�r1,r2� = cij��r1 − r2�� , �10�

where V is the volume �assumed large enough�, then we can
rewrite the integral of Eq. �8�, which is a convolution, as a k
integral of a product of Fourier transforms. Replacing the k
integral ��2��−3
dk . . . � by a sum over discrete k values
�V−1�k . . . �, one obtains

��� =
1

2�

1

V�
k

�
i,j

��̄i
��k�Ãij�k���̄ j�k� , �11�

where ��̄i�k�=��̃i�k� /��i and the asterisk indicates complex
conjugation, having denoted with the tilde the Fourier trans-
form

f̃�k� � 	
V

f�r�eik·rdr , �12�

so that

Ãij�k� = �ij − ��i� jc̃ij�k� . �13�

Notice that, due to the symmetry of the direct correlation

functions under exchange of species indexes, the matrix Ã�k�
is symmetric.

The probability distribution for the density fluctuations
��i �at constant T, V, and �	i�� is proportional to e−���� �28�.
We therefore get for the mean values of the fluctuation prod-
ucts

���̄i
��k���̄ j�k�� = V�Ã−1�ij�k� = V��ij + ��i� jh̃ij�k�� ,

�14�

where the last equality exploits the Ornstein–Zernike �OZ�
equations between the partial total correlation functions hij
and the partial direct correlation functions.

Next define the molar fraction of species i to be xi
=�i /�, with �=�i�i being the total density of the mixture.
One usually introduces �7� two linear combinations of fluc-
tuations of partial densities, i.e., the fluctuation of total den-
sity, ��̃�k�, and the fluctuation of concentration of species 1,
�x̃�k�,

��̃�k� = ��̃1�k� + ��̃2�k� = ����x1��̄1�k� + �x2��̄2�k�� ,

�15�

�x̃�k� =
1

�2 ��2��̃1�k� − �1��̃2�k�� =�x1x2

�
��x2��̄1�k�

− �x1��̄2�k�� , �16�

so that, if ��̃1 and ��̃2 change in proportion to their respec-
tive mean concentration, then �x̃=0.

We also introduce

��̄�k� =
1
��

��̃�k� , �17�

�x̄�k� =� �

x1x2
�x̃�k� , �18�

so that, in terms of the following two column vectors

u�k� = ���̄1�k�
��̄2�k�

�, v�k� = ���̄�k�
�x̄�k�

� , �19�

Eqs. �15� and �16� can be written in compact notation as u
=Uv where

U = ��x1
�x2

�x2 − �x1
� , �20�

notice that U2=I, where I is the identity matrix.
We find then from Eq. �11��superscript T indicating the

transpose�

��� =
1

2�

1

V�
k

vT��k�M�k�v�k� , �21�

where M�k� is the following symmetric matrix:

M�k� = UÃ�k�U = �M�� M�x

Mx� Mxx
� , �22�

with

M�� = 1 − ��x1
2c̃11 + x2

2c̃22 + 2x1x2c̃12� , �23�

Mxx = 1 − �x1x2�c̃11 + c̃22 − 2c̃12� , �24�
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M�x = Mx� = ��x1x2�x2c̃22 − x1c̃11 − �x2 − x1�c̃12� . �25�

The elements of the M�0� matrix are related to thermody-
namic quantities �5�, as shown in the Appendix. In particular
the determinant of M is

det�M� = x1x2
��T

0�2

�TV
� �2G

�x1
2 �

T,P,N

, �26�

where �T is the isothermal compressibility, and �T
0 =� /� is

the isothermal compressibility of the ideal gas.
For the particular systems that we shall consider in the

following, it turns out that the matrix Ã can be written, using
the Wiener–Hopf factorization in terms of the Baxter factor

matrix Q̂ �11�

Ã�k� = Q̂T��k�Q̂�k� . �27�

Hence det�M�k��=det�Ã�k��= �det�Q̂�k���2�0 and

trace�M�k��=trace�Ã�k���0.
The inverse of M�k� yields the mean square fluctuations

of total density and concentration, i.e., the density-density
structure factor S���k�, the concentration-concentration struc-
ture factor Sxx�k�, and the cross term S�x�k� �7�

S���k� =
1

V
���̄��k���̄�k�� = �M−1����k� , �28�

Sxx�k� =
x1x2

V
��x̄��k��x̄�k�� = x1x2�M−1�xx�k� , �29�

S�x�k� =
�x1x2

V
���̄��k��x̄�k�� = �x1x2�M−1��x�k� . �30�

Now, since M�k� is a symmetric matrix, it can be diago-
nalized through an orthogonal change of basis and it will
have real eigenvalues

�±�k� =
tr�M�k�� ± ��tr�M�k���2 − 4 det�M�k��

2
, �31�

with �+�k���−�k��0. For the normalized eigenvectors we
find

z±�k� = �a±�k�
b±�k�

� , �32�

with

a±�k� = 1/�1 + �M���k� − �±�k�
M�x�k� �2

, �33�

b±�k� = − a±
M���k� − �±�k�

M�x�k�
. �34�

The transition matrix to the base formed by the eigenvec-
tors will be

Z�k� = �a+�k� a−�k�
b+�k� b−�k�

� , �35�

Eq. �21� can then be recast into the form

������1,��2� =
1

2�

1

V�
k

��+�k����̄+�k��2 + �−�k����̄−�k��2� ,

�36�

where ��̄± are the Fourier components of the vector for the
total density and concentration fluctuation in the eigenvector
base, namely

Z−1v = ���̄+

��̄−
� , �37�

or

��̄+�k� = a+�k���̄�k� + b+�k��x̄�k� , �38�

��̄−�k� = a−�k���̄�k� + b−�k��x̄�k� . �39�

B. Characterization of the instability

We wish to know which combination of density and con-
centration fluctuations, ���̄ ,�x̄� or ���̄+ ,��̄−�, yields the
smallest increase ��� of grand free energy. The border of a
stability region �spinodal line� will be determined by the
smaller eigenvalue �−�k� going to zero. It is important to
remark that the minimum eigenvalue will vanish if and only

if det�M�k��=�−�k��+�k�= �det�Q̂�k���2 vanishes. The spin-
odal equation thus corresponds to

�−�k� = 0 or det�Q̂�k�� = 0. �40�

For all k̄ vectors with k̄= �k̄� being a solution of the spin-

odal equation, we can calculate the related eigenvector z−�k̄�
and find, from Eq. �39�, one nonzero linear combination

��̄−�k̄� of density and concentration fluctuations for which

���=0. Thus z−�k̄�= �a−�k̄� ,b−�k̄��T characterizes the phase
transition uniquely. On defining the angle �see Fig. 1�

FIG. 1. Schematic representation of the two orthonormal vectors
z± defined in Eq. �32� and of the angle � defined in Eq. �41� when
�� �0,� /2�. When �� �−� /2 ,0� the angle shown in the figure
corresponds to ��� and �x̄ to −�x̄.
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� = arctan�a−

b−
�

k=k̄
= arctan� Q̂12�k̄��x1 − Q̂11�k̄��x2

Q̂12�k̄��x2 + Q̂11�k̄��x1

� ,

�41�

the instability will be predominantly of the demixing type
when � is close to 0 �i.e., only concentration fluctuations
occur� and predominantly of the condensation type when � is
close to ±� /2 �i.e., only density fluctuates at fixed concen-
tration�.

The same feature can be seen in real space. When �−�k̄�
=0 and �=0 �⇒a−=0, b+=0, and therefore ��̄+=a+��̄, ��̄−

=b−�x̄�, one can get ���=0 only if ��̄+�k̄�=0, which re-

quires ��̃�k̄�=0, i.e., the fluctuations that do not increase the
“grand free energy” can be expressed as

��1�r� =
1

V
�
k

�k�=k̄

��1�k�e−ik·r, �42�

��2�r� = − ��1�r� . �43�

On the other hand, when �−�k̄�=0 and �= ±� /2 �⇒��̄+

=b+�x̄ ,��̄−=a−��̄�, ��̄+�k̄�=0 now requires �x̃�k̄�=0, which
corresponds to

��2�r� = +
�2

�1
��1�r� . �44�

Equation �42� yields oscillating partial density fluctuations
for species 1 on the spinodal line, whereas Eqs. �43� and �44�
represent the two different behaviors of the species 2 in cor-
respondence to the two extreme values of � �0 and ±� /2,
respectively�. For �=0, the fluctuations of species 2 must be
in opposition of phase compared to those of species 1, �see
Eq. �43��, and this can be clearly interpreted as related to
spatial demixing. In the opposite case ��= ±� /2�, Eq. �44�
means that an increase of species 1 in some region drives an
increase of species 2 in the same region, a clear indication of
a condensation type of instability. When � varies from zero
to ±� /2 the allowed fluctuations will continuously vary from
the pure demixing to the pure condensation type.

For a class of approximations �closures� having the partial
direct correlation functions vanishing beyond a finite range,

it was proven in �11� that Q̂�k� is nonsingular for any k�0,

so we can limit our search for the zeroes of the minimum
eigenvalue to the case k=0. Moreover, since

limk→
 det�Q̂�k��=1 and det�Q̂�k�� is a continuous function

of k, we must also have det�Q̂�k=0�� non-negative, other-

wise det�Q̂�k�� would vanish for some finite k. We can use
this last condition to determine which regions of the phase
diagram are unstable. We cannot in fact gather this informa-

tion by just looking at the matrix Ã, which is always positive
definite when nonsingular. In the following, whenever we
omit the dependence from the wave vector k, we shall refer
to the case k=0.

III. THE BINARY STICKY HARD SPHERE FLUID

We consider the SHS mixture described in the introduc-
tion by the following square-well interaction potential be-
tween a sphere of species i and one of species j �8,9,13,14�

��ij�r� = �
+ 
 0 � r � �ij ,

− ln� 1

12�ij

Rij

Rij − �ij
� �ij � r � Rij ,

0 r � Rij ,
� �45�

where �=1/ �kBT� �kB being Boltzmann constant and T the
temperature�, �ij = ��i+� j� /2 ��i being the diameter of a
sphere of species i�, Rij −�ij denotes the well width, and the
dimensionless parameter

1

�ij
=

�ij

�
=

�ij

�* � 0, �46�

measures the strength of surface adhesiveness or “stickiness”
between particles of species i and j. In �46�, � is an unspeci-
fied increasing function of T, and we introduced the dimen-
sionless quantities �ij =�ij /�11 and �*=� /�11. The next step
which defines the SHS model consists in taking the sticky
limit �Rij�→ ��ij�. Notice that the logarithm in the initial
square-well potential �45� is chosen so to have a simple ex-
pression for the Boltzmann factor, which reduces to a com-
bination of an Heaviside step function and a Dirac delta
function in the sticky limit.

Within a class of mixed closures for which the partial
direct correlation functions cij�r� after the sticky limit vanish
beyond �ij �generalized PY �GPY� approximation �21��, the
model can be analytically solved for the Baxter factor corre-
lation function

qij�r� = �1

2
ai�r − �ij�2 + �bi + ai�ij��r − �ij� + Kij , Lij = ��i − � j�/2 � r � �ij ,

0, elsewhere,
� �47�

THERMODYNAMIC INSTABILITIES OF A BINARY… PHYSICAL REVIEW E 72, 011503 �2005�

011503-5

The thermodynamic instabilities of a binary mixture of sticky
hard spheres 144



ai =
1

�
+

3�2�i

�2 −
12�i

�
, bi = � 1

�
− ai��i

2
, �48�

�n =
�

6 �
i

�i�i
n, �i =

�

6 �
m

�m�mKim, � = 1 − �3.

�49�

The Baxter factor matrix Q̂�k� first introduced in Eq. �27�
is related to Baxter factor correlation function through

Q̂ij�k� = �ij − 2���i� jq̂ij�k� , �50�

where q̂ij�k� is the one-dimensional Fourier transform of
qij�r�. It can be expressed in terms of spherical Bessel func-
tions of the zeroth and first order and its explicit expression
can be found in Eq. �27� of Ref. �20�, and will not be repro-
duced here.

The symmetric matrix Kij is given by

Kij =
�ij

2

12�ij
ȳij , �51�

where ȳij =yij��ij
+� are the contact values of the partial cavity

functions. For this kind of system a more natural parameter
to use in place of the total density �=�i�i is the total packing
fraction �=�3.

In the modified mean spherical approximation �cij�r�
= f ij�r� when r��ij, where f ij�r�=exp�−��ij�r��−1 are the
Mayer functions� one can show �21� that �29�

ȳij = 1 for all i and j , �52�

In the Percus–Yevick approximation �cij�r�= f ij�r�yij�r��
one can show that the ȳij have to satisfy the following set of
coupled quadratic equations �13�

ȳij�ij = ai�ij + bi + 2��
k

�k

�kj
2

12�kj
ȳkjqki�Lki� . �53�

It is worth stressing that the above expressions are valid
for both the mMSA and the PY closures, provided that the
correct values of ȳij are inserted into the matrix Kij given in
Eq. �51� �20,26�. All the results gathered so far in this section
are valid for a generic p-component SHS mixture. In the rest
of the work we will specialize to two-component �p=2� mix-

tures. For a binary mixture the determinant of Q̂�0� can be
reduced to the following simple expression �30�

det�Q̂�0�� =
1 + 2�

�1 − ��2 −
�1�11

BT + �2�22
BT

�1 − ��2 −
�1�2

�1 − ��3 �3��11
BT

+ �22
BT − 2�12

BT� − �11
BT�22

BT + ��12
BT�2� , �54�

where

�i =
�

6
�i�i

3, �55�

�ij =
ȳij

�ij
, �56�

�ij
BT = �1 − ���ij

�ij
2

�i� j
. �57�

Our task is the determination of the spinodal line and of
the nature of the instability. These can be expressed respec-
tively by the reduced temperature �*= f����1

3 ,x1 ,� , ��ij�� and
the angle �= f����1

3 ,x1 ,� , ��ij��, where �=�2 /�1. Sometimes
it also proves convenient to use another set of independent
variables, namely � ,x1 ,� , ��ij�.

We anticipate that, while f� will in general depend on the
particular chosen closure, f� need not mirror this feature. An
example is the case studied in Section V, where two �ij are

zero and �ī j̄ �0. Then �ij =0 for i� ī or j� j̄ and the spinodal
equation

�−�0� = 0 or det�Q̂�0�� = 0. �58�

is sufficient for determining the third �, which turns out to be
a function �ī j̄�� ,x1 ,��. independent from the particular clo-
sure within the class we are considering. Since in each ma-

trix element of Q̂ the quantities ȳij and �ij appear only in the
ratios �ij it follows that the angle � �see Eq. �41�� will also
be independent of the particular closure.

In the case of a general binary mixture �with two or three
nonvanishing �ij� we expect a dependence of the angle from
the closure, even if this point would deserve further investi-
gation.

IV. THE SYMMETRIC BINARY MIXTURE

The PY approximation leads, even in the simple binary
case, to the solution of two coupled quartic equations. We
then start with a simpler task, akin to the one already dis-
cussed by Chen and Forstmann �5� for a different potential,
of finding the spinodal line and angle � predicted by the
mMSA and PY for the symmetric binary mixture. In this case
x1=x2=1/2, �1=�2=�, and �11=�22. By symmetry we must
have c̃11= c̃22 and from Eq. �25� it follows that M is diagonal,
the cross term M�x being identically zero and

�− = min�M��,Mxx� . �59�

Therefore the symmetric mixture can only have either pure
condensation ��= ±� /2� or pure demixing ��=0� instabili-
ties.

Moreover for the symmetric mixture we have from Eqs.
�28�–�30�

S�� =
1

M��

, �60�

Sxx =
1

4Mxx
, �61�

S�x = 0. �62�

We see then that on a pure condensation instability

S���0�→
 or h̃11�0�+ h̃12�0�→
, whereas on a pure demix-

ing instability Sxx�0�→
 or h̃11�0�− h̃12�0�→
, and each

FANTONI, GAZZILLO, AND GIACOMETTI PHYSICAL REVIEW E 72, 011503 �2005�

011503-6

The thermodynamic instabilities of a binary mixture of sticky
hard spheres 145



type of instability shows a distinct form of long-range behav-
ior in the correlation functions.

A. Symmetric mixture in the mMSA

Let us first consider the symmetric mixture within the
mMSA. The spinodal line will be of pure condensation when
M��=0, that is

�* = ��
* = �1 + �12�

1

2
�

1 − �

1 + 2�
, �63�

whose maximum in the ��* ,�� plane occurs at �=�c
mMSA

= ��3−1� /2=0.3660. . . �independently of �12�. On the other
hand the spinodal will be a line of pure demixing when
Mxx=0 which has as solutionn

�* = �x
* = �1 − �12�

1
2� . �64�

Note that the allowed packing fractions are the ones
smaller than the close packed packing fraction �0=��2/6
=0.7404. . ..

For the determinant of Q̂�0� we find from Eq. �54�

det�Q̂�0�� =
�� − ����� − �x�

�2

1 + 2�

�1 − ��2 , �65�

so that the system is unstable when � lies between the two
roots �� and �x, at a given packing fraction.

While the condensation line is always present, the exis-
tence of a demixing line depends upon the value of �12, as
expected. When �12�1 the demixing line �*=�x

* lies below
the � axis, and hence, the spinodal in the phase diagram
��* ,�� is the curve �*=��

* �see Fig. 2�, with the instability
being of pure condensation at all densities. Notice that this
would be the case for Lorentz–Berthelot mixtures for which
we have �12���11�22=�11, which corresponds to �12=1, that
is the one-component case.

When �12�1 the two roots �*=��
* and �*=�x

* intercept at a
point �31� �see Fig. 3� having packing fraction

� = ��x =
2�12

3 − �12
� 1, �66�

so the instability is of pure condensation for ����x and of
pure demixing for ����x.

B. Symmetric mixture in the PY

In the PY approximation we first need to determine the
cavity functions at contact. Equation �53� for the binary sym-
metric mixture can be recast into the following form

�11�11 −
1

2
�� 1

12
�11

2 −
1

�
�11� = ȳ11

HS +
1

2
�� 1

12
�12

2 −
1

�
�12� ,

�67�

�12�12�1 +
1

�12
� �

2�
−

1

12
��11�� = ȳ12

HS −
�

2�
�11, �68�

where

ȳ11
HS = ȳ12

HS = ȳHS =
2 + �

2�1 − ��2 , �69�

is the HS expression for the cavity functions at contact. Sub-
stitution of Eq. �68� into Eq. �67� leads to a quartic equation
for �11. The solution for the cavity functions at contact can
then be written as

ȳ11

�11
= R , �70�

ȳ12

�12
=

ȳHS −
�

2�
R

�12�1 +
1

�12
� �

2�
−

1

12
�R�� , �71�

where R is a solution of the quartic equation.
In order to find the physically meaningful zeroes of M��

and Mxx we proceed as follows. First we compute all the four
roots Ri, i=a ,b ,c ,d of the quartic equation and, hence,
�ȳ11�i= �ȳ11�i��* ,� ,�12�, and �ȳ12�i= �ȳ12�i��* ,� ,�12� are the
cavity functions at contact obtained using the root Ri, while
�M���i and �Mxx�i are the diagonal elements of M obtained
using for the cavity functions at contact �ȳ11�i and �ȳ12�i. As
it turns out, only two roots Ri will give physically admissible
cavity functions at contact. Then we compute the zeroes of

FIG. 2. Spinodal line �continuous curve� for the symmetric mix-
ture in the mMSA with �12=2. The kind of instability is of pure
condensation along the whole spinodal.

FIG. 3. Spinodal line �continuous curve� for the symmetric mix-
ture in the mMSA with �12=2/3. In this case the instability is of
pure condensation for ����x along �*=��

* and of pure demixing
for ����x along �*=�x

*.
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�M���i, denoted as �*= ���
*�i�� ,�12�, and of �Mxx�i, denoted as

�*= ��x
*�i�� ,�12�. Then physical zeroes are then selected by

the requirement that

lim
�12→1

�ȳ11�i����
*�i,�,�12� = lim

�12→1
�ȳ12�i����

*�i,�,�12�

= ȳ+
oc����

*�i,�� � = �,x , �72�

where ȳ+
oc is the physical cavity function at contact for the

one-component system

ȳ±
oc��,�� =

ȳHS

1

2
�1 +

�

�

1

�
±��1 +

�

�

1

�
�2

−
�

3
ȳHS 1

�2� .

�73�

Using constraint �72� we find that the correct physical solu-
tion is R=Rb at high �, the only one such that

lim
�→


�ȳ11�b = lim
�→


�ȳ12�b = ȳHS, �74�

lim
�→0

�ȳ11�b = lim
�→0

�ȳ12�b = 1, �75�

while at small � the solution to use is R=Ra such that con-
dition �72� is satisfied. As for the one-component system
there is an interval �0,�e� where there are no physical zeroes.
For the one-component case the spinodal

�* = �oc
* =

1 + 4� − 14�2

12�1 − ���1 + 2��
, �76�

exists only if ���e where �e=�c
PY = �3�2−4� /2=0.1213. . .

and �c
PY is the PY critical packing fraction. For the binary

symmetric mixture, numerical results strongly suggest the
coincidence of �e with the critical packing fraction �see Figs.
4 and 5� but we have not succeeded in proving it �nor in
determining an expression for it�. The unphysical continua-
tion of the pure condensation spinodal in the range �0,�e� is
given by the root R=Rc such that

lim
�12→1

�ȳ11�c����
*�c,�,�12� = lim

�12→1
�ȳ12�c����

*�c,�,�12�

= ȳ−
oc����

*�c,�� � = �,x . �77�

Notice that this solution would also give, in the same range
of �, an unphysical spinodal of pure demixing whenever
�12�1.

The zeroes �*= ���
*�i and �*= ��x

*�i are shown in Fig. 4 for
�12=2, and for �12=2/3 �the same conditions as in Figs. 2
and 3, respectively�. As it happened in the mMSA, for
�12�1 there is only a spinodal of pure condensation, while
for �12�1 a spinodal of pure demixing appears at high �, as
expected on physical grounds. However, unlike the mMSA
case, the pure demixing and the pure condensation lines do
not merge. Also the shapes and numerical values of the PY
spinodals significantly differ from the mMSA ones. In Fig. 5
we select �12 slightly above 1 and slightly below 1 in order
to check the correct convergence towards the one-component
case. At �12=1/1.1 the line of pure demixing appears in the
physically non-accessible region ���0.

FIG. 4. Spinodal line for the symmetric mixture in the PY ap-
proximation with �12=2 in the top panel and with �12=2/3 in the
bottom panel. At �12=2 the instability is of pure condensation along
�*= ���

*�i, i=a ,b and of pure demixing along �*= ��x
*�i, i=a ,b. The

zeroes labeled c are unphysical. The gaps between the curves �*

= ���
*�i are numerical artifacts. At �12=2/3 there is the appearance of

a pure demixing spinodal at high � which does not cross the pure
condensation one. For reference we also plot in both panels the
spinodal of the one component system �oc

* �see Eq. �76�� which is
physical only for ���c= �3�2−4� /2=0.1213. . ..

FIG. 5. Same as Fig. 4 with �12=1/0.9 in the top panel and
�12=1/1.1 in the bottom panel. In this last case the expected line of
pure demixing would start at ���0=0.7404. . . in the unphysical
range of densities.
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V. TWO PARADIGMATIC SYSTEMS

The next two mixtures can be regarded as paradigmatic
examples of a system where one expects to have a predomi-
nant condensation or predominant demixing type of thermo-
dynamic instability. The thermodynamics of these mixtures
have been previously investigated by Barboy and Tenne �14�
within the PY approximation. In the following we shall ex-
tend this analysis of the instability type both within mMSA
and PY closures. The two systems are defined as follows:
�system A� �12�0, �11=�22=0; �system B� �11�0, �12=�22
=0. System A corresponds to a fluid where the HS potential
acts between like particles and the SHS potential between
unlike particles, while system B corresponds to HS �species
2� in a SHS fluid �species 1�. Alternatively, on regarding the
large spheres as the “solute” and the small spheres as the
“solvent,” systems A and B can be reckoned as a schematic
model mimicking a “good” and a “poor” solvent, respec-
tively �23�.

For system A we have �11
BT=�22

BT=0, so Eq. �53� reduces to
a linear equation for ȳ12 with the following solution �which
corrects Eq. �64� of Barboy and Tenne�

ȳ12 =
ȳ12

HS

1 +
�2

2�

�12

�12

, �78�

where

ȳ12
HS =

1

�
+

3

2

�2

�2

�1�2

�12
, �79�

is the HS expression for the contact cavity function.
For system B we have �12

BT=�22
BT=0, so Eq. �53� reduces to

a quadratic equation for ȳ11. The only solution which reduces
to the HS expression for �11→
, is �identical to Eq. �57� of
Barboy and Tenne�

ȳ11 =
ȳ11

HS

1

2
�1 +

�1

�

1

�11
+��1 +

�1

�

1

�11
�2

−
�1

3
ȳ11

HS 1

�11
2 � ,

�80�

where

ȳ11
HS =

1

�
+

3

2

�2

�2�1, �81�

is the HS expression for the contact cavity function. The
instability lines are again given by Eq. �58�.

Let �ij�� ,x1 ,�� be the solution of the spinodal Eq. �58�
for the only nonvanishing �ij. As the cavity functions must
be positive, the spinodal exists only for those values of
� ,x ,� for which �ij �0. It may also happen �and it does in
the PY case� that the spinodal equation

�ij
�closure� =

ȳij
�closure���ij,�,x1,��

�ij
= �ij��,x1,�� , �82�

upon choosing the correct physical solution for ȳij
�closure�, does

not have any real positive solutions for �, at certain values of
� ,x ,�. For these values the spinodal predicted by the par-
ticular closure has loss of solution and the predicted value
for the angle � has clearly no physical meaning.

A. Instabilities for system A

On setting

�A
BT = 3 +��3 +

�

�1
��3 +

�

�2
� , �83�

for system A the solution of Eq. �58� within the mMSA ap-
proximation is

�12
mMSA =

�

�A
BT

�12
2

�1�2
, �84�

while in the PY is

�12
PY = ȳ12

HS�12
mMSA −

�2�12

2�
, �85�

and, in the limit of high dilution while keeping �12
mMSA con-

stant, one finds �12
PY→�12

mMSA, as expected in view of the fact
that the PY contact cavity functions converge towards the
mMSA contact cavity functions.

In order to exist, the instability line must clearly lie on the
�12�0 side of the ��12,�� plane. It is easy to see that, while


d�12
mMSA

d�



�=0
� 0 for any choice of x1 and � , �86�

we have that ��1��2�


d�12
PY

d�



�=0
� 0 only when

�2

�1 + �2
� x1 �

�2
3

�1
3 + �2

3 .

�87�

So in the PY approximation the thermodynamic instability
disappears as x1 falls outside the range indicated in Eq. �87�.

In Figs. 6 and 7 we depict the mMSA and PY spinodals,
respectively, at a given value of � and three different values
of x1 for which the PY spinodal does exist. One clearly sees
that conditions �86� and �87� result in a large scale difference
between the two plots.

FIG. 6. For system A the mMSA spinodal �see Eq. �84�� for �
=2 and three different values of x1.
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As regards the angle �, we know, from the discussion at
the end of Sec. III, that the angles predicted by the two
approximations are the same, and from Fig. 8 we see that the
kind of instability is mainly of condensation type in accord
with what we expected from the outset. Two exact limits are
worth mentioning. First, the infinite dilute limit

lim
�→0

� = arctan� �x2/x1 + ��2/�1

��2x2/��1x1� − 1
� , �88�

provides an analytical check of the numerical results reported
in Fig. 8. Second, when �2��1 one obtains

lim
�→


� = arctan �x1/x2. �89�

This result bears an interesting physical interpretation. As the
fraction x2 of large particles decreases, the angle � tends to
� /2, that is to a condensation instability. This is in striking
contrast with what one would expect for HS on the basis of
an entropic depletion mechanism �32,33�, which would tend
to favor demixing in a system with a small number of large
spheres. The reason for this can be traced back to the fact
that in system A unlike particles have attractive interactions,
thus preventing smaller particles to slip out from the intersti-
tial region between two larger spheres. This interpretation

also holds true if one regards system A as a good solvent.

B. Instabilities for system B

Denoting

�B
BT =

�1 + 2���1 − ��
�1�1 − �� + 3�1�2

, �90�

for system B the solution of Eq. �58� within the mMSA is

�11
mMSA =

�

�B
BT , �91�

while in the PY approximation is

�11
PY = ȳ11

HS�11
mMSA +

�1

12�11
mMSA −

�1

�
, �92�

for

�11
PY �

�1

�
��B

BT

6
− 1� . �93�

In view of the above constraint, there is an interval �
� �0,�e� where no physical spinodal exists. We stress that
only for the one-component SHS limit �x2=0� one finds that
�e=�c, with �c being the critical packing fraction, whereas
in the more general case, studied here, this occurrence is no
longer true, as shown in Fig. 10. Once again �11

PY, as given in
Eq. �92�, reduces to �11

mMSA, in the limit of high dilution, with
�11

mMSA kept constant. However, unlike �11
mMSA, which is always

a concave function of � for any choice of x1 and �, �11
PY, it

may display a van der Waals loop �see Fig. 10� as a function
of �. The shape of the spinodal is strongly dependent on the
content of the HS component in the mixture. When x1� x̄1
�x̄1�0.8681. . . when �=1� the spinodal is a monotonously
increasing function of �, while for x1� x̄1 a loop appears.
This point has already been emphasized by Barboy and
Tenne �14�.

As previously remarked, even in this case both mMSA
and PY results for � coincide in the respective range of ex-
istence. In Fig. 11 we see that the instability for system B
tends to pure demixing for �=1 and large �. As � is in-
creased, one finds the same limit �89� as for system A. Once
again the osmotic depletion mechanism fails because of the
presence of stickiness this time among the small particles. As
a further support to this interpretation, one also finds in the
opposite limit

lim
�→0

� = arctan� x1 − �

�x1x2
� . �94�

In this case, when x1=� the instability of the system is of a
pure demixing type, so the solvent �particles of species 2� is
a poor one. This is because the smaller particles �species 2�
interact as HS both with larger spheres �species 1� and with
each other. Hence, not only the depletion mechanism is not
opposed in the present case, but, quite on the contrary, is
favored by the attraction occurring between two big spheres
�see Fig. 9�. This results into the possibility for the existence
of a demixing instability even if the HS binary mixture,

FIG. 7. For system A the PY spinodal �see Eq. �85�� under the
same conditions considered in Fig. 6.

FIG. 8. Behavior of the angle � of Eq. �41� predicted by the
mMSA and PY for system A when x1=0.75, �=2. In this case the
PY spinodal has no solutions when ��0.03227. . .. In the inset we
show the region of � were the PY spinodal exists. Note that here
and in the following cos � rather than the angle � itself is depicted
for visual convenience.

FANTONI, GAZZILLO, AND GIACOMETTI PHYSICAL REVIEW E 72, 011503 �2005�

011503-10

The thermodynamic instabilities of a binary mixture of sticky
hard spheres 149



within the closures considered here, does not have any insta-
bility �see Eq. �98��. One can also show that

lim
�→0

�mMSA = arctan �x1/x2, �95�

where �mMSA is the angle predicted by the mMSA, whose
spinodal does not have loss of solution at small �, or, upon
using �1 ,�2 ,y as independent variables, lim�1→0�mMSA=0.

Before closing this section, a word of caution should be
given on the aforementioned interpretations. In order to have
a clear and quantitative understanding of the depletion
mechanism discussed in this section �for both systems A and
B�, the depletion potential, that is the effective potential
among the large spheres mediated by the presence of the
small ones, should be computed. Hence, the aforementioned
scenarios should only be considered as a plausible possibility
rather than a definite statement.

VI. FIVE BINARY MIXTURES TREATED WITH MMSA

As a final point it is instructive to consider a more general
example. To this aim, it proves convenient to relate the ad-
hesion strengths �ij to the particle sizes ��i�. Our past expe-
rience �26� suggests to consider five different cases, obtained
setting �ij /�0=Fij

	��1 ,�2� for 	=1, 2, 3, 4, and 5. The func-
tions F	 are selected as follows �26�

�ij

�0
=�

���2/�ij
2 case I,

�i� j/�ij
2 case II,

��2�/�ij
2 case III,

1 case IV,

���/�ij case V,
� �96�

where �F���ixiFi. A critical justification leading to the
above choice can be found in Ref. �26�. Note that since for
all five cases the �ij are homogeneous functions of order zero
in the diameters ��i�, the corresponding mixtures are invari-
ant under a transformation where V→�V and all �i→��i
with � a scale factor �34�.

We have calculated the angle � defined in Eq. �41� on the
spinodal �Eq. �58�� for all the cases listed in �96� within the
mMSA closure. The angle � turns out to be the same for
cases I and III. The results are shown in Figs. 12 and 13 for
x1=1/2 and two different values of �. We have only consid-
ered packing fractions ���m=��2/6, where �m is the
maximum packing fraction for a “completely demixed” HS
mixture �i.e., the packing fraction of a mixture where the
spheres of species 1 are in a close packed configuration oc-
cupying a volume V1 and the spheres of species 2 are in a
closed packed configuration occupying a volume V2 such
that V2�V1=0�. It gives a lower bound to the true maximum
packing fraction.

In cases I and III we have pure condensation as �→0.
Case V display a pure condensation point at small but non-
zero values of �. In case II we find a pure demixing point at
high �, for sufficiently large � in the same region where in
case IV we have a pure condensation point. The packing
fraction of pure demixing for case II can be easily calculated
to be

� =
�����3�

��4�
, �97�

which turns out to be very close, albeit in general not coin-
cident, with the packing fraction at which we find pure con-
densation in case IV.

We remark that �both for mMSA and PY� the presence of
an instability curve for the SHS model is entirely due to the
stickiness, since in the HS limit ��→
� we have

lim
�→


det�Q̂�0�� =
1 + 2�

�1 − ��2 , �98�

which is always a positive quantity. Equation �98� can be
derived from Eq. �54� by noticing that the contact values of
the partial cavity functions ȳij must remain finite as �→
.
So the above statement is actually valid for any closure in
which the partial direct correlation functions vanish beyond
�ij. In particular it is valid for the mMSA and the PY �35�
approximations. For other, thermodynamically more consis-
tent closures, the statement is no longer true since phase
separation has been observed for highly asymmetric HS bi-
nary mixtures �36�.

VII. CONCLUSIONS

In this work we have applied the method devised by Chen
and Forstmann �5� to characterize the kind of thermody-
namic instability to a number of carefully selected SHS bi-
nary systems. The crucial quantity turns out to be the Chen
and Forstmann angle �, see Eq. �41�, on the spinodal: when
� is close to 0 the instability is of the pure demixing type,
whereas a value close to ±� /2 indicates a pure condensation
instability.

The presence of adhesion between the spheres results in
the existence of thermodynamic instabilities for the SHS
model when treated within closures having the direct corre-
lation functions vanishing beyond the hard core ranges,
whereas it is known that the HS mixture within the same

FIG. 9. In system B, when we have a small number of large
particles of species 1, the demixing instability �see Eq. �94�� should
be favored by the osmotic depletion mechanism, since the small
spheres interact through a HS potential both among themselves and
with the big spheres.
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approximations do not show any instability �see Eq. �98��.
We have first considered the symmetric binary mixture in

the mMSA �see Sec. IV A� and in the PY approximation �see
Sec. IV B�. This latter case was already considered by Chen
and Forstmann for a different potential. We have found that
when �11��12 the instability is of pure condensation along
the whole spinodal �see Fig. 2 and Eq. �63� for the mMSA,
and Figs. 4 and 5 for the PY�, while when �11��12 a pure
demixing spinodal appears at large packing fractions �see
Fig. 3 and Eqs. �63� and �64� for the mMSA, and Figs. 4 and
5 for the PY�, all within their respective limits of validity.
This general behavior appears to be characteristic of sym-
metric binary mixtures, in the sense that it is observed in
systems with pair potentials more “complex” than the SHS
potential �hard spheres with Yukawa tails �37�, square well
�31�, Lennard–Jones �38�, etc.� which do not admit analytic
solutions. The condensation and demixing lines are found to
meet at a point in the mMSA, whereas they do not merge
within the PY approximation.

Other two interesting examples can be treated in detail
from an analytical point of view as discussed in Sec. V. We
compared the spinodals and the angles � predicted by
mMSA with those predicted by PY for a binary mixture with
�12�0 and �11=�22=0 �system A� and one with �11�0 and
�12=�22=0 �system B�. Being the SHS interaction attractive,
one should expect system A to present mainly condensation
instabilities and system B mainly demixing instabilities.
These choices for the �ij reduce Eq. �53� for the contact
values of the cavity functions in the PY approximation at
most to a quadratic one, simplifying calculations consider-
ably. We find that the spinodals predicted by the two approxi-
mations are very different both quantitatively and qualita-
tively �see Figs. 6 and 7, and Eqs. �84� and �85� for system
A, and Fig. 10 and Eqs. �91� and �92� for system B�. None-
theless the corresponding angles � do not depend on the
closure, when this is chosen within the GPY large class con-
taining mMSA and PY as particular cases. In agreement with
our expectations, we find that the instabilities of system A are
predominantly of the condensation type �see Fig. 8�, while
the ones of system B of the demixing type when ��1 �see
Fig. 11�. For system B when we have a small number of

large spheres of species 1, the demixing instability may be
favored by both the osmotic depletion mechanism �32� and
the stickiness between the large spheres �see Fig. 9�.

In the more general case, the pair potential depends in
general on three parameters: the ratio of the sphere diameters
of the two species, �=�2 /�1, and two dimensionless param-
eters which measure the relative strength of surface adhe-
siveness, �22=�22/�11 and �12=�12/�11. A reduction occurs
when the latters are connected to the former through plau-
sible relationships �ij =�0Fij��1 ,�2�. Following our previous
work �26�, we have considered five possible cases �see Sec.
IV and Eq. �96��. We find that four of the five cases exhibit
very distinct types of instabilities �see Figs. 12 and 13�:
Cases I and III have the same angle �, with pure condensa-
tion at �→0 and predominant demixing for ��0; case V
has a pure condensation instability point at low packing frac-

FIG. 10. For system B the spinodals predicted by mMSA �thick
lines, see Eq. �91�� and the ones predicted by PY �thin lines, see Eq.
�92�� for �=1 at three different values of x1. The physically mean-
ingful PY spinodals are those lying above the “existence” lines in
accord with condition �93�.

FIG. 11. For system B behavior of the angle � of Eq. �41�
predicted by mMSA and PY for x1=0.91 and �=1 in the bottom
panel �in this case the PY spinodal has loss of solution for ���e

�0.1248. . .� and �=2 in the top panel �in this case the PY spinodal
has loss of solution for ���e�0.1614. . .�.

FIG. 12. Behavior of the angle � of Eq. �41� for cases I, II, III,
IV, and V when x1=1/2 and �=3/2.
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tions; case IV has a pure condensation instability point at
high packing fractions provided that � is sufficiently large,
whereas case II has a pure demixing instability point under
the same conditions.

It would be desirable to extend the present study in two
respects. First it would be interesting to consider different,
more sophisticated, closures, in view of our results on the
two examples �denoted as systems A and B� where the angle
� is shown to be independent of the particular closure within
the GPY class, in spite of a large difference in the corre-
sponding instability curves. Second, it would be nice to test
the analytical predictions given in this work against numeri-
cal simulations, with a particular attention to what concerns
the depletion mechanism. We plan to address both issues in a
future work.
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APPENDIX: THERMODYNAMIC RELATIONS FOR THE
ELEMENTS OF THE M MATRIX

In this appendix we gather together some well known
relationships between thermodynamic quantities and the re-
sults obtained in the main text. The Ashcroft–Langreth par-
tial structure factors �39� of an homogeneous and isotropic
p-component mixture are related to the partial total correla-
tion functions as

Sij�k� = �ij + ��xixjh̃ij�k� , �A1�

where xi= �Ni� / �N� is the molar fraction of particles of spe-
cies i and � the total density of the mixture. From the nor-
malization condition for the partial pair distribution functions
of the grand canonical ensemble follows

Sij�0� =�xi

xj
� �NiNj� − �Ni��Nj�

�Ni�
� , �A2�

The matrix Ã, defined in Eq. �13� of the text, is related to the
structure factors by

Sij�k� = �Ã−1�ij�k� . �A3�

We now relate composition fluctuations to thermody-
namic quantities. The grand partition function is

e−�� = �
N1,. . .,Np=0




e���i=1
p Ni	i−A�T,V,�Ni���, �A4�

where A�T ,V , �Ni�� is the Helmholtz free energy of a mem-
ber of the grand canonical ensemble with given number of
particles of each species, and the chemical potentials �	i� are
to be determined from the average number of particles of
each species

�Ni� = �
N1,. . .,Np=0




Nie
���+�i=1

p Ni	i−A�T,V,�Ni���. �A5�

We immediately find

� ��

�	i
�

T,V,�	ī�
= − �Ni� , �A6�

and

1

�
� �Ni

�	 j
�

T,V,�	 j̄�
= �Ni�� ��

�	 j
�

T,V,�	 j̄�
+ �NiNj�

= �NiNj� − �Ni��Nj� = �xixjSij�0��N� ,

�A7�

where the index ī denotes all species different from i. Since
the thermodynamic derivatives ��Ni /�	 j�T,V,�	 j̄�

are the ele-

ments of the inverse of the matrix whose elements are
��	i /�Nj�T,V,�Nj̄�

we can invert the above relation to read

�� �	i

�Nj
�

T,V,�Nj̄�
=

1

�N��xixj

�S−1�ij�0� =
1

V��xixj

Ãij�0� ,

�A8�

where we indicated with S the matrix whose elements are the
partial structure factors.

We now define the partial volumes as

vi = � �V

�Ni
�

T,P,�Nī�
. �A9�

Since the total volume is an homogeneous function of order
one in the extensive variables we must have

�
i=1

p

Nivi = V , �A10�

since the Gibbs free energy G=G�T , P , �Ni�� is an homoge-
neous function of order one in the extensive variables we
must have

FIG. 13. Behavior of the angle � of Eq. �41� for cases I, II, III,
IV, and V when x1=1/2 and �=5.
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�
i=1

p

Ni	i = G , �A11�

so in particular the chemical potentials will be homogeneous
functions of order zero in the variables �Ni�, we can then
write 	i=	i�T , P , ��Ni��� where with the symbol ��Ni�� we
mean that the variables �Ni� can appear only as ratios. We
also find

� �	i

�Nj
�

T,V,�Nj̄�
= � �	i

�Nj
�

T,P,��Nj̄��
+

viv j

V�T
, �A12�

where �T is the isothermal compressibility

�T = −
1

V
� �V

�P
�

T,�Ni�
. �A13�

Notice also that taking the partial derivative of Eq. �A11�
with respect to Nj at constant T, P, and we find the following
Gibbs–Duhem relation

�
i=1

p

Ni� �	i

�Nj
�

T,P,��Nj̄��
= 0. �A14�

We want now find thermodynamic relations for the matrix
elements M��, Mxx, and M�x of the binary mixture. We will
do the calculation explicitly for M�� and quote the final result
for the other two elements. So from Eq. �23� we find for M��

M�� = x1�1 − �x1c̃11� + x2�1 − �x2c̃22� − �x1x2�c̃12 + c̃21�

= V�� �
i,j=1

2

xixj� �	i

�Nj
�

T,V,�Nj̄�
=

��

�T
�
i,j=1

2

xixjviv j =
�T

0

�T
,

�A15�

where �T
0 =� /� is the isothermal compressibility of the ideal

gas, in the second equality Eqs. �13� and �A8� were used, in
the third equality we used Eqs. �A12� and �A14� and in the
last equality Eq. �A10�. For M�x we find

M�x = �x1x2�
�T

0

�T
, �A16�

where

� � ��v1 − v2� =
1

V
� �V

�x1
�

T,P,N
, �A17�

and for Mxx

Mxx = x1x2�2�T
0

�T
+ x1x2

�T
0

V
� �2G

�x1
2 �

T,P,N

. �A18�

The determinant factorizes

det�M� = det�Ã� = �det�Q̂��2 = x1x2
��T

0�2

�TV
� �2G

�x1
2 �

T,P,N

,

thus yielding Eq. �26� in the main text.
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Chapter 11

Multicomponent adhesive hard sphere
models and short-ranged attractive
interactions in colloidal or micellar
solutions

Gazzillo D., Giacometti A., Fantoni R., and Sollich P., Phys. Rev. E. 74, 051407 (2006)
Title: “Multicomponent adhesive hard sphere models and short-ranged attractive interac-
tions in colloidal or micellar solutions”
Abstract: We investigate the dependence of the stickiness parameters tij = 1/(12τij) where
the τij are the conventional Baxter parameters on the solute diameters σi and σj in multicom-
ponent sticky hard sphere (SHS) models for fluid mixtures of mesoscopic neutral particles. A
variety of simple but realistic interaction potentials, utilized in the literature to model short-
ranged attractions present in real solutions of colloids or reverse micelles, is reviewed. We
consider: (i) van der Waals attractions, (ii) hard-sphere-depletion forces, (iii) polymer-coated
colloids, and (iv) solvation effects (in particular hydrophobic bonding and attractions be-
tween reverse micelles of water-in-oil microemulsions). We map each of these potentials onto
an equivalent SHS model by requiring the equality of the second virial coefficients. The main
finding is that, for most of the potentials considered, the size-dependence of tij(T, σi, σj) can
be approximated by essentially the same expression, i.e., a simple polynomial in the variable
σiσj/σ

2
ij, with coefficients depending on the temperature T , or for depletion interactions on

the packing fraction η0 of the depletant particles.
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We investigate the dependence of the stickiness parameters tij =1/ �12�ij�—where the �ij are the conventional
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I. INTRODUCTION

Theoretical investigation of solutions of mesoscopic
particles—with sizes within the range 10–104 Å—such as
colloids, micelles, and globular proteins, is more problematic
than the study of fluids with atomic or simple molecular
constituents—with sizes within the range 1–10 Å �1–4�. The
main difficulties are due to the large difference between sol-
ute and solvent molecular sizes, as well to the possible pres-
ence of high electric charges and large charge-asymmetries.
Treating mixtures of macroions and microions, with strong
long-ranged Coulombic forces, represents a challenge for the
most typical methods of the modern statistical-mechanical
theory of fluids, namely Monte Carlo �MC� or molecular
dynamics �MD� computer simulations and integral equations
�IE� based on the Ornstein-Zernike equation coupled with
approximate “closures” �5�. Large size-asymmetries entail
very different time scales in MD simulations and may lead to
ergodicity problems both in MC and MD calculations. More-
over, large size differences imply several difficulties even
when using IE theories.

For simplicity, the present paper will be restricted to fluids
of neutral particles with spherically symmetric interactions,
neglecting all Coulombic forces due to net electric charges.
Starting from a fluid mixture with one or more solute species
�big particles, or macroparticles� and one “solvent” species
�much smaller molecules or microparticles, which might be
either a true solvent or polymer coils, smaller colloidal par-
ticles, etc.�, we will adopt an effective fluid approach, which
eliminates all large size asymmetries by averaging out the
microscopic degrees of freedom corresponding to the solvent
�6,7�. As a consequence, the influence of the solvent is in-
corporated into an effective potential for the interaction be-

tween big particles, and the initial mixture is reduced to a
fluid made up of only solute molecules �one or more com-
ponents�. Usually, at the simplest level of description the
effective potential includes, in addition to a steeply repulsive
part, a very short-ranged attractive one, whose range is a
small fraction of the macroparticle size. Recall that a force is
said to be “short-ranged” if it derives from a potential �ij�r�
which vanishes as r−n with n�4 when r→� �8,9�; the force
−��ij /�r then decays as r−�n+1�. This definition of short-
ranged potentials is clearly related to the second virial coef-
ficient B2,ij, which is a central quantity in our paper: when
the forces are short-ranged in the above-mentioned sense, the
integral which defines B2,ij �see Eq. �1� below� is finite,
whereas it diverges for long-ranged interactions, i.e., when
r�3. Note that the definition of short-ranged forces is not
unique in the literature. For instance, in Hirschfelder’s clas-
sical reference book �10� short-range forces are the “valence
or chemical forces,” arising from overlap of electron clouds
at very short intermolecular separations. The potential of
such repulsive, and often highly directional, forces varies
exponentially with the distance r. On the other hand, all po-
tentials proportional to inverse powers of r are called “long-
ranged” by Hirschfelder �11�.

Once a reasonable approximation to the effective potential
is known, it could be employed in both computer simulations
or IE calculations. Unfortunately, IEs can be solved analyti-
cally only in very specific cases, for some potentials and
within particular “closures” �5�. The simplest model with
both repulsion and attraction which is analytically tractable
refers to a fluid made up of hard spheres �HS� with an infi-
nitely narrow and infinitely deep attractive tail. This highly
idealized model of adhesive or sticky hard spheres �SHS�
was proposed by Baxter �12�, and admits an analytical solu-
tion within the Percus-Yevick �PY� approximation �12–14�.
Notwithstanding its crudeness and known shortcomings �15�,
the SHS model is not a purely academic exercise. In fact, it*Electronic address: gazzillo@unive.it
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has seen continuously growing interest in the last two de-
cades because of its ability to describe semiquantitatively
many properties of real fluids of neutral spherical particles,
such as colloidal suspensions, micelles, protein solutions,
microemulsions, and systems exhibiting phase transitions of
several types �see, for example, Refs. �15–18� and references
therein�. Accurate simulation data for one-component SHS
have recently been reported by Miller and Frenkel �19�.

Because of the simplicity of the SHS model, it has often
been suggested to model potentials comprising a hard core
and short-ranged attractive tail by means of sticky potentials.
To achieve this one needs to define an appropriate equiva-
lence between the actual interaction and its sticky represen-
tation. This mapping of a generic short-ranged potential onto
a SHS interaction is usually accomplished by requiring the
two different models to have equal second virial coefficients
�16,20�. Moreover, when applied to mixtures, this approach
requires a further step, and this is the main point addressed in
the present work.

In a series of earlier papers �21–25�, we investigated the
multicomponent SHS model, focusing on its possible appli-
cation to polydisperse colloidal suspensions, namely to mix-
tures where the number p of components is so large that it
can effectively be regarded as stemming from a continuous
distribution. This is, for instance, the case of size polydisper-
sity, where—in the discrete notation—a SHS mixture is fully
characterized by two sets of parameters, i.e., the HS diam-
eters ��i� and the “stickiness” coefficients �tij =1/ �12�ij�� ��ij

are Baxter’s parameters�; the latter depend on temperature T
and the strength of the interparticle adhesion. Intuitively, one
expects tij to depend on the diameters �i and � j of the inter-
acting particles i and j, but it is not easy to specify a priori
the correct functional form, and in our previous papers we
attempted some reasonably motivated choices for such a de-
pendence.

The main purpose of the present paper is to investigate the
relationship between stickiness coefficients and particle
sizes, and thus to get new insights into the possible forms of
the function tij = tij �T ,�i ,� j�, starting from a physically
sound basis. To achieve this, we will present an overview of
the most important short-ranged attractive interactions occur-
ring in real solutions of colloids or micelles. In doing this,
our claim is not to be fully exhaustive, but rather to gather
sufficient physical information about the mechanisms which
cause short-ranged attractive interactions in solutions of me-
soscopic particles, and the corresponding simplest model po-
tentials used for their representation.

By considering several different systems—dispersion
forces, depletion forces, polymer-coated colloids, solvation
forces �in particular, hydrophobic interactions and reverse
micelles in water-in-oil microemulsions�—we have surpris-
ingly found strong similarities among the simplest models
employed to represent this wide variety of physical phenom-
ena. By constructing, for each of the relevant potentials, an
equivalent SHS representation, we will deduce and compare
the corresponding expressions for tij = tij�T ,�i ,� j�.

The paper is organized as follows. In Sec. II we will in-
troduce the basic formalism, concerning the second virial
coefficient, the Baxter SHS model, and the mapping rule for
getting the equivalent SHS potential from a given short-

ranged attraction. Sections III is dedicated to the direct van
der Waals interaction, while Secs. IV–VI survey the most
important short-ranged attractions that are indirect, i.e., me-
diated by the solvent. The hydrophobic effect and interac-
tions between reverse micelles will be considered in Sec. VI,
as particular cases of solvation forces. For each model po-
tential, a reasonable approximation to the corresponding tij
= tij �T ,�i ,� j� will be calculated. Finally, a summary, with a
brief discussion, and our conclusions will be given in Sec.
VII.

II. BASIC FORMALISM

A. Second virial coefficient

For a multicomponent fluid, the second virial coefficient
of the osmotic pressure reads B2=�i,jxixjB2,ij, where xi is the
molar fraction of species i, and the partial second virial co-
efficient for the i-j interaction is given by

B2,ij = −
1

2
� f ij�r�dr = − 2	�

0

+�

f ij�r�r2dr , �1�

with

f ij�r� = exp�− 
�ij�r�� − 1 �2�

being the Mayer function, 
= �kBT�−1, kB the Boltzmann con-
stant, and T the absolute temperature.

When the actual potential consists of a hard core plus a
short-ranged attractive tail, i.e., �ij�r�=�ij

HS�r�+�ij
tail�r�, one

gets

B2,ij = B2,ij
HS + B2,ij

tail , �3�

B2,ij
tail = − 2	�

�ij

+�

f ij
tail�r�r2dr = B2,ij

HS	− 3�
1

+�

f ij
tail��ijx�x2dx
 ,

�4�

where �i is the HS diameter for particles of species i and we
set �ij = ��i+� j� /2 as usual, introducing also the shorthands
B2,ij

HS = �2	 /3��ij
3 and f ij

tail�r�=exp�−
�ij
tail�r��−1.

Often, the required integration cannot be performed ana-
lytically, but if �ij

tail�r� is sufficiently small compared to the
thermal energy kBT, then approximate analytical expressions
may be obtained after expanding the Mayer function f ij

tail�r�
in powers of Y �−
�ij

tail�r�. A numerical estimate of the
range of applicability and the maximum relative error �max
=max�1− fapprox/ f �, for each of the three simplest approxima-
tions, is

f = eY − 1


 �Y , 0 � Y 
 0.1, �max � 5%

Y + Y2/2, 0 � Y 
 0.6, �max � 5%

Y + Y2/2 + Y3/6, 0 � Y 
 1, �max 
 3 % .
�

�5�
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B. Adhesive hard spheres as a limiting case of square-well
model

Probably, the simplest two-parameter representation of a
spherically symmetric interaction with steeply repulsive core
and short-ranged attractive tail is the square-well �SW� po-
tential

�ij
SW�r� = �+ � , 0 � r � �ij

− �ij , �ij � r � �ij + wij

0, r � �ij + wij ,
� �6�

with �ij �0 and wij being the depth and width of the well,
respectively. The corresponding partial second virial coeffi-
cient reads

B2,ij
SW = B2,ij

HS �1 − �e
�ij − 1���1 + �ij�3 − 1��

= B2,ij
HS	1 − 3�e
�ij − 1���ij + �ij

2 +
1

3
�ij

3�
 �7�

with �ij =wij /�ij �0. Equation �7� shows that, if the well is
narrow ��ij �1�, B2,ij

SW can be significantly different from B2,ij
HS

only when the attraction is strong enough �e
�ij �1�.
Unfortunately, despite the simplicity of the SW model, no

satisfactory analytical solution of the resulting IEs has been
found so far. However, such a solution can be found within
the Percus-Yevick �PY� approximation for a special limiting
case, when the well width �ij goes to zero but the depth �ij
goes to infinity in such a way that the contribution of the
attraction to the second virial coefficient remains finite and
different from zero �Baxter’s sticky limit� �12�. The short-
ranged attraction becomes a surface adhesion, and the par-
ticles of the resulting model are thus named adhesive or
sticky hard spheres. From Eq. �7� one sees that Baxter’s con-
dition on B2,ij

SW requires the product �e
�ij −1��ij � tij to be
independent of �ij for small �ij, and this leads to the follow-
ing condition for the SW depth:

�ij
Baxter SW = kBT ln�1 +

tij

�ij
� . �8�

As previously mentioned, our tij is simply related to Baxter’s
original parameter �ij by

tij =
1

12�ij
� 0. �9�

Here, tij measures the strength of surface adhesiveness or
“stickiness” between particles of species i and j, and must be
an unspecified decreasing function of T. In fact, as T→�
one must also have �ij→�, in order to recover the correct
HS limit. The SHS models must therefore satisfy the high-
temperature condition

lim
T→�

tij = 0. �10�

A consequence of Eq. �8� is a very simple expression for
the SW Mayer function

f ij
Baxter SW�r� = �− 1, 0 � r � �ij

tij�ij/wij , �ij � r � �ij + wij

0, r � �ij + wij .
� �11�

Baxter focused on f ij, since this quantity directly determines
B2,ij and, furthermore, the coefficients in the cluster expan-
sion of thermodynamic properties and correlation functions
can be expressed in terms of multidimensional integrals of
products of Mayer functions �5�. The simple functional form
of f ij

Baxter SW�r� then allows one to calculate analytically
many quantities of interest. In the “sticky limit” �wij�→ �0�,
the Mayer function becomes

f ij
SHS�r� = ���r − �ij� − 1� + tij�ij�+�r − �ij� �12�

with ��x� being the Heaviside function �=0 when x�0, and
=1 when x�0� and �+�x� an asymmetric Dirac distribution
�26�, while the SHS second virial coefficient is simply

B2,ij
SHS = B2,ij

HS �1 − 3tij� . �13�

C. Mapping onto equivalent SHS model

On comparing Eqs. �13� and �4�, one has

tij
eq�tail� = −

B2,ij
tail

3B2,ij
HS , �14�

and hence the following mapping rule: the parameters tij of
the equivalent SHS model must be given by

tij
eq�tail� =

1

�ij
3 �

�ij

+�

f ij
tail�r�r2dr = �

1

+�

f ij
tail��ijx�x2dx . �15�

This is the main relation used in the remaining part of the
paper. The superscript in tij

eq�tail� means: this tij yields the SHS
potential equivalent to �ij

tail.

III. VAN DER WAALS ATTRACTION

The main direct attraction between two neutral molecules
i and j is the van der Waals �vdW� interaction, represented
by the potential �ij

vdW�r�=−Cij
vdWr−6, which is, in general, the

sum of three different contributions. For most simple
molecules—except the small highly polar ones—the vdW
attraction is almost exclusively determined by the dispersion
forces; the latter are in fact the only contribution to the vdW
forces if both molecules are nonpolar.

A. Dispersion forces

The dispersion or London forces are induced-dipole/
induced-dipole interactions, whose potential is given by the
London formula �10�

�ij
disp�r� = −

Cij

r6 , Cij =
3

2

IiIj

Ii + Ij
�i�� j� for large r ,

�16�

where Ii and �i� are, respectively, the ionization energy and
polarizability volume for molecules of species i. As the name
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suggests, �i� has the dimensions of volume. It can also be
written as �i / �4	�0�, where �0 is the permittivity of the
vacuum and �i is the polarizability of species i, which in-
creases with increasing molecular size and number of elec-
trons. Hence the polarizability volume is proportional to the
molecular volume, i.e., �i���i

3.
This polarizability effect alone can produce considerable

molecular attraction, and is responsible for the formation of
liquid phases from gases of nonpolar substances �argon, hy-
drogen, nitrogen, etc.�. The name “dispersion forces” stems
from the fact that the electronic oscillations producing the
London attraction are also responsible for the dispersion of
light.

B. Hamaker’s macroscopic approximation

Colloids, micelles, and globular proteins are mesoscopic
particles formed by a very large number of polarizable mol-
ecules �typically 1010 in micrometer-sized particles� �1�. As a
consequence, the total attraction energy between such mac-
roparticles can be obtained by pairwise summation of Lon-
don energies between all molecules of the two interacting
bodies. Hamaker �27� performed an approximate calculation
�2� for the energy of interaction of two fully macroscopic
bodies i and j in a vacuum, with densities �i and � j and
occupying volumes Vi and Vj. Replacing the discrete distri-
bution of molecules inside each body with a continuous one,
Hamaker obtained for two spheres of arbitrary size �2�

�ij
H�r� = −

Aij
H

12
	 �i� j

r2 − �ij
2 +

�i� j

r2 − Lij
2 + 2 ln� r2 − �ij

2

r2 − Lij
2 �


= −
Aij

H

12
	�i� j

r2 � 1

1 − �ij
2 /r2 +

1

1 − Lij
2 /r2�

+ 2 ln�1 − �ij
2 /r2

1 − Lij
2 /r2�
 , �17�

where Lij = ��i−� j� /2, and �ij �r� +�. Here, Aij
H

=	2�i� jCij �4� is referred to as Hamaker’s constant, and has
dimensions of energy. As Cij ��i�� j���i

3� j
3, and �i� j

��i
−3� j

−3, Aij
H is nearly independent of i and j. In the case

where all mesoscopic particles are made up of the same ma-
terial but have different diameters �discrete size polydisper-
sity� Aij

H reduces to AH=	2�2C, which is a property of the
material itself.

Hamaker’s macroscopic result has also been applied to
mesoscopic particles, with the justification that the potential
�17� has a scaling property: if r ,�i ,� j are all multiplied by a
factor �, the attraction energy remains unaltered, i.e.,
�ij

H��r ,��i ,�� j�=�ij
H�r ,�i ,� j�. Note, however, that Hamak-

er’s formula refers to two spheres in free space, i.e., it ne-
glects the screening of London forces due to the suspending
medium.

In the limit r→ +�, a series expansion of Eq. �17� yields

�ij
H�r� 
 −

Aij
H

36

�i
3� j

3

r6 for r � �ij � Lij , �18�

which means that at large distances the two spheres behave,
to leading order, like point-particles even though the factors
�i

3 and � j
3 stem from HS volumes.

On the other hand, the Hamaker potential is singular at
contact, i.e., when r→�ij. This is due to the approximation
of regarding the two spheres as continuous distributions of
point-particles, neglecting all intermolecular repulsions. The
leading divergence is

�ij
H�r� 
 −

Aij
H

12

�i� j

r2 − �ij
2


 −
Aij

H

24

�i� j

�ij

1

r − �ij
for 0 � r − �ij � min��i,� j� .

�19�

This divergence simply means that the continuum picture
must break down and molecular granularity, with excluded-
volume effects, cannot be neglected once the closest distance
r−�ij between the two spherical surfaces becomes very
small.

Such a deep attractive potential would lead to irreversible
association or “flocculation” of the suspended particles. This
effect can be avoided in one of two different ways, namely
by charge stabilization or steric stabilization. In the first
case, some surface chemical groups of the particles become
partially ionized in water, and the resulting electrostatic re-
pulsion makes close contact impossible. In the second case,
stabilization is achieved by grafting polymer chains �“hair”�
to the particle surfaces. Both stabilization mechanisms—
extensively used for colloidal suspensions—imply that the
closest approach distance between i and j becomes larger
than �ij, i.e., �ij

eff=�ij +�, with ��0 being an additional
characteristic length. The Hamaker singularity at contact is
thus avoided, and the vdW attraction may then be treated as
a small perturbation, if the effective HS diameter is suffi-
ciently large compared to the bare one �in sterically stabi-
lized colloidal suspensions, �eff exceeds � typically by 10%�.
Moreover, it is possible to strongly reduce the value of the
Hamaker constant by “refractive index matching” �2�.

A numerical estimate of the strength of the Hamaker at-
traction is given, in the one-component case, for simplicity,
by the quantity

Ymax � − 
�H�� + �� = 3H�1 + ��
TH

T
, �20�

where ��� /�,

H�u� =
1

u2 − 1
+

1

u2 + 2 ln�1 −
1

u2� , �21�

and, from Eq. �18�, we have defined a Hamaker temperature
as

TH =
AH

36kB
, �22�

which depends on the material which constitutes the par-
ticles. In most cases, AH lies between 10−20 and 10−19 J, i.e.,
2kBT
AH
20kBT, where T=298.15 K. A typical value AH
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=0.5�10−20 J �=10kBT� yields TH=100 K, and thus, at room
temperature,

�H�� + �� 
 �− 2kBT if � = 0.1

− 0.6kBT if � = 0.2

− 0.2kBT if � = 0.3.
�

Using Eq. �20� for Ymax together with the criteria in Eq.
�5�, one finds the approximate lower bound Tmin/K for the
applicability, respectively, of the linear, quadratic, and cubic
approximations to the Mayer function, as reported in Table I.

Thus, whereas the linear approximation works only at
high temperatures, the quadratic one is already sufficient
even at room temperature if ��0.2.

Unfortunately, analytical integration of the expression
�17� is not possible, and consequently no result for tij

eq�H� can
be obtained directly from �ij

H�r�. Nevertheless, in order to get
a rough approximation to tij

eq�H�, we propose an analytically
integrable interpolation of the correct behavior of �ij

H�r� at
short and large distances, i.e.,

�ij
H-interp�r� = −

Aij
H

36
�3

2

�i� j

�ij

1

r − �ij
exp�−

r − �ij

L
�

+
�i

3� j
3

r6 	1 − exp�−
r − �ij

L
�
� , �23�

where �ij +��r� +�, and L acts as a screening length.
When ��0.1�, L=0.108�
� yields a satisfactory contact
value, i.e., �ij

H−interp��ij +��
�ij
H��ij +��. Using the linear ap-

proximation, valid at high temperatures, one gets

tij
eq�H-interp� 


1

kBT

Aij
H

24

�i� j

�ij
2 	E1� �

L
� + 2e−�/L L

�ij

+ �1 +
�

L
�e−�/L� L

�ij
�2
 ,

where E1�z�=�z
+� e−u

u du is the exponential integral. However,
since the factors L /�ij

n 
� /�ij
n refer to big particles, the lead-

ing term, at least within the linear approximation, is

tij
eq�H-interp� 


3

2
E1� �

L
��TH

T

�i� j

�ij
2 � . �24�

C. Polarizable hard spheres: Sutherland model

Focusing only on the r−6 part of the Hamaker potential,
which represents the long-distance polarizability, one could

define a simpler model, corresponding to a mixture of meso-
scopic HS with dispersion attractions, called polarizable
hard spheres �PHS�, i.e.,

�ij
PHS�r� = �+ � , 0 � r � �ij

− Aij�i
3� j

3/r6, r � �ij ,
� �25�

where the choice

Aij =
Aij

H

36
�26�

ensures the mesoscopic size of the particles. If all particles
are made up of the same material substance, then �ij

PHS�r�
=−A�i

3� j
3 /r6 for r��ij.

The potential �25� may be regarded as a special case of
the Sutherland model, which represents rigid spheres which
attract one another according to an inverse-power law,
i.e., �Sutherland�r�=−��� /r�b for r�� ���0� �10�. Indeed,
one could rewrite it as �ij

PHS�r�=−�ij
PHS��ij /r�6, with �ij

PHS

=A��i� j /�ij
2 �3 for particles with the same material composi-

tion.
The strength of this interaction, in the one-component

case, is then given by

Ymax � − 
�PHS��� =
TH

T



100 K

T
,

after taking TH
100 K. From the results outlined in
Eq. �5�, a linearization of the Mayer function makes sense
for T�1000 K. A quadratic approximation is feasible
when T�167 K. Finally, the cubic approximation holds
for T�100 K.

Therefore, in the multicomponent case, one can safely
adopt the cubic approximation to f ij

PHS�r� and perform the
integration in Eq. �15�, obtaining

tij
eq�PHS� = 12

TH

T
��i� j

�ij
2 �3

+ 15	TH

T
��i� j

�ij
2 �3
2

+ 8	TH

T
��i� j

�ij
2 �3
3

. �27�

In the one-component case this expression reduces to

teq�PHS� = 12
TH

T
+ 15�TH

T
�2

+ 8�TH

T
�3

.

For TH
100 K, this results, at T
300 K, in a value
teq�PHS��5.96, which corresponds in Baxter’s parametriza-
tion to

� =
1

12t
� 0.014,

and lies well below the critical temperature of the SHS fluid,
�c=0.1133±0.0005 �19�.

IV. EXCLUDED VOLUME DEPLETION FORCES

In general, the indirect, solvent-mediated, solute-solute in-
teractions depend on both the solute-solvent and solvent-

TABLE I. Approximate lower bound Tmin/K for the applicabil-
ity of the linear, quadratic, cubic approximation to the Mayer func-
tion f ij, as a function of the parameter �=�0 /� �see text�.

Approximation �=0.1 �=0.2 �=0.3

Linear 6300 1800 700

Quadratic 1050 300 117

Cubic 630 180 70
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solvent ones, and thus may be very difficult to evaluate
�6,7,20,28,29�. We will now report several very simplified
cases.

Asakura and Oosawa �AO� �30�, and independently Vrij
�31�, first showed that two big �colloidal, or solute� particles,
immersed in a sea of small particles, feel a mutual attraction
when their surfaces get closer than the size of the smaller
particles �depletion attraction�. This effect is an indirect at-
traction originating from the interactions of the two big par-
ticles with the small ones of the environment, even if these
latter consist of, say, hard spheres. In mixtures with neutral
components, the small particles—hereafter referred to also as
depletant particles—may correspond, for example, to solvent
molecules, nonadsorbing polymer coils, or smaller colloidal
particles.

Upon adding, for instance, polymers to a stable colloidal
suspension, the colloidal particles tend to aggregate. The
polymer-induced depletion forces between the colloidal par-
ticles can cause formation of colloidal crystals or floccula-
tion.

In the AO model, originally designed to describe colloid-
polymer mixtures, the big-big �colloid-colloid� interactions
as well as the big-small ones are modeled as excluded-
volume HS interactions, while the small-small interactions
are assumed to be zero �ideal gas approximation, correspond-
ing to mutually interpenetrable, noninteracting depletant
molecules�. In particular, polymer coils are assumed to have
an effective HS diameter equal to twice their radius of gyra-
tion.

Consider two big HS of species i and j at distance r, with
radii Ri and Rj, in a dilute suspension of depletant spheres of
species 0, with radius R0. The solute molecule i produces a
spherical excluded-volume region of radius �i0=Ri+R0

around itself where the centers of the depletant particles can-
not penetrate; this is also called the depletion zone. When the
shortest distance r− �Ri+Rj�=r−�ij between the surfaces of i
and j becomes less than the diameter �0=2R0, the two deple-
tion spheres surrounding i and j overlap and the small par-
ticles are expelled from the region between the big mol-
ecules. This implies that the thermal impact forces on the
pair i and j from the “outside” are only partially compen-
sated by those from the “inside” �see Fig. 8 of Ref. �31��.
The depletion effect is due to this unbalanced pressure dif-
ference, which pushes the big particles together, resulting in
a net attraction. From another point of view, the overlapping
of excluded volumes implies that the total free volume acces-
sible to small particles increases, leading to a gain in the

system entropy with a consequent decrease of the Gibbs free
energy. This trend to decrease free energy produces an effec-
tive indirect attraction between the big spheres. AO and Vrij
�30,31� evaluated the HS-depletion �HS-depl� potential as

�ij
HS-depl�r� = �+ � , 0 � r � �ij

− �0kBTVij
overlap�r� , �ij � r � Dij

0, r � Dij ,
� �28�

Vij
overlap�r� =

	

12

1

r
�Dij − r�2

��3DiiDjj − 4Dij�Dij − r� + �Dij − r�2� ,

�29�

where �0 is the number density of the depletant molecules,
Dij ��ij +�0, and Vij

overlap�r� denotes the lens-shaped overlap
volume of two spheres with radii �i0= ��i+�0� /2 and �0j

= �� j +�0� /2, at distance r �see Appendix�. The attraction in-
creases linearly with temperature and with the concentration
of depletant particles. Since the AO model includes only HS
interactions, the corresponding depletion forces have a
purely entropic origin. Finally, it should be emphasized that
the AO approximation is valid only for dilute suspensions of
depletant molecules, i.e., at low �0 values; formally, this last
restriction can be removed by replacing �0 by the density of
polymer in a large reservoir connected to the system.

The tail of �ij
HS-depl�r� has a finite range, equal to the di-

ameter �0 of the depletant molecules. The attraction strength
can be estimated from

Yij,max � − 
�ij
HS-depl��ij� = �0�1 +

3

2

�i� j

�ij

1

�0
� , �30�

where �0= �	 /6��0�0
3 is the packing fraction of the depletant

particles. Note that Yij,max does not depend on temperature,
but the attraction strength may be tuned by varying �0.

For one-component solutes, Yij,max reduces to Ymax
=�0�1+1.5/�� with ���0 /�. In this case—following again
the criteria given in Eq. �5�—the upper boundary �0

max for the
applicability of the linear, quadratic, and cubic approxima-
tions to the Mayer function given as a function of �, respec-
tively, is reported in Table II.

The quadratic approximation result for the equivalent
SHS model is

TABLE II. Approximate upper bound �0
max for the applicability of the linear, quadratic, cubic approxi-

mation to the Mayer function f ij, as a function of � defined above.

Approximation �=0.1 �=0.3 �=0.5 �=0.7 �=0.9 �=1.0

Linear 0.006 0.017 0.025 0.03 0.0375 0.04

Quadratic 0.04 0.10 0.15 0.19 0.23 0.24

Cubic 0.06 0.17 0.25 0.32 0.38 0.4
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tij
eq�HS-depl� 


�0

2 	�i� j

�ij
2 + �1 +

1

4

�i� j

�ij
2 ��ij +

1

2
�ij

2 +
1

12
�ij

3

+

1

10
��0

2
�2	9��i� j

�ij
2 �2 1

�ij
+ 16

�i� j

�ij
2

+
4

7
�13

7
+ 4

�i� j

�ij
2 ��ij +

17

7
�ij

2 +
17

63
�ij

3
 ,

where �ij ��0 /�ij. As remarked, this expression does not
depend on T, since the solute-solvent interactions are of
purely HS character. If �ij �1, then the leading terms are

tij
eq�HS-depl� 
 	�0

2
+

8

5
��0

2
�2
��i� j

�ij
2 � +

9

10
��0

2
�2 1

�ij
��i� j

�ij
2 �2

.

Generalizing from the form of the quadratic approxima-
tion for general �ij, one expects the cubic approximation to
yield a result of the form

tij
eq�HS-depl� 
 C1��0

�i� j

�ij
2 � + C2��0

�i� j

�ij
2 �2

+ C3��0
�i� j

�ij
2 �3

.

�31�

Several other studies of depletion forces, which go be-
yond the entropic HS approach by taking into account more
refined representions of the solute-solvent and solvent-
solvent interactions, are also available in the recent literature
�6,7,20,28,29�.

V. POLYMER-COATED COLLOIDS OR HAIRY SPHERES

If the intermolecular attractive forces are strong enough, a
colloidal suspension phase-separates, or even flocculates or
gels. As explained above, stability against flocculation may
be ensured by steric or charge stabilization. In steric stabili-
zation, the colloidal molecules are coated with grafted
polymers—the “hair”—which can prevent particles from
coming sufficiently close to experience a strong vdW-
attraction.

However, changing the solvent or the temperature may
turn the effective interaction from repulsion �HS-behavior� to
attraction �32–34�. When sterically stabilized colloidal par-
ticles are immersed in a good solvent for the polymer
brushes, the solutes behave like HS, independently of tem-
perature; this is the case, for example, of silica particles cov-
ered with a layer of octadecyl chains, when immersed in
cycloexane. On the other hand, for each poor solvent there
exists a Flory’s theta-temperature T� �35�, which is charac-
teristic of the given solvent-polymer pair and has the follow-
ing property: the solute particles behave like HS at T�T�,
whereas an attraction occurs at T�T�. This occurs with, e.g.,

silica particles with octadecyl chains, when dispersed in ben-
zene. The term “�-solvent” indicates a poor solvent at T
=T�.

These effects originate from a competition between
polymer-solvent and polymer-polymer interactions. First, the
nature of the solvent influences the polymer conformation. In
fact, in a good solvent the interactions between polymer
elements—monomer units—and adjacent solvent molecules
are strongly attractive and thus predominate over possible
intrachain polymer attractions. Consequently, the polymer
will assume an “extended-chain” configuration, so as to re-
duce the number of intrachain contacts between monomer
units. Polymer-coated colloidal particles will have fully ex-
tended hair and thus the largest HS diameter possible, corre-
sponding to the strongest solute-solute repulsion.

In a poor solvent, on the other hand, the polymer-solvent
attractions are weak. Now it is the temperature that deter-
mines the solute-solute interaction. At T�T� the hair will be
fully extended, as in good solvents �HS behavior�. At low
temperatures T�T� the polymer segments find their own en-
vironment more satisfying than that provided by the solvent.
This preference may produce more compact “globular” con-
figurations, in which intrachain polymer-polymer contacts
occur more frequently �“curly hair”�. In an alternative view,
when two solute particles are in close contact, a high number
of polymer-polymer attractions is favored by the interpen-
etration of the two polymeric layers.

In the literature on sterically stabilized colloids �32–34�,
the attractive part of the potential for one-component hairy
hard spheres �HHS�—due to the polymer-polymer interac-
tions between surface layers of different particles—was de-
scribed by a SW, with a depth proportional to the �maximum�
overlap volume of the layers and temperature-dependent in
analogy with the Flory-Krigbaum model for polymer seg-
ments �36�. The SW width equals the length of interpenetra-
tion of the stabilizing chains, whose maximum value coin-
cides with the thickness � of the polymeric layer.

For mixtures, we could consider the most direct extension
of the one-component SW model. In such a case, using Eq.
�15�, a SW potential could immediately be mapped onto a
SHS one:

tij
eq�SW� = �exp�
�ij

SW� − 1�
1

3
��1 + �ij

SW�3 − 1� . �32�

When the SW is very narrow ��ij
SW�1�, one can approxi-

mate

tij
eq�SW� 
 �exp�
�ij

SW� − 1��ij
SW. �33�

However, instead of a discontinuous SW model, we prefer
to propose a potential with a similar but continuous attractive
tail of finite range, i.e.,

�ij
HHS�r� = �+ � , r � �ij

− kBTF�T���Voverlap�Ri + �,Rj + �,r� , �ij � r � �ij + 2�

0, r � �ij + 2� ,
� �34�
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where

F�T� = �0, T � T�

T�/T − 1, T � T�.
� �35�

Here, we call F�T� Flory’s temperature-function, and
�ij

HHS�r� is assumed to be proportional to the overlap volume
between polymeric layers of the two HHS at separation r,
with �� being a number density proportional to the polymer
density in the stabilizing layer.

Within the linear approximation, one finds for the equiva-
lent SHS model

tij
eq�HHS� 
 F�T�

��

2
	�i� j

�ij
2 + �1 +

1

4

�i� j

�ij
2 � 2�

�ij

+
1

2
� 2�

�ij
�2

+
1

12
� 2�

�ij
�3
 ,

where ��� 	
6 ���2��3. Since the thickness � is much smaller

than the particle sizes, one may expect—by analogy with the
HS-depletion model—that the cubic approximation reads

tij
eq�HHS� 
 C1	F�T���

�i� j

�ij
2 
 + C2	F�T���

�i� j

�ij
2 
2

+ C3	F�T���

�i� j

�ij
2 
3

. �36�

Note that, since F�T�=0 when T�T�, then limT→+� F�T�
=0. Thus the form of F�T� ensures that the high-temperature
condition �10� is satisfied.

VI. SOLVATION FORCES: GURNEY-FRIEDMAN MODEL

An indirect interaction between solute particles may also
arise from solvation. To picture solvation effects, Gurney
�37� and Frank and Evans �38� introduced the physically
intuitive concept of cosphere or solvation layer. One sup-
poses that any isolated solute particle is surrounded by some
region in which the solvent has different properties than the
bulk solvent, since its structure is markedly affected by the
presence of the solute: some of the solvent-solvent bonds
have been broken by the introduction of the “foreign” par-
ticle. Clearly, such a region has no well-defined boundary,
but Gurney’s model assumes that significant effects come
from only the few solvent molecules that are directly next to
the solute particles, i.e., in a spherical shell whose thickness
� is taken to be a few solvent diameters or even the size of
only one solvent molecule �for water, a molecular diameter
of 2.76 Å is acceptable�. This picture was first applied to
electrolyte solutions by Friedman and co-workers �39�. In the
ionic case, however, the previous definition of cosphere, with
the same thickness for every ionic species, may be too re-
strictive, since the solvation region may extend even outside
the cosphere, as occurs for very small ions �Li+, and polyva-
lent ions such as Mg2+, Ca2+, etc.�.

When two solute particles i and j approach sufficiently
closely for their solvation layers to overlap, some of the co-
sphere solvent is displaced. Furthermore, the overlapping re-

gion contains solvent molecules which are now affected by
the combined force field of two solutes, so that its structure
might even differ from that of each isolated cosphere. The
whole process, in which the sum of the cosphere volumes is
reduced by overlap and the solvent relaxes to its normal bulk
state, will be accompanied by a Gibbs free energy change. If
the solvent molecules in the isolated solvation layers are in a
state of lower free energy than those in the bulk, the overlap
of two cospheres with the consequent expulsion of solvent
gives rise to a free energy increase, and the resulting contri-
bution to the interaction between two solutes is repulsive.
When the solvent molecules in the solvation layers are in a
state of higher free energy than those in the bulk, the expul-
sion of solvent from the overlapping region leads to a free
energy decrease. In this case, both the free energy and the
disruption of solvent structure are minimized when two sol-
ute particles i and j are brought close together, causing a net
i− j attraction.

Because of the lack of knowledge about the properties of
the solvent in the solvation region, it is difficult to construct
a detailed and physically sound microscopic model of the
effects described above. Adopting a heuristic approach,
Friedman and co-workers �39� proposed that the free energy
change accompanying the cosphere overlapping of two HS
solute particles i and j gives rise to the Gurney potential,
defined by

�ij
Gurney�r� = Aij�T,p�

Voverlap�Ri + �,Rj + �,r�
v0

. �37�

Here the Gurney parameter Aij is in general a function of
temperature T and pressure p and represents the molar free
energy of transfer of solvent from the overlapping region of
the i− j cospheres to the bulk. As previously discussed, Aij
�0 corresponds to attraction. Furthermore, v0 is the mean
volume of a solvent molecule, while the volume of solvent
returning to the bulk is given by the intersection volume of
the cospheres surrounding the two solute HS at distance r,
namely Voverlap �Ri+� ,Rj +� ,r�. The free-energy parameters
Aij were determined numerically by fitting the model to ex-
perimental data.

The close resemblance of �ij
Gurney�r� to both �ij

HHS�r� and
�ij

HS-depl�r� is apparent. By analogy one obtains immediately

tij
eq�Gurney-solvation� 
 C1	Eij�T,p�

�i� j

�ij
2 
 + C2	Eij�T,p�

�i� j

�ij
2 
2

+ C3	Eij�T,p�
�i� j

�ij
2 
3

, �38�

where

Eij�T,p� =
1

2

�Aij�T,p��
kBT

� 	

6
�2��3

v0
� . �39�

This expression may be applied, in particular, to both cases
of solvation interactions—hydrophobic bonding and interac-
tions between reverse micelles—whose physical origin will
be illustrated in the following.
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A. Hydrophobic interaction

The hydrophobic interaction �or hydrophobic bonding�
consists in the tendency shown by nonpolar portions of mol-
ecules or ions with long nonpolar chains or aromatic groups,
for example, surfactants, phospholipids, glycerides, and dye-
stuffs, to aggregate in aqueous solutions, partially or com-
pletely removing such parts from contact with the solvent
�2,40,41�. This hydrophobic attraction between nonpolar en-
tities, which occurs exclusively in water, has, to a large ex-
tent, an entropic origin, related to the strong tendency of
water molecules to form hydrogen bonds and associate �4�.

The physical mechanisms underlying the solvation forces
are rather well-understood when the solvent is water. Polar
molecules or polar groups of a solute feel strong attraction
towards water molecules, and thus are said to be hydrophilic
�“water-loving”�. On the other hand, nonpolar molecules or
nonpolar groups “dislike” water, and are called hydrophobic
�“water-hating,” or “water-avoiding”�.

The hydrophobic effect means that nonpolar particles have
an extremely weak solubility in water, since inserting one of
them—a noble gas atom, a chlorine or oxygen molecule, a
hydrocarbon molecule, etc.—into water may actually lead to
an increase of Gibbs free energy, i.e., �Gsolution�0. Indeed,
the formation of a new cavity requires the breaking of many
water-water hydrogen bonds with a considerable �G�0,
which cannot be compensated by the small �G�0 provided
by the new solute-water vdW interactions �the nonpolar sol-
ute cannot participate in the formation of hydrogen bonds�.
Then, in order to get a further decrease of G, the water mol-
ecules close to the solute reorient themselves, so as to create
as many hydrogen bonds with adjacent water molecules as
possible. The result is the formation of a “cage”—or hydra-
tion layer—around the solute, with more rigid water-water
bonds than in the bulk. Such an additional ordering in the
solvent, brought about by the introduction of a solute mol-
ecule, implies a significant entropy decrease, �S�0, and
thus a strong positive contribution −T�S to the total �G
=�H−T�S of solution at constant T and p. This explains
why nonpolar particles are hydrophobic: one gets �Gsolution
�0, when the entropic contribution dominates over the en-
talpic one �H, which is usually small and may be positive or
negative. On the other hand, at higher temperatures the solu-
bility increases, and one may find �Gsolution�0. In fact, �S
becomes much smaller because the molecular thermal mo-
tion struggles more efficiently against the structure formation
around a nonpolar solute.

The same hydrophobic effect is responsible for the above-
mentioned hydrophobic bonding, where nonpolar parts of
molecules or ions tend to aggregate. In fact, the solvent mol-
ecules prefer mutual contacts over those with the “foreign”
substance �solute�, while the aggregation of solutes reduces
the total volume of their “cages,” minimizing the loss of
entropy. The hydrophobic interaction arises when overlap of
hydration-layers occurs, and becomes increasingly attractive
as the distance between two solute particles decreases.

This phenomenon in acqueous solutions of alcohols was
studied by Friedman and Krishnan �42�, who used a model
potential containing a repulsive term of the r−9 form, plus an
attractive Gurney term given by Eq. �37�, representing the

overlap between cospheres. For the sustances they consid-
ered, these authors found values of the Gurney coefficient
Axx in the range −190 to −60 cal mol−1. The cosphere thick-
ness � was taken to be 2.76 Å, corresponding to one molecu-
lar layer of water.

Clark et al. �43� investigated the same physical systems
with a more refined model, including a core potential based
upon Lennard-Jones potentials for individual atom-atom in-
teractions and again a Gurney term for the hydrophobic at-
traction. They found a minimum �−0.5kBT in their poten-
tials of average force that implies an overall tendency for
those alcohols to associate when in an aqueous environment.

Hydrophobic bonding is very important in interface and
colloid science. It is often the driving force behind the way
in which biomolecules organize themselves and it is respon-
sible for the formation of micelles, bimolecular layers, and
lamellar structures.

B. Reverse micelles in water-in-oil microemulsions

Molecules having both hydrophilic and hydrophobic parts
are said to be amphiphilic �“dual-loving,” in the sense of
being both “water-loving” and “water-hating;” from the
Greek ����= “on both sides”�. An important example is
provided by relatively short chain molecules with an ioniz-
able or polar �thus hydrophilic� head-group and a nonpolar
�thus hydrophobic� tail, consisting of one or several flexible
hydrocarbon chain�s�. Since these molecules can signifi-
cantly lower the surface tension of a solution, they are ge-
nerically called surfactants or surface-active agents �1,2,41�.
When immersed in water, the head-group may become nega-
tively or positively charged, or it remains polar with no net
electric charge. Accordingly, the surfactants are classified as
anionic, cationic, or nonionic.

Clearly, it is the hydrophilic head-group that keeps a sur-
factant solute dissolved in the water. The hydrophobic tail
tends to avoid contact with water and to seek, as far as pos-
sible, a nonaqueous environment. The longer the hydropho-
bic tail, the poorer the solubility in water and, hence, the
greater the tendency of the surfactant to escape from the
acqueous solution. Consequently, as the solute concentration
increases, a phase-separation may occur. Alternatively, the
surfactant molecules accumulate at interfaces between water
and other liquids or gases, or spontaneously self-assemble
into supramolecular aggregates of mesoscopic size that mini-
mize the number of contacts between water and hydrocarbon
tails and maximize the number of tail-tail interactions.

If a surfactant is added to pure water under atmospheric
pressure, its molecules first form a monolayer film at the
water-air interface, with polar heads pointing towards the
water and tails exposed to the air. Above a certain concen-
tration of surfactant �critical micellization concentration�,
one finds an abrupt change in the properties of the solution;
in fact, now the solute particles in the bulk begin to form
supramolecular aggregates like micelles, planar lamellar bi-
layers, and vesicles, whose size and shape are, to a large
extent, determined by the geometric properties of the surfac-
tant molecules �1,2�. These �direct� micelles have a nearly
spherical structure, in which the head-groups are placed at
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the surface and are thus exposed to the aqueous environment,
whereas the nonpolar tails occupy the interior of the micelle,
avoiding any contact with water.

A surfactant, when added to a mixture of water and oil �an
organic liquid immiscible with water�, forms monolayers at
every water-oil interface. Several disordered or partially or-
dered phases are possible, depending on temperature and sur-
factant concentration. In particular, one can get a microemul-
sion, which is a two-phase suspension of finely divided
droplets of oil in water �O/W�, or water in oil �W/O�, de-
pending on the relative concentration of the two liquids.
Each droplet is coated with a monolayer film of surfactant,
which separates water from oil. In W/O microemulsions one
finds reverse �or inverted� micelles, where the core is formed
by a droplet of water, and the surrounding surfactant mol-
ecules now have the head-groups inside the micelle, in con-
tact with water, while their hydrocarbon tails point towards
the outside oil phase �44–47�. Clearly, such flexible tails re-
semble the polymer-hair of sterically stabilized colloids, but
in reverse micelles the number of chains is lower and thus a
large amount of oil can penetrate the surfactant layer. For the
sake of simplicity, we do not consider the possible presence
of a cosurfactant, which is generally an alcohol and mixes
with surfactant in the outside layer.

In most models for W/O microemulsions the suspending
medium, containing mainly oil, is treated as a continuous
phase, and the reverse micelles are represented as composed
of two parts. The internal one, including both the water drop-
let and surfactant head-groups, is assumed to be a spherical
and impenetrable core, with HS radius R. The external part
consists of a concentric, penetrable spherical layer, with
thickness equal to the length � of the aliphatic chains of
surfactant in their fully extended conformation. Thus the to-
tal radius of a micelle is R�=R+�. Because of the flexibility
of the chains, � has sometimes been allowed to depend on
temperature, i.e., �=��T� �46�.

The short-ranged attraction between reverse micelles
seems to be mainly determined by the overlapping of the
penetrable surfactant layers during collisions �44,45,47�. The
interpenetration of the aliphatic chains of the surfactant in-
duces oil removal. Now, the partial molar volume of oil in-
side the surfactant layer is expected to be larger than in the
pure oil-phase �this effect is related to the volume of CH2
and CH3 groups in the aliphatic layers�. A difference of
0.2 Å3 seems to be sufficient to explain an interaction poten-
tial compatible with light scattering experiments �45�.

Roux and Bellocq �45� proposed the simplest model for
equal-sized micelles, assuming that the interaction potential
is proportional to the overlap volume. The extension of their
formula to mixtures is immediate. According to our termi-
nology, the resulting expression is equivalent to a particular
Gurney potential, i.e.,

�ij
rev.micel.�r�

= �+ � , r � �ij

− kBT��Voverlap�Ri + �,Rj + �,r� , �ij � r � �ij + 2�

0, r � �ij + 2� ,
�

�40�

where �� is an adjustable parameter which depends only on
the oil.

More refined models also include a Hamaker-vdW attrac-
tion between water cores. Electrostatic contributions and
other more complicated terms have not been considered in
the present paper.

VII. CONCLUSIONS

We have started from the problem of building up statisti-
cal mechanical models for fluid mixtures of mesoscopic par-
ticles, like colloids, micelles, or globular proteins, by using
very simple effective potentials containing a HS repulsion
plus a short-ranged attractive tail that represent the interac-
tion between big particles after averaging out the micro-
scopic degrees of freedom related to much smaller molecules
�solvent, added polymers, etc.�. The simplest tail corresponds
to the highly idealized surface adhesion, modeled through a
�+-term, of the SHS potential. Since we are interested in
multicomponent SHS fluids, and in the past difficulties had
been encountered in choosing their stickiness parameters tij,
the present paper has focused on the relationship between tij
and particle sizes, i.e., on the possible functional forms of
tij �T ,�i ,� j�. To elucidate this issue we have regarded the
SHS potentials as models that may be derived, with some
simplification, from more realistic interactions. The idea of
associating an equivalent SHS representation to a realistic
interaction, by requiring the equality of the second virial co-
efficients, is already known and widely accepted. We have
chosen this mapping based upon the virial equivalence be-
cause of its simplicity and partial analytical tractability.
Since B2 yields only the first correction of pressure with
respect to ideality, one can reasonably expect that the perfor-
mance of the resulting SHS model should worsen with in-
creasing density. By requiring the equivalence of quantities
different from B2, one could obtain alternative mappings and
generally different values for the effective parameters, lead-
ing to more successful results at high densities. An applica-
tion of such an idea was given, for example, in Ref. �47�,
where the solvent molecules were modeled as SHS by re-
quiring the equivalence of structural properties, i.e., the
solvent-solvent structure factor and the coordination number.
Unfortunately, this approach does not admit an analytical
treatment, and a comparison with it goes beyond the scope of
the present paper.

Our aim was to investigate the most interesting cases of
short-ranged attractive interactions for some paradigmatic
physical systems. To provide a physically sound basis for the
choice of tij and, in particular, its dependence on the particle
diameters, we have presented a detailed and self-contained
overview on several topics related to short-ranged attractive
interactions in real mixtures of neutral mesoscopic particles.
We have considered: �i� the van der Waals or dispersion
forces—direct interactions—and three cases with indirect,
solvent-mediated, attractions: �ii� depletion forces, �iii�
polymer-coated colloids, and �iv� solvation forces �in par-
ticular, hydrophobic bonding and interactions between re-
verse micelles in water-in-oil microemulsions�.

Due to obvious analytical difficulties, our analysis has
been restricted to the determination of the leading terms of
tij. These have been evaluated by series expansion of the
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Mayer function that appears in the second virial coefficient.
We have discussed in particular the linear, quadratic, and
cubic approximations and their respective ranges of validity.

The main result is that, in almost all cases considered, the
leading contributions to tij can be expressed as

tij
eq�tail� 
 C1	Mij�X, . . . �

�i� j

�ij
2 
 + C2	Mij�X, . . . �

�i� j

�ij
2 
2

+ ¯ , �41�

where, in most scenarios, X is the temperature T, and the
property

lim
T→+�

Mij�T, . . . � = 0 �42�

ensures that the high-temperature condition of Eq. �10� is
satisfied. In the case of the depletion attraction, X coincides
with the packing fraction �0 of the depletant particles. For

hairy HS, both T and �� are variables included in Mij. As
regards the dependence of tij on the big particle sizes, which
was the basic question of the present work, it is remarkable
that tij can be expressed as a simple polynomial in the vari-
able ��i� j /�ij

2 �. A quadratic approximation may already be
sufficient. The only case in which the expression for tij dif-
fers from that given in Eq. �41� is the Sutherland model for
polarizable HS, which yields

tij
eq�PHS� = 12

TH

T
��i� j

�ij
2 �3

+ 15	TH

T
��i� j

�ij
2 �3
2

+ 8	TH

T
��i� j

�ij
2 �3
3

. �43�

It is pleasant that even here we find powers of the same basic
size-dependent factor, ��i� j /�ij

2 �. Note that this factor has
the property that the sticky attraction vanishes when at least

FIG. 1. �Color online� Schematic representation of some systems described by SHS equivalent models in the text. Upper left panel:
Excluded-volume depletion attraction between big spheres �solutes� in a sea of smaller depletant particles �light-gray�. The dashed curves
represent the excluded-volume regions where the centers of the depletant particles cannot penetrate. Upper right panel: Polymer-coated
colloids or hairy spheres, when their sterically stabilizing layers of grafted polymers overlap. Lower left panel: Overlap of solvation layers
�“cospheres”� in the Gurney-Friedman model, and expulsion of solvent from the overlapping region. The small spheres �dark-gray� represent
solvent molecules. Lower right panel: Interaction between reverse micelles in water-in-oil microemulsions. In each micelle the internal
dashed curve indicates the impenetrable core, formed by a droplet of water where the head-groups of the surfactant molecules are immersed.
The region between the core and the external dashed curve is the penetrable part of the micelle, corresponding to the hydrocarbon tails and
containing some oil molecules �small spheres�. The micellar attraction is mainly due to oil removing from the overlapping region and its
transfer to the bulk.
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one of the two particles i and j becomes a point, i.e., it
satisfies the point-limit condition

lim
�i or �j→0

tij�T,�i,� j� = 0. �44�

This condition would be expected to hold for any interaction
of “adhesive” type which in the limit involves a particle
surface of vanishing area �48�.

The similarity among most of the resulting expressions
for tij

eq�tail� can easily be understood. In fact, most of the dif-
ferent short-ranged attractions considered here have been ex-
plained, by different authors, in terms of quite similar mod-
els, where mesoscopic particles are represented as hard
spheres with a surrounding, concentric spherical layer �see
Fig. 1�. In the AO case this layer is characterized somewhat
indirectly by the fact that the density of the centers of mass
of the depletant polymers is zero inside the layer but has a
nonzero value outside it. In the other cases, the layer has a
clearer physical reality. For polymer-coated colloids, for ex-
ample, the layer is the polymeric film grafted on the colloidal
surface. In the hydrophobic bonding the layer is formed by
the solvation water molecules. For reverse micelles, the core
comprising the water droplet and the polar heads of surfac-
tants is surrounded by a layer made up of hydrocarbon tails
of surfactants plus a certain quantity of oil.

It is very appealing, and somewhat surprising, that the
factor �i� j /�ij

2 appears even in our result for the Hamaker
potential, which refers to a direct interaction where no
spherical layer around the solutes is involved. Note that this
dependence on the particle diameters is clearly due to the
Hamaker integration, since for point-dipoles at the center of
hard spheres �polarizable HS� we have found a different fac-
tor, i.e., ��i� j /�ij

2 �3.
We remark that the models we have considered can be

divided into two different classes. The first one includes the
two models of dispersion forces �Hamaker potential and po-
larizable HS�, with the common feature of having an attrac-
tive r−6 tail. The second class refers to the solvent-mediated
attractions �depletion effects, polymer-coated colloids, solva-
tion forces�. Here, we have reported the simplest examples,
which can be regarded as variants of one single model: hard
spheres with a penetrable concentric spherical layer �“co-
sphere,” in a wider sense�. As a consequence, since the at-
traction depends on the volume overlap of the cospheres, the
potentials of all these models are “truncated,” i.e., they are
rigorously zero beyond some characteristic distance.

The main difference between the above-mentioned
classes—infinite tail in the first, finite tail in the second—
might suggest that the idea of representing realistic potentials
by an equivalent SHS model is justifiable for the second
class, but somewhat more questionable when the tail is infi-
nite. In particular, since a proper treatment of long tails is
essential for thermodynamics, the SHS-mapping of the Ha-
maker and Sutherland potentials might introduce some quali-
tative differences in such a kind of properties. This viewpoint
is certainly correct and Hamaker and Sutherland potentials
should be appropriately distinguished from the remaining
models of this paper. In fact, an “exact” treatment of all these
models would surely yield very different thermodynamic and
structural predictions. Nevertheless, in our context the
B2-mapping onto SHS can be expected to yield a represen-
tation of realistic interactions that is simple, analytically trac-
table, and reliable in appropriate regimes, at low and inter-
mediate densities.

In a companion paper �49�, we have applied a perturbative
approach to the solution of the polydisperse SHS model
within the Percus-Yevick approximation. The suggestions
put forward in the present paper regarding the relationship
between stickiness and size could help to improve the nec-
essary input to that kind of scheme.

In conclusion, the present paper suggests—for multicom-
ponent SHS models—the expression for tij given by Eq. �41�
as a simple choice that is physically justified by its relation to
the above-mentioned models of real interactions. Clearly, Eq.
�41� is an approximate result, but we believe that it correctly
includes the leading terms of the dependence of tij on the
particle sizes. In spite of the rather drastic approximations
used here, this could be useful with the rationale of having a
simple and tractable representation of rather complex inter-
actions, at the simplest possible level of description.
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APPENDIX: VOLUME OVERLAP BETWEEN SPHERES

The volume of the intersection between HS with radii a
and b, at distance r, is

Voverlap�a,b,r� = �
�4	/3�min�a3,b3� , 0 � r � �a − b� ,

	

12
	− 3�a2 − b2�21

r
+ 8�a3 + b3� − 6�a2 + b2�r + r3
 , �a − b� � r � a + b ,

0, r � a + b .
� �A1�
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For �a−b��r�a+b this expression can conveniently be rewritten as

Voverlap�a,b,r� =
	

12
�12ab�r − a − b�2 + 4�a + b��r − a − b�3 + �r − a − b�4�

1

r
. �A2�

Taking a=�i0= ��i+�0� /2 and b=�0j = �� j +�0� /2, one gets Voverlap��i0 ,� j0 ,r�=Vij
overlap�r� of Eq. �29�.
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Chapter 12

Phase behavior of polydisperse sticky
hard spheres: analytical solutions and
perturbation theory

Gazzillo D., Giacometti A., and Fantoni R., Mol. Phys. 104, 3451 (2006)
Title: “Phase behavior of polydisperse sticky hard spheres: analytical solutions and pertur-
bation theory”
Abstract: We discuss phase coexistence of polydisperse colloidal suspensions in the presence
of adhesion forces. The combined effect of polydispersity and Baxter’s sticky-hard-sphere
(SHS) potential, describing hard spheres interacting via strong and very short-ranged attrac-
tive forces, give rise, within the Percus-Yevick (PY) approximation, to a system of coupled
quadratic equations which, in general, cannot be solved either analytically or numerically.
We review and compare two recent alternative proposals, which we have attempted to by-
pass this difficulty. In the first one, truncating the density expansion of the direct correlation
functions, we have considered approximations simpler than the PY one. These Cn approxi-
mations can be systematically improved. We have been able to provide a complete analytical
description of polydisperse SHS fluids by using the simplest two orders C0 and C1, respec-
tively. Such a simplification comes at the price of a lower accuracy in the phase diagram,
but has the advantage of providing an analytical description of various new phenomena as-
sociated with the onset of polydispersity in phase equilibria (e.g. fractionation). The second
approach is based on a perturbative expansion of the polydisperse PY solution around its
monodisperse counterpart. This approach provides a sound approximation to the real phase
behavior, at the cost of considering only weak polydispersity. Although a final seattlement
on the soundness of the latter method would require numerical simulations for the polydis-
perse Baxter model, we argue that this approach is expected to keep correctly into account
the effects of polydispersity, at least qualitatively.
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Phase behaviour of polydisperse sticky hard spheres: analytical
solutions and perturbation theory
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We discuss the phase coexistence of polydisperse colloidal suspensions in the presence of
adhesion forces. The combined effect of polydispersity and Baxter’s sticky-hard-sphere (SHS)
potential, describing hard spheres interacting via strong and very short-ranged attractive
forces, give rise, within the Percus–Yevick (PY) approximation, to a system of coupled
quadratic equations which, in general, cannot be solved either analytically or numerically. We
review and compare two recent alternative proposals that have attempted to by-pass this
difficulty. In the first, truncating the density expansion of the direct correlation functions, we
have considered approximations simpler than the PY one. These Cn approximations can be
systematically improved. We have been able to provide a complete analytical description of
polydisperse SHS fluids using the simplest two orders C0 and C1. Such a simplification comes
at the price of a lower accuracy in the phase diagram, but has the advantage of providing an
analytical description of various new phenomena associated with the onset of polydispersity in
phase equilibria (e.g., fractionation). The second approach is based on a perturbative
expansion of the polydisperse PY solution around its monodisperse counterpart. This
approach provides a sound approximation to the real phase behaviour, at the cost of
considering only weak polydispersity. Although a final determination of the soundness of the
latter method would require numerical simulations for the polydisperse Baxter model, we
argue that this approach is expected to correctly take into account the effects of polydispersity,
at least qualitatively.

1. Introduction

New technological advances in the physico-chemical
manipulation of colloidal mixtures have re-ignited the
issue of gaining a theoretical understanding of the phase
behaviour of polydisperse systems [1]. ‘Polydispersity’ in
colloidal solutions means that, due to the production
process, suspended macroparticles with the same chemi-
cal composition cannot be exactly identical to each other,
but, in general, have different sizes, and possibly different
surface charges, shapes, etc. In practice, a polydisperse
system can be viewed as a mixture with a very large—or
essentially infinite—number M of different species or
components, identified by one or several parameters
(M large but finite refers to discrete polydispersity,
whereas M ! 1 with a continuous distribution of
polydisperse parameters corresponds to continuous poly-
dispersity). The present paper considers the discrete
polydispersity of spherical colloidal particles, with their

diameter being the only polydisperse attribute (size-
polydispersity).

When polydispersity is not negligible, the phase
behaviour becomes much richer, but determination of
the phase transition boundaries requires a much more
involved formalism compared with the monodisperse
counterpart. In fact, the coexistence condition in terms
of intensive variables requires that all phases must have
equal temperature, pressure and chemical potentials of
the M components. In the presence of polydispersity,
one should thus solve a number of equations of the
order of M2, a task that is practically impossible for
M large or infinite.

However, the study of phase equilibria can conveni-
ently start from the appropriate thermodynamic poten-
tial, which is the Helmholtz free energy A when the
experimentally controlled variables are temperature,
volume and number of different colloidal species. In
the one-component case, the coexistence condition of
equal pressure and chemical potential has a simple
geometrical interpretation in terms of free energy density
a: the densities of two coexisting phases are determined*Corresponding author. Email: gazzillo@unive.it
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by constructing a double-tangent to a plotted versus
particle density. This recipe leads to the well-known
Maxwell construction, which connects suitably selected
points along a van der Waals (vdW) subcritical
isotherm, in order to ‘reduce’ its unphysical loop to a
constant-pressure line characteristic of a first-order
phase transition.
In the polydisperse case, significant progress in the

very difficult problem of predicting phase equilibria can
be obtained for models with truncatable free energies [1].
Here, ‘truncatable’ means that the excess free energy of
the polydisperse system turns out to depend only on a
finite number of moments of the distribution corre-
sponding to the polydisperse attribute (the diameter � in
the simplest case). For spherical colloids, the excess free
energy of the vdW model extended to polydisperse fluids
has such a truncatable structure. Due to this property,
this vdW theory has often been employed as the simplest
model to investigate the effects of polydispersity on the
gas–liquid transition [1, 2]. On the other hand, the
influence of polydispersity on freezing has been
addressed by using the hard-sphere (HS) mixture
model, which also admits a truncatable free energy [1]
(for the fluid phase, the Boublik–Mansoori–Carnahan–
Starling–Leland (BMCSL) [3] expression was
employed). It is worth recalling that it is currently
believed that size-polydispersity might destabilize crys-
tallization, eventually inhibiting freezing above a certain
‘terminal’ value of polydispersity [1].
The present paper focuses on—and reviews—a

number of recent attempts to investigate polydisperse
phase equilibria, at least within some approximations,
for another prototype model useful for studying
colloidal suspensions, namely Baxter’s sticky-hard-
spheres (SHS) model [4]. Here the particles are hard
spheres with surface adhesion, and the corresponding
potential can be obtained as a limit of an attractive
square-well which becomes infinitely deep and narrow,
according to a particular prescription which ensures a
finite non-zero contribution of adhesion to the second
virial coefficient (‘sticky limit’). For the one-component
version of this model, Baxter and collaborators [4]
solved the Ornstein–Zernike (OZ) integral equation
coupled with the Percus–Yevick (PY) approximation
(‘closure’). This fully analytical solution allows the
determination of all structural and thermodynamical
properties of the SHS fluid. On the other hand, the
multi-component PY solution, which soon followed
Baxter’s work [5, 6], is practically inapplicable in the
presence of significant polydispersity. In fact, it requires
the computation of a set of parameters fLijg determined
by a system of MðMþ 1Þ=2 quadratic equations, which,
in general, cannot be solved even numerically for a
mixture with a large number of components. Moreover,

even in the presence of a general solution for this
nonlinear algebraic system, the problem of phase
coexistence would still remain out of reach in view of
the previous remarks.

In a series of recent papers [7–9, 11–13], we attempted
to make some progress along two different lines.

First, starting from the density expansion of the cavity
function at contact, we considered a sequence of simpler
approximations (compared with the PY one) [7–11].
Within the two simplest of these approximations,
denoted C0 and C1 (for reasons that will become clear
below), we were able to derive analytically all relevant
information regarding structure and thermodynamics,
including the phase coexistence, in view of the fact that
the corresponding free energy turns out to be trunca-
table [11]. Due to the simplicity of C0 and C1, it is
however reasonable to expect these approximations to
fail at high packing fractions, with a consequent
incomplete or even incorrect description of the effects
of polydispersity on the phase diagram.

Therefore, in collaboration with Peter Sollich, we
recently explored a second approach [12], where the
expansion variable (which must be small) is an appro-
priate polydispersity index. In such a way, we tried to
solve the nonlinear algebraic system—involved in the
PY result—perturbatively in polydispersity, starting from
the monodisperse PY solution.

2. Baxter’s SHS model and PY solution

The SHS model is defined as a limiting case of a
particular square-well (SW) model [4], based upon a
potential including steeply repulsive core and short-
ranged attractive tail, i.e.

�Baxter SW
ij ðrÞ ¼

þ1, 0 < r < �ij � ð�i þ �jÞ=2,
��Baxter SWij , �ij � r � Rij � �ij þ wij,
0, r > Rij,

8<
:

ð1Þ

with

�Baxter SWij ¼ kBT ln 1þ tij
�ij
wij

� �
, ð2Þ

where �i is the HS diameter of species i, �Baxter SWij > 0
and wij are the depth and width of the well, respectively,
kB denotes Boltzmann’s constant, and T is the tempera-
ture. Moreover,

tij ¼
1

12�ij
� 0, ð3Þ
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where the conventional Baxter parameter �ij is an
unspecified increasing function of T, and ��1

ij measures
the strength of the surface adhesion or ‘stickiness’
between particles of species i and j.
The ‘sticky limit’ of �Baxter SW

ij ðrÞ corresponds to taking
wij ! 0. While the SW width goes to zero, its depth
�Baxter SWij diverges, giving rise to a Dirac delta function in
the Boltzmann factor [4], i.e.

e���SHS
ij ðrÞ

¼ �ðr� �ijÞ þ tij�ij�ðr� �ijÞ, ð4Þ

where � ¼ ðkBTÞ
�1, and � and � are the Heaviside step

function and the Dirac delta function, respectively.
The advantage of the sticky limit is that one effectively

deals with a single parameter �ij for each pair, rather
than a combination of energy and length scales (as
occurs in the square-well model, for which no analytical
solution is known). On the one hand, this particular
limit has the disadvantage of introducing some pathol-
ogies into the model, notably in the one-component case
[14]. On the other hand, Baxter’s model represents the
simplest paradigmatic example of a combination of
steep repulsion and short-range attraction which entails
a complete analytical solution in the one-component
case, within a robust approximation such as the PY
closure.
In the multi-component case, the PY solution of the

OZ equation in terms of Baxter’s factor correlation
function reads [5, 6]

qijðrÞ ¼

�
1
2aiðr� �ijÞ

2
þ ðbi þ ai�ijÞ

ðr� �ijÞ þ�ij,
� ð�i � �jÞ=2� r� �ij,

0, elsewhere,

8>><
>>:

ð5Þ

where the expressions for the parameters ai and bi may
be found in [7], while the quantity

�ij ¼ tijyijð�ijÞ�
2
ij, ð6Þ

which depends on the cavity function at contact yijð�ijÞ,
must be a solution of the following system of quadratic
equations:

�ij ¼ �ij þ �ij

X
m

xm �im�jm �
1

2
ð�im�mj þ�jm�miÞ

� �
,

i, j ¼ 1, 2, . . . ,M: ð7Þ

Here, xm is the molar fraction of the mth species
(m ¼ 1, . . . ,M), and �ij ¼ tijy

HS�PY
ij ð�ijÞ�

2
ij, �ij ¼ 12	tij�ij

(	 is the total number density), and �ij ¼ �i�j=ð1� 
Þ,

with 
 being the packing fraction [12]. The solution of
these equations for f�ijg is the real bottleneck of the
multi-component PY result, as mentioned in the
Introduction: for large M (and, in particular, for
M ! 1 ), this calculation is next to impossible,
analytically and numerically.

As a consequence, although the PY closure is
commonly believed to be very sound for short-range
potentials (for one-component SHS fluids this was
confirmed by recent numerical simulations [15]), one
has to conclude that, in the multi-component (poly-
disperse) case, the PY solution has very limited practical
usefulness, since its solution scheme cannot be fully
accomplished. This is the reason why other possible
routes have been attempted, as we discuss next.

3. Simplified closures: the class of Cn approximations

A ‘closure’ is a relationship, added to the OZ equation,
between the direct correlation function cijðrÞ and
hijðrÞ ¼ gijðrÞ � 1 or �ijðrÞ ¼ hijðrÞ � cijðrÞ (gijðrÞ being the
radial distribution function) [16].

Let us return to Baxter’s SW model given by
equation (1) (i.e. before the ‘sticky limit’), and consider
the following general class of ‘closures’ [10]:

cijðrÞ ¼

�1� �ijðrÞ, 0 < r < �ij,

cshrinkij ðrÞ, �ij � r � Rij,

0, r > Rij:

8>><
>>:

ð8Þ

The expression cijðrÞ ¼ �1� �ijðrÞ inside the core
(r < �ij) is exact and dictated by the HS potential. The
form outside the well (r > Rij) may then be identified
with the PY approximation,

cPYij ðrÞ ¼ fijðrÞ½1þ �ijðrÞ�, ð9Þ

since, for Baxter’s potential, the Mayer function,
fijðrÞ ¼ exp½���ijðrÞ� � 1, vanishes for r > Rij.

The choice of cshrinkij ðrÞ inside the well (region which
‘shrinks’ in the sticky limit) defines one particular
closure within the proposed class. Of course,
cshrinkij ðrÞ ¼ cPYij ðrÞ corresponds to the PY approximation.
On the other hand, when cshrinkij ðrÞ 6¼ cPYij ðrÞ, we are in the
presence of mixed closures, which have frequently
appeared in the literature [17]. In order to define
mixed closures simpler than the PY approximation, we
consider the density expansion of the exact direct
correlation function [16], and denote by the

Phase behaviour of polydisperse sticky hard spheres 3453
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Cn approximation a truncation of this series to order
Oð	nÞ. The simplest two approximations are

cshrinkij ðrÞ ¼ fijðrÞ ðC0 closureÞ,

cshrinkij ðrÞ ¼ fijðrÞ½1þ ð
P

k 	kfik*fkjÞðrÞ� ðC1 closureÞ,

ð10Þ

where 	k is the number density of species k, and *
denotes convolutive integration [10].
In the ‘sticky limit’ Rij ! �þ

ij the well region shrinks,
but a ‘memory’ of the approximation chosen for cshrinkij

remains in the solution of the OZ integral equation.
In fact, although all solutions qijðrÞ corresponding to
closures belonging to the class given by equation (8)
have the same functional form as the PY solution
(equation (5)), each closure is characterized by its own
approximation to yijð�ijÞ, which is involved in the
expressions of the parameters ai, bi and �ij. For
instance, the C0 and C1 approximations correspond to

yijð�ijÞ ¼ 1 ðC0 closureÞ,

yijð�ijÞ ¼ 1þ y
ð1Þ
ij ð�ijÞ
 ðC1 closureÞ, ð11Þ

which are, respectively, the zeroth- and first-order
truncations of the density expansion for the exact cavity
function at contact (see [10] for details).
While a brute-force truncation of the above density

expansions leads to analytical expressions sufficiently
simple to be applied to the multi-component (poly-
disperse) case, one should reasonably expect less

accuracy, especially in the high-density regime. In the
one-component case, we can carefully check this point.

In figure 1, coexistence curves obtained from the
C0 and C1 approximations are compared with the PY
ones (using both compressibility and energy routes), and
with Monte Carlo simulations from [15]. It is apparent
how the PY energy route (PYE) yields a rather precise
representation of the MC results, unlike the compressi-
bility route (PYC). It is worth noting that the results
stemming from the C1 approximation, although rather
close to the MC data in the low-density branch, clearly
fail to accurately reproduce them for higher densities,
as expected.

In spite of their lack of accuracy, the C0 and C1

approximations provide a rather sound basis for
obtaining insight into the phase equilibria of polydis-
perse SHS fluids, since they allow simple analytical, or
semi-analytical, treatments.

A first important feature of the C0 and C1 approx-
imations for polydisperse SHS is that the corresponding
free energy has a truncatable structure, that is it depends
upon a few (four at most) moments of the (discrete) size
distribution, �
 ¼ ðp=6Þ	

P
j xj�



j , with 
¼ 0, 1, 2, 3.

A second remarkable fact is that the C0 and C1

approximations are able to describe the so-called
fractionation phenomena characteristic in phase equili-
bria of polydisperse systems. While we refer to a recent
review [1] for a detailed description of the increased
complexity in the polydisperse phase diagrams, here we
just mention two important points. First, fractionation
means that the daughter phases, obtained from the
demixing of a parent homogeneous phase, need not have
the same composition as the parent phase. As a
consequence, there is no single coexistence line
(‘binodal’) as in the one-component case, but one rather
finds a cloud curve, representing the temperature–density
dependence line of the low-density majority phase
(‘gas’), and a shadow curve, representing the tempera-
ture–density dependence of the high-density minority
phase (incipient ‘liquid’). While for one-component
systems these two curves are identical, for polydisperse
systems in general they are not, with the exception of the
critical point, where they coincide by definition.

However, in order to apply the C0 and C1 approxima-
tions to the multi-component SHS model, we have to
tackle a further important problem, that is the definition
of the stickiness parameters �ij.

4. Size dependence of stickiness parameters

In mixtures, �ij will depend on the particular pair i , j
considered, and should reasonably be expected to be
related to the particle sizes. Assuming that we are

0 0.1 0.2 0.3 0.4 0.5

η

0

0.05

0.1

τ

MC

PYC

C0

C1

PYE

Figure 1. Coexistence (binodal) curves for the one-compo-
nent Baxter model. Both the compressibility (PYC) and the
energy (PYE) results as obtained from the Percus–Yevick
approximation [4] are reported and compared with the C0 and
C1 approximations from [11] and with Monte Carlo simula-
tions (MC) from [15]. In the MC case the continuous line is
simply a guide to the eye.
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dealing only with size-polydispersity, we can always
decouple temperature and adhesion as

1

�ij
¼

1

�
�ij ¼

1

�
Fð�i, �jÞ, ð12Þ

where the last equality stems from the assumption of
size-polydispersity and of a purely pairwise potential.
Unfortunately, the exact form of the size dependence of
these stickiness parameters is still an open problem, due
to the lack of experimental and theoretical insights [13].
On the other hand, a few guidelines—based on
arguments discussed in [11, 12]—provide, as reasonable
and plausible, the following dependencies:

�ij ¼ Fð�i, �jÞ ¼

�2
0=�

2
ij, Case I,

�i�j=�
2
ij, Case II,

1, Case IV,
�0=�ij, Case V:

8>><
>>:

ð13Þ

Here, �0 is a characteristic reference length (e.g., the
parental mean diameter) and the numbering of the
various cases follows the convention of previous work
[11, 12].
Figure 2 reports the results of the calculation of the

cloud and shadow curves for polydisperse SHS within
the simple C0 approximation. Here and below, poly-
dispersity is measured by an index s, which is the
normalized standard deviation of the size distribution.
Hence, s¼ 0 corresponds to a mono-disperse case,
whereas s¼ 0.1 and s¼ 0.3 indicate moderate and
significant polydispersity, respectively. The top panel
of figure 2 depicts the results for case I of the size
dependence of the stickiness parameters. As s increases,
the coexistence region shrinks, thus suggesting that
polydispersity disfavours the phase transition. On the
other hand, this trend is markedly case dependent,
as illustrated in the bottom panel of figure 2, where
the cloud–shadow pairs with polydispersity s¼ 0.3 are
displayed for different size dependence cases. It can
clearly be seen that, whereas for cases I and V the same
trend is observed, case IV seems to suggest a widening of
the phase coexistence region (hence favouring the phase
transition).
In view of the lack of numerical simulations for

polydisperse SHS in order to make a comparison, we
have no way, at the present stage, of checking how
realistic these results are. On the other hand, we might
suspect, based on the comparison in the one-component
case, C0 to fail to provide an accurate representation in
the region of low temperatures and high densities. This
is the reason why other possible approaches have
recently been tested. We now illustrate a different

perturbative approach that has proved to be promising
in this context.

5. Perturbative treatment of the SHS-PY solution

The main difficulty in dealing with the PY solution for
polydisperse SHS stems from the solution of the coupled
quadratic system of equations (7). As the one-compo-
nent case has a well-defined solution, one might then
suspect that—for weak polydispersity—a perturbative
expansion around this solution might include the main
effects of polydispersity. This is, in fact, what happens,
as recently shown [12] by exploiting a general perturba-
tion theory due to Evans [18]. The main idea is that,
for weak polydispersity, size distributions are narrowly
peaked around a mean reference value (�0 in the present
case), and hence all quantities such as

�i ¼
�i � �0
�0

� 1 ð14Þ

are small. Therefore, one might expand both �ij, and all
quantities appearing in �ij, in powers of �i. A similar
expansion can be performed in the free energy, and
hence all thermodynamic quantities can be computed.
The entire procedure is described in detail in [1, 12 ,18].
Here, we just summarize the main results.

The approximate range of validity of the perturba-
tion expansion can be envisaged by considering the
polydisperse HS case where the ‘exact’ BMCSL
approximation [3] can be compared with the corre-
sponding perturbative solution based on the one-
component (s¼ 0) counterpart. This is reported in the
top-left part of figure 3, where the quantity
�Pv0 (v0 ¼ p�3

0=6) is plotted against the packing
fraction 
 for increasing values of polydispersity. It is
apparent that the perturbative solution remains rather
close to the ‘exact’ polydisperse BMCSL solution even
for moderate polydispersity s � 0:3, which is the
maximum value considered in the remaining part of
this work. The remaining plots in figure 3 display the
effect of polydispersity on the PY pressure equation of
state as obtained from the energy route and for
decreasing values of the temperature �. In the one-
component case s¼ 0, a van der Waals loop starts to
appear when we cross the critical temperature
�c � 0:1185 coming from the high � regime.
Obviously, this signals the onset of a liquid–gas phase
transition, and the corresponding phase diagram can be
obtained by a standard Maxwell construction by
connecting appropriate points with the same pressure.
In the presence of polydispersity (here represented by
choice IV for the size dependence of the stickiness
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parameters), the same procedure cannot be applied due
to fractionation, as already discussed. Nevertheless, we
can clearly see that, as s increases, the van der Waals
loop region (when present) expands, thus suggesting
that a phase transition is favoured by the presence of
polydispersity. A similar feature occurs for the poly-
disperse van der Waals model [2] and for the numerical
results of the PY compressibility equation of state [19]
(note that, in the latter, a gap rather than a loop signals
the onset of the transition). A somewhat surprising
feature is that, at fixed packing fraction 
, the pressure
decreases with increasing polydispersity less in the
presence of adhesion rather than in its absence (i.e. for
the HS case). An intuitive plausible interpretation of
this feature can be found in [12].
The same perturbative approach allows the determi-

nation of the cloud and shadow curves for the various
size dependence cases of ��1

ij . This is reported in figure 4

for cases II, IV (top panel) and I, V (bottom panel). In
the first case, the cloud and shadow lines collapse into a
single curve, and this can be understood on the basis of
the particular scaling properties of the free energy to this
order in perturbation theory [12]. In all cases, there is a
breakdown of the perturbation theory on approaching
the critical point, and this is a known general drawback
of Evans’ perturbative scheme. Nevertheless, in all cases
and to this order in perturbation theory, there is a
tendency of the phase coexistence region to increase with
polydispersity, in qualitative agreement with the intui-
tive picture obtained from figure 3.

It is worth stressing the difference with respect to
previous non-perturbative results stemming from the
C0 solution, where all different cases (with the notable
exception of IV) predicted a reduction of the phase
coexistence region. While in the C0 description we have
provided a careful treatment of polydispersity at the
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Figure 2. (Top) Cloud and shadow curve for model I within the C0 approximation at increasing polydispersity: s¼ 0, s¼ 0.1 and
s¼ 0.3. (Bottom) Same as above but for a fixed value of polydispersity s¼ 0.3 and different choices for the stickiness adhesion
(models I, IV and V).
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expense of the accuracy of the exploited approximation,
in the perturbative description of the PY solution,
polydispersity is assumed to be small and hence one
might suspect that solutions with large polydispersities
cannot fit within this picture. On balance, however, we
would favour the latter rather than the former descrip-
tion. An almost correct representation of the one-
component counterpart is a necessary requirement for
checking the effect of polydispersity, and we are not
aware of any physical or experimental system where the
effects of polydispersity are so strong that they could not
be taken into account, at least at the simplest qualitative
level, by the perturbative scheme proposed here.
Along this line, some further proposals have been put
forward in [12] to derive a phenomenological BMCSL-
like approximation for SHS, which might be regarded as
our ‘best and simplest guess’ to the exact phase

behaviour of polydisperse SHS. Even on the size
dependence of ��1

ij some possible support of the
proposed forms may be put forward [12, 13].

6. Conclusions

In this work, we have summarized recent advances in
predicting, theoretically, the phase diagram for poly-
disperse suspensions of colloidal particles with surface
adhesion, within the simple description of Baxter’s
model. Emphasis was placed on the crucial—
unsolved—step required to obtain the multi-
component SHS-PY solution, and the proposed
recipes to deal with this problem. The first is based
on a simplification of the closure. It has the
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Figure 3. Behaviour of the energy equation of state within our perturbative scheme. In all cases the quantity �Pv0 is plotted
against the packing fraction 
. In clockwise order, the first curve (left, top) reports a comparison of the perturbative versus the
‘exact’ BMCSL solution in the equation of state for polydisperse HS (� ¼ þ1). The other curves report the perturbative solution
for the energy equation of state within the PY approximation for the SHS Baxter model. Results are depicted for three values of
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advantage of allowing a complete analytical analysis
on the effects of polydispersity, including fractiona-
tion, but has the disadvantage of very questionable
accuracy. The second is based on a perturbative
method, starting from the energy PY one-component
solution, which is known to provide an accurate
description of the phase diagram. The drawback of
this scheme is that it works for mild polydispersity,
but it cannot describe the changes in the critical point
region. Notwithstanding these limitations, this novel
approach is expected to find practical application in
the interpretation of all those phenomena where
Baxter’s model and polydispersity both play a role.
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Chapter 13

Phase behavior of weakly polydisperse
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Title:“Phase behavior of weakly polydisperse sticky hard spheres: Perturbation theory for
the Percus-Yevick solution”
Abstract: We study the effects of size polydispersity on the gas-liquid phase behavior of
mixtures of sticky hard spheres. To achieve this, the system of coupled quadratic equations
for the contact values of the partial cavity functions of the Percus-Yevick solution [R. J.
Baxter, J. Chem. Phys. 49, 2770 (1968)] is solved within a perturbation expansion in the
polydispersity, i.e., the normalized width of the size distribution. This allows us to make
predictions for various thermodynamic quantities which can be tested against numerical
simulations and experiments. In particular, we determine the leading order effects of size
polydispersity on the cloud curve delimiting the region of two-phase coexistence and on the
associated shadow curve; we also study the extent of size fractionation between the coexisting
phases. Different choices for the size dependence of the adhesion strengths are examined
carefully; the Asakura-Oosawa model [J. Chem. Phys. 22, 1255 (1954)] of a mixture of
polydisperse colloids and small polymers is studied as a specific example.
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We study the effects of size polydispersity on the gas-liquid phase behavior of mixtures of sticky
hard spheres. To achieve this, the system of coupled quadratic equations for the contact values of the
partial cavity functions of the Percus-Yevick solution �R. J. Baxter, J. Chem. Phys. 49, 2770 �1968��
is solved within a perturbation expansion in the polydispersity, i.e., the normalized width of the size
distribution. This allows us to make predictions for various thermodynamic quantities which can be
tested against numerical simulations and experiments. In particular, we determine the leading order
effects of size polydispersity on the cloud curve delimiting the region of two-phase coexistence and
on the associated shadow curve; we also study the extent of size fractionation between the
coexisting phases. Different choices for the size dependence of the adhesion strengths are examined
carefully; the Asakura-Oosawa model �J. Chem. Phys. 22, 1255 �1954�� of a mixture of
polydisperse colloids and small polymers is studied as a specific example. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2358136�

I. INTRODUCTION

In the context of soft matter, a number of systems are
known to display a combination of a very steep repulsion
and a short ranged attraction. This includes, for instance,
polymer-coated colloids,1,2 globular proteins,3 and
microemulsions.4 In spite of the notable differences in the
details of the interactions among these systems, most of the
common essential features are captured by a paradigmatic
model known as the adhesive or sticky hard sphere model.
Sticky hard spheres are impenetrable particles of diameters
��i� with adhesive surfaces. The simplest way of describing
the adhesion properties, in the framework of atomic fluids,
was originally proposed by Baxter5 in terms of a potential
where energy and length scales were combined into a single
parameter, thus defining the so-called sticky hard sphere
�SHS� potential. Baxter showed that for this model the
Ornstein-Zernike integral equation determining the correla-
tion functions in the liquid state admitted an analytic solution
within the Percus-Yevick �PY� approximation. Together with
his collaborators, he predicted from this solution �via both
the compressibility and the energy routes of liquid state
theory� that the model displays a gas-liquid transition.6,7 This
PY solution was soon extended to mixtures8–11 and has since
found a number of interesting applications in the area of
colloidal suspensions.1,2,12–15 When studying the phase be-
havior of such fluids an important issue to deal with is the
fact that colloidal particles are generally not identical but

may have different characteristics �size, charge, chemical
species, etc�. Often, the distribution of the relevant parameter
is effectively continuous, and the fluid is then referred to as
polydisperse. We will focus in this paper on size polydisper-
sity, i.e., a fluid with a distribution of particle diameters. �A
small degree of size polydispersity is, in fact, required to
resolve thermodynamic pathologies which occur in the case
of strictly equal-sized, i.e., monodisperse, sticky hard
spheres.16� The particle size distribution is fixed when the
particles are synthesized. Thereafter, only the overall density
can be modified by adding or removing a solvent, while
keeping constant all ratios of densities of particles of differ-
ent sizes; this traces out a so-called “dilution line” in the
phase diagram.

Given the success of the PY closure for the monodis-
perse SHS model, it is natural to try to extend it to the poly-
disperse case. Unfortunately, the PY approximation is trac-
table only for mixtures of a small number of particle species:
the case of a binary mixture can be solved analytically,11 and
for mixtures with a limited number of components �ten or
fewer� a numerical solution is feasible.12 The polydisperse
case requires one to keep track of an effectively infinite num-
ber of particles species, one for each size, and cannot be
tackled directly. An alternative, which we have explored in
previous work, is to use simpler integral equation theories
such as the modified mean spherical approximation �mMSA
or C0�. Between this and the PY approximation5 lies a set of
increasingly accurate approximations denoted as Cn, with
n=1,2 , . . .. They are based on a density expansion of the
direct correlation function outside the hard core and can be
shown to improve, order by order, the various virial
coefficients.17 These Cn approximations can be extended to
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the polydisperse case with relative ease, provided a particular
factorization holds for the matrices appearing in the solution
of Baxter’s equations. This has allowed us to perform a com-
prehensive analysis of polydispersity effects on the gas-
liquid phase separation.18

The tractability of the Cn approximations for the poly-
disperse SHS model does, however, come at the price of
lower accuracy. Indeed, for the monodisperse case accurate
Monte Carlo simulation data recently published by Miller
and Frenkel19–21 show that the equation of state of the fluid
lies very close to the one derived from the energy route of
the PY closure. Both the C0 and C1 approximations, on the
other hand, yield precise results only within a rather limited
region of the phase diagram, corresponding to high tempera-
tures or low densities17 �see Fig. 1 below�.

The above considerations show that another attack on
the PY closure for polydisperse SHS fluids is worthwhile in
order to get accurate predictions for the gas-liquid phase be-
havior. Rather than try to tackle the most general case of a
fluid with a potentially wide distribution of particle sizes,
which for now remains out of reach, we exploit the idea of
Evans22 to treat size polydispersity as a perturbation to the
monodisperse phase behavior. For this method to apply, the
size distribution only has to be sufficiently narrow, but its
shape is otherwise arbitrary. Our approach is also of suffi-
cient generality to consider arbitrary dependences of the ad-
hesion strengths on the particle sizes, including those consid-
ered in previous work on the Cn approximations.18,23

Throughout, we consider gas-liquid phase coexistence only.
It has been argued24 that even in the presence of polydisper-
sity this is metastable with respect to phase separation into
colloidal gas and solid. However, the latter may be unobserv-
able on realistic time scales when formation of the polydis-
perse solid is hindered by large nucleation barriers25 or an
intervening kinetic glass transition;26 the gas-liquid phase
splits we calculate will then control the physically observ-
able behavior. Even where the kinetics does allow formation
of solid phases, the metastable gas-liquid phase behavior can
play a role, e.g., in determining phase ordering pathways.27

This paper is organized as follows. In Sec. II we describe
the polydisperse SHS model and discuss various routes for
predicting the thermodynamics of this system, comparing
their accuracy for the better understood monodisperse case.
In the polydisperse setting one needs to model how the
strength of the adhesion between two particles depends on
their size; we discuss some possible choices for this in Sec.
III. Section IV describes our perturbation expansion of the
PY closure for the weakly polydisperse SHS model. We first
define the perturbation expansion of the free energy used by
Evans �Sec. IV A� and summarize the relevant consequences
for two-phase coexistence and the attendant size fraction-
ation effects. The basic equations that need to be solved in
order to determine thermodynamic properties within the PY
approximation are then described and solved perturbatively
in Sec. IV B, while Sec. IV C derives from this, via the en-
ergy route, the excess Helmholtz free energy. In Sec. V we
evaluate numerically the consequences of polydispersity for
two-phase coexistence and fractionation for a number of ex-
ample scenarios, and compare the results with those of alter-
native approximation schemes. Section VI gives concluding
remarks.

II. THE SHS MODEL

The p-component SHS mixture model is made up of
hard spheres �HSs� of different diameters �i, where i
=1,2 , . . . , p, interacting through a particular pair potential
defined via the following limit procedure. One starts with a
pair interaction potential �ij�r� with a hard core extending
out to distance r=�ij = ��i+� j� /2, followed by a square well
potential of width Rij −�ij,

�ij�r� = �
+ � , 0 � r � �ij

− ln� 1

12�ij

Rij

Rij − �ij
	 , �ij � r � Rij

0, r � Rij .

 �1�

Here the dimensionless parameter

1

�ij
=

�ij

�
	 0 �2�

measures the surface adhesion strength or “stickiness” be-
tween particles of species i and j. In Eq. �2� the reduced
temperature � is an unspecified increasing function of the
physical temperature T; the coefficients �ij specify how
stickiness depends on which particle species are in contact
and are discussed more fully in the next section. The proce-

FIG. 1. Equation of state, from the energy route, for a one-component fluid
of SHS. From left to right and top to bottom the four panels refer to a
reduced temperature of �=1.00, 0.50, 0.20, and 0.15, respectively. The con-
tinuous line corresponds to the MSA approximation, the dotted line to the
mMSA approximation, the short dashed line to the C1 approximation, the
long dashed line to the PY approximation, the dot-dashed line to the WCA
first order perturbation theory, squares to the WCA second order perturba-
tion theory �with error bars indicating the range where the true value should
lie with probability of 99.7%�, and triangles to the MC simulations of Miller
and Frenkel �Ref. 20�. In all cases the HS component of the pressure was
chosen to be the one obtained from the compressibility route of the PY
approximation �Ref. 39�.
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dure which defines the SHS model then consists in taking the
“sticky limit” Rij→�ij. The logarithm in the initial square
well potential �1� is chosen to give a simple expression for
the Boltzmann factor exp�−�ij�r��, which is reduced to a
combination of a Heaviside step function and a Dirac delta
function in the sticky limit. Here and in the following we
measure all energies in units of kBT to simplify the notation.

A fully polydisperse system is obtained from the above
discrete mixture by replacing the molar fractions xi=Ni /N,
where Ni is the number of particles of species i and N the
total number of particles, with a normalized size distribution
function p���,

xi → p���d� .

Here p��� d� is the fraction of spheres with diameters in the
interval �� ,�+d��. Similarly, given a quantity ai that de-
pends on the species index, one replaces

ai → a��� ,

�a� = 

i

xiai → �
0

�

a���p���d� .

We next consider the possible methods for predicting the
thermodynamic behavior of SHS fluids. As pointed out in the
Introduction, a good approximation to the effectively exact
Monte Carlo �MC� equation of state20 of the monodisperse
SHS model is obtained by calculating the pressure from the
energy route within the PY approximation.7 In the case of
mixtures no comparable Monte Carlo data exists, nor is a
direct solution of the PY closure feasible, so that finding a
reliable approximation to the equation of state remains an
important open challenge. As described in the Introduction,
we have tackled this in previous work within an approximate
theory based on a density expansion of the direct correlation
function around the MSA solution.17,18,23 Another possible
route is thermodynamic perturbation theory. For the Baxter
SHS model it is easy to convince oneself that only the
scheme proposed by Weeks, Chandler, and Anderson28

�WCA� can be applied. We have explored this possibility in
the monodisperse case, where Monte Carlo simulations pro-
vide reliable reference data. In Fig. 1 we compare the simu-
lation data with the predictions of the MSA, the mMSA, and
the C1 approximation �as discussed in �Ref. 17��; the results
from the first and second order WCA �Ref. 28� perturbation
theory are also shown. It is clear that the mMSA and the C1
approximation are fairly reliable for low and intermediate
densities, even at low reduced temperatures, while the
second-order WCA approximation breaks down already at
temperatures significantly above the critical point ��c�0.11,
depending on the approximation used�. The WCA method
therefore offers little hope of providing the basis for an ac-
curate equation of state for mixtures. One also sees readily
from Fig. 1 that the PY closure provides by far the most
accurate of all the approximation methods. This is why we
return to the problem of solving the PY approximation for
SHS mixtures in this paper.

A major challenge in calculating phase equilibria in
polydisperse SHS, or indeed any polydisperse fluid, arises

from the fact that its Helmholtz free energy is a functional of
the distribution p��� of the polydisperse attribute.29 How-
ever, in simple systems or approximations this functional de-
pendence is reduced, for the excess free energy, to one on a
finite number of moments of the distribution. In these cases
the free energy is called truncatable,30,31 and the phase coex-
istence problem is reduced to the solution of a finite number
of coupled nonlinear equations. For example, for the size-
polydisperse SHS mixture the mMSA and the C1 approxi-
mation yield such a truncatable form for the excess free en-
ergy involving only three moments, 
1, 
2, and 
3, and the
two-phase coexistence problem can easily be solved
numerically.18 The relevant moments are defined here, in-
cluding factors of density, as


m = 
�
0

�

�mp���d� �3�

for m=1,2 ,3; for later reference we note that 
3 is propor-
tional to the hard sphere volume fraction.

When the more accurate PY approximation is used, the
presence of polydispersity renders an analytical calculation
of the free energy impossible �see Sec. IV B�. In addition,
even if the free energy could be calculated in closed form, it
would almost certainly not have a truncatable form, and so
predictions for the phase behavior would remain difficult to
extract. We therefore propose to consider a small degree of
polydispersity as a perturbation22 around the well-understood
monodisperse reference system �see Ref. 29 for an overview
of earlier work in this perturbative spirit�. We denote by �0 a
characteristic sphere diameter, which will be taken as the
mean diameter of the overall or “parent” size distribution
p�0���� in the system. We then focus on fluids with a narrow
size distribution centered on �0, for which the relative par-
ticle size deviations

� =
� − �0

�0
�4�

are small for all particle sizes �. Following Evans, we will
expand up to second order in these size deviations.22 The
leading order phase boundary shifts and fractionation effects
then turn out to be proportional to s2, where s= ���2��0��1/2 is
the normalized standard deviation—also referred to simply
as polydispersity—of the parent distribution. Before pro-
ceeding to the calculation, we address in the next section the
choice of the stickiness coefficients �ij from Eq. �2�. These
are irrelevant for monodisperse SHS but can have important
effects on the behavior of mixtures, as we will see.

III. THE STICKINESS COEFFICIENTS �ij

A. General arguments

At a reduced temperature � the Boltzmann factor
exp�−�ij�r�� for the interaction of two SHS particles depends
only on the ratio �ij /� �and, of course, on �ij�. Physically, the
stickiness coefficients �ij represent dimensionless adhesion
energies between pairs of particles identified by the species
indices i and j. �We revert to the notation for the discrete
mixture here; the same considerations obviously apply to the

164504-3 Phase behavior of sticky hard spheres J. Chem. Phys. 125, 164504 �2006�
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polydisperse system.� The �ij have no analog in the mono-
disperse case, where only the reduced temperature � features
and � can be set to unity. For �discrete or polydisperse� mix-
tures, on the other hand, one needs to make an appropriate
choice for the dependence, �ij =F��i ,� j�, of the stickiness
coefficients on the particle sizes. We discuss possibilities for
this choice in this section.

Clearly the appropriate form of the function F��i ,� j�
will depend on the kind of physical problem one is studying.
Nevertheless, it should satisfy some general requirements: �i�
Adhesion should be a purely pairwise property, and so F
should depend only on �i and � j as anticipated by our nota-
tion; F must clearly also be symmetric under interchange of
�i and � j. �ii� Since the �ij are dimensionless, so must F be.
If it does not contain a separate length scale, it is therefore a
homogeneous function of degree zero in ��i ,� j�. The latter
case is interesting because it can be seen as the sticky limit of
a scalable �i.e., purely size-polydisperse� interaction,22

where, by definition, �ij�r� remains unchanged when r, �i,
and � j are all scaled by a common factor. �The square well
potential of Eq. �1� can be put into this form by choosing
Rij =�ij�1+1/ �A�ij −1��; the sticky limit is obtained by let-
ting A→�.� The presence of pure size polydispersity has
important simplifying effects on the phase behavior32,33

which we discuss further in Sec. V below. �iii� If the adhe-
sion depends on the surface area of the spheres, one might
expect F to depend on ratios of homogeneous functions of
degree 2 in ��i ,� j�. �iv� If the adhesive interaction vanishes
when at least one of the two particles i and j degenerates to
a point, we need to require lim�i→0F��i ,� j�=0; the limit for
� j→0 is then also zero, by the symmetry of F.

In Ref. 18 plausibility and convenience arguments were
adduced to suggest the following choices for the quantities
�ij:

�ij = F��i,� j� = �
�0

2/�ij
2 case I

�i� j/�ij
2 case II

1 case IV

�0/�ij case V.

 �5�

Here �0 is a characteristic reference length for the sizes,
taken, as mentioned above, to be the parental mean diameter.
In the forms originally suggested,18 this length was chosen as
a moment of the size distribution, ��n�1/n with either n=1 or
2. �Case I here corresponds to cases I and III in Ref. 18; we
have kept the original numbering for the remaining cases II,
IV, and V for ease of reference.� However, this identification
has the drawback of introducing many-body effects into the
pair potential, as the moments ��n� depend on the thermody-
namic state of the fluid and, in particular, on the concentra-
tions of all particle species. This is why we have chosen the
fixed reference length �0 above, consistent with the notion of
a purely pairwise interaction. Numerically, the actual choice
of �0 turns out to have only very minor effects; this can be
shown by calculations �not reproduced here� comparing case
I �with fixed �0� with case III from Ref. 18, obtained by
replacing �0→ ��2�1/2.

The form of the 1/�ij
2 denominator for cases I and II in

Eq. �5� is forced by technical constraints detailed in Ref. 18,

but these still leave some flexibility in the choice of numera-
tor; cases I and II assume mean-field-like and decoupled de-
pendences, respectively, on stickiness and size. Case IV cor-
responds to the choice of constant coefficients �independent
of particle sizes�, while case V is selected in Ref. 18 specifi-
cally to permit analytical solution within the C1 closure.
Note that not all four cases have all of the properties ��ii�–
�iv�� listed above as possible requirements. For example,
only cases II and IV are homogeneous functions of ��i ,� j� as
required by �ii� when no additional length scale such as �0 is
involved; they are therefore purely size polydisperse. The
properties �iii� and �iv� hold only for case II. It can be
argued34 that the dependence on �i� j /�ij

2 assumed in case II
is quite generic for solutions of colloids, micelles, or globu-
lar proteins, at least in the high-temperature regime where a
linearized approximation for the Boltzmann factor is suffi-
cient. While this favors case II, for phase coexistence we are
interested in lower temperatures where it is less clear which
case is physically more appropriate; we will therefore in-
clude all four cases in our analysis.

For our perturbative analysis we only need to know the
coefficients in the expansion of the �ij around the typical
particle size �i=� j =�0, up to quadratic order in the relative
particle size deviations �i= ��i−�0� /�0,

�ij = �0 + �1a��i + � j� + �2a�i� j + �2b��i
2 + � j

2� + ¯ . �6�

The coefficients �0, �1a, �2a, and �2b of this expansion are
given in Table I for the four cases listed above. Note that
�0=1 always so that in the monodisperse limit the �ij are
irrelevant, as they should be.

B. Stickiness coefficients for the Asakura-Oosawa
model

So far we have considered choices for the stickiness co-
efficients suggested by rather general arguments. One may
wonder whether the �ij can be derived more directly from a
physical picture. We shall pursue this here for the well-
known Asakura-Oosawa model of colloid-polymer mixtures,
which for small polymers leads to a short ranged attractive
depletion potential acting between the colloids.35 We shall
show that, while a formal sticky limit cannot be taken in
general when colloids of different sizes are present, an effec-
tive SHS model can still be derived when the polymer size is
small but kept as nonzero. This is then simplified further in
the perturbative approach for weak polydispersity adopted
here.

Consider two colloidal particles represented by impen-
etrable spheres of diameters �i and � j immersed in a solution
of noninteracting polymers. Within the Asakura-Oosawa

TABLE I. Coefficient of the perturbative expansion �6� of the adhesion
parameters �ij for the four cases listed in Eq. �5�.

Case I Case II Case IV Case V

�0 1 1 1 1
�1a −1 0 0 −1/2
�2a 3/2 1/2 0 1/2
�2b 3/4 −1/4 0 1/4
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model, the polymers are simplified to spheres of diameter �
which can fully penetrate each other but have a hard sphere
interaction with the colloids. It is well known that such a
system develops an entropically driven effective attraction
between the colloidal particles. This arises due to a reduction
in the volume from which the polymers are excluded when
the exclusion zones around the colloids overlap �see Fig. 2�.
This overlap volume as a function of the distance r between
the sphere centers is

Vov�r� =



12
�r3 − 6�Ri

2 + Rj
2�r + 8�Ri

3 + Rj
3� − 3�Ri

2 − Rj
2�21

r
�

����ij + � − r� , �7�

where Rk= ��k+�� /2 and only distances r��ij are allowed
because of the hard colloid-colloid repulsion. The effective
colloid-colloid attraction induced by the presence of the
polymers is then just the overlap volume times the polymer
osmotic pressure,35,36 giving the overall Asakura-Oosawa
�AO� interaction potential

�ij
AO�r� = �+ � , 0 � r � �ij

− 
pVov�r� , �ij � r � �ij + �

0, r 	 �ij + �

 �8�

This expression can be obtained formally by integrating out
the polymer degrees of freedom from the partition function
at fixed polymer chemical potential. The latter is conve-
niently parameterized by the density 
p of polymers in a
reservoir connected to the system; because the polymers are
taken as ideal, their osmotic pressure is then kBT
p and the
kBT is absorbed by our choice of units. The effective colloid-
colloid interaction will, in general, also contain many-body
terms, but these vanish in the limit of small polymers �for
monodisperse colloids the condition is ��0.1547�0� that we
are interested in.

To map to an equivalent SHS potential, which should be
physically reasonable for a small polymer-to-colloid size ra-
tio � /�0, one equates the corresponding second virial coeffi-
cients. The hard core makes the same contribution �B2,HS

ij

=2
�ij
3 /3� in the SHS and the original AO potential, so one

can focus on the normalized deviation of the second virial
coefficient from this HS value,

�B2,AO
ij =

B2,AO
ij − B2,HS

ij

B2,HS
ij =

3

�ij
3 �

�ij

�ij+�

�1 − e−�ij
AO�r��r2dr .

For the SHS potential this quantity equals −1/ �4�ij�, so the
stickiness parameters in the mapped SHS system are as-
signed as

1

12�ij
=

1

�ij
3 �

�ij

�ij+�

�e−�ij
AO�r� − 1�r2dr . �9�

We now proceed to simplify this expression for small �; in
the limit �→0, the original AO model should become fully
equivalent to the mapped SHS system. We will see that for
mixtures of colloids of different sizes this strict mathematical
limit cannot be taken consistently; nevertheless, as long as
� /�0 is small, we expect the SHS mixture to give a reason-
ably accurate description of the underlying AO model.

To simplify Eq. �9� we change the integration variable
from r to z= �r−�ij� /�, expand the attractive tail of the AO
potential in � as

− �ij
AO�z� =




4

p�2�i� j

�ij
�z − 1�2 + O��3� , �10�

and retain only the leading term. Similarly, approximating
r2= ��ij +�z�2=�ij

2 +O��� yields

1

12�ij
=

�

�ij
�

0

1

�e�ij�1 − z�2
− 1�dz

=
�

�ij
�1

2
� 


�ij
erfi���ij� − 1� , �11�

where

�ij =



4

p�2�i� j

�ij

is the value of the attractive potential at contact and erfi�z�
=erf�iz� / i is the imaginary error function. Because of the
prefactor � /�ij in Eq. �11�, �ij has to grow as � decreases if
we want to keep �ij finite. For large argument the error func-
tion behaves as erfi�z�=ez2

�1/z+O�1/z3�� /�
, and so

1

12�ij
�

�

�ij

e�ij

2�ij
=

2



p��i� j
e�
/4�
p�2��i�j/�ij�.

A nonzero limit value of �ij for �→0 thus requires that �ij

grows logarithmically as �ij =ln��ij /�� to leading order. The
corresponding polymer reservoir density, likewise to leading
order, goes as


p =
4




�ij

�i� j

ln��0/��
�2 . �12�

The dominant dependence 
p��−2 in this expression arises
because the value of the AO potential at contact scales as

p�2; the additional logarithmic factor increases this interac-

FIG. 2. The overlap volume Vov�r� of the two exclusion zones around col-
loid particles of diameter �i and � j which cannot be accessed by polymers
of diameter �.
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tion strength to compensate for the decreasing range of the
attraction as �→0. Note that even though the polymer den-
sity diverges, the polymers do in fact become very dilute, as
one sees from the �reservoir� volume fraction �p

= �
 /6�
p�3�� ln��0 /�� occupied by the polymer spheres.
For monodisperse colloids, the above procedure pro-

duces an unambiguous sticky limit for �→0. The explicit
form of Eq. �12� shows, however, that this limit cannot be
taken straightforwardly for mixtures: the prefactors
�ij / ��i� j� of the required leading order divergences of the
polymer density are incompatible with each other for differ-
ent pairs of particle species. In other words, if the � depen-
dence of the polymer density is chosen to keep one specific
�ij finite and nonzero, then the others would either tend to
zero or grow to infinity in the sticky limit. The example of a
binary mixture illustrates this. Suppose that �1��2 and that
the polymer density is tuned to keep the �11 finite. Then
1/�22 would both tend to zero for �→0 so that all interac-
tions involving particles of species 2 become purely HS-like,
without any attractive contributions �this is system B studied
in Ref. 23�.

In the absence of a strict sticky limit, we will content
ourselves with applying the mapping �11� for small but non-
zero polymer-to-colloid size ratios � /�0. The properties of
the resulting SHS mixture should then still give a good ap-
proximation to those of the original AO model. In the per-
turbative setting of this paper we can then expand Eq. �11� in
the small relative deviations �i= ��i−�0� /�0 of the particle
sizes from the parental mean. In the decomposition 1/�ij

=�ij /� of Eq. �2� we fix the scale of the �ij by requiring, as
was done before, that �ij =1 for particles of the reference size
�i=� j =�0. This gives

1

�
=

12�

�0
�1

2
�


�
erfi���� − 1� �

6�

�0

e�

�
�13�

for the reduced temperature, where

� =



4

p�2�0.

The second, approximate equality in Eq. �13� holds for large
� as before. To find the perturbative expansion of the sticki-
ness coefficients �ij, we note first that the potentials at con-
tact expand as

�ij = ��1 +
1

2
��i + � j� +

1

2
�i� j −

1

4
��i

2 + � j
2�� .

Since the erfi in Eq. �11� grows at most as exp��ij�, a second
order Taylor expansion will give an accurate approximation
as long as the perturbations in �ij are �1. This requires �i

�1/�, which then automatically enforces �i�1 since we
expect � to be at least of order unity for the mapping to a
SHS mixture to make sense. Under these conditions one then
has a valid perturbation expansion of the �ij. The coefficients
defined in Eq. �6� are found as �0=1 �by our choice of �� and

�1 =
− 1 + g1

2
, �2a =

1 + g2

2
, �2b =

1 − 2g1 + g2

4
,

where

g1 =
e� − 1

�
/� erfi���� − 2
−

1

2
,

g2 =
�3 + e��2� − 3��/4
�
/� erfi���� − 2

+
3

8
.

From Eq. �13� one sees that the reduced temperature is set by
the contact potential �, which itself is proportional to the
polymer reservoir density. Unlike the more ad hoc choices of
Eq. �5�, the expansion of the �ij in terms of the �i depends on
the reduced temperature � via �. For large � one can use the
leading order approximations g1��−1 and g2���2−2�
+1� /2 to evaluate this dependence. However, since typical
values of � are only logarithmically large in �0 /�, it is gen-
erally safer to work with the full expressions.

IV. PERTURBATION THEORY FOR THE
POLYDISPERSE PY CLOSURE

In this section we come to the core of our analysis. We
first review Evans’ perturbative framework for slightly poly-
disperse systems. To apply this to the PY approximation for
SHS mixtures we will need the perturbative expansion of
certain correlation function values at contact; from these we
can then finally find the excess free energy.

A. Evans’ perturbative expansion

The starting point for an analysis of the phase behavior
of polydisperse systems is the excess free energy density. In
general this is a functional of the size distribution p��� in the
system. It is also a function of the particle density 
 and of
temperature; we do not write the latter explicitly below. For
slightly polydisperse systems it is expedient to switch from �
to the relative deviations � from the reference size �0. By the
fundamental assumption of a narrow size distribution, the �
are small quantities, and one can expand the excess free en-
ergy density fex, measured again in units of kBT, in terms of
moments of p���,22

fex�
,�p����� = f0
ex�
� + 
a�
���� + 
b�
���2� + 
c�
����2

+ ¯ . �14�

Here terms up to second order in � have been retained; these
give the leading effects on the phase boundaries.22 Our func-
tions a, b, and c differ by factors of 
 from those defined in
Ref. 22, so that, e.g., a equals Evans’ A /
; this simplifies the
statement of Eqs. �15�–�17� below. The leading term f0

ex is
the excess free energy density of the monodisperse reference
system where all particles have �=0.

Given the above expansion of the excess free energy, the
conditions for two-phase equilibria of the near-monodisperse
fluid can be solved perturbatively.22 We briefly recall the
main results. The fluid is initially in a parent phase of density

�0�, with a parent size distribution function p�0����, where
����0�=0 by our choice of the reference size �0 as the paren-
tal mean. In order to lower its free energy, the fluid can split
into two daughter phases of densities 
�1� and 
�2�, with dis-
tribution functions p�1���� and p�2���� which are, in general,
different from the parent distribution, a phenomenon referred
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to as fractionation.29 The densities and size distributions can
be worked out perturbatively at any point inside the coexist-
ence region;22 we focus on the properties at the onset of
phase coexistence, which are most easily accessible experi-
mentally.

Suppose the system is just starting to phase separate,
with all of the volume except for an infinitesimal fraction
still occupied by phase 1, with density 
�1�. Conservation of
particle number then requires that p�1����= p�0����; i.e., the
size distribution in this cloud phase equals the parent. The
coexisting shadow phase 2, on the other hand, will generally
have p�2�����p�0����. Evans22 showed that the cloud and
shadow densities, 
�1�=
0

�1�+�
�1� and 
�2�=
0
�2�+�
�2�, re-

spectively, are shifted from their monodisperse values 
0
�1�

and 
0
�2� by

�
�1� = − s2
0
�1���
0

�1����
0
�1��2b��
0

�1�� +
��a�2 + 2�b

2��1/
� � ,

�15�

�
�2� = − s2
0
�2���
0

�2����
0
�2��2b��
0

�2�� +
��a�2 + 2�b

2��1/
�

+ �
0
�2��2a��
0

�2���a� . �16�

Here a���a /�
, b���b /�
, and ��
�=1/ �

+
2�� /�
�2f0

ex�
��, which is the isothermal compressibility of
the monodisperse reference system. The shorthand � indi-
cates differences between the two monodisperse reference
phases, e.g., �a=a�
0

�1��−a�
0
�2��. Finally, recall that s is the

parent polydispersity: the phase boundary shifts are, to lead-
ing order, quadratic in s.

It is worth noting that Eqs. �15� and �16� are not sym-
metric in 
0

�1� and 
0
�2�; by interchanging the two densities one

therefore obtains a different cloud-shadow pair. Physically,
this corresponds to approaching the onset of phase separation
from low or high densities; in a polydisperse system the
coexisting phases are different in the two situations since
only the respective majority �cloud� phase has the parental
size distribution. The size distribution in the corresponding
shadow reads, to leading order in �,22

p�2���� = p�0�����1 + ��a��� . �17�

Overall, the monodisperse binodal delimiting the coexistence
region splits into separate cloud and shadow curves, which
intersect in the critical point.29 Quantitative information
about the critical region is not accessible within the pertur-
bative expansion of Eqs. �15� and �16�, however, since the
compressibility � diverges as the critical point is approached.

The above summary shows that knowledge of the func-
tions a, b, and c is sufficient to calculate the leading order
phase boundary shifts and fractionation effects for weakly
polydisperse systems. In the next two subsections we calcu-
late these functions for the SHS mixture within the PY ap-
proximation.

B. Perturbative analysis of the PY closure

To lighten the notation in the rest of the paper, we make
all densities dimensionless by measuring them in units of
v0

−1, where

v0 = �
/6��0
3

is the volume of a particle with the reference diameter. The
third moment 
3 defined in Eq. �3� is then identical to the
hard sphere volume fraction �. We also measure all particle
sizes � in terms of �0, so that the relation between � and the
fractional deviation from the parental mean diameter be-
comes simply �=1+�. In the monodisperse case, where all
particles have �=0, all moments �3� are then identical and
equal to the density 
 �which also equals the volume fraction
��. Finally, for notational simplicity we again revert tempo-
rarily to the case of a discrete p-component SHS mixture; the
final results will be expressed in terms of averages over the
size distribution and so will be generalized immediately to
fully polydisperse systems.

In order to extract the desired thermodynamic quantities
from the PY closure, the following set of p�p+1� /2 coupled
quadratic equations needs to be solved first:10

Lij = �ij + �ij

m

xm� 1

12
LimLjm −

1

2
�Lim�mj + Ljm�mi��,

i, j = 1,2, . . . ,p , �18�

where the unknowns are

Lij =
yij��ij��ij

2 �ij

�
.

Here yij��ij� is the partial cavity function at contact which is
proportional to the probability of finding a particle of species
j touching any given particle of species i. In Eq. �18� the
coefficients �ij, �ij, and �ij are given by

�ij = yij
HS��ij��ij

2 �ij/� , �19�

�ij = 
�ij�ij/� , �20�

�ij = �i� j/� . �21�

Here the quantities

yij
HS��ij� =

1

�
+

3

2


2

�2

�i� j

�ij
�22�

are the PY partial cavity functions at contact for the HS fluid
�to which the SHS fluid is reduced at infinite reduced tem-
perature ��, and we abbreviate �=1−�, with ��
3 the HS
packing fraction as before. Notice that all four sets of coef-
ficients Lij, �ij, �ij, and �ij are symmetric under exchange of
the species indices i and j.

For one-component fluids, the system �18� is reduced to
a single quadratic equation. Baxter5 showed that only the
smaller of the two real solutions �provided such solutions
exist at all� is physically significant; it is given explicitly in
Eq. �24� below. For true mixtures �p�1�, an explicit solution
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of the rather complicated system �18� of algebraic equations
is feasible at best numerically �except for special cases12,23�
and is the computational bottleneck of the PY solution. For
large p, and certainly for the polydisperse limit p→�, it is
impossible in practice. However, progress can be made for
near-monodisperse fluids by solving �18� perturbatively. The
Lij will generically depend on the reduced temperature �, the
overall number density 
, the sizes �i and � j of the particles
at contact, and all the molar fractions xi �or their polydisperse
analog, the size distribution p����. For small �i we can there-
fore expand to quadratic order as

Lij = L0 + L1a��i + � j� + L1b��� + L2a�i� j + L2b��i
2 + � j

2�

+ L2c�����i + � j� + L2d���2 + L2e��2� . �23�

The idea now is to insert this expansion, and the analogous
expansions of the known coefficients �ij, �ij, and �ij, into
the right-hand side of Eq. �18�. Having done this, one reex-
pands to quadratic order in �i, � j, �m, and ���, and to linear
order in ��2�. Finally, one replaces 
mxm=1 and 
mxm�m

n

= ��n�, for n=1,2. Comparing terms of the same form on the
left and right of Eq. �18�, one then finds a relatively simple
set of equations for the coefficients L0 , . . . ,L2e, as outlined in
the Appendix. To order zero in polydispersity one, of course,
retrieves Baxter’s original quadratic equation �Eq. �A5��,
whose physically relevant solution is

L0 =
�0

1
2 �1 + �0/�0 + ��1 + �0/�0�2 − �0�0/3�

, �24�

where �0=1−
 is the value of � in a monodisperse system
with density 
. Since we are perturbing around the physical
solution �24� for the monodisperse case, the results we find
for slightly polydisperse mixtures will automatically have the
correct physical behavior. In a nonperturbative solution, one
would need to check separately that the solution branch with
the correct low-density limit Lij→�ij

2 /�ij has been selected;
this condition arises since yij��ij�→1 at low density.

The conditions imposed by Eq. �18� for the higher order
expansion coefficients L1a , . . . ,L2e turn out to be linear and
can be straightforwardly solved order by order �see the Ap-
pendix�. The region in the density-temperature plane where
Eq. �18� has no physical solution therefore remains as in the
monodisperse case, being delimited by 
−�
�
+ with


± =
1 − 6�� − �2� ± �1 − 12� + 18�2

5 − 12� + 6�2 �25�

for �� �2−�2� /6. This is clearly an artifact of our finite-
order perturbation theory, given that we know from numeri-
cal solutions of Eq. �18� that the region where solutions exist
does change with increasing polydispersity.12 To reproduce
this effect within our approach, a resummation of the pertur-
bation theory to all orders would be needed.

C. Excess free energy

Given the perturbative expansion for Lij, we can deter-
mine the free energy of weakly polydisperse SHS mixtures

in the PY approximation. There are three known thermody-
namic routes �via the energy, compressibility, and virial� that
could potentially be used.11 We focus on the one that gives
the most reliable equation of state for the monodisperse sys-
tem �see Fig. 1�, i.e., the energy route. It predicts, in general,
for the � derivative of the excess free energy density

�fex

��
=


2

�


ij

xixj�ijLij .

Inserting the expansion �23� of Lij and reexpanding to qua-
dratic order yields

�fex

��
=


2

�
��0 + �1��� + �2���2 + �3��2�� ,

where

�0 = L0,

�1 = L0 + 2L1a + L1b,

�2 = L1a + L1b + L2a + 2L2c + L2d,

�3 = L1a + 2L2b + L2e.

We can then integrate from the desired value of � to the hard
sphere limit �→� to find

�fex � fex − fHS
ex = �f0

ex + �f1
ex��� + �f2

ex���2 + �f3
ex��2� ,

where

�f i
ex = − 
2�

�

�

�i����
d��

��
, i = 0,1,2,3.

and fHS
ex is the excess free energy density of the HS fluid. For

the latter we use the standard Boublík,37 Mansoori, Carna-
han, Starling, and Leland38 �BMCSL� expression.39 Ex-
panded to second order in polydispersity, this reads

fHS
ex = fHS,0

ex + fHS,1
ex ��� + fHS,2

ex ���2 + fHS,3
ex ��2� ,

where

fHS,0
ex =


2�4 − 3
�
�0

2 ,

fHS,1
ex =

6
2�2 − 
�
�0

3 ,

fHS,2
ex = 3
�
�1 + 2
��3 + 
 − 
2�

�0
4 + ln �0� ,

fHS,3
ex = 3
�
�1 + 3
 − 2
2�

�0
3 − ln �0� .

Altogether we therefore have, for the perturbative expansion
�14� of the excess free energy density of the SHS mixture,
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f0
ex = fHS,0

ex + �f0
ex,

a
 = fHS,1
ex + �f1

ex,

b
 = fHS,3
ex + �f3

ex,

c
 = fHS,2
ex + �f2

ex. �26�

With these results we can now proceed to apply Evans’ gen-
eral results to study cloud and shadow curves and fraction-
ation effects in polydisperse SHS mixtures.

Inspection of the lengthy explicit expressions for a–c
shows that the dependence on the stickiness expansion coef-
ficients �1a, �2a, and �2b is, in fact, rather simple. For a one
finds the form

a = a0 + �1aa1, �27�

with a0 and a1 as functions of 
 and � only. This is reason-
able since a is the coefficient of a first order �in �� term in the
excess free energy and should therefore only depend on the
expansion of the �ij to the same order. Function b involves,
in addition, terms proportional to �1a

2 and �2b, while the re-
maining coefficient �2a occurs only in function c. Since c
does not feature in the expressions for the phase boundary
shifts or fractionation effects to O�s2�, all results we show
below are therefore independent of �2a.

V. PHASE BEHAVIOR

In this section we show our results for the phase behav-
ior of polydisperse SHS mixtures. We will explore the vari-
ous choices of stickiness coefficients discussed in Sec. III,
i.e., cases I–V as well as the AO model for small values of
the polymer-to-colloid size ratio. Section V A has the main
results from our perturbation theory in polydispersity for the
PY closure in Sec. V B we then compare these predictions
with those from other approximation schemes.

A. PY closure

We start by recalling in Fig. 3 the phase diagram of the
monodisperse SHS fluid as obtained within the PY approxi-

mation and by using the energy route to thermodynamics.
Along with the binodal we show the spinodal, where the
curvature of the free energy vanishes and a homogeneous
phase becomes unstable to local density fluctuations, and the
region �25� where Baxter’s PY equation has no physical so-
lution. Here and in the following we use on the x axis the
volume fraction � rather than the density 
. In our units,
these two quantities are identical for monodisperse systems,
but differ to order s2 in the presence of size polydispersity.
For parent phases specifically, Eq. �A4� gives ��0�=
�0��1
+3s2� to quadratic order. Cloud phases, which share the pa-
rental size distribution, have similar 
�1�=
0

�1��1+3s2�+�
�1�,
while for shadow phases one finds using Eq. �17� that 
�2�

=
0
�2��1+3�1+�a�s2�+�
�2�.22

To get some initial intuition for the effects of polydisper-
sity, it is useful to consider first the single-phase equation of
state. Figure 4 shows plots of the dimensionless pressure
against volume fraction at several values of the polydisper-
sity and for three choices of the reduced temperature �. We
consider here constant stickiness coefficients �case IV� to
allow a comparison with numerical work for discrete
mixtures.12 It is gratifying that we find qualitatively the same
trend, with the pressure decreasing with increasing polydis-
persity. Quantitatively, however, the results are not directly
comparable because in Ref. 12 the less accurate compress-
ibility �rather than energy� route was used to evaluate the
pressure.

To interpret physically why the pressure decreases with
polydispersity s at fixed packing fraction �, we note first that
such a decrease is found also in the absence of adhesion �i.e.,
for HS�. This has been established in simulations40 and is
reproduced qualitatively by the BMCSL equation of state;
the intuitive reason is that in a fluid �gas or liquid� phase a
spread of sizes allows for a more efficient packing of the
particles. In such a less “jammed” particle arrangement one
expects to find fewer interparticle contacts and so, in the
presence of adhesion, fewer particle pairs interacting attrac-
tively. This will increase the pressure, counteracting the re-
duction, that one would expect for HS, resulting from the

FIG. 3. Phase diagram of the monodisperse SHS fluid obtained with the PY
closure and the energy route to thermodynamics. Shown are the binodal and
spinodal curves and the region where the PY equation has no solution �see
Eq. �25��.

FIG. 4. Pressure from the energy route of the PY approximation for a single
�parent� phase with case IV stickiness coefficients, plotted against volume
fraction. Results are shown for several small values of the polydispersity s
�see legend� and well above, just above, and below �from left to right� the
critical point of the monodisperse system. The pressure was determined
using Eq. 9 of Ref. 22.
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more efficient packing. Our results are quite consistent with
this: at finite �, we find that the pressure decreases less with
polydispersity than in the HS limit �→�.

The curves shown for the polydisperse cases in Fig. 4
cannot be used to infer phase coexistence properties directly
by, e.g., a Maxwell construction: fractionation means that
two coexisting phases do not have properties represented by
a single relation between pressure and volume fraction. This
remark holds true quite generally for single-phase equations
of state in polydisperse systems, including, e.g., the results
obtained in Ref. 12 within the PY compressibility route to
the equation of state. However, some more limited informa-
tion on single-phase stability can be deduced. Specifically, a
single phase cannot be stable where the pressure decreases
with volume fraction. In the middle graph of Fig. 4, for ex-
ample, where �=0.1186 is just above the monodisperse criti-
cal point and so a monodisperse system is still stable at all
densities, the polydisperse mixtures with s=0.2 and 0.3 are
already unstable in some range of densities. This means that
the region where phase separation occurs must extend to
larger values of � for polydisperse than for monodisperse
SHS, a result which—for case IV, as considered here—we
will find confirmed very shortly.

We next turn to explicit results for the phase behavior,
starting in Fig. 5 with cases II and IV for the stickiness
coefficients, illustrated here for parent polydispersity s=0.3.
The cloud curve gives the boundary of the region where
phase coexistence occurs. The shadow curve, which records
the density of the coexisting phase at each point of incipient
phase separation, is normally distinct from this. However, for
the purely size-polydisperse cases considered here it is
known on general grounds that when represented in terms of
volume fraction rather than density the cloud and shadow
curves coincide to O�s2�.32,33 It is reassuring that, as Fig. 5
shows, this property is preserved by the PY approximation.

Turning to more detailed features of Fig. 5, we observe
that in case IV the coexistence region is broadened towards

both lower and higher volume fractions. As the monodis-
perse critical point is approached, the perturbation expansion
breaks down as expected and the cloud/shadow curves di-
verge. No quantitative information can then be extracted in
this regime, but the fact that the divergence is outwards still
tells us that the coexistence region in the polydisperse case
extends to larger values of � than for monodisperse SHS.
This is consistent with our inference from the single-phase
equation of state above.

Comparing cases II and IV in Fig. 5 one sees first that
the phase boundary shifts are rather smaller in the former
than in the latter. Also the �slight� broadening of the phase
separation region towards lower � is now restricted to � be-
low around 0.093, while above this value the opposite trend
is observed. The divergence of the curves at the monodis-
perse critical point is now inwards so that phase coexistence
must terminate at values of � below the monodisperse �c.

Figure 6 shows the cloud and shadow curves for case V.
We find that the shifts away from the monodisperse binodal
are rather larger than in the previous two cases, and therefore
show results for a smaller polydispersity s=0.2 rather than
for s=0.3. Cloud and shadow curves no longer collapse, con-
sistent with expectation as case V is not purely size polydis-
perse. The cloud curve shows that the coexistence region
narrows in this case, except on the high-density branch for �
below �0.085. The inward divergence of the cloud curve
shows that the coexistence region also shrinks towards lower
�. The shadow phases are more dense throughout than the
phases on the same branch of the cloud curve. Except for the
last point, these trends agree with the nonperturbative results
of Ref. 18 derived within the C0 closure.

Case I, shown in Fig. 7, has even stronger polydispersity
effects, and we show predictions for a correspondingly
smaller polydispersity s=0.1. For � not too far below the
critical point the behavior is otherwise qualitatively similar
to case V; for lower � the coexistence region is displaced
towards lower rather than, as in case V, higher volume frac-
tions. The shrinking of the coexistence region towards lower
� is again in qualitative agreement with results from the sim-
pler C0 closure.18

Finally, we turn to the phase behavior predicted for the
AO model with a small polymer-to-colloid size ratio � /�0

FIG. 5. Cloud and shadow curves for SHS mixtures with polydispersity s
=0.3, as obtained within the PY approximation and the energy route to
thermodynamics, for coefficients �ij chosen according to cases II and IV
from Eq. �5�. The shifts from the binodal of the monodisperse system �la-
beled “mono”� were calculated using Eq. �15� and give the leading �O�s2��
corrections in a perturbative treatment of polydispersity. Note the collapse of
the cloud and shadow curves, as expected from this order of the perturbation
theory for purely size-polydisperse models �Refs. 32 and 33�, and the diver-
gence of the perturbation theory at the monodisperse critical point.

FIG. 6. Cloud and shadow curves for the SHS model with polydispersity
s=0.2 and case V stickiness coefficients. The binodal of the monodisperse
system is shown for comparison.
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=0.1 and polydispersity s=0.07, as shown in Fig. 8. For this
choice of � we have ��3.97 at the critical point of the
monodisperse system, and the condition �i�s�1/� for the
validity of the expansion in particle size of the stickiness
coefficients �ij is reasonably well obeyed. Here the coexist-
ence region is broadened in all directions by the introduction
of polydispersity: towards low and high densities, and also
towards larger values of �. The shadow phases are again
more densely packed than the analogous cloud phases.

We conclude this section by considering fractionation
effects. These are illustrated in Fig. 9 for cases II and I, for a
parent distribution of the Schulz form and with values of the
polydispersity s as in the corresponding Figs. 5 and 7. When
phase separation is approached from low densities, a gas
cloud phase with the parental size distribution coexists with
an infinitesimal amount of a liquid shadow phase with a
different size distribution. At the high-density boundary of
the coexistence region, a liquid cloud phase similarly coex-
ists with a distinct gas shadow phase. Figure 9 shows that for
case II the liquid phase contains more larger particles than
the coexisting gas in both of these situations �and therefore
presumably throughout the whole coexistence range of par-
ent densities at the chosen ��. Case I exhibits the opposite
behavior: here the liquid phases contain more smaller par-
ticles than their coexisting gas counterparts.

To understand this difference between cases I and II, we
return to Eq. �17�. Consider the gas cloud point, where 
0

�1�

and 
0
�2� are the densities of coexisting gas and liquid in the

monodisperse system; �a then is the difference in the values
of a between gas and liquid. If this is positive, then Eq. �17�
says that the liquid shadow has an enhanced concentration of
larger particles. By reversing the role of the two densities
one then sees easily that also at the liquid cloud point the
liquid phase will contain more of the larger particles than the
gas �shadow� phase. In summary, the liquid contains pre-
dominantly the larger particles if �a�0, and the smaller
particles if �a�0. But from Eq. �27�, �a=�a0+�1a�a1 so
that different choices of stickiness coefficients affect the di-
rection and strength of fractionation only via �1a. The func-
tions �a0 and �a1 are shown in Fig. 10 and are both posi-
tive; as a result, �a is positive when �1a�−�a0 /�a1 and
negative otherwise. The ratio occurring on the right-hand
side is almost constant and remains close to 1/3 over a large
range of �, as the inset of Fig. 10 demonstrates. We can now

FIG. 7. Cloud and shadow curves for the SHS model with polydispersity
s=0.1 and case I stickiness coefficients. The binodal of the monodisperse
system is shown for comparison.

FIG. 8. Cloud and shadow curves for the AO model with polymer-to-colloid
size ratio � /�0=0.1 and �colloid� polydispersity s=0.07. The binodal of the
monodisperse system is shown for comparison.

FIG. 9. Fractionation in SHS mixtures with stickiness coefficients chosen
according to cases II and I, at �=0.11 and for polydispersities s as in the
corresponding Figs. 5 and 7. Shown are the cloud �parent� size distribution
p���, taken to be of the Schulz form, and the size distributions in the liquid
shadow and gas shadow phases that form when coexistence is approached
from low densities �gas cloud phase� and high densities �liquid cloud phase�,
respectively. For case II �main graph� the larger particles tend to accumulate
in the liquid phase, while for case I �inset� the opposite is true.

FIG. 10. Decomposition �a=�a0+�1a�a1 of the difference in a between
gas and liquid phases. The two contributions �a0 and �a1 are plotted sepa-
rately against �; the latter quantity is graphed on the vertical rather than the
horizontal axis for ease of comparison with Figs. 5–8. Inset: ratio of
�a0 /�a1.
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rationalize the difference between cases I and II observed
above: for case I, �1a=−1�−1/3, hence �a�0 and fraction-
ation will enrich the liquid in small particles; for case II,
�1a=0�−1/3 and one has the opposite situation. Referring
to Table I we also conclude that case IV will have the same
fractionation behavior as case II, while case V will produce
the same “direction” of fractionation �smaller particles in the
liquid� as case I but with quantitatively weaker effects. In the
AO case �1a depends on � as discussed in Sec. III B, but this
effect turns out to be weak quantitatively, with �for � /�0

=0.1� �1a ranging from �0.95 at the critical point to �1.24
at �=0.065. Taking for simplicity �1a�1 one infers that frac-
tionation effects will be qualitatively similar to cases II and
IV, but quantitatively �a will be larger by a factor of around
4. All of these conclusions can be confirmed by detailed
examination of the explicit results for the various cases.

B. Other approximation schemes

Once one accepts the PY closure, the results shown
above are exact in their treatment of polydispersity, certainly
within the perturbative setting of weakly polydisperse mix-
tures. However, the PY closure itself—while more accurate
than its competitors—does remain an approximation. It is
therefore useful to compare with the predictions of other ap-
proximation schemes to assess the robustness of our predic-
tions. We do this first for case II, where an approximate free
energy of BMCSL type can be constructed, and then for the
AO model, which can be analyzed using the free volume
theory of Refs. 41 and 42.

To construct the alternative approximation for case II
one starts from a virial expansion of the excess free energy
density up to the third virial coefficient. This is easily found
as

fex = 

3 + �3 − 12t�
1
2 + 1
2 �

3

2 + 3�1 − 12t + 48t2

− 32t3�
2
3 + 6�1 − 4t�
1
2
3� , �28�

where t=1/ �12��; the terms of second order in density agree
with the energy route of the C0 approximation.18 The inter-
esting feature of this result is that the fourth order moment 
4

does not appear, in contrast to the analogous expansions for
the other cases I, IV, and V that we have considered. Further-
more, the only modification compared to the pure HS case is
in the t dependence of the coefficients. These observations
suggest that it should be possible to construct a modified free
energy expression of BMCSL type which matches the above
virial expansion to third order in density. Remarkably, if the
desired modified BMCSL form is parametrized in a fairly
general manner as

fex = �A1

2

3


3
2 − A2
	�ln�1 − D
3� + E� +

3B
1
2

1 − D
3

+
C
2

3


3�1 − D
3�2 , �29�

then by expanding to third order in density and matching to
the expansion �28� one finds a unique solution for the coef-
ficients,

E = 0, D = A2 = 1, B = 1 − 4t, C = A1 = B3 + 32t3.

The presence of polydispersity is crucial here: for a mono-
disperse system, the matching conditions to third order in
density would not constrain the coefficients sufficiently.

One can now apply the perturbative scheme used
throughout this paper to obtain from the excess free energy
of Eq. �29� the functions a and b, and hence the cloud and
shadow curves. �Note that the perturbative approach is used
here mainly for ease of comparison with our other results;
since the free energy �29� is truncatable, a full solution of the
phase equilibrium conditions would be fairly straightfor-
ward.� The results are shown in Fig. 11; note that not just the
polydisperse cloud/shadow curves but also the monodispere
binodal are different from the ones obtained from the PY
approximation. Looking at the polydispersity-induced shifts,
one sees that on the high-density branch of the cloud/shadow
curve these are quite comparable to those from the PY ap-
proximation �Fig. 5�, even semiquantitatively. Polydispersity
effects on the low-density branch are rather smaller, again as
found within the PY closure. Near the critical point, how-
ever, the trends are reversed: the BMCSL-type approxima-
tion predicts an extension of the coexistence region towards
larger � and smaller �, whereas the PY approximation leads
to the opposite result.

The second case where we have an alternative approxi-
mation scheme available for comparison is the AO model.
The free volume theory of Ref. 11 effectively linearizes the
excess free energy in the polymer �reservoir� potential 
p,
and the same is true for its generalization to polydisperse
colloids.42 It is therefore most accurate when the depletion
interaction between the colloids, which is proportional to 
p,
is small �in units of kBT�. In order to still get gas-liquid phase
separation, the polymer size � must then not be too small.
This is the opposite limit as for our SHS mapping, which
will work best when ���0 and the depletion attraction is
large at contact. If anything, one therefore expects the best
agreement between the two approximations for intermediate
values of �; a suitable choice is � /�0=0.1, as investigated
above. Figure 12 compares the two sets of cloud and shadow

FIG. 11. Cloud and shadow curves for case II stickiness coefficients and
with polydispersity s=0.3, calculated using the BCMSL-type free energy
�Eq. �29�� rather than the PY approximation, as in Fig. 5. The binodal of the
monodisperse system, which differs from the PY result, is shown for com-
parison. Main graph: region around the critical point. Inset: global view of
the results on the same scale as in Fig. 5.
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curves predicted. On the vertical axis we plot the polymer
�reservoir� volume fraction �p. This equals 
p�3 in our di-
mensionless units and is the conventional variable used in
phase diagrams of colloid-polymer mixtures.41 Comparison
of the two panels of Fig. 12 reveals that the qualitative agree-
ment between the two theories is surprisingly good. In par-
ticular, the qualitative changes caused by the presence of
polydispersity �broadening of coexistence region to lower
and higher colloid volume fractions, and lower polymer vol-
ume fraction� are in full agreement. For the relevant range of
polymer volume fractions there is an even quite good quan-
titative agreement �but note the slightly different axis ranges
on left and right�, and the shifts of cloud and shadow curves
away from the monodisperse binodal are also quite compa-
rable. Even the predicted fractionation effects agree well: as
the inset on the right of Fig. 12 demonstrates, the calculated
values of �a are, apart from the slight shift in the critical
point values of the polymer volume fraction, quite consistent
with each other.

We note briefly that in order to calculate the free volume
theory data shown in Fig. 12 we took the excess free energy
for fully polydisperse colloids �at fixed polymer chemical
potential� derived in Ref. 42 and then found the functions a
and b by expanding explicitly, as in Eq. �14�. This gives for
a the same result as obtained by Evans,22 while b differs
from his expression in terms of approximate correlation
functions.22 One might expect that our approach of deriving
a and b from one unified polydisperse excess free energy
would be somewhat more accurate than Evans’ procedure of
finding a and b by quite different routes. We have checked
that for larger polymer sizes � /�0=0.4 our method predicts
similar trends to those reported in Ref. 22, but quantitatively
the effects of polydispersity are less pronounced.

VI. CONCLUSIONS

We have presented a perturbative approach to the deter-
mination of the gas-liquid phase behavior of polydisperse

sticky hard spheres �SHS�, studied within the Percus-Yevick
�PY� integral equation theory. For arbitrary size polydisper-
sity, the calculation of phase diagrams analogous to those
reported here would normally require the solution of a large
�or infinite� system of quadratic coupled equations, a task
which in practice can be accomplished neither analytically
nor numerically. To get around this bottleneck of the PY
closure we focused on weakly polydisperse mixtures, where
the overall size distribution is narrow in the sense that its
normalized �by the mean� standard deviation s is small com-
pared to unity. This allowed us to calculate in closed form
the leading order �O�s2�� shifts of cloud and shadow curves
away from the monodisperse binodal, and the corresponding
fractionation effects. The thermodynamics was derived from
the PY solution via the energy route because in the monodis-
perse case this method gives the best match to Monte Carlo
simulation results, even for low reduced temperatures �
around and below the critical point.

In order to specify the properties of a SHS mixture one
needs to know how the stickiness coefficients �ij depend on
the sizes of the two interacting particles. We discussed a
number of plausible constraints on this size dependence. In
obtaining explicit results we considered specifically cases
I–V �excluding III which, with our now more appropriate
choice of reference length, becomes identical to I� previously
suggested within exact solutions of simpler closures such as
C0 and C1. Of these, cases II and IV are special since they
can be seen as the sticky limit of purely size-polydisperse
interactions, in which scaling of both particle sizes by a com-
mon factor only changes the range but not the strength of the
interaction. We have also considered the AO model of a mix-
ture of polydisperse colloids and polymers, which for small
polymer size can be mapped to a good approximation onto a
SHS model. The stickiness coefficients can be derived in this
case rather than postulated; in contrast to the simpler ad hoc
prescriptions of cases I–V, they are functions of �.

In the simplest case �case IV� of constant stickiness co-
efficients we first investigated the single-phase equation of
state, finding qualitative agreement with a numerical solution
of the compressibility equation of state for a small number of
components by Robertus et al.12 Moving on to phase coex-
istence proper, we found for cases II and IV that cloud and
shadow curves coincide in the volume fraction representation
and to O�s2�, as expected on general grounds; less obviously,
our results also show that in these two cases the deviations of
the polydisperse cloud/shadow curves away from the mono-
disperse binodal are quantitatively small. In all the other
cases considered the shadow curves are located at higher
volume fractions than the cloud curves, a trend observed in
many other polydisperse systems.22,29

Summarizing our findings regarding the effect of poly-
dispersity on the extent of the coexistence region as delim-
ited by the cloud curve, it is simplest initially to group the
different scenarios according to their behavior near the criti-
cal point. For case IV and the AO model �with a polymer-
to-colloid size ratio of 0.1� the coexistence region is shifted
to higher reduced temperatures �; conversely, at fixed � it
covers a wider range of parent volume fractions �. Cases I,

FIG. 12. Comparison of predictions for the AO model with polymer-to-
colloid size ratio � /�0=0.1. Left: results of SHS mapping analyzed within
the PY approximation; as in Fig. 8 cloud and shadow curves are shown for
colloid polydispersity s=0.07, along with the monodisperse binodal for
comparison. The vertical axis now shows the polymer volume fraction
rather than the reduced temperature �. Right: analogous results obtained
from free volume theory. Inset, right: fractionation coefficient �a for the
two approximation schemes.
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II, and V, on the other hand, show the opposite behavior,
with the coexistence region shrinking towards lower �.

The trends in case IV and AO remain unchanged as one
moves to lower values of �, with the coexistence region con-
tinuing to broaden towards lower and higher values of � at
the two ends �gas and liquid�. In the other cases the shrinking
trend near the critical point can be reversed at lower �. For
example, for case II one also eventually sees a broadening to
lower �gas branch� and higher �liquid branch� �. For case V
the coexistence region is shifted to higher � at both ends �gas
and liquid� at low �; case I shows the opposite behavior.

We have analyzed also the fractionation effects that ac-
company polydisperse phase separation, where coexisting
phases have different particle size distributions. Depending
on the stickiness coefficients considered, the liquid phase
contains predominantly the larger �as in cases II and IV and
AO� or the smaller particles �as in cases I and V�. We ratio-
nalized this result by showing that the fractionation effects
depend on the stickiness coefficients only via the expansion
coefficient �1a; where this is above �−1/3, the larger par-
ticles accumulate in the liquid phase; otherwise, they accu-
mulate in the gas phase.

Finally, we have compared our results with the predic-
tions from other available approximation schemes to check
their robustness. Case II is important here because a variety
of simple but realistic interaction potentials, used in the lit-
erature to model short ranged attractions in real solutions of
colloids, reverse micelles, or globular proteins, can be
mapped onto this model.34 We constructed an approximate
excess free energy by allowing various coefficients within
the BMCSL free energy for hard spheres to become � depen-
dent and to match the �for case II, particularly simple� third
order virial expansion. The resulting binodal in the monodis-
perse limit is rather different from the one obtained from the
PY closure with the energy route. The polydispersity-induced
shifts of the �coincident� cloud/shadow curves are neverthe-
less comparable to those predicted by our PY analysis, but
only sufficiently far below the critical point. Near the critical
point the BMCSL-type excess free energy predicts an en-
largement of the coexistence region towards higher �, while
the PY closure gives the opposite result. Given that in the
monodisperse case the PY binodal is rather closer to simula-
tion results than the BMCSL-type one, we would expect that
the PY predictions are more accurate also for the polydisper-
sity effects.

The second model for which we considered an alterna-
tive approximation scheme was the AO model. Here a direct
comparison with free volume theory is straightforward since
for the latter a generalization to polydisperse colloids has
recently been derived.42 Even though one expects the two
approaches to be valid in complementary regions �small
polymer size � for the SHS mapping and larger � for free
volume theory�, we found very good qualitative and even
semiquantitative agreement of the predictions from the two
routes for an intermediate value �0.1� of the polymer-to-
colloid size ratio.

In future work, direct simulations of polydisperse SHS
mixtures would obviously be of interest to test our predic-
tions and resolve any differences with other approximation

schemes, e.g., in case II. Simulations would be ideal here
since in contrast to experiment they would allow one to
probe directly different choices for the stickiness coeffi-
cients. Because of the presence of polydispersity, a grand
canonical Monte Carlo approach32,43–45 may be the simula-
tion method of choice, possibly supplemented by specific
cluster algorithms tailored to sticky interactions.19–21 For the
physically more realistic AO model, our predictions should
be more accurate than those of free volume theory for small
polymer-to-colloid size ratios. Detailed experimental or
simulation tests in this regime would be welcome. In simu-
lations one could work directly with the AO depletion poten-
tial for the colloids, without ever representing the polymers
explicitly. For comparison with experiment one would need
to work out the actual volume fraction of polymer in the
system rather than in a reservoir; this should, in principle, be
a straightforward exercise once our excess free energy has
been rewritten as a function of polymer chemical potential.
On the experimental side one would require that the colloids
are sufficiently polydisperse �beyond a terminal polydisper-
sity around s=0.07; see the discussion and bibliography in
Ref. 46� to suppress kinetically any solid phases, thus allow-
ing stable observation of the gas-liquid phase splits we have
calculated.

APPENDIX: PERTURBATIVE EXPANSION OF Lij

For the perturbative expansion of Eq. �18� one needs the
expansions of �ij, �ij, and �ij. These involve the trivial ex-
pansions

�i = 1 + �i, �A1�

�ij = 1 + 1
2 ��i + � j� , �A2�

�i� j = 1 + ��i + � j� + �i� j . �A3�

One also needs the expansions to quadratic order of the mo-
ments


m = 
��1 + ��m� = 
�1 + m��� + 1
2m�m − 1���2� + ¯ � ,

�A4�

giving in particular 
2=
�1+2���+ ��2�� and �=1−�=1
−
3=�0−3
���−3
��2�, with �0=1−
 as defined in the
main text. The final ingredient is the expansion �6� for the �ij,
which is left in general form to allow different possible
choices of the stickiness coefficients to be considered to-
gether. Altogether one gets the following expansion coeffi-
cients for the �ij:

�0� =
1

�0
+

3

2




�0
2 ,

�1a� = �1 + �1a�
1

�0
+ �9

4
+

3

2
�1a	 


�0
2 ,

�1b� = 6



�0
2 + 9


2

�0
3 ,
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Similarly one has for the �ij

�0� = 
 ,

�1a� = � 1
2 + �1a�
 ,

�1b� = 0,

�2a� = ��1a + �2a�
 ,

�2b� = � 1
2�1a + �2b�
 ,

�2c� = 0,

�2d� = 0,

�2e� = 0,

and for the �ij

�0 =
1

�0
,

�1a =
1

�0
,

�1b =
3


�0
2 ,

�2a =
1

�0
,

�2b = 0,

�2c =
3


�0
2 ,

�2d =
9
2

�0
3 ,

�2e =
3


�0
2 .

One now inserts these expansions into Eq. �18� and pro-
ceeds as explained in the main text to obtain the desired
conditions on the expansion coefficients L0 , . . . ,L2e of the
Lij. To state these, it is helpful to define the quantities

M�,� �
1

12
L�L� −

1

2
�L��� + L���� ,

where Greek indices stand for the labels 0, 1a, 1b, 2a, 2c,
2d, and 2e of the coefficients of the perturbative expansions.
The desired conditions are then

L0 = �0 + �0M0,0, �A5�

L1a = �1a + �1aM0,0 + �0M0,1a, �A6�

L1b = �1b + �1bM0,0 + 2�0�M0,1a + M0,1b� , �A7�

L2a = �2a + �2aM0,0 + 2�1aM0,1a + �0M1a,1a, �A8�

L2b = �2b + �2bM0,0 + �1aM0,1a + �0M0,2b, �A9�

L2c = �2c + �2cM0,0 + 2�1a�M0,1a + M0,1b� + �1bM0,1a

+ �0�M1a,1a + M1a,1b + M0,2a + M0,2c� , �A10�

L2d = �2d + �2dM0,0 + 2�1b�M0,1a + M0,1b� + �0�2M0,2c

+ 2M0,2d + 2M1a,1b + M1b,1b� , �A11�

L2e = �2e + �2eM0,0 + �0�M1a,1a + 2M0,2b + 2M0,2e� .

�A12�

The first of these determines L0 and leads back to Baxter’s
solution �24� for the monodisperse case. All other equations
involve the desired coefficient on the left at most linearly on
the right hand side and so are trivial to solve; e.g., Eq. �A6�
has L1,a on the left and implicitly via M0,1a on the right.
Running through the equations in order, all expansion coef-
ficients can then be found.
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Chapter 14

Patchy sticky hard spheres: analytical
study and Monte Carlo simulations

Fantoni R., Gazzillo D., Giacometti A., Miller M. A., and Pastore G., J. Chem. Phys.
127, 234507 (2007)
Title: “Patchy sticky hard spheres: analytical study and Monte Carlo simulations”
Abstract: We consider a fluid of hard spheres bearing one or two uniform circular adhesive
patches, distributed so as not to overlap. Two spheres interact via a “sticky” Baxter potential
if the line joining the centers of the two spheres intersects a patch on each sphere, and via
a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and
of the percolation line as a function of the size of the patch (the fractional coverage of the
sphere’s surface) and of the number of patches within a virial expansion up to third order
and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density
expansion of the direct correlation function. We find that the locations of the two lines
depend sensitively on both the total adhesive coverage and its distribution. The treatment
is almost fully analytical within the chosen approximate theory. We test our findings by
means of specialized Monte Carlo (MC) simulations and find the main qualitative features
of the critical behaviour to be well captured in spite of the low density perturbative nature
of the closure. The introduction of anisotropy is a first step towards a more realistic model
of globular proteins in solution.
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We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches,
distributed so as not to overlap. Two spheres interact via a “sticky” Baxter potential if the line
joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere
potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line
as a function of the size of the patch �the fractional coverage of the sphere’s surface� and of the
number of patches within a virial expansion up to third order and within the first two terms �C0 and
C1� of a class of closures Cn hinging on a density expansion of the direct correlation function. We
find that the locations of the two lines depend sensitively on both the total adhesive coverage and
its distribution. The treatment is almost fully analytical within the chosen approximate theory. We
test our findings by means of specialized Monte Carlo simulations and find the main qualitative
features of the critical behavior to be well captured in spite of the low density perturbative nature
of the closure. The introduction of anisotropic attractions into a model suspension of spherical
particles is a first step toward a more realistic description of globular proteins in solution. © 2007
American Institute of Physics. �DOI: 10.1063/1.2805066�

I. INTRODUCTION

The idea of modeling fluids as systems of spherical par-
ticles with orientationally dependent attraction dates back at
least as far as Boltzmann, who envisaged chemical attraction
between atoms only when “their sensitive regions are in
contact.”1 Models of this type, featuring patchy interactions,
are currently experiencing renewed relevance in the context
of colloidal and biological matter in contrast to their original
conception in connection with fluids of atoms and small
molecules.2–17

The new interest arises for various reasons. On the tech-
nological side, patchy particles give the possibility of design-
ing self-assembling nanoscale devices through anisotropic
decorations of the particle surface by means of organic or
biological molecules.13–15 Nature provides inspiration for
what might be achieved in this area, a particularly elegant
example being the self-assembly of virus capsids. These pro-
tein shells are monodisperse and highly symmetric and are
composed of identical subunits. Simplified descriptions of
icosahedral virus capsids are currently being formulated us-
ing spherical subunits with directional interactions18,19 and
the possibility of adopting similar schemes to self-assemble
other target structures is being explored.13 This level of or-
ganization inevitably requires a certain specificity in the in-

teractions between the subunits as well as measures to pre-
vent further aggregation of the assembled objects.

Less specific patchy interactions give rise to associating
fluids containing a distribution of cluster sizes or extended
gel-like networks. The key feature of such systems is a set of
pointlike sites on the particle surface, leading to strongly
directional bonding with a maximum of one bond per
site.3,8,10,11,16,17 This type of interaction has proven invalu-
able in elucidating the interplay between fluid-fluid and sol-
gel transitions. One advantage of these models is that pow-
erful analytical tools are available for them, such as
Wertheim’s thermodynamic perturbation theory,20 which
yields accurate results under experimentally realistic
conditions.21,22

In contrast to these models with attractive spots, one can
envisage particles that interact through larger attractive re-
gions on their surface, for example, globular proteins with
patches of hydrophobic �nonpolar� amino acids exposed at
the surface. Isotropic potentials have been remarkably suc-
cessful in modeling the phase diagrams of certain
proteins,23–25 but it seems that not all features of their coex-
istence curves can be properly explained by such simple
interactions.26 In this sort of system, it seems more appropri-
ate to consider regions with short-range attractive
forces2,4–7,9,12 rather than site-site bonds. These attractive
patches are capable of sustaining as many “bonds” as per-
mitted by geometry. The size of the patch therefore becomes
an important new parameter that does not arise in most work
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on associating fluids. We note, however, that for sufficiently
narrow patches, the two models become essentially equiva-
lent.

In the present work, we focus on a simple yet physical
model which is a variation of those treated in Ref. 12. We
consider uniform circular patches distributed on the surface
of the sphere in such a way that they do not overlap. The
patches are delimited by circles which can be defined by the
associated solid angles. Two particles experience an adhesive
attraction only when a patch on one sphere touches a patch
on the other. The adhesion is of Baxter’s type,27 i.e., the
attraction has infinitesimal range, acting only when the par-
ticles are exactly in contact, as described in the next section.
This model has the advantage that it can be tackled with
analytical tools, unlike most other models for which not even
the isotropic analog bears this appealing feature. Various is-
sues arise in this sort of model relating to the stability of the
liquid phase with respect to crystalline solid phases, and
these points have been studied in Refs. 28 and 29.

The integral equation theory of fluids with an angularly
dependent pair potential is complicated by the fact that the
pair distribution function is also angularly dependent.30 In
the general case one must appeal to the symmetries of the
fluid �translational invariance, rotational invariance, invari-
ance under permutation of like particles, and invariance un-
der the symmetry operations of the individual particles and
of the correlation functions� in order to simplify the
problem.31–33 In some cases, it is possible to factorize the
angular dependence of the Ornstein–Zernike �OZ� equation.
For example, the factorization for a fluid of dipolar particles
has long been known34 and in Ref. 35 it is shown how to
solve the dipole-dipole angular distribution of attraction in
the adhesive limit within the Percus–Yevick framework.
However, the dipolar case hinges on exploiting a special
property of this particular angular distribution that is particu-
larly useful for the angular convolution in the OZ equation.
In contrast, for an angular dependence with discontinuities,
such as the circular patches treated here, any approach rely-
ing on a spherical harmonic expansion would prove a formi-
dable task due to the large number of terms necessary to
capture the discontinuities.

In the present model we therefore follow a different
route based on two parallel and related schemes. We first
perform a virial expansion up to the third virial coefficient.
We then proceed to study a class of closures �denoted C0,
C1, . . .� which were proposed in Ref. 36 and are based on a
density expansion of the direct correlation function. In par-
ticular, the zeroth-order term �C0� turns out to be equivalent
to a modified mean spherical approximation, whereas the
first-order �C1� is known to provide the correct third virial
coefficient.36 Within both schemes we study the thermody-
namics, radial distribution function and percolation thresh-
old, and compare with specialized Monte Carlo simulations
which were recently devised to this aim.37 By varying the
size of the adhesive patches and by selecting between one
patch and two diametrically opposite patches, we are able to
investigate the roles of both the total surface coverage and
the geometrical distribution of the adhesion. In both the one-
and two-patch cases we can change smoothly between small

sticky spots, capable of making only one bond each, and the
isotropic adhesive sphere. We find that the position of the
critical fluid-fluid transition line and the percolation thresh-
old are both sensitive to the surface coverage. At fixed cov-
erage, there is also a dependence on the way in which this
adhesion is distributed.

Our results can be compared and contrasted with the
recent work of Bianchi et al.,17 who consider the maximum
number of bonds per particle, rather than the fractional sur-
face coverage, as the key parameter controlling the location
of the critical point. In the present work we are able to tune
both effects, thus illuminating their specific roles in the lo-
cation of critical points.

The remainder of the paper is organized as follows. In
Sec. II we introduce the model while Sec. III contains a
description of the analytical and numerical tools used. Re-
sults for the radial distribution function, fluid-fluid transition,
and percolation threshold are included in Secs. IV–VI, re-
spectively. Finally, in Sec. VII the inclusion of an adhesive
background is discussed, and conclusions and an outlook are
contained in Sec. VIII.

II. DEFINITION OF THE MODEL

A. Baxter model with orientationally dependent
adhesion

We start with some general remarks on the orientational
dependence of a three-dimensional homogeneous fluid of
hard spheres with adhesive pairwise interactions. Let ri be
the coordinates of the ith particle �i=1,2 ,3 , . . .� and assume
that the patch distribution on the sphere has cylindrical
symmetry so that its orientation in space is determined by
a unit vector ŝi rigidly attached to it. Then ŝi

= �sin �i cos �i , sin �i sin �i , cos �i� where �i and �i are the
polar and the azimuthal angles with respect to a fixed refer-
ence frame �see Fig. 1�. As usual, we introduce the relative
coordinates r12=r2−r1 and the associated distance r12= �r12�,
and work with the following short-hand notation: �1,2�
= �r12,�1 ,�1 ,�2 ,�2� and �i= ��i ,�i� for the orientation of ŝi.
The orientation of r̂ij =rij /rij with respect to the same frame
of reference will be denoted by �ij = ��ij ,�ij�.

The particles interact through a pair potential ��1,2�,

FIG. 1. Summary of the vector notation used to define the model.
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defined later, which is a generalization of Baxter’s sticky
hard sphere �SHS� limit27 to orientationally dependent inter-
actions. We start with

���1,2� = �
+ � 0 � r � 	

− ln� 
�1,2�
12�

R

R − 	
� 	 � r � R

0 r 
 R ,
	 �1�

where �=1 / �kBT� �kB being Boltzmann’s constant and T be-
ing the temperature�, 	 is the diameter of the spheres, and

�1,2� /� is a dimensionless adhesion coefficient. We define
��1,2� through the following limit on the Boltzmann factor
e:

e�1,2� = exp�− ���1,2��

= lim
R→	

exp�− ���1,2��

= ��r12 − 	� +

�1,2�

�

	

12
��r12 − 	� , �2�

where ��·� is the Heaviside step function and ��·� is the
Dirac delta function. When 
�1,2�=1 we recover the usual
Baxter SHS model and, hence, the only orientational depen-
dence is included in the definition of 
�1,2�. It is easy to see
that 
�1,2� cannot be a simple function of ŝ1 and ŝ2 but must
also include a dependence on r̂12=r12 /r12 in order to avoid a
trivial corresponding states rescaling. This point is discussed
in Appendix A. In the present work we shall address a type
of orientational dependence which was introduced by Kern
and Frenkel12 following a previous suggestion by Jackson
et al.2

B. Patchy sticky hard spheres

Consider a single hard sphere having one or more iden-
tical adhesive circular patches distributed on its surface in
such a way that they do not overlap with one another. The
size of the patch can be specified by the angular amplitude
2� as shown in Fig. 2. The unit vector ŝi

�p� identifies the

direction from the center of particle i to the center of patch p
on the surface �p=1, . . . ,n, the total number of patches�. The
sticky area is then given by points r̂ on the surface of the
particle such that the angle between ŝi

�p� and r̂ is smaller than
�.

In conjunction with Eq. �2�, the adhesive part of the
interaction between two particles acts only if their point of
contact lies inside a patch on each particle, as depicted in
Fig. 3 for the case of a single patch �n=1�. Therefore,

�1,2�

�ŝ1 , ŝ2 , r̂12� can be written as


�1,2� = �1 if ŝ1
�p1� · r̂12 � cos � and − ŝ2

�p2� · r̂12 � cos � for some combination �p1,p2�
0 otherwise.

� �3�

Each patch occupies a portion of the sphere’s surface
covered by the solid angle 2��1−cos �� and a fundamental
role will be played in our discussion by the fraction of solid
angle �i.e., the coverage� associated with �, namely

�0��� =
1

2
�1 − cos �� = sin2
�

2
� . �4�

III. ANALYSIS OF THE MODEL

A. Analytical solution

We now tackle the analytical solution of this problem
based on two simple approximations: the virial expansion
and the Cn class of closures.

1. Virial expansion
As shown in Appendix B, the first two virial coefficients

for this model are

FIG. 2. Top panel: the adhesive patch model of Kern and Frenkel �Ref. 12�.
Bottom panel: patch surface coverage �0 as a function of the patch angle �.
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b2 = B2/v0 = 4 − 12
�1

12�
, �5�

b3 = B3/v0
2 = 10 − 60

�1

12�
+ 144

�2

�12��2 − 96
�3

�12��3 , �6�

where v0=�	3 /6 is the volume of a sphere and

�2��,n� = 4�
�1,3�
�2,3��
�

3
− �13��

�1,�2,�3,�13

, �8�

�3��,n� = �
�1,2�
�1,3�
�2,3���1,�2,�3
��12=�/3,�23=2�/3,

�9�

where we have defined the angular average �with d�̃
=d� /4��,

�. . .�� =� d�̃ . . . . �10�

Here, �ij is the angle between r̂ij and r̂13 �which can be
chosen along the z axis�, and 
�i , j� is always associated with
a delta function that forces spheres i and j to be in contact.
Note that in Eq. �6� the effect of anisotropy is embedded in
the parameters �1 ,�2 ,�3 defined in Eqs. �7�–�9�, and that
these parameters are therefore functions of � and n. The iso-
tropic case is recovered when all �’s equal 1. We remark that
the expression for �2 involves an average over the relative
orientations �13 while there is an overlap between spheres 1
and 2, each of which is simultaneously in contact with sphere
3. Under such conditions there is always a maximum pos-
sible angle � /3 for �13 and this gives rise to the normaliza-
tion factor of 4 in Eq. �8�.

If one limits the expansion to the second virial coeffi-
cient, a law of corresponding states based on the rescaling

�→� /�1 between the patchy and the isotropic SHS models
holds true. This correspondence breaks down even at the
level of the third virial.

It is easy to see that �1=n2�0
2 as this is simply the prod-

uct of the separate coverages on each sphere. A calculation of
�2 and �3 is much more laborious and can be found in Ap-
pendix C for the case of a single patch. The final result in this
case is

�1 = �0
2, �11�

�2 = �0
2Q1��� , �12�

�3 = R1
3��� , �13�

where the coefficients Q1 and R1 are given in Appendix C.
For ��5� /6 it is possible to have three mutually bonded
spheres with the patch vectors pointing either inward or out-
ward �see Fig. 4�. Note that for the isotropic limit �=� all �i

�i=1,2 ,3� are equal to 1 as they should be. The three �i

coefficients are plotted in Fig. 5 as functions of �.
For spheres with two diametrically opposite patches,

each of width �, one finds

�1 = 4�0
2, �14�

FIG. 3. Adhesion requires simultaneous alignment of patches �dark shading�
on both spheres with the vector between their centers. The spheres in the
upper panel do not adhere, while those in the lower panel do.

FIG. 4. Configurations of three mutually bonded spheres, each possessing a
large single patch �dark shading�. The patch vectors point inward in the top
panel and outward in the bottom panel. The latter case is only possible for
�
5� /6. Combinations of these arrangements are also possible.
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�2 = 4�0
2Q2��� , �15�

�3 = R2
3��� , �16�

where the coefficients Q2 and R2 are given in Appendix D.
Note that in this case when �
� /3 it is also possible to have
sphere 1 in contact with spheres 2 and 3 through different
patches as shown in Fig. 6. The three �i coefficients are
plotted in Fig. 7 as functions of �.

The virial expansion of the excess free energy density is

�fexv0 = b2�2 + 1
2b3�3 + . . . , �17�

where �=�v0 is the hard sphere packing fraction. This al-
lows the calculation of the corresponding pressure and
chemical potential

�P��,��v0 = � + b2�2 + b3�3 + . . . ,

����,�� = ln��3/v0� + ln � + 2b2� + 3
2b3�2 + . . . ,

where � is the de Broglie wavelength.

2. Integral equations within the Cn closures

While the virial expansion only allows a limited low-
density region of the phase diagram to be probed, the integral
equation approach is much more powerful in this respect.
The trade-off is, of course, that since the OZ equation in-
volves the total correlation function h and direct correlation
function c, both of which are unknown, it can be solved only
after adding a closure, that is a second, approximate, rela-
tionship involving h, c, and the pair potential. In this section
we discuss a particular class of these closures �denoted Cn
hereafter� which have already been exploited in the isotropic
case and have proven to provide reasonably good predictions
even for intermediate densities.36

The OZ equation for a homogeneous fluid of molecules
interacting through anisotropic pair potentials is

h�1,2� = c�1,2� + �� d�3�c�1,3�h�3,2� , �18�

where d�i�
drid�̃i. More explicitly �see Eq. �10��,

h�1,2� = c�1,2� + �� dr3�c�1,3�h�3,2���3
. �19�

In a homogeneous fluid, translational invariance of any
correlation function implies that one can introduce reduced
coordinates r12=r2−r1 and r13=r3−r1,

h�r12,�1,�2� = c�r12,�1,�2�

+ �� dr3�c�r13,�1,�3�h�r32,�3,�2���3
.

�20�

FIG. 5. �Color online� Dependence of the coefficients �i �i=1,2 ,3� on � for
the one-patch model.

FIG. 6. Configurations of three mutually bonded spheres, each possessing
two patches �dark shading�. In the upper panel only one patch on each
sphere is involved in the bonds; in the lower panel both patches on each
sphere are involved. The latter case is only possible for ��� /3. Combina-
tions of these arrangements are also possible.

FIG. 7. �Color online� Dependence of the coefficients �i �i=1,2 ,3� on � for
the two-patch model.
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The presence of the convolution makes it convenient to
Fourier transform this equation with respect to the position
variable r. This yields for the corresponding functions �indi-
cated with a hat� in Fourier space k,

ĥ�k,�1,�2� = ĉ�k,�1,�2�

+ ��ĉ�k,�1,�3�ĥ�k,�3,�2���3
. �21�

The additional complication with respect to the isotropic
case is the presence of the orientational average of the prod-
uct appearing in Eq. �21�. In order to make progress, we use
a simple angular decoupling approximation

�ĉ�k,�1,�3�ĥ�k,�3,�2���3

� �ĉ�k,�1,�3���3
�ĥ�k,�3,�2���3

. �22�

As discussed in Ref. 36, Cn closures are based on a
density expansion of the cavity function y�1,2� which is re-
lated to the radial distribution function g�1,2� by g�1,2�
=y�1,2�e�1,2�.

In the presence of anisotropy, all correlation functions
clearly depend upon the solid angles �1 ,�2 ,�12. It is then
customary to consider30 the corresponding angular averaged
quantities g�r
r12�= �g�1,2���1,�2,�12

and similarly for y�r

r12�. Within Cn closures, for r
	, the radial distribution
function g�r� coincides with the cavity function y�r�. A den-
sity expansion of the cavity function yields

y�r� = 1 + �y1�r� + . . . , �23�

where

y1�r12� =� dr3�f�1,3�f�3,2���1,�2,�3,�12
. �24�

Calculation of Eq. �24� proceeds using arguments akin to
those presented in Appendix B, which are based on the de-
composition in Eq. �B2�. The integral in Eq. �24� then splits
into three integrals containing the various combinations of
the HS and the sticky parts of the Mayer function as in Eq.
�B2�.

B. Monte Carlo algorithms for Baxter-like potentials

Monte Carlo simulations of adhesive hard spheres re-
quire particular care even in the isotropic case because of the
singular nature of the potential. For completeness we sum-
marize the main ideas below, deferring to Ref. 37 for the
details.

Conventional Monte Carlo displacements of a SHS
would fail because the bonded states between particles oc-
cupy an infinitesimal volume of configuration space �and so
would never be located by random displacements� but have
infinite strength �and so would never be broken�. The solu-
tion is to compare the integrated weights of the various
bonded and unbonded states, which are finite. Specialized
algorithms that exploit this approach have been devised for
the canonical ensemble38,39 and were subsequently extended
to the grand canonical ensemble.40,41 The latter is particularly
convenient for identifying the critical point.42

The Monte Carlo algorithm for isotropic adhesive
spheres can be modified to deal with the patchy case by
incorporating the anisotropy in the acceptance criterion for
trial moves. Trial moves are attempted as described in detail
in Ref. 41 as though the spheres were uniformly adhesive.
Once the trial position of the displaced particle has been
chosen, a uniformly distributed random orientation is se-
lected. The move is then accepted only if an overlap of hard
cores is not generated �as in the isotropic case� and if all
contacts specified in the trial configuration have patches suit-
ably aligned to make the required bonds. This scheme pro-
duces the desired Boltzmann distribution37 and is applicable
to an arbitrary arrangement of patches. However, it becomes
inefficient when the total adhesive coverage of the sphere is
small because the random generation of orientations is then
unlikely to lead to patches being aligned with bonds, leading
to a high rejection rate.

IV. STRUCTURE

In the following we shall compare predictions from the
combined C1-orientational mean field approximation and
virial expansion with the results of Monte Carlo simulations.

One finds that y1�r� is different from zero only in the
region 0�r�2	 and

y1�r� =
�

12

 r

	
+ 4�
 r

	
− 2�2

+
�1

12�
2�
 r

	
− 2�

+
�� 2�r�
�12��22�

	

r
, �25�

where

�� 2�r� = �
�1,2�
�1,3���1,�2,�3
��12=2 arcsin�r/2	�� . �26�

In order to compute the angularly averaged radial distri-
bution function g�r� we have solved the full OZ Eq. �20�
within the C1 closure supplemented with the decoupling ap-
proximation �22�. The Wertheim–Baxter method27 and the
C1 closure combine such that only the cavity function at
contact depends upon the angular coefficients �1 ,�2 ,�3. The
solution for Baxter function is

q�r� = �a�r2 − 	2�/2 + b	�r − 	� + q		2���	 − r� r 
 0,

�27�

where

a =
1 + 2�

�1 − ��2 −
12q	�

1 − �
, �28�

b = −
3�

2�1 − ��2 +
6q	�

1 − �
, �29�

q	 =
ȳC1

12�
, �30�

ȳC1 = �yC1�r12 = 	,�1,�2,�12�
�1,2���1,�2,�12

= y0 + y1� . �31�

The coefficients y0,1=y0,1��� are related to the reduced virial
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coefficients b2,3 by Eq. �41�, later. Therefore, we can read off
their values

y0 = �1, �32�

y1 = 
30
�1

12�
− 144

�2

�12��2 + 144
�3

�12��3�� . �33�

In order to extract the numerical behavior of the radial
distribution function g�r� we have employed a discretization
method due to Perram43 to compute the numerical integral

rh�r� = − q��r� + 2���
0

�

du q�u��r − u�h��r − u�� . �34�

For the one-patch spheres the result is reported in Fig. 8
for various values of �, at �=0.4 and �=0.2. The choices
�=0 and �=� correspond to the limiting cases of pure HS
and isotropic SHS, respectively. Upon decreasing the size of
the patch, the behavior smoothly interpolates between these
two cases, as expected. The characteristic jump in g�r� at r
=2	 in the isotropic SHS model41 can be explicitly com-
puted within the C1 integral equation closure to be

g�2	+� − g�2	−� = − 6��ȳC1/�12���2. �35�

The jump is also present for intermediate values of � and
gradually fades out toward the HS result as illustrated in Fig.
8. In order to assess the precision of the predictions of the Cn
closures, in Fig. 9 we compare the radial distribution gener-
ated by both C0 and C1 closures with Monte Carlo simula-
tions �lower panel� and with the corresponding isotropic case
�upper panel�. The C1 closure is seen to follow the Monte
Carlo behavior well over the range of the ratio r /	 consid-
ered, in both the isotropic and anisotropic cases.

Like the Percus–Yevick solution of the isotropic model,
the C0 and C1 closures fail to capture certain � function and
step discontinuities in the radial distribution function,44 such
as those visible in the Monte Carlo results in the range 	
�r�2	 in Fig. 9. These features arise from clusters in
which the distance between two particles is fixed or limited
indirectly by a sequence of adhesive bonds, for example, the
outermost pair of particles in face-sharing tetrahedra. These
clusters are sampled correctly by the Monte Carlo
simulations.45

V. FLUID-FLUID COEXISTENCE CURVE

An interesting issue, both from the theoretical view point
and for the possible implications in predictions of experi-
mental phase transitions in solutions of globular proteins, is
the determination of the fluid-fluid coexistence curve for the
patchy sticky hard spheres, which we now address. We note
that the dense fluid �liquid� phase, though often long-lived, is
generally only metastable for systems of particles interacting
through sufficiently short-ranged isotropic attractive forces.
However, it has recently been predicted that a thermody-
namically stable liquid will be recovered if the coordination
number of the particles is restricted to a maximum of 6 or
less.29 Nevertheless, it seems that the specific details of the
interactions must be taken into account before a firm conclu-
sion can be drawn for a particular model.46

A. Virial expansion

In order to find the coexistence or binodal line we need
to solve for �1��� and �2��� the following set of equations:

P��,�1� = P��,�2� ,

���,�1� = ���,�2� .

A straightforward use of Eq. �17� for the excess free
energy density to this aim, however, yields meaningless re-
sults even at moderate densities as one could have expected

FIG. 8. �Color online� Radial distribution function for the one-patch model
�n=1� at �=0.4 and �=0.2 within the C1 approximation and for various
values of the adhesive coverage n�0.

FIG. 9. �Color online� Comparison between the radial distribution function
from MC simulations and from the C0 and C1 approximations in the iso-
tropic case �n�0=100%, top panel� and for an intermediate value of the
single patch �n=1� case with n�0=80% �bottom panel�. Both sets of calcu-
lations were performed at � / �n�0�2=0.125 and �	3=0.35 corresponding to
�=0.183. . ..
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from the outset. A way out of this problem was proposed in
Ref. 47 in the context of polydisperse SHS fluids. The idea
hinges on a modification of the Carnahan–Starling expres-
sion for the HS excess free energy density48

�fcs
exv0 =

4 − 3�

�1 − ��2�2, �36�

so that it matches the patchy SHS result up to the third order
in density. A possible choice is

�fexv0 = �c − 1�� ln�1 − �� + 3d
�2

1 − �
+ c

�2

�1 − ��2 , �37�

where c and d are parameters to be determined by expanding
to the third order in density and matching to Eq. �17�. We
then find

c =
b3 − 2b2 + 1

3
, �38�

d =
b2 − 1

3
. �39�

The pressure and the chemical potential are then

�Pv0 = � + �21 + 3d�1 − �� + ��� − 2 + c�3 − ���
�1 − ��3 ,

�� = ln��3/v0� + ln � + �c − 1�ln�1 − ��

+
�1 + c + 6d�� − �2 − 2c + 9d��2 + �1 − c + 3d��3

�1 − ��3 ,

respectively. In the limit c=d=1 Eq. �37� reduces to Eq. �36�
as expected.

The behavior of the binodal line as a function of � is
shown in Fig. 10. As � decreases, the coexistence region
shrinks as expected, since HS fluids ��=0� admit only a
single phase.49

B. C1 integral equation

An alternative route is to start from the excess free en-
ergy stemming from the energy route of the C1
approximation36

�fexv0 = �fcs
exv0 − �b2 − b2

HS��2 + �b3 − b3
HS�

�3

2
, �40�

where bn
HS=bn��→��. The rescaled virial coefficients bn

=bn��� can be related to the values of the corresponding
coefficients of the expansion for the cavity function at con-
tact ȳ=y0+y1�+y2�2+ . . . by means of the relation �see, e.g.,
Ref. 36, and references therein�

yn−2���/�2 =
1

n − 1

d�bn��� − bn
HS�

d�
, n � 2. �41�

Hence, we have

�Pv0 = � + 2�2 � − 2

�� − 1�3 −
�1

�
�2

+ 
− 5
�1

�
+

�2

�2 −
1

18

�3

�3 ��3, �42�

�� = ln��3/v0� + ln � + �
8 + 3�� − 3��

�1 − ��3

−
�1

�
2� + 
− 5

�1

�
+

�2

�2 −
1

18

�3

�3 �3�2

2
. �43�

We remark that these results need no further orientational
approximations as all effects of anisotropy are exactly in-
cluded in �1,2,3.

The results for the binodals are shown in Fig. 10. For
each of the adhesive coverages depicted, both theoretical
treatments predict that the binodal line for the two-patch
model lies above its counterpart for a single patch. This
could be expected on physical grounds, since a more distrib-
uted region of adhesion usually facilitates the aggregation
process. A closer analysis, however, indicates that this is not
always the case. This is shown in Fig. 11 where we report the
change in the critical point as a function of the adhesive
coverage n�0 of the sphere surface. The difference between
one and two patches decreases as � increases, as expected,
but it is clearly visible through the whole range of existence.
Remarkably, there is an inversion of the two curves around

FIG. 10. �Color online� Dependence on the adhesive coverage n�0 of the
binodal line calculated from the modified Carnahan–Starling free energy of
Eq. �37� �top panel� and from the C1 approximation of Eq. �40� �bottom
panel�. The one-patch �n=1� and two-patch �n=2� systems are compared at
the same total coverage.
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80% coverage. For approximately n�0�0.8 the critical tem-
perature for two patches lies above its one-patch counterpart.
This means that the fluid-fluid transition line is encountered
at higher temperature when an identical adhesive coverage is
distributed over two spots rather than consolidated into a
single big patch. However, this is no longer true when the
size of the patch becomes too small. The reason is that under
such conditions, it is then possible to bind three or more
particles within a single patch, whereas at most two particles
�one on each of the two opposite patches� can be attached in
the two-patch case.

An additional noteworthy feature of Fig. 11 is the exis-
tence of a kink at �=� /3 �50% coverage� in the two-patch
case. The kink is related to the degeneracy illustrated in Fig.
6. A similar kink occurs in the single-patch curve at �
=5� /6 �93.3% coverage�. Again, this stems from degen-
eracy, as illustrated in Fig. 4.

Due to the inherent difficulty of tracing out critical tem-
peratures to low coverage, we have been unable to verify the
crossing of the one- and two-patch critical temperatures by
Monte Carlo �MC� simulations. Figure 11 reports MC results
down to around 60% coverage and the two-patch critical
temperature is always above the one-patch case. We suspect,
however, that an inversion might still occur in MC simula-
tions, but at lower values of �0, as yet inaccessible to our
simulations.

The sensitivity of the shape and location of the coexist-
ence curve to the geometry of the adhesive distribution is
quite a remarkable feature of this archetypal patchy model. It
seems likely, therefore, that a proper understanding of ex-
perimentally determined phase diagrams of globular proteins
should take into account the nonuniformity of their surfaces
and consequently of their interactions.

VI. PERCOLATION

A further interesting issue, already discussed in the con-
text of the isotropic model, is the percolation threshold,42,50

to which we now turn.

A. Virial expansion

In one-patch systems only dimers can form for � up to
� /6, while clusters of any size are in principle possible
above this threshold. In order to study the percolation thresh-
old we can use the strategy devised in Ref. 51. Based on the
definition of the connectedness correlation function �see
later�, the percolation threshold is signaled by the divergence
of the mean cluster size

S = 1 + �� dr12�h+�r12,�1,�2���1,�2
, �44�

where h+ is the pair connectedness function, which is related
to the direct connectedness function c+ by the Ornstein–
Zernike equation. Both are related to the connected part of
the Mayer function f+�1,2�= f�1,2�− fHS�1,2� as given in
Eq. �B2�, fHS�1,2� being the HS part as given by Eq. �B3�.
As in the case of Eq. �22� we assume that

�ĉ+�k,�1,�3�ĥ+�k,�3,�2���3

� �ĉ+�k,�1,�3���3
�ĥ+�k,�3,�2���3

. �45�

The average Fourier transform of the direct connected-
ness function ĉ+�k�= �ĉ+�k ,�1 ,�2���1,�2

at k=0 then identi-
fies the threshold by the equation

�ĉ+�0� = 1. �46�

Upon power expansion in the density we have

ĉ+�0� = �
n=2

�

ĉn
+�0��n−2 = ĉ2

+�0� + �ĉ3
+�0� + O��2� . �47�

Using the earlier decomposition of the Mayer function the
first two coefficients are found to be

ĉ2
+�0� =� dr12�f+�1,2���1,�2

, �48�

ĉ3
+�0� =� dr12dr13��f+�1,2�fHS�1,3�fHS�2,3�

+ 3fHS�1,2�f+�1,3�f+�2,3�

+ f+�1,2�f+�1,3�f+�2,3����1,�2,�3
. �49�

An analysis following that in Appendix B then yields

ĉ2
+�0�/v0 = 24

�1

12�
, �50�

ĉ3
+�0�/v0

2 = 60
�1

12�
− 432

�2

�12��2 + 288
�3

�12��3 . �51�

To first order in the density, the percolation threshold is then
given by a straight line

� = 2�1� . �52�

The next order already yields a more complex solution in-
volving both �2 and �3,

FIG. 11. �Color online� Dependence of the critical reduced temperature on
the total adhesive coverage n�0 for n=1 and 2 patches, calculated from the
C1 approximation of Eq. �40� and from MC. The inset shows the critical
packing fraction.
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� =
− 6�1�2 + �6�3/2��3 + 6�1

2� − 18�2� + 30�1�2

�3 − 18�2� + 30�1�2 . �53�

We then see that for �−����+ with

�± =
− 6��1

2 − 3�2� ± �36��1
2 − 3�2�2 − 120�1�3

60�1
2 , �54�

Equation �53� has no real solutions. Clearly, the acceptable
part of the solution is that for ���−.

B. C1 integral equation

The unphysical loss of the solution for the percolation
threshold as obtained from the virial expansion is present
also in the isotropic SHS model ��=��. This shortcoming
does not occur in an integral equation approach.50 Within the
Cn class of closures a crucial role is played by the angular

average of the cavity function at contact ȳ̄= �y�r12

=	 ,�1 ,�2 ,�12�
2�1,2���1,�2,�12
. Its density expansion

reads

y�Cn = y0 + y1� + y2�2 + . . . , �55�

where yn=yn��� is related to the reduced virial coeffi-
cients bn by Eq. �41�. For y0 and y1 they have already
been computed in Eq. �33�. The percolation
threshold is then given by �ȳCn=� where
ȳCn= �yCn�r12=	 ,�1 ,�2 ,�12�
�1,2���1,�2,�12

and yCn�r12

=	 ,�1 ,�2 ,�12� is the contact cavity function within the Cn
approximation.

Since 
2=
 then y� = ȳ and within the C0 approximation
�ȳC0=y0� we find

� = �1� , �56�

whereas within the C1 approximation �ȳC1=y0+y1�� we find

� =
− 6�1�2 + �12�3/2��3 + 3�1

2� − 12�2� + 30�1�2

�3 − 12�2� + 30�1�2 .

�57�

Now the loss of solution occurs between

�± =
− 3��1

2 − 4�2� ± �9��1
2 − 4�2�2 − 120�1�3

30�1
2 . �58�

Note that at small values of � a gap may also appear in the
C1 percolation threshold for ��1.21 in the one-patch model
and for ��1.22 in the two-patch case. Figure 12 summarizes
our findings and compares with MC simulations. From the
figure we see that for � close to � the percolation threshold
of the two-patch model lies above that of the one-patch case
at same total surface adhesive coverage, while the opposite
trend is observed at lower �. This mirrors our previous re-
sults for the coexistence curve.

Another quantity which is useful to assess the onset of a
phase transition is the average coordination number, defined
by

Z = �� dr12�h+�1,2���1,�2,�12
. �59�

One finds

Z = 2
�

�
ȳCn, �60�

which on the percolation threshold gives Z=2. This predic-
tion is compared with MC results in Fig. 13 where we show
the average coordination number at the percolation threshold
obtained from the MC simulations for the one- and two-
patch models at 60% coverage.

We are now in a position to summarize the phase dia-
gram for one and two patches within the C1 approximation.
This is reported in Fig. 14. For two patches, the C1 phase
diagram �coexistence curve and percolation line� is com-
pared with MC results in Fig. 15 both for the full isotropic
case �100% coverage� and for 60% coverage. Note that while
the percolation line terminates at the point shown, the coex-
istence curve has a solution for the whole range of packing
fraction considered. However, we have chosen to terminate
the plot for the same value of � as the percolation line.

FIG. 12. �Color online� Percolation thresholds for various total adhesive
coverages as calculated from the C1 approximation �lines�, Eq. �57�, and
MC simulation �points�. The one-patch �n=1� and two-patch �n=2� cases
are compared at the same total coverage.

FIG. 13. Average coordination numbers at the percolation threshold for the
one- and two-patch models at 60% coverage, obtained through MC. The
continuous line is the prediction from the integral equation theory. The
isotropic case is also reported for comparison.
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VII. PHASE DIAGRAM AND ADDITION OF ADHESIVE
BACKGROUND

So far we have considered the case of adhesive patches
on hard spheres. The disadvantage of this model is that there
is no fluid-fluid transition below a certain surface coverage
�0. We have also shown that at fixed surface coverage the
liquid more easily forms if the adhesion is distributed in
different patches on the sphere surface for sufficiently large
patches and we expect the opposite to be true for low cov-
erage.

One could argue that a more physical model should have
a strongly directional potential mimicking, e.g., active sites
in a globular protein, in addition to an underlying isotropic
attractive potential favoring a general fluid-fluid phase tran-
sition. To this aim, we modify our potential by adding a
uniform adhesive background to each sphere on top of which
a patchy potential of the type considered so far is active. This
effect can be obtained by a simple substitution 
→1+�

with � measuring the strength of adhesion on the patches,
yielding

�1 → 1 + ��1, �61�

�2 → 1 + 2��1 + �2�2, �62�

�3 → 1 + 3��1 + 3�2�̄2 + �3�3, �63�

where

�̄2 = �
�1,2�
�1,3���1,�2,�3
��12=�/3� . �64�

The phase diagram is now modified as depicted in Fig. 16
where we have set �=1 to be the strength of the patches
throughout. In this case we see that even a small sticky patch
�of amplitude ��0.5� is sufficient to raise both the binodal
and percolation threshold of the isotropic model. At equal
coverage, the binodal and percolation threshold of the two-
patch model lie below their one-patch counterparts, in agree-
ment with the observed trend in the absence of background
adhesion.

Note that the critical point is now less sensitive to the
size of the patches because an isotropic SHS—rather than a
hard sphere—is now the limiting case as �→0. Indeed, the
critical point does not move along � while it covers the
whole range �c���2�c ��=1�, where �c is the critical re-
duced temperature of the isotropic model �see Fig. 17�. The
critical point shifts of the one- and two-patch models are
now almost indistinguishable even though the crossing at
80% coverage still remains.

VIII. CONCLUSIONS

In this work we have studied, through integral equation
theories and Monte Carlo simulations, the structure, percola-

FIG. 14. �Color online� Phase diagram in the C1 approximation, for various
values of the adhesive coverage n�0. The one-patch �n=1� and two-patch
�n=2� models are compared at the same total coverage.

FIG. 15. �Color online� Comparison of the C1 approximation with MC
simulation �dots� for the phase diagram of particles with two patches. The
MC isotropic phase diagram is taken from Ref. 42.

FIG. 16. �Color online� Dependence of the binodal line of patchy adhesive
spheres with a background adhesion on the total surface coverage n�0 of the
patches: in the upper panel as calculated from the modified Carnahan–
Starling free energy of Eq. �37�; in the lower panel as calculated from the
C1 approximation, Eq. �40�.
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tion, and fluid-fluid coexistence curves of a model of hard
spheres with one or two uniform sticky patches on their sur-
face. Particles interact through an adhesive Baxter potential
only if patches on different spheres are suitably oriented and
as hard spheres otherwise. Unlike most previous studies, we
have been able to analyze in some detail the dependence of
the aforementioned properties on the size of the patch and its
interplay with the number of patches.

The integral equation theory is based on the first two
approximations �C0 and C1� of a class of closures Cn which
have already proved to provide a good qualitative represen-
tation of the exact behavior and are almost fully analytical.
The comparison between the analytical work and Monte
Carlo simulations indicates that C1 yields a gratifying quali-
tative description of the phase diagram notwithstanding the
expected limitation due to its low density nature. While for
the thermodynamics the results from the integral equation
theories are exact within the given closure, for the percola-
tion problem and the structure an additional orientational
mean field approximation is necessary to decouple the orien-
tational average.

Radial distribution functions within the C0 and C1 inte-
gral equation theories exhibit a characteristic jump at r=2	
�whose magnitude depends on the patch angle �� and a cusp
at r=3	. The coexistence and percolation lines move to
lower temperature as the patch angle decreases from � �the
isotropic case� to zero �hard spheres�. For a fixed surface
coverage above approximately 80%, the curves of the two-
patch case lie above the corresponding single-patch ones,
while the opposite trend is observed below that point. We
have suggested that this is due to two patches of sufficiently
large size being able to form bonds to more particles than
can a single patch. We have also argued that this reasoning
does not apply at low coverage, and that, in fact, the opposite
situation might be expected. The crossover is not observed in
the MC simulations within the range of adhesive coverage
studied here �about 60%�, but we cannot exclude the possi-
bility for lower coverage, where the simulations converge
very slowly. When an adhesive background is included in
addition to the patches, both the liquid and percolating phase
of the system are favored with respect to the isotropic case
even in the presence of very small patches.

In spite of the limited number of cases �one or two
patches� addressed in the present work, our analysis suggests
that both the total fraction of the surface covered by adhesion
and the number of patches are crucial parameters in control-
ling the location of the critical point. In the limit of a single
bond per patch, our analysis is consistent with a recent
suggestion52 of a generalized law of corresponding states for
anisotropic patchy interactions. We remark that, from the
purely theoretical point of view, there exist only few para-
digmatic toy models with anisotropic interactions amenable
to analytical or semianalytical treatment.

Our analysis can be regarded as complementary to recent
investigations of the phase diagrams of globular
proteins8,53,54 in that our starting point is the isotropic sticky
hard sphere from which some adhesion is removed, rather
than a hard sphere to which highly localized attractive spots
are added. This approach goes beyond the limitation of one
bond per patch, which is an essential feature of Wertheim
thermodynamic perturbation theory. The price to pay is, of
course, that only a qualitative agreement with MC simula-
tions can be achieved.

It would be interesting to extend the present work in
some respects. In view of the difficulties of MC simulations
in probing low coverage, a comparison with a numerical so-
lution of a more robust closure such as, for instance, the
Percus–Yevick approximation which has a full analytical de-
scription in the isotropic case, would provide a more quanti-
tative assessment of the results presented here. Such a solu-
tion would also help to evaluate the �uncontrolled� angular
decoupling approximation exploited in the present analysis
of structure and the percolation threshold. Work along these
lines is in progress and will be presented in a future
publication.
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APPENDIX A: THE LAW OF CORRESPONDING
STATES

Consider the simplest possible dependence ��ŝ1 , ŝ2�
= ŝ1 · ŝ2 and assume that 
�1,2�=��ŝ1 , ŝ2�, i.e., the adhesion
coefficient does not depend on r̂12=r12 /r12. Within the
Weeks–Chandler–Andersen perturbative expansion55 of the
Helmholtz free energy ASHS one finds

��ASHS − AHS�
N

=� d�1�d�2�a�1��r1,r2;���e�1,2�

+� d�1�d�2�d�3�d�4�

�a�2��r1,r2,r3,r4;���e�1,2��e�3,4�

+ . . . , �A1�

where d�i� is a short-hand notation for drid�̃i, with d�̃i the
average solid angle sin �id�id�i / �4��, AHS the Helmholtz
free energy of the reference hard sphere �HS� system

FIG. 17. �Color online� Dependence of the critical reduced temperature on
the adhesive coverage in the patchy model with a uniform adhesive back-
ground, calculated from the C1 approximation, Eq. �40�. The inset shows
the behavior of the critical packing fraction.
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�e�1,2� =

�1,2�

12�
��r12 − 	� , �A2�

and the functions a�n� are expressed in terms of the correla-
tion functions of the reference system which only depend on
the packing fraction �=��	3 /6, with � as the density. We
see then that the angular dependence in 
 factorizes and one
finds

��ASHS − AHS�
N

= �
i

A�i����
 �1

12�
�i

, �A3�

where �1=�d�̃1d�̃2
�1,2�. This analysis shows how, in this
case, the law of corresponding states holds. For example, if
�=g��� is the spinodal or binodal of the SHS system with
isotropic interaction �
=1�,27,56,57 then the spinodal or bin-
odal of the SHS with directional adhesion will be �
=�1g���, which will lie above that of the isotropic system if
�1
1 and below otherwise.

APPENDIX B: THE THIRD VIRIAL COEFFICIENT

In this appendix we provide a derivation of Eqs. �6�–�9�.
We start from the usual definition of the third virial coeffi-
cient

B3 = −
1

3V
� dr1dr2dr3�f�1,2�f�1,3�f�2,3���1,�2,�3

,

�B1�

where, in line with Eq. �2�, the Mayer function can split into
two terms

f�i, j� = fHS�i, j� +
	

12�

�i, j���rij − 	� . �B2�

In the earlier equation we have set the HS part to the usual
form

fHS�i, j� = − ��	 − rij� . �B3�

Upon expanding the product, one can easily find

�B3 = B3 − B3
HS = �B3

�1� + �B3
�2� + �B3

�3�, �B4�

where B3
HS=5�2	6 /18 is the HS result and

�B3
�1� = −

1

V

 	

12�
�� dr1dr2dr3�fHS�1,2�fHS�1,3�

�
�2,3���r23 − 	���1,�2,�3
, �B5�

�B3
�2� = −

1

V

 	

12�
�2� dr1dr2dr3�fHS�1,2�

�
�1,3���r13 − 	�
�2,3���r23 − 	���1,�2,�3
,

�B6�

�B3
�3� = −

1

3V

 	

12�
�3� dr1dr2dr3�
�1,2���r12 − 	�

�
�1,3���r13 − 	�
�2,3���r23 − 	���1,�2,�3
.

�B7�

The earlier integrals are most conveniently evaluated in bi-
polar coordinates by introducing r12=r2−r1 and r13=r3−r1.

This leads to r23=�r12
2 +r13

2 −2r12r13r̂12· r̂13 where it is most
convenient to choose r̂13 as the z axis. For �B3

�1� one finds

�B3
�1� = − 
 	

12�
�� dr23dr12��	 − r12���	 − �r12 − r23��

���r23 − 	��
�2,3���2,�3
. �B8�

Here one first performs the integration over r12, which covers
twice a spherical cap of height 	 /2 and then the straightfor-
ward integration over r23. Clearly the anisotropic part de-
couples, thus yielding the isotropic part times �1 as claimed.
For �B3

�2� a little more care is necessary. One first obtains

�B3
�2� = 
 	

12�
�2�

0

�

dr12r12
2 ��	 − r12�

��
0

�

dr13r13
2 ��	 − r13�� d�12d�13

����r12
2 + r13

2 − 2r12r13 cos �12 − 	�

��
�1,3�
�2,3���1,�2,�3
. �B9�

After a first integration over r13, an additional integration
over cos �12 then requires �13�� /3 �corresponding to the
maximum available angle for all three particles in reciprocal
contact�. This also yields a normalization factor 4
=1 /sin2�� /6� in order to have the correct limit 
�i , j�→1 for
all �i , j�. The final result is

FIG. 18. Basic geometry for the calculation of R1��� in Eq. �C1�. The
required solid angle is the overlap of the two cones of width � �the darkly
shaded region in the sketch�.
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�B3
�2� =

�2	6

36�2

1

4�
� d�13

�4�
�1,2�
�2,3��
�

3
− �13��

�1,�2,�3

, �B10�

thus yielding the isotropic part times �2 as reported in Eq.
�8�. An almost identical procedure also gives

�B3
�3� = − 
 	

12�
�38�2	2

3
�

0

�

dr12r12
2 ��r12 − 	�

��
−1

+1

d�cos �12����r12
2 + 	2 − 2r12	 cos �12 − 	�

��
�1,2�
�1,3�
�2,3���1,�2,�3
, �B11�

which, after an integration over the angular variables, leads
to the desired decoupling for the anisotropic part �3 as given
in Eq. �9�. Note that in this configuration all three spheres are
necessarily touching and this fixes the angles �ij to a well
defined value given in Eq. �9�. This completes the derivation
of Eq. �6�.

APPENDIX C: COEFFICIENTS �2 AND �3
FOR THE ONE-PATCH CASE

Here we give the analytic expressions for the coefficients
Q1 and R1 used in Eqs. �12� and �13� of the main text in
terms of characteristic integrals which are then evaluated nu-
merically. The basic procedure follows a similar analysis car-
ried out in a different context,58 which requires the calcula-
tion of the solid angle associated with the intersection of two
identical patches on the same sphere as indicated in Fig. 18.
For �3, one can easily see that for ��� /6 there is no pos-
sibility of intersection, even in the close-packed configura-
tion. For ��� /6 the form of the resulting integral can be
most conveniently written in slightly different ways depend-
ing on the amplitude � of the patch

R1��� = �b,1����
� −
�

6
��
2�

3
− ��

+ �b,1����
� −
2�

3
��
5�

6
− ��

+ �b,1����
� −
5�

6
� , �C1�

where the various terms are given in terms of the integrals

�b,1��� =
1

�
�

2�/3−�

�/2

d� sin � arccos
 cos � − cos � cos 2�/3
sin � sin 2�/3 � , �C2�

�b,1��� = 1 −
1

�
�

�−2�/3

�/2

d� sin � arccos
 cos�� − �� − cos � cos �/3
sin � sin �/3 � , �C3�

�b,1��� = 1 − 2 sin2
� − �

2
� . �C4�

For example �b,1 given in Eq. �C2� is the simplest integral resulting from the calculation of the overlapping region of the
two cones of width � as depicted in Fig. 18.

For �2 an additional complication arises from the additional degree of freedom given by the fact that only two of the three
spheres are �in general� in contact. One finds

Q1��� = �a,1����
�

6
− �� + �a,1����
� −

�

6
��
�

2
− �� + �a,1����
� −

�

2
��
5�

6
− �� + �a,1����
� −

5�

6
� , �C5�

with

�a,1��� =
2

�
�

0

2�

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� � , �C6�

�a,1��� =
2

�
�

0

�/3

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� � , �C7�

�a,1��� =
2

���

2
− �

0

�/3

d�� sin ���
�−�/2−��/2

�/2

d� sin � arccos
 cos�� − �� − cos � cos��/2 − ��/2�
sin � sin��/2 − ��/2� �� , �C8�
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�a,1��� =
2

��2� sin2 � + �
0

2��−��

d�� sin ���
�−�/2−��/2

�/2

d� sin � arccos
 cos�� − �� − cos � cos��/2 − ��/2�
sin � sin��/2 − ��/2� �

+ �1 − 2 sin2
� − �

2
���

2
�2 cos�2�� − 1�� . �C9�

APPENDIX D: COEFFICIENTS �2 AND �3 FOR THE TWO-PATCH CASE

Here we give the analytic expressions for the coefficients Q2 and R2 used in Eqs. �15� and �16� of the main text

Q2��� = �a,2����
�

6
− �� + �a,2����
� −

�

6
��
�

3
− �� + �a,2����
� −

�

3
��
�

2
− �� , �D1�

R2��� = �b,2����
� −
�

6
��
�

3
− �� + �b,2����
� −

�

3
��
�

2
− �� , �D2�

with

�a,2��� =
4

�
�

0

2�

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� � , �D3�

�a,2��� =
4

�
�

0

�/3

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� � , �D4�

�a,2��� =
4

���0

�/3

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� �

+ �
0

�/3

d�� sin ���
�/2

��/2+�

d� sin � arccos
 cos � − cos � cos���/2�
sin � sin���/2� �� , �D5�

�b,2��� =
2

�
�

2�/3−�

�/2

d� sin � arccos
 cos � − cos � cos 2�/3
sin � sin 2�/3 � , �D6�

�b,2��� =
2

�
�

2�/3−�

�/2

d� sin � arccos
 cos � − cos � cos 2�/3
sin � sin 2�/3 � +

2

�
�

�/2

�/6+�

d� sin � arccos
 cos � − cos � cos �/6
sin � sin �/6 � . �D7�
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Chapter 15

Fluids of spherical molecules with
dipolarlike nonuniform adhesion: an
analytically solvable anisotropic model

Gazzillo D., Fantoni R., and Giacometti A., Phys. Rev. E 78, 021201 (2008)
Title: “Fluids of spherical molecules with dipolarlike nonuniform adhesion: an analytically
solvable anisotropic model”
Abstract: We consider an anisotropic version of Baxter’s model of ‘sticky hard spheres’,
where a nonuniform adhesion is implemented by adding, to an isotropic surface attraction,
an appropriate ‘dipolar sticky’ correction (positive or negative, depending on the mutual
orientation of the molecules). The resulting nonuniform adhesion varies continuously, in
such a way that in each molecule one hemisphere is ‘stickier’ than the other.

We derive a complete analytic solution by extending a formalism [M. S. Wertheim, J.
Chem. Phys. 55, 4281 (1971) ] devised for dipolar hard spheres. Unlike Wertheim’s solution
which refers to the ‘mean spherical approximation’, we employ a Percus-Yevick closure with
orientational linearization, which is expected to be more reliable.

We obtain analytic expressions for the orientation-dependent pair correlation function
g (1, 2). Only one equation for a parameter K has to be solved numerically. We also provide
very accurate expressions which reproduce K as well as some parameters, Λ1 and Λ2, of the
required Baxter factor correlation functions with a relative error smaller than 1%. We give
a physical interpretation of the effects of the anisotropic adhesion on the g (1, 2).

The model could be useful for understanding structural ordering in complex fluids within
a unified picture.
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I. INTRODUCTION

Anisotropy of molecular interactions plays an important
role in many physical, chemical, and biological processes.
Attractive forces are responsible for the tendency toward par-
ticle association, while the directionality of the resulting
bonds determines the geometry of the resulting clusters. Ag-
gregation may thus lead to very different structures: in par-
ticular, chains, globular forms, and bi- or three-dimensional
networks. Understanding the microscopic mechanisms un-
derlying such phenomena is clearly very important both from
a theoretical and a technological point of view. Polymeriza-
tion of inorganic molecules, phase behavior of nonspherical
colloidal particles, building up of micelles, gelation, forma-
tion of � helices from biomolecules, DNA strands, and other
ordered structures in living organisms, protein folding and
crystallization, self-assembly of nanoparticles into composite
objects designed for new materials, are all subjects of con-
siderable interest, belonging to the same class of systems
with anisotropic interactions.

Modern studies on these complex systems strongly rely
upon computer simulations, which have provided a great
deal of useful information about many properties of molecu-
lar fluids. Nevertheless, analytic models with explicit expres-
sions for structural and thermodynamic properties still repre-
sent an irreplaceable tool, in view of their ability to capture
the essential features of the investigated physical systems.

At the lowest level in this hierarchy of minimal models on
assembling particles, lies the problem of the formation of
linear aggregates, from dimers �1,2� up to polymer chains.
This topic has been extensively investigated, through both
computer simulations and analytical methods. In the latter
case a remarkable example is Wertheim’s analytic solution of
the mean spherical approximation �MSA� integral equation
for dipolar hard spheres �DHS�, i.e., hard spheres �HS� with
a point dipole at their center �3� �hereafter referred to as Ref.

�1��. For the DHS model, several studies predict chain for-
mation, whereas little can be said about the existence of a
fluid-fluid coexistence line, since computer simulations and
mean field theories provide contradictory results �4–8�. On
the other hand, for mesoscopic fluids the importance of com-
bining short-ranged anisotropic attractions and repulsions
has been well established �9,10�, and hence the long range of
the dipolar interaction is less suited for the mesoscopic sys-
tems considered here, at variance with their atomistic coun-
terpart.

The aim of the present paper is to address both the above
points, by studying a model with anisotropic surface adhe-
sion that is amenable to an analytical solution, within an
approximation which is expected to be valid at significant
experimental regimes.

In the isotropic case, the first model with “surface adhe-
sion” was introduced a long time ago by Baxter �11,12�. The
interaction potential of these “sticky hard spheres” �SHS�
includes a HS repulsion plus a spherically symmetric attrac-
tion, described by a square well �SW�, which becomes infi-
nitely deep and narrow, according to a limiting procedure
�Baxter’s sticky limit� that keeps the second virial coefficient
finite.

Possible anisotropic variations include “sticky points”
�13–21�, “sticky patches” �10,22–27� and, more recently,
“Gaussian patches” �28,29�. The most common version of
patchy sticky models refers to HS with one or more “uniform
circular patches,” all of the same species. This kind of patch
has a well-defined circular boundary on the particle surface,
and is always attractive, with a “uniform” strength of adhe-
sion, which does not depend on the contact point within the
patch �22�.

In the present paper we consider a “dipolarlike” SHS
model, where the sum of a uniform surface adhesion �isotro-
pic background� plus an appropriate dipolar sticky
correction—which can be both positive or negative, depend-
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ing on the orientations of the particles—yields a nonuniform
adhesion. Although the adhesion varies continuously and no
discontinuous boundary exists, the surface of each molecule
may be regarded as formed by two hemispherical “patches”
�colored red and blue, respectively, in the online Fig. 1�. One
of these hemispheres is ‘stickier’ than the other, and the en-
tire molecular surface is adhesive, but its stickiness is non-
uniform and varies in a dipolar fashion. By varying the di-
polar contribution, the degree of anisotropy can be changed,
in such a way that the total sticky potential can be continu-
ously tuned from very strong attractive strength �twice the
isotropic one� to vanishing adhesion �HS limit�. The physical
origin of this model may be manifold �nonuniform distribu-
tion of surface charges, or hydrophobic attraction, or other
physical mechanisms�, one simple realization being as due to
an “extremely screened” attraction. The presence of a solvent
together with a dense ionic atmosphere could induce any
electrostatic interaction to vanish close to the molecular sur-
face, and—in the idealized sticky limit—to become trun-
cated exactly at contact.

For this model, we solve analytically the molecular
Ornstein-Zernike �OZ� integral equation, by using a trun-
cated Percus-Yevick �PY� approximation, with orientational
linearization �PY-OL�, since it retains only the lowest order
terms in the expansions of the correlation functions in angu-
lar basis functions. This already provides a clear indication
of the effects of anisotropy on the adhesive adhesion.

The idea of an anisotropic surface adhesion is not new. In
a series of papers on hydrogen-bonded fluids such as water,
Blum and co-workers �30–32� already studied models of
spherical molecules with anisotropic pair potentials, includ-

ing both electrostatic multipolar interactions and sticky ad-
hesive terms of multipolar symmetry. Within appropriate clo-
sures, these authors outlined the general features of the
analytic solutions of the OZ equation by employing a very
powerful formalism based upon expansions in rotational in-
variants. In particular, Blum, Cummings, and Bratko �32�
obtained an analytic solution within a mixed MSA/PY clo-
sure �extended to mixtures by Protsykevich �34�� for mol-
ecules which have surface adhesion of dipolar symmetry and
at most dipole-dipole interactions. From the physical point of
view, our model—with “dipolarlike” adhesion resulting from
the sum of an isotropic plus a dipolar term—is different and
more specifically characterized with respect to the one of
Ref. �32�, whose adhesion has a simpler, strictly “dipolar,”
symmetry. From the mathematical point of view, however,
the same formalism employed by Blum et al. �32� could also
be applied to our model. Unfortunately, the solution given in
Ref. �32� is not immediately usable for the actual computa-
tion of correlation functions, since the explicit determination
of the parameters involved in their analytical expressions is
lacking.

In the present paper we adopt a simpler solution method,
by extending the elegant approach devised by Wertheim for
DHS within the MSA closure �3�, and, most importantly, we
aim at providing a complete analytic solution—including the
determination of all required parameters—within our PY-OL
approximation.

The paper is organized as follows. Section II defines the
model. In Sec. III we recall the molecular OZ integral equa-
tion and the basic formalism. In Sec. IV we present the ana-
lytic solution. Numerical exact results for some necessary
parameters, as well as very accurate analytic approximations
for them, will be shown in Sec. V. Some preliminary plots
illustrating the effects of the anisotropic adhesion on the lo-
cal structure are reported in Sec. VI. Phase stability is briefly
discussed in Sec. VII, while final remarks and conclusions
are offered in Sec. VIII.

II. HARD SPHERES WITH ADHESION OF DIPOLARLIKE
SYMMETRY

Let the symbol i��ri ,�i� �with i=1,2 ,3 , . . .� denote both
the position ri of the molecular center and the orientation �i
of molecule i; for linear molecules, �i���i ,�i� includes the
usual polar and azimuthal angles. Translational invariance
for uniform fluids allows one to write the dependence of the
pair correlation function g�1,2� as

�1,2� = �r12,�1,�2� = �r,�1,�2, r̂12� = �r,�1,�2,�r� ,

with r12=r2−r1, r= �r12�, and �r being the solid angle asso-
ciated with r̂12=r12 /r.

In the spirit of Baxter’s isotropic counterpart �11,39�, our
model is defined by the Mayer function given by

fSHS�1,2� = fHS�r� + t��1,2����r − �� , �1�

where fHS�r�=	�r−��−1 is its HS counterpart, 	 is the
Heaviside step function �	�x
0�=0, 	�x�0�=1� and
��r−�� is the Dirac delta function, which ensures that the
adhesive interaction occurs only at contact �� being the hard

FIG. 1. �Color online� Illustration of the dipolarlike adhesion. In
the top panel �a� the adhesion is isotropic, with ��1,2�=1. In the
two other cases the adhesion is anisotropic and �i� stronger and
maximum in the head-to-tail parallel configuration �b�, where
��1,2�=1+2�; and �ii� weaker and minimum in the two antiparallel
configurations �c� �head-to-head and tail-to-tail orientations, both
with ��1,2�=1−2��.
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sphere diameter�. An appropriate limit of the following par-
ticular square-well potential of width R−�,

�SW�1,2� = �
+ 
 , 0 
 r 
 �

− kBT ln�1 + t��1,2�
�

R − �
	 , � 
 r 
 R

0, r � R ,



can be shown to lead to Eq. �1�.
The angular dependence is buried in the angular factor

��1,2� = 1 + �D�1,2� , �2�

including the dipolar function

D�1,2� = D��1,�2,�r� = 3�u1 · r̂��u2 · r̂� − u1 · u2,

which stems from the dipole-dipole potential �dip-dip�1,2�
=−�2D�1,2� /r3 ��̂ is the magnitude of the dipole moment�
and is multiplied by the tunable anisotropy parameter �. In
the isotropic case �=0, one has ��1,2�=1. Here and in the
following, r̂ coincides with r̂12=−r̂21, while ui is the versor
attached to molecule i �drawn as the yellow arrow in Fig. 1�,
which completely determines its orientation �i. Note the
symmetry D�2,1�=D�1,2�.

The condition ��1,2��0 must be enforced in order to
preserve a correct definition of the sticky limit, ensuring that
the total sticky interaction remains attractive for all orienta-
tions, and the range of variability −2�D�1,2��2 yields the
limitation 0���

1
2 on the anisotropy degree. The stickiness

parameter t—equal to �12��−1 in Baxter’s original notation
�11�—measures the strength of surface adhesion relative to
the thermal energy kBT �kB being the Boltzmann constant, T
being the absolute temperature� and increases with decreas-
ing temperature.

If we adopt an “intermolecular reference frame” �with
both polar axis and Cartesian z axis taken along r12�, then the
Cartesian components of r̂ and ui are �0, 0, 1� and
�sin �i cos �i , sin �i sin �i , cos �i�, respectively, and thus

D�1,2� = 2 cos �1 cos �2 − sin �1 sin �2 cos��1 − �2� . �3�

The strength of adhesion between two particles 1 and 2 at
contact depends—in a continuous way—on the relative ori-
entation of u1 and u2 as well as on the versor r̂12 of the
intermolecular distance. We shall call parallel any configu-
ration with u1 ·u2=1, while antiparallel configurations are
those with u1 ·u2=−1 �see Fig. 1�. For all configurations with
D�1,2��0, the anisotropic part of adhesion is attractive and
adds to the isotropic one. Thus, the surface adhesion is maxi-
mum, and larger than in the isotropic case, when u1=u2
= r̂12 and thus ��1,2�=1+2� �head-to-tail parallel configura-
tion, shown in Fig. 1�b��. On the contrary, when D�1,2�

0 the anisotropic contribution is repulsive and subtracts
from the isotropic one, so that the total sticky interaction still
remains attractive. Then, the stickiness is minimum, and may
even vanish for �=1 /2, when u1=−u2= r̂12 and thus
��1,2�=1−2� �head-to-head or tail-to-tail antiparallel con-
figurations, reported in Fig. 1�c��. The intermediate case of
orthogonal configuration �u2 perpendicular to u1� corre-
sponds to D�1,2�=0, which is equivalent to the isotropic
SHS interaction.

It proves convenient to “split” fSHS�1,2� as

fSHS�1,2� = f0�r� + fex�1,2� , �4�

f0�r� = fHS�r� + t���r − �� � f iso-SHS�r� ,

fex�1,2� = ��t����r − ��D�1,2� , �5�

where the spherically symmetric f0�r� corresponds to the
“reference” system with isotropic background adhesion,
while fex�1,2� is the orientation-dependent “excess” term.

We remark that, as shown in Ref. �1� �see also Table I in
Appendix A of the present paper�, convolutions of fSHS func-
tions generate correlation functions with a more complex
angular dependence. Therefore, in addition to D�1,2�, it is
necessary to consider also

��1,2� = u1 · u2 = cos �1 cos �2 + sin �1 sin �2 cos��1 − �2� ,

�6�

where the last equality holds true in the intermolecular
frame. The limits of variation for ��1,2� are clearly −1
���1,2��1.

III. BASIC FORMALISM

This section, complemented by Appendix A, presents the
main steps of Wertheim’s formalism, as well as its extension
to our model.

A. Molecular Ornstein-Zernike equation

The molecular OZ integral equation for a pure and homo-
geneous fluid of molecules interacting via nonspherical pair
potentials is

h�1,2� = c�1,2� + �� dr3�c�1,3�h�3,2�
�3
, �7�

where h�1,2� and c�1,2� are the total and direct correlation
functions, respectively, � is the number density, and g�1,2�
=1+h�1,2� is the pair distribution function �36–38�. More-
over, the angular brackets with subscript � denote an aver-
age over the orientations, i.e., �. . .
�= �4��−1�d�. . ..

The presence of convolution makes this equation conve-
nient to Fourier transform �FT�, by integrating with respect
to the space variable r alone, according to

F̂�k,�1,�2� =� dr F�r,�1,�2�exp�ik · r� . �8�

The r-space convolution becomes a product in k space, thus
leading to

TABLE I. Angular convolutions of the basis functions 1, �, and
Dk.

� 1 � Dk

1 1 0 0

� 0 � /3 Dk /3

Dk 0 Dk /3 �Dk+2�� /3
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ĥ�k,�1,�2� = ĉ�k,�1,�2� + ��ĉ�k,�1,�3�ĥ�k,�3,�2�
�3
.

�9�

As usual the OZ equation involves two unknown functions h
and c, and can be solved only after adding a closure, that is,
a second �approximate� relationship among c, h, and the po-
tential.

B. Splitting of the OZ equation: Reference and excess part

The particular form of our potential, as defined by the
Mayer function of Eq. �1�, gives rise to a remarkable exact
splitting of the original OZ equation. Using diagrammatic
methods �36–38� it is easy to see that both c and h can be
expressed as a graphical series containing the Mayer function
f as a bond function. If fSHS= f0+ fex is substituted into all
graphs of the above series, each diagram with n f-bonds will
generate 2n new graphs. In the cluster expansion of c, the
sum of all graphs having only f0-bonds will yield c0�r�
=ciso-SHS�r�, i.e., the direct correlation function �DCF� of the
reference fluid with isotropic adhesion. On the other hand, all
remaining diagrams have at least one fex-bond, whose ex-
pression is given by Eq. �5�. Thus, in the sum of this second
subset of graphs it is possible to factorize �t, and we can
write

cSHS�1,2� = c0�r� + cex�1,2� , �10�

c0�r� = ciso-SHS�r� ,

cex�1,2� = ��t�c†�1,2� . �11�

Similarly, for h we get

hSHS�1,2� = h0�r� + hex�1,2� , �12�

h0�r� = hiso-SHS�r� ,

hex�1,2� = ��t�h†�1,2� . �13�

Note that this useful separation into reference and excess
parts may also be extended to other correlation functions,
such as ��1,2��h�1,2�−c�1,2�, g�1,2�=1+h�1,2�, and the
“cavity” function y�1,2�=g�1,2� /e�1,2�. The function � co-
incides with the OZ convolution integral, without singular �
terms. Similarly, y is also “regular,” and its exact expression
reads y�1,2�=exp���1,2�+B�1,2��, where the “bridge”
function B is defined by a complicated cluster expansion
�36–38�.

From Eqs. �10�–�13�, which are merely a consequence of
the particular form of fex in the splitting of fSHS, one imme-
diately sees that, if the anisotropy degree � tends to zero,
then

lim
�→0

cex�1,2� = lim
�→0

hex�1,2� = lim
�→0

yex�1,2� = 0. �14�

Note that the spherically symmetric parts c0 and h0 must
be related through the OZ equation for the reference fluid
with isotropic adhesion �reference OZ equation�

h0�r� = c0�r� + �� dr3 c0�r13�h0�r32� . �15�

Thus, substituting c and h of Eq. �7� with c0+cex and h0
+hex, respectively, and subtracting Eq. �15�, we find that cex
and hex must obey the following relation:

hex�1,2� = cex�1,2� + �� dr3�c0�r13��hex�3,2�
�3

+ �cex�1,3�
�3
h0�r32� + �cex�1,3�hex�3,2�
�3

� ,

and when

�cex�1,3�
�3
= �hex�3,2�
�3

= 0, �16�

the orientation-dependent excess parts cex and hex satisfy the
equality

hex�1,2� = cex�1,2� + �� dr3�cex�1,3�hex�3,2�
�3
, �17�

which is decoupled from that of the reference fluid and may
be regarded as an OZ equation for the excess part �excess OZ
equation�. As we shall see, condition �16� is satisfied in our
scheme.

We stress that, in principle, the closures for Eqs. �15� and
�17�, respectively, might be different. In addition, although
the two OZ equations are decoupled, a suitably selected clo-
sure might establish a relationship between F0 and F�F
=c ,h�.

C. Percus-Yevick closure with orientational linearization

For hard-core fluids, h and c inside the core are given by

h�1,2� = − 1 for 0 
 r 
 � ,

c�1,2� = − �1 + ��1,2�� for 0 
 r 
 � . �18�

At the same time, we have the following exact relations:

h�1,2� = g�1,2� − 1 = e�1,2�y�1,2� − 1,

c�1,2� = f�1,2��1 + ��1,2�� + e�1,2��y�1,2� − 1 − ��1,2�� .

Since c, h, and g are discontinuous for hard-core fluids
and involve � terms for sticky particles, it is more convenient
to define closures in terms of y and �, which are still con-
tinuous and without � singularities. The Percus-Yevick ap-
proximation for molecular fluids with orientation-dependent
interactions corresponds to assuming

yPY�1,2� = 1 + ��1,2� everywhere, �19�

and thus, for the DCF,

cPY�1,2� = f�1,2��1 + ��1,2�� , �20�

which implies that c vanishes beyond the range of the poten-
tial.

However, the dependence of ��1,2� on angles may still be
very complex. A possible procedure is to perform a series
expansion of all correlation functions in terms of an infinite
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set of rotational invariants, which are angular basis
functions—related to the spherical harmonics—having the
property of rotational invariance valid for homogeneous flu-
ids �33�. Unfortunately, the full PY approximation requires
an infinite number of expansion coefficients for both c�1,2�
and h�1,2�. This approach is usually impracticable, but
sometimes even unnecessary, as it is possible that the most
significant angular basis functions are included in a small
closed subset of that infinite set. Indeed this happens, for
instance, in the DHS model within the MSA �3�, where the
set �1,� ,D� is the required subset. Although this does not
happen in our model, we shall argue that the same truncation
is sufficient due to the dipolar symmetry of the anisotropic
adhesion.

Indeed, a natural assumption is that the only nonzero har-
monics in c�1,2� and h�1,2� are those contained in f�1,2�
and those which can be obtained from that set by convolu-
tion �30�. Now, the angular basis functions included in our f
bond are only 1 and D, but the convolution of two f bonds
involves the angular average of two D’s, which yields �3�

�D�k,�1,�3�D�k,�3,�2�
�3

=
1

3
�D�k,�1,�2� + 2��k,�1,�2��

in k space, and thus generates also �. Consequently, we will
expand any angle-dependent correlation function F as

F�1,2� = F0�r� + F��r���1,2� + FD�r�D�1,2� + ¯ ,

�21�

neglecting all higher-order terms. In other words, we assume
that all angular series expansions can be truncated after these
first three terms, linear with respect to the angular basis
functions. Using this spirit in the PY approximation, given
by Eq. �20�, we obtain the following PY correlation functions
with orientational linearization �OL�:

cPY-OL�1,2� = c0�r� + c��r���1,2� + cD�r�D�1,2�

= c0�r� + ��t��c�
† �r���1,2� + cD

† �r�D�1,2�� ,

�22�

and

hPY-OL�1,2� = h0�r� + h��r���1,2� + hD�r�D�1,2�

= h0�r� + ��t��h�
† �r���1,2� + hD

† �r�D�1,2�� ,

�23�

where

�c0�r� = �0���r − ��
c��r� = �����r − ��
cD�r� = �D���r − ��


 for r � � , �24�

with

�0 = y0
PY���t ,

�� = y�
PY���t ,

�D = �yD
PY��� + �y0

PY����, t = yD
PY���t + ��0, �25�

y0
PY�r� = 1 + �0�r� ,

y�
PY�r� = ���r� = ��t�y�

† �r� ,

yD
PY�r� = �D�r� = ��t�yD

† �r� . �26�

Clearly for f�1,2� no truncation is required, as the expansion

f0�r� = f iso-SHS�r� = fHS�r� + t���r − �� ,

f��r� = 0,

fD�r� = ��t����r − �� �27�

is exact. It can be shown that c�1,2� and h�1,2� must have
the same approximate form in view of the OZ equation, Eq.
�7�.

The solution of the original OZ equation �7� is then
equivalent to the calculation of the radial coefficients c0�r�,
c��r�, cD�r� and h0�r�, h��r�, hD�r�, which are the projections
of c�1,2� and h�1,2� onto the angular basis �1,� ,D�. The
core condition on h, Eq. �18�, becomes

�h0�r� = − 1

h��r� = 0

hD�r� = 0

 for 0 
 r 
 � . �28�

Note that in the zero density limit ��1,2�
=��dr3�c�1,3�h�3,2�
�3

must vanish, and thus yPY�1,2�
→1, i.e.,

lim
�→0

y0
PY�r� = 1, lim

�→0
y�

PY�r� = lim
�→0

yD
PY�r� = 0,

while both c�1,2� and h�1,2� must reduce to f�1,2� as fol-
lows:

lim�→0 F0�r� = f0�r� ,

lim�→0 F��r� = ,0

lim�→0 FD�r� = fD�r� �F = c,h� ,

and

lim
�→0

�0 = t, lim
�→0

�� = 0, lim
�→0

�D = �t . �29�

Moreover, as �→0 all � and D coefficients of c, h, and y
vanish, so that the isotropic adhesion case is recovered. Fi-
nally, it is also worth stressing that the same � term arises in
c, h, and g, that is,

F�1,2� = Freg�1,2� + Fsing�1,2� �F = c,h,g� ,

where Freg is the “regular” part �i.e., the part with no � sin-
gularity, and—at most—some step discontinuities�, while
Fsing�1,2�=���r−����1,2� is the singular term representing
the anisotropic surface adhesion �with ��1,2�=�0
+����1,2�+�DD�1,2��.
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D. Integral equations for the projections of c and h

In the following, we extend Wertheim theory �3� to our
model, in order to obtain the radial projections of c and h.
The PY-OL approximation to the excess anisotropic part of
the correlation functions is

cex
PY-OL�1,2� = c��r���1,2� + cD�r�D�1,2� ,

hex
PY-OL�1,2� = h��r���1,2� + hD�r�D�1,2� , �30�

thus verifying the required property �cex�1,3�
�3
= �hex�3,2�
�3

=0 described in Sec. III, and allowing the
splitting of the molecular OZ equation into a reference and
an excess part.

The first part is the reference PY equation, and coincides
with that solved by Baxter for the fluid with isotropic adhe-
sion �11,12� as follows:

h0�r� = c0�r� + ��h0�c0�

h0�r� = − 1, 0 
 r 
 �

c0�r� = �0���r − ��, r � � , �31�

where the symbol � denotes spatial convolution, i.e.,
�A�B��r12�=�A�r13�B�r32�dr3.

The second part is the excess PY-OL equation, given by
Eq. �17� coupled with the PY-OL closure. Following an ex-
tension of Wertheim’s approach, as described in detail in
Appendix A, Eq. �17� can be split into the following system
for the � and D projections of c and h:

h��r� = c��r� +
1

3
��c��h� + 2cD

0 �hD
0 � ,

hD
0 �r� = cD

0 �r� +
1

3
��c��hD

0 + cD
0 �h� + cD

0 �hD
0 � , �32�

where cD
0 �r� and hD

0 �r� are defined by the relationship

FD
0 �r� = FD�r� − 3�

r


 FD�x�
x

dx �F = c,h� , �33�

whose inverse is �3�

FD�r� = FD
0 �r� −

3

r3�
0

r

FD
0 �x�x2dx . �34�

The core conditions become

�h��r� = 0

hD
0 �r� = − 3K

� for 0 
 r 
 � , �35�

with

K = �
�−


 hD�x�
x

dx = Kreg + �D, �36�

Kreg = �
�


 hD,reg�r�
r

dr . �37�

Note that the presence of the � singularity in hD�x� requires
the specification of �− as the lower integration limit, unlike
the case of Ref. �1� where only the regular part Kreg is
present. Moreover, since hD�r�=�thD

† �r�, from Eq. �36� one
could also write

K = �tK , �38�

which shows that K is related to the anisotropy degree, and
vanishes both in the symmetric adhesion case ��=0� and in
the HS limit �t=0�. Since hD�r�→ fD�r�= ��t����r−�� in the
zero density limit, one then finds that

lim
�→0

K = �t . �39�

Finally, the PY-OL closure for the new DCFs reads

�c��r� = �����r − ��
cD

0 �r� = �D���r − �� � r � � �40�

�for simplicity, here and in the following we omit the super-
script PY-OL�.

E. Decoupling of the integral equations

It is possible to decouple the two equations for � and D
coefficients by introducing two new unknown functions
which are linear combinations of the previous ones. As
shown in Appendix A, if we define F1�r� and F2�r��F
=c ,h� through the relations

F1�r� = �3L1�−1�F��r� − FD
0 �r�� ,

F2�r� = �3L2�−1�F��r� + 2FD
0 �r�� �F = c,h� ,

then we get the OZ equations

h1�r� = c1�r� + �1�h1�c1� ,

h2�r� = c2�r� + �2�h2�c2� ,

with the following densities and core conditions:

�1 = L1� ,

�2 = L2� ,

h1�r� = K/L1,

h2�r� = − 2K/L2
for 0 
 r 
 � .

The decoupling of the three different projections of c and
h is remarkable: the molecular anisotropic OZ equation re-
duces to a set of three radial integral relations, which may be
regarded as OZ equations for three “hypothetical” fluids �la-
beled as 0, 1, 2� with spherically symmetric interactions. We
stress that there is not a unique solution to the decoupling
problem, since—in principle—there exist infinite possible
choices for �L1 ,L2�. The final results are clearly independent
of the values of �L1 ,L2�.
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In the present paper, we adopt Wertheim’s choice, i.e.,
L1=−K and L2=2K, which leads to

F1�r� =
1

3K
�FD

0 �r� − F��r��

F2�r� =
1

3K
�FD

0 �r� +
1

2
F��r�	 �F = c,h� , �41�

�1 = − K�

�2 = 2K� ,

h1�r� = − 1

h2�r� = − 1
for 0 
 r 
 � �42�

�in Ref. �1�, F1 and F2 were denoted as F− and F+, respec-
tively�.

Note that the auxiliary fluids have densities different from
that of the reference fluid �the negative sign of �1 poses no
special difficulty�.

We can also write

Fm�r� = Fm,reg�r� + �m���r − �� , �43�

with

F1,reg�r� =
1

3K
�FD,reg

0 �r� − F�,reg�r�� ,

F2,reg�r� =
1

3K
�FD,reg

0 �r� +
1

2
F�,reg�r�	 , �44�

and

�1 =
1

3K
��D − ���

=
1

3K
�hD,reg��+� − h�,reg��+��t + �

1

3K
�0,

�2 =
1

3K
��D +

1

2
���

=
1

3K
�hD,reg��+� +

1

2
h�,reg��+�	t + �

1

3K
�0 �45�

�since �. . .���=h. . .,reg��+�−c. . .,reg��+�, and c. . .,reg��+�=0
within the PY-OL closure�.

Knowing the correlation functions F1�r� and F2�r� �with
F=c ,h�, one can derive F��r�, FD

0 �r�, i.e.,

F��r� = 2K�F2�r� − F1�r�� ,

FD
0 �r� = 2K�F2�r� +

1

2
F1�r�	 , �46�

and

�� = 2K��2 − �1� ,

�D = K�2�2 + �1� . �47�

Finally, from F��r�, FD
0 �r� one has to evaluate F��r�,

FD�r�, by employing Eq. �34�. We note the following points:
�i� Insertion of hD

0 �r�=hD,reg
0 �r�+�D���r−�� into Eq. �34�

yields hD�r�=hD,reg�r�+�D���r−��, with

hD,reg�r� = �0, 0 
 r 
 � ,

hD,reg
0 �r� + 3r−3�Kreg�

3 − �
�

r

hD,reg
0 �x�x2dx	 , r � � . 
 �48�

At r=2�hD,reg and hD,reg
0 have the same discontinuity. We

also get

hD,reg��+� = hD,reg
0 ��+� + 3Kreg. �49�

Clearly, these results must agree with those obtained from
Eq. �33�, i.e.,

hD
0 �r� = hD�r� − 3��r� ,

��r� � �
r




hD�x�x−1dx = �D��� − r� + �
r




hD,reg�x�x−1dx .

In order to recover Eq. �49� along this second route, note that
��r� is not continuous at r=�. In fact, from Eqs. �36� and
�37� follows ���−�=K whereas ���+�=Kreg.

�ii� Similarly, for cD�r� we obtain cD�r�=cD,reg�r�
+�D���r−��, with

cD,reg�r� = cD,reg
0 �r� − 3r−3��

0

r

cD,reg
0 �x�x2dx + �D�3��r − ��	 ,

�50�

since �0
r��x−��x2dx=�2��r−��. On the other hand, from

Eq. �33� one easily finds that

cD�r� = cD
0 �r� for r � � . �51�

�iii� By applying the relationship �34� to cD�r�, using Eq.
�51� and noticing that cD�x�=0 for r�� within the PY-OL
approximation, leads to a sum rule as follows:
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�
0




cD
0 �x�x2 dx = �

0

�

cD,reg
0 �x�x2 dx + �D�3 = 0, �52�

that we will exploit later.

IV. ANALYTIC SOLUTION

We have seen that the molecular PY-OL integral equation
�IE� for our anisotropic-SHS model splits into three IE’s,

hm�r� = cm�r� + �m�hm�cm� ,

hm�r� = − 1, 0 
 r 
 � �m = 0,1,2� ,

cm�r� = �m���r − �� , r � � ,

�53�

where

�0 = � ,

�1 = − K� ,

�2 = 2K� , �54�

and the “amplitudes” of the adhesive � terms are

�0 = �1 + h0,reg��+��t = y0
PY���t ,

�m = hm,reg��+�t + P = ym
PY���t + P �m = 1,2� , �55�

with

P =
1

3

�ty0
PY���
K

+
Kreg

K
t =

1

3

��0

K
+

Kreg

K
t . �56�

Here, the new expressions of �1 and �2 have been obtained
from Eqs. �45� with the help of Eqs. �49� and �44�.

The essential difference with respect to Ref. �1� lies in the
closure, which is—of course—related to the model potential.
While Wertheim’s paper on DHS �3� employed the MSA
closure, which performs properly for long-ranged electro-
static potentials at a low strength of interaction, our PY-OL
closure is more appropriate for the short-ranged potential of
the present model.

The first integral equation IE0 is fully independent,
whereas IE1 and IE2 depend on the solution of IE0 �unlike
the case of Ref. �1��, because of the presence of �0 inside �1
and �2. While IE0 is exactly the PY equation for the refer-
ence SHS with isotropic adhesion solved by Baxter �11,12�,
IE1 and IE2 are different from both Wertheim’s MSA solu-
tion for DHS and Baxter’s PY solution for SHS. We remark
that the closures for IE1 and IE2 are not PY as �1 and
�2—given by Eq. �55�—differ, by the term P, from those
appropriate for the PY choice, corresponding to �m

PY

=ym
PY���t.
Consequently, IE1 and IE2 can be reckoned as belonging

to a class of generalized PY �GPY� approximations, intro-
duced in Ref. �39�, which admit an analytic solution. Thus,
the PY-OL closure for c�1,2� leads to a PY integral equation
for c0�r�, coupled to two GPY integral equations for c1�r�
and c2�r� �which are linear combinations of c��r� and cD

0 �r��.

On comparing the three IE’s and their closures given by
Eq. �53�, it is apparent that they have exactly the same form,
but differ by the density �m and the expression for �m. The
first integral equation IE0 corresponds to an isotropic SHS
fluid with density �. On the other hand, IE1 and IE2 refer to
“auxiliary” isotropic SHS fluids with densities �1 and �2, and
adhesion parameters �1 and �2, respectively. Note that, ac-
cording to Eqs. �45�, �m is not evaluated at the actual density
�m of the auxiliary fluid, but at the real density �. These
remarks strongly suggest that the solutions of IE0, IE1, and
IE2 can be expressed in terms of a unique solution—the PY
one for isotropic SHS—by changing only �m and �m. This
can be achieved by the formal mapping

F0�r� = Fiso-SHS�r;�0,�0�
F1�r� = Fiso-SHS�r;�1,�1�
F2�r� = Fiso-SHS�r;�2,�2�

�F = q,c,h� , �57�

where �0=� is the real volume fraction, while �1 and �2 are
“modified volume fractions” of the auxiliary fluids 1 and 2,
i.e.,

�0 = � � ��/6���3,

�1 = − K� ,

�2 = 2K� . �58�

In Eqs. �57� q�r� denotes the Baxter factor correlation func-
tion, introduced in the next section.

It is worth noting that this result for SHS mirrors the
analog of the MSA solution for DHS �3� where all three
harmonic coefficients can be expressed similarly, in terms of
a single PY solution for the reference HS fluid.

A. Baxter factorization

We shall now solve Eqs. �53� by using the Wiener-Hopf
factorization due to Baxter �12�. Let us recall its basic steps.
After Fourier transforming the OZ equation for a one-
component fluid with spherically symmetric interactions, one
assumes the following factorization:

1 − �c̃�k� = Q�k�Q�− k� ,

Q�k� = 1 − 2���
0




q�r�eikrdr . �59�

Then it can be shown that the introduction of the “factor
correlation function” q�r� allows the OZ equation to be cast
into the form �12�

rc�r� = − q��r� + 2���
0




duq�u�q��r + u� ,

rh�r� = − q��r� + 2���
0




duq�u��r − u�h��r − u�� , �60�

where the prime denotes differentiation with respect to r.
Solving these Baxter equations is tantamount to
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determining—within a chosen closure—the function q�r�,
from which c�r� and h�r� can be easily calculated. It is also
necessary to remember that, for all closures leading to c�r�
=0 for r��, one finds q�r�=0 for r�� �39�.

On applying Baxter’s factorization to Eqs. �53�, we get

rhm�r� = − qm� �r� + 2��m�
0

�

duqm�u��r − u�hm��r − u�� .

�61�

with m=0,1 ,2. Now the closure cm�r�=�m���r−�� for r
�� implies that the same � term must appear in hm�r�. Thus,
for 0�r��, using hm�r�=−1+�m���r−��, we find

qm� �r� = amr + bm� − �m�2��r − �� ,

with

am = 1 − 2��m�
0

�

duqm�u� ,

bm� = 2��m�
0

�

duqm�u�u . �62�

The � term of qm� �r� means that qm�r� has a discontinuity
qm��+�−qm��−�=−�m�2, with qm��+�=0. Integrating qm� �r�,
substituting this result into Eqs. �62�, and solving the corre-
sponding algebraic system, we find the following solution:

qm�r� = �1

2
am�r − ��2 + �am + bm���r − �� + �m�2, 0 � r � �

0 otherwise,

 �63�

am = aHS��m� −
12�m�m

1 − �m
, �64�

bm = bHS��m� +
6�m�m

1 − �m
, �65�

�m = ��/6��m�3, �66�

aHS�x� =
1 + 2x

�1 − x�2 , bHS�x� = −
3x

2�1 − x�2 . �67�

From the first of Eqs. �60� we get the DCFs cm�r�=cm,reg�r�+�m���r−��, where cm,reg�r�=0 for r��, and for 0
r
�,

cm,reg�r� = −
1

2
�mam

2 � r

�
�3

+ 6�m��am + bm�2 − 2am�m�� r

�
� − am

2 − 12�m�m
2 � r

�
�−1

. �68�

The second of Eqs. �60� yields the total correlation functions hm�r�=hm,reg�r�+�m���r−��. For r��, Eq. �61� becomes

Hm,reg�r� = 12�m�−3��0

r−�

duqm�u�Hm,reg�r − u� + �
r−�

�

duqm�u��u − r� + �m�2qm�r − �� , � 
 r 
 2�

�
0

�

duqm�u�Hm,reg�r − u� , r � 2� , 
 �69�

where Hm�r��rhm�r�. Due to the last term of Eq. �69� and
the discontinuity of qm�r� at r=�, hm,reg�r� has a jump of at
r=2� �40,41�: hm,reg�2�+�−hm,reg�2�−�=−6�m�m

2 .

B. An important relationship

In Appendix B it is shown that a remarkable consequence
of the sum rule �52� is the condition

a2 = a1, �70�

which will play a significant role in the determination of the
unknown parameters �1, �2, and K �see Appendix B�.

C. Reference fluid coefficients

The m=0 case corresponds to Baxter’s PY results for the
reference fluid of isotropic SHS particles �11,12�. We have
q0�r�=qiso-SHS�r ;� ,�0�, and
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c0�r� = ciso-SHS�r;�,�0� = creg
iso-SHS�r;�,�0� + �0���r − �� ,

h0�r� = hiso-SHS�r;�,�0� = hreg
iso-SHS�r;�,�0� + �0���r − ��

�71�

�for simplicity, we omit—here and in the following—the su-
perscript PY�.

D. � and D coefficients

We write qm�r�=qiso-SHS�r ;�m ,�m� with m=1,2. Then,
�i� For the � coefficients, after recalling Eq. �43� and ex-

ploiting Eqs. �47�, we end up with

c��r� = 2K�c0,reg�r;2K�,�2� − c0,reg�r;− K�,�1��

+ �����r − �� ,

h��r� = 2K�h0,reg�r;2K�,�2� − h0,reg�r;− K�,�1��

+ �����r − �� . �72�

�ii� For the D coefficients, we get

cD
0 �r� = 2K�c0,reg�r;2K�,�2� +

1

2
c0,reg�r;− K�,�1�	

+ �D���r − �� ,

hD
0 �r� = 2K�h0,reg�r;2K�,�2� +

1

2
h0,reg�r;− K�,�1�	

+ �D���r − �� . �73�

Finally, from cD
0 �r� and hD

0 �r� we can calculate cD�r� and
hD�r�, as described by Eqs. �50� and �48�, respectively.

In short, �a� our PY-OL solution—�c0 ,c� ,cD� and
�h0 ,h� ,hD�—satisfies both the PY closures and the core con-
ditions; �b� all coefficients contain a surface adhesive � term;
and �c� �h0 ,h� ,hD� all exhibit a step discontinuity at r=2�.

V. EVALUATION OF THE PARAMETERS K, �1, AND
�2

The calculation of the Baxter functions qm’s �m=0,1 ,2�
requires the evaluation of K, �1, and �2, for a given set of �,
�, and t values, a task that we address next.

A. Exact expressions

Four equations are needed to find the three quantities
�m=qm��−� /�2�m=0,1 ,2�, as well as the parameter
K�� , t ,��. We stress that the almost fully analytical determi-
nation of these unknown parameters was lacking in Ref. �32�
and represents an important part of the present work. Our
detailed analysis is given in Appendix B, and we quote here
the main results.

�i� For �0, the same PY equation found by Baxter for
isotropic SHS �11,12�

12�t�0
2 − �1 +

12�

1 − �
t��0 + y�

HS���t = 0. �74�

Only the smaller of the two real solutions �when they exist�
is physically significant �11,12�, and reads

�0 = y0
PY���t

=
y�

HS���t

1

2
�1 +

12�

1 − �
t +��1 +

12�

1 − �
t�2

− 48�y�
HS���t2	 .

�75�

�ii� For �1 and �2, two other quadratic equations, i.e.,

12�mt�m
2 − �1 +

12�m

1 − �m
t��m + h�

HS��m�t = − P �m = 1,2� .

�76�

�iii� The fourth equation is the following linear relation-
ship between �1 and �2:

12�2�2

1 − �2
−

12�1�1

1 − �1
=

�2�4 − �2�
�1 − �2�2 −

�1�4 − �1�
�1 − �1�2 , �77�

which stems from the condition a2=a1.
The analysis of Appendix B gives

�2��1,�2,t,�� = �1��2,�1,t,�� , �78�

with

�m = � + �m
ex �m = 1,2� , �79�

� =
1

3
+

1

4
� �1

1 − �1
+

�2

1 − �2
� =

1

3
+

x�1 + 4x�
4�1 + x��1 − 2x�

,

�80�

�1
ex =

�2

4�1 − �2�
W0

ex, �2
ex =

�1

4�1 − �1�
W0

ex, �81�

where we have introduced �1=−x, �2=2x �x�K��, and W0
ex

is defined in Appendix B. All these quantites are analytic
functions of x=K�. Thus, to complete the solution, we need
an equation for K, which can be written as

K = �tK, with K =
y0

PY���
Z��1,�2,t�

, �82�

Z =
3

2
��1 + �2� − 3� 1

2 �
m=1

2 �12�m�m
2 −

12�m�m

1 − �m

+ h�
HS��m�	 +

Kreg

K �t , �83�

and lim�→0 Z��1 ,�2 , t�=1. Insertion of found expressions for
�1, �2, and Kreg �see Appendix B� into Eq. �82� yields a
single equation for K that we have solved numerically, al-
though some further analytic simplifications are probably
possible. Our solution is then almost fully analytical, as only
the final equation for K is left to be solved numerically.

B. Approximate expressions

For practical use we next derive very accurate analytical
approximations to K, �1, and �2, which provide a useful tool
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for fully analytical calculations. Since in all cases of our
interest we always find x=K��1, a series expansion leads
to

W0
ex =

2

3
�1 + 5x�t + O�x2� , �84�

and, consequently,

�1
ex =

x�1 + 5x�
3�1 − 2x�

t + O�x3�, �2
ex = −

x�1 + 5x�
6�1 + x�

t + O�x3� .

�85�

Similarly we can expand Z in Eq. �83� as

Z�x,t� = 1 + z1�t�x + z2�t�x2 + O�x3� , �86�

with

z1�t� =
1

4
�3 + 11t� ,

z2�t� =
1

4
�15 + 61t − 4t2� . �87�

Insertion of this result into Eq. �82� yields a cubic equation
for K,

z2�t��2K3 + z1�t��K2 + K − �ty0
PY��� = 0,

which, again with the help of Eq. �82�, is equivalent to a
cubic equation for Z,

Z3 − Z2 + z1�t���ty0
PY�����Z + z2�t���ty0

PY�����2 = 0.

�88�

The physically acceptable solution then reads

Z��,t� =
1

3
�1 + �3 B + �B2 − C3 + �3 B − �B2 − C3� , �89�

where

B = 1 +
9

2
z1�t���ty0

PY����� +
27

2
z2�t���ty0

PY�����2,

C = 1 + 3z1�t���ty0
PY����� . �90�

In conclusion, our approximate analytic solution for K, �1,
and �2 includes three simple steps: �i� calculate K by using
Eqs. �82�, �89�, �90�, and �87�; �ii� evaluate x=K�; and �iii�
solve for �1 and �2 by means of Eqs. �80� and �85�.

C. Numerical comparison

In order to assess the precision of previous approxima-
tions, we have calculated K, �1, and �2 by two methods: �i�
solving numerically Eqs. �B8�, and �ii� using our analytic
approximations. After fixing �=1 /2, we have increased the
adhesion strength �or decreased the temperature� from t=0
�HS limit� up to t=0.8, for some representative values of the
volume fraction ��=0.01, 0.1, 0.2, and 0.4�. The maximum
value of t corresponds to �=1 / �12t��0.1, which lies close to
the critical temperature of the isotropic SHS fluid. On the
other hand, �=0.01 has been chosen to illustrate the fact
that, as �→0, the parameter K tends to �t. The linear de-
pendence of K on t in this case is clearly visible in the top
panel of Fig. 2.

In Figs. 2 and 3 the exact and approximate results for K,
�1, and �2 are compared. The agreement is excellent: at �
=0.1, 0.2, and 0.4, the relative error on K does not exceed
0.1%, 0.4%, and 1%, respectively, while the maximum of the
absolute relative errors on �1 and �2 always remain less than
0.05, 0.2, and 0.6% in the three above-mentioned cases. It is
worth noting that, as � increases, the variations of �1 and �2
are always relatively small; on the contrary, K experiences a
marked change, with a progressive lowering of the relevant
curve.
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FIG. 2. �Color online� Comparison between exact numerical and
approximate analytical results for the parameters K, �1, and �2 as a
function of t, for anisotropy degree �=1 /2 and two values of the
packing fraction: �=0.01 �top panel� and �=0.1 �bottom panel�.
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VI. SOME ILLUSTRATIVE RESULTS ON THE LOCAL
ORIENTATIONAL STRUCTURE

Armed with the knowledge of the analytic expression for
the qm’s a rapid numerical calculation of the three harmonic
coefficients �h0 ,h� ,hD� appearing in

gPY-OL�1,2� = 1 + h0�r� + h��r���1,2� + hD�r�D�1,2�
�91�

can be easily obtained as follows. From the second Baxter IE
�60�, one can generate h�r� directly from q�r�, avoiding the
passage through c�r�. From �q0 ,q1 ,q2� one first obtains
�h0 ,h1 ,h2� by applying a slight extension of Perram’s nu-
merical method �42� and then derives �h0 ,h� ,hD�, according
to the above-mentioned recipes.

The main aim of the present paper was to present the
necessary mathematical machinery to investigate thermo-
physical properties. We now illustrate the interest of the
model by reporting some preliminary numerical results on
the orientational dependence of gPY-OL�1,2�—i.e., on the lo-

cal orientational structure—as a consequence of the aniso-
tropic adhesion. A more detailed analysis will be reported in
a forthcoming paper.

Consider the configuration depicted in Fig. 4. Let a ge-
neric particle 1 be fixed at a position r1 in the fluid with
orientation u1, and consider another particle 2 located along
the straight half-line, which originates from the center of 1
and with direction u1. This second particle has then a fixed
distance r from 1, but can assume all possible orientations
u2, which—by axial symmetry—can be described by a single
polar angle ���2 �i.e., the angle between u1 and u2� with
respect to the intermolecular reference frame. Within this
geometry, we have ��1 ,�1�= �0,0� and �2=0, obtaining
��1,2�=cos �, D�1,2�=2 cos �. Consequently, g�1,2�
=g�r ,�1 ,�1 ,�2 ,�2� reduces to

g�r,�� = g0�r� + �h��r� + 2hD�r��cos � , �92�

where ���2, and g0�r�=1+h0�r� is the radial distribution
function of the reference isotropic SHS fluid.

Clearly, g�r ,�� is proportional to the probability of find-
ing, at a distance r from a given molecule 1, a molecule 2
having a relative orientation �. We consider the three most
significant values of this angle: �i� �=0, which corresponds
to the “parallel” configuration of u1 and u2; �ii� �=� /2, for
the “orthogonal” configuration; and �iii� �=�, for the two
“antiparallel” �head-to-head and tail-to-tail� configurations.
From Eq. �92� it follows that

gpar�r� = g�r,0� = g0�r� + �h��r� + 2hD�r�� ,

gortho�r� = g�r,�/2� = g0�r� ,

gantipar�r� = g�r,�� = g0�r� − �h��r� + 2hD�r�� . �93�

Note that gortho�r� coincides with the isotropic result g0�r�.
In Fig. 5 we depict the above sections through the three-

dimensional surface corresponding to g�r ,��, i.e., gpar�r�,
gortho�r�, and gantipar�r�, for �=0.3 with t=0.2 and t=0.6, re-
spectively, at the highest asymmetry value admissible in the
present model, i.e., �=1 /2. The most significant features
from these plots are �i� gantipar��+��gpar��+� and �ii� for r
�2�gantipar�r��gpar�r��g0�r�, i.e., the anisotropic adhesion
seems to affect only the first coordination layer �
r
2�,
around each particle.

The interpretation of these results is the following. In
view of �i� we see that the parallel configuration is less prob-
able than the antiparallel one at contact. Such a finding, to-

0.0 0.2 0.4 0.6 0.8

t

0.0

0.1

0.2

0.3

0.4

K
,

K
K-approx

0.0 0.2 0.4 0.6 0.8

t

0.0

0.1

0.2

0.3

0.4

K
,

K
K-approx

(b)

(a)

FIG. 3. �Color online� Same as in Fig. 2, but for �=0.2 �top
panel� and �=0.4 �bottom panel�.

FIG. 4. �Color online� Illustration of the simple configuration
discussed in the text and chosen to define some radial sections
through the multidimensional plot of g�1,2�.
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gether with �ii�, means that chain formation characteristic of
polymerization is inhibited by the short-ranged anisotropic
adhesion exploited here. This strictly contrasts with the case
of long-ranged DHS fluids, where it is believed �7,8� that
chaining phenomena might preempt the gas-liquid transition.
This specific feature of the present model is extremely inter-
esting and we plan a throughout investigation on this topic in
a future publication.

VII. PHASE STABILITY

In view of previous findings, a very natural question is
whether the addition of our anisotropic sticky term to the
potential changes phase stability and phase transition curves
with respect to the corresponding isotropic case. We believe
the answer to be positive. This is strongly suggested by the
results obtained for similar anisotropic models, such as hard

spheres with sticky points �13–21� or sticky patches
�10,22–27�.

We now briefly comment on this issue. Within our formal-
ism, this problem of stability can be conveniently analyzed
using standard formalism devised for this aim �44–47�. We
start from the stability condition with respect to small but
arbitrary fluctuations of the one-particle density ��1� from
the equilibrium configuration, denoted as “eq” �45–47�,

� d�1� � d�2����1,2�
��1�

− c�1,2�	
eq

���1����2� � 0.

�94�

Here d�i� stands for dri d�i, i=1,2, and we assume the
equilibrium one-particle density to be � /4� �45–47�.

We expand the fluctuations both in Fourier modes and in
spherical harmonics �44�

���j� � ���r j,� j� =� dk

�2��3eik·rj�
l=0

+


�
m=−l

+l

��̃�k�Ylm�� j� .

�95�

Using the orthogonality relation �44�

� d� Y
lm
* ���Yl�m���� = �ll��mm�, �96�

standard manipulations �47� show that condition �94� can be
recast into the form

�
l1,l2=0

+


�
m1=−l1

+l1

�
m2=−l2

+l2 � dk

�2��3��̃l1m1
�k���̃

l1m1

* �k�Ãl1m1l2m2
�k�

� 0, �97�

where the matrix elements Ãl1m1l2m2
�k� are given by

Ãl1m1l2m2
�k� = �− 1�m1

4�

�
�l1l2

�m1,−m2

−� d�1� d�2Yl1m1
��1�Yl2m2

��2�

�� dreik·rc�r,�1,�2� . �98�

The problem of the stability has been reported to the char-
acter of the eigenvalues of matrix �98�. This turns out to be
particularly simple in our case. Using the results �A3� it is
easy to see that

� dreik·rc�r,�1,�2� = c̃0�k� + c̃��k����1,�2�

+ c̄D�k�D��1,�2,�k� . �99�

Insertion of Eq. �99� into Eq. �98� leads to
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FIG. 5. �Color online� Sections through g�1,2�, with particles 1
and 2 in the configuration shown by the previous figure, calculated
as a function of r for fixed relative orientations: �=0 �parallel con-
figuration�, �=� /2 �orthogonal configuration�, and �=� �antiparal-
lel configurations�.
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Ãl1m1l2m2
�k� = �− 1�m1

4�

�
�l1l2

�m1,−m2
− �c̃0�k�Il1m1l2m2

�0�

+ c̃��k�Il1m1l2m2

��� + c̃D�k�Il1m1l2m2

�D� � , �100�

where we have introduced the following integrals, which can
be evaluated in the intermolecular frame, using standard
properties of the spherical harmonics �44�:

Il1m1l2m2

�0�

� � d�1� d�2 Yl1m1
��1�Yl2m2

��2�

= 4��l10�l20�m10�m20,

Il1m1l2m2

��� � � d�1� d�2 Yl1m1
��1�Yl2m2

��2����1,�2�

=
4

3
��l11�l21�m10�m20,

Il1m1l2m2

�D� �cos ��

� � d�1� d�2 Yl1m1
��1�Yl2m2

��2�D��1,�2,�k�

=
4

3
��l11�l21�m10�m202P2�cos �� , �101�

and where P2�x�= �3x2−1� /2 is the second Legendre polyno-
mial.

Hence, the matrix �98� is diagonal and the relevant terms
are

Ã0000�k� = 4��1

�
− c̃0�k�	 , �102�

whose positiveness is recognized as the isotropic stability
condition, and

Ã1010�k� = 4��1

�
−

1

3
�c̃��k� + 2P2�cos ��c̄D�k��� .

�103�

All remaining diagonal terms have the form Ãl0l0=4� /�
�0.

In order to test for possible angular instabilities, we con-
sider the limit k→0 of Eq. �103�, namely,

Ã1010�0� =
4�

�
�1 −

�

3
�c̃��0� + 2P2�cos ��c̄D�0��� .

�104�

This can be quickly computed with the aid of Eqs. �46� and
�59�, the fact that c̄D�0�= c̃D

0 �0� and the identity �70�. We find

Ã1010�0� =
4�

�
a1

2, �105�

which is independent of the angle �. This value is found to
be always positive as a1�0 �see Fig. 6�. Within this first-

order approximation, therefore, the only instability in the
system stems from the isotropic compressibility. The reason
for this can be clearly traced back to the first-order approxi-
mation to the angular dependence of the correlation func-
tions. If quadratic terms in � and D were included into the
series expansion for correlation functions, the particular
combination leading to a cancellation of the angular depen-

dence in the stability matrix Ãl1m1l2m2
�0� would not occur,

leading to a different result.
This fact is consistent with the more general statement

that, in any approximate theory, thermodynamics usually re-
quires a higher degree of theoretical accuracy than the one
sufficient for obtaining significant structural data. Conceptu-
ally, the need for distinguishing structural results from ther-
modynamical ones is rather common. For instance, in statis-
tical mechanics of liquids it is known that approximating the
model potential only with its repulsive part �for instance, the
hard sphere term� can account for all essential features of the
structure, but yields unsatisfactory thermodynamics. On the
other hand, the present paper refers to a simplified statistical-
mechanical tool, i.e., the OZ equation within our PY-OL clo-
sure, which has been explicitly selected to allow an analyti-
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FIG. 6. �Color online� Evaluation of quantities a0 �top panel�
and a1=a2 �bottom panel� as a function of t for various packing
fractions ranging from �=0.01 to �=0.4. These are computed from
Eq. �64� with m=0,1. Note that for both �=0.1 and �=0.2, a0=0
corresponds to the onset of isotropic instability.
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cal solution. Our results, however, indicate that the first-order
expansion used in the PY-OL closure can give reasonable
information about structure, but not on thermodynamics,
where a higher level of sophistication is required.

VIII. CONCLUDING REMARKS

In this paper we have discussed an anisotropic variation
of the original Baxter model of hard spheres with surface
adhesion. In addition to the HS potential, molecules of the
fluid interact via an isotropic sticky attraction plus an addi-
tional anisotropic sticky correction, whose strength depends
on the orientations of the particles in dipolar way. By varying
the value of a parameter �, the anisotropy degree can be
changed. Consequently, the strength of the total sticky poten-
tial can vary from twice the isotropic one down to the limit
of no adhesion �HS limit�. These particles may be regarded
as having two nonuniform, hemispherical, “dipolarlike
patches,” thus providing a link with uniformly adhesive
patches �10,22–27�.

We have obtained a full analytic solution of the molecular
OZ equation, within the PY-OL approximation, by using
Wertheim’s technique �3�. Our PY-OL approximation should
be tested against exact computer simulations, in order to as-
sess its reliability. Nevertheless, we may reasonably expect
the results to be reliable even at experimentally significant
densities, notwithstanding the truncation of the higher-order
terms in the angular expansion. Only one equation, for the
parameter K, has to be solved numerically. In addition, we
have provided analytic approximations to K, �1, and �2 so
accurate that, in practice, the whole solution can really be
regarded as fully analytical. From this point of view, the
present paper complements the above-mentioned previous
work by Blum et al. �32�.

We have also seen that thermophysical properties require
a more detailed treatment of the angular part than the PY-OL
closure. Nonetheless, even within the PY-OL oversimplified
framework, our findings are suggestive of a dependence of
the fluid-fluid coexistence line on anisotropy.

Our analysis envisions a number of interesting perspec-
tives, already hinted at by the preliminary numerical results
reported here. It would be very interesting to compare the
structural and thermodynamical properties of this model with
those stemming from truly dipolar hard spheres �45–47�. The
possibility of local orientational ordering can be assessed by
computing the pair correlation function g�1,2� for the most
significant interparticle orientations. We have shown that this
task can be easily performed within our scheme. This should
provide important information about possible chain forma-
tion and its subtle interplay with the location of the fluid-
fluid transition line. The latter bears a particular interest in
view of the fact that computer simulations on DHS are no-
toriously difficult and their predictions regarding the location
of such a transition line have proven so far inconclusive �43�.
The long-range nature of DHS interactions may in fact pro-
mote polymerization preempting the usual liquid-gas transi-
tion �8�. Our preliminary results on the present model
strongly suggest that this is not the case for sufficiently
short-ranged interactions, thus allowing the location of such

a transition line to be studied as a function of the anisotropy
degree of the model. Our sticky interactions have only attrac-
tive adhesion, the only repulsive part being that pertinent to
hard spheres, whereas the DHS potential is both attractive
and repulsive, depending on the orientations.

Finally, information about the structural ordering in the
present model would neatly complement those obtained by
us in a recent parallel study on a SHS fluid with one or two
uniform circular patches �10�. Work along this line is in
progress and will be reported elsewhere.
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APPENDIX A: EXTENSION OF WERTHEIM’S
APPROACH

The Fourier transform of the excess PY-OL equation, Eq.
�17�, reads

ĥex�k,�1,�2� = ĉex�k,�1,�2�

+ ��ĉex�k,�1,�3�ĥex�k,�3,�2�
�3

�A1�

�the superscripts have been omitted for simplicity�. In order
to evaluate the angular average, we first need the FT of c and
h. The FT integral �8� may be rewritten as

�
0




dr r2� d�r exp�ik · r��¯�

= �
0




dr r2�
0

2�

d��
−1

+1

d�cos ��eikr cos ��¯� .

Let us now apply this operator to Fex�1,2� �F=c ,h�, ex-
pressed as

Fex�r,�1,�2� = F��r����1,�2� + FD�r�D��1,�2,�r� ,

�A2�

and first perform the angular integration �d�r, recalling that
�3�

� d�r exp�ik · r�1 = 4�j0�kr�1,

� d�r exp�ik · r����1,�2� = 4�j0�kr����1,�2� ,

� d�r exp�ik · r�D��1,�2,�r� = − 4�j2�kr�D��1,�2,�k� ,

�A3�

where j0�x�=x−1 sin x and j2�x�=3x−3 sin x−3x−2 cos x
− j0�x� are Bessel functions, and
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D��1,�2,�k� = 3�u1 · k̂��u2 · k̂� − u1 · u2 � Dk�1,2� ,

with k̂=k /k. We get

F̂ex�k,�1,�2� = F̃��k����1,�2� + F̄D�k�D��1,�2,�k� ,

where F̃��k� is the usual FT of the spherically symmetric

function F��r�: F̃. . .�k�=4��0

dx x2j0�kx�F. . .�x�. On the other

hand, F̄D�k�=−4��0

dx x2j2�kx�FD�x�, which is the Hankel

transform of FD�r�, may conveniently be considered as the

FT of a “modified” function FD
0 �r�, i.e., F̄D�k�= F̃D

0 �k�. Taking

the inverse FT of F̄D�k� yields

FD
0 �r� =

1

2�2�
0




dk k2j0�kr�F̄D�k� = FD�r� − 3�
r


 FD�x�
x

dx ,

�A4�

with the help of the identity

�
0




dk k2j0�kr�j2�kx� =
�

2
�3��x − r�

x3 −
��x − r�

x2 	 .

In conclusion, the FT of Fex�1,2� reads

F̂ex�k,�1,�2� = F̃��k����1,�2� + F̃D
0 �k�D��1,�2,�k� ,

�A5�

with F standing for h or c.
Let us now define the angular convolution of two func-

tions as

A � B = B � A � �A��1,�3�B��3,�2�
�3
.

Wertheim �3� demonstrated that the rotational invariants 1,
�, and D form a closed group under angular convolution;
that is, the angular convolution of any two members of this
set yields only a function in the same set, or zero, according
to Table I.

Substituting the expressions for ĉex and ĥex given by Eq.

�A5� into the angular average ĉex� ĥex

= �ĉex�k ,�3 ,�2�ĥex�k ,�3 ,�2�
�3
, with the help of Table I

we obtain

ĉex � ĥex = c̃�h̃�

1

3
� + c̃�h̃D

0 1

3
Dk

+ c̃D
0 h̃�

1

3
Dk + c̃D

0 h̃D
0 1

3
�2� + Dk� .

Inserting this result into Eq. �A1� and equating the coeffi-
cients of � and D separately, one finds that the k-space ex-
cess PY-OL equation splits into two coupled integral equa-
tions, i.e.,

h̃� − c̃� =
1

3
��c̃�h̃� + 2c̃D

0 h̃D
0 � ,

h̃D
0 − c̃D

0 =
1

3
��c̃�h̃D

0 + c̃D
0 h̃� + c̃D

0 h̃D
0 � . �A6�

Coming back to the r space, one gets the following equa-
tions:

h��r� = c��r� +
1

3
��c��h� + 2cD

0 �hD
0 � ,

hD
0 �r� = cD

0 �r� +
1

3
��c��hD

0 + cD
0 �h� + cD

0 �hD
0 � . �A7�

In particular, since hD�r�=0 for 0
r
�, Eq. �33� yields
hD

0 �r�=−3K for 0
r
�, with K being a dimensionless pa-
rameter defined by

K = �
�−


 hD�x�
x

dx . �A8�

The exact core conditions for Eqs. �A7� are

�h��r� = 0

hD
0 �r� = − 3K

� for 0 
 r 
 � . �A9�

Now, in the PY-OL closure for the DCFs, Eqs. �24�, the
closure for cD�r� must be replaced with that corresponding to
cD

0 �r� �for simplicity, here and in the following we omit the
superscript PY-OL�. In order to derive this, let us start from
cD�r�=cD,reg�r�+�D���r−��, where cD,reg�r�= fHS�r�yD

PY�r�
=0 for r��. Then Eq. �33� yields

cD
0 �r� = cD�r� − 3�

r

� cD,reg�x�
x

dx − 3�D��� − r� ,

since �r

��x−��x−1dx=�−1���−r� �35�. So we get

cD
0 �r� = cD�r� for r � � , �A10�

and the required new closures are

�c��r� = �����r − ��
cD

0 �r� = �D���r − �� � r � � . �A11�

In order to decouple the two integral equations for � and
D coefficients, we then introduce two new unknown func-
tions, which are linear combinations of the previous ones.
Defining

F̃new = �1F̃� + �2F̃D
0 �F = c,h� ,

and using Eqs. �A6� leads to

h̃new − c̃new = �1�h̃� − c̃�� + �2�h̃D
0 − c̃D

0 �

=
1

3
���1c̃�h̃� + �2�c̃�h̃D

0 + c̃D
0 h̃�� + �2�1

+ �2�c̃D
0 h̃D

0 � .

Requiring the second member of this equation to be propor-

tional to �c̃newh̃new—that is, equal to L���1c̃�+�2c̃D
0 � ��1h̃�

+�2h̃D
0 �, with L being the proportionality constant—yields

the following conditions:
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1

3
�1 = L�1

2,

1

3
�2 = L�1�2,

1

3
�2�1 + �2� = L�2

2.

An infinite number of solutions are possible, and correspond
to

��1,�2� =
1

3L1
�1,− 1�, and ��1,�2� =

1

3L2
�1,2� ,

since there is no need for the proportionality constant to have
the same value in the two cases, i.e., �2 can differ from �1. As
a consequence, we can write the two new hnew�r� as

h1�r� = �3L1�−1�h��r� − hD
0 �r�� ,

h2�r� = �3L2�−1�h��r� + 2hD
0 �r�� , �A12�

while similar expressions hold for c1 and c2. From Eqs. �A9�
it follows that h1�r�=K /L1 and h2�r�=−2K /L2 for 0
r

�.

In Ref. �1� Wertheim chose L1=−K and L2=2K �3�,
which leads to

F1�r� =
1

3K
�FD

0 �r� − F��r��

F2�r� =
1

3K
�FD

0 �r� +
1

2
F��r�	 �F = c,h� , �A13�

�1 = − K� ,

�2 = 2K� ,

h1�r� = − 1

h2�r� = − 1
for 0 
 r 
 � �A14�

�in Ref. �1�, F1 and F2 were denoted as F− and F+, respec-
tively�. Clearly, Wertheim’s choice has the advantage of pro-
viding, for all the three hypothetical fluids, core conditions of
the typical HS form: hm�r�=−1 for 0
r
� �m=0,1 ,2�.
The cost to pay is the introduction of “modified densities”
for the auxiliary fluids 1 and 2 �the negative sign of �1 poses
no special difficulty�.

On the other hand, it would be equally proposable to
choose L1=L2=1, which leads to

F1�r� =
1

3
�F��r� − FD

0 �r��

F2�r� =
1

3
�F��r� + 2FD

0 �r��
�F = c,h� ,

�1 = � ,

�2 = � ,

h1�r� = K

h2�r� = − 2K
for 0 
 r 
 � .

The advantage of this second possibility would be that all the
three “hypothetical” fluids have the same real density, while
the cost is represented by the less usual core conditions,
which, however, pose no particular difficulty.

APPENDIX B: EQUATIONS FOR THE UNKNOWN
PARAMETERS

Three quadratic equations for the �m’s �m=0,1 ,2� can be
obtained from Eqs. �55� and �56�, after deriving from Eq.
�69� the following expressions for the PY-OL contact values:

hm,reg��+� = h�
HS��m� −

12�m

1 − �m
�m + 12�m�m

2 , �B1�

where

h�
HS�x� = y�

HS�x� − 1,

y�
HS�x� = �1 +

1

2
x��1 − x�−2. �B2�

Substituting Eq. �B1� into the expressions for �m given by
Eqs. �55�, we get

�i� for �0, the same PY equation found by Baxter for
isotropic SHS �11,12�

12�t�0
2 − �1 +

12�

1 − �
t��0 + y�

HS���t = 0. �B3�

Only the smaller of the two real solutions �when they exist�
is physically significant �11,12�, and reads

�0 =
y�

HS���t

1

2
�1 +

12�

1 − �
t +��1 +

12�

1 − �
t�2

− 48�y�
HS���t2	 .

�B4�

�ii� For �1 and �2, the equations

12�mt�m
2 − �1 +

12�m

1 − �m
t��m + h�

HS��m�t = − P �m = 1,2� .

�B5�

It is remarkable that the right-hand member of these equa-
tions does not depend on the index m. This fact means that
�2 obeys exactly the same equation as �1, but with �2 re-
placing �1; as will be confirmed later, such a property im-
plies that, if one writes �1=�1��1 ,�2 , t ,��, then �2 must
have the same functional form with �2 interchanged with �1,
i.e., �2��1 ,�2 , t ,��=�1��2 ,�1 , t ,��.

Now the system of equations for �1, �2, and K must be
completed by a further relationship, which can be obtained
from the sum rule, Eq. �52�. Taking into account that cD

0

=K�2c2+c1�, and multiplying Eq. �52� by 4�� yields
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4��2�
0




c2�x�x2 dx = 4��1�
0




c1�x�x2 dx . �B6�

On the other hand, putting k=0 into Eq. �59� gives

1 − �mc̃m�k = 0� = 1 − 4��m�
0




cm�r�r2dr = Qm
2 �k = 0� = am

2 ,

since Qm�k=0��am �as shown by the first of Eqs. �62��.
Then Eq. �B6� becomes a2

2=a1
2, which splits into two equa-

tions: a2=a1 and a2=−a1. From the expression for am, one
can easily realize that the second equation does not satisfy
the t→0 limit, whereas the first one, a2=a1 �or, equivalently,
aiso-SHS��2 ,�2�=aiso-SHS��1 ,�1��, leads to the following lin-
ear relationship between �1 and �2:

12�2�2

1 − �2
−

12�1�1

1 − �1
= aHS��2� − aHS��1� . �B7�

Note that the two Eqs. �B5� are coupled �since Kreg /K
=1−�D /K=1− �2�2+�1��, but with the help of Eq. �B7�
they could be easily decoupled. However, since the right-
hand members of Eqs. �B5� coincide, we can get a new re-
lationship by equating their first members, and exploiting Eq.
�B7�. So we arrive at the following equations for the three
unknowns �1, �2, and K:

12�2t�2
2 − �2 + bHS��2�t = 12�1t�1

2 − �1 + bHS��1�t ,

12�2�2

1 − �2
−

12�1�1

1 − �1
=

�2�4 − �2�
�1 − �2�2 −

�1�4 − �1�
�1 − �1�2 ,

12�1t�1
2 − �1 +

12�1

1 − �1
t��1 + h�

HS��1�t = − P . �B8�

The first two equations form a closed system for �1 and �2.
The second one suggests that we can assume

12�m�m

1 − �m
=

�m�4 − �m�
�1 − �m�2 + W ,

or, equivalently,

�m =
1

3
+

�m

4�1 − �m�
+

1 − �m

12�m
W �m = 1,2� , �B9�

where W=W��1 ,�2 , t� is an unknown function, which must
be proportional to �1�2. In fact, Eqs. �B5� require that

lim
�→0

�1 = lim
�→0

�2 =
1

3
, �B10�

since, from Eq. �56�, one has lim�→0 P= 1
3 �lim�→0 Kreg=0�.

If �1 and �2 in the first of Eqs. �B8� are replaced with the
new expressions �B9�, then one gets a quadratic equation for
W as follows:

�1 − �1�2�tW2 − �1 − 2�1�2t�W +
3�1�2

�1 − �1��1 − �2�
M = 0,

�B11�

with

M = 1 + �1 + 2��1 + �2� − 5�1�2

�1 − �1��1 − �2�
−

1

3
�1 − �1��1 − �2�	t

= 1 + � 1 + 2x + 10x2

�1 + x��1 − 2x�
−

1

3
�1 + x��1 − 2x�	t , �B12�

where we have put �1=−x, �2=2x �x�K��. The acceptable
solution is

W =
1 − 2�1�2t

2�1 − �1�2�t
�1 − �D�

=
3�1�2

�1 − �1��1 − �2�
W0 = −

6x2

�1 + x��1 − 2x�
W0,

�B13�

with

W0 =
M

1

2
�1 − 2�1�2t��1 + �D�

=
M

1

2
�1 + 4x2t��1 + �D�

,

�B14�

D = 1 −
12�1�2�1 − �1�2�

�1 − �1��1 − �2��1 − 2�1�2t�2 Mt

= 1 +
24x2�1 + 2x2�

�1 + x��1 − 2x��1 + 4x2t�2 Mt . �B15�

Note that lim�→0 W0=lim�→0 M =1+ �2 /3�t.
The functions W, W0, D, and M are symmetrical with

respect to the exchange of �1 and �2; in particular,
W��2 ,�1 , t�=W��1 ,�2 , t�, and this property implies that

�2��1,�2,t� = �1��2,�1,t� , �B16�

confirming our previous guess.
Moreover, if we put

W0 = 1 + W0
ex, �B17�

then

�m = � + �m
ex, �B18�

with

� =
1

3
+

1

4
� �1

1 − �1
+

�2

1 − �2
� =

1

3
+

x�1 + 4x�
4�1 + x��1 − 2x�

,

�B19�

�1
ex =

�2

4�1 − �2�
W0

ex, �2
ex =

�1

4�1 − �1�
W0

ex. �B20�

Here, both � and W0
ex are symmetric with respect to �1 and

�2, whereas �m
ex represents the asymmetric part of �m.

Note that the knowledge of �1 and �2 allows one to cal-
culate �� and �D immediately. In fact, Eqs. �47� lead to
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�� = 2K��2 − �1�

= − K
3x

2�1 + x��1 − 2x�
W0

ex,

�D = K�2�2 + �1�

= K�1 +
3x

4�1 + x��1 − 2x�
�1 + 2x�2 + W0

ex��� .

�B21�

Now we must find an equation for K. We can regard the
third of Eqs. �B8� as the required relationship. However, in
order to derive a more symmetric expression, we prefer to
start from Eqs. �B5�, rewritten as

12�1t�1
2 − �1 +

12�1

1 − �1
t��1 + h�

HS��1�t +
Kreg

K
t

+
1

3

�t

K
y0

PY��� = 0,

12�2t�2
2 − �1 +

12�2

1 − �2
t��2 + h�

HS��2�t +
Kreg

K
t

+
1

3

�t

K
y0

PY��� = 0, �B22�

and we get

K = �tK, with K =
y0

PY���
Z��1,�2,t�

, �B23�

Z =
3

2
��1 + �2� − 3� 1

2 �
m=1

2 �12�m�m
2 −

12�m�m

1 − �m

+ h�
HS��m�	 +

Kreg

K �t , �B24�

and lim�→0 Z��1 ,�2 , t�=1. Replacing the found expressions
for �1, �2, and �D into Eq. �B23� yields an equation for K
that we have solved numerically, although some further ana-
lytic simplifications are probably possible.
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Chapter 16

Penetrable Square-Well fluids: exact
results in one dimension
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Abstract: We introduce a model of attractive penetrable spheres by adding a short-range at-
tractive square well outside a penetrable core, and we provide a detailed analysis of structural
and thermodynamical properties in one dimension using the exact impenetrable counterpart
as a starting point. The model is expected to describe star polymers in regimes of good and
moderate solvent under dilute conditions. We derive the exact coefficients of a low-density
expansion up to second order for the radial distribution function and up to fourth order in
the virial expansion. These exact results are used as a benchmark to test the reliability of
approximate theories (Percus-Yevick and hypernetted chain). Notwithstanding the lack of
an exact solution for arbitrary densities, our results are expected to be rather precise within
a wide range of temperatures and densities. A detailed analysis of some limiting cases is car-
ried out. In particular, we provide a complete solution of the sticky penetrable-sphere model
in one dimension up to the same order in density. The issue of Ruelle’ s thermodynamics
stability is analyzed and the region of a well-defined thermodynamic limit is identified.
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I. INTRODUCTION

Unlike simple liquids, where two-body potentials describe
interactions at the atomistic level, complex liquid interac-
tions are always a result of an average process over the mi-
croscopic degrees of freedom. As a result, highly simplified
models often accurately describe a number of experimental
features ranging from structural to thermophysical proper-
ties. Examples include colloidal dispersions, macromol-
ecules, and combinations of the two �1�. A noteworthy fea-
ture of these systems is that the hard-core repulsive barrier
for very short range is not an essential ingredient of the
model. In the case of highly ramified polymers in good sol-
vents �star polymers�, for instance, the centers of mass of two
polymer chains can be at a distance much smaller than their
respective radii of gyration and they are well described by an
effective Gaussian interaction �2�. The simplest of this class
of minimal bounded potentials is the so-called penetrable-
sphere �PS� model �3� which has attracted considerable at-
tention in the last few years �see, e.g., Ref. �4� and references
therein�. In this case the infinite barrier of the hard-sphere
�HS� potential is replaced by a finite one, thus allowing for a
finite probability of penetrating inside the core.

A major advantage of the PS potential is, of course, sim-
plicity. On the other hand, it lacks an attractive part which is
expected to be relevant in such a complex environment in
view of the ubiquity of van der Waals dispersion forces. The
purpose of the present work is to address this point by pro-
posing a variation of the PS model in which a square well
�SW� is added outside the core. This model, hereafter re-
ferred to as the penetrable square-well �PSW� model, has an

extremely rich phenomenology notwithstanding its simplic-
ity, including a number of interesting limiting cases as will
be discussed later on.

One-dimensional bounded interactions do not belong to
the class of nearest-neighbor fluids for which the total poten-
tial energy can be written as

UN�x1, . . . ,xN� = �
i=1

N−1

���xi+1 − xi�� , �1.1�

where ��r� is the pair potential and �xi , i=1, . . . ,N� are the
coordinates of the N particles confined in a segment of length
L, which eventually may be let to go to infinity. A necessary
�but not sufficient� condition for a one-dimensional fluid to
satisfy Eq. �1.1� is to be a hard-core fluid, i.e., a fluid made
of particles which cannot penetrate one another due to the
existence of an infinite repulsive potential barrier in ��r�.

Nearest-neighbor fluids admit an analytic exact statistical-
mechanical solution in one dimension �5�: the partition func-
tion, equation of state, and correlation functions of any order
can be calculated analytically from the knowledge of the pair
potential. Both structural and thermophysical properties can
be analytically obtained in one dimension for Baxter’s sticky
hard-sphere �SHS� potential �6,7�, and for the SW potential
�8�, in addition to the HS potential �5,9–13�, but the tech-
nique permits in principle the analysis of a large class of
nearest-neighbor one-dimensional potentials.

In the absence of the nearest-neighborhood constraint �as
happens with bounded potentials�, the situation is far more
complex, and we are not aware of any general analytical
approach to the problem, even in one dimension. As a matter
of fact there exist only a few examples of analytically solv-
able one-dimensional models of this type, which include the
Kac potential �14� and the Coulomb potential �15,16�. For
PSs, it was observed �4,17� that the exact analytic solution
for HSs can be efficiently exploited to build a rather precise,
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albeit approximate, solution of the penetrable counterpart.
This analysis is here extended to PSW interactions. Using a
low-density expansion and the corresponding exact solution
for the SW problem, we derive the exact result up to the
second order in a density expansion of the radial distribution
function and up to fourth order in the virial expansion of the
equation of state. These exact low-density calculations are
contrasted with approximate theories such as the Percus-
Yevick �PY� and the hypernetted chain �HNC� closures, thus
providing an assessment of the relative reliability of both
approximations and the low-density expansion. As a prelimi-
nary simplified step in our calculation, we also examine the
penetrable counterpart of the SHS problem, denoted as sticky
penetrable spheres �SPSs� in the following, which provides a
guideline to tackling the more difficult PSW problem.

The introduction of an attractive part of the potential into
a penetrable interaction raises the important issue of the ex-
istence of a well-defined thermodynamic limit �18,19�. We
address this problem for the PSW model and provide com-
pelling arguments to identify the stability region, which is
guaranteed for a sufficiently small �	0.5� ratio between the
attractive and repulsive energy scales and arbitrary values of
the other parameters.

The remaining of the paper is structured as follows. In
Sec. II we introduce the model along with all its limiting
cases �including the SPS fluid� and we study its stability.
Section III briefly accounts for the main equations necessary
for the analytical solution of the nearest-neighbor class of
fluids with arbitrary interactions. The exact solution of the
one-dimensional SHS potential is derived within this general
approach in Sec. III B and this is used to obtain the corre-
sponding low-density solution of the SPS model in Sec. IV.
A similar analysis is carried out in Sec. V for the PSW po-
tential and the results are contrasted with those stemming
from PY and HNC closures. Section VII contains some clos-
ing remarks, whereas some of the more technical details are
confined in suitable appendixes.

II. THE PENETRABLE SQUARE-WELL MODEL

The penetrable square-well model is defined by the fol-
lowing pair potential �see Fig. 1�:

��r� = 
+ �r, r � � ,

− �a, � � r � � + � ,

0, r � � + � ,
� �2.1�

where �r and �a are two positive constants accounting for the
repulsive and attractive parts of the potential, respectively.
Here � is the diameter of the sphere �length of the rod in one
dimension� and ��� is the width of the well. This model
has a number of relevant limiting cases. When �r→� it re-
duces to a square-well fluid, whereas �a→0 yields the
penetrable-sphere model studied in Ref. �4� in the one-
dimensional case. In addition it gives rise to an interesting
variation, referred to as sticky penetrable spheres, within an
appropriate limit of a well of infinite depth and vanishing
width �see below�. Finally, we recover the hard-sphere fluid
in the combined limit �r→� and �a→0.

It is worthwhile to note that the PSW model �and its vari-
ants� considered here is different from other apparently simi-
lar models like the Widom-Rowlinson model of interpen-
etrating spheres �20�, the concentric-shell model �21�, or the
permeable-sphere model �22�.

As usual, a very important role is played by the Mayer
function

f�r� = e−���r� − 1, �2.2�

where �=1 /kBT is the inverse of the thermal energy �kB is
the Boltzmann constant and T is the absolute temperature�.
In the present model, this becomes

f�r� = 
− 	r, r � � ,

+ 	a, � � r � � + � ,

0, r � � + � ,
�

=	rfHS�r� + 	a�
�r − �� − 
�r − � − ��� , �2.3�

where

	r = 1 − e−��r �2.4�

is the parameter measuring the degree of penetrability vary-
ing between 0 �free penetrability� and 1 �impenetrability� and

	a = e��a − 1 �2.5�

plays a similar role for the attractive part. Here fHS�r�=
�r
−��−1 is the Mayer function for a HS model, which can
then be recovered in the limit 	r→1 and 	a→0, and 
�r� is
the usual step function equal to 1 for r�0 and 0 otherwise. It

FIG. 1. �Color online� Sketch of the penetrable square-well
�PSW� potential �left column�. The right column shows a few lim-
iting cases: the sticky penetrable-sphere �SPS� potential ��a→� and
�→0�, the penetrable square-shoulder �PSS� potential ��r�−�a

�0�, and the hollow penetrable-sphere �HPS� potential ��r=0 and
�a�0�.
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also proves convenient to introduce the ratio 	=	a /	r, which
is a measure of the depth of the attractive well, relative to the
“penetrability” of the core. In that way, Eq. �2.3� can be
rewritten as

f�r� = 	r�fHS�r� + 	�
�r − �� − 
�r − � − ���� = 	rfSW�r� ,

�2.6�

where fSW�r� is the Mayer function of a SW fluid with the
change 	a→	.

Although the PSW model can be defined for any dimen-
sionality of the system, throughout the remainder of this pa-
per we will specialize to the one-dimensional case.

A. The thermodynamic stability issue

As anticipated in the Introduction, in our model we need
to make sure that the system is always stable in the sense
that the total energy is always bounded from below by −NB,
N being the number of particles and B an arbitrary positive
constant �19�. The physical origin of this instability can be
traced back to the fact that a soft core allows the possibility
of a “collapsed state” where the energy is no longer propor-
tional to the number of particles N and a well-defined ther-
modynamic limit may not exist. In a classic paper, Fisher and
Ruelle �18� provided a set of conditions on the pair potentials
which are sufficient for stability, but the actual implementa-
tion of such conditions in soft-core systems is far from being
trivial, as was recently shown for Gaussian-core models �23�
and Lennard-Jones fluids �24�.

In the PSW model, the issue is clearly related to the in-
terplay between the two energy scales �r and �a for the re-
pulsive and attractive parts of the potential. As shown in
Appendix A, we predict that the system might be unstable
when �r�2�a whereas we prove that it is certainly stable in
the opposite case �r�2�a.

B. The sticky limit: The SPS model

It is instructive at this point to consider a particular limit
of the PSW model which will be referred to as the sticky
penetrable-sphere model �see Fig. 1�. This is a variation of a
widely used sticky hard-sphere model introduced a long time
ago by Baxter �25�, which has proven to be extremely useful
in the framework of complex fluids, recently even in its an-
isotropic version �26�. The simplest way of introducing it is
at the level of the Mayer function �see Eq. �2.3��, which
becomes

fSHS�r� = fHS�r� + ���+�r − �� , �2.7�

where

�+�r� = lim
a→0+


�r� − 
�r − a�
a

. �2.8�

The relation with the SPS model is then provided by

fSPS�r� = 	rfSHS�r� . �2.9�

In the original SHS model �25�, �=1 /12
�0 �
 playing the
role of an effective temperature� but the connection with the

PSW model is readily achieved from Eq. �2.6� by consider-
ing the limits �→0 and �r→� so that �= �	a /	r��� /�� re-
mains finite. In spite of its usefulness, the SHS model is
known to suffer from some mathematical drawbacks, the
most important of them being that it is unstable in spatial
dimensions greater than 1, as pointed out by Stell �27�, in
view of the divergence of the virial coefficient corresponding
to a close-packed configuration. For the SPS model we will
be able to achieve a number of exact results which can be
exploited as a guideline for the more complex PSW model.

C. Other limiting cases

In all previous cases, we have tacitly assumed �a�0. In
principle, however, nothing prevents one from considering
the opposite case �a�0 �which implies 	a�0�. In this case
the PSW potential gives rise to an interesting class of mod-
els, at least from an academic point of view, with two posi-
tive energy scales ��r and ��a��. If �r� ��a�, we get a purely
repulsive potential that could be called the penetrable square-
shoulder �PSS� model �see Fig. 1�. A peculiar situation oc-
curs if �r� ��a�: when two particles approach they have first
to overcome the barrier ��a� at r=�+�; once this is done,
they experience an attractive well of depth ��a�−�r for r��.
Thus the potential is attractive for short distances and repul-
sive for larger distances. The simplest version of models with
�a�0 and �r� ��a� corresponds to �r=0, which will be re-
ferred to as the hollow penetrable-sphere �HPS� model �see
Fig. 1�. If, in addition, the limit ��a�→� is taken, one gets an
athermal potential that will be referred to as the hollow hard-
sphere �HHS� model since the particles look like hard
spheres of diameter �+� with a “hole” of diameter � inside.
If two particles are separated by a distance larger than �
+�, they behave as hard spheres and the holes have no ef-
fect. On the other hand, if the separation between them is
smaller than �, they can never separate a distance larger than
�. In the HHS model, 	a→−1 and 	r→0, so that the func-
tions y2�r� and g2�r� are well defined �see below�. In Sec. VI
we will discuss the results for representative values of the
parameters. A summary of the penetrable models treated in
this paper, along with the corresponding values for �r, �a, and
� characterizing them, is reported in Table I.

III. BASIC FORMALISM FOR EXACT PROPERTIES OF
NEAREST-NEIGHBOR POTENTIALS

A. General scheme

The great advantage of dealing with one-dimensional
models is that they are usually amenable to exact solutions,

TABLE I. Summary of the models.

Model Acronym �r �a �

Penetrable spheres PS �0 0 �0

Penetrable square well PSW �0 �0 �0

Sticky penetrable sphere SPS �0 →+� →0

Penetrable square shoulder PSS �0 �0 �0

Hollow penetrable sphere HPS 0 �0 �0

Hollow hard sphere HHS 0 →−� �0
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at least in the limit of sufficiently short-range interactions
�14�. The trade-off is, of course, the fact that these models do
not have phase transitions. In the context of fluids, this trans-
lates into the fact that there exist exact solutions for the HS,
SHS, and SW models �5,6,8,10,11,28,29�. The same formal-
ism allows one to tackle non-nearest-neighbor one-
dimensional fluids �4�, thus leading to an approximate solu-
tion. Let us recall the main results of this approach, referring
to Ref. �8� for a self-contained treatment. The main quantity
to be computed is the Laplace transform of the Boltzmann
factor e−���r�:

�̃�s� = �
0

�

ds e−sre−���r�. �3.1�

This is directly related to the Laplace transform of the radial
distribution function g�r�,

G̃�s� = �
0

�

ds e−srg�r� . �3.2�

The relation is �see Refs. �8,10� for details�

G̃�s� =
1

�

 �̃���

�̃�s + ��
− 1�−1

, �3.3�

where �=N /L is the density of the one-dimensional fluid.
Here � is a solution of the equation

� � ln �̃�s�
�s

�
s=�

= −
1

�
. �3.4�

Finally, the equation of state �EOS� �and hence the whole
thermodynamics� can be cast into the very simple form

�P = � , �3.5�

where P is the pressure.

In practice, the scheme goes as follows. Evaluate �̃�s�
from the Boltzmann factor by a Laplace transform, Eq. �3.1�;
solve for � from Eq. �3.4�; insert the result into Eq. �3.3�;
invert the Laplace transform �3.2� to obtain g�r� and, in par-
allel, compute the EOS from �3.5�.

As a final remark, we anticipate that, when dealing with
discontinuous potentials �or Boltzmann factors�, it is conve-
nient to introduce the cavity function y�r� which is related to
the radial distribution function g�r� and the pair potential
��r� by the general relation

g�r� = e−���r�y�r� . �3.6�

Moreover, it can be expanded in powers of the density,

y�r� = 1 + �
n=1

�

�nyn�r� . �3.7�

In principle, knowledge of all yn coefficients provides the
exact solution to the cavity function y�r� �provided that the
above series converges� and hence to the problem. This also
allows us to assess the reliability of well-known approxima-
tions involving the direct correlation function c�r� and the
cavity function �30�, such as the Percus-Yevick closure

c�r� = f�r�y�r� �3.8�

and the hypernetted chain closure

c�r� = f�r�y�r� + y�r� − 1 − ln y�r� . �3.9�

B. Exact solution of the SHS model in one dimension

Let us particularize the above procedure to derive the ex-
act solution of Baxter’s SHS model in one dimension. Start-
ing from the Boltzmann factor

e−���r� = 
�r − �� + ���+�r − �� , �3.10�

its Laplace transform �3.1� yields

�̃�s� = 
�� +
1

s
�e−s�. �3.11�

Equation �3.4� can then be arranged to get the following
quadratic equation:

�2�2��1 − ��� + ���1 − ��� − �� = 0. �3.12�

Its physical solution is

� =
�1 + 4���/�1 − ��� − 1

2��
, �3.13�

which can be substituted into Eq. �3.5� to give

�P

�
=

�1 + 4���/�1 − ��� − 1

2���
, �3.14�

which represents the EOS for this system. In order to get the
exact radial distribution function, we exploit Eq. �3.3� to get

G̃�s� =
1

�
�
n=1

� 
 �̃�s + ��

�̃���
�n

=
1

�
�
n=1

� ��� + 1
s+��ne−ns�

��� + 1
� �n . �3.15�

We can now use the binomial theorem to expand ���
+ 1

s+� �n and invert the Laplace transform �3.2� term by term
by using the residue theorem, to obtain

g�r� = �
n=1

�

�n�r − n��
�r − n�� , �3.16�

�n�r� =
1

�

1

��� + 1/��n�����n�+�r� + �
k=1

n 
n

k
�

�����n−k rk−1e−�r

�k − 1�!� , �3.17�

which is the correct result found in Ref. �6� with a different
method.

IV. EXACT PROPERTIES OF THE SPS MODEL

Next we turn our attention to the corresponding pen-
etrable SPS counterpart. Following Ref. �4�, the basic idea
hinges on deducing the exact low-density orders of the SPS
model from those of the SHS model, which can be evaluated
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exactly. Each term yn�r� can be represented as a sum of suit-
able diagrams, whose forms for y1�r� and y2�r� were given in
Ref. �4� and will not be repeated here. Each bond in the
diagrams corresponds to a Mayer function f�r� and the ones
for the SPS and SHS models are related by Eq. �2.9�. For the
SHS model previously discussed, the exact cavity function
y�r� does not have a Dirac � function at r=� and the regular
part is continuous at that point. Neither of these two proper-
ties is any longer true for the SPS model, as further elabo-
rated below. Here and in the following we set �=1 for sim-
plicity.

The result is

y1
�SPS��r� = 	r

2y1
�SHS��r� , �4.1�

y2
�SPS��r� = 	r

3y2A
�SHS��r� + 2	r

4y2B
�SHS��r� +

	r
4

2
y2C

�SHS��r�

+
	r

5

2
y2D

�SHS��r� , �4.2�

where the first-order density term is

y1
�SHS��r� = �2 − r − 2��
�2 − r� + �2�2�+�r� + �+�r − 2�� .

�4.3�

Note that this has a � singularity at r=0 and is continuous at
r=1. For the second order in density we have

y2A
�SHS��r� = �− �3 − r2� + 6��1 − ���
�1 − r� + 
−

1

2
�3 − r�2

+ 3��3 − � − r���
�3 − r� − 
�1 − r��

+ �3�3�+�r − 1� + �+�r − 3�� , �4.4�

y2B
�SHS��r� = 
1

2
�6 − 2r − r2� − ��6 − 6� − r��
�1 − r�

+ 
1

2
�2 − r��4 − r� − ��8 − 4� − 3r��

��
�2 − r� − 
�1 − r�� + �2�1 − 2���2�+�r�

+ �+�r − 2�� − 2�3�+�r − 1� , �4.5�

y2C
�SHS��r� = �y1

�SHS��r��2, �4.6�

y2D
�SHS��r� = �− �3 − 2r� + 2��3 − 3� − r��
�1 − r� + �− �2 − r�2

+ 4��2 − � − r���
�2 − r� − 
�1 − r��

+ 2�3�6�+�r� + �+�r − 1� + 3�+�r − 2��

− �4�4�+
2�r� + �+

2�r − 2�� . �4.7�

The functions �4.4�–�4.7� present some peculiar properties.
In particular, �i� the regular parts of y2A

�SHS��r�, y2B
�SHS��r�, and

y2D
�SHS��r� are discontinuous at r=1; �ii� y2A

�SHS��r�, y2B
�SHS��r�,

and y2D
�SHS��r� have a � singularity at r=1; and �iii� y2C

�SHS��r�
and y2D

�SHS��r� present �2 singularities at r=0 and 2. However,
these three classes of singularities cancel out when setting
	r=1 in Eq. �4.2� to obtain the total second-order function
y2

�SHS��r� �31�. On the other hand, since for SPS y2A
�SHS��r�,

y2B
�SHS��r�, y2C

�SHS��r�, and y2D
�SHS��r� are weighted by different

powers of 	r �3, 4, 4, and 5, respectively�, the corresponding
exact second-order cavity function is discontinuous at r=1
and has a � singularity at r=1 and �2singularities at r=0 and
2. The � singularity at r=1 is responsible for a diverging
fourth virial coefficient of the SPS model �see Sec. V B be-
low�.

V. EXACT PROPERTIES OF THE PSW MODEL

A. Calculation of y1 and y2

As already mentioned, the SPS model suffers from the
same drawbacks as the original SHS model plus some addi-
tional ones, so that it can hardly be regarded as a sound
model in higher dimensions. However it has served as a test
bench for analytical techniques. Armed with these tools, we
can now tackle the more difficult PSW model, which has the
SW fluid as a reference model. We recall that the latter does
not have an exact solution in higher dimensions but it is
amenable to an exact treatment in one dimension �8�. The
discussion follows closely the route already introduced for
the SPS model, namely, the density expansion, Eq. �3.7�. The
radial distribution function g�r� is related to the cavity func-
tion y�r� by Eq. �3.6� which with the help of Eqs. �2.2� and
�2.3� yields

g�r� = 
�1 − 	r�y�r� , r � 1,

�1 + 		r�y�r� , 1 � r � 1 + � ,

y�r� , r � 1 + � .
� �5.1�

As in the SPS model, the cavity function can be exactly
computed up to second order in density, this time by reduc-
ing the problem to the solution of the SW model.

The first-order term reads ���1�

y1�r� = 	r
2


2�1 + 	2�� − r�1 + 2	 + 2	2� , 0 � r � � ,

2 − 2	� − r , � � r � 2,

	�2 + 	��r − 2� − 2	� , 2 � r � 2 + � ,

�2 + 2� − r�	2, 2 + � � r � 2 + 2� ,

0, 2 + 2� � r .
� �5.2�
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The second order can be reduced to the calculation of the
corresponding diagrams of the SW model as anticipated. We
find

y2�r� = 	r
3y2A

�SW��r� + 2	r
4y2B

�SW��r� +
	r

4

2
y2C

�SW��r� +
	r

5

2
y2D

�SW��r� ,

�5.3�

where the explicit calculation of the various terms is de-
scribed in Appendix B and is given by Eqs. �B1�, �B2�, �B4�,
and �B8�. It can be checked that these expressions reduce to
those of the SPS model, Eqs. �4.4�–�4.7�, in the limit 	→�
and �→0 with �=	� /�=const.

B. Computation of B2, B3, and B4

The EOS can be obtained from the knowledge of the ra-
dial distribution function g�r� through a number of routes.
The most common ones are the virial route

�P

�
� Z��,�� = 1 + 2d−1vd��

0

�

dr rdy�r�
�

�r
f�r� , �5.4�

the compressibility route


�
�P

��
�−1

� ���,�� = 1 + 2ddvd��
0

�

dr rd−1�g�r� − 1� ,

�5.5�

and the energy route

U

N
� u��,�� =

d

2�

1 + 2dvd���

0

�

dr rd−1��r�g�r�� ,

�5.6�

where d is the dimensionality of the system and vd
= �� /4�d/2 /��1+d /2� is the volume of a d-dimensional
sphere of unit diameter. Thermodynamic consistency for the
exact g�r� requires the three routes to be completely equiva-
lent and hence

�−1��,�� =
�

��
��Z��,��� , �5.7�

�
�

��
u��,�� =

�

��
Z��,�� . �5.8�

For an approximate g�r�, on the other hand, the consistency
is no longer guaranteed and different routes �or combinations
of them� may lead to different results.

Let us specialize to the one-dimensional case of the PSW
model, where we have just derived the exact g�r� up to sec-
ond order in a density expansion. Equations �5.4�–�5.6� be-
come, using the potential �2.1�,

Z��,�� = 1 + �	r��1 + 	�y�1� − 	�1 + ��y�1 + ��� ,

�5.9�

���,�� = 1 + 2�
�
0

1

dr��1 − 	r�y�r� − 1�

+ �
1

1+�

dr��1 + 	r	�y�r� − 1� + �
1+�

+�

dr�y�r� − 1�� ,

�5.10�

u��,�� =
1

2�
+ �
�r�1 − 	r��

0

1

dr y�r�

− �a�1 + 	r	��
1

1+�

dr y�r�� . �5.11�

Inserting the expansion �3.7� for the cavity function y�r�, we
find

Z = 1 + B2� + B3�2 + B4�3 + ¯ , �5.12�

� = 1 + �2� + �3�2 + �4�3 + ¯ , �5.13�

u =
1

2�
+ u2� + u3�2 + u4�3 + ¯ . �5.14�

Clearly Eq. �5.12� is the virial expansion for the compress-
ibility factor Z, whereas �5.13� and �5.14� are the analogous
expansions for the isothermal compressibility � and the en-
ergy per particle u. If the exact coefficients yn appearing in
Eq. �3.7� are known, the above three quantities provide the
identical exact EOS.

On starting from the second-order values B2, �2, and u2
one can obtain perturbatively higher orders term by term
from the knowledge of yn�r�. The result can be cast into the
form

B2 = 	r�1 − 	��, �2 = − 2B2,

u2 = �r�1 − 	r� − �a�1 + 	r	�� , �5.15�

Bn = 	r��1 + 	�yn−2�1� − 	�1 + ��yn−2�1 + ���, n � 3,

�5.16�

�n = 2
�1 − 	��
0

1

dr yn−2�r� + �1 + 	r	��
1

1+�

dr yn−2�r�

+ �
1+�

�

dr yn−2�r��, n � 3, �5.17�

un = �r�1 − 	r��
0

1

dr yn−2�r� − �a�1 + 	r	�

��
1

1+�

dr yn−2�r�, n � 3. �5.18�

Note that Bn depends upon yn−2 so that knowledge of the
exact y1 and y2 allows the computation of the exact virial
coefficients up to B4. The third- and fourth-order results can
be obtained from Eqs. �5.2� and �5.3�. After some algebra,
one gets
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B3 = 	r
3�1 − 	��2 − � − 2	��� , �5.19�

�3 = 4B2
2 − 3B3, �5.20�

u3 =
�r

2
	r

2�1 − 	r��3 − 2	��2 − � − 	���

−
�a

2
	r

2�1 + 	r	���2 − � − 4	�� =
1

2

�

��
B3,

�5.21�

B4 = −
	r

6

2
�1 − 	��3 − 3� − 6	� + �2 + 4	�2 + 3	2�2

− 	3�2�� +
	r

5

2
�7 − 	��21 − 15� − 36	� + 3�2 + 16	�2

+ 16	2�2 − 4	3�2�� −
	r

4

2
�4 − 	��12 − 6� − 18	� + �2

+ 3	�2 + 3	2�2 − 3	3�2�� , �5.22�

�4 = − 4�2B2
3 − 3B2B3 + B4� , �5.23�

u4 =
1

3

�

��
B4. �5.24�

The three routes provide consistently identical results for B3
and B4, i.e., the relations �5.7� and �5.8� are verified, as they
should be. In the energy case the following identity is
needed:

�

��
=

�	r

��

�

�	r
+

�	

��

�

�	

= �r�1 − 	r�
�

�	r
+

�a�1 + 	r	� − �r	�1 − 	r�
	r

�

�	
.

�5.25�

Equation �5.22� gives the exact fourth virial coefficient as a
function of the three relevant parameters of the PSW model,
namely, 	r, 	, and �. The results for the PS and SW models
are recovered as

lim
�a→0

B4 = lim
�a→−�r

B4

�1 + ��3 = 	r
4
−

	r
2

2
+

7	r

2
− 2� ,

�5.26�

lim
�r→�

B4 = 1 − 	�
3 − 3� − 6	� +
1

2
�2 +

9

2
	�2 + 5	2�2� ,

�5.27�

respectively. On the other hand, while B2 and B3 are well
defined in the SPS limit �	→� and �→0 with �=	�
=finite� �see Eqs. �5.15� and �5.19��, the presence of the
terms 	3�2 in Eq. �5.22� implies that B4→� in the SPS
model. Equation �5.16� shows that this is a direct conse-
quence of the divergence of y2

�SPS��r� at r=1. However,

y2
�SHS��1�=finite, so that B4 is well defined in the SHS model

�	r=1�, as shown by Eq. �5.27�.
The second, third, and fourth virial coefficients for the

PSS model ��a�0� are still given by Eqs. �5.15�, �5.19�, and
�5.22�, except that 	�0. In the case of the HPS model ��a
�0 and �r→0 or, equivalently, 	a�0, 	=	a /	r, and 	r
→0�, one gets

lim
�r→0

B2 = − 	a�, lim
�r→0

B3 = 0, lim
�r→0

B4 = −
3

2
	a

4�3.

�5.28�

The special case of the HHS model is obtained by further
taking the limit �a→� �	a→−1�.

VI. SOME ILLUSTRATIVE CASES AND COMPARISON
WITH THE PY AND HNC APPROXIMATIONS

The approximate character of a given closure can be typi-
cally inferred by looking at g2�r�=e−���r�y2�r� along with the
corresponding fourth virial coefficient B4. Being coefficients
in a density expansion, both can be either positive or nega-
tive. We now plot the exact g2�r� and B4 for some illustrative
cases and compare them with the PY and HNC theories �3.8�
and �3.9�. The PY and HNC results corresponding to Eq.
�5.3� are �30�

y2
PY�r� = 	r

3y2A
�SW��r� + 2	r

4y2B
�SW��r� , �6.1�

y2
HNC�r� = 	r

3y2A
�SW��r� + 2	r

4y2B
�SW��r� +

	r
4

2
y2C

�SW��r� . �6.2�

Comparison with Eq. �5.3� shows that the HNC theory ne-
glects y2D

�SW��r� and the PY theory neglects, in addition,
y2C

�SW��r�. As a consequence, the expression for the fourth
virial coefficient in the PY and HNC approximations de-
pends on the thermodynamic route. The corresponding re-
sults can be found in Appendix C.

Let us start with g2�r�. As a prototypical PSW system we
have chosen �a /�r=0.25 and �=0.5. Figure 2 shows g2�r�
for kBT /�r=0.5 and 1. It can be observed that the HNC and
PY approximations tend to overestimate and underestimate,
respectively, the values of g2�r� in the overlapping region r
�1. This is due to the fact that y2D

�SW��r� is generally negative
in the region r�1, while y2C

�SW��r� is positive definite and
larger than the magnitude of y2D

�SW��r�. Inside the well �1�r
�1+�� the PY and HNC curves practically coincide at
kBT /�r=0.5, both being rather inaccurate, while at the higher
temperature kBT /�r=1 the PY prediction is quite good.
Moreover, the PY theory is a better approximation than the
HNC theory for r�2. This is explained by the fact that
y2C

�SW��r�+y2D
�SW��r�=0 in the region r�2, so that g2

PY�r� coin-
cides with the exact g2�r� for r�2 in the case of the SW
model �	r=1�. If 	r�1 the combination y2C

�SW��r�
+	ry2D

�SW��r� does not vanish for r�2 but is still rather small
for the cases of Fig. 2. For r�2+2�, both g2

HNC�r� and
g2

PY�r� become exact since y2C
�SW��r� and y2D

�SW��r� vanish in
that region.

Figure 3 depicts the function g2�r� for a representative
case of the PSS model �see Sec. II C�. Most of the preceding
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comments in connection with Fig. 2 apply here as well. Fi-
nally, the function g2�r� corresponding to the HPS model is
shown in Fig. 4 for �=0.5 and two temperatures: kBT / ��a�
=0 and 0.5. Note that the zero-temperature case is equivalent
to the HHS limit. It is interesting to note that the curves
corresponding to both temperatures are quite similar, except
for a change of scale. In the HPS model the HNC theory
gives the exact g2�r� because, for large �	�, y2D

�SW��r� scales
with 	4, while it has a weight 	r

5 and so does not contribute
to y2�r�. Similarly, y2B

�SW��r� scales with 	3 and so it does not
contribute to y2�r� either. On the other hand, 	r

4y2C
�SW��r� is

different from zero in the regions 0�r�� and 2�r�2
+2� and it is there where the PY theory fails, yielding
g2

PY�r�=0.
In order to have a feeling of the behavior of the exact B4,

we now plot them for some representative values of the pa-
rameters. Figure 5 shows the exact �see Eq. �5.22�� and the
approximate �see Appendix C� values of the fourth virial
coefficient as functions of temperature for the same PSW
model as considered in Fig. 2, i.e., the one defined by
�a /�r=0.25 and �=0.5. While the exact B4 goes to −� as
T→0, the HNC and PY theories artificially predict a diver-
gence to +�. We can observe that the best agreement with
the exact curve corresponds to B4

HNC,c up to kBT /�r�0.5 and
to B4

PY,c thereafter. The worst behaviors correspond to
B4

HNC,v=B4
HNC,e and B4

PY,v.

The results for the PSS model considered in Fig. 3,
namely, �a /�r=−0.5 and �=0.5, are displayed in Fig. 6. For
low temperatures this model reduces to the HS model of
diameter 1+�. It is found that B4

PY,v and, especially, B4
PY,c

present an excellent agreement with the exact B4. On the
other hand, the poorest performances are presented by
B4

HNC,v=B4
HNC,e and B4

PY,e.
We have also evaluated B4 for the HPS model at various

values of kBT / ��a�, as depicted in Fig. 7, and compared with
the PY approximation �compressibility route�. As said be-
fore, the HNC theory becomes exact for the HPS model.
Interestingly, in this case both the virial and the energy
routes from the PY approximation yield exact results, even
though y2

PY�r� is not exact.
It is worthwhile noting that B4 is not a monotonic function

of temperature in the PSW model �see Fig. 5�: it is negative
for low temperatures, reaches a positive maximum value at
an intermediate temperature, and then decays, reaching a
very small negative minimum value at a certain temperature,
and finally going to zero from below. Although hardly appar-
ent in Fig. 6, the behavior of B4 is also non-monotonic in the
PSS model: it is generally positive and decays as the tem-
perature increases, but eventually reaches a very small nega-
tive minimum value and thereafter tends to zero from below.
In contrast, the fourth virial coefficient of the HPS model
�see Fig. 7� is negative definite and monotonically increases
with increasing temperature.

FIG. 2. �Color online� Second-order radial distribution function
g2�r� for a PSW model with �a /�r=0.25, �=0.5, and kBT /�r=0.5
�top panel� and 1 �bottom panel�. The solid, long-dashed, and short-
dashed lines correspond to the exact result, the HNC approxima-
tion, and the PY approximation, respectively.

FIG. 3. �Color online� Second-order radial distribution function
g2�r� for a PSS model with �a /�r=−0.5, �=0.5, and kBT /�r=0.5
�top panel� and 1 �bottom panel�. The solid, long-dashed, and short-
dashed lines correspond to the exact result, the HNC approxima-
tion, and the PY approximation, respectively.
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VII. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced the PSW model and
outlined a number of exact results for this model in one

dimension. The potential contains two energy scales �the
core barrier �r and the well depth �a� and two length scales
�the core diameter � and the well width ��. This model is a
variation of the widely used square-well one with a finite
energy barrier replacing the hard core. As such, this is not a
nearest-neighbor system and there exists no general approach
leading to an exact solution even in the one-dimensional
case. In spite of this we have been able to obtain the exact
first few coefficients in the density expansions of the relevant
structural and thermodynamical properties. Specifically, we
have computed both the cavity and radial distribution func-
tions up to second order in density and the virial expansion
up to fourth order. As a stringent test of the calculations, we
have explicitly checked that different routes to thermody-
namics �virial, compressibility, and energy� are consistent
with one another up to this order.

This model includes a variety of other models as special
cases. By taking the limit of an infinitely narrow and deep

FIG. 4. �Color online� Second-order radial distribution function
g2�r� for the HPS model with �=0.5 and kBT / ��a�=0.5 �bottom
panel� and 0 �top panel, corresponding to the HHS model�. The
solid, long-dashed, and short-dashed lines correspond to the exact
result, the HNC approximation, and the PY approximation, respec-
tively. Note that the HNC approximation provides the exact result
in the HPS model.

FIG. 5. �Color online� Fourth virial coefficient B4 as a function
of kBT /�r for a PSW model with �a /�r=0.25 and �=0.5. The solid,
dashed, and dotted lines correspond to the exact result, the HNC
approximation �virial-energy and compressibility routes�, and the
PY approximation �virial, compressibility, and energy routes�,
respectively.

FIG. 6. �Color online� Fourth virial coefficient B4 as a function
of kBT /�r for a PSS model with �a /�r=−0.5 and �=0.5. The solid,
dashed, and dotted lines correspond to the exact result, the HNC
approximation �virial-energy and compressibility routes�, and the
PY approximation �virial, compressibility, and energy routes�,
respectively.

FIG. 7. �Color online� Fourth virial coefficient B4 as a function
of kBT / ��a� for a HPS model with �=0.5. The dashed line corre-
sponds to the exact result whereas the dotted line corresponds to the
PY approximation �compressibility route�.
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well ��a→�, �→0� we obtain the SPS model which can be
also reckoned as a variant of the SHS model with penetrable
core. Upon reversing the sign of the attractive energy scale
�a we obtain a PSS model with successive soft repulsive
barriers of decreasing height. If the second barrier is higher
that the first �−�a��r�0�, we find a potential that is attrac-
tive for short distances and repulsive for larger distances. An
interesting situation, that we have denoted as the HPS model,
corresponds to −�a��r=0. In the limit of zero temperature
�or, equivalently, �a→−�� the HPS model becomes the HHS
model, characterized by an infinitely high barrier between �
and �+�. Here the equilibrium state consists of “chains” of
connected particles: two adjacent particles of the same chain
move freely, provided that the distance between their centers
does not exceed �; on the other hand, particles of different
chains behave as hard spheres of diameter �+�. In the limit
��a�→0 �and also if −�a=�r�0� the PSW fluid reduces to the
PS one, and all results obtained here are consistent with pre-
vious analysis on the PS model within this limit. Finally, all
results smoothly converge to the HS limit when �r→� and
��a�→0 �or −�a=�r→��, as expected.

The combined effect of the absence of a hard core and the
presence of a finite attractive part of the PSW potential raises
the issue of the existence of a well-defined thermodynamic
limit of the system. We have analyzed this issue in detail and
we have assessed the limits of stability as a function of the
ratio between the attractive and repulsive energy scales:
when �a /�r�

1
2 the system is stable, whereas in the opposite

case the system might be unstable �when �r�0 and �a�0
the system is always stable independently of the energy
scales�. The SPS limit turns out to be always unstable since
the exact fourth-order virial coefficient diverges, unlike the
corresponding SHS counterpart which is well behaved.

A main advantage of exact relations is that one can assess
the reliability of approximate theories. A comparison with
PY and HNC closures unveils the corresponding strengths
and weaknesses of both. We have found that each of them
has a domain in space where it outperforms the other, and we
have explained why this is so in terms of the exact and ap-
proximate behavior of the second-order cavity function y2�r�.
As a general feature, the HNC approach tends to overesti-
mate the cavity function within the core whereas the PY
method has the opposite tendency. On the other hand, the PY
method is consistently superior in the large-r region. Both
approximate theories produce artifacts in the low-
temperature region of the fourth virial coefficients.

It would be extremely interesting to extend the present
work in some respects. While our analysis has provided a
careful comparison of the PY and HNC approximate theories
with respect to the exact result, we have not attempted a
detailed physical interpretation of the results. This is because
our exact analysis was limited to the lowest orders in density,
which are expected to be valid only within a rather limited
region of the phase diagram. It turns out, however, that even
this limited knowledge can be exploited to construct rather
precise approximations for the PSW model in the limits of
low �1−	r�1� and high penetrability �	r�1�, for arbitrary
value of the density. This analysis mirrors that already per-
formed for the PS model �4,17�, can be tested against nu-
merical simulations, and nicely complements the exact low-

density results presented here. The boundedness of the class
of penetrable-sphere potentials raises the possibility of a
phase transition even in a one-dimensional system �32,33�
and the presence of the attractive part might also give rise to
additional transitions in the fluid phase. We plan to address
this point in future work.

It is worth stressing that the large number of parameters
present in the PSW fluid �two energy scales, two character-
istic lengths, density, and temperature� may render the phase
diagram analysis quite problematic, so an exact understand-
ing of the low-dimensional behavior, where the analysis can
be carried out almost fully analytically, is always welcome.
Having done this, the extension to three dimensions should
be facilitated, and our results predict an extremely rich phase
diagram which might be useful to describe complex fluids
with soft cores within a unified picture.
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APPENDIX A: RUELLE’S STABILITY CRITERION

According to Ruelle’s criterion, a sufficient condition of
thermodynamic stability is �18,19�

UN�x1, . . . ,xN� = �
i=1

N−1

�
j=i+1

N

���xi − xj��� − NB �A1�

for all configurations �xi�, where B is a fixed bound.
Let us first demonstrate that for small repulsion ��r

�2�a� there exists at least one configuration violating the
stability constraint. We consider a particular configuration
where the N particles are distributed into N /s clusters of s
overlapping particles each, so that the centers of the s par-
ticles belonging to the same cluster coincide �with a toler-
ance � /2�. Next, the centers of two adjacent clusters are
separated by a distance between � and �+�. The potential
energy corresponding to this configuration is

UN�s� =
N

s

s�s − 1�
2

�r − 
N

s
− 1�s2�a. �A2�

The first term on the right-hand side represents the repulsive
energy of the s�s−1� /2 pairs of each cluster, times the num-
ber of clusters. The second term is the attractive energy of
the interaction between the s particles of each cluster and the
s particles of its neighbor cluster, times the number of pairs
of adjacent clusters. Obviously, the value of the total poten-
tial energy UN depends on the value of s. The extreme cases
are s=1 and N. We then see that the value that minimizes
UN�s� is
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s� =
N

2

1 −

�r

2�a
� , �A3�

which is meaningful only if �r�2�a. The corresponding
minimum value of UN�s� is

UN�s�� = − N� �r

2
+

N

16
�a
2 −

�r

�a
�2�, �r � 2�a. �A4�

The quantity enclosed between square brackets grows lin-
early with N and so it is not bounded. Therefore, if �r�2�a,
there exists at least a configuration that violates Ruelle’s cri-
terion. On the other hand, we note that if �r�2�a the mini-
mum of UN�s� is reached at s=1, in which case

UN�s� � UN�s = 1� = − �N − 1��a, �r � 2�a, �A5�

so that all these special configurations are consistent with
Ruelle’s criterion. Indeed, we now show that no other con-
figurations violate Ruelle’s criterion if �r�2�a so that the
model is thermodynamically stable if the above condition is
satisfied.

Without loss of generality we can see any given configu-
ration of N particles as a set of M clusters �1�M �N�, each
cluster i being made of si overlapping particles �i.e., any pair
of particles of a given cluster are separated a distance smaller
than ��. For fixed M and �si�, the total potential energy can
be decomposed as

UN��si�;M� = UN
intra��si�;M� + UN

inter��si�;M� , �A6�

where

UN
intra��si�;M� =

�r

2 �
i=1

M

si�si − 1� �A7�

is the contribution associated with pairs of particles inside
each cluster and UN

inter is the contribution associated with
pairs of particles belonging in different clusters. Note that in
the latter contribution the energy for each pair can be �r �if
the separation is smaller than ��, −�a �if the separation lies
between � and �+��, or zero �if the separation is larger than
�+��. It is clear that the minimum value of UN

inter is achieved
when all the particles of a cluster interact attractively with all
the particles of the neighbor cluster:

UN
inter��si�;M� � − �a �

i=1

M−1

sisi+1� − �a �
i=1

M−1

sisi+1 − �as1sM .

�A8�

Therefore,

UN��si�;M� �
�r

2 �
i=1

M

si�si − 1� −
�a

2 �
i=1

M

si�si−1 + si+1�

� WN��si�;M� , �A9�

where s0=sM and sM+1=s1. Given M, what is the set of popu-
lation numbers �si� that minimizes WN subject to the con-
straint that �i=1

M si=N? Using a Lagrange multiplier �, the
problem reduces to solving

�

�sj

WN��si�;M� − ��

i=1

M

si� =
�r

2
�2sj − 1� − �a�sj−1 + sj+1� − �

= 0, 1 � j � M . �A10�

The solution is si=N /M and �= �N /M���r−2�a�−�r /2. This
could have been expected by symmetry arguments. There-
fore, given M clusters, the minimum WN is obtained with a
uniform distribution si=s=N /M. For �r�2�a we can thus
write

UN��si�;M� � WN��si = N/M�;M�

=
�r

2
M�N/M��N/M − 1� − �aM�N/M�2

= ��r/2 − �a�N2/M − N�r/2 � − N�r/2,

�A11�

which proves that Ruelle’s stability criterion is satisfied.

APPENDIX B: SECOND-ORDER CAVITY FUNCTIONS
FOR THE SW MODEL

The first-order term y1
�SW��r� �for ����1� is given by

Eq. �5.2� with 	r=1. This allows for a straightforward deter-
mination of y2C

�SW��r� as

y2C
�SW��r� = �y1

�SW��r��2. �B1�

Next, one can also evaluate the Fourier transform of the in-
tegral corresponding to the 2A diagram. Going back to real
space, the result is

y2A
�SW��r� = −

3

2
	�1 + 	�2�1 − � − r�2
�1 − � − r� +

3

2
�1 + 	�

��1 + 2	 + 3	2��1 − r�2
�1 − r� −
3

2
	�2 + 4	

+ 3	2��1 + � − r�2
�1 + � − r� +
3

2
	2�1 + 	��1

+ 2� − r�2
�1 + 2� − r� −
1

2
�1 + 	�3�3 − r�2
�3

− r� +
3

2
	�1 + 	�2�3 + � − r�2
�3 + � − r� −

3

2
	2�1

+ 	��3 + 2� − r�2
�3 + 2� − r� +
1

2
	3�3 + 3�

− r�2
�3 + 3� − r� . �B2�

For y2B
�SW��r� we can make use of the identity

y2B�r� = �
−�

�

dsy1�s�f�s�f��r − s�� , �B3�

which leads to the result

y2B
�SW��r� = 	�1 + 	��2 − � − 4	���� − r�
�� − r� + 	�1

+ 	�2�1 − � − r�2
�1 − � − r� − �1 + 3	 + 5	2

+ 3	3��1 − r�2
�1 − r� + 	�2 + 4	 + 3	2��1 + �
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− r�2
�1 + � − r� − 	2�1 + 	��1 + 2� − r�2
�1

+ 2� − r� +
1

2
�1 + 	�2�4 − r − 4	���2 − r�
�2 − r�

− 	�1 + 	��4 − r − 4	���2 + � − r�
�2 + � − r�

+
1

2
	2�4 − r − 4	���2 + 2� − r�
�2 + 2� − r� .

�B4�

Computation of y2D
�SW��r� is much more laborious and re-

quires a different route. We go back to the general formalism

and compute the exact �̃�s� from the Laplace transform
�3.1�, which is

�̃�s� =
e−s

s
�1 + 	 − 	e−s�� . �B5�

Equation �3.4� then yields for the parameter � the following
density expansion:

� = � + �1 − 	���2 + �1 − 	��2 − � − 2	����3 + ¯ .

�B6�

Inserting this solution into Eq. �3.3� and inverting the
Laplace transform �3.2�, we can obtain the corresponding
radial distribution function g2�r� correct up to second order
in density. Use of Eq. �5.1� then yields the corresponding
cavity function y2�r� and then y2D

�SW��r� is given by the differ-
ence

y2D
�SW��r� = 2y2�r� − 2y2A

�SW��r� − 4y2B
�SW��r� − 4y2C

�SW��r� .

�B7�

This provides the result for r�1. Inside the core we have
three different regions under the assumption that ��1,
namely, 0�r��, ��r�1−�, and 1−��r�1. The qua-
dratic expression in each region can be obtained by imposing
continuity conditions and with some help from numerical
evaluation. The final analytic result is

y2D
�SW��r� = − 2	�1 + 	���1 + 	 + 	2�r − 2 + ��1 + 3	 − 	2����

− r�
�� − r� − 	�1 + 	�2�1 − � − r�2
�1 − � − r�

+ �1 + 3	 + 5	2 + 3	3��1 − r�2
�1 − r� − 	�2 + 4	

+ 3	2��1 + � − r�2
�1 + � − r� + 	2�1 + 	��1 + 2�

− r�2
�1 + 2� − r� + �1 + 	�2�r�1 − 2	 − 	2� − 2

+ 4	 + 2	2 + 4	���2 − r�
�2 − r� + 4	2�1 + 	��r

− 2 − � + 	���2 + � − r�
�2 + � − r� − 	4�2 + 2�

− r�2
�2 + 2� − r� . �B8�

Note that the first derivative y��r� is discontinuous at r=�, 2,
2+�, and 2+2�, as can be inferred from its explicit compu-
tation at this order in density.

APPENDIX C: CALCULATION OF B4 FOR THE PSW
MODEL IN THE PY AND HNC APPROXIMATIONS

Here the fourth virial coefficient predicted by the PY and
HNC approximations via the various thermodynamic routes

�v=virial, c=compressibility, e=energy� are given.

1. PY approximation

Using Eq. �6.1�, along with the recursion relations
�5.15�–�5.18�, we have

B4
PY,v = 	r

5�3 − 	��9 − 7� − 16	� + �2 + 6	�2 + 6	2�2

− 2	3�2�� −
	r

4

2
�4 − 	��12 − 6� − 18	� + �2 + 3	�2

+ 3	2�2 − 3	3�2�� , �C1�

�4
PY = − 4�2B2

3 − 3B2B3 + B4
PY,c� , �C2�

B4
PY,c =

	r
5

3
�7 − 	��21 − 15� − 36	� + 3�2 + 16	�2

+ 16	2�2 − 4	3�2��

−
	r

4

3
�4 − 	��12 − 6� − 18	� + �2 + 3	�2 + 3	2�2

− 3	3�2�� , �C3�

u4
PY =

	r
3

6
�1 + 	r	���12 − 18	r − 6��1 − 2	r + 6	 − 10	r	�

+ �2�1 − 2	r + 6	 − 26	r	 + 9	2 − 36	r	
2 − 12	3

+ 16	r	
3���a −

	r
3

6
�1 − 	r���16 − 28	r − 6	��6

− 11	r� + 6	�2�3 − 8	r + 6	 − 14	r	� − 	�1 + 	��3�3

− 10	r + 3	 − 28	r	���r. �C4�

The fourth virial coefficient associated with the energy route,
B4

PY,e, is obtained from Eq. �C4� as

B4
PY,e = 3�

0

�

d��u4
PY���� . �C5�

Its expression is quite long and so it is omitted here. In
addition to its dependence on 	r and 	, B4

PY,e depends on
�a / �na�a−nr�r� with �na ,nr�= �1,1� , �1,2� , �1,3� , �1,4� ,
�2,1� , �2,3� , �3,1� , �3,2� , �4,1�.

It is instructive to consider some special cases. First, the
results for the PS model correspond to the limit �a→0 �	
→0� or �a→−�r �	→−1�:

lim
�a→0

B4
PY,v = lim

�a→−�r

B4
PY,v

�1 + ��3 = 	r
4�3	r − 2� , �C6�

lim
�a→0

B4
PY,c = lim

�a→−�r

B4
PY,c

�1 + ��3 = 	r
4
7	r

3
−

4

3
� , �C7�

lim
�a→0

B4
PY,e = lim

�a→−�r

B4
PY,e

�1 + ��3 = 	r
4
14	r

5
− 2� . �C8�

In the special case of the HPS model ��a�0 and �r→0�
one finds that B4

PY,v and B4
PY,e reduce to the exact result �see

Eq. �5.28�� but lim�r→0 B4
PY,c=−	a

4�3.
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The conventional SW model corresponds to �r→� �	r
→1�:

lim
�r→�

B4
PY,v = 1 − 	�
3 − 4� − 7	� +

1

2
�2 +

9

2
	�2 +

9

2
	2�2

−
1

2
	3�2� , �C9�

lim
�r→�

B4
PY,c = 1 − 	�
3 − 3� − 6	� +

2

3
�2 +

13

3
	�2

+
13

3
	2�2 −

1

3
	3�2� , �C10�

lim
�r→�

B4
PY,e =

4

5
− 	�
3 − 3� − 6	� +

1

2
�2 + 5	�2 +

9

2
	2�2

−
1

2
	3�2� . �C11�

If, furthermore, the SHS limit �	→� and �→0 with 	�
=const� is taken in Eqs. �C9�–�C11�, an artificial divergence
of B4 is obtained.

The results corresponding to HS are obtained by taking
either the limit �r→� �	r→1� in Eqs. �C6�–�C8� or the limit
�a→0 �	→0� in Eqs. �C9�–�C11�. In either case one sees
that the virial and compressibility routes yield the exact re-
sult, while the energy route value is wrong by a factor 4/5. A
third possibility consists of taking the limit �a→−� �	
→−1� in Eqs. �C9�–�C11�. However, in this last case the
energy route yields an incorrect dependence on �:

lim
�a→−�

lim
�r→�

B4
PY,e =

4

5
+

�

2
�6 + 6� + �2� . �C12�

The fact that the right-hand side of Eq. �C12� is not propor-
tional to �1+��3 implies that if one starts from B4

PY,e for the
PSS model of shoulder height and width −�a and �, respec-
tively, and then one takes the limit �a→−� to get the HS
model of diameter 1+�, the result has an artificial depen-
dence on �. This anomaly of the PY description was dis-
cussed in Ref. �34�.

2. HNC approximation

Similarly to the preceding analysis, from Eq. �6.2� one
gets

B4
HNC,v =

3

2
B4

PY,c, �C13�

�4
HNC = − 4�2B2

3 − 3B2B3 + B4
HNC,c� , �C14�

B4
HNC,c =

5	r
5

12
�7 − 	��21 − 15� − 36	� + 3�2 + 16	�2

+ 16	2�2 − 4	3�2�� −
	r

4

2
�4 − 	��12 − 6� − 18	�

+ �2 + 3	�2 + 3	2�2 − 3	3�2�� , �C15�

u4
HNC =

1

3

�

��
B4

HNC,v. �C16�

Equation �C16� implies that B4
HNC,e=B4

HNC,v. This confirms
that, in general, the energy and virial routes are thermody-
namically consistent in the HNC approximation �35�. It is
also noteworthy that the fourth virial coefficient predicted by
the HNC approximation in the virial and energy routes is
exactly three-halves the one predicted by the PY approxima-
tion in the compressibility energy route, Eq. �C13�. This
simple relation is not restricted to one-dimensional �1D�
models since it also occurs in the 3D PS model �17�. It would
be extremely interesting to check whether relation �C13� is a
general property valid for any interaction potential and for
any dimensionality.

In the PS and SW limits Eq. �C15� becomes

lim
�a→0

B4
HNC,c = lim

�a→−�r

B4
HNC,c

�1 + ��3 = 	r
4
35	r

12
− 2� , �C17�

lim
�r→�

B4
HNC,c =

11

12
− 	�
11

4
−

13

4
� − 6	� +

3

4
�2 +

31

6
	�2

+
31

6
	2�2 −

1

6
	3�2� , �C18�

respectively.
The three routes in the HNC theory yield the exact result

�5.28� in the HPS limit. However, as in the case of the PY
theory, an artificial divergence of B4 is predicted in the SHS
limit.
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Chapter 17

Two dimensional one-component
plasma on a Flamm’s paraboloid

Fantoni R. and Tellez G., J. Stat. Phys. 133, 449 (2008)
Title: “Two-dimensional one-component plasma on a Flamm’ s paraboloid.”
Abstract: We study the classical non-relativistic two-dimensional one-component plasma at
Coulomb coupling Γ = 2 on the Riemannian surface known as Flamm’ s paraboloid which
is obtained from the spatial part of the Schwarzschild metric. At this special value of the
coupling constant, the statistical mechanics of the system is exactly solvable analytically.
The Helmholtz free energy asymptotic expansion for the large system has been found. The
density of the plasma, in the thermodynamic limit, has been carefully studied in various
situations.
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Abstract We study the classical non-relativistic two-dimensional one-component plasma at
Coulomb coupling � = 2 on the Riemannian surface known as Flamm’s paraboloid which
is obtained from the spatial part of the Schwarzschild metric. At this special value of the
coupling constant, the statistical mechanics of the system are exactly solvable analytically.
The Helmholtz free energy asymptotic expansion for the large system has been found. The
density of the plasma, in the thermodynamic limit, has been carefully studied in various
situations.

Keywords Coulomb systems · One-component plasma · Non-constant curvature

1 Introduction

The system under consideration is a classical (non-quantum) two-dimensional one-
component plasma: a system composed of one species of charged particles living in a
two-dimensional surface, immersed in a neutralizing background, and interacting with the
Coulomb potential. The one-component classical Coulomb plasma is exactly solvable in one
dimension [1]. In two dimensions, in their 1981 work, B. Jancovici and A. Alastuey [2, 3]
showed how the partition function and n-body correlation functions of the two-dimensional
one-component classical Coulomb plasma (2dOCP) on a plane can be calculated exactly an-
alytically at the special value of the coupling constant � = βq2 = 2, where β is the inverse
temperature and q the charge carried by the particles. This has been a very important result
in statistical physics since there are very few analytically solvable models of continuous
fluids in dimensions greater than one.
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Since then, a growing interest in two-dimensional plasmas has lead to study this system
on various flat geometries [4–6] and two-dimensional curved surfaces: the cylinder [7, 8],
the sphere [9–13] and the pseudosphere [14–16]. These surface have constant curvature
and the plasma there is homogeneous. Therefore, it is interesting to study a case where the
surface does not have a constant curvature.

In this work we study the 2dOCP on the Riemannian surface S known as Flamm’s
paraboloid, which is obtained from the spatial part of the Schwarzschild metric. The
Schwarzschild geometry in general relativity is a vacuum solution to the Einstein field equa-
tion which is spherically symmetric and in a two dimensional world its spatial part has the
form

ds2 =
(

1 − 2M

r

)−1

dr2 + r2 dϕ2. (1.1)

In general relativity, M (in appropriate units) is the mass of the source of the gravitational
field. This surface has a hole of radius 2M and as the hole shrinks to a point (limit M → 0)
the surface becomes flat. It is worthwhile to stress that, while Flamm’s paraboloid considered
here naturally arises in general relativity, we will study the classical (i.e. non quantum)
statistical mechanics of the plasma obeying non-relativistic dynamics. Our approach is to
consider that the classical, non-relativistic, particles of the plasma are constrained to move
in a curved surface, without any reference to general relativity. Recent developments for a
statistical physics theory in special relativity have been made in [17, 18].

The “Schwarzschild wormhole” provides a path from the upper “universe” to the lower
one. We will study the 2dOCP on a single universe, on the whole surface, and on a single
universe with the “horizon” (the region r = 2M) grounded.

The Coulomb potential between two unit charges on this surface is defined as a solu-
tion of Poisson equation. Depending on the boundary conditions imposed, several Coulomb
potentials can be considered. For example, we find that the Coulomb potential, in a single
universe with a hard wall boundary at r = 2M , is given by − ln |z1 − z2| + constant, where
zi = (

√
ri + √

ri − 2M)2eiϕi . This simple form will allow us to determine analytically the
partition function and the n-body correlation functions at � = 2 by extending the original
method of Jancovici and Alastuey [2, 3]. We will also compute the thermodynamic limit
of the free energy of the system, and its finite-size corrections. These finite-size corrections
to the free energy will contain the signature that Coulomb systems can be seen as critical
systems in the sense explained in [5, 6].

The work is organized as follows: in Sect. 2, we describe the one-component plasma
model and Flamm’s paraboloid, i.e. the Riemannian surface S where the plasma is em-
bedded. In Sect. 3, we find the Coulomb pair potential on the surface S and the particle-
background potential. The Coulomb potential depends on the boundary conditions imposed.
We consider three different cases. First, we find the Coulomb potential when the system oc-
cupies the whole surface S . Then, we consider the case when just the upper half of the
surface S is available to the particles, and the lower part is empty, with hard wall boundary
conditions between these two regions. At last, we determine the Coulomb potential in the
grounded horizon case: the particles live in the upper part of the surface and the lower part
is an ideal grounded conductor. In Sect. 4, we determine the exact analytical expression for
the partition function and density at � = 2 for the 2dOCP on just one half of the surface, on
the whole surface, and on the surface with the horizon grounded. In Sect. 5, we outline the
conclusions.
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2 The Model

A one-component plasma is a system of N pointwise particles of charge q and density n

immersed in a neutralizing background described by a static uniform charge distribution of
charge density ρb = −qnb .

In this work, we want to study a two-dimensional one-component plasma (2dOCP) on a
Riemannian surface S with the following metric

ds2 = gμνdxμdxν =
(

1 − 2M

r

)−1

dr2 + r2dϕ2 (2.1)

or grr = 1/(1 − 2M/r), gϕϕ = r2, and grϕ = 0.
This is an embeddable surface in the three-dimensional Euclidean space with cylindrical

coordinates (r, ϕ,Z) with ds2 = dZ2 + dr2 + r2dϕ2, whose equation is

Z(r) = ±2
√

2M(r − 2M). (2.2)

This surface is illustrated in Fig. 1. It has a hole of radius 2M . We will from now on call the
r = 2M region of the surface its “horizon”.

Flamm’s Paraboloid S

The surface S whose local geometry is fixed by the metric (1.1) is known as Flamm’s
paraboloid. It is composed by two identical “universes”: S+ the one at Z > 0, and S− the one
at Z < 0. These are both multiply connected surfaces with the “Schwarzschild wormhole”
providing the path from one to the other.

The system of coordinates (r, ϕ) with the metric (1.1) has the disadvantage that it requires
two charts to cover the whole surface S . It can be more convenient to use the variable

u = Z

4M
= ±

√
r

2M
− 1 (2.3)

Fig. 1 The Riemannian surface
S : Flamm’s paraboloid
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instead of r . Replacing r as a function of Z using equation (2.2) gives the following metric
when using the system of coordinates (u,ϕ),

ds2 = 4M2(1 + u2)
[
4du2 + (1 + u2) dϕ2

]
. (2.4)

The region u > 0 corresponds to S+ and the region u < 0 to S−.
Let us consider that the OCP is confined in a “disk” defined as

�+
R = {q = (r, ϕ) ∈ S+|0 ≤ ϕ ≤ 2π,2M ≤ r ≤ R}. (2.5)

The area of this disk is given by

AR =
∫

�+
R

dS = π

[√
R(R − 2M)(3M + R) + 6M2 ln

(√
R + √

R − 2M√
2M

)]
, (2.6)

where dS = √
g dr dϕ and g = det(gμν). The perimeter is CR = 2πR.

The Riemann tensor in a two-dimensional space has only 22(22 −1)/12 = 1 independent
component. In our case the characteristic component is

Rr
ϕrϕ = −M

r
. (2.7)

The scalar curvature is then given by the following indexes contractions

R = Rμ
μ = Rμν

μν = 2Rrϕ
rϕ = 2gϕϕRr

ϕrϕ = −2M

r3
, (2.8)

and the (intrinsic) Gaussian curvature is K = R/2 = −M/r3. The (extrinsic) mean curva-
ture of the manifold turns out to be H = −√

M/8r3.
The Euler characteristic of the disk �+

R is given by

χ = 1

2π

(∫
�+

R

K dS +
∫

∂�+
R

k dl

)
, (2.9)

where k is the geodesic curvature of the boundary ∂�+
R . The Euler characteristic turns out

to be zero, in agreement with the Gauss-Bonnet theorem χ = 2 − 2h − b where h = 0 is the
number of handles and b = 2 the number of boundaries.

We can also consider the case where the system is confined in a “double” disk

�R = �+
R ∪ �−

R, (2.10)

with �−
R = {q = (r, ϕ) ∈ S−|0 ≤ ϕ ≤ 2π,2M ≤ r ≤ R}, the disk image of �+

R on the lower
universe S− portion of S . The Euler characteristic of �R is also χ = 0.

A Useful System of Coordinates

The Laplacian for a function f is

�f = 1√
g

∂

∂qμ

(√
g gμν ∂

∂qν

)
f

=
[(

1 − 2M

r

)
∂2

∂r2
+ 1

r2

∂2

∂ϕ2
+

(
1

r
− M

r2

)
∂

∂r

]
f, (2.11)
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where q ≡ (r, ϕ). In Appendix A, we show how, finding the Green function of the Laplacian,
naturally leads to consider the system of coordinates (x,ϕ), with

x = (
√

u2 + 1 + u)2. (2.12)

The range for the variable x is ]0,+∞[. The lower paraboloid S− corresponds to the region
0 < x < 1 and the upper one S+ to the region x > 1. A point in the upper paraboloid with
coordinate (x,ϕ) has a mirror image by reflection (u → −u) in the lower paraboloid, with
coordinates (1/x,ϕ), since if

x = (
√

u2 + 1 + u)2 (2.13)

then

1

x
= (

√
u2 + 1 − u)2. (2.14)

In the upper paraboloid S+, the new coordinate x can be expressed in terms of the original
one, r , as

x = (
√

r + √
r − 2M)2

2M
. (2.15)

Using this system of coordinates, the metric takes the form of a flat metric multiplied by
a conformal factor

ds2 = M2

4

(
1 + 1

x

)4(
dx2 + x2 dϕ2

)
. (2.16)

The Laplacian also takes a simple form

�f = 4

M2(1 + 1
x
)4

�flatf, (2.17)

where

�flatf = ∂2f

∂x2
+ 1

x

∂f

∂x
+ 1

x2

∂2f

∂ϕ2
(2.18)

is the Laplacian of the flat Euclidean space R2. The determinant of the metric is now given
by g = [M2x(1 + x−1)4/4]2.

With this system of coordinates (x,ϕ), the area of a “disk” �+
R of radius R [in the original

system (r, ϕ)] is given by

AR = πM2

4
p(xm) (2.19)

with

p(x) = x2 + 8x − 8

x
− 1

x2
+ 12 lnx (2.20)

and xm = (
√

R + √
R − 2M)2/(2M).
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3 Coulomb Potential

3.1 Coulomb Potential Created by a Point Charge

The Coulomb potential G(x,ϕ;x0, ϕ0) created at (x,ϕ) by a unit charge at (x0, ϕ0) is given
by the Green function of the Laplacian

�G(x,ϕ;x0, ϕ0) = −2πδ(2)(x,ϕ;x0, ϕ0) (3.1)

with appropriate boundary conditions. The Dirac distribution is given by

δ(2)(x,ϕ;x0, ϕ0) = 4

M2x(1 + x−1)4
δ(x − x0)δ(ϕ − ϕ0). (3.2)

Notice that using the system of coordinates (x,ϕ) the Laplacian Green function equation
takes the simple form

�flatG(x,ϕ;x0, ϕ0) = −2π
1

x
δ(x − x0)δ(ϕ − ϕ0) (3.3)

which is formally the same Laplacian Green function equation for flat space.
We shall consider three different situations: when the particles can be in the whole sur-

face S , or when the particles are confined to the upper paraboloid universe S+, confined by
a hard wall or by a grounded perfect conductor.

3.1.1 Coulomb Potential Gws when the Particles Live in the Whole Surface S

To complement the Laplacian Green function equation (3.1), we impose the usual boundary
condition that the electric field −∇G vanishes at infinity (x → ∞ or x → 0). Also, we
require the usual interchange symmetry G(x,ϕ;x0, ϕ0) = G(x0, ϕ0;x,ϕ) to be satisfied.
Additionally, due to the symmetry between each universe S+ and S−, we require that the
Green function satisfies the symmetry relation

Gws(x,ϕ;x0, ϕ0) = Gws(1/x,ϕ;1/x0, ϕ0). (3.4)

The Laplacian Green function equation (3.1) can be solved, as usual, by using the de-
composition as a Fourier series. Since (3.1) reduces to the flat Laplacian Green function
equation (3.3), the solution is the standard one

G(x,ϕ;x0, ϕ0) =
∞∑

n=1

1

n

(
x<

x>

)2n

cos
[
n(ϕ − ϕ0)

] + g0(x, x0), (3.5)

where x> = max(x, x0) and x< = min(x, x0). The Fourier coefficient for n = 0, has the form

g0(x, x0) =
{

a+
0 lnx + b+

0 , x > x0

a−
0 lnx + b−

0 , x < x0.
(3.6)

The coefficients a±
0 , b±

0 are determined by the boundary conditions that g0 should be con-
tinuous at x = x0, its derivative discontinuous ∂xg0|x=x+

0
− ∂xg0|x=x−

0
= −1/x0, and the

boundary condition at infinity ∇g0|x→∞ = 0 and ∇g0|x→0 = 0. Unfortunately, the bound-
ary condition at infinity is trivially satisfied for g0, therefore g0 cannot be determined only
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with this condition. In flat space, this is the reason why the Coulomb potential can have an
arbitrary additive constant added to it. However, in our present case, we have the additional
symmetry relation (3.4) which should be satisfied. This fixes the Coulomb potential up to an
additive constant b0. We find

g0(x, x0) = −1

2
ln

x>

x<

+ b0, (3.7)

and summing explicitly the Fourier series (3.5), we obtain

Gws(x,ϕ;x0, ϕ0) = − ln
|z − z0|√|zz0| + b0, (3.8)

where we defined z = xeiϕ and z0 = x0e
iϕ0 . Notice that this potential does not reduce exactly

to the flat one when M = 0. This is due to the fact that the whole surface S in the limit
M → 0 is not exactly a flat plane R2, but rather it is two flat planes connected by a hole at
the origin, this hole modifies the Coulomb potential.

3.1.2 Coulomb Potential Ghs when the Particles Live in the Half Surface S+ Confined by
Hard Walls

We consider now the case when the particles are restricted to live in the half surface S+,
x > 1, and they are confined by a hard wall located at the “horizon” x = 1. The region
x < 1 (S−) is empty and has the same dielectric constant as the upper region occupied by
the particles. Since there are no image charges, the Coulomb potential is the same Gws

as above. However, we would like to consider here a new model with a slightly different
interaction potential between the particles. Since we are dealing only with half surface, we
can relax the symmetry condition (3.4). Instead, we would like to consider a model where the
interaction potential reduces to the flat Coulomb potential in the limit M → 0. The solution
of the Laplacian Green function equation is given in Fourier series by equation (3.5). The
zeroth order Fourier component g0 can be determined by the requirement that, in the limit
M → 0, the solution reduces to the flat Coulomb potential

Gflat(r, r′) = − ln
|r − r′|

L
, (3.9)

where L is an arbitrary constant length. Recalling that x ∼ 2r/M , when M → 0, we find

g0(x, x0) = − lnx> − ln
M

2L
(3.10)

and

Ghs(x,ϕ;x0, ϕ0) = − ln |z − z0| − ln
M

2L
. (3.11)

3.1.3 Coulomb Potential Ggh when the Particles Live in the Half Surface S+ Confined by a
Grounded Perfect Conductor

Let us consider now that the particles are confined to S+ by a grounded perfect conductor at
x = 1 which imposes Dirichlet boundary condition to the electric potential. The Coulomb
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potential can easily be found from the Coulomb potential Gws (3.8) using the method of
images

Ggh(x,ϕ;x0, ϕ0) = − ln
|z − z0|√|zz0| + ln

|z − z̄−1
0 |√

|zz̄−1
0 |

= − ln

∣∣∣∣ z − z0

1 − zz̄0

∣∣∣∣, (3.12)

where the bar over a complex number indicates its complex conjugate. We will call this the
grounded horizon Green function. Notice how its shape is the same of the Coulomb potential
on the pseudosphere [15] or in a flat disk confined by perfect conductor boundaries [6].

This potential can also be found using the Fourier decomposition. Since it will be useful
in the following, we note that the zeroth order Fourier component of Ggh is

g0(x, x0) = lnx<. (3.13)

3.2 The Background

The Coulomb potential generated by the background, with a constant surface charge density
ρb satisfies the Poisson equation

�vb = −2πρb. (3.14)

Assuming that the system occupies an area AR , the background density can be written as
ρb = −qNb/AR = −qnb , where we have defined here nb = Nb/AR the number density
associated to the background. For a neutral system Nb = N . The Coulomb potential of the
background can be obtained by solving Poisson equation with the appropriate boundary
conditions for each case. Also, it can be obtained from the Green function computed in the
previous section

vb(x,ϕ) =
∫

G(x,ϕ;x ′, ϕ′)ρb dS ′. (3.15)

This integral can be performed easily by using the Fourier series decomposition (3.5) of the
Green function G. Recalling that dS = 1

4 M2x(1+x−1)4 dx dϕ, after the angular integration
is done, only the zeroth order term in the Fourier series survives

vb(x,ϕ) = πρbM
2

2

∫ xm

1
g0(x, x ′)x

(
1 + 1

x

)4

dx. (3.16)

The previous expression is for the half surface case and the grounded horizon case. For the
whole surface case, the lower limit of integration should be replaced by 1/xm, or, equiva-
lently, the integral multiplied by a factor 2.

Using the explicit expressions for g0, (3.7), (3.10), and (3.13) for each case, we find, for
the whole surface,

vws
b (x,ϕ) = −πρbM

2

8

[
h(x) − h(xm) + 2p(xm) lnxm − 4b0p(xm)

]
(3.17)

where p(x) was defined in (2.20), and

h(x) = x2 + 16x + 16

x
+ 1

x2
+ 12(lnx)2 − 34. (3.18)
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Notice the following properties satisfied by the functions p and h

p(x) = −p(1/x), h(x) = h(1/x) (3.19)

and

p(x) = xh′(x)/2, p′(x) = 2x

(
1 + 1

x

)4

, (3.20)

where the prime stands for the derivative.
The background potential for the half surface case, with the pair potential − ln(|z −

z′|M/2L) is

vhs
b (x,ϕ) = −πρbM

2

8

[
h(x) − h(xm) + 2p(xm) ln

xmM

2L

]
. (3.21)

Also, the background potential in the half surface case, but with the pair potential − ln(|z −
z′|/√|zz′|) + b0 is

vhs
b (x,ϕ) = −πρbM

2

8

[
h(x) − h(xm)

2
+ p(xm)

(
ln

xm

x
− 2b0

)]
. (3.22)

Finally, for the grounded horizon case,

v
gh
b (x,ϕ) = −πρbM

2

8

[
h(x) − 2p(xm) lnx

]
. (3.23)

4 Partition Function and Densities at � = 2

We will now show how, at the special value of the coupling constant � = βq2 = 2, the par-
tition function and n-body correlation functions can be calculated exactly, for the different
cases considered below.

In the following we will distinguish four cases labeled by A: A = hs, the plasma on the
half surface (choosing Ghs as the pair Coulomb potential); A = ws, the plasma on the whole
surface (choosing Gws as the pair Coulomb potential); A = hs, the plasma on the half surface
but with the Coulomb potential Gws of the whole surface case; and A = gh, the plasma on
the half surface with the grounded horizon (choosing Ggh as the pair Coulomb potential).

The total potential energy of the plasma is, in each case

V A = vA
0 + q

∑
i

vA
b (xi) + q2

∑
i<j

GA(xi, ϕi;xj ,ϕj ), (4.1)

where (xi, ϕi) is the position of charge i on the surface, and

vA
0 = 1

2

∫
ρbv

A
b (x,ϕ)dS (4.2)

is the self energy of the background in each of the four mentioned cases. In the grounded
case A = gh, one should add to V gh in (4.1) the self energy that each particle has due to the
polarization it creates on the grounded conductor.
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4.1 The 2dOCP on Half Surface with Potential − ln |z − z′| − lnM/(2L)

4.1.1 Partition Function

For this case, we work in the canonical ensemble with N particles and the background
neutralizes the charges: Nb = N , and n = N/AR = nb . The potential energy of the system
takes the explicit form

V hs = −q2
∑

1≤i<j≤N

ln |zi − zj | + q2

2
α

N∑
i=1

h(xi) + q2

2
N ln

M

2L
− q2

4
Nαh(xm)

+ q2

2
N2 lnxm − q2

4
α2

∫ xm

1
h(x)p′(x) dx, (4.3)

where we have used the fact that dS = πM2x(1 + x−1)4 dx/2 = πM2p′(x) dx/4, and we
have defined

α = πnbM
2

4
. (4.4)

Integrating by parts the last term of (4.3) and using (3.20), we find

V hs = −q2
∑

1≤i<j≤N

ln |zi − zj | + q2

2
α

N∑
i=1

h(xi) + q2

2
N ln

M

2L
+ q2

2
N2 lnxm

+ q2

2
α2

∫ xm

1

[p(x)]2

x
dx − q2

2
Nαh(xm). (4.5)

When βq2 = 2, the canonical partition function can be written as

Zhs = 1

λ2N
Zhs

0 exp(−βF hs
0 ) (4.6)

with

−βF hs
0 = −N ln

M

2L
− N2 lnxm − α2

∫ xm

1

[p(x)]2

x
dx + Nαh(xm) (4.7)

and

Zhs
0 = 1

N !
∫ N∏

i=1

dSi e
−αh(xi )

∏
1≤i<j≤N

|zi − zj |2, (4.8)

where λ = √
2πβ�2/m is the de Broglie thermal wavelength. Z0 can be computed using

the original method for the OCP in flat space [2, 3], which was originally introduced in the
context of random matrices [19, 20]. By expanding the Vandermonde determinant

∏
i<j (zi −

zj ) and performing the integration over the angles, the partition function can be written as

Zhs
0 =

N−1∏
k=0

BN(k), (4.9)

Two dimensional one-component plasma on a Flamm’s
paraboloid 271



Two-Dimensional One-Component Plasma on Flamm’s Paraboloid 459

where

BN(k) =
∫

x2ke−αh(x) dS (4.10)

= α

nb

∫ xm

1
x2ke−αh(x)p′(x) dx. (4.11)

In the flat limit M → 0, we have x ∼ 2r/M , with r the radial coordinate of the flat
space R2, and h(x) ∼ p(x) ∼ x2. Then, BN reduces to

BN(k) ∼ 1

nbαk
γ (k + 1,N), (4.12)

where γ (k + 1,N) = ∫ N

0 tke−t dt is the incomplete Gamma function. Replacing into (4.9),
we recover the partition function for the OCP in a flat disk of radius R [3]

lnZhs = N

2
ln

πL2

nbλ4
+ 3N2

4
− N2

2
lnN +

N∑
k=1

lnγ (k,N). (4.13)

4.1.2 Thermodynamic Limit R → ∞, xm → ∞, and Fixed M

Let us consider the limit of a large system when xm = (
√

R + √
R − 2M)2/(2M) → ∞,

N → ∞, constant density n, and constant M . Therefore α is also kept constant. In appen-
dix B, we develop a uniform asymptotic expansion of BN(k) when N → ∞ and k → ∞
with (N − k)/

√
N = O(1). Let us define x̂k by

k = αp(x̂k). (4.14)

The asymptotic expansion (B15) of BN(k) can be rewritten as

BN(k) = 1

2nb

√
παx̂kp′(x̂k) e2k ln x̂k−αh(x̂k )[1 + erf(εk)]

×
[

1 + 1

12k
+ 1√

k
ξ1(εk) + 1

k
ξ2(εk)

]
, (4.15)

where

εk = 2p(xk)

xkp′(xk)

N − k√
2k

(4.16)

is a order one parameter, and the functions ξ1(εk) and ξ2(εk) can be obtained from the cal-
culation presented in Appendix B. They are integrable functions for εk ∈ [0,∞[. We will
obtain an expansion of the free energy up to the order lnN . At this order the functions ξ1,2

do not contribute to the result.
Writing down

lnZhs
0 =

N∑
k=0

lnBN(k) − lnBN(N) (4.17)

and using the asymptotic expansion (4.15), we have

lnZhs
0 = −N ln

nb√
2π

+ Shs
1 + Shs

2 + Shs
3 + 1

12
lnN

− ln

[√
αxm

(
1 + 1

xm

)2]
− 2N lnxm + αh(xm) + O(1) (4.18)
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with

Shs
1 =

N∑
k=0

ln

[√
αx̂k

(
1 + 1

x̂k

)2]
, (4.19)

Shs
2 =

N∑
k=0

[
2k ln x̂k − αh(x̂k)

]
, (4.20)

Shs
3 =

N∑
k=0

ln
1 + erf(εk)

2
. (4.21)

Notice that the contribution of ξ1(εk) is of order one, since
∑

k ξ1(εk)/
√

k ∼ ∫ ∞
0 ξ1(ε) dε =

O(1). Also,
∑

k ξ2(εk)/k ∼ (1/
√

N)
∫ ∞

0 ξ2(ε) dε = O(1/
√

N).
Shs

3 gives a contribution of order
√

N , transforming the sum over k into an integral over
the variable t = εk , we have

S3 = √
2N

∫ ∞

0
ln

1 + erf(t)

2
dt + O(1). (4.22)

This contribution is the same as the perimeter contribution in the flat case.
To expand Shs

1 and Shs
2 up to order O(1), we need to use the Euler-McLaurin summation

formula [21, 22]

N∑
k=0

f (k) =
∫ N

0
f (y)dy + 1

2

[
f (0) + f (N)

] + 1

12

[
f ′(N) − f ′(0)

] + · · · . (4.23)

We find

Shs
1 = N

2
lnα + αx2

m

(
lnxm − 1

2

)
+ αxm(8 lnxm − 4)

+
(

14α + 1

2

)
lnxm + 6(lnxm)2 (4.24)

and

Shs
2 = N2 lnxm + N lnxm − αNh(xm) + α2

∫ xm

1

[p(x)]2

x
dx − α

2
h(xm) + 1

6
lnxm. (4.25)

Summing all terms in lnZhs
0 and those from βF hs

0 , we notice that all nonextensive terms
cancel, as it should be, and we obtain

lnZhs = −NβfB + 4xmα − CR βγhard +
(

14α − 1

6

)
lnxm + O(1), (4.26)

where

βfB = −1

2
ln

2π2L2

nλ4
(4.27)
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is the bulk free energy of the OCP in the flat geometry [3],

βγhard = −
√

nb

2π

∫ ∞

0
ln

1 + erf(y)

2
dy (4.28)

is the perimeter contribution to the free energy (“surface” tension) in the flat geometry near
a plane hard wall [5], and

CR = 2πR = πM
√

xmp′(xm)/2 = πMxm + O(1) (4.29)

is the perimeter of the boundary at x = xm.
The region x → ∞ has zero curvature, therefore in the limit xm → ∞, most of the system

occupies an almost flat region. For this reason, the extensive term (proportional to N ) is
expected to be the same as the one in flat space fB . The largest boundary of the system
x = xm is also in an almost flat region, therefore it is not surprising to see the factor γhard from
the flat geometry appear there as well. Nevertheless, we notice an additional contribution
4αxm to the perimeter contribution, which comes from the curvature of the system.

In the logarithmic correction lnxm, we notice a −(1/6) lnxm term, the same as in a flat
disk geometry [5], but also a nonuniversal contribution due to the curvature 14α lnxm. In
Refs. [5, 6], it is argued that Coulomb systems should exhibit only a universal logarithmic
finite-size corrections (χ/6) lnR, for a system of typical large size R, and Euler character-
istic χ . We do not find this correction in the result (4.26). The reason for this difference is
that in [5, 6], the large system limit is taken at fixed shape, contrary to what has been done
in this section. So, it is also interesting to consider now the thermodynamic limit keeping
the shape of the surface fixed. This is done in the next section.

4.1.3 Thermodynamic Limit at Fixed Shape: α → ∞ and xm Fixed

In the previous section we studied a thermodynamic limit case where a large part of the space
occupied by the particles becomes flat as x → ∞ keeping M fixed. Another interesting
thermodynamic limit that can be studied is the one where we keep the shape of the space
occupied by the particles fixed. This limit corresponds to the situation M → ∞ and R → ∞
while keeping the ratio R/M fixed, and of course the number of particles N → ∞ with the
density n fixed. Equivalently, recalling that N = αp(xm), in this limit xm is fixed and finite,
and α = πM2nb/4 → ∞. We shall use α as the large parameter for the expansion of the
free energy. In this limit, we expect the curvature effects to remain important, in particular
the bulk free energy (proportional to α) will not be the same as in flat space.

Using the expansion (B18) of BN(k) for the fixed shape situation, we have

lnZhs
0 = N ln

√
π

nb

+ N ln
√

α + S
hs,fixed
1 + S

hs,fixed
2 + S

hs,fixed
3 + O(1), (4.30)

where now

S
hs,fixed
1 = 1

2

N−1∑
k=0

ln
[
x̂kp

′(x̂k)
]
, (4.31)

S
hs,fixed
2 = −α

N−1∑
k=0

[
h(x̂k) − 2p(x̂k) ln x̂k

]
, (4.32)
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S
hs,fixed
3 =

N−1∑
k=0

ln
erf(εk,1) + erf(εk,m)

2
(4.33)

with εk,m and εk,1 given in (B19) and (B20), and x̂k is given by k = αp(x̂k). Using the
Euler-McLaurin expansion, we obtain

S
hs,fixed
1 = α

∫ xm

1

(1 + x)4

x3
ln

2(x + 1)4

x2
dx + O(1), (4.34)

S
hs,fixed
2 = N2 lnxm − αNh(xm) + α2

∫ xm

1

[p(x)]2

x
dx + α

2
h(xm) − N lnxm + O(1). (4.35)

For S
hs,fixed
3 , the relevant contributions are obtained when k is of order

√
N , where εk,1 is of

order one, and when N − k is of order
√

N , where εk,m is of order one. In those regions, the
sum can be changed into an integral over the variable t = εk,1 or t = εk,m. This gives

S
hs,fixed
3 = −

√
4πα

nb

[
xm

(
1 + 1

xm

)2

+ 4

]
βγhard + O(1) (4.36)

with γhard given in (4.28). Once again the nonextensive terms (proportional to α2) in S
hs,fixed
2

cancel out with similar terms in F
hs,fixed
0 from (4.7). The final result for the free energy

βF hs = − lnZhs is

lnZhs = α

[
−p(xm)βfB + 1

2

[
h(xm) − 2p(xm) lnxm

] +
∫ xm

1

(1 + x)4

x3
ln

(x + 1)4

x2
dx

]

−
√

4πα

nb

[
xm

(
1 + 1

xm

)2

+ 4

]
βγhard + O(1), (4.37)

where fB , given by (4.27), is the bulk free energy per particle in a flat space. We notice the
additional contribution to the bulk free energy due to the important curvature effects [second
and third term of the first line of (4.37)] that remain present in this thermodynamic limit.

The boundary terms, proportional to
√

α, turn out to be very similar to those of a flat
space near a hard wall [23], with a contribution βγhardCb for each boundary at xb = xm and
at xb = 1 with perimeter

Cb = πM

√
xbp′(xb)

2
= πMxb

(
1 + 1

xb

)2

. (4.38)

Also, we notice the absence of lnα corrections in the free energy. This is in agreement
with the general results from Refs. [5, 6], where, using arguments from conformal field
theory, it is argued that for two-dimensional Coulomb systems living in a surface of Euler
characteristic χ , in the limit of a large surface keeping its shape fixed, the free energy should
exhibit a logarithmic correction (χ/6) lnR where R is a characteristic length of the size of
the surface. For our curved surface studied in this section, the Euler characteristic is χ = 0,
therefore no logarithmic correction is expected.

4.1.4 Distribution Functions

Following [2], we can also find the k-body distribution functions

n(k)hs(q1, . . . ,qk) = det
[
Khs

N (qi ,qj )
]
(i,j)∈{1,...,k}2 , (4.39)
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where qi = (xi, ϕi) is the position of the particle i, and

Khs
N (qi ,qj ) =

N−1∑
k=0

zk
i z̄

k
j e

−α[h(|zi |)+h(|zj |)]/2

BN(k)
, (4.40)

where zk = xke
iϕk . In particular, the one-body density is given by

nhs(x) = KN(q,q) =
N−1∑
k=0

x2ke−αh(x)

BN(k)
. (4.41)

4.1.5 Internal Screening

Internal screening means that at equilibrium, a particle of the system is surrounded by a
polarization cloud of opposite charge. It is usually expressed in terms of the simplest of
the multipolar sum rules [24]: the charge or electroneutrality sum rule, which for the OCP
reduces to the trivial relation

∫
n(2)hs(q1,q2) dS2 = (N − 1)n(1)hs(q1), (4.42)

which is actually satisfied for any fluid.
For our model, it is easy to verify that (4.42) is satisfied because of the particular struc-

ture (4.39) of the correlation function expressed as a determinant of the kernel Khs
N , and the

fact that Khs
N is a projector

∫
dS3 Khs

N (q1,q3)Khs
N (q3,q2) = Khs

N (q1,q2). (4.43)

Indeed,
∫

n(2)hs(q1,q2) dS2 =
∫

[Khs
N (q1,q1)Khs

N (q2,q2) − Khs
N (q1,q2)Khs

N (q2,q1)]dS2

=
∫

n(1)hs(q1)n
(1)hs(q2) dS2 − Khs

N (q1,q1)

= (N − 1)n(1)hs(q1). (4.44)

4.1.6 External Screening

External screening means that, at equilibrium, for an infinite fluid, an external charge in-
troduced into the system is surrounded by a polarization cloud of opposite charge. When
an external infinitesimal point charge Q is added to the system, it induces a charge density
ρQ(q). External screening means that

∫
ρQ(q) dS = −Q. (4.45)

Using linear response theory we can calculate ρQ to first order in Q as follows. Imagine that
the charge Q is at q. Its interaction energy with the system is Ĥint = Qφ̂(q) where φ̂(q)
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is the microscopic electric potential created at q by the system. Then, the induced charge
density at q′ is

ρQ(q′) = −β
〈
ρ̂(q′)Ĥint

〉
T

= −βQ〈ρ̂(q′)φ̂(q)〉T , (4.46)

where ρ̂(q′) is the microscopic charge density at q′, 〈AB〉T = 〈AB〉 − 〈A〉〈B〉, and 〈. . .〉 is
the thermal average. Assuming external screening (4.45) is satisfied, one obtains the Carnie-
Chan sum rule [24]

β

∫ 〈
ρ̂(q′)φ̂(q)

〉
T

dS ′ = 1. (4.47)

Now, in a uniform system starting from this sum rule one can derive the second moment
Stillinger-Lovett sum rule [24]. The derivation of Stillinger-Lovett sum rule from (4.47) is
done using the fact that for a homogenous system, the correlation function in (4.47) depends
only on the distance between q and q′. This is not true in the present situation, because our
system is not homogeneous since the curvature is not constant throughout the surface but
varies from point to point. If we apply the Laplacian with respect to q to this expression and
use Poisson equation

�q
〈
ρ̂(q′)φ̂(q)

〉
T

= −2π
〈
ρ̂(q′)ρ̂(q)

〉
T
, (4.48)

we find ∫ 〈
ρ̂(q′)ρ̂(q)

〉
T

dS ′ = 0. (4.49)

Equation (4.49) is another way of writing the charge sum rule (4.42) in the thermodynamic
limit.

4.1.7 Asymptotics of the Density in the Limit xm → ∞ and α Fixed, for 1 � x � xm

The formula (4.41) for the one-body density, although exact, does not allow a simple eval-
uation of the density at a given point in space, as one has first to calculate BN(k) through
an integral and then perform the sum over k. One can then try to determine the asymptotic
behaviors of the density.

In this section, we consider the limit xm → ∞ and α fixed, and we study the density in
the bulk of the system 1 � x � xm.

In the sum (4.41), the dominant terms are the ones for which k is such that x̂k = x, with
x̂k defined in (4.14). Since 1 � x � xm, the dominant terms in the calculation of the density
are obtained for values of k such that 1 � k � N . Therefore in the limit N → ∞, in the
expansion (4.15) of BN(k), the argument of the error function is very large, then the error
function can be replaced by 1. Keeping the correction 1/(12k) from (4.15) allow us to obtain
an expansion of the density up to terms of order O(1/x2). Replacing the sum over k into an
integral over x̂k , we have

nhs(x) = nb√
π

∫ ∞

−∞
e�(x̂k)f (x̂k)

(
1 − 1

12αp(x̂k)

)
dx̂k (4.50)

with

�(x̂k) = 2αp(x̂k) ln
x

x̂k

− α
[
h(x) − h(x̂k)

]
(4.51)
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and

f (x̂k) =
√

αp′(x̂k)

x̂k

. (4.52)

We proceed now to use the Laplace method to compute this integral. The function �(x̂k)

has a maximum for x̂k = x, with �(x) = 0 and

� ′′(x) = −2αp′(x)

x
, (4.53a)

�(3)(x) = −4α

x
+ O(1/x2), (4.53b)

�(4)(x) = 4α

x2
+ O(1/x3). (4.53c)

Expanding for x̂k close to x and for x � 1 up to order 1/x2, we have

nhs(x) = nb√
π

∫ +∞

−∞
e−αp′(x)(x̂k−x)2/x

(
f (x) + f ′(x)(x̂k − x) + f ′′(x)(x̂k − x)2

2

)

×
(

1 + 1

3!�
(3)(x)(x̂k − x)3 + 1

4!�
(4)(x)(x̂k − x)4 + [�(3)(x)]2

3!2 2
(x̂k − x)6

)

×
(

1 − 1

12αp(x)
+ O(1/x3)

)
dx̂k. (4.54)

For the expansion of f (x̂k) around x̂k = x, it is interesting to notice that

f ′(x) = O(1/x2), and f ′′(x) = O(1/x3). (4.55)

In the integral, the factor containing f ′(x) is multiplied by (x̂k − x) which after integration
vanishes. Therefore, the relevant contributions to order O(1/x2) are

nhs(x) = nb√
π

∫ +∞

−∞
e−αp′(x)(x̂k−x)2/x

√
αp′(x)

x

×
(

1 + 1

3!�
(3)(x)(x̂k − x)3 + 1

4!�
(4)(x)(x̂k − x)4 + [�(3)(x)]2

3!2 2
(x̂k − x)6

)

×
(

1 − 1

12αp(x)

)
dx̂k + O(1/x3). (4.56)

Then, performing the Gaussian integrals and replacing the dominant values of �(x) and its
derivatives from (4.53) for x � 1, we find

nhs(x) = nb

(
1 + 1

12αx2

)(
1 − 1

12αx2

)
+ O(1/x3) = nb + O(1/x3). (4.57)

In the bulk of the plasma, the density of particles equal the bulk density, as expected. The
above calculation, based the Laplace method, generates an expansion in powers of 1/x for
the density. The first correction to the background density, in 1/x2, has been shown to be
zero. We conjecture that this is probably true for any subsequent corrections in powers 1/x
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if the expansion is pushed further, because the corrections to the bulk density are probably
exponentially small, rather than in powers of 1/x, due to the screening effects. In the fol-
lowing subsections, we consider the expansion of the density in other types of limits, and in
particular close to the boundaries, and the results suggest that our conjecture is true.

4.1.8 Asymptotics of the Density Close to the Boundary in the Limit xm → ∞
We study here the density close to the boundary x = xm in the limit xm → ∞ and M fixed.
Since in this limit this region is almost flat, one would expect to recover the result for the
OCP in a flat space near a wall [23]. Let x = xm + y where y � xm is of order 1.

Using the dominant term of the asymptotics (4.15),

BN(k) = 1

2nb

√
παx̂kp′(x̂k) e2k ln x̂k−αh(x̂k )

[
1 + erf(εk)

]
, (4.58)

we have

nhs(x) = 2nb√
π

N−1∑
k=0

e2k(lnx−ln x̂k )−α[h(x)−h(x̂k )]√
αx̂kp′(x̂k)[1 + erf(εk)]

, (4.59)

where we recall that x̂k = p−1(k/α). The exponential term in the sum has a maximum when
x̂k = x i.e. k = kmax = αp(x), and since x is close to xm → ∞, the function is very peaked
near this maximum. Thus, we can use Laplace method to compute the sum. Expanding the
argument of the exponential up to order 2 in k − kmax, we have

nhs(x) = 2nb√
π

N−1∑
k=0

exp
[− 2

αxp′(x)
(k − kmax)

2
]

√
αxp′(x)[1 + erf(εk)] . (4.60)

Now, replacing the sum by an integral over t = εk and replacing x = xm − y, we find

nhs(x) = 2nb√
π

∫ ∞

0

exp
[−(t − √

2αy)2
]

1 + erf(t)
dt. (4.61)

Since both xm → ∞, and x → ∞, in that region, the space is almost flat. If s is the geodesic
distance from x to the border, then we have y ∼ √

(πnb/α) s, and (4.61) reproduces the
result for the flat space [23], as expected.

4.1.9 Density in the Thermodynamic Limit at Fixed Shape: α → ∞ and xm Fixed

Using the expansion (B18) of BN(k) for the fixed shape situation, we have

nhs(x) = 2nb

N−1∑
k=0

e−α[h(x)−2p(x̂k) lnx−h(x̂k)+2p(x̂k) ln x̂k ]√
απx̂kp′(x̂k)[erf(εk,1) + erf(εk,m)] . (4.62)

Once again, to evaluate this sum when α → ∞ it is convenient to use Laplace method. The
argument of the exponential has a maximum when k is such that x̂k = x. Transforming the
sum into an integral over x̂k , and expanding the argument of the integral to order (x̂k − x)2,
we have

nhs(x) = 2nb

√
α√

π

∫ xm

1

√
p′(x̂k)

x̂k

e−αp′(x)(x−x̂k )2/x

erf(εk,1) + erf(εk,m)
dx̂k. (4.63)
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Depending on the value of x the result will be different, since we have to take special
care of the different cases when the corresponding dominant values of x̂k are close to the
limits of integration or not.

Let us first consider the case when x − 1 and xm − x are of order one. This means we
are interested in the density in the bulk of the system, far away from the boundaries. In this
case, since εk,1 and εk,m, defined in (B19) and (B20), are proportional to

√
α → ∞, then

each error function in the denominator of (4.63) converge to 1. Also, the dominant values
of x̂k , close to x (more precisely, x − x̂k of order 1/

√
α), are far away from 1 and xm (more

precisely, x̂k − 1 and xm − x̂k are of order 1). Then, we can extend the limits of integration
to −∞ and +∞, and approximate x̂k by x in the term p′(x̂k)/x̂k . The resulting Gaussian
integral is easily performed, to find

n(x) = nb, when x − 1 and xm − x are of order 1. (4.64)

Let us now consider the case when x − xm is of order 1/
√

α, i.e. we study the density
close to the boundary at xm. In this case εk,m is of order 1 and the term erf(εk,m) cannot be
approximated to 1, whereas εk,1 ∝ √

α → ∞ and erf(εk,1) → 1. The terms p′(x̂k)/x̂k and
p′(x)/x can be approximated to p′(xm)/xm up to corrections of order 1/

√
α. Using t = εk,m

as new variable of integration, we obtain

nhs(x) = 2nb√
π

∫ +∞

0

exp
[−(

t −
√

αp′(xm)

xm
(xm − x)

)2]
1 + erf(t)

dt, for xm − x of order
1√
α

.

(4.65)
In the case where x − 1 is of order 1/

√
α, close to the other boundary, a similar calculation

yields,

nhs(x) = 2nb√
π

∫ +∞

0

exp
[−(

t − √
αp′(1)(x − 1)

)2]
1 + erf(t)

dt, for x − 1 of order
1√
α

, (4.66)

where p′(1) = 32.
Figure 2 compares the density profile for finite N = 100 with the asymptotic re-

sults (4.64), (4.65) and (4.66). The figure show how the density tends to the background
density, nb, far from the boundaries. Near the boundaries it has a peak, eventually decreas-
ing below nb when approaching the boundary. In the limit α → ∞, the value of the density
at each boundary is nb ln 2.

Fig. 2 The normalized one-body
density nhs(x)/nb , for the
2dOCP on just one universe of
the surface S . The dashed line
corresponds to a numerical
evaluation, obtained from (4.41),
with N = 100, xm = 2 and
α = 4.15493. The solid line
corresponds to the asymptotic
result in the fixed shape limit
when α → ∞, and xm = 2 fixed
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Interestingly, the results (4.64), (4.65) and (4.66) turn out to be the same as the one for a
flat space near a hard wall [23]. From the metric (2.16), we deduce that the geodesic distance
to the boundary at xm is s = M(xm − x)

√
p′(xm)/(8xm) (when xm − x is of order 1/

√
α),

and a similar expression for the distance to the boundary at x = 1 replacing xm by 1. Then,
in terms of the geodesic distance s to the border, the results (4.65) and (4.66) are exactly the
same as those of an OCP in a flat space close to a plane hard wall [23],

n(s) = 2nb√
π

∫ +∞

0

exp
[−(

t − s
√

2πnb

)2]
1 + erf(t)

dt. (4.67)

This result shows that there exists an interesting universality for the density, because,
although we are considering a limit where curvature effects are important, the density turns
out to be the same as the one for a flat space. Another way to understand the recovery of
density profile in a flat space near a hard wall (4.67), is to notice that in this limit α → ∞,
we have M � n

−1/2
b : the curvature-variation length is much larger than the density-variation

scale.

4.2 The 2dOCP on the Whole Surface with Potential − ln(|z − z′|/√|zz′|) + b0

4.2.1 Partition Function

Until now we studied the 2dOCP on just one universe. Let us find the thermodynamic prop-
erties of the 2dOCP on the whole surface S . In this case, we also work in the canonical
ensemble with a global neutral system. The position zk = xke

iϕk of each particle can be in
the range 1/xm < xk < xm. The total number particles N is now expressed in terms of the
function p as N = 2αp(xm). Similar calculations to the ones of the previous section lead to
the following expression for the partition function, when βq2 = 2,

Zws = 1

λ2N
Zws

0 exp(−βF ws
0 ) (4.68)

now, with

−βF ws
0 = Nb0 + Nαh(xm) − N2

2
lnxm − α2

∫ xm

1/xm

[p(x)]2

x
dx (4.69)

and

Zws
0 = 1

N !
∫ N∏

i=1

dSi e
−αh(xi )x−N+1

i

∏
1≤i<j≤N

|zi − zj |2. (4.70)

Expanding the Vandermonde determinant and performing the angular integrals we find

Zws
0 =

N−1∏
k=0

B̃N(k) (4.71)

with

B̃N(k) =
∫

x2k−N+1e−αh(x) dS (4.72)
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= α

n

∫ xm

1/xm

x2k−N+1e−αh(x)p′(x) dx. (4.73)

The function B̃N(k) is very similar to BN , and its asymptotic behavior for large values of N

can be obtained by Laplace method as explained in Appendix B.

4.2.2 Thermodynamic Limit R → ∞, xm → ∞, and Fixed M

Writing the partition function as

lnZws
0 =

N∑
k=0

ln B̃N(k) − ln B̃N(N), (4.74)

and using the asymptotic expansion (B31) for B̃N , we have

lnZws
0 = − ln

nb√
2π

+ Sws
1 + Sws

2 + Sws
3 + Sws

4 + Sws
5 − ln

[√
α xm

(
1 + 1

xm

)2]

− lnxm − N lnxm + αh(xm), (4.75)

where

Sws
1 =

N∑
k=0

ln

[√
α x̂k− N

2

(
1 + 1

x̂k− N
2

)2]
, (4.76)

Sws
2 =

N∑
k=0

2

(
k − N

2

)
ln x̂k− N

2
− αh

(
x̂k− N

2

)
, (4.77)

Sws
3 =

N∑
k=0

ln
erf(εk,min) + erf(εk,max)

2
, (4.78)

Sws
4 =

N∑
k=0

ln x̂k− N
2
, (4.79)

Sws
5 =

N/2∑
k′=1

(
1

12
+ 3

8

)
1

|k′| +
−1∑

k′=−N/2

(
1

12
− 1

8

)
1

|k′| = 5

6
lnxm + O(1) (4.80)

and εk,min and εk,max are defined in (B33). Notice that Sws
4 = 0 due to the symmetry relation

x̂−� = 1/x̂�, therefore only the sums Sws
1 , Sws

2 , Sws
3 and Sws

5 contribute to the result. These
sums are similar to the ones defined for the half surface case, with the difference that the
running index k′ = k − N/2 varies from −N/2 to N/2 instead of 0 to N as in the half
surface case. This difference is important when considering the remainder terms in the Euler-
McLaurin expansion, because now both terms for k′ = −N/2 and k′ = N/2 are important
in the thermodynamic limit. In the half surface case only the contribution for k = N was
important in the thermodynamic limit.
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The asymptotic expansion of each sum, for xm → ∞, is now

Sws
1 = N

2
lnα + x2

m(2 lnxm − 1) + 2xm(8 lnxm − 4) + (28α + 1) lnxm + 12α(lnxm)2

+ O(1), (4.81)

Sws
2 = N2

2
lnxm + α2

∫ xm

1/xm

[p(x)]2

x
dx − αNh(xm) + N lnxm − αh(xm) + 1

3
lnxm + O(1),

(4.82)

Sws
3 = −2xm

√
4πα

nb

βγhard + O(1), (4.83)

where γhard is defined in (4.28). The free energy is given by βF ws = − lnZws, with

lnZws = 2αx2
m lnxm + N

(
b0 + ln

√
2πα

λ2nb

)
− αx2

m + 8αxm(2 lnxm − 1) − 2CR βγhard

+ 12α(lnxm)2 + 28α lnxm + 1

6
lnxm + O(1). (4.84)

We notice that the free energy for this system turns out to be nonextensive with a term
2x2

m lnxm. This is probably due to the special form of the potential − ln(|z − z′|/√|zz′|):
the contribution from the denominator in the logarithm can be written as a one-body term
[(N − 1)/2] lnx, which is not intensive but extensive. However, this nonextensivity of the
final result is mild, and can be cured by choosing the arbitrary additive constant b0 of the
Coulomb potential as b0 = − ln(Mxm) + constant.

4.2.3 Thermodynamic Limit at Fixed Shape: α → ∞ and xm Fixed

For this situation, we use the asymptotic behavior (B34) of B̃N

lnZws
0 = N ln

√
πα

nb

+ S
ws,fixed
1 + S

ws,fixed
2 + S

ws,fixed
3 + S

ws,fixed
4 , (4.85)

where, now

S
ws,fixed
1 = 1

2

N−1∑
k=0

ln
[
x̂k− N

2
p′(x̂k− N

2
)
]
, (4.86)

S
ws,fixed
2 = −α

N−1∑
k=0

[
h(x̂k− N

2
) − 2p(x̂k− N

2
) ln x̂k− N

2

]
, (4.87)

S
ws,fixed
3 =

N−1∑
k=0

ln
erf(εk,min) + erf(εk,max)

2
, (4.88)

S
ws,fixed
4 =

N−1∑
k=0

ln x̂k− N
2
. (4.89)
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These sums can be computed as earlier using Euler-McLaurin summation formula. We no-
tice that

S
ws,fixed
4 = α

∫ xm

1/xm

lnx p′(x) dx + O(1) = 0 + O(1) (4.90)

because of the symmetry properties ln(1/x) = − lnx and p′(1/x)d(1/x) = −p′(x)dx. In
the computation of S

ws,fixed
2 there is an important difference with the case of the half surface

section, due to the contribution when k = 0, since x̂−N/2 = 1/x̂N/2 = 1/xm

S
ws,fixed
2 = −αNh(xm) − N2

2
lnxm + α2

∫ xm

1/xm

[p(x)]2

x
dx + O(1). (4.91)

There is no O(α) contribution from S
ws,fixed
2 . Finally, the free energy βF ws = − lnZws is

given by

lnZws = α

[
2p(xm)

(
ln

√
2πα

λ2nb

+ b0

)
+

∫ xm

1/xm

(1 + x)4

x3
ln

(x + 1)4

x2
dx

]

− 2

√
4πα

nb

xm

(
1 + 1

xm

)2

βγhard + O(1). (4.92)

We notice that the free energy has again a nonextensive term proportional to α lnα, but,
once again, it can be cured by choosing the constant b0 as b0 = − ln(Mxm) + constant.
The perimeter correction, 2CRβγhard, proportional to

√
α, has the same form as for the half

surface case, with equal contributions from each boundary at x = 1/xm and x = xm. Once
again, there is no lnα correction in agreement with the general theory of Ref. [5, 6] and the
fact that the Euler characteristic of this manifold is χ = 0.

4.2.4 Density

The density is now given by

nws(x) =
N−1∑
k=0

x2k−N+1 e−αh(x)

B̃N(k)
. (4.93)

Due to the fact that the asymptotic behavior of B̃N(k) is almost the same as the one of BN(k′)
with k′ = |k − N

2 |, the behavior of the density turn out to be the same as for the half surface
case, in the thermodynamic limit α → ∞, xm fixed,

n(x) = nb, in the bulk, i.e., when x − xm and x − 1

xm

are of order 1. (4.94)

And, close to the boundaries, x → xb with xb = xm or xb = 1/xm,

n(x) = 2nb√
π

∫ +∞

0

exp
[−(

t −
√

αp′(xb)

xb
|x − xb|

)2]
1 + erf(t)

dt, for xb − x of order
1√
α

. (4.95)

If the result is expressed in terms of the geodesic distance s to the border, we recover, once
again, the result of the OCP in a flat space near a hard wall (4.67).
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4.3 The 2dOCP on the Half Surface with Potential − ln(|z − z′|/√|zz′|) + b0

4.3.1 Partition Function

In this case, we have N = αp(xm). Following similar calculations to the ones of the previous
cases, we find that the partition function, at βq2 = 2, is

Zhs = Zhs
0 e−βF hs

0 (4.96)

with

−βF hs
0 = α2p(xm)h(xm) − p(xm)2 lnxm +

∫ xm

1

[
p(x)

]2

x
dx − Nb0 (4.97)

and

Zhs
0 =

N−1∏
k=0

B̂N(k) (4.98)

with

B̂N(k) = α

nb

∫ xm

1
x2k+1e−αh(x) dx. (4.99)

4.3.2 Thermodynamic Limit R → ∞, xm → ∞, and Fixed M

The asymptotic expansion of B̂N(k) is obtained from (B31) replacing k′ by k and consider-
ing only the case k > 0. As explained in Appendix B, the main difference with the other half
surface case (Sect. 4.1), is an additional term x̂k in each factor of the partition function and
the additional term (3/(8k)) in the expansion (B31). Therefore, the partition function can be
obtained from the one of the half surface with potential − ln |z − z′| by adding the terms

Shs
4 =

N−1∑
k=0

ln x̂k, (4.100)

Shs
5 =

N−1∑
k=1

3

8k
= 3

8
lnN + O(1) = 3

4
lnxm + O(1). (4.101)

Using Euler-McLaurin expansion, we have

Shs
4 =

N∑
k=0

ln x̂k − lnxm

=
∫ xm

1
αp′(x) lnx dx + 1

2
lnxm − lnxm + O(1)

= αp(xm) lnxm − α

∫ xm

1

p(x)

x
dx − 1

2
lnxm + O(1)

= αp(xm) lnxm − 1

2
αh(xm) − 1

2
lnxm + O(1), (4.102)
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where we used the property (3.20). Finally,

lnZhs = αx2
m lnxm + N

(
b0 + ln

√
2πα

λ2nb

)
− α

2
x2

m + 4αxm(2 lnxm − 1)

− CR βγhard + 6α(lnxm)2 + 14α lnxm + 1

12
lnxm + O(1). (4.103)

The result is one-half of the one for the full surface, lnZws, as it might be expected.

4.3.3 Thermodynamic Limit at Fixed Shape: α → ∞ and xm Fixed

For this case, the asymptotics of B̂N are very similar to those of BN from (B18)

B̂N(k) ∼ x̂kBN(k). (4.104)

Therefore, the only difference from the calculations of the half surface case with potential
− ln |z − z′| + constant, and this case, is the sum

S
hs,fixed
4 =

N−1∑
k=0

ln x̂k. (4.105)

We have

S
hs,fixed
4 =

∫ xm

1
αp′(x) lnx dx + O(1)

= αp(xm) lnxm − 1

2
αh(xm) + O(1). (4.106)

Here, the term k = N and the remainder of the Euler-McLaurin expansion give corrections
of order O(α0) = O(1), as opposed to the previous section where they gave contributions
of order O(lnxm).

Finally, we find

lnZhs = α

[
p(xm)

(
1

2
ln

√
2απ

nbλ2
+ b0

)
+

∫ ∞

1

(1 + x)4

x3
ln

(1 + x)4

x2
dx

]

−
√

4πα

nb

[
xm

(
1 + 1

xm

)
+ 4

]
βγhard + O(1). (4.107)

The bulk free energy, proportional to α, plus the nonextensive term proportional α lnα, are
one-half the ones from (4.92) for the full surface case, as expected. The perimeter contri-
bution, proportional to

√
α is again the same as in all the previous cases of thermodynamic

limit at fixed shape, i.e. a contribution βγhardCb for each boundary at xb = xm and at xb = 1
with perimeter Cb (4.38). Once again, there is no lnα correction in agreement with the fact
that the Euler characteristic of this manifold is χ = 0.

4.4 The Grounded Horizon Case with Potential − ln(|z − z′|/|1 − zz̄′|)
4.4.1 Grand Canonical Partition Function

In order to find the partition function for the system in the half space, with a metal-
lic grounded boundary at x = 1, when the charges interacting through the pair potential

Two dimensional one-component plasma on a Flamm’s
paraboloid 286



474 R. Fantoni, G. Téllez

of (3.12) it is convenient to work in the grand canonical ensemble instead, and use the tech-
niques developed in [6, 25]. We consider a system with a fixed background density ρb . The
fugacity ζ̃ = eβμ/λ2, where μ is the chemical potential, controls the average number of
particles 〈N〉, and in general the system is nonneutral 〈N〉 �= Nb , where Nb = αp(xm). The
excess charge is expected to be found near the boundaries at x = 1 and x = xm, while in the
bulk the system is expected to be locally neutral. In order to avoid the collapse of a particle
into the metallic boundary, due to its attraction to the image charges, we confine the particles
to be in a “disk” domain �̃R , where x ∈ [1 + w,xm]. We introduced a small gap w between
the metallic boundary and the domain containing the particles, the geodesic width of this
gap is W = √

αp′(1)/(2πnb)w. On the other hand, for simplicity, we consider that the fixed
background extends up to the metallic boundary.

In the potential energy of the system (4.1) we should add the self energy of each par-
ticle, that is due to the fact that each particle polarizes the metallic boundary, creating an

induced surface charge density. This self energy is q2

2 ln[|x2 − 1|M/2L], where the con-
stant ln(M/2L) has been added to recover, in the limit M → 0, the self energy of a charged
particle near a plane grounded wall in flat space.

The grand partition function, when βq2 = 2, is

� = e−βF
gh
0

[
1 +

∞∑
N=1

ζN

N !
∫ N∏

i=1

dSi

∏
i<j

∣∣∣∣ zi − zj

1 − zi z̄j

∣∣∣∣
2 N∏

i=1

∣∣|zi |2 − 1
∣∣−1

N∏
i=1

e−α[h(xi )−2Nb lnxi ]
]
,

(4.108)
where for N = 1 the product

∏
i<j must be replaced by 1. The domain of integration for

each particle is �̃R . We have defined a rescaled fugacity ζ = 2Lζ̃/M and

−βF
gh
0 = αNbh(xm) − N2

b lnxm − α2
∫ xm

1

[p(x)]2

x
dx (4.109)

which is very similar to F hs
0 , except that here Nb = αp(xm) is not equal to N the number of

particles.
Let us define a set of reduced complex coordinates ui = zi and its corresponding images

u∗
i = 1/z̄i . By using Cauchy identity

det

(
1

ui − u∗
j

)
(i,j)∈{1,...,N}2

= (−1)N(N−1)/2

∏
i<j (ui − uj )(u

∗
i − u∗

j )∏
i,j (ui − u∗

j )
(4.110)

the particle-particle interaction and self energy terms can be cast into the form

∏
i<j

∣∣∣∣ zi − zj

1 − zi z̄j

∣∣∣∣
2 N∏

i=1

(|zi |2 − 1
)−1 = (−1)N det

(
1

1 − zi z̄j

)
(i,j)∈{1,...,N}2

. (4.111)

The grand canonical partition function is then

� = e−βF
gh
0

[
1 +

∞∑
N=1

1

N !
∫ N∏

i=1

dSi

N∏
i=1

[−ζ(xi)
]

det

(
1

1 − zi z̄j

)]
, (4.112)

with ζ(x) = ζe−α[h(x)−2Nb lnx]. We shall now recall how this expression can be reduced to a
Fredholm determinant [25]. Let us consider the Gaussian partition function

Z0 =
∫

DψDψ̄ exp

[∫
ψ̄(q)A−1(z, z̄′)ψ(q′) dS dS ′

]
. (4.113)

Two dimensional one-component plasma on a Flamm’s
paraboloid 287



Two-Dimensional One-Component Plasma on Flamm’s Paraboloid 475

The fields ψ and ψ̄ are anticommuting Grassmann variables. The Gaussian measure
in (4.113) is chosen such that its covariance is equal to

〈
ψ̄(qi )ψ(qj )

〉 = A(zi, z̄j ) = 1

1 − zi z̄j

, (4.114)

where 〈. . .〉 denotes an average taken with the Gaussian weight of (4.113). By construction
we have

Z0 = det(A−1). (4.115)

Let us now consider the following partition function

Z =
∫

DψDψ̄ exp

[∫
ψ̄(q)A−1(z, z̄′)ψ(q′)dSdS ′ −

∫
ζ(x)ψ̄(q)ψ(q) dS

]
(4.116)

which is equal to

Z = det(A−1 − ζ ) (4.117)

and then

Z

Z0
= det[A(A−1 − ζ )] = det(1 + K), (4.118)

where K is an integral operator (with integration measure dS) with kernel

K(q,q′) = −ζ(x ′)A(z, z̄′) = − ζ(x ′)
1 − zz̄′ . (4.119)

Expanding the ratio Z/Z0 in powers of ζ we have

Z

Z0
= 1 +

∞∑
N=1

1

N !
∫ N∏

i=1

dSi(−1)N

N∏
i=1

ζ(xi)
〈
ψ̄(q1)ψ(q1) · · · ψ̄(qN)ψ(qN)

〉
. (4.120)

Now, using Wick theorem for anticommuting variables [26], we find that

〈
ψ̄(q1)ψ(q1) · · · ψ̄(qN)ψ(qN)

〉 = detA(zi, z̄j ) = det

(
1

1 − zi z̄j

)
. (4.121)

Comparing (4.120) and (4.112) with the help of (4.121) we conclude that

� = e−βF
gh
0

Z

Z0
= e−βF

gh
0 det(1 + K). (4.122)

The problem of computing the grand canonical partition function has been reduced to
finding the eigenvalues λ of the operator K . The eigenvalue problem for K reads

−
∫

�̃R

ζ(x ′)
1 − zz̄′ �(x ′, ϕ′)dS ′ = λ�(x,ϕ). (4.123)

For λ �= 0 we notice from equation (4.123) that �(x,ϕ) = �(z) is an analytical function
of z = xeiϕ in the region |z| > 1. Because of the circular symmetry, it is natural to try
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�(z) = ��(z) = z−� with � ≥ 1 a positive integer. Expanding

1

1 − zz̄′ = −
∞∑

n=1

(zz̄′)−n (4.124)

and replacing ��(z) = z−� in (4.123), we show that �� is indeed an eigenfunction of K with
eigenvalue

λ� = ζBgh
Nb

(Nb − �), (4.125)

where

Bgh
Nb

(k) = α

nb

∫ xm

1+w

x2ke−αh(x) p′(x) dx (4.126)

which is very similar to BN defined in (4.11), except for the small gap w in the lower limit
of integration. So, we arrive to the result for the grand potential

β� = − ln� = βF
gh
0 −

∞∑
�=1

ln
[
1 + ζBgh

Nb
(Nb − �)

]
. (4.127)

4.4.2 Thermodynamic Limit at Fixed Shape: α → ∞ and xm Fixed

Let us define k = Nb − � for � ∈ N∗, thus k is positive, then negative when � increases.
Therefore, it is convenient to split the sum (4.127) in ln� into two parts

S
gh,fixed
6 =

−1∑
k=−∞

ln
[
1 + ζBgh

Nb
(k)

]
, (4.128)

S
gh,fixed
7 =

Nb−1∑
k=0

ln
[
1 + ζBgh

Nb
(k)

]
. (4.129)

The asymptotic behavior of Bgh
Nb

(k) when α → ∞ can be directly deduced from the one
of BN found in Appendix B, (B18), taking into account the small gap w near the boundary
at x = 1 + w. When k < 0, we have x̂k < 1, then we notice that εk,1 defined in (B20) is
negative, and that the relevant contributions to the sum S

gh,fixed
6 are obtained when k is close

to 0, more precisely k of order O(
√

Nb). So, we expand x̂k around x̂k = 1 up to order
(x̂k − 1)2 in the exponential term e−α[h(x̂k )−2p(x̂k) ln x̂k ] from (B18). Then, we have, for k < 0
of order O(

√
Nb),

Bgh
Nb

(k) =
√

απp′(1)

2nb

eαp′(1) (1−x̂k )2
erfc

[√
αp′(1) (1 + w − x̂k)

]
, (4.130)

where erfc(u) = 1 − erf(u) is the complementary error function. Then, up to corrections
of order O(1), the sum S

gh,fixed
6 can be transformed into an integral over the variable t =√

αp′(1) (1 − x̂k), to find

S
gh,fixed
6 = √

αp′(1)

∫ ∞

0
ln

[
1 + ζ

√
απp′(1)

2nb

et2
erfc

(
t + √

2πnbW
)]

dt + O(1). (4.131)
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Let C1 = √
2παp′(1)/nb , be total length of the boundary at x = 1. We notice that

ζ

√
απp′(1)

2nb

= ζC1√
2nb

= 2ζ̃L√
2nb

C1

M
(4.132)

is fixed and of order O(1) in the limit M → ∞, since in the fixed shape limit C1/M is fixed.
Therefore S

gh,fixed
6 gives a contribution proportional to the perimeter C1.

For S
gh,fixed
7 , we define

ε̃k,1 = √
αp′(1) (1 + w − x̂k), (4.133)

and we write

S
gh,fixed
7 =

Nb−1∑
k=0

ln

[
1 + ζ

√
απx̂kp′(x̂k)

2nb

e−α[h(x̂k )−2p(x̂k) ln x̂k ][erf(ε̃k,1) + erf(εk,m)
]]

= S
gh,fixed
8 + S

hs,fixed
1 + S

hs,fixed
2 + Nb ln

ζ
√

απ

nb

, (4.134)

where

S
gh,fixed
8 =

Nb−1∑
k=0

ln

[
nbe

α[h(x̂k )−2p(x̂k) ln x̂k ]

ζ
√

απx̂kp′(x̂k)
+ 1

2

[
erf(ε̃k,1) + erf(εk,m)

]]
(4.135)

and we see that the sums S
hs,fixed
1 and S

hs,fixed
2 reappear. These are defined in (4.31) and (4.32)

and computed in (4.34) and (4.35). In a similar way to S
gh,fixed
6 , S

gh,fixed
8 gives only boundary

contributions when k is close to 0, of order
√

Nb (grounded boundary at x = 1) and when k

is close to Nb with Nb − k of order
√

Nb (boundary at x = xm). We have,

S
gh,fixed
8 = √

αp′(1)

∫ ∞

0
ln

[
nbe

−t2

ζ
√

απp′(1)
+ 1

2

[
erf(t − √

2πnbW) + 1
]]

dt

+ √
αxmp′(xm)

∫ ∞

0
ln

[
erf(t) + 1

2

]
dt. (4.136)

Let us introduce again the perimeter of the outer boundary at x = xm, CR =√
2παxmp′(xm)/nb . Putting together all terms, we finally have

ln� = −NbβωB + α

2

[
h(xm) − 2p(xm) lnxm

] + α

∫ xm

1

(1 + x)4

x3
ln

(1 + x)4

x2
dx

− C1βγmetal − CRβγhard + O(1), (4.137)

where

βωB = − ln
2πζ̃L√

2nb

(4.138)

is the bulk grand potential per particle of the OCP near a plane metallic wall in the flat space.
The surface (perimeter) tensions γmetal and γhard associated to each boundary (metallic at
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xb = 1, and hard wall at xb = xm) are given by

βγmetal = −
√

nb

2π

∫ ∞

0
ln

[
1 + ζ

√
απxbp′(xb)

2nb

et2
erfc

(
t + √

2πnbW
)]

dt

−
√

nb

2π

∫ ∞

0
ln

[
nbe

−t2

ζ
√

απp′(xb)xb

+ 1

2

[
erf(t − √

2πnbW) + 1
]]

dt (4.139)

with xb = 1, and (4.28) for βγhard.
Notice, once again, that the combination

ζ
√

απxbp′(xb)

2nb

= 2ζ̃L√
2nb

Cb

M
(4.140)

is finite in this fixed shape limit, since the perimeter Cb of the boundary at xb scales as M .
Up to a rescaling of the fugacity ζ̃ to absorb the factor Cb/M , the surface tension near the
metallic boundary γmetal is the same as the one found in Ref. [6] in flat space. It is also similar
to the one found in Ref. [25] with a small difference due to the fact that in that reference the
background does not extend up to the metallic boundary, but has also a small gap near the
boundary.

There is no lnα correction in the grand potential in agreement with the fact that the Euler
characteristic of the manifold is χ = 0.

Let us decompose ln� into its bulk and perimeter parts,

ln� = −β�
gh
b − C1βγmetal − CRβγhard + O(1) (4.141)

with the bulk grand potential �
gh
b given by

−β�
gh
b = −NbβωB + α

2

[
h(xm)−2p(xm) lnxm

]+α

∫ xm

1

(1 + x)4

x3
ln

(1 + x)4

x2
dx. (4.142)

The average number of particles is given by the usual thermodynamic relation 〈N〉 =
ζ∂(ln�)/∂ζ . Following (4.141), it can be decomposed into bulk and perimeter contribu-
tions,

〈N〉 = Nb − C1ζ
∂βγmetal

∂ζ
. (4.143)

The boundary at x = xm does not contribute because γhard does not depend on the fugacity.
From this equation, we can deduce the perimeter linear charge density σ which accumulates
near the metallic boundary

σ = −ζ
∂βγmetal

∂ζ
. (4.144)

We can also notice that the bulk Helmholtz free energy F
gh
b = �

gh
b + μNb is the same as for

the half surface, with Coulomb potential Ghs, given in (4.37).

4.4.3 Thermodynamic Limit R → ∞, xm → ∞, and Fixed M

This limit is of restricted interest, since the metallic boundary perimeter remains of order
O(1), we expect to find the same thermodynamic quantities as in the half surface case with
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hard wall “horizon” boundary up to order O(lnxm). This is indeed the case: let us split ln�

into two sums S
gh
6 and S

gh
7 as in (4.128) and (4.129). For k < 0, the asymptotic expansion

of BNb
(k) derived in Appendix B should be revised, because the absolute maximum of

the integrand is obtained for values of the variable of integration outside the domain of
integration. Within the domain of integration the maximum value of the integrand in (4.126)
is obtained when x = 1 + w. Expanding the integrand around that value, we obtain to first
order, for large |k|,

Bgh
Nb

(k) ∼ αp′(1 + w)

2nb|k| e−2w|k|. (4.145)

Then

S
gh
6 =

0∑
k=−∞

ln
[
1 + ζBgh

Nb
(k)

]

=
∫ ∞

0
dk ln

[
1 + ζ

αp′(1 + w)

2nb|k| e−2w|k|
]

+ O(1)

= O(1), (4.146)

does not contribute to the result at orders greater than O(1). For the other sum, we have

S
gh
7 =

Nb∑
k=0

ln
[
ζBgh

Nb
(k)

] +
Nb∑
k=0

ln

[
1 + 1

ζBgh
Nb

(k)

]

=
Nb∑
k=0

ln
[
ζBgh

Nb
(k)

] + O(1). (4.147)

The second sum is indeed O(1), because 1/[ζBgh
Nb

(k)] has a fast exponential decay for large
k, therefore the sum can be converted into an finite [order O(1)] integral over the variable k.

Now, since the asymptotic behavior of Bgh
Nb

(k), for k > 0 and large, is essentially the same
as the one for BNb

(k), we immediately find, up to O(1) corrections,

ln� = βμNb + lnZhs + O(1), (4.148)

where lnZhs is minus the free energy in the half surface case with hard wall boundary, given
by (4.26).

4.4.4 The One-Body Density

As usual one can compute the density by doing a functional derivative of the grand potential
with respect to a position-dependent fugacity ζ(q)

ngh(q) = ζ(q)
δ ln�

δζ(q)
. (4.149)

For the present case of a curved space, we shall understand the functional derivative with
the rule δζ(q′)

δζ(q)
= δ(q,q′) where δ(q,q′) = δ(x − x ′)δ(ϕ − ϕ′)/√g is the Dirac distribution

on the curved surface.
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Using a Dirac-like notation, one can formally write

ln� = Tr ln(1 + K) − βF
gh
0 =

∫
〈q |ln(1 − ζ(q)A)|q〉 dS − βF

gh
0 . (4.150)

Then, doing the functional derivative (4.149), one obtains

ngh(q) = ζ
〈
q

∣∣(1 + K)−1(−A)
∣∣q

〉 = ζG(q,q), (4.151)

where we have defined G(q,q′) by G = (1 + K)−1(−A). More explicitly, G is the solution
of (1 + K)G = −A, that is

G(q,q′) −
∫

�̃R

ζ(x ′′)
G(q′′,q′)
1 − zz̄′′ dS ′′ = − 1

1 − zz̄′ . (4.152)

From this integral equation, one can see that G(q,q′) is an analytical function of z in the
region |z| > 1. Then, we look for a solution in the form of a Laurent series

G(q,q′) =
∞∑

�=1

a�(r′)z−�. (4.153)

Replacing into (4.152) yields

G(q,q′) =
∞∑

�=1

(zz̄′)−�

1 + λ�

. (4.154)

Recalling that λ� = ζBgh
N (Nb − �), the density is given by

ngh(x) = ζ

Nb−1∑
k=−∞

x2ke−αh(x)

1 + ζBgh
N (k)

. (4.155)

4.4.5 Density in the Thermodynamic Limit at Fixed Shape α → ∞ and xm Fixed

Using the asymptotic behavior (B18) of Bgh
N , we have

ngh(x) = ζ

Nb∑
k=−∞

exp(−α[h(x) − 2p(x̂k) lnx − h(x̂k) + 2p(x̂k) ln x̂k])
eα[h(x̂k )−2p(x̂k) ln x̂k ] + ζ

√
απx̂kp′(x̂k )

2nb
[erf(ε̃k,1) + erf(εk,m)]

. (4.156)

Once again, this sum can be evaluated using Laplace method. The exponential in the nu-
merator presents a peaked maximum for k such that x̂k = x. Expanding the argument of the
exponential around its maximum, we have

ngh(x) = ζ

Nb∑
k=−∞

e−αp′(x)(x−x̂k )2/x

eα[h(x̂k )−2p(x̂k) ln x̂k ] + ζ
√

απx̂kp′(x̂k )

2nb
[erf(ε̃k,1) + erf(εk,m)]

. (4.157)

Now, three cases has to be considered, depending on the value of x.
If x is in the bulk, i.e. x − 1 and xm − x of order 1, the exponential term in denominator

vanishes in the limit α → ∞, and we end up with an expression which is essentially the same
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as in the canonical case (4.62) [the difference in the lower limit of summation is irrelevant
in this case since the summand vanishes very fast when x̂k differs from x]. Therefore, in the
bulk, ngh(x) = nb as expected.

When xm − x is of order O(1/
√

α), once again the exponential term in the denominator
vanishes in the limit α → ∞. The resulting expression is transformed into an integral over
the variable εk,m, and following identical calculations as the ones from Sect. 4.1.9, we find
that, ngh(x) = nhs(x), that is the same result (4.65) as for the hard wall boundary. This is
somehow expected since, the boundary at x = xm is of the hard wall type. Notice that the
density profile near this boundary does not depend on the fugacity ζ .

The last case is for the density profile close to the metallic boundary, when x − 1 is
of order O(1/

√
α). In this case, contrary to the previous ones, the exponential term in the

denominator does not vanish. Expanding it around x̂k = 1, we have

ngh(x) = ζ

Nb∑
k=−∞

e−αp′(x)(x−x̂k )2/x

e
−ε2

k,1 + ζ
√

απx̂kp′(x̂k )

2nb
[erf(ε̃k,1) + 1]

. (4.158)

Transforming the summation into an integral over the variable t = −εk,1, we find

ngh(x) = ζ
√

αp′(1)

∫ +∞

−∞

e−[t+
√

αp′(1)(x−1)]2 dt

e−t2 + ζ
√

απp′(1)

2nb
erfc(t + √

2πnbW)

. (4.159)

For purposes of comparison with Ref. [25], this can be rewritten as

ngh(x) = ζ
√

αp′(1)e−αp′(1)[(x−1−w)2−w2]
∫ +∞

−∞

e−2
√

αp′(1)(x−1)t dt

1 + ζ
√

απp′(1)

2nb
erfc(t)e(t−√

2πnbW)2
. (4.160)

Which is very similar to the density profile near a plane metallic wall in flat space found
in Ref. [25] [there is a small difference, due to the fact that in [25] the background did not
extend up to the metallic wall, but also had a gap, contrary to our present model]. Figure 3
shows the density profile for two different values of the fugacity, and compares the asymp-
totic results with a direct numerical evaluation of the density.

Interestingly, once again, the density profile shows a universality feature, in the sense
that it is essentially the same as for a flat space. As in the flat space, the fugacity controls
the excess charge which accumulates near the metallic wall, due to the attraction of the
charges to their images. Only the density profile close to the metallic wall depends on the
fugacity. In the bulk, the density is constant, equal to the background density. Close to the
other boundary (the hard wall one), the density profile is the same as in the other models
from previous sections, and it does not depend on the fugacity.

5 Conclusions

The two-dimensional one-component classical plasma has been studied on Flamm’s
paraboloid (the Riemannian surface obtained from the spatial part of the Schwarzschild
metric). The three-dimensional one-component classical plasma had long been used as the
simplest microscopic model to describe many Coulomb fluids such as electrolytes, plasmas,
molten salts [27]. The two-dimensional one-component plasma has been studied in a vari-
eties of geometries, from the simplest planar geometry to curved surfaces as the cylinder,
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Fig. 3 The normalized one-body density ngh(x)/nb , in the grounded horizon case. The dashed lines cor-
respond to a numerical evaluation, obtained from (4.155), with N = 100, xm = 2 and α = 4.15493 and
truncating the sum to 301 terms (the lower value of k is −200). The gap close to the metallic bound-
ary has been chosen equal to w = 0.01. The solid lines correspond to the asymptotic result in the fixed
shape limit when α → ∞, and xm = 2 fixed. The two upper curves correspond to a fugacity given by
ζ
√

α/(2nb) = ζ̃L
√

π/nb = 1, while the two lower ones correspond to ζ̃L
√

π/nb = 0.1. Notice how the
value of the fugacity only affects the density profile close to the metallic boundary x = 1

the sphere, and the pseudosphere. From this point of view, this work presents new results as
it describes the properties of the plasma on a surface that had never been considered before
in this context.

The Coulomb potential on this surface has been carefully determined. When we limit
ourselves to study only the upper or lower half parts (S±) of the surface (see Fig. 1) the
Coulomb potential is Ghs(q,q′) = − ln |z − z′| + constant, with the appropriate set of coor-
dinates (x,ϕ) defined in Sect. 2, and z = xeiϕ . When the particles live on the whole surface,
then the Coulomb potential turns out to be Gws(q,q′) = − ln(|z − z′|/√|zz′|) + constant.
When the charges live in the upper part with the horizon grounded, the Coulomb poten-
tial can be determined using the method of images form electrostatics, it is Ggh(q,q′) =
− ln(|z − z′|/|1 − zz̄′|).

Since the Coulomb potential takes a form similar to the one of a flat space, this allows to
use the usual techniques [2, 3] to compute the thermodynamic properties when the coupling
constant � = βq2 = 2.

Two different thermodynamic limits have been considered: the one where the radius R of
the “disk” confining the plasma is allowed to become very big while keeping the surface hole
radius M constant, and the one where both R → ∞ and M → ∞ with the ratio R/M kept
constant (fixed shape limit). In both limits we computed the free energy up to corrections of
order O(1).

The plasma on the half surface has an extensive free energy, in both types of ther-
modynamic limit, upon choosing the arbitrary additive constant in the Coulomb potential
equal to − lnM + constant. The system on the full surface has an extensive free energy
upon choosing the constant in the Coulomb potential equal to − ln(Mxm) + constant where
xm = (

√
R + √

R − 2M)2/(2M).
In the limit R → ∞ while keeping M fixed, most of the surface available to the particles

is almost flat, therefore the bulk free energy is the same as in flat space, but corrections from
the flat case, due to the curvature effects, appear in the terms proportional to R and the terms
proportional to lnR. These corrections are different for each case (half or whole surface).
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The asymptotic expansion at fixed shape (α → ∞) presents a different value for the bulk
free energy than in the flat space, due to the curvature corrections. On the other hand, the
perimeter corrections to the free energy turn out to be the same as for a flat space. This
expansion of the free energy does not exhibit the logarithmic correction, lnα, in agreement
with the fact that the Euler characteristic of this surface vanishes.

For completeness, we also studied the system on half surface letting the particles interact
through the Coulomb potential Gws. In this mixed case the result for the free energy is simply
one-half the one found for the system on the full surface.

In the case where the “horizon” is grounded (metallic boundary), the system is studied
in the grand canonical ensemble. The limit R → ∞ with M fixed, reproduces the same re-
sults as the case of the half surface with potential Ghs up to O(1) corrections, because the
effects of the size of the metallic boundary remain O(1). More interesting is the thermo-
dynamic limit at fixed shape, where we find that the bulk thermodynamics are the same as
for the half surface with potential Ghs, but a perimeter correction associated to the metallic
boundary appears. This turns out to be the same as for a flat space. This perimeter correc-
tion (“surface” tension) βγmetal depends on the value of the fugacity. In the grand canonical
formalism, the system can be nonneutral, in the bulk the system is locally neutral, and the
excess charge is found near the metallic boundary. In contrast, the outer hard wall bound-
ary (at x = xm), exhibits the same density profile as in the other cases, independent of the
value of the fugacity. This reflects in a perimeter contribution βγhard equal to the one of the
previous cases.

When the horizon shrinks to a point the upper half surface reduces to a plane and one
recovers the well known result valid for the one-component plasma on the plane. In the same
limit the whole surface reduces to two flat planes connected by a hole at the origin.

We carefully studied the one body density for several different situations: plasma on half
surface with potential Ghs and Gws, plasma on the whole surface with potential Gws, and
plasma on half surface with the horizon grounded. When only one-half of the surface is
occupied by the plasma, if we use Ghs as the Coulomb potential, the density shows a peak
in the neighborhoods of each boundary, tends to a finite value at the boundary and to the
background density far from it, in the bulk. If we use Gws, instead, the qualitative behavior
of the density remains the same. In the thermodynamic limit at fixed shape, we find that
the density profile is the same as in flat space near a hard wall, regardless of the Coulomb
potential used.

In the grounded horizon case the density reaches the background density far from the
boundaries. In this case, the fugacity and the background density control the density profile
close to the metallic boundary (horizon). In the bulk and close to the outer hard wall bound-
ary, the density profile is independent of the fugacity. In the thermodynamic limit at fixed
shape, the density profile is the same as for a flat space.

Internal and external screening sum rules have been briefly discussed. Nevertheless, we
think that systems with non-constant curvature should deserve a revisiting of all the common
sum rules for charged fluids.
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Appendix A: Green Function of Laplace Equation

In this appendix, we illustrate the calculation of the Green function using the original system
of coordinates (r, ϕ). The Coulomb potential generated at q = (r, ϕ) by a unit charge placed
at q0 = (r0, ϕ0) with r0 > 2M satisfies the Poisson equation

�G(r,ϕ; r0, ϕ0) = −2πδ(r − r0)δ(ϕ − ϕ0)/
√

g, (A1)

where g = det(gμν) = r2/(1−2M/r). To solve this equation, we expand the Green function
G and the second delta distribution in a Fourier series as follows

G(r,ϕ; r0, ϕ0) =
∞∑

n=−∞
ein(ϕ−ϕ0)gn(r, r0), (A2)

δ(ϕ − ϕ0) = 1

2π

∞∑
n=−∞

ein(ϕ−ϕ0), (A3)

to obtain an ordinary differential equation for gn

[(
1 − 2M

r

)
∂2

∂r2
+

(
1

r
− M

r2

)
∂

∂r
− n2

r2

]
gn(r, r0) = −δ(r − r0)/

√
g. (A4)

To solve this equation we first solve the homogeneous one for r < r0: gn,−(r, r0) and r > r0:
gn,+(r, r0). The solution is, for n �= 0,

gn,±(r, r0) = An,±
(√

r + √
r − 2M

)2n + Bn,±
(√

r + √
r − 2M

)−2n
, (A5)

and, for n = 0, one finds

g0,±(r, r0) = A0,± + B0,± ln(
√

r + √
r − 2M). (A6)

The form of the solution immediately suggest that it is more convenient to work with the
variable x = (

√
r + √

r − 2M)2/(2M). For this reason, we introduced this new system of
coordinates (x,ϕ) which is used in the main text.

Appendix B: Asymptotic Expansions of BN(k), B̃N(k) and B̂N(k)

B.1 Asymptotic Expansion of BN(k)

B.1.1 Limit N → ∞, xm → ∞, and Fixed α

Doing the change of variable s = αp(x) in the integral (4.11), we have

BN(k) = 1

nb

∫ N

0
x2ke−αh(x) ds, (B1)

where x is related to the variable of integration s by s = αp(x). The limit k → ∞ and
N → ∞ can be obtained using Laplace method [28]. To this end, let us write BN(k) as

BN(k) = k

n

∫ N/k

0
ekφk(t) dt, (B2)
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where we made the change of variable t = s/k and we defined

φk(t) = 2 lnx − α

k
h(x), (B3)

where

x = p−1(kt/α). (B4)

The derivative of φk is

φ′
k(t) = 1

x

dx

dt
(1 − t) (B5)

= 2k

αxp′(x)
(1 − t), (B6)

where we have used the definition (B4) of x and the properties (3.20) of h and p.
The maximum of φk(t) is obtained when t = 1. At this point we have

φ′′
k (1) = − 2k

αx̂kp′(x̂k)
= −1 + O

(
1/

√
k
)
, (B7a)

φ
(3)
k (1) = 4k2

α2

p′(x̂k) + xkp
′′(x̂k)

x̂2
kp

′(x̂k)3
= 2 + O

(
1/

√
k
)
, (B7b)

φ
(4)
k (1) = 6k3

α3p′(x̂k)

d

dx

[
p′(x) + xp′′(x)

x2p′(x)3

]
x=x̂k

= −6 + O
(
1/

√
k
)
, (B7c)

where

x̂k = p−1(k/α). (B8)

Expanding φk(t) up to order (t − 1)4, and defining v = √
k|φ′′

k (1)| (t − 1), we have

BN(k) =
√

kekφk(1)

n
√|φ′′

k (1)|
∫ (N−k)

√
|φ′′

k
(1)|/k

−
√

k|φ′′
k
(1)|

e−v2/2

×
[

1 + v3φ
(3)
k (1)

3!√k|φ′′
k (1)|3/2

+ v4φ
(4)
k (1)

4!k|φ′′
k (1)|2 + v6[φ(3)

k (1)]2

3!22k|φ′′
k (1)|3 + o

(
1

k

)]
dv. (B9)

Let us define

εk =
√

|φ′′
k (1)| N − k√

2k
= N − k√

2N
+ O(1/

√
N) (B10)

which is an order one parameter, since we are interested in an expansion for N and k large
with N − k of order

√
N . Using the integrals

∫ ε

−∞
e−v2/2 dv =

√
π

2

[
1 + erf

(
ε√
2

)]
, (B11)

∫ ε

−∞
e−v2/2 v3 dv = −(2 + ε2)e−ε2/2, (B12)

∫ ε

−∞
e−v2/2 v4 dv = 3

√
π

2

[
1 + erf

(
ε√
2

)]
− e−ε2/2ε(3 + ε2), (B13)
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∫ ε

−∞
e−v2/2 v6 dv = 15

√
π

2

[
1 + erf

(
ε√
2

)]
− e−ε2/2ε(15 + 5ε2 + ε4), (B14)

where erf(z) = (2/
√

π)
∫ z

0 e−u2
du is the error function, we find in the limit N → ∞,

k → ∞, and finite εk ,

BN(k) =
√

πk

2|φ′′
k (1)|

ekφk(1)

n

[
1 + erf(εk)

][
1 + 1

12k
+ 1√

k
ξ1(εk) + 1

k
ξ2(εk)

]
. (B15)

The functions ξ1(εk) and ξ2(εk) contain terms proportional e−ε2
k , from the Gaussian integrals

above. However, as explained in the main text, these do not contribute to the final result for
the partition function up to order O(1), because the exponential term e−ε2

k make convergent
and finite the integrals of these functions that appear in the calculations, giving terms of
order O(1) and O(1/

√
N) respectively.

B.1.2 Limit N → ∞, α → ∞, Fixed xm

For the determination of the thermodynamic limit at fixed shape, we also need the asymp-
totic behavior of BN(k) when α → ∞ at fixed xm. We write BN(k) as

BN(k) = α

nb

∫ xm

1
e−α[h(x)−2p(x̂k) lnx] p′(x) dx, (B16)

where we have defined once again x̂k by k = αp(x̂k). We apply Laplace method for α → ∞.
Let

F(x) = h(x) − 2p(x̂k) lnx. (B17)

F has a minimum for x = x̂k with F ′′(x̂k) = 2p′(x̂k)/x̂k . Expanding to the order (x− x̂k)
2 the

argument of the exponential and following calculations similar to the ones of the previous
section, we find

BN(k) =
√

απx̂kp′(x̂k)

2nb

e−α[h(x̂k )−2p(x̂k) ln x̂k ][erf(εk,1) + erf(εk,m)
]

×
(

1 + 1

α
ξ0(x̂k) + 1√

α

[
ξ1,m(εk,m) + ξ1,1(εk,1)

])
, (B18)

where

εk,m =
√

αp′(xm)

xm

(xm − x̂k), (B19)

εk,1 = √
αp′(1)(x̂k − 1). (B20)

The terms with the error functions come from incomplete Gaussian integral and take into
account the contribution of values of k such that xm − x̂k (or x̂k − 1) is of order 1/

√
α, or

equivalently N − k (or k) of order
√

N .
The functions ξ0(x̂k), ξ1,1(εk,1), and ξ1,m(εk,m) can be computed explicitly, pushing the

expansion one order further. These next order corrections are different than in the previous
section, in particular (1/α)ξ0(x̂k) �= 1/(12k).
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However, these next order terms are not needed in the computation of the partition func-
tion at order O(1), since they give contributions of order O(1). Note in particular that the
term ξ0(x̂k)/α gives contributions of order O(1), contrary to the previous limit studied ear-
lier where it gave contributions of order lnN . Indeed, in the logarithm of the partition func-
tion, this term gives a contribution

N∑
k=0

ξ0(x̂k)

α
= 1

α

∫ xm

1
αp′(x)ξ0(x) dx + o(1) = O(1). (B21)

B.2 Asymptotic Expansions of B̃N(k) and B̂N(k)

To study B̃N(k), it is convenient to define k′ = k − N
2 , then

B̃N(k) = α

nb

∫ xm

1/xm

x2k′
e−αh(x) x p′(x) dx, (B22)

which is very similar to

B̂N(k) = α

nb

∫ xm

1
x2ke−αh(x) x p′(x) dx, (B23)

changing k′ by k, and taking into account the extended domain of integration [1/xm,1] for
B̃N . As in the previous section, the asymptotic expansions for B̃N(k) and B̂N(k) can be
obtained using Laplace method. Notice that for B̃N(k), k′ is in the range [−N

2 , N
2 ]. When

k′ < 0, the maximum of the integrand is in the region [1/xm,1], and when k′ > 0, the max-
imum is in the region [1, xm]. Due to the fact that the contribution to the integral from the
region [1/xm,1] is negligible when k′ > 0, the asymptotics for B̂N(k) will be the same as
those for B̃N(k), for k′ > 0, doing the change k → k′. Therefore, we present only the deriva-
tion of the asymptotics of B̃N .

B.2.1 Limit N → ∞, xm → ∞, and Fixed α

We proceed as for BN(k), defining the variable of integration t = αp(x)/k′, then

B̃N(k) = |k′|
nb

∫ N
2|k′ |

− N
2|k′ |

x ek′φk′ (t) dt, (B24)

where φk′(t) is the same function defined in (B3). Now we apply Laplace method to compute
this integral. The main difference with the calculations done for BN are the following. First,
taking into account that k′ can be positive or negative, we should note that

φ′′
k′(1) =

{−1 + O
(
1/

√|k′| ) k′ > 0

1 + O
(
1/

√|k′| ) k′ < 0,
(B25)

φ
(3)

k′ (1) =
{

2 + O
(
1/

√|k′| ) k′ > 0

−2 + O
(
1/

√|k′| ) k′ < 0,
(B26)

φ
(4)

k′ (1) =
{−6 + O

(
1/

√|k′| ) k′ > 0

6 + O
(
1/

√|k′| ) k′ < 0.
(B27)
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Second, we also need to expand x close to the maximum which is obtained for t = 1,

x = x̂k′ [1 + a(t − 1) + b(t − 1)2 + O((t − 1)3)] (B28)

with

a = p(x̂k′)

x̂k′p′(x̂k′)
=

{
1
2 + O

(
1/

√|k′| ) k′ > 0

− 1
2 + O

(
1/

√|k′| ) k′ < 0
(B29)

and

b = −p(x̂k′)2p′′(x̂k′)

2x̂k′p′(x̂k′)3
=

{− 1
8 + O

(
1/

√|k′| ) k′ > 0
3
8 + O

(
1/

√|k′| ) k′ < 0.
(B30)

Notice in particular that for the term b, the difference between positive and negative values
of k′ is not only a change of sign. This is to be expected since the function x is not invariant
under the change x → 1/x.

Following very similar calculations to the ones done for BN with the appropriate changes
mentioned above, we finally find

B̃N (k) = x̂k′

2nb

√
παx̂k′p′(x̂k′)e−α[h(x̂k′ )−2p(x̂k′ ) ln x̂k′ ]

×[
erf(εk,min) + erf(εk,max)

][
1 +

(
1

12
+ c

)
1

|k′| + · · ·
]

(B31)

with

c =
{

3
8 k′ > 0

− 1
8 k′ < 0

(B32)

and

εk,max =
√

αp′(xm)

xm

(
xm − x̂k− N

2

)
, (B33a)

εk,min =
√

αp′(1/xm)

1/xm

(
x̂k− N

2
− 1

xm

)
. (B33b)

The dots in (B31) represent contributions of lower order and of functions of εk,min and εk,max

that give O(1) contributions to the partition function. Comparing to the asymptotics of BN

we notice two differences: the factor x̂k′ multiplying all the expressions and the correc-
tion c/|k′|.
B.2.2 Limit N → ∞, α → ∞, and Fixed xm

The asymptotic expansion of B̃N in this fixed shape situation is simpler, since we do not
need the terms of order 1/α. Doing similar calculations as the ones done for BN taking into
account the additional factor x in the integral we find

B̃N(k) = x̂k′
√

απx̂k′p′(x̂k′)

2nb

e−α[h(x̂k′ )−2p(x̂k′ ) ln x̂k′ ] [erf(εk,min) + erf(εk,max)
]
. (B34)
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trability of the spheres is enforced by reducing from infinite to finite the repulsive energy
barrier in the pair potentials As a consequence, an exact analytical solution is lacking even
in one dimension. Building upon previous exact analytical work in the low-density limit
[Santos et al., Phys. Rev. E 77, 051206 (2008)], we propose an approximate theory valid at
any density and in the low-penetrable regime. By comparison with specialized Monte Carlo
simulations and integral equation theories, we assess the regime of validity of the theory.
We investigate the degree of inconsistency among the various routes to thermodynamics and
explore the possibility of a fluid-fluid transition. Finally we locate the dependence of the
Fisher-Widom line on the degree of penetrability. Our results constitute the first systematic
study of penetrable spheres with attractions as a prototype model for soft systems.
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We study structural and thermophysical properties of a one-dimensional classical fluid made of
penetrable spheres interacting via an attractive square-well potential. Penetrability of the spheres is
enforced by reducing from infinite to finite the repulsive energy barrier in the pair potentials As a
consequence, an exact analytical solution is lacking even in one dimension. Building upon previous
exact analytical work in the low-density limit �A. Santos, R. Fantoni, and A. Giacometti, Phys. Rev.
E 77, 051206 �2008��, we propose an approximate theory valid at any density and in the
low-penetrable regime. By comparison with specialized Monte Carlo simulations and integral
equation theories, we assess the regime of validity of the theory. We investigate the degree of
inconsistency among the various routes to thermodynamics and explore the possibility of a
fluid-fluid transition. Finally we locate the dependence of the Fisher–Widom line on the degree of
penetrability. Our results constitute the first systematic study of penetrable spheres with attractions
as a prototype model for soft systems. © 2009 American Institute of Physics.
�doi:10.1063/1.3236515�

I. INTRODUCTION

Hard spheres constitute a paradigmatic system for many
simple and complex fluids. Steric stabilized colloids, for in-
stance, are suspensions made of colloidal particles coated by
short linear polymers suspended in a microscopic solvent
fluid. For sufficiently high temperature and/or in the presence
of a good solvent, those dressed colloids effectively interact
as hard spheres.1

On the other hand, a number of soft colloidal systems is
always penetrable at least to a certain extent.2 Notable ex-
amples include for instance star-shaped3 or branched-shaped4

polymers where each macromolecule can be roughly re-
garded as a sphere of a given radius �the radius of gyration�,
but two particles can clearly interpenetrate to a substantially
smaller distance.

A necessary �but not sufficient� condition for a one-
dimensional fluid to be a nearest-neighbor fluid is to be a
hard-core fluid, i.e., a fluid made of particles which cannot
penetrate one another due to the existence of an infinite re-
pulsive potential barrier in the pair potential ��r�. Nearest-
neighbor fluids admit an analytical exact statistical-
mechanical solution:5 The partition function, equation of
state, and correlation functions of any order can be calculated
analytically from the knowledge of the pair potential. This is
no longer the case for non-neighbor fluids.6

Penetrable spheres �PSs�7,8 can be reckoned as the sim-
plest representation of soft colloids where the range of pen-
etrability can be tuned from zero �hard spheres� to infinity
�ideal gas�. Both limits are amenable to an exact analytical
treatment, but the intermediate case is not.

When an attractive, short-range, square well �SW� is
added to PS, one obtains the so-called penetrable-SW �PSW�
fluid.10 On one hand, this enriches the model so that it can
also account for short-range attractive interactions which are
ubiquitous in such systems. On the other hand, it also com-
plicates the treatment due to possible Ruelle instabilities as-
sociated with the lack of a well defined thermodynamic
limit.11,12 As the width of the well vanishes with a constant
area under the well, the PSW model reduces to what we
denote10 as the sticky-penetrable-sphere �SPS� model. This
model was found to be thermodynamically unstable10 due to
the divergence of the fourth virial coefficient. In fact, SPS
model violates the �sufficient� condition for stability �see
Appendix A in Ref. 10�.

We emphasize that various classes of penetrable systems
appeared in the literature with rather different meanings. The
Widom–Rowlinson model of nonadditive hard-sphere
mixtures,13 for instance, is not associated with a well defined
pair potential as in the case of the present study. Likewise,
the Rikvold–Stell–Torquato “permeable sphere” model14,15 is
defined through a condition on correlation function which is
not equivalent to a constant repulsive potential inside the
core region. On the contrary, our PSW model belongs to the
same class of bounded potentials as the Gaussian-core mod-

a�Electronic mail: rfantoni@unive.it.
b�Electronic mail: achille@unive.it.
c�Electronic mail: amail@post.cz.
d�Electronic mail: andres@unex.es. URL: http://www.unex.es/fisteor/andres/
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els originally proposed by Stillinger et al.16 in the late 1970s
and exploited more recently by Likos et al.,8 Lang et al.,9

and Louis et al.17

In a previous paper,10 we introduced the PSW fluid
model and discussed the conditions under which the model is
Ruelle stable. In addition, we also derived an exact low-
density expansion up to second order in the radial pair dis-
tribution function �corresponding to the fourth order in the
virial coefficient� which was shown to compete with stan-
dard integral equation approximations such as Percus–
Yevick �PY� and hypernetted chain �HNC� over a wide re-
gion of the density-temperature phase diagram. These exact
results, however, fail to reproduce the correct behavior when
the concentration is large, due to their low-density character.

The aim of the present paper is to extend the analysis to
these more demanding conditions, by using an approxima-
tion already successfully exploited in the PS case. In this
case it has been argued7 that the exact analytical solution
stemming from corresponding hard-sphere particles can be
efficiently exploited to implement a low-penetrability ap-
proximate solution �called LTA in Ref. 7�. The basic idea
behind the method is that for sufficiently low penetrability,
the functional form of the equations derived in the impen-
etrable case can be smoothly adapted to the penetrable case
by “healing” a few crucial aspects of the original solution.
Building on this idea, we here show that this methodology
can also be applied to the PSW case by starting from the
corresponding impenetrable counterpart �i.e., the SW poten-
tial�.

We discuss the soundness of this approximation in vari-
ous ways: First by comparing the low-penetrability approxi-
mation �LPA� low-density results against the exact low-
density expansion which was computed in Ref. 10 and,
second, by comparing with specialized Monte Carlo �MC�
simulations and standard integral equations �notably PY and
HNC�. We show how LPA properly describes a significant
part of the phase diagram with a performance comparable
with integral equations at a semianalytical level.

The introduction of an attractive part in the PS potential
opens the route to some interesting questions that we also
address in the present paper. First of all, we question the
existence of a fluid-fluid phase separation in addition to the
fluid-solid transition, by limiting our analysis within the
range of applicability of LPA, that is, we avoid densities so
high that a substantial interpenetration among particles is
expected.

Within the same LPA, we also investigate modifications
on the Fisher–Widom �FW� line, marking the transition from
oscillatory to exponential decay regimes for correlation func-
tions, that is known to exist even in the SW one-dimensional
fluid.18 We find an increase in the exponential decay region
and we address the physical motivations behind this.

The structure of the paper is as follows. We define the
PSW model in Sec. II. In Sec. III we briefly recall the well
known general scheme allowing for the exact analytical so-
lution of the class of nearest-neighbor one-dimensional flu-
ids. We then construct the LPA in Sec. IV and show how this
reduces to its counterpart within the PS limit7 and assess its
performance in comparison with known exact results within

the low-density limit.10 Sections V and VI contain a discus-
sion on the FW line and on the routes to thermodynamics, as
predicted by the LPA, respectively. The regions in the
density-temperature diagram where the LPA is only slightly
thermodynamically inconsistent �and thus expected to be re-
liable� are discussed in Sec. VII, where also an improved
version of the approximation is proposed. Section VIII in-
cludes a very brief description on the numerical methods
�MC simulations and integral equations� discussed in the
present model. These numerical results are presented and
compared with LPA theory in Sec. IX. The paper ends with
some concluding remarks in Sec. X.

II. THE PENETRABLE-SQUARE-WELL MODEL

The PSW fluid is defined through the following pair
potential10 �see Fig. 1, top panel�,

��r� = ��r, r � � ,

− �a, � � r � � + � ,

0, r � � + � ,
� �1�

where �r and �a are two positive constants accounting for the
repulsive and attractive parts of the potential, respectively.
The corresponding Mayer function f�r�=e−���r�−1 �where
�=1 /kBT is the inverse temperature parameter� reads

−

r

εa
r

φ

σ+∆σ

ε

A B

DCBA(b)

(a)

FIG. 1. The PSW potential �top panel�. The middle and bottom panels
sketch the different behaviors of the SW and PSW models, respectively. In
the SW case there exists a hard core �black inner sphere� and an interaction
range �light blue outer sphere� so two spheres on a line can either noninter-
act �A� or attract each other as the corresponding interaction spheres overlap
�B�. As a consequence, different spheres cannot interchange positions on a
one-dimensional line and the problem is analytically solvable. In the PSW
the core is soft �red inner sphere� and hence we can have in addition to
configurations �A� and �B� identical to the SW case, also the case where the
internal cores overlap such as �C� and �D�. Different spheres can then inter-
change position and the problem is a many-body one.
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f�r� = �rfHS�r� + �a�	�r − �� − 	�r − � − ��� , �2�

where �r=1−e−��r is the parameter measuring the degree of
penetrability varying between 0 �free penetrability� and 1
�impenetrability� and �a=e��a −1�0 plays a similar role for
the attractive part. Here fHS�r�=	�r−��−1 is the Mayer
function for the hard-sphere model which can then be recov-
ered in the limit �r→1 and either �a→0 or �→0. 	�r� is
the usual step function equal to 1 for r�0 and 0 otherwise. It
also proves convenient to introduce the ratio �=�a /�r, which
is a measure of the relative depth of the attractive well.

The above potential reduces to the corresponding PS and
SW potentials in the limits �a→0 �or �→0� and �r→
,
respectively. Other interesting limiting cases have already
been detailed in Ref. 10.

Consider a SW fluid in one dimension: different particles
can be assigned an increasing coordinate on the axis line and
the only possible configurations are those indicated with �A�
or �B� in Fig. 1 �middle panel�, where either the centers of
two different spheres are separated a distance greater than
the attractive SW range and behave as hard spheres �A� or
they are sufficiently close to attract each other �B�. PSW
spheres, on the other hand, can interpenetrate with some en-
ergy cost so they also display configurations such as, for
instance, �C� or �D� in Fig. 1 �bottom panel�. PSW fluids are
then effectively a many-body problem and, as such, not ame-
nable to an analytical solution. In the present paper, our
analysis will be limited to the case �r�2�a where a well
defined thermodynamic limit is ensured.10

III. GENERAL RECIPE FOR NEAREST-NEIGHBOR
INTERACTIONS

In this section we provide a synopsis of the main steps
required by the analytical solution of any nearest-neighbor
fluid.5,19,20 This will be used in the next section to introduce
a motivated approximate solution in a particular limit.

• From the Boltzmann factor e−���r� compute its Laplace
transform

�̃�s� = �
0




dre−sre−���r�. �3�

• The equation of state is given by

�p =
�

�
, �4�

where p is the pressure and the parameter � is the solu-
tion of the equation,


 = −
�̃��/��

�̃���/��
, �5�

where 
 is the density and �̃��s�=��̃�s� /�s. This pro-
vides all thermodynamics.

• The radial distribution function �RDF� can be obtained
from

G̃�s� =
1




�̃�s + �/��

�̃��/�� − �̃�s + �/��
, �6�

which is the Laplace transform of the RDF g�r�.

This is sufficient to compute both thermodynamics and struc-
tural properties of any one-dimensional system with nearest-
neighbor interactions.

At odds to this class of problems, PSs do not possess any
analytical solution even in one dimension. This is because it
is not possible to convolute appropriate Laplace transform
along a one-dimensional axis, which is the essential feature
rendering the short-range one-dimensional models solvable.
In turn this is due to the existence of multiple “blobs” formed
by interpenetrating spheres so that it is no longer possible to
“order” them along a line in such a way that they do not
cross each other, a key point to the existence of the analytical
solution �see Fig. 1, middle panel�. Because of this, we now
turn our attention to a motivated approximation which
amounts to assume a slight decrease from an infinite repul-
sive barrier, an approximation which will be denoted as low
penetrability.

IV. THE LOW-PENETRABILITY APPOXIMATION

A. Construction of the approximation

In Ref. 10 we followed the philosophy of considering a
low-density expansion to provide exact analytical results
valid up to second order in the RDF g�r� and up to fourth
order in the virial expansion. This is a very useful exact limit
case to test approximate theories and numerical simulations,
but it has the considerable disadvantage of being limited to
very low densities. We now consider a different approach
where density can in principle be arbitrarily large but we
assume low penetrability among different spheres, patterned
after a similar idea already used in the PS case.7

For notational simplicity, in the following, lengths will
be measured in units of � �so that �=1� and we introduce
�=1+� /� as a dimensionless measure of the external well
boundary. The Laplace transform of the Boltzmann factor
e���r� for the PSW model is

�̃�s� =
1 − �r

s
+

�r

s
��1 + ��e−s − �e−�s� . �7�

The PSW fluid is not a nearest-neighbor fluid, as remarked,
but it reduces to the nearest-neighbor SW fluid as �r→1
�and ��1�. In this limit, it is natural to use the recipe given
in Sec. III for the SW fluid to derive an approximate equation
of state and an approximate g�r� from Eqs. �4�–�6�, respec-
tively. This, however, must be exercised with care as impor-
tant general properties of any model, such as, for instance,
the continuity of the cavity function y�r�=g�r�e���r�, are
typically lost by this brute force procedure. The driving idea
behind this simple LPA is then to keep the general features of
the original SW solution and enforce some specific modifi-
cations guided by the accounting of increasingly important
constraints.21

Our LPA implementation amounts to replacing Eq. �6�
with
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G̃�s� =
1




�̃�s + ��

�̃0��� − �̃0�s + ��
, �8�

where �̃0�s� is �formally� the Laplace transform of the Bolt-
zmann factor of the SW model, which can be obtained from

�̃�s� by discarding the first term on the right-hand side of
Eq. �7�, i.e.,

�̃0�s� =
�r

s
��1 + ��e−s − �e−�s� . �9�

This simple choice can be shown to be fully equivalent to
keeping Eq. �6� but with a replacement e−s→e−�s−a� in Eq.
�7�, where the free parameter a is fixed by the continuity
condition of the cavity function y�r� at the hard-core discon-
tinuity r=1. This is known to be the most important feature
to obtain a correct representation in integral equation theo-
ries of SW fluids, both from the analytical and the numerical
viewpoints.22–24

We note that, unlike the SW counterpart, ���p. It is a
transcendental function of � and 
, which can be obtained by
ensuring the correct behavior of g�r�→1 as r→
, or,

equivalently, sG̃�s�→1 as s→0. From Eq. �8�, this gives


 = −
�̃���

�̃0����
= �

h + 1 − q

1 − q + �1 − �q��
, �10�

where in the second equality we introduced the following
quantities:

q =
�

1 + �
e−��, �11�

h =
1 − �r

�r�1 + ��
e�. �12�

For given values of the potential parameters ��, �r, and �a�
and for given values of the inverse temperature � and the
auxiliary parameter �, the quantities q and h are obtained
from Eqs. �11� and �12� and inserted into Eq. �10� to deter-
mine the density 
. The impenetrable SW potential corre-
sponds to the limit h→0.

In order to compute the RDF g�r� we first compute ex-

plicitly G̃�s� from Eqs. �6� and �7�,

G̃�s� =
1




h + e−s�1 − qe−s��
�1 − q��1 + s/�� − e−s�1 − qe−s��

. �13�

Upon expanding the denominator in Eq. �13� in powers of
�1−qe−s���1+s /��, and inverting the Laplace transform term
by term, one gets


g�r� =
h�

1 − q
e−�r + �

n=1




�
k=0

n 	n

k

�− q�k�n�r − n − k��

�	�r − n − k�� , �14�

where

�n�r� = 	 �

1 − q

n� rn−1

�n − 1�!
+

h�

1 − q

rn

n!
�e−�r. �15�

We anticipate that the LPA does not capture correctly the r
�� trend at high densities, while it works well for r��.
The reason for this can be traced back to the failure of the
LPA to account for the discontinuous slope of the cavity
function y�r� at r=�. Moreover, the approximate y�r� turns
out to be discontinuous rather than continuous at r=�, as
detailed in Appendix A. These deficiencies can be accounted
for step by step at the price of an increase in the complexity
of the approximation and are a consequence of the phenom-
enological nature of the LPA. This will be further discussed
in Sec. VII.

As already remarked, the PSW model reduces in the
appropriate limit to the penetrable analog of Baxter’s sticky
hard spheres, denoted as SPS in Ref. 10. This is further
elaborated in Appendix B, where it is also discussed the LPA
of the SPS model. We explicitly checked this is indeed the
limit for PSW in the limit of very narrow and very deep well.
On the other hand, we also found �see Appendix B� that this
model is also thermodynamically unstable as it violates the
stability criterion �r�2�a, and hence it will not be further
discussed in the remaining of this paper.

B. The penetrable-rod limit

Here we show that either in the limit �a→0 �which im-
plies �→0� or, alternatively, in the limit �→0, the LPA that
we just found for the PSW model reduces to the correspond-
ing one proposed in Ref. 7 for the PS model.

Taking the limit �→0 in Eq. �7� one finds Eq. �2.53� of
Ref. 7. Moreover q→0 and h→ ��r

−1−1�e� and so Eq. �10�
reduces to 
= �1+ ��r

−1−1�e�� / �1+�−1�, which can be rewrit-
ten as ��−��e−� / ��r

−1−1�=� with �=
�1+��, which coin-
cides with Eq. �4.4� of Ref. 7 where our � replaces their ��. It
is straightforward to check that the same expressions for

�̃�s� and for 
 in terms of � and �r are obtained in the
alternative limit �→0. Hence LPA for PS is fully recovered.

C. Comparison with exact low-density expansion

It proves interesting to compare the LPA to order 
 with
the exact results derived in Ref. 10 based on a low-density
expansion, in order to assess the ability of LPA to reproduce
low-density results. The general expansion of g�r� in powers
of the density 
 has the following structure:25

g�r� = g0�r� + g1�r�
 + ¯ . �16�

The exact results for g0�r� and g1�r� have been derived in
Ref. 10:

g0
exact�r� = �1 − �r, r � 1,

1 + ��r, 1 � r � 1 + � ,

1, r � 1 + � ,
� �17�
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g1
exact�r� = �r

2�
�1 − �r��2�1 + �2�� − r�1 + 2� + 2�2�� , 0 � r � � ,

�1 − �r��2 − 2�� − r� , � � r � 1,

�1 + ��r��2 − 2�� − r� , 1 � r � 1 + � ,

2 − 2�� − r , 1 + � � r � 2,

��2 + ���r − 2� − 2�� , 2 � r � 2 + � ,

�2 + 2� − r��2, 2 + � � r � 2 + 2� ,

0, 2 + 2� � r .

� �18�

In order to compare g0
exact�r� and g1

exact�r� with LPA results,
we expand � as derived from Eq. �10� to lowest order in
density, �=�0
+�1
2+O�
3�, and plug the results into Eqs.
�14� and �15�. This yields Eq. �16�, where the coefficients
g0�r� and g1�r� are computed within the LPA. Whereas
g0�r�=g0

exact�r�, g1�r� is found to differ from the exact result
g1

exact�r�. Analytical expressions for �0, �1, and g1�r� can be
found in Appendix C.

Having done this, one can estimate the difference in the
cavity function between LPA and exact results to order 
,
which reads �see Appendix C�

y1
exact�r� − y1�r�

= �C1 + D1� + E1�� − 1� + F1�r − �� , 0 � r � � ,

C1 + D1� + E1�r − 1� , � � r � 1,

C1 + D1�1 + � − r� , 1 � r � 1 + � ,
�

�19�

where

C1 = ��r
2�1 − �r�

1 + �

1 + ��r
� , �20�

D1 = ��r
�1 − �r�2

1 + ��r
, �21�

E1 = �r�1 − �r� , �22�

F1 = �r�1 − �r − 2��r�1 + ��� . �23�

The right-hand side of Eq. �19� preserves the continuity of
y1�r� at r=� and r=1, but imposes the continuity of y1�r� at
r=1+� and that of y1��r� at r=1 and r=1+�, as well as the
discontinuity of the exact y1��r� at r=�. The latter disconti-
nuity is, according to Eqs. �17� and �18�,

lim

→0

y���+� − y���−�

y���

= 2��r
2�1 + �� . �24�

V. THE FISHER–WIDOM LINE

In a remarkable piece of work,18 Fisher and Widom
argued that the asymptotic decay of the correlation functions
is determined by the nature of the poles si=si�� ,
�
�i=1,2 ,3 ,¯�, with largest real part of the Laplace transform

G̃�s� of the RDF. This asymptotic decay can be of two dif-

ferent types: oscillatory at high densities and/or high pres-
sures and monotonic for low densities and/or pressures. The
latter regime can exist only in the presence of competing
effects in the potential function, so it cannot exist for purely
repulsive short-range potentials, such as HS and PS poten-
tials.

In particular, rather general arguments26 suggest a be-
havior

g�r� − 1 = �
i

Aie
sir 
 A1es1r, �25�

where we specialized to one-dimensional systems and the
sum runs over the discrete sets of poles si, Ai being �in gen-
eral complex� amplitudes. The asymptotic behavior of g�r� is
dominated by the pole s1 having the least negative real part
�to ensure stability of the liquid�. If s1 is complex, its conju-
gate s2=s1

� must also be included in the asymptotic behavior.
Fisher and Widom derived the line—henceforth denoted

as Fisher–Widom �FW� line—where this transition takes
place, both in the pressure versus temperature and in the
density versus temperature diagrams, for the one-
dimensional SW potential. On crossing this line, one finds a
sharp transition in the character of the RDF g�r�−1: for any
fixed temperature in the p-T plane, g�r� has an oscillatory
character above the FW line and an exponential decay below
it. The transition is a signature of local ordering without any
singularities in thermodynamical quantities as there is no
phase transition in the one-dimensional SW fluid. In three
dimensions, the FW line precedes the coexistence line when
lowering the pressure at a fixed temperature. This has been
numerically observed for various fluids including SW,26

Lennard–Jones,27–29 and other softer potentials.30

In view of the possibility for PSW to display fluid-fluid
and fluid-solid phase transitions in spite of their one-
dimensional character, it is interesting to wonder what hap-
pens to the FW line in the transition from SW to PSW. We
now analyze this in the framework of the LPA.

The poles of G̃�s� �different from s=0� can be read off
from Eq. �8�:

�̃0�s + �� = �̃0��� . �26�

As we are here interested in the pole with the negative real
part closest to the origin, we set s=−x�0 as the real root of
Eq. �26�,
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�̃0�� − x� = �̃0��� , �27�

and s=−x�� iy as the complex root with the least negative
real part, i.e.,

Re �̃0�� − x� � iy� = �̃0��� , �28�

Im �̃0�� − x� � iy� = 0. �29�

The pole s1 determining the asymptotic behavior is either
s1=−x �monotonic decay� if x�x� or s1=−x�� iy �oscilla-
tory decay� if x�x�. The FW transition takes place when x
=x�.

Equation �27� yields the condition

e−s�1 − qe−s�� = �1 − q�	1 +
s

�

 , �30�

where q is given by Eq. �11�. Quite interestingly, as the pa-
rameter h is missing, this equation formally coincides with
its SW counterpart, originally studied by Fisher and Widom
�see Eq. �3.6� in Ref. 18�. We can rewrite Eqs. �27�–�29� as
follows:

ex�1 − qex�� = �1 − q�	1 −
x

�

 , �31�

ex��cos y − qex��cos �y� = �1 − q�	1 −
x�

�

 , �32�

ex�sin y − qex� sin �y� = − �1 − q�
y

�
. �33�

At the FW transition �x=x��, Eqs. �31�–�33� form a set of
three coupled equations whose solution yields x, y, and � as
functions of q. Use of Eq. �10� then gives the line in the 
-T
plane.

It proves convenient to eliminate � from Eqs. �31� and
�32� to obtain

x =
1

�
ln

1 − cos y

q�1 − cos �y�
, �34�

so that from Eqs. �31� and �33� we can now get

� = x − y
cos y − cos �y

sin y − sin �y + sin y�
. �35�

When Eqs. �34� and �35� are inserted into Eq. �31� we get

sin y − sin �y + sin y� −
y

x
�cos y − cos �y�

= − e−x�1 − q�
y

x
�1 − cos �y� , �36�

where x�q ,y� is given by Eq. �34� so that this is a transcen-
dental equation in y�q�. Once y�q� is known from Eq. �36�,

Eqs. �34� and �35� provide x�q� and ��q�, respectively. The
parameter ��q� is obtained by inverting Eq. �11�,

��q� =
q

e−��q�� − q
, �37�

and the inverse temperature ��q� is obtained from

��q� =
e��q��a − 1

1 − e−��q��r
�38�

on using the definitions of �, �r, and �a.
Finally, Eqs. �10� and �12� provide 
�q� and the combi-

nation of ��q� and 
�q� yields the FW line in the 
-T plane.
In order to have it in the p-T plane one needs to get before
the equation of state and the result will depend on the chosen
route �virial, compressibility, or energy�. This is discussed in
the following section.

VI. EQUATION OF STATE

As PSW is not an exactly solvable model, thermodynam-
ics will in general depend on the followed route, so we are
going to check the three standard routes �virial, compressibil-
ity, and energy� for the compressibility factor Z=�p /
, as
predicted by the LPA. The virial route is defined by

Z = 1 − 
��
0




drry�r�e−���r����r� , �39�

which, using standard manipulations,25 yields

Z = 1 + 
�r��1 + ��y�1� − ��y���� . �40�

As y��−��y��+� within LPA �see Appendix A�, y���
= �1 /2��y��−�+y��+�� is assumed. Thus, using Eqs. �A4� and
�A8�, we get

Z = 1 +
�

1 − q
�1 − �q�1 + �r�1 + ��

1 + ��r/2
1 + ��r

h��

1 − q
�� .

�41�

It is easy to check using Eqs. �10� and �41� that in the case of
the SW model �h=0� one recovers the expected result Z
=� /
.

Next we consider the compressibility route:

� �
1

�
	 �


�p



�

= 1 + 2
�
0




dr�g�r� − 1�

= 1 + 2
lim
s→0

�G̃�s� − s−1� . �42�

Using Eqs. �10� and �13� the last term of Eq. �42� can be
written as
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2
lim
s→0

�G̃�s� − s−1� = 	 �


��



�

−
�̃����

�̃0����
. �43�

Introducing the quantity

X��� �
1

��
/����

�̃0���� − �̃����

�̃0����
, �44�

Eq. �42� becomes

� = 	 �


��



�

�1 + X���� , �45�

and using the definition of � we find

�	 �p

��



�

=
1

1 + X���
. �46�

Therefore the compressibility route yields

�p��� = �
0

� d��

1 + X����
. �47�

In the SW limit one clearly has X���=0 and �p=�, as it
should.

The energy route is by far the most delicate. We start
from the internal energy per particle

u =
1

2�
+ 
�

0




dr��r�g�r�

=
1

2�
+ �r
�

0

1

drg�r� − �a
�
1

�

drg�r� . �48�

Equation �A1� provides the necessary result for g�r� in the
interval 0�r��, so that

u =
1

2�
+ �r

h

1 − q
�1 − e−��

− �a� 1

1 − q
�1 − e−���	1 +

h

1 − q
+ he−�


−
h

�1 − q�2e−����� . �49�

In order to obtain �p from u we exploit the following ther-
modynamic relation


2	 �u

�




�

= 	 ��p

��






, �50�

and the identity

	 �u

�




�

= 	 �u

��



�
	 ��

�




�

, �51�

to obtain

	 ��p

��






=

2

��
/����
	 �u

��



�

. �52�

Once again one can check that Eq. �52� is satisfied by the
SW result �p=�.

The right-hand side of Eq. �52� is a function of � and 
,
which we denote as R�� ,
�, as � is itself a function of the
same variables through Eq. �10�. Thus, Eq. �52� gives

�p��,
� = ��
,�max� − �
�

�max

d��R���,
� , �53�

where �max is a conveniently chosen high value.31

VII. RELIABILITY OF LPA AND POSSIBLE
IMPROVEMENTS

We are now in the position to draw a qualitative phase
diagram in the 
�−kBT /�a plane indicating the boundary
where the LPA can be approximately regarded to be reliable.
Of course, a definite reliability test is only possible after
comparison with computer simulation results but before that
we can use the internal consistency among the three thermo-
dynamic routes as a reliability criterion.

In general, it turns out that thermodynamic inconsistency
increases as the temperature and the density increase. To
characterize this, let us define a density 
lim�T� such that the
largest relative deviation among the three routes is smaller
than 5% if 
�
lim�T�. Therefore, all the points in the
temperature-density plane with 
�
lim�T� represent states
where the LPA is only weakly inconsistent. This boundary
line is shown in Fig. 2 for three representative cases of the
pair ��r /�a and ��. We observe that the region where the LPA
is thermodynamically consistent shrinks as �r /�a decreases
and/or � increases. In any case, it is noteworthy that if the
density is smaller than a certain value �which of course de-
pends on �r /�a and ��, the LPA remains thermodynamically
consistent even for high temperatures.

The above reliability criterion is based on thermodynam-
ics and thus it is a global one. On the other hand, we know
that the LPA has some local shortcomings, such as an artifi-
cial discontinuity of the cavity function at the point r=1
+�, as shown in Appendix A. Moreover, it does not predict

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

ρ l
im

σ

kBT/εa

max. deviation < 5%

max. deviation > 5%

FIG. 2. Phase diagram in the 
�−kBT /�a space showing the region where
LPA can be considered as reliable. The curves correspond, from top to
bottom, to the cases ��r /�a ,��= �5,0.5�, �5,1�, and �2,0.5�. The points below
each curve represent states where the relative deviation between the three
routes to the pressure is smaller than 5%.
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the discontinuity of the slope of the RDF at r=�, already
present by the exact result to first order in density, as indi-
cated by Eq. �24�.

As anticipated in Sec. IV, we can extend the validity of
the LPA by a suitable modification of the cavity function y�r�
in order to ensure a correct behavior both within the core

region and at the well-edge discontinuity. We outline a pos-
sible approach to this issue in the remainder of this section.

Inspired by the comparison with exact low-density re-
sults as given in Sec. IV C, we modify the LPA �mLPA� by
adding linear terms in the region 0�r�1+�, following a
form based on that of Eq. �19�, namely,

gmLPA�r� = g�r� +
1


��1 − �r��C + D� + E�� − 1� + F�r − ��� , 0 � r � � ,

�1 − �r��C + D� + E�r − 1�� , � � r � 1,

�1 + ��r��C + D�1 + � − r�� , 1 � r � 1 + � ,
� �54�

where g�r� is the LPA RDF as given Eq. �14�. The param-
eters C, D, and E can be determined by imposing the conti-
nuity of y�r� at r=1+� and of y��r� at r=1+� and r=1,
respectively. They are given by

C =
�r�1 + ��
1 + ��r

hq�2

�1 − q�2� , �55�

D =
1 − �r

1 + ��r

hq�2

�1 − q�2 + C� , �56�

E =
1

1 + ��r

h�2

�1 − q�2 − D . �57�

The addition of the coefficient F is motivated by the exact
results to first order in density, Eq. �18�, showing that, as
recalled above, g�r� exhibits a change of slope at r=�, a
feature not accounted for by the LPA. In order to determine
the coefficient F we extend the exact low-density condition
�24� to finite density. This implies

F = E − 2
��r
2�1 + ��� 1 + �

��1 − �r�
hq�

1 − q
+ C + D�

+ E�� − 1�� . �58�

It is straightforward to check that C=C1
2+O�
3�, D
=D1
2+O�
3�, E=E1
2+O�
3�, F=F1
2+O�
3�, where C1,
D1, E1, and F1 are given by Eqs. �20�–�23�. Therefore, the
mLPA is exact to first order in density.

The discussed modification of LPA then takes care of the
continuity of the cavity function y�r� at both interaction dis-
continuities r=1 �already accounted for within LPA� and r
=� �where the original LPA fails to provide continuity�, and
it correctly matches the exact results for g�r� up to first order
in density. A similar modification of the SPS model, dis-
cussed in Appendix A, would heal the discontinuity appear-
ing in the corresponding LPA values ySPS�1+��ySPS�1−�,
which is a consequence of the combined effects of the LPA
discontinuity y��+��y��−� and the sticky limit. This would
provide an expression �not reported here� which is this sticky
limit of Eq. �54�.

VIII. MONTE CARLO SIMULATIONS AND INTEGRAL
EQUATION THEORY

In order to assess the reliability of the LPA, we will
compare in Sec. IX with specialized MC simulations. In ad-
dition, prompted by the results of Ref. 10, we will also com-
pare LPA with standard integral equation theories, such as
PY and HNC.25

A. Monte Carlo simulations

We employed the conventional MC simulation on an
NVT ensemble with periodic boundary conditions which in
one dimension means that the system is treated as a ring.
N=5�104 penetrable-rod particles were displaced according
to the Metropolis algorithm to create an initial sample of
configurations. Following the equilibration stage, each run is
divided into 20 basic simulation blocks, in which 105 mea-
surements are performed to collect correlation functions data.
One hundred trial moves per particle are implemented be-
tween each measurement, so that 1013 equilibrium configu-
rations are generated in each run.

In order to speed up the simulation process the particles
are labeled such that they create a consecutive sequence in
clockwise order. Calculation of a potential of a particle i in a
given configuration then reduces to a searching for the high-
est label j� i and the lowest label k� i associated with the
particles still interacting with the particle i. In contrast with
the case of impenetrable spheres in one dimension, the order
of particles changes so that a relabeling must be undertaken
after each shift of a particle. Obviously, at higher tempera-
tures the number of penetration can be high, which makes
the calculations more demanding compared to hard body
systems.

There are in general two routes for the evaluation of the
pressure. Determination of the pressure using a mechanical
�virial� route relies on an ensemble average of a virial, i.e., a
quantity involving the forces acting on all the particles. Al-
ternatively, a thermodynamic expression relates pressure to
the volume derivative of the free energy and is implemented
by calculating the free energy change associated with small
virtual change of volume. However, for systems with discon-
tinuous interaction. both mechanical and thermodynamic ap-
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proaches become identical. Specifically, for the PSW fluid
model both approaches reduce on a calculation of distribu-
tion function at r=1 and r=� �see Eq. �40��.

B. Integral equations

The presence of penetrability does not pose any particu-
lar difficulties to standard integral equation theories. As a
matter of fact these have been already employed in the PS
case7 and in the PSW case10 within standard approximations
where the one-dimensional Ornstein–Zernike equation,

h�r� = c�r� + 
�
−





dr�c��r − r���h�r�� , �59�

is associated with a PY closure,

c�r� = f�r�y�r� , �60�

or with an HNC closure

c�r� = f�r�y�r� + y�r� − 1 − ln y�r� . �61�

We solved the PY and HNC integral equations using a Zer-
ah’s algorithm32 with up to 212 grid points depending on the
considered state point.

IX. RESULTS WITHIN THE LPA

In this section we compare numerical results stemming
from the LPA with MC simulations and integral equation
theories �PY and HNC� for both RDF �where we will con-
sider the improved mLPA� and equation of state �at the level
of the simple LPA�.

A. Results for g„r…

As a first approach to assess the performance of the LPA,
we consider the RDF g�r� for two representative state points.
The well is kept fixed at � /�=0.5 and temperature is also
fixed by the attractive energy scale so that kBT /�a=1. Figure
3 depicts the behavior of g�r� for a density 
�=0.2 and an

energy ratio �r /�a=5, which is well above the stability
threshold value �r /�a=2.10 The stability threshold is then
probed in Fig. 4, whereas a higher density 
�=0.8 is tested
in Fig. 5 with all other parameters identical to those of Fig. 3.

In all cases, mLPA results �that only differ from the LPA
ones within the interaction range, 0�r��� are compared
with MC simulations and integral equations and follow the
expected trend. For low densities �
�=0.2� and low penetra-
bility ��r /�a=5� mLPA, PY, and HNC all provide very accu-
rate descriptions of MC data with a very tiny difference in
the well region 1�r /��1.5, where the integral equations
predict a slight curvature of g�r�, while the mLPA confirms
the practically linear shape of the simulation data. Moreover,
a blow up of g�r� in the deep core region �0�r��� shows
that the mLPA is very accurate, while the PY and HNC theo-
ries underestimate and overestimate, respectively, the MC
data. The same good performance of the mLPA is also ob-
served for a much larger penetrability ��r /�a=2�, provided
the density is relatively low �
�=0.2�, as shown in Fig. 4.
This is consistent with Fig. 2, according to which the density

�=0.2 lies in the region where the LPA is expected to be
accurate for any temperature when �r /�a=2 and � /�=0.5.
As for the integral equations, they are also rather accurate for
the case considered in Fig. 3, although they still show a
slight curvature inside the well and slightly deviate from the
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�=0.2. Predictions from the mLPA given by Eq. �54� �long dashed
line� are compared with both MC results �solid line� and PY and HNC
integral equations �short dashed and dotted lines, respectively�. In the inset
a magnification of the r�� region is shown.
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MC results for r��. Differences begin to be relevant at
high-density �
�=0.8�, mostly inside the core 0�r /��1
and in the contact values r=�+. Again, this agrees with Fig.
2, which shows that the state �
� ,kBT /�a�= �0.8,1� is prac-
tically on the boundary line corresponding to �r /�a=5 and
� /�=0.5. In any case, Fig. 5 shows that the best general
agreement with the MC results is presented by the mLPA,
followed by the HNC theory, which, however, predicts rea-
sonably well the peaks of g�r�, but not the minima. We ex-
plicitly checked �not shown� that for smaller values of the
well width �, PSW results increasingly tend to the SPS
counterpart, as anticipated.

B. Results for equation of state

Next we turn to the analysis of thermodynamics within
LPA. As anticipated �see Sec. VI�, the lack of an exact solu-
tion gives rise to thermodynamical inconsistencies where
compressibility, virial, and energy routes all give rise to dif-
ferent results. The consistency degree among different routes
is a �partial� signature of the LPA performance, as discussed
in Sec. VII. In Fig. 6 we report the behavior of �p as a
function of the reduced density 
�. Once again, we fix the
width of the well �=0.5� and the energy ratio �r /�a=5 and
consider two different temperatures kBT /�a=1 �top panel�
and kBT /�a=5 �bottom panel�. In the former case different

routes give practically indistinguishable results up to

�
0.8, whereas in the latter a difference is clearly visible
at densities higher than 
�
0.6 with energy, virial, and
compressibility routes having decreasing �p for identical
values of 
�. Similar results are observed at the stability
edge �r /�a=2, as shown in Fig. 7. We remark that higher
temperatures effectively correspond to higher penetrability,
as particles have relatively more attractive energies, as com-
pared to the positive repulsive barrier, and hence they can
compenetrate more. Therefore pressure differences among
different thermodynamical routes can be reckoned as a rough
measure of the breakdown of LPA. On the other hand, con-
sistency among different routes does not necessarily means
“exact” results, as they can all converge to the incorrect
value.

A comparison with MC numerical simulations is there-
fore also included in Figs. 6 and 7. Somewhat surprisingly,
this suggests that the virial route is the closest to the true
value for the pressure, with both compressibility and energy
routes always lying on the opposite side with the latter being
the farthest from the MC results.

In order to compare with LPA, we carefully scanned a
wide range of temperatures and densities within the region
0�
��1 where LPA provides consistent thermodynamics
as remarked. Within this region we found no signature of
fluid-fluid transition line as expected. Our preliminary nu-
merical results for higher densities, where strong overlapping
among different particles is enforced, provide a clear evi-
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and kBT /�a=5 �bottom panel�. Different curves refer to different routes. The
symbols denote MC simulation results.
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FIG. 7. Same as in Fig. 6, except that �r /�a=2.

124106-10 Fantoni et al. J. Chem. Phys. 131, 124106 �2009�

Downloaded 23 Sep 2009 to 87.2.61.154. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Penetrable-Square-Well fluids: Analytical study and Monte
Carlo simulations 315



dence of phase separation. As the main emphasis of the
present paper is on analytical approximations, this point will
be discussed in some detail elsewhere.

C. Results for Fisher–Widom line

Let us follow the recipe given in Sec. V to locate the FW
line. In Fig. 8 we report the quantities p� /�a and 
� as a
function of kBT /�a for �=� and decreasing values of the
ratio �r /�a. The case �r /�a→
 is the one addressed in the
original FW work on the one-dimensional SW fluid.18 We
remind that above the FW line, g�r�−1 has oscillatory be-
havior, whereas it is exponentially decaying below it, and it
is located in the homogeneous fluid region of the phase dia-
gram, above the critical temperature if phase separation is
present.

As the repulsive barrier becomes finite, the region of
monotonic behavior increases for large kBT /�a whereas it
remains essentially unchanged for lower temperatures. This
is not surprising as penetrability �i.e., finite repulsive barrier�
favors the onset of a critical region. Somewhat more surpris-
ing is the fact that this happens in the high- rather than in the
low-temperature region. A similar feature is also appearing in
the 
-T plane �see bottom panel�. In order to test the effect of
different width values, we repeated the same calculation for
�=0.5�. Results are presented in Fig. 9 and are in agreement

�in the limit �r /�a→
� with results for the one-dimensional
SW fluid presented in Ref. 33 for a hard-core to well-width
ratio equal to 2 �see Fig. 1 in Ref. 33�. For this well width the
influence of the ratio �r /�a on the FW line is much less
important.

Although we have been unable to find a simple physical
explanation for this behavior, we remark that the sensitivity
of the FW line to the barrier height occurs as the density
decreases. Consider for instance the density 
�=0.1 for
models with �=�. In the SW case ��r /�a→
� the decay of
the RDF changes from monotonic to oscillatory as one in-
creases the temperature and crosses the value kBT /�a�2.2.
In the case of the PSW model with �r /�a=5, according to the
LPA, the transition takes place at kBT /�a�2.8. If the density
is sufficiently low �
��0.076 for �r /�a=5�, the asymptotic
decay of g�r�−1 is monotonic for any temperature, while this
effect is absent in the impenetrable SW limit. One might
argue that this influence of the energy ratio �r /�a on the
high-temperature branch of the FW line is an artifact of the
LPA since the latter approximation is a priori restricted to
low temperatures. On the other hand, this high-temperature
branch also corresponds to low densities, counterbalancing
the penetrability effect and making the LPA presumably ac-
curate. As a matter of fact, the FW lines plotted in the top
panels of Figs. 8 and 9 are obtained from the three thermo-
dynamic routes but the three curves are, in each case, indis-
tinguishable from each other. In other words, the FW lines
are well inside the regions in Fig. 2 where the LPA is ther-
modynamically consistent from a practical point of view.
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X. CONCLUSIONS AND OUTLOOK

One-dimensional fluids with nearest-neighbor interac-
tions admit an exact analytical solution for both structural
and thermophysical properties with a well defined
protocol.5,20 Nearest-neighbor interactions, in turn, require a
well defined hard-core term in the pairwise potential prevent-
ing superpositions and particle exchanges which is the cru-
cial ingredient necessary for the exact solution. The absence
of the above constraint, on the other hand, allows the pres-
ence of critical phase transitions, in spite of the one-
dimensional character of the system, which are fully absent
in the hard-core counterparts.

Effective pair interactions with a soft-repulsive compo-
nent are well-known features of polymer solutions and col-
loidal suspensions.1,2 Among many different model
potentials,2 with various degrees of core softness, PSs stands
out for its simplicity.7 In this model, the infinite repulsive
energy is reduced to a finite one, thus introducing an effec-
tive “temperature” into an otherwise athermal hard-sphere
system. This potential model lacks attractive interactions but
these can be accounted for in the PSW companion model
where an attractive short-range SW is added to the PS
model.10

At sufficiently low temperatures, thermal energy cannot
overcome the repulsive barrier and penetrability is low,
whereas at high temperatures different particles can interpen-
etrate to a significant extent. Hence, within this framework,
low- and high-temperature and low- and high-penetrability
terminology can be used synonymously.

In this work we studied structural and thermodynamic
properties of the PSW model. Using a LPA akin to that dis-
cussed for PS,7 we considered rather interesting issues spe-
cific of the presence of attractive interactions �and thus ab-
sent in the PS model� such as fluid-fluid phase separation or
the existence of a FW line.18 This is a pseudotransition asso-
ciated with a clear-cut change, from oscillatory to mono-
tonic, in the asymptotic decay properties of the RDF, as tran-
sition line is approached, even in those cases where the
existence of a critical region is prevented by rigorous theo-
rems �e.g., the SW one-dimensional fluid�. It requires the
simultaneous presence of attractive and repulsive energies
and hence it cannot exist for the simpler PS model

Our LPA has been devised to reduce to that of PS in the
limit of no well. We assessed its performance by comparing
it with exact results10 in the low-density limit and by com-
paring with MC simulations and PY and HNC integral equa-
tion theories for larger densities where exact analytical re-
sults do not exist. We found that it reproduces a significant
portion of the T-p parameter space at the level of pair corre-
lation function, the main difference being in the penetrability
region 0�r��. At odds with its SW counterpart, PSW ther-
modynamics depends on the chosen route in view of the
inconsistencies introduced by the LPA. We quantified the
inconsistencies among virial, compressibility, and energy
routes and discussed how they reflect into the computation of
the FW line. In all considered cases, we found a magnifica-
tion at large temperatures of the monotonic regime region as
penetrability increases and a much smaller, if any, modifica-

tion, at lower temperatures. In all cases the FW line is found
within the region where LPA is expected to be accurate as
thermodynamic inconsistencies are small. Within the density
region 0�
��1, we found no sign of a fluid-fluid phase
separation, although both fluid-fluid and fluid-solid transi-
tions are expected at higher densities.

In the limit of infinitely narrow and deep well, PSW has
been shown to reduce to a penetrable version of Baxter ad-
hesive model,34 which violates the stability condition set for
a well defined thermodynamic limit.10 As the main weak-
nesses of LPA for the PSW stems mainly from a nonadequate
representation of the penetrable region 0�r /��1, we then
discussed how a simple modification of the RDF in this re-
gion gives a significant improvement when tested against
MC results under rather demanding conditions.

This paper is part of an ongoing effort on PSW outlined
in our previous work.10 Future work will address a comple-
mentary approximation �the high-penetrability limit� and its
matching with the LPA discussed in the present paper, so that
the entire parameter T-p-
 space can be discussed with some
comfortable degree of confidence. This will resolve some of
the subtle points with no conclusive answer left by the
present paper. In addition, a detailed investigation of the high
density region 
��1 is underway and will be reported else-
where.
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APPENDIX A: ANALYSIS OF THE CONTINUITY
OF y„r… WITHIN LPA

From Eq. �14� we have that if r�2,


g�r� =
h�

1 − q
e−�r

+ �0, 0 � r � 1,

�1�r − 1� , 1 � r � 1 + � ,

�1�r − 1�q − �1�r − 1 − �� , 1 + � � r � 2.
�

�A1�

The explicit expressions of 1�r� is, from Eq. �15�,

�1�r� =
�

1 − q
e−�r	1 +

h�

1 − q
r
 . �A2�

The continuity condition of y�r� at r=1 is then given by
condition
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1

1 − �r

h�

1 − q
e−� =

1

1 + ��r
� h�

1 − q
e−� + �1�0�� , �A3�

which is identically satisfied, so that


y�1� =
�

�1 − q��r�1 + ��
. �A4�

However, y�r� is discontinuous at r=�=1+�:


y��−� =
1

1 + ��r
� h�

1 − q
e−�� + �1����

=
�q

�r��1 − q��1 +
�r�1 + ��
1 + ��r

h��

1 − q
� , �A5�


y��+� =
h�

1 − q
e−�� + �1��� − q�1�0�

=
�q

�r��1 − q��1 + �r�1 + ��
h��

1 − q
� . �A6�

The jump is then given by


�y��+� − y��−�� =
�r�1 + ��
1 + ��r

hq�2�

�1 − q�2 , �A7�

and the value used as an estimate of the point is then given
by the average of the left and right limits,



y��+� + y��−�

2

=
�q

�r��1 − q��1 + �r�1 + ��
1 + ��r/2
1 + ��r

h��

1 − q
� . �A8�

APPENDIX B: THE STICKY-PENETRABLE-SPHERE
MODEL

In this appendix, we provide a connection with the SPS
introduced in Ref. 10. This is the penetrable analog of Bax-
ter’s sticky-hard-sphere �SHS� well-known model.34 The
SPS limit can be obtained by considering the limit �→0 and
�a→
 so that �=�� remains finite, hence playing the role
of an adhesivity parameter. We then define SPS by the Mayer
function10

fSPS�r� = �rfSHS�r� , �B1�

where

fSHS�r� = fHS�r� + ��+�r − �� �B2�

is the Mayer functions of the SHS potential and

�+�r� � lim
a→0+

	�r� − 	�r − a�
a

. �B3�

The fluid parameters are then the adhesivity coefficient �
�0, the penetrability coefficient �r, and the density 
.

As anticipated, the SPS fluid is thermodynamically un-
stable in the sense discussed in Sec. II. This can be seen both
because the required limit does not satisfy the sufficient con-
dition for stability �r�2�a,10 and directly using arguments
akin to those used by Stell35 to prove the instability of the

original Baxter’s model34 in dimensions greater than one.
Nonetheless it provides an overall consistency testbench to
the performance of LPA within the well established frame-
work of SHS.

In the combined limit �→
 and �→0 with �=��, Eqs.
�7� and �9� become

�̃SPS�s� =
1 − �r

s
+ �r	� +

1

s

e−s, �B4�

�̃0
SPS�s� = �r	� +

1

s

e−s. �B5�

Using the first equality in Eq. �10� it follows that


 =
f/� + 1/� + �

� + 1/� + 1/�2 , �B6�

where

f =
1 − �r

�r
e�. �B7�

We then use the LPA as given in Eq. �8� to find


G̃SPS�s� =
f/�s + �� + �� + 1/�s + ���e−s

�� + 1/�� − �� + 1/�s + ���e−s , �B8�

whose inverse Laplace transform yields the RDF,


gSPS�r� = �
n=0




�n
SPS�r − n�	�r − n� , �B9�

where

�0
SPS�r� =

f

� + 1/�
e−�r, �B10�

�n
SPS�r� = 	 �

� + 1/�

n� f

� + 1/�
+ �

k=1

n 	n

k

 1

�kk!

�	krk−1 +
f

� + 1/�
rk
 + ��r��e−�r. �B11�

In the impenetrable limit �r→1 and f →0, Eqs. �B6�–�B11�
reduce to the exact one-dimensional SHS counterparts,22,36,37

as they should.
A word of caution is in order here. Using Eqs.

�B9�–�B11�, the cavity function y�r�=g�r�e���r� at contact r
=1 is found to be discontinuous as


ySPS�1−� =
1

�r

1

� + 1/�
, �B12�


ySPS�1+� = 
ySPS�1−� +
�f

�� + 1/��2 . �B13�

Note that Eq. �B12� is the sticky limit of the PSW value

y�1�, Eq. �A4�, �recall that y�r� is continuous at r=1 within
the PSW� and is also the sticky limit of the PSW value

y��−�, Eq. �A5�. On the other hand, Eq. �B13� is the sticky
limit of the PSW value y��+�, Eq. �A5�. Therefore, the dis-
continuity of ySPS�r� at r=1 is a direct consequence of the
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discontinuity of the PSW cavity function at r=�. Both dis-
continuities are artifacts of the LPA. Again, this can be
amended by an improved mLPA approach which is discussed
in Sec. VII.

APPENDIX C: LOW-DENSITY EXPANSION
OF THE LPA

Let us compare the LPA to order 
 with the exact results.
From Eqs. �10�–�12� we easily get

� = �0
 + �1
2 + O�
3� , �C1�

with

�0 = �r, �1 = �r
3�1 − ��� . �C2�

Upon inserting the result into Eqs. �14� and �15�, and after
some algebra, we find the correct zeroth order term g0�r�
=g0

exact�r� as given in Eq. �17�, and

g1�r� = �r
2�

�1 − �r��1 − �
1 + �r

�r
� − �r − 1�

1

�r
� , 0 � r � 1,

�1 + ��r��1 − �
1 + �r

�r
� + �r − 1�

� − �r − 2��r

�r�1 + ��r�
� , 1 � r � 1 + � ,

2 − 2�� − r , 1 + � � r � 2,

��2 + ���r − 2� − 2�� , 2 � r � 2 + � ,

�2 + 2� − r��2, 2 + � � r � 2 + 2� ,

0, 2 + 2� � r .

� �C3�

Comparison between Eqs. �C3� and �18� shows that the LPA
reproduces the exact result for r�1+�. On the other hand, it
fails to do so within the potential range. The differences be-
tween the first-order exact and LPA cavity functions are
given by Eq. �19�.
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Chapter 19

Local orientational ordering in fluids
of spherical molecules with
dipolar-like anisotropic adhesion

Gazzilo D., Fantoni R., and Giacometti A., Phys Rev. E 80, 061207 (2009)
Title: “Local orientational ordering in fluids of spherical molecules with dipolar-like anisotropic
adhesion.”
Abstract: We discuss some interesting physical features stemming from our previous ana-
lytical study of a simple model of a fluid with dipolar-like interactions of very short range
in addition to the usual isotropic Baxter potential for adhesive spheres. While the isotropic
part is found to rule the global structural and thermodynamical equilibrium properties of
the fluid, the weaker anisotropic part gives rise to an interesting short-range local ordering
into a periodically modulated structure with preferred antiparallel alignment.
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We discuss some interesting physical features stemming from our previous analytical study of a simple
model of a fluid with dipolarlike interactions of very short range in addition to the usual isotropic Baxter
potential for adhesive spheres. While the isotropic part is found to rule the global structural and thermody-
namical equilibrium properties of the fluid, the weaker anisotropic part gives rise to an interesting short-range
local ordering of nearly spherical condensation clusters, containing short portions of chains having nose-to-tail
parallel alignment, which runs antiparallel to adjacent similar chains.
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Even simple hard sphere fluids display a nontrivial phase
diagram, as a function of the packing fraction, which can be
experimentally probed and theoretically interpreted �1�. Soft-
ening the potential and/or increasing its range, leads to a
remarkably richer phase diagram, which has attracted con-
siderable attention recently �see, e.g., �2� for a recent re-
view�. Yethiraj and van Blaaderen �3� have discussed how it
is experimentally possible to tune the interactions from hard
sphere to soft and dipolar ones. More recently, Lu et al. �4�
showed that, contrary to an intuitive expectation, gelation of
particles with short-range attractions is intimately connected
with its equilibrium phase diagram.

It is widely believed that the addition of a long-range
repulsion to a short-range attraction inhibits phase separa-
tion, by promoting the formation of an equilibrium gel. The
same mechanism can be achieved by reducing the probabil-
ity of forming a bulk liquid using the concept of limited
valency and/or patchy particles �2�. This idea has been re-
cently explored by a number of authors, who have used the
so-called Kern and Frenkel model with circular adhesive
patches �of nonvanishing area�, or that with short-ranged at-
tractive point sites on the surface of hard spheres �5–11�.

In spite of their usefulness, the above models share a
common shortcoming on the discontinuous dependence of
the potential on the particle orientations, which makes them
very difficult to investigate from a theoretical point of view.
This drawback is not present in molecular interactions where
this dependence is continuous, as for instance in dipolar in-
teractions �12�, a case which is particularly interesting for
various reasons. First, because of their widespread appear-
ance in colloidal suspensions, such as ferrofluids, which have
important practical applications. In addition, recent studies
�13–15� have shown the existence of a significant influence,
in the equilibrium properties of the fluid, of chainlike aggre-
gation characteristic of the dipolar interaction, which
strongly competes with a stable fluid-fluid phase separation.

Motivated by this features, in this paper, we then take an
extreme alternative of considering a tail with dipolarlike an-
isotropy combined with a very short-range attraction. The
latter is patterned after the well-known Baxter’s sticky hard
sphere �SHS� potential, where attraction occurs only at con-
tact �16�. Building upon our previous, almost fully analytical,
study on this model within the Percus-Yevick closure with
orientational linearization �PY-OL� �17�, we discuss here
some additional interesting features on the local ordering
properties, which were not accounted for in our previous
work.

In the same spirit of Baxter’s isotropic counterpart �16�,
the model is defined by the following Mayer function �17�:

f�1,2� = fHS�r� + t��1,2����r − �� , �1�

where fHS�r�=��r−��−1 is its hard sphere �HS� contribu-
tion, � is the Heaviside step function ���x�0�=0,
��x�0�=1�, and the Dirac delta function ��r−�� ensures
that the adhesive interaction occurs only at contact �� is the
HS diameter�. The symbol i��ri ,�i� �with i=1,2� denotes
both the position ri of the molecular center and the orienta-
tion �i, which combines the usual polar and azimuthal
angles ��i ,	i�. Thus, we have �1,2�= �r12,�1 ,�2�
= �r , r̂12,�1 ,�2�= �r ,�r ,�1 ,�2�, with r12=r2−r1, r= �r12�,
and �r being the solid angle associated with r̂12=r12 /r.
Moreover, t is the stickiness parameter, equal to �12
�−1 in
Baxter’s original notation �16�, which measures the strength
of surface adhesion and increases with decreasing
temperature.

Finally, the angular dependence of the surface adhesion is
expressed through the angular factor

��1,2� = 1 + �D�1,2� , �2�

including the dipolar function

D�1,2� = D��r,�1,�2� = 3�r̂ · u1��r̂ · u2� − u1 · u2. �3�

Here and in the following, the unit vector ui represents the
orientation �i of molecule i, while r̂ coincides with
r̂12=−r̂21.

The anisotropic function ��1,2�, which has the same sym-
metry as the dipolar interaction, modulates the sticky attrac-
tion. The requirement ��1,2��0 along with −2
D�1,2�

2 enforce the limits 0
�


1
2 on the anisotropy degree.

This range corresponds to the surface interaction always be-
ing attractive. In the isotropic case, one has �=0 and
��1,2�=1.

As convolutions of Mayer functions generate correlation
functions with a more complex angular dependence �12�, it is
necessary to consider also the angular function

��1,2� = u1 · u2, �4�

whose limits of variation are clearly −1
��1,2�
1.
We note the difference between the dipolar anisotropic

adhesion introduced here and the anisotropy belonging to the
class of uniform circular “sticky patches” �5,6,18–22�. In the
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latter case, the strength of adhesion is uniform, independent
of the contact point inside an attractive patch, whereas in our
model the value of the anisotropic correction �t D�1,2�
changes with the position of the contact point. Moreover,
D�1,2� can assume both positive and negative values, de-
pending on the molecular orientations. Consequently, the
strength of adhesion between two particles 1 and 2 at contact
depends—in a continuous way—on the relative orientation
of u1 and u2 as well as on the unit vector r̂12 of the intermo-
lecular distance. The orientations with D�1,2��0, and thus,
with ��1,2�=1+�D�1,2��1, correspond to an attraction
stronger than the isotropic one �given by ��1,2�=1�, whereas
the configurations with D�1,2��0, and thus with ��1,2�
�1, are characterized by a weaker attraction, which can even
reduce to zero �HS limit� in the case of highest anisotropy
admissible in the present model, i.e., �=1 /2.

In particular, we shall focus on a set of parallel and
antiparallel configurations with ��1,2�=u1 ·u2=1, and
��1,2�=−1, respectively. The surface adhesion reaches its
maximum value when u1=u2= r̂12, which yields D�1,2�=2
and ��1,2�=1+2� �head-to-tail parallel configuration�. On
the contrary, the stickiness is minimum, and vanishes for �
=1 /2, when u1=−u2= r̂12, which corresponds to D�1,2�
=−2 and ��1,2�=1−2� �head-to-head or tail-to-tail antipar-
allel configurations�. The intermediate case of orthogonal
configuration �u2 perpendicular to u1� corresponds to
D�1,2�=0, which is equivalent to the isotropic SHS interac-
tion.

Introducing the orientational average � . . . �u
= �4��−1	du. . . we note the following results

���1,2��u1,u2
= 0 �D�1,2��u1,u2

= 0

���1,2�D�1,2��u1,u2
= 0 and �D2�1,2��u1,u2

=
2

3
. �5�

In a previous paper �hereafter referred to as Paper I� �17�,
we have analytically solved for this model the Percus-Yevick
integral equation with an orientational linearization.

We here recall the main results, referring to Paper I for
details. We start with the molecular Ornstein-Zernike �OZ�
integral equation for homogeneous fluids,

h�1,2� = c�1,2� + �
 dr3�c�1,3�h�3,2��u3
, �6�

where h�1,2� and c�1,2� are the total and direct correlation
functions, respectively, and � is the number density.

Any angle-dependent correlation function F�1,2� could
be expanded in a basis of rotational invariants �23�, whose
first few terms are

F�1,2� = F0�r� + F��r���1,2� + FD�r�D�1,2� + ¯ , �7�

We stop at the linear terms, assuming �12,17� that the angular
basis �1,� ,D� is sufficient for our purposes.

The PY-OL closure �17� is a combination of the PY clo-
sure, i.e., cPY= f�1+��, with the linear expansion of ��h
−c given by �OL�1,2�=�0�r�+���r���1,2�+�D�r�D�1,2�,
which also neglects the D� and D2 terms stemming from
the product f�. This leads to

cPY-OL�1,2� = c0�r� + c��r���1,2� + cD�r�D�1,2� , �8�

c0�r� = fHS�r��1 + �0�r�� + �0���r − �� ,

c��r� = fHS�r����r� + �����r − �� ,

cD�r� = fHS�r��D�r� + �D���r − �� , �9�

�0 = t�1 + �0����, �� = t�����, �D = t�D��� + ��0.

�10�

The solution of the OZ equation with the above closure then
yields the approximate pair distribution function

gPY-OL�1,2� = 1 + hPY-OL�1,2�

= g0�r� + h��r���1,2� + hD�r�D�1,2� , �11�

g0�r� = eHS�r��1 + �0�r�� + �0���r − �� ,

h��r� = eHS�r����r� + �����r − �� ,

hD�r� = eHS�r��D�r� + �D���r − �� , �12�

where g0�r�=1+h0�r�, and eHS�r�=1+ fHS�r� is the HS Bolt-
zmann factor.

The first term in Eqs. �9� corresponds to the well known
isotropic Baxter’s sticky hard sphere solution �16� and the
OZ equation and this closure constitute a self-contained sys-
tem. The remaining two have a similar form, but they depend
in a nontrivial way upon the isotropic term �see Paper I for
details�.

It is instructive to consider the behavior of the g�12� as-
suming that r̂12·u1=1. We focus on a generic reference par-
ticle 1, with fixed position r1 and orientation u1, and consider
a particle 2 located along the straight half line, which origi-
nates from r1 and has the same direction as u1 �polar axis�.
Imagine that 2 has fixed distance r from 1, but can assume all
possible orientations u2, which—by axial symmetry—can be
described by the single angle �12=cos−1�u1 ·u2�. Conse-
quently, g�1,2� reduces to: g�r ,�12�=g0�r�+ �h��r�
+2hD�r���u1 ·u2�.

Figure 1�a� depicts the behavior of g0�r�, which coincides
with the reference isotropic part gisoSHS�r� of the pair corre-
lation function, at �= �� /6���3=0.4.

Here, t=0 gives the HS limiting case, gHS�r�, and we
consider increasing values of t, which correspond to increas-
ing adhesion or decreasing temperature, i.e., t=0.1, 0.3, 0.5
and 0.8. The last t-value yields 
=1 / �12t�
0.1, which lies
close to the critical temperature of the isotropic fluid �24�.

Two features are noteworthy. First of all, the short-range
interactions mainly modify the short-range portions of the
pair correlation functions. Very pronounced effects are vis-
ible in the range ��r�2�, but significant changes are also
present all the way out to r=4� and beyond, while the phase
of the oscillations is clearly shifted by the addition of the
short-range attraction.

A second interesting feature concerns the t dependence of
g0�r� in the first shell. As the adhesion strength increases
from t=0 �HS� to t=0.8, the contact value monotonically
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decreases, whereas a discontinuous peak progressively builds
up at r= �2��−. This somewhat counter-intuitive result can be
easily understood in terms of the reduction of the pressure
exerted on particles 1 and 2 by the surrounding ones in the
presence of increasing attraction, thus, providing an average
larger separation among 1 and 2.

Suppose now that we modulate this attraction with the
anisotropic dipolarlike dependence described above. When
�=1 /2 the effect on g is shown in Fig. 1�b� for three repre-
sentative values of �12: �12=0 �parallel orientation�, �12
=� /2 �orthogonal orientation�, and �12=� �antiparallel ori-
entation�. Note that in the orthogonal case, the dipolar de-
pendence vanishes and one recovers the isotropic behavior.
The main differences occur in the first shell, where the or-
thogonal curve �12=� /2 is bracketed between the antiparal-
lel ��12=�� and the parallel ��12=0� results. Similar qualita-
tive results �with different separations among parallel and
antiparallel curves� are found when the angle between r̂12
and u1 is varied.

From Fig. 1�b� we note that at contact �r=�+� the antipar-

allel configuration is more probable that the nose-to-tail par-
allel one; conversely, at separations close to r=2�− the par-
allel alignment is predominant. This can also be confirmed
by plotting the projections h��r� and hD�r� of the molecular
correlation function hPY-OL�1,2� on the angular basis ��12�
and D�12�, respectively. This is depicted in Fig. 2 where the
isotropic corresponding contribution h0�r� is also reported by
contrast. One observes a weak negative correlation for both
quantities in the region r��+ and, conversely, a positive
correlation close to 2�−. A crossing occurs approximately
around the same value r�1.7� where the parallel compo-
nent in Fig. 1�b� overtakes the antiparallel one, as expected.
As we shall see, however, this is a local ordering which does
not affect the condensation process.

In order to get more insight into such an orientational
ordering, we compute the number of particles with orienta-
tion u2 that a generic reference particle 1 with orientation u1
“sees” in an appropriate surrounding volume VAB. Assuming
u1 as polar axis and taking into account the sphere S with
center u1 and radius R, VAB is defined as the portion of S
corresponding to the solid angle �AB= ��� ,	� ��A
�
�B ,0

	
2�� �see Fig. 3�. Taking for instance �A=0 and �B
=� /3, we can analyze the “forward ordering” as seen by the
reference particle, while choice �A=� /3 and �B=� /2 allows
to discuss the “lateral ordering.”
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FIG. 1. �Color online� �a� Isotropic part of the pair correlation
function, g0�r�=gisoSHS�r�, at �=0.4, for t=0, 0.1, 0.3, 0.5, and 0.8
corresponding to increasing adhesion strength or decreasing tem-
perature. t=0 yields the HS limit. �b� Behavior of g�r ,�12�, when
�=1 /2, at �=0.4 and t=0.8, for three representative orientations
�12=0,� /2,� �parallel, orthogonal, and antiparallel
configurations�.
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FIG. 2. �Color online� The three components h0�r�, h��r�, and
hD�r� of the molecular total correlation function for �=1 /2, �
=0.4, and t=0.8. At r�� one has h0�r�=−1 and h��r�=hD�r�=0.
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FIG. 3. �Color online� Schematic representation of the volume
VAB �included in the shading area� in two different situations: �top
panel� �A=0 giving the contribution from the forward region, and
�bottom panel� �A��B�0 giving information on the lateral adja-
cent region.
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The number of particles in an infinitesimal spherical cone
of height R=�� and infinitesimal solid angle d�r in a given
direction r̂ is dN�u1 ,u2 , r̂�=d�r	0

Rdrr2�g�1,2�, where d�r
=dr̂. In a finite solid angle �AB,

N�u1,u2� = 

�AB

dr̂

0

R

drr2�g�1,2� . �13�

Using the first line of Eqs. �5� and �11� we see that, within
the PY-OL closure, �g�12��u1,u2

=g0�r� so that the average
number is

N = �N�u1,u2��u1,u2
= ��AB


0

R

drr2g0�r� = ��AB�3I0,

�14�

with �AB=	0
2�d		�A

�Bd� sin �=2��cos �A−cos �B� and

I0 = ��3 − 1�/3 + 

1

�

dxx2h0,reg�x� + �0. �15�

Here, we have used the results of Paper I �see especially
Sec. IIID and IIIE�, where h0�r� is decomposed into a “regu-
lar” term h0,reg�r� and a “singular” term proportional to the
delta function. A similar decomposition is carried out �see
again in Paper I� for the h��r� and hD�r� parts. Using

��AB�−1

�AB

dr̂D�1,2� = MAB�u1 · u2� , �16�

MAB = cos2 �A + cos �A cos �B + cos2 �B − 1, �17�

we find that the fraction X of particles with orientation u2 in
the volume VAB around a reference particle having orienta-
tion u1, only depends upon the angle �12=cos−1�u1 ·u2� and
is given by

X��12� =
N�u1,u2�

N = 1 +
I� + MABID

I0
�u1 · u2� , �18�

I� = 

1

�

dxx2h�,reg�x� + ��,

ID = 

1

�

dxx2hD,reg�x� + �D. �19�

Figure 4�a� depicts X as a function of �12 in the case �
=2 �first shell�. In the forward region, represented by the
solid angle �AB�0,� /3�, we find X�0��X��� so there are
more particles with parallel orientation, with respect to par-
ticle 1. On the contrary, X�0��X��� in the surrounding lat-
eral region, characterized by �AB�� /3,� /2�, means that
here the molecules with antiparallel orientations prevail. Al-
though these effects are rather small, it is reasonable to ex-
pect that such differences should grow significantly if the
anisotropy parameter �t could become much larger than the
strength t of isotropic adhesion. Note that, while Xforward is
larger than Xlateral in the interval 0
�12
� /2, an inversion
occurs in the region � /2��12
� in agreement with the

results of g�r ,�12� reported above �Fig. 1�b��.
The above results are suggestive of the following physical

picture. Because of the limits imposed on the anisotropy pa-
rameter �0
�
1 /2� by the choice of the potential, the con-
tribution of the dipolarlike interaction is significantly weaker
compared to the isotropic part, and does not affect the main
condensation process with the formation of globule clusters
of nearly isotropic shape. This is in sharp contrast with the
purely long-range dipolar models which are mainly charac-
terized by chainlike aggregation �13–15�. However a local
ordering occurs within these globular agglomerates of con-
densation, that are mainly formed by short portions of anti-
parallel chains running next each other and held together
essentially by the isotropic attraction. This is schematically
depicted in Fig. 4�b�.

We note that only particles belonging to different, antipar-
allel, chains have direct contact. Consecutive molecules with
parallel noise-to-tail orientation—i.e., belonging to the same
chain—are not in contact, but lie with average separations
slightly smaller than 2� as suggested by the behavior of g in
Fig. 1�b�. Thus antiparallel molecules of adjacent chains
“mediate” an indirect contact between consecutive particles
of a given chain.
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FIG. 4. �Color online� �a� Plot of the fraction X of molecules
with orientation �12 contained in the volume VAB defined by �

r
2� and by the solid angle �AB, with �A=0 and �B=� /3 for
the forward direction and �A=� /3, �B=� /2 for the lateral direc-
tion. Parameters are �=1 /2, �=0.4, and t=0.8 in all cases. �b�
Schematic representation of a globular cluster, with internal chain-
like orientational ordering.
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Once again, we stress that this phenomena should be con-
sidered a local fluctuation with very short range �of the order
of one shell, as remarked� and does not extend to the entire
fluid. This can be readily checked by considering the limit
�→�, in which case one finds ID=0, so that the dependence
from u1 ·u2=cos �12 is averaged to zero. As we shall see
below, a direct consequence of this is that the coexistence
line of the isotropic model is not significantly affected by the
anisotropic part, within the PY-OL approximation.

In view of the last remark, one might rightfully wonder
whether the anisotropic part plays any role in the thermody-
namics of our model. We can convince ourselves that the
answer is positive, by considering the exact third virial coef-
ficient as defined by

B3 = −
1

3V

 dr1dr2dr3�f�1,2�f�1,3�f�2,3��u1,u2,u3

. �20�

Note that, in view of Eq. �5�, the exact second virial co-
efficient B2=− 1

2	dr�f�1,2��u1,u2
coincides with its isotropic

counterpart. However, this is not the case for B3, that can be
computed following the method outlined in �6� for patchy
sticky hard spheres, a close relative to the present model.
One finds

b3 = B3/v0
2 = 10 − 60t�1 + 144t2�2 − 96t3�3, �21�

where v0= �� /6��3 and

�1 = ���1,2��u1,u2
�2 = ���1,2���1,3��u1,u2,u3

,

�3 = ���1,2���1,3���2,3��u1,u2,u3
. �22�

Again using Eq. �5�, we find �1=1=�2. The exact value of
�3 turns out to be

�3 = 1 −
11

72
�3. �23�

The anisotropic contribution is represented by the term
−�11 /72��3�0.02, which is very weak with respect to the
isotropic one.

Having assessed the limits of the model, we now turn to
discuss the limits of the approximation involved in the
PY-OL closure. A simple and direct way to quantify its de-
viation from the exact results is to consider the first-order
density expansion of the exact direct correlation function
c�1,2�= f�1,2�+c�1��1,2��+¯. We find

c�1��1,2� = cPY-OL
�1� �1,2� + cex

�1��1,2� , �24�

with cPY-OL
�1� �1,2�=c0

�1��r�+c�
�1��r���1,2�+cD

�1��r�D�1,2�, and

cex
�1��1,2� = ��t����

�1������1,2�D�1,2�

+ �D
�1����D2�1,2�����r − �� , �25�

whereas the PY closure includes both cPY-OL
�1� �1,2� and

cex
�1��1,2�, thus, reproducing the exact third virial coefficient

through B3=− 1
3	dr�c�1��1,2��u1,u2

, the PY-OL approximation
omits the contributions included in cex

�1��1,2�. Consequently,
b3

PY-OL reduces to the purely isotropic contribution: b3
iso=10

−60t+144t2−96t3. The anisotropic contribution b3
aniso

= 44
3 ��t�3, stemming from cex

�1��12�, can be easily computed
again with the help of Eqs. �5�, in agreement with the exact
result �Eq. �23��. Next, we consider the thermodynamics. As
in all approximate closures, even within the PY one there
exist three standard routes to the equation of state: compress-
ibility, energy, and virial routes.

In the first two cases, it is easy to convince oneself that
the result is the same as for the isotropic SHS system calcu-
lated in �16�. This is again due to Eq. �5� and is a conse-
quence of the linearity of the expansion in the angular part
involved in the PY-OL approximation, Eq. �7�, and of the
minor role played by the anisotropic part, as testified by the
weak �-dependence of the third virial coefficient �Eqs. �22�
and �23��. This is also in agreement with the stability analy-
sis of Paper I, which can also be extended to finite values of
the wave vector k.

As often the case, the virial route is more delicate. Here,
standard steps lead to

�p

�
= 1 + 4�y0��� − 4�t

��2y0��� + Y0���� +
2�

3
�2yD��� + YD� ����� ,

�26�

where �=�v0 is the packing fraction, and Y0�r�=ry0�r�,
YD�r�=ryD�r�, with yPY�1,2�=1+��1,2� being the PY cavity
function.

For given t, �, one can calculate y0���, yD���, Y0����, and
YD� ��� analytically using expressions from Paper I. However,
Y0���� and YD� ��� require some care, since space derivative
and sticky limit do not commute �16�. So from Eq. �26� one
finds the virial pressure. The corresponding results are col-
lected in Fig. 5 for different values of t, at both �=0 �isotro-
pic case� and �=1 /2 �with the anisotropic contribution in-
cluded�. A comparison with the virial expansion up to the
third virial coefficient is also added in the case t=0.9 and
�=1 /2.

In agreement with the previous structural findings, we
find a dependence on the anisotropy. This is very small for
t
0.5 but increasingly appreciable for larger values of the
adhesion strength t. In Fig. 5 one clearly sees that the pres-
sion increases by roughly 10% on going from �=0 �no an-
isotropy� to �=0.5 �maximum anisotropy� for t=0.9 and �
�0.2.

Despite the strong differences with the pure dipolar case,
it proves instructive to get some insight into the competition
between the tendency to condensation on the one hand and to
chaining on the other hand, by applying to the present model
the arguments put forward by Tlusty and Safran �13� in the
dipolar case. These authors devised a phenomenological
theory, where the two above-mentioned tendencies are rep-
resented by the concentrations of “junctions” and “ends,”
respectively �see �13��. We have closely followed their argu-
ments to derive the critical parameters 
c and �c of the
present model in terms of the energies �1, �3 of ends and
junctions respectively. One finds �13�
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c =
�1 − 3�3

3 ln 3 − 2 ln 2
, ln �c = −

�1�2 ln 3 − ln 2� − �3 ln 2

�1 − 3�3
,

�27�

which coincides with the results of �13�. Matching this criti-
cal values with the one of the isotropic adhesive spheres of
Miller and Frenkel �24�, 
c=0.1133 and �c=0.266, we find
�1=0.186 and �3=−0.0102 �the value �3�0 means that junc-
tions are enhanced with respect to ends, once more favoring
condensation�. In our results the number of ends �1 and junc-
tions �3 turn out to be equal ��1=�3� at the critical point,
which is thus a point of connectivity transition in the system.
Figure 6 depicts the coexistence line, which does not display
the re-entrance characteristic of the pure dipolar case �com-

pare with Fig. 2 of �13��. This is in complete agreement with
the remark by Tlusty and Safran that the addition of an iso-
tropic short-range attraction—such as the case of the present
model—reports the curve to its characteristic parabolic shape
�see also Fig. 3 of �13��. This is also consistent with very
recent numerical simulation results �25,26� showing that the
addition of a very weak isotropic attraction to the dipolar HS
potential makes the condensation transition easily observ-
able. In summary, we have studied structural and thermo-
physical properties of a particular hard-core fluid where the
attractive part of the potential includes an anisotropy of di-
polar form infinitesimally short and infinitely strong.

Any two molecules of the fluid interact only at contact
with a potential having, in addition to an adhesive isotropic
part of the Baxter type, an additional adhesive term, whose
intensity depends upon the mutual orientation of the two
particles in a dipolar fashion. Our potential belongs to a class
of simple anisotropic models that have recently attracted
considerable interest in connection with aggregation phe-
nomena in colloidal fluids, polymers and globular proteins,
because of their possible experimental relevance for self-
assembling materials and biological viruses.

The extremely short-range nature of this peculiar dipolar
interaction strongly contrasts with the long-range nature of
the dipolar hard sphere model. In the latter case, the forma-
tion of chains and long anisotropic agglomerates signifi-
cantly affects the possibility of a gas-liquid transition. Using
a simplified treatment of the angular part, based upon a first-
order expansion in angular invariants so to allow an almost
fully analytical solution, we have shown that only the local
�first few� coordination shells are affected by the anisotropy.
This is due to the fact that the orientationally dependent part
of the potential has a relatively weak strength with respect to
the isotropic attractive term, as forced by the particular
choice of the potential associated with the 0
�
1 /2 limits.
As a result, all structural and thermodynamical properties are
only mildly affected by the anisotropic adhesion.

Nonetheless, the competition of the two adhesive terms
�the isotropic and the anisotropic ones� gives rise to an an-
isotropic local ordering within each �almost isotropic� mo-
lecular agglomerate consisting of short chains of molecules
with parallel head-to-tail orientation, “glued” to similar
chains globally oriented in the opposite direction, thus giving
an antiparallel alignment for particles belonging to two adja-
cent chains. It would be interesting to contrast the present
results with more realistic models incorporating a competi-
tion between an isotropic and anisotropic short range inter-
actions, such as for instance Stockmayer fluids �27�, dipolar
Yukawa HS fluids �28� or combination of dipolar and square-
well potentials �26�. In spite of its simplicity, the results of
the present work suggest that, in the presence of dipolarlike
anisotropy, one can continuously tune from situations only
affecting the local ordering �such as in the case presented
here� to situations where this effect is much more global
�such as the real dipolar case�, by simply adjusting the range
of interaction.

Funding from PRIN-COFIN 2007 is gratefully acknowl-
edged.
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FIG. 5. �Color online� A plot of �pv0 versus the packing frac-
tion � for four different values of t=1 / �12
�, with ��=1 /2� and
without ��=0� the anisotropic contribution using the virial route to
the pressure. The third order virial expansion is also added �v.e.� in
the most relevant case t=0.9 and �=0.5 for comparison. The part of
the lines, which are not shown, correspond to a loss of solutions.
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FIG. 6. �Color online� Phase diagram of our dipolarlike sticky
hard spheres, calculated for defect energies �1=0.186 and �3

=−0.0102. At the critical point the binodal curve �continuous line�
and the connectivity transition �dashed curve� meet. The line denote
the end-rich “gas” with the junction-rich “liquid.”
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The linearized Debye–Hückel theory for liquid state is shown to provide thermodynamically
consistent virial and energy routes for any potential and for any dimensionality. The importance of
this result for bounded potentials is discussed. © 2009 American Institute of Physics.
�doi:10.1063/1.3265991�

Integral equations of liquid theory always involve some
approximate closure.1,2 This is an approximate relation be-
tween the pair and the direct correlation functions in addition
to the exact Orstein–Zernike integral equation. Unlike exact
theories, these approximate closures introduce well known
inconsistencies among different routes to the equation of
state. Given the knowledge of the pair correlation function,
there are clearly many possible routes leading to the equation
of state, but the most frequently used are the energy, the
virial �or pressure�, and the compressibility routes.

The degree of inconsistency clearly depends upon the
goodness of the approximate closure, so that some closures
might display weaker differences than others and might
even, under some particular circumstances, give no differ-
ence at all between two particular routes. The most notable
example of this �although rarely mentioned in the literature�
is the virial-energy consistency within the hypernetted-chain
�HNC� approximation.3 Other more recent examples include
the energy and virial routes in the hard-sphere limit of the
square-shoulder potential �for any approximation�,4,5 and
again the energy-virial consistency for soft-potentials within
the mean-spherical approximation �MSA�.6

The aim of this communication is to add one more case
to this relatively short list by showing that energy and virial
routes are completely equivalent within the linearized
Debye–Hückel �LDH� approximation for any potential in
any dimensionality. Our interest in this problem has been
triggered by recent investigations on bounded potentials,7–9

where this consistency is of particular importance, as we
shall discuss.

Consider an arbitrary potential ��r� for a homogeneous
fluid of N particles in d dimensions. Newton’s third law of
motion implies that ��r�=��−r�, but the potential need not
be spherically symmetric. The virial equation is associated
with the compressibility factor Z�� ,�� as1

Z �
�P

�
= 1 +

�

2d
� dry�r�r · �f�r� , �1�

where �=1 /kBT is the inverse temperature, � and P are the
density and the pressure, respectively, and f�r ;��=e−���r�

−1 is the Mayer function. In Eq. �1� we have also introduced
the cavity function y�r ;� ,��, which is related to the pair
correlation function g�r ;� ,�� by the relation y�r�
=e���r�g�r�. The energy equation is associated with the en-
ergy U per particle u�� ,��,

u �
U

N
=

d

2�
−

�

2
� dry�r�

� f�r�
��

. �2�

A standard thermodynamic identity10 provides the consis-
tency condition between the pressure and energy routes:

�� �u

��
�

�

= � �Z

��
�

�

. �3�

The explicit notation of the variable being kept fixed and the
parameter dependence will be dropped henceforth for nota-
tional simplicity. It proves convenient to further introduce
the quantity w�r ;� ,��=y�r ;� ,��−1, which is related to the
potential of mean force ��r ;� ,��=−�−1 ln g�r ;� ,�� by
−����r�−��r��=ln�1+w�r��. We anticipate that w�r�, intro-
duced as a definition at this stage, will assume a particular
physical meaning within the LDH approximation later on.
Then, identity �3� translates into the following condition:

−
�

��
	�� drw�r�

� f�r�
��


 =
1

d

�

��
	� drw�r�r · �f�r�
 .

�4�

Introducing the Fourier transforms w̃�k ;� ,�� and f̃�k ;�� of
w�r ;� ,�� and f�r ;��, respectively, Eq. �4� becomes, after
standard manipulations,
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�

��
	�� dk

�2��d w̃�k�
� f̃�k�
��



=

�

��
	1

d
� dk

�2��d w̃�k��k · �k f̃�k��
 . �5�

Here we have used w̃�−k�= w̃�k� from the symmetry relation
��−r�=��r�. Equation �5� can be recast into a more conve-
nient form by taking into account the mathematical identity

�

��
�w̃�k��k · �k f̃�k���

= d
�w̃�k�

��
f̃�k� + �k · 	kw̃�k�

� f̃�k�
��



+ k · 	 �w̃�k�

��
�k f̃�k� −

� f̃�k�
��

�kw̃�k�
 . �6�

Upon integration over k in Eq. �5� the second surface term of
the right-hand side of Eq. �6� can be dropped and hence we
find

�

��
	�� dk

�2��d w̃�k�
� f̃�k�
��



=� dk

�2��d

�w̃�k�
��

f̃�k� +
1

d
� dk

�2��dk

· 	 �w̃�k�
��

�k f̃�k� −
� f̃�k�
��

�kw̃�k�
 . �7�

We remark that no approximations have been carried out so
far, and that Eq. �7� is completely equivalent to the consis-
tency condition �3�. Therefore, any w̃�k� satisfying Eq. �7�
gives thermodynamically consistent results via the energy
and virial routes.

We now show that this is in fact the case for the LDH
theory which is defined by w�r�=y�r�−1 where w̃�k� satis-
fies the scaling relation11

�w̃�k� = F�� f̃�k�� , �8�

with F�z�=z2 / �1−z�. This immediately provides the follow-
ing expressions

�

��
��w̃�k�� = F��� f̃�k�� f̃�k� , �9�

�w̃�k�
��

= F��� f̃�k��
� f̃�k�
��

, �10�

�kw̃�k� = F��� f̃�k���k f̃�k� . �11�

Equations �10� and �11� readily yield

�w̃�k�
��

�k f̃�k� =
� f̃�k�
��

�kw̃�k� , �12�

so that the second integral on the right-hand side of �7� van-
ishes identically. In addition, Eqs. �9� and �10� show that the

remaining terms in Eq. �7� are identical. This closes the
proof.

It is useful to put the present result into some perspec-
tives. The LDH theory can be derived from diagrammatic
methods1 by summing all simple chain diagrams to all orders
in density �. A mathematical device to do this is to formally
multiply the Mayer function f�r� by a bookkeeping param-
eter �, and then let �→0, so that the leading diagrams to be
retained at each order are the simple chain diagrams, which
then give the dominant contribution to the pair correlation
function within this approximation. This procedure is physi-
cally justified only for bounded potentials where �f�r�� can be
made arbitrarily small by increasing the temperature, and
hence the virial-energy consistency is also representative of
the exact behavior of the equation of state, unlike the case of
unbounded potentials where this is not the case and consis-
tency does not automatically ensure exact results.12

Representative examples of bounded potentials, recently
discussed in the literature, include Gaussian potentials,13

penetrable spheres,7 and penetrable square-well �PSW�.8,9

These potentials are currently of the greatest interest both
from a practical point of view, as they mimic ultrasoft sys-
tems such as suitable mixtures of colloids and polymers,14

and theoretically, as they are compatible with a phase transi-
tion even in one-dimensional systems �see for instance dis-
cussion in Ref. 9�.

We have explicitly numerically checked the virial-energy
equation within the PSW model defined by the potential8,9

��r� = ��r, r � 	

− �a, 	 � r � 	 + 


0, r � 	 + 
 ,

 �13�

where 	 is the particle diameter, 
 is the width of the well,
and �r and �a are two positive constants accounting for the
repulsive and attractive parts of the potential, respectively.
Two particles then attract each other through a square-well
potential of depth −�a�0 and width 
, but can also inter-
penetrate each other with an energy cost �r�0. Figure 1
depicts both the virial and the energy equation of state for the
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FIG. 1. Equation of state of the three-dimensional PSW model, Eq. �13�, as
obtained from the virial route, Eq. �1� �solid line� and from the energy route,
Eq. �2� �solid circles� for reduced temperature kBT /�a=8, well width 
 /	
=0.5, and energy ratio �r /�a=2. Also shown are the results obtained from
MC simulations �triangles�.
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PSW model at a representative state point, as obtained from
a numerical solution within the LDH approximation. As ex-
pected, we find complete numerical consistency, in agree-
ment with the analytical proof. The compressibility equation
of state �not shown� lies slightly below the energy-virial
curve. Figure 1 also includes Monte Carlo �MC� data ob-
tained for the same system and state.15 We observe that at
this relatively high temperature the LDH solution provides
an accurate equation of state, in agreement with the previous
discussion on bounded potentials.

We close this communication with a few remarks. The
analytical proof presented here is patterned after a similar
proof on the virial-energy consistency within the MSA for a
general class of soft potentials which include bounded inter-
actions treated here.6 Given the close relationship between
MSA and LDH for soft potentials,1 the result presented here
and in Ref. 6 retrospectively can be cast within a unified
framework associated with the existence of a scaling form in
Fourier space akin to Eq. �8�.

Of different nature appears to be the virial-energy con-
sistency within the HNC closure. This is a direct conse-
quence of the existence of an explicit expression for the free
energy, pressure, and chemical potential as a result of a
single approximation, thus increasing internal
consistency.3,16,17

On the other hand, the HNC theory can be alternatively
viewed as an approximation to the exact diagrammatic ex-
pansion of the pair correlation function which retains the
complete class of particular diagrams �chains, both simple
and netted, and bundles� and the virial-energy consistency
can be also regarded as a direct consequence of this.2,18 As
the full expansion including all diagrams is of course consis-
tent, an additional further consequence is that the class of
diagrams not included within the HNC approximation �the
so-called elementary diagrams related to the bridge function�
must also be consistent from the virial-energy point of view.
Our result builds upon this argument by adding the addi-
tional piece of information that the full inclusion of simple
chain diagrams only also leads to virial-energy consistency.
A profound consequence of our result is therefore that the
virial-energy consistency is deeply tied to the retention of all
diagrams within a given class.19
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Chapter 21

A Numerical Test of a
High-Penetrability Approximation for
the One-Dimensional
Penetrable-Square-Well Model
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(2010)
Title: “A numerical test of a high-penetrability approximation for the one-dimensional
penetrable-square-well model.”
Abstract: The one-dimensional penetrable-square-well fluid is studied using both analytical
tools and specialized Monte Carlo simulations. The model consists of a penetrable core
characterized by a finite repulsive energy combined with a short-range attractive well. This
is a many-body one-dimensional problem, lacking an exact analytical solution, for which the
usual van Hove theorem on the absence of phase transition does not apply. We determine
a high-penetrability approximation complementing a similar low-penetrability approxima-
tion presented in previous work. This is shown to be equivalent to the usual Debye-Hückel
theory for simple charged fluids for which the virial and energy routes are identical. The
internal thermodynamic consistency with the compressibility route and the validity of the
approximation in describing the radial distribution function is assessed by a comparison
against numerical simulations. The Fisher-Widom line separating the oscillatory and mono-
tonic large-distance behaviors of the radial distribution function is computed within the
high-penetrability approximation and compared with the opposite regime, thus providing a
strong indication of the location of the line in all possible regimes. The high-penetrability
approximation predicts the existence of a critical point and a spinodal line, but this occurs
outside the applicability domain of the theory. We investigate the possibility of a fluid-fluid
transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of such a
transition. Additional analytical arguments are given to support this claim. Finally, we find
a clustering transition when Ruelle’s stability criterion is not fulfilled. The consequences of
these findings on the three-dimensional phase diagrams are also discussed.
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The one-dimensional penetrable-square-well fluid is studied using both analytical tools and
specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a
finite repulsive energy combined with a short-range attractive well. This is a many-body
one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove
theorem on the absence of phase transition does not apply. We determine a high-penetrability
approximation complementing a similar low-penetrability approximation presented in previous
work. This is shown to be equivalent to the usual Debye–Hückel theory for simple charged fluids for
which the virial and energy routes are identical. The internal thermodynamic consistency with the
compressibility route and the validity of the approximation in describing the radial distribution
function is assessed by a comparison against numerical simulations. The Fisher–Widom line
separating the oscillatory and monotonic large-distance behaviors of the radial distribution function
is computed within the high-penetrability approximation and compared with the opposite regime,
thus providing a strong indication of the location of the line in all possible regimes. The
high-penetrability approximation predicts the existence of a critical point and a spinodal line, but
this occurs outside the applicability domain of the theory. We investigate the possibility of a
fluid-fluid transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of
such a transition. Additional analytical arguments are given to support this claim. Finally, we find a
clustering transition when Ruelle’s stability criterion is not fulfilled. The consequences of these
findings on the three-dimensional phase diagrams are also discussed. © 2010 American Institute of
Physics. �doi:10.1063/1.3455330�

I. INTRODUCTION

Recent advances in chemical synthesis have unveiled
more and more the importance of soft-matter systems, such
as dispersions of colloidal particles, polymers, and their
combinations. Besides their practical interest, these new de-
velopments have opened up new theoretical avenues in �at
least� two instances. First, it is possible to experimentally
fine-tune the details of interactions �range, strength,…�, mak-
ing these systems a unique laboratory for testing highly sim-
plified models within an effective-interaction approach
where the microscopic degrees of freedom are integrated out
in favor of renormalized macroparticle interactions. Second,
they offer the possibility of exploring new types of equilib-
rium phase behaviors not present in the simple-fluid para-
digm.

As early as in 1989, Marquest and Witten1 suggested that
the experimentally observed crystallization in some copoly-

mer micellar systems could be rationalized on the basis of a
bounded interaction, that is, an interaction that does not di-
verge at the origin. Successive theoretical work showed that
this class of bounded or ultrasoft potentials naturally arises
as effective interactions between the centers of mass of many
soft and flexible macromolecules, such as polymer chains,
dendrimers, star polymers, etc. �see, e.g., Ref. 2 for a refer-
ence on the subject�. Two well-studied cases belonging to the
above class are the Gaussian core model �GCM� introduced
by Stillinger3 and the penetrable-sphere �PS� model intro-
duced in Refs. 1 and 4, whose freezing transition turns out to
display rather exotic features with no analog in the atomistic
fluid realm.

In the present paper, we shall consider a close relative of
the PS model, first introduced in Ref. 5, denoted as the
penetrable-square-well �PSW� model, where a short-range
attractive tail is added to the PS model just outside the core
region. In the limit of infinite repulsive energy, the PS and
PSW models reduce to the usual hard-sphere �HS� and
square-well �SW� models, respectively.

An additional interesting feature common to both PS and
PSW, as well as to all bounded potentials, is the fact that
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even when confined to one-dimensional �1D� systems, they
may exhibit a nontrivial phase diagram due to the penetra-
bility which prevents an exact analytical solution.

This is because particles cannot be lined up on a line
with a well defined and fixed ordering in view of the possi-
bility of reciprocal interpenetration �with some positive en-
ergy cost�, thus lacking an essential ingredient allowing for
an exact solution in the respective hard-core counterparts
�HS and SW�. It is then particularly useful to discuss some
motivated approximations in the 1D model which can then
be benchmarked against numerical simulations and subse-
quently exploited in the much more complex three-
dimensional �3D� case.

The aim of the present paper is to complete a study on
the 1D PSW model started in Refs. 5 and 6, as well as the
general results presented in Ref. 5, which are particularly
relevant in the present context. In the first paper of the
series,5 we introduced the model and discussed the range of
stability in terms of the attractive versus repulsive energy
scale. We provided, in addition, exact analytical results in the
low-density limit �second order in the radial distribution
function �RDF� and fourth order in the virial expansion� and
a detailed study of the Percus–Yevick and hypernetted-chain
integral equations. These were used in the following paper6

to propose a low-penetrability approximation �LPA� at finite
density which was then tested against numerical simulation.
This LPA is expected to break down in the opposite regime,
namely, when temperatures and densities are such that par-
ticles easily interpenetrate each other. In the present paper,
we address this latter regime by proposing a complementary
approximation �the high-penetrability approximation �HPA��
and discussing its range of validity and the relationship with
the low-penetrability regime. Note that a similar matching of
the LPA and HPA has already been carried out by two of the
present authors in the framework of the PS model.7,8 It turns
out that the HPA in the context of bounded potentials coin-
cides with the linearized Debye–Hückel �LDH� classical ap-
proximation originally introduced in the framework of the
Coulomb potential.9 It has been recently shown10 that two of
the three standard routes to thermodynamics �the energy and
the virial routes� are automatically consistent within the
LDH approximation, for any potential and dimensionality.
This means that a deviation from the third standard route to
thermodynamics �the compressibility route� can be exploited
to assess the degree of reliability of the high-penetrability �or
LDH� approximation. This is indeed discussed in the present
paper, where we also discuss the full hierarchy of approxi-
mations ranging from the full Debye–Hückel approximation
to the simplest mean-spherical approximation �MSA�.

In view of the boundness of the potential, the usual van
Hove no-go theorem11,12 on the absence of phase transitions
in certain 1D fluids does not hold. It is then natural to ask
whether a phase transition occurs in the 1D PSW fluid by
noting that the addition of an attractive tail to the pair poten-
tial of the PS model extends the question to the fluid-fluid
transition, in addition to the fluid-solid transition possible
even within the PS model. In the present paper we confine
our attention to the fluid-fluid case only and discuss this
possibility using both analytical arguments and state-of-the-

art numerical simulations.13–16 Our results are compatible
with the absence of such a transition, as we shall discuss.
This is also supported by recent analytical results17 using a
methodology devised for 1D models with long-range
interactions.18 We discuss possible reasons for this and a
plausible scenario for the 3D case.

Finally, we note that the approach to a critical point is
frequently anticipated by the so-called Fisher–Widom �FW�
line19 marking the borderline between a region with oscilla-
tory behavior in the long-range domain of the correlation
function �above the FW line� and a region of exponential
decay. We discuss the location of this line within the HPA
and again the matching of this result with that stemming
from the LPA.

The structure of this paper is as follows. We define the
PSW model in Sec. II. We then construct the HPA in Sec. III
and in Sec. IV we discuss some approximations related to it.
Section V contains a discussion on the routes to thermody-
namics, as predicted by the HPA. The structure predicted by
the approximation is compared with the Monte Carlo �MC�
data in Sec. VI. The FW line and the possibility of a fluid-
fluid transition are discussed in Sec. VII. The paper ends
with some concluding remarks in Sec. VIII.

II. THE PSW MODEL

The PSW model is defined by the following pair
potential:5,6

�PSW�r� = �+ �r, r � �

− �a, � � r � � + �

0, r � � + � ,
� �2.1�

where � is the well width and �r and �a are two positive
constants accounting for the repulsive and attractive parts of
the potential, respectively. In the following, we shall restrict
our analysis to the case � /��1 and �r�2�a, where we
know the 1D model to be stable with a well defined thermo-
dynamic limit.5 It is shown in Appendix A that more gener-
ally, the 1D PSW model is guaranteed to be stable if �r

�2��+1��a, where � is the integer part of � /�. For lower
values of �r the model may or may not be stable and we will
come back to this point in Sec. VII.

An important role in the following is played by the cor-
responding Mayer function:

fPSW�r� = �rfHS�r� + �a�	�r − �� − 	�r − � − ��� , �2.2�

where �r=1−e−
�r is the parameter measuring the degree of
penetrability varying between 0 �free penetrability� and 1
�impenetrability�, while �a=e
�a −1�0 measures the
strength of the well depth. Here 
=1 /kBT with T as the
temperature and kB as the Boltzmann constant, fHS�r�
=−	��−r� is the Mayer function for HSs and 	�r� is the
Heaviside step function.

A detailed discussion of the limiting cases of the PSW
model can be found in Ref. 5. Here we merely note that the
PSW Mayer function fPSW�r� is immediately related to the
usual SW Mayer function by

fPSW�r� = �rfSW�r� , �2.3�
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fSW�r� = fHS�r� + ��	�r − �� − 	�r − � − ��� , �2.4�

where we have introduced the ratio �=�a /�r. At a given
value of �r /�a, � increases quasilinearly with e
�a, its mini-
mum value �=�a /�r corresponding to 
�a→0.

III. THE HPA

In Ref. 6 we discussed a LPA to the PSW model. Within
this approximation, one assumes 1−�r=e−
�r �1 so that the
repulsive barrier �r is sufficiently higher than the thermal
energy kBT, penetrability is small, and the system is almost a
hard-core one. The advantage of this theoretical scheme is
that one can use the general recipe leading to the exact so-
lution for the 1D SW problem—in fact, valid for any poten-
tial with a hard-core and short-range attractions—and per-
form some ad hoc adjustments to ensure that some basic
physical conditions on the RDF g�r� are satisfied. Compari-
son with MC simulations showed a good behavior of the
LPA even for 
�r=2 �1−�r�0.14�, provided the density was
moderate ����0.5�.

The opposite limit �r�1 is also inherently interesting
for several reasons. From a physical viewpoint this amounts
to starting from the ideal gas limit �r→0 �one of the com-
mon reference systems for simple fluids� and progressively
building up interactions by increasing �r. An additional
mathematical advantage stems from the simple
observation7,8,20 that in the �exact� cluster expansion of g�r�
only the dominant chain diagrams need to be retained at all
orders, thus leading to the possibility of an exact summation
of those leading contributions. As we shall see shortly, this is
in fact a procedure known as the Debye–Hückel approxima-
tion in the context of charged fluids.9,10

Our main goal is the computation of the cavity function
y�r�	e
��r�g�r�, from which one can immediately compute
the RDF g�r�=y�r��1+ f�r��. In the PSW case one then has
from Eq. �2.3�,

g�r� = ��1 − �r�y�r� , r � 1

�1 + �a�y�r� , 1 � r � 


y�r� , r � 
 ,
� �3.1�

where 
=1+� and, in conformity with previous work,5,6 we
have redefined all lengths in units of � so we set �=1 in
most of the following equations.

As shown in Ref. 20 for the PS case, the exact form of
the PSW cavity function in the limit �r→0 at finite �
=�a /�r and ��r is

y�r� = 1 + �rw�r� , �3.2�

where the function w�r� is defined through its Fourier trans-
form

w̃�k� = ��r

f̃SW
2 �k�

1 − ��r f̃SW�k�
, �3.3�

with f̃SW�k� being the Fourier transform of fSW�r�. Note that
in the limit �r→0 one has �r

�r and �
�a /�r.

Generalizing an analogous approximation in the context
of the PS model,7,8 our HPA consists of assuming Eqs. �3.2�

and �3.3� for finite, but small, values of �r. It is worth noting
that the combination of expressions �3.2� and �3.3� defines
what is usually referred to, in a different context, as the LDH
approximation,9,10 and this will be further elaborated below.

Equations �3.2� and �3.3� hold for any dimensionality. In
the specific 1D case, and taking into account Eq. �2.4�, we
have

f̃SW�k� = 2�
0

�

dr cos�kr�fSW�r�

= −
2

k
��1 + ��sin k − � sin 
k� . �3.4�

The function w�r� can be numerically evaluated in real space
by the Fourier inversion as

w�r� =
��r

�
�

0

�

dk cos�kr�
f̃SW

2 �k�

1 − ��r f̃SW�k�
. �3.5�

An explicit expression for the density expansion of w�r�
within the HPA is reported in Eqs. �B7� and �B8� of Appen-
dix B, where the radius of convergence of the expansion is
also analyzed.

From Eqs. �2.3�, �3.1�, and �3.2� the total correlation
function, h�r�=g�r�−1, within the HPA is easily obtained as

h�r� = �rw�r��1 + �rfSW�r�� + �rfSW�r� �3.6�

or in the Fourier space,

h̃�k� = �r
f̃SW�k�

1 − ��r f̃SW�k�
+ ��r

3�
−�

� dk�

2�

f̃SW
2 �k�� f̃SW��k − k���

1 − ��r f̃SW�k��
.

�3.7�

From this equation it is straightforward to get the structure
factor

S�k� = 1 + �h̃�k� =
1

1 − ��r f̃SW�k�

+ �2�r
3�

−�

� dk�

2�

f̃SW
2 �k�� f̃SW��k − k���

1 − ��r f̃SW�k��

�3.8�

and the Fourier transform of the direct correlation function

c̃�k�= h̃�k� /S�k�. The zero wavenumber value of the structure
factor is

S�0� =
1

1 + 2��r�1 − ���
+ �2�r

3�
0

� dk

�

f̃SW
3 �k�

1 − ��r f̃SW�k�
,

�3.9�

where we have taken into account that f̃SW�0�=−2�1−���.
This completes the calculation of the correlation functions
within the HPA.

IV. APPROXIMATIONS RELATED TO THE HPA

As anticipated in Sec. III, the HPA is the exact equiva-
lent to the well-known LDH approximation, which is widely
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used in the context of charged simple fluids.9 The latter is
actually an intermediate step of a hierarchy of successive
approximations ranging from the simplest MSA to the full
nonlinear version of the Debye–Hückël approximation �see
Ref. 11 in Ref. 10 for a discussion on this point�. For the
PSW model—and more generally for any bounded
potential—the LDH approximation �the HPA in the present
language� is particularly relevant in view of the fact that one
can make fPSW�r� arbitrarily small by letting �r→0, thus
justifying the approximation of neglecting nonchain dia-
grams. It is then interesting to check the performance of the
other approximations included in the aforementioned class,
which will be translated in the present context for simplicity.

On top of the hierarchy of approximations there is the
nonlinear HPA �nlHPA�

y�r� = e�rw�r�, �4.1�

which is equivalent to the nonlinear Debye–Hückël approxi-
mation, as remarked. The HPA, Eq. �3.2�, is obtained upon
linearizing the exponential, an approximation valid again in
the limit �r�1. An additional approximation—denoted here
as the modified HPA �mHPA�—can be considered with the
help of Eq. �3.6� by neglecting the quadratic term in �r. This
yields

h�r� = �r�w�r� + fSW�r�� . �4.2�

This is equivalent to keeping only the first term on the right-

hand side of Eq. �3.7�, which implies c̃�k�=�r f̃SW�k� or, in
real space,

c�r� = fPSW�r� . �4.3�

The lowest rank in the hierarchy is occupied by the MSA,
which is obtained from Eq. �4.3� upon linearization of the
Mayer function fPSW�r�,

c�r� = − 
�PSW�r� . �4.4�

Since w�r� is a convolution, it must be continuous at r
=1 and r=
. It follows that the approximations with a con-
tinuous cavity function at r=1 and r=
 are nlHPA and HPA.
For instance, in mHPA �4.2� the cavity function is y�r�=1
+�rw�r� / �1+�rfSW�r�� so that one has y�1−�−y�1+�
=�r

2w�1��1+���1−�r�−1�1+��r�−1 and y�
+�−y�
−�
=�r

2w�
���1+��r�−1.
It has been shown in Ref. 10 that the virial and energy

routes to thermodynamics �to be discussed below� are con-
sistent with one another within the HPA, for any potential
and any dimensionality. A similar statement holds true for
soft potentials within the MSA.21 This clearly includes the
PSW potential in both cases.

It is interesting to make contact with previous work car-
ried out by Likos et al.22,23 on a general class of unbounded
potentials which are free of attractive parts, thus resulting
particularly useful in the context of the fluid-solid transition.
In Ref. 22, the MSA given in Eq. �4.4� along with the spin-
odal instability to be discussed in detail in Sec. VII, has been
introduced for a general class of unbounded potentials in-
cluding the PS as a particular case. This has been further
elaborated and extended to include the GCM in Ref. 23. In
both cases, the authors discuss directly the 3D case so that a

direct comparison with the present work cannot be drawn at
the present stage, but they also provide a detailed discussion
of various approximations, within the general framework of
density functional theory, that provides a unified framework
where even the present model could be included.

V. EQUATION OF STATE

Given an approximate solution of a fluid model there are
several routes to the equation of state which, in general, give
different results. The most common are three:9 the virial, the
compressibility, and the energy route. The consistency of the
outcome of these different routes can be regarded as an as-
sessment on the soundness of the approximation. For some
particular approximations it may also happen that the consis-
tency of two of the three routes is automatically enforced
�see Ref. 10 and references therein for a detailed discussion
on this point�. This is the case of the HPA, where the virial
and energy routes coincide, as anticipated. Hence, the con-
sistency with the compressibility route will provide a rough
estimate of the regime of validity of the HPA within a phase
diagram for the PSW potential.

Let us briefly recall9 the methods to compute the com-
pressibility factor, Z=
p /�, associated with the three differ-
ent routes. The virial route is defined by

Z = 1 − �
�
0

�

drry�r�e−
��r����r� , �5.1�

which, using standard manipulations,9 yields

Z = 1 + ��r��1 + ��y�1� − �
y�
�� . �5.2�

Thus the problem is reduced to the computation of the cavity
function y�r� which, in the present context, follows from
Eqs. �3.2� and �3.5�.

Next, we consider the compressibility route,

Z =
1

�
�

0

� d��

S�0�
, �5.3�

where the integral can be readily evaluated with the help of
Eq. �3.9�.

Regarding the energy route, we start from the internal
energy per particle

u =
1

2

+ ��

0

�

dr��r�g�r� , �5.4�

which yields

u =
1

2

+ �r�1 − �r���

0

1

dry�r� − �a�1 + �a���
1




dry�r� .

�5.5�

In the above equation, the expressions given by Eqs. �2.1�
and �3.1� have been used. In order to obtain 
p from u we
exploit the following standard thermodynamic identity:10

�2
 �u

��
�




= 
 �
p

�

�

�

, �5.6�

thus leading to
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Z = 1 + ��
0




d
�
 �u

��
�


�
. �5.7�

We have used the exact consistency between the virial and
energy routes within the HPA as a test of the numerical cal-
culations.

Figure 1 depicts the results of the virial—and hence en-
ergy, as remarked—route under the condition �r /�a=2,
which constitutes the borderline range of stability of the 1D
PSW model with � /��1.5 Under this demanding condition,
we have considered three reduced temperatures from
kBT /�a=8 to kBT /�a=12, whereas the width of the well has
been fixed to the value � /�=1. We remark that �� is not
limited in values from above due to the boundness of the
potential. The clear downturn of all three curves for suffi-
ciently large reduced density �� is a consequence of the
existence of a maximum density �max �see Eq. �B10��, be-
yond which the HPA breaks down, as described at the end of
Appendix B. In particular, the values of the maximum den-
sity for �r /�a=2 and � /�=1 are �max�=4.94, 6.15, and 7.36
at kBT /�a=8, 10, and 12, respectively, in agreement with
Fig. 1.

We compare in Fig. 2 the results from the virial
�-energy� and the compressibility routes with MC
simulations24 for an intermediate value of the reduced tem-
perature �kBT /�a=10� and other parameters as before. Rather
interestingly, the virial �-energy� route appears to reproduce
rather well the numerical simulation results up to the region
where the artificial downward behavior shows up, whereas
the compressibility route begins to deviate for densities ��
�3.

As the temperature increases the HPA theory clearly re-
mains a good approximation for a larger range of densities.
We can naturally measure this by the requirement that virial
�-energy� and compressibility routes are consistent within a
few percent. This is indeed shown in Fig. 3, where we depict
a transition line separating a “reliable” from an “unreliable”
regime, as measured by the relative deviation of the two
routes �here taken to be 5%�, for four choices of the model
parameters: ��r /�a ,� /��= �2,1�, �2,0.5�, �5,1�, and �5,0.5�.
The value � /�=0.5 is frequently used in the SW

counterpart.25 We observe that the region 0����lim�T�
where the HPA is reliable is hardly dependent on � /� �com-
pare curves �a�, �b� for �r /�a=5 and �c�, �d� for �r /�a=2 in
Fig. 3�. On the other hand, at given values of � /� and
kBT /�a, the range 0����lim�T� decreases with increasing
�r /�a �compare curves �a�, �d� for � /�=0.5 and �b�, �c� for
� /�=1 in Fig. 3�, as expected. However, this effect is much
less important if the increase of �r /�a takes place at fixed
kBT /�r �see inset of Fig. 3�. It is interesting to note that as
illustrated in Fig. 2, the HPA virial route keeps being reliable
up to a certain density higher than �lim.

As said above, in Ref. 6 we introduced a LPA that was
accurate for states where the penetrability effects were low
or moderate. The LPA is complemented by the HPA pre-
sented in this paper. It is then interesting to compare the
regions where each approximation can be considered reliable
according to the same criterion as in Fig. 3. This is shown in
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FIG. 1. Plot of the compressibility factor Z=
p /� as computed from the
virial �-energy� route to the pressure for �r /�a=2 and � /�=1. Results for
three different reduced temperatures kBT /�a=8,10,12 are displayed.
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Fig. 4 for the case �r /�a=5 and � /�=1. The two transition
lines split the plane into four regions: a region where only
the LPA is reliable, a region where only the HPA is reliable,
a region where both approximations are reliable �and provide
equivalent results�, and a region where none of them is suf-
ficiently good. The latter region shrinks as �r /�a decreases
�thanks to the HPA� or � /� decreases �thanks to the LPA�.

VI. STRUCTURE

As an additional test of the soundness of the HPA, we
also study the RDF g�r�=h�r�+1, which can easily be ob-
tained from Eqs. �3.1� and �3.2�, or equivalently from Eq.
�3.6�, once the auxiliary function w�r� has been determined.
For a sufficiently high temperature �and hence high penetra-
bility�, the HPA is clearly well performing, as can be inferred
from Fig. 5, when compared with standard NVT MC results.
Here we have considered the same parameters as in the pre-
ceding section ��r /�a=2 and � /�=1� at a corresponding
high-temperature value kBT /�a=10 and a density ��=1.5,
where overlappings are unavoidable. Under these conditions,
there is no visible difference among the various approxima-
tions considered in Sec. IV. The excellent performance of the

HPA observed in Fig. 5 agrees with the reliability criterion of
Fig. 3 since the state kBT /�a=10 and ��=1.5 is well below
the curve �c� corresponding to �r /�a=2 and � /�=1.

As we cool down, significant differences among various
approximations �HPA, nlHPA, mHPA, and MSA� begin to
appear, as depicted in Fig. 6, where results corresponding to
temperatures kBT /�a=5 �top panel� and kBT /�a=3 �bottom
panel� are reported within the same scale. The states
kBT /�a=5 and ��=1.5 are still lying in the reliable region of
Fig. 3, but close to the boundary line �c�, while the states
kBT /�a=3 and ��=1.5 are clearly outside that region. In the
case kBT /�a=5 the HPA and its three variants are practically
indistinguishable, except in the region 0�r��, which is
very important to describe the correct thermodynamic behav-
ior, where the best agreement with MC data corresponds to
the nlHPA, followed by the HPA. The two approximations
that do not preserve the continuity of the cavity functions
�mHPA and MSA� overestimate the jump at r=�. In the
lower temperature case kBT /�a=3 all the approximations
overestimate the oscillations of the RDF. Interestingly, the
HPA captures quite well the values of g�r� near the origin.
The worst overall behavior corresponds again to the MSA,
which even predicts negative values of g�r� for r /��1.
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Additional insights can be obtained by decreasing the
range of interactions, in close analogy with what we consid-
ered in previous work for the complementary LPA.6 This is
reported in Fig. 7 for cases �r /�a=5 and � /�=0.5 with
�kBT /�a ,���= �5,1.5� �top panel� and �kBT /�a ,���= �2,0.8�
�bottom panel�. Again we stress that the same scale is used
for both panels in order to emphasize the effect of lowering
the temperature. Clearly this is a more demanding situation.
In fact, both states are above curve �a� of Fig. 3 and thus
outside the corresponding reliability region. Therefore, clear
deviations from MC results appear in all considered approxi-
mations, especially in the lower temperature case kBT /�a=2
�bottom panel�. Yet, the HPA is still a reasonably good ap-
proximation that follows the main qualitative features of the
correct g�r�. In the higher temperature case kBT /�a=5 the
only noticeable limitations of the HPA practically take place
near the origin, this deficiency being largely corrected by the
mHPA.

To conclude this section, it is worthwhile comparing the
two complementary approaches HPA and LPA at a case
where both are expected to be reliable, according to the dia-
gram of Fig. 4. This is done in Fig. 8 for �r /�a=5, � /�=1,
kBT /�a=2, and ��=0.2. We observe that both approxima-

tions agree well each other and with MC data, except in the
region 1�r /��� /�, where the HPA RDF presents an arti-
ficial curvature.

VII. FW LINE AND FLUID-FLUID TRANSITION

We now turn to an interesting point raised in previous
work,6 namely, the question of whether the model can dis-
play a phase transition in spite of its 1D character. The exis-
tence of general theorems—all essentially based on the origi-
nal van Hove’s result11—on the absence of phase transitions
for a large class of 1D models with short-range interactions
is well established.12 PSW and PS models, however, do not
belong to the class for which these general theorems hold.
This is because boundness allows multiple, partial �or even
total� overlapping at some energy cost, thus rendering the
arguments used in the aforementioned theorems invalid.

On the other hand, none of these theorems provide a
general guideline to understand whether a 1D model may or
may not display a nontrivial phase transition, and one has
then to rely on the specificity of each model. As discussed in
our previous work,6 it is instructive to first address the sim-
pler question of the location of the FW line. This is a line
separating two different regimes for the large-distance be-
havior of the RDF g�r� in the presence of competing
repulsive/attractive interactions.19 The rationale behind the
FW line is that on approaching the critical points where at-
tractions become more and more effective, the behavior of
correlation functions must switch from oscillatory �character-
istic of repulsive interactions� to exponential with a well de-
fined correlation length �. In the previous work, we analyzed
the location of this line for PSW within the LPA. Here we
extend this analysis to the HPA regime and discuss the com-
patibility of the two results.

Let us first briefly recall the main points of the analysis,
referring to Ref. 6 for details. From Eq. �3.1� we note that the
asymptotic behavior of g�r� is the same as that of y�r�. In
view of Eq. �3.2�, this is hence related to w�r�, whose
asymptotic behavior is governed by the pair of conjugate
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poles of w̃�k� with an imaginary part closest to the origin. If
the real part of the pair is zero, the decay is monotonic and
oscillatory otherwise.

According to Eq. �3.3�, the poles of w̃�k� are given by

��r f̃SW�k� = 1. �7.1�

Let k= � ix be the imaginary pole and k= � i�x�� iy� be the
pole with the imaginary part closest to the origin. The FW
line is determined by the condition x=x�. This gives, at a
given temperature, three equations in the three
unknowns—x, y, and �.6 More specifically, after some alge-
bra, one gets

y

x
sinh x sinh�
x��cos y − cos�
y��

= sinh x cosh�
x�sin�
y��cos y − 1�

− sinh�
x�cosh x sin y�cos�
y� − 1� , �7.2�

� = � sinh�
x�
sinh x

cos�
y� − 1

cos y − 1
− 1�−1

, �7.3�

� =
1

2�r

x

� sinh�
x� − �1 + ��sinh x
. �7.4�

The inverse of the parameter x represents the correlation
length �=1 /x. From a practical point of view it is more con-
venient to use x rather than kBT /�a as a free parameter to
construct the FW line. In that way, Eq. �7.2� becomes a tran-
scendental equation that gives y as a function of x; once y�x�
is known, the solution to Eq. �7.3� gives kBT /�a as a function
of x; finally, insertion of y�x� and kBT�x� /�a into Eq. �7.4�
provides ��x�. The corresponding values of the pressure are
obtained from either Eq. �5.2� �virial-energy route� or
Eq. �5.3� �compressibility route�.

We observe that T decreases as x decreases, until a
critical value Tc is found in the limit x→0. In that limit,
Eqs. �7.2�–�7.4� simplify to


yc�cos yc − cos�
yc��

= sin�
yc��cos yc − 1� − 
 sin yc�cos�
yc� − 1� ,

�7.5�

�c = �

cos�
yc� − 1

cos yc − 1
− 1�−1

, �7.6�

�c =
1

2�r

1

�c� − 1
. �7.7�

At the critical point �T , � �= �Tc ,�c�, one has x=0 or, equiva-
lently, �→�. Therefore, at this point w�r� does not decay for
long distances and in the Fourier space one has w̃�k��k−2

and S�k��k−2 for short wave numbers. The condition S�k�
�k−2 is also satisfied for T�Tc if ��= �2�r��� /�−1��−1, in
agreement with Eq. �3.9�. This defines in the �-T plane a
spinodal line or locus of points of infinite isothermal com-
pressibility �within the compressibility route�. The spinodal
line cannot be extended to temperatures larger than the criti-
cal value Tc because �2�r��� /�−1��−1��max� if T�Tc,

where �max is the maximum density beyond which the HPA
is unphysical at a given temperature �see Appendix B�. We
further note that the spinodal line only has a lower density
�or vaporlike� branch, thus hampering the interpretation of
�Tc ,�c� as a conventional critical point.

The above features are already suggestive of considering
the HPA spinodal line as an artifact of the theory when used
in a region of parameter space where the approximation is
invalid. Additional support to this view stems from the fact
that the HPA keeps predicting a spinodal line and a critical
point even in the SW case ��r /�a→� and �r→1�, a clearly
incorrect feature. As we shall discuss further below, special-
ized numerical simulations coupled with a recent analytical
study17 strongly support the absence of any phase transition
in the present 1D PSW model.

In Fig. 9 we report the comparison between the FW
lines, as predicted by the LPA and the HPA, in the �� versus
kBT /�a plane for � /�=1 and two different energy ratios,
�r /�a=10 and �r /�a=5. The spinodal line predicted by the
HPA is also included. As said above, the FW and spinodal
lines meet at the critical point. While at high temperatures
�above kBT /�a=3� there is a remarkable agreement between
the two approximations �LPA and HPA�, deviations occur at
lower temperatures.

As in the original work by Fisher and Widom,19 we also
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report the FW line in the p� /�a versus kBT /�a plane �see Fig.
10�, where again we compare the lines as derived from the
HPA and LPA schemes. For the energy ratio �r /�a=10 �top
panel� we see that the HPA and the LPA give qualitative
similar forms of the FW line with a significant deviation at
low temperatures, where again the HPA FW line is inter-
rupted at T=Tc. Note that while all three standard routes give
practically identical results within the LPA, the virial
�-energy� route in the HPA differs from the compressibility
one at low temperatures �more than 5% for kBT /�a�1.2�.
For consistency, the HPA spinodal line is obtained via the
compressibility route only. Similar features occur for the sec-
ond lower value of the energy ratio, namely, �r /�a=5 �bot-
tom panel�. Again, the LPA and HPA lines are qualitatively
similar, the three routes in the LPA provide indistinguishable
results, and the virial and energy routes in the HPA deviate
more than 5% for kBT /�a�1.2. The main distinctive feature
in this case �r /�a=5 is a marked upswing of the tail of the
FW line, absent in the previous case �r /�a=10. This means
that on increasing penetrability—that is, on decreasing
�r /�a—the transition from oscillatory �above the line� to
monotonic �below the line� behaviors occurs at a higher pres-
sure and a higher density for a fixed temperature kBT /�a.

Despite the important differences in the steps followed
to derive the LPA and the HPA, it is noteworthy that they

agree in the qualitative shape of the FW lines �even though
the HPA predicts a spurious spinodal line�. It is then reason-
able to expect that the true FW line should interpolate the
LPA line at low temperatures with the HPA line at high tem-
peratures.

Finally, we now tackle the issue of the existence of a
phase transition for the PSW 1D model. In view of the HPA
results on the seemingly existence of a spinodal line �and
hence of a critical point�, we consider here the fluid-fluid
transition. As we shall see, our numerics is compatible with
the absence of such a transition, thus supporting the view
that the above findings of a spinodal line is indeed a conse-
quence of the application of the HPA to a regime where the
theory is not valid.

As the FW line always anticipates the critical point, as
remarked, we can then look for the existence of a fluid-fluid
coexistence line in the region predicted by the interpolation
of the LPA and HPA FW lines. We have carried out extensive
simulations of the PSW fluid using the Gibbs ensemble MC
techniques and employing all standard improvements sug-
gested in literature.13–16 In order to validate our code, we
tested it against the case of the 1D SW potential, where exact
analytical predictions for all thermodynamic quantities are
available.

We have used up to 1000 particles and carefully scanned
the temperature range 0.1�kBT /�a�2.0 and the density
range 0.1����6, as suggested by the FW line �see Fig. 9�.
We have also considered different values of �r /�a and � /�
for cases giving a significant overlapping probability. In all
the cases we have not found any signature of a fluid-fluid
phase separation.

Although the absence of a critical transition is always
much more difficult to assess as opposed to its presence, the
first scenario is consistent with more than one indication. The
first indication stems from a lattice model counterpart of the
1D PSW model. This is discussed in Appendix C, where the
lattice version of the PSW model is constructed following
standard manipulations with the result that no phase transi-
tions are present for finite occupancy. An additional evidence
supporting the absence of any fluid-fluid or freezing transi-
tion stems from the very recent exact analytical work alluded
earlier17 which, using the methodology presented in Ref. 18,
concludes that no phase transitions are present for the PSW
and PS models in 1D.

In our simulations we have also investigated values of
�r /�a and � /� which violate Ruelle’s stability criterion �see
Appendix A� and thus the 1D PSW model is not necessarily
stable in the thermodynamic limit. Here the phenomenology
turns out to be much more interesting. For sufficiently low
temperatures and sufficiently high densities we observe the
formation of a “blob” of many-particle clusters �each made
of a large number of overlapping particles� having a well
defined and regular distribution on the axis, and occupying
only a portion of the system length. In the blob phases the
energy per particle grows with the number of particles, thus
revealing the absence of a thermodynamic limit. The transi-
tion from a “normal” phase to a blob phase if �r /�a�2��
+1�, where � is the integer part of � /�, is illustrated in Fig.
11. This figure shows the RDF at ��=6 �top panel� and ��
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FIG. 10. Same as in Fig. 9, but in the p� /�a vs kBT /�a plane. Note that
while in the LPA the three routes to the pressure are not distinguishable one
from the other on the graph scale, for the HPA the difference between the
virial and the compressibility route is noticeable at low temperatures.
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=8 �bottom panel� for �r /�a=2, � /�=1.5, and kBT /�a=10.
At the lower density the structure of the PSW fluid is quali-
tatively not much different from that expected if �r /�a

�2��+1� �compare, for instance, with Fig. 6�. However, the
structure at the higher density is reminiscent of that of a
solid, except that the distribution of particles does not span
the whole length �here L=N /�=62.5��. Instead, the particles
distribute into a few clusters regularly spaced with distance
1.17� so that the particles of a given cluster interact attrac-
tively with all the particles of the nearest- and next-nearest-
neighbor clusters. Note that the number of particles within
any given cluster is not necessarily identical. It is also worth
noticing that in spite of the huge difference in the vertical
scales of both panels in Fig. 11, they are consistent with the
condition �0

L/2drh�r�=−1 /2�.
The decay of the peaks of g�r� is mainly due to the lack

of translational invariance, i.e., the first and last clusters have
only one nearest-neighbor cluster, the first, second, next-to-
last, and last clusters have only one next-nearest-neighbor
cluster, and so on.

We stress that the above phenomenon is specific of
bounded potentials, such as PSW, and has no counterpart in
the hard-core domain. It is then plausible to expect their
appearance even in the corresponding 3D versions of these
models where freezing transition �and phase separation for
SW� is present but could both be hampered by the presence
of this clustering phenomenon in the region of parameter
space where Ruelle’s stability criterion is violated. This

would extend the interesting phenomenology already estab-
lished for the PS case.22 Work along these lines on the 3D
case is underway and will be reported elsewhere.

VIII. CONCLUSIONS

In this paper we have completed the study initiated in
previous work5,6 on the PSW model in 1D. This is a model
combining the three main ingredients present in many
colloidal-polymer solutions, namely, repulsions, attractions,
and penetrability. While the first two are ubiquitous even in
simple fluids, the latter is a peculiarity of complex fluids
where there exist many examples of colloid-polymer systems
which are penetrable �with some energy cost� to some extent,
and they involve both steric repulsions and short-range at-
tractions. This model then captures all these crucial features
at the simplest level of description within an implicit solvent
description.

The main new point of this paper was to present an
additional and complementary approximation, denoted as the
HPA, valid in regimes complementary to those valid for the
low-penetrability scheme LPA discussed in Ref. 6. While the
idea behind the LPA was to modify the exact relations valid
for the 1D SW fluid—and in fact for any fluid with a hard-
core and short-range attraction—to allow penetrability
within some reasonable approximation, the driving force be-
hind the HPA is the fact that for bounded potential the Mayer
function can be made arbitrarily small by considering suffi-
ciently high temperatures. As a consequence, only the linear
chain diagrams need to be retained at each order in the clus-
ter expansion. As it turns out,10 this is tantamount to consid-
ering the celebrated Debye–Hückel theory for charged fluids,
and we have considered here the soundness of this approxi-
mations at various regimes as compared to specialized MC
simulations. The latter were also compared with other ap-
proximations which parallel the entire hierarchy of approxi-
mations in the framework of charged fluids, ranging from the
most sophisticated nonlinear Debye–Hückel theory to the
simplest MSA. We have assessed the regime of reliability of
these approximations both for thermodynamic and correla-
tion functions by comparison with MC simulations and by
internal consistency between different routes to thermody-
namics.

Next we have also discussed the location of the FW line,
separating oscillatory from monotonic behavior in the corre-
lation function, within the HPA and compared with that ob-
tained from the LPA introduced in previous work.6 In agree-
ment with previous findings, we find that penetrability
enhances the region where correlation functions have a
monotonic regime. The FW lines derived from the HPA and
LPA schemes are found to be in qualitative agreement, thus
making drawing of a line interpolating the high- and low-
temperature regimes possible.

As a final point, we investigated the possibility of a
fluid-fluid transition. This possibility arises because the
boundness of the potential renders the van Hove theorem on
the absence of phase transition for 1D model with short-
range interactions nonapplicable. In fact, the HPA is seen to
predict a critical point where the FW line meets a spinodal
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FIG. 11. Plot of the RDF g�r� obtained from MC simulations for �r /�a=2,
� /�=1.5, kBT /�a=10, and ��=6 �top panel� and ��=8 �bottom panel�.
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line. However, this prediction takes place in a region of den-
sities and temperatures where the HPA is not reliable. A care-
ful investigation using both NVT and Gibbs ensemble MC
techniques akin to those exploited in the investigations of the
analog problem for the 3D SW model yields negative results.
These findings are also supported by analytical arguments
based on the lattice gas counterpart where the absence of
transition can be motivated by the absence of an infinite
occupancy of each site, as well as by an exact analytical
proof17 of a no-go theorem proving the absence of any phase
transition in this model, which is in agreement with, and
beautifully complements, our work.

In our quest for a possible thermodynamic transition in
the 1D PSW model we have explored values of the energy
ratio �r /�a and well width � /� for which the stability of the
system in the thermodynamic limit is not guaranteed by
Ruelle’s criterion.26,27 We have found that as the temperature
decreases and/or the density increases, a transition from a
normal fluid phase to a peculiar solidlike phase takes place.
The latter phase is characterized by the formation of clusters
of overlapping particles occupying a small fraction of the
available space and with nonextensive properties. This clus-
tering transition pre-empts both the fluid-fluid and fluid-solid
transitions.

In view of the results presented here, it would be very
interesting to discuss the phase diagram of the corresponding
3D PSW model. The phase diagram of the SW model
��r /�a→�� is indeed well established and includes both a
fluid-solid transition—present even in the HS counterpart—
and a fluid-fluid transition line. The latter is present for any
value of �a and � /� but is stable against freezing only for
� /��0.25, the depth of the well being irrelevant.28 The re-
sults presented here strongly suggest the importance of the
additional parameter �r /�a. A first interesting issue would be
the Ruelle instability in 3D. A straightforward extension of
the arguments presented in Appendix A predicts a guaranteed
stability for �r /�a�12 �if � /��1�, but the actual onset of
the instability cannot be assessed through these arguments.
One could expect that for sufficiently high penetrability �i.e.,
�r /�a�12 and high density� a phenomenon akin to the “clus-
tering” transition found here could be present. In the case
�r /�a�12, where the clustering transition is not expected,
the interesting point is to assess the influence of the ratio
�r /�a on the location of the fluid-fluid critical point and co-
existence line. All of these open the possibility of a rich and
interesting phase diagram which would complement that al-
ready present in a general class of bounded potentials with
no attractive tails.22,23 We note that the high-penetrability
regime is indeed the realm of the HPA presented here, which
can be obviously extended to 3D. Work on the 3D PSW
model including the above points and other aspects is under-
way and will be reported elsewhere.
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APPENDIX A: RUELLE’S STABILITY CRITERION

Let us consider the 1D PSW model characterized by
�r /�a and � /�. Let us call � the integer part of � /�, i.e.,
��� /���+1. According to Ruelle’s criterion, a sufficient
condition of thermodynamic stability is26,27

UN�x1, . . . ,xN� = �
i=1

N−1

�
j=i+1

N

���xi − xj�� � − NB �A1�

for all configurations �xi�, where B is a fixed bound.
Given the number of particles N, we want to obtain the

configuration with the minimum potential energy UN. With-
out loss of generality we can see any given configuration as
a set of M clusters �1�M �N�, each cluster i being made of
si overlapping particles �i.e., any pair of particles of a given
cluster is separated a distance smaller than ��. In Ref. 5 we
proved that for a fixed value of M the minimum energy cor-
responds to si=s=N /M, all the particles of each cluster be-
ing located at the same point and the centers of two adjacent
clusters being separated a distance �. Therefore, we can re-
strict ourselves to this class of ordered configurations and use
s as the variational variable.

The repulsive contribution to the potential energy is

UN
r �s� = M

s�s − 1�
2

�r. �A2�

To compute the attractive contribution we need to take into
account that all the particles of a given cluster interact attrac-
tively with the particles of the �+1 nearest clusters. The total
number of pairs of interacting clusters are ��+1��M − ��
+1��+�+ ��−1�+ ��−2�+ ¯+1= ��+1��M −1−� /2�. There-
fore,

UN
a �s� = − �� + 1�
M −

� + 2

2
�s2�a. �A3�

The total potential energy UN=UN
r +UN

a is
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UN�s� = N
s − 1

2
�r − �� + 1�
N −

� + 2

2
s�s�a. �A4�

We then see that the value that minimizes UN�s� is

s� =
N

� + 2
�1 −

�r

2�� + 1��a
� . �A5�

This value is only meaningful if �r /2��+1��a�1. Otherwise,
s�=1. In summary, the absolute minimum value of UN is

UN
� = UN�s�� = �−

N

2
��r + N

� + 1

� + 2
�a�1 −

�r

2�� + 1��a
�2� , �r � 2�� + 1��a

− �� + 1�
N −
� + 2

2
��a, �r � 2�� + 1��a.� �A6�

Therefore, if �r�2��+1��a the potential energy is
bounded from below by −NB with B= ��+1��a and thus the
system is stable in the thermodynamic limit. On the other
hand, if �r�2��+1��a there exist configurations that violate
Ruelle’s criterion and so the thermodynamic stability of the
system is not guaranteed.

APPENDIX B: DENSITY EXPANSION OF w„r… WITHIN
THE HPA

Starting from Eq. �3.3� and for ��r� f̃SW�k���1, the
Fourier transform w̃�k� can be expanded in power series as

w̃�k� = �
n=2

�

���r�n−1 f̃SW
n �k� . �B1�

Upon inverse Fourier transform one then has

w�r� = �
n=2

�

���r�n−1wn�r� , �B2�

where

wn�r� = �
−�

� dk

2�
eikr f̃SW

n �k� . �B3�

Equation �3.4� can be rewritten as

f̃SW�k� =
i

k
��1 + ���eik − e−ik� − ��eik
 − e−ik
�� . �B4�

Therefore,

f̃SW
n �k� =

in

kn �
m=0

n

�
p=0

m

�
q=0

n−m 
 n

m
�
m

p
�
n − m

q
�

��− 1�m+p+q�1 + ��m�n−meik�2p−m+�2q−n+m�
�.

�B5�

The origin �k=0� is a regular point of f̃SW�k� and hence

of f̃SW
n �k� �but not of each separate term in Eq. �B5��, so we

can choose to save the point k=0 in Eq. �B3� either from
above or from below. Here we do it from above with the
result

lim
�→0+

in�
L

dk

2�

eikr

�k + i��n =
�− r�n−1

�n − 1�!
	�− r�, n � 0, �B6�

where the path L in the complex k plane goes from k=−� to
k=+� and closes itself on the upper plane if r�0 and in the
lower one if r�0. In Eq. �B3� we then find

wn�r� = �
m=0

n

�
p=0

m

�
q=0

n−m 
 n

m
�
m

p
�
n − m

q
��− 1�m+p+q�1 + ��m�n−m

�
�− r − 2p + m − �2q − n + m�
�n−1

�n − 1�!

	�− r − 2p + m − �2q − n + m�
� . �B7�

It is interesting to note that wn�r�=0 if r�
n. Thus Eq. �B2�
can be rewritten as

w�r� = �
n=max�2,�r/
��

�

���r�n−1wn�r� , �B8�

where �r /
� is the integer part of r /
.
The radius of convergence of series �B8� depends on

temperature and can be obtained by the same arguments as in
the PS case.7 From the denominator of Eq. �3.3�, it follows
that the series converges provided that ���conv, where

��r�conv�−1 = � f̃SW�max. �B9�

Here � f̃SW�max denotes the absolute maximum value of

� f̃SW�k��. From Eq. �3.4� if �� �
3−1�−1 that maximum cor-

responds to k=0, i.e., � f̃SW�max=− f̃SW�0�, and so �r�conv

= �1−���−1 /2. On the other hand, if �� �
3−1�−1 the maxi-

mum value � f̃SW�max takes place at k�0 and so �r�conv must
be obtained numerically. For sufficiently large values of ��

one has � f̃SW�max= f̃SW�0� so that �r�conv= ���−1�−1 /2 and
this coincides with the maximum physical density �see be-
low�. Figure 12 shows �r�conv as a function of �� for two
values of � /�. In the PS limit ���→0� one has �r�conv= 1

2 .
As the strength of the attractive part of the potential �mea-
sured by the product ��� increases, the radius of conver-
gence first grows, reaches a maximum, and then decays.
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Except when �� is so large that � f̃SW�max= f̃SW�0�, the

maximum � f̃SW�max corresponds to a negative value of f̃SW�k�
and so the singularity responsible for the radius of conver-
gence is located on the negative real axis. Therefore, w�r� is
still well defined beyond the radius of convergence, i.e., for
���conv. On the other hand, analogous to the PS case,20,29

the HPA for the PSW fluid becomes unphysical, at a given
temperature, for densities larger than a certain value �max

given by the condition

��r�max�−1 = f̃SW
max, �B10�

where f̃SW
max is the absolute maximum value of f̃SW�k�. Since

f̃SW
max� � f̃SW�max, it is obvious that �max��conv. For sufficiently

large values of �� �actually, for temperatures below the criti-

cal value Tc defined in Sec. VII� one has f̃SW
max= f̃SW�0�, and so

�r�max= ���−1�−1 /2. In that case, the line of maximum den-
sity becomes a spinodal line, as discussed in Sec. VII. Figure
12 also includes a plot of �r�max as a function of �� for the
same two values of � /�. Note the kink of the curve �r�max

for � /�=1 at the critical point ��c� /��2.11 and �r�c

�0.45� so that �r�max= ���−1�−1 /2 �spinodal line� if
�� /��2.11.

APPENDIX C: THE PSW LATTICE GAS

Consider the PSW model in 1D. The grand partition
function is

���,L,T� = �
N=0

�
1

N!

 e
�

�T
�N

ZN�L,T� , �C1�

where �T is the thermal de Broglie’s wavelength and

ZN�L,T� = �
L

dr1, . . . ,drN exp�− 

1

2 �
i�j=1

N

��ri − r j�� .

�C2�

We now discretize the length L as a sum of Nc�1 cells
of size a=L /Nc with occupancy n�, �=1, . . . ,Nc. The value
of a is chosen in the interval ��a��+�, with ��� so
that two particles in the same cell are assumed to interact
repulsively and two particles in adjacent cells are assumed to

interact attractively. The integral can then be approximated
as �Ldr
aNc and the configurational partition function ZN as

ZN�L,T� 
 aN�
�n��

�N,��n�
exp�− 


1

2 �
�,
=1

Nc

��
�̃�
�N!.

�C3�

In Eq. �C3� the � function accounts for the constraint N
=��n� and the factor N! of the indistinguishability of the
particles. Also we have introduced ��
 accounting for multi-
interactions among cells and �̃�
 which is equal to �r if �
=
 and equal to −�a for nearest-neighboring �nn� cells. Not-
ing that each particle in an �-cell can either interact with
n�−1 other particles within the same cell or with n
 particles
within a nn 
-cell, we see that

1

2 �
�
=1

Nc

��
�̃�
 = − �a �
��
�

n�n
 +
1

2
�r�

�

n��n� − 1� . �C4�

Substituting into Eq. �C1� we then find

���,L,T� = �
N=0

� 
 a

�T
e
��N

�
�n��

�N,��n�

�exp�− 

1

2�
�,


��
�̃�
� . �C5�

Because of the �, the two sums can be inverted and the sum
over N can be explicitly carried out thus obtaining

���,L,T� = �
�n��

exp�− 

− �a �
��
�

n�n


+
1

2
�r�

�

n��n� − 1� − �̃�
�

n��� , �C6�

with �̃=�+ �1 /
�ln�a /�T�.
Assume a finite length L �and hence a finite number of

cells Nc� with periodic boundary conditions. The above par-
tition function can then be solved by standard transfer matrix
techniques

���,L,T� = �
�n1,. . .nNc

�
�
�=1

Nc

An�n�+1
= Tr ANc, �C7�

where we have introduced the matrix

An�n

= exp�− 

− �an�n
 +

�r

4
�n��n� − 1� + n
�n
 − 1��

−
�̃

2
�n� + n
��� . �C8�

If Nc is finite, one then has in the thermodynamic limit

lim
L→�

1

L
log ���,L,T� =

1

a
log 
0, �C9�

where 
0 is the largest eigenvalue of the matrix. Clearly this
is analytic and no phase transitions are possible for finite
occupancy Nc.
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Chapter 22

Non existence of a phase transition
for the Penetrable Square Well model
in one dimension
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Title: “Non existence of a phase transition for the Penetrable Square Well model in one
dimension.”
Abstract: Penetrable Square Wells in one dimension were introduced for the first time in
[A. Santos et. al., Phys. Rev. E, 77, 051206 (2008)] as a paradigm for ultra-soft colloids.
Using the Kastner, Schreiber, and Schnetz theorem [M. Kastner, Rev. Mod. Phys., 80, 167
(2008)] we give strong evidence for the absence of any phase transition for this model. The
argument can be generalized to a large class of model fluids and complements the van Hove’s
theorem.
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1. Introduction

The penetrable square well (PSW) model in one dimension was first introduced in [1]
as a good candidate for providing a description of star polymers in regimes of good and
moderate solvent under dilute conditions. The issue of Ruelle’s thermodynamic stability
was analyzed and the region of the phase diagram for a well defined thermodynamic limit
of the model was identified. A detailed analysis of its structural and thermodynamical
properties was then carried through, for low temperatures [2] and high temperatures [3].

The problem of assessing the existence of phase transitions for this one-dimensional
model had never been dealt with in a definitive way. Several attempts to find a gas–
liquid phase transition were carried through using the Gibbs ensemble Monte Carlo
(GEMC) technique [4]–[8] but all gave negative results. Now it is well known that in
three dimensions the square well (SW) model admits for a particular choice of the well
parameters a gas–liquid transition [9]. As van Hove’s theorem shows [10, 12, 13, 11], this
disappears in one dimension. Nonetheless the PSW model in one dimension, being a
non-nearest neighbor fluid, is not analytically solvable and since we have no hard core,
van Hove’s theorem no longer holds. It is then interesting to answer the question of
whether a phase transition is possible for it. We should also mention that we also used
the GEMC technique to probe for the transition in the three-dimensional PSW and we
generally found that for a given well width there is a penetrability threshold above which
the gas–liquid transition disappears.

In the present work we use the Kastner, Schreiber and Schnetz (KSS) theorem [14, 15]
to give strong analytic evidence for the absence of any phase transition for this fluid model.

The argument hinges on a theorem of Szegö [16] on Toeplitz matrices and can be
applied to a large class of one-dimensional fluid models and complement van Hove’s
theorem.

The paper is organized as follows. In section 2 we state the KSS theorem for the
exclusion of phase transitions, in section 3 we describe the PSW model, in section 4 we
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show numerically that the PSW model satisfies the KSS theorem, in section 5 we show
analytically that the PSW model satisfies the KSS theorem, and the concluding remarks
are presented in section 6.

2. The KSS theorem

The Kastner, Schreiber and Schnetz (KSS) theorem [14, 15] states the following.

Theorem. KSS: Let VN : ΓN ⊆ RN → R be a smooth potential; an analytic mapping
from the configuration space ΓN onto the reals. Let us indicate with HN(q) the Hessian
of the potential, and indicate with qc the critical points (or saddle points) of VN(q)
(i.e. ∇qVN |q=qc = 0), with k(qc) their index (the number of negative eigenvalues of
HN (qc)). Assume that the potential is a Morse function (i.e. the determinant of the
Hessian calculated on all its critical points is non-zero). Whenever ΓN is non-compact,
assume VN to be ‘confining’, i.e. limλ→∞ VN(λq) = ∞, ∀0 �= q ∈ ΓN . Consider the
Jacobian densities

jl(v) = lim
N→∞

1

N
ln

[∑
qc∈Ql([v,v+ε]) J(qc)∑

qc∈Ql([v,v+ε]) 1

]
, (1)

where

J(qc) =

∣∣∣∣det
HN (qc)

2

∣∣∣∣
−1/2

, (2)

and

Ql(v) = {qc|[VN(qc)/N = v] ∧ [k(qc) = l(mod4)]} . (3)

Then a phase transition in the thermodynamic limit is excluded at any potential energy in
the interval (v̄− ε, v̄ + ε) if: (i) the total number of critical points is limited by exp(CN),
with C a positive constant; (ii) for all sufficiently small ε the Jacobian densities are
jl(v̄) < +∞ for l = 0, 1, 2, 3.

Generally the number of critical points of the potential grows exponentially with the
number of degrees of freedom of the system. The fact that the total number of critical
points is limited by an exponential is thought to be generically valid [17]. We then
assume that for Morse potentials the first hypothesis of the theorem is satisfied. So the
key hypothesis of the theorem is the second one, which can be reformulated as follows:
for all sequences of critical points qc such that limN→∞ VN(qc)/N = v̄, we have

lim
N→∞

| detHN (qc)|
1
N �= 0. (4)

3. The PSW model

The pair potential of the PSW model can be found as the l → ∞ limit of the following
continuous potential:

φl(r) = a[b− tanh(l(r − 1))] + c[tanh(l(r − λ)) + 1], (5)
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Figure 1. The potential Φl(|x|) for L 
 1. In the plot we used εr = 5, εa =
1,Δ = 4, and L = 10, at two values of the smoothing parameter l.

where a = (εr + εa)/2, b = (εr − εa)/(εr + εa), c = εa/2, with εr a positive constant which
represents the degree of penetrability of the particles, εa a positive constant representing
the depth of the attractive well, and λ = 1+Δ, with Δ the width of the attractive square
well. The penetrable spheres (PS) in one dimension are obtained as the Δ → 0 limit of
the PSW model. In the limit of εr → ∞ the PSW reduces to the SW model.

The PSW model is Ruelle stable for εr/εa > 2(n+ 1) with n ≤ Δ < n+ 1 [1, 3].
Let us consider a pair potential of the following form:

Φl(r) = φl

(
2

(
L

2π

)2 [
1 − cos

(
2π

r

L

)])
. (6)

Note that this pair potential is periodic of period L and flat at the origin, Φ
′
l(0) = 0.

Moreover in the large L limit Φl(r) ≈ φl(r
2). In figure 1 we show this potential for

different choices of the smoothing parameter l.

4. Absence of a phase transition

In this section we will apply the KSS theorem to give numerical evidence that there is no
phase transition for the PSW model introduced above.

The total potential energy is

VN(q) = 1
2

N∑

i,j=1

Φl(|xi − xj|), (7)

where q = (x1, x2, . . . , xN). If limN→∞ VN (q)/N = v one finds εr/2 − εa ≤ v < +∞.
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The saddle points qs = (xs
1, x

s
2, . . . , x

s
N) for the total potential energy (∇qVN = 0),

can be various. We will only consider a critical point of the following kind: equally spaced
points at fixed density ρ = N/L,

xρ
i = i/ρ, i = 0, 1, 2, . . . , N − 1. (8)

Here we can reach

lim
N→∞

VN(qρ)/N = vρ, (9)

where for large N and up to an additive constant −φl(0)/2 we have

vρ ≈
N−1∑

i=0

φl

(
2

(
L

2π

)2 [
1 − cos

(
2πi

N

)])
. (10)

If ρ 
 1, in the large N limit we can approximate the sum by an integral such that

vρ ≈ N

2π

∫ 2π

0

φl

(
2

(
L

2π

)2

(1 − cosα)

)
dα

=
N

π

∫ 2

0

φl

(
2 (L/2π)2 x

)
√

1 − (1 − x)2
dx, (11)

keeping in mind that L = N/ρ and N is large we find in the l → ∞ limit

vρ ≈ N

π

{
εr[− arcsin(1 − z)]

1/[2(L/2π)2 ]
0 − εa[− arcsin(1 − z)]

λ/[2(L/2π)2 ]

1/[2(L/2π)2 ]

}

≈ 2ρ[εr − εa(
√
λ− 1)] = v0

ρ, (12)

where we used for small z, arcsin(1 − z) = π/2 −
√

2z + O[z3/2].
For small ρ in the l → ∞ limit you get

vρ = εr/2, ρ < 1/
√
λ (13)

vρ = εr/2 − εa, 1/
√
λ < ρ < 1. (14)

For intermediate values of the density you will get a stepwise function of the density.
A graph of vρ is shown in figure 2.

Other stationary points would be the ones obtained by dividing the interval L into
p = N/α (α > 1) equal pieces and placing α particles at each of the points xN,p

i = iL/p,
i = 0, . . . , p − 1. By doing so we can reach limN→∞ VN(qN,p)/N = vN,p where up to an
additive constant −φl(0)/2 we have

vN,p ≈
(
N

p

) p−1∑

i=0

φl

(
2

(
L

2π

)2 [
1 − cos

(
2πi

p

)])
. (15)

We then immediately see that for ρ 
 α, limN→∞ vN,p = v0
ρ but for small ρ, vN,p > vρ.
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Figure 2. The behavior of vρ as a function of the density ρ for N = 100, 200, and
300 when εr = 5, εa = 1, and λ = 2 with l = 100. Also the theoretical prediction
v0
ρ at large densities (equation (12)) is shown. Notice that at fixed N , vρ will

saturate to ≈Nεr for 4(L/2π)2 < 1 or ρ > N/π.

The Hessian HN
i,j(q) = ∂2VN(q)/∂xi∂xj calculated on the saddle points of the first

kind can be written as

HN
i,j(qρ) = −Φ′′

l (rij), i �= j, (16)

HN
i,i(qρ) =

N∑

j �=i

Φ′′
l (rij), (17)

where Φ′′
l (r) is the second derivative of Φl(r) and rij = |i− j|/ρ.

So the Hessian calculated at the saddle point is a circulant symmetric matrix with
one zero eigenvalue due to the fact that we have translational symmetry xρ

i = xρ
i ± n/ρ

for any i and any integer n. In order to break the symmetry we need to fix one point, for
example the one at xρ

N . So the Hessian becomes a (N − 1) × (N − 1) symmetric Toeplitz
matrix (no longer circulant) which we call H̄(N−1)(qρ).

In figure 3 we have calculated the | det H̄N (qρ)|1/N as a function of N at ρ = N/L
fixed for εa = 1, εr = 5,Δ = 1, and l = 10. One can see that the normalized determinant
of the Hessian does not go to zero in the large N limit. So the Kastner, Schreiber and
Schnetz (KSS) criteria [14, 15] are not satisfied and the possibility of a phase transition is
excluded. The same holds for the PS model.

In figure 4 we show the dependence of | det H̄N (qρ)|1/N on density for different choices
of N .
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Figure 3. The behavior of |det H̄N (qρ)|1/N as a function of N at two different
densities. Here we chose εa = 1, εr = 5,Δ = 1, and l = 10.

Proved to be a system where there is a phase transition is the self-gravitating
ring (SGR) [18] where φSGR(r) = −1/

√
r + 2(L/2π)2ε.1 In this case one finds v0

ρ =

−ρ2
√

2/εA(2/ε), with A(x) =
∫ π/2

0
dθ (1 + x sin2 θ)−1/2. They use the Hadamard upper

bound to the absolute value of a determinant to prove that it is indeed the case that
limN→∞ | det H̄N (qρ)|1/N = 0. In figure 5 we show this numerically for a particular
choice of the parameters. Actually this result could be expected from what will be
proven in the next section, as in the large N limit for any finite ε, φSGR = o(1/N) and
| det H̄N(qρ)|1/N = o(1/N). This is a confirmation that the KSS theorem is not violated.

5. The limit of the normalized determinant

In this section we will give analytical evidence that there cannot be a phase transition for
the PSW model.

We need to apply to our case Szegö’s theorem [16] for sequences of Toeplitz matrices
which deals with the behavior of the eigenvalues as the order of the matrix goes to infinity.
In particular we will be using the following proposition.

Proposition. Let Tn = {tnkj|k, j = 0, 1, 2, . . . , n − 1} be a sequence of Toeplitz matrices
with tnkj = tnk−j such that T = limn→∞ Tn and tk = limn→∞ tnk for k = 0, 1, 2 . . .. Let us
introduce

f(x) =

∞∑

k=−∞
tk eikx, x ∈ [0, 2π]. (18)

1 With this choice the pair potential ΦSGR would be 2πρ times the pair potential in the paper of Nardini and
Casetti [18].
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Figure 4. The behavior of |det H̄N (qρ)|1/N as a function of ρ for various N .

Here we chose εa = 1, εr = 5,Δ = 1, and l = 10. Notice that for ρ � 1/
√

λ
then HN (qρ) ≈ 0 and also the normalized determinant is very small, while the
approach to zero at large densities is an artifact of the finite sizes of the systems
considered.
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Figure 5. The behavior of |det H̄N (qρ)|1/N as a function of N for fixed ρ = 1 in
a bilogarithmic plot. Here we chose ε = 0.1.

Then there exists a sequence of Toeplitz matrices T̃n = {t̃kj|k, j = 0, 1, 2, . . . , n− 1} with
t̃kj = t̃k−j and

t̃k =
1

2π

∫ 2π

0

f(x)e−ikx dx, (19)
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such that

lim
n→∞

| detTn|1/n = lim
n→∞

| det T̃n|1/n = exp

(
1

2π

∫ 2π

0

ln |f(x)| dx
)
, (20)

as long as the integral of ln |f(x)| exists and is finite.

If the Toeplitz matrix is Hermitian then t−k = t∗k and f is real valued. If moreover
the Toeplitz matrix is symmetric then t−k = tk and additionally f(x) = f(2π − x).

By choosing TN = H̄N (qρ) and defining tNi−j = HN
i,j(qρ) we have in the N → ∞ limit,

with L = N/ρ (ρ constant), tk = limN→∞ tNk and

f(x) = lim
N→∞
N odd

⎛
⎝2

(N−1)/2∑

k=1

tNk cos(kx) + tN0

⎞
⎠

= 2

∞∑

k=1

tk cos(kx) + t0, (21)

tNk = −Φ′′
l (k/ρ), k = 1, 2, . . . , (N − 1)/2, (22)

tN0 = −2

(N−1)/2∑

k=1

tNk , (23)

So f(0) = 0. Notice that in this case the sequence of matrices H̄N(qρ) does not coincide
with the sequence used in the proposition; only the limiting matrix for large N coincides.
But since Szegö’s theorem states that the limit of the normalized determinant exists it
should be independent from the sequence chosen. Additional support for the proposition
is presented in the appendix.

Now in order to prove the absence of a phase transition we need to prove that∫ 2π

0
ln |f(x)| dx does not diverge to minus infinity. That is, we must control the way

f passes through zero. In particular we do not want to have that if x0 is a zero of f then

|f(x)| ∼ e−1/|x−x0|α, x ∼ x0, (24)

with α ≥ 1, which is faster than any finite power of (x− x0).
Now for PSW we can write Φl(r) = Φcore

l (r)+Φtail
l (r). Choose Φtail

l (r) = α exp(−2lr2)
with α = (εa + εr)e

2l − εae
2λl. It is then always possible to redefine the starting potential

Φl(r) in such a way that Φcore
l (r) exactly vanishes for r ≥ rcut >

√
λ keeping all the

derivatives at r = rcut continuous2. Now in equation (21) for f core only a finite number
of k contribute to the series, namely the ones for 1 ≤ k < ρrcut. So f core will be well
behaved on its zeros. For the tail we get f tail(x) = −α

√
π/2lx2 exp(−x2/8l). So we will

never have |f(x)| going through a zero (note that the zeros of f increase in number as ρ
increases) with the asymptotically fast behavior of equation (24). This proves the absence
of any phase transition for the PSW (or PS) models.

Note that the argument continues to hold for example for the Gaussian core model
(GCM) [19] defined by φGCM(r) = ε exp[−(r/σ)2]. In this case by choosing φ(r) = exp(−r)
2 Note that since the potential energy must be a Morse function (on the hypotheses of the KSS theorem), we
cannot take the tail potential Φtail

l (r) such that it exactly vanishes for r > rcut. On the other hand the Gaussian
decay of Φl(r) for large r is sufficient to guarantee the power law behavior of f on its zeros.
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Figure 6. The pair potential Φ(r) = 2[
√

−irK1(2
√

−ir) +
√

irK1(2
√

ir)] of
the counterexample given in the text. We have Φ(0) = 2 and Φ(r) ∝
sin

√
2r exp(−

√
2r) at large r.

we get in the large L limit Φ(r) = exp(−r2) and the Fourier transform of Φ′′(r) is
−√

πx2 exp(−x2/4) which poses no problems for the zero of f(x) at x = 0 (note that
in this case f(x) is always positive for x > 0).

The argument breaks down if for example f(x) = − exp(−1/|x|). In this case
the pair potential will be given by Φ(r) ∼ −

∫∞
−∞ exp(ixr)f(x)/x2 dx, and one finds

Φ(r) ∼ 2[
√

−irK1(2
√

−ir)+
√

irK1(2
√

ir)], whereKn is the modified Bessel function of the
second kind. See figure 6 for a plot. Also the relevant feature in the pair potential, which
gives the breakdown of the argument for the absence of a phase transition, is the large r
behavior. Notice that in this case we found numerically that the normalized determinant
tends to a finite value for large N , in accord with the fact that when the hypotheses of the
proposition are not satisfied equation (20) loses its meaning. Considering the normalized
determinant for the rescaled potential Φ(r)/h(N), with h(N) → +∞ as N → ∞, we saw
that it does indeed tend to zero, indicating the presence of a phase transition.

We simulated this model fluid and did indeed find that it undergoes a gas–liquid
phase transition. The coexisting binodal curve is shown in figure 7 and in table 1 we
collect various properties of the two phases. We used GEMC in which two systems can
exchange both volume and particles (the total volume V and the total number of particles
N are fixed) in such a way as to have the same pressures and chemical potentials. We
constructed the binodal forN = 50 particles. In the simulation we had 2N random particle
displacements (with a magnitude of 0.5σi, where σi is the dimension of the simulation
box of system i), N/10 volume changes (with a random change of magnitude 0.1 in
ln[V1/(V − V1)], where V1 is the volume of one of the two systems), and N particle swap
moves. We observed that in order to obtain the binodals at different system sizes we had
to assume a scaling of the following kind: βNα = β5050α = constant, indicating that the
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Figure 7. The gas–liquid coexistence line in the temperature–density plane,
obtained with the GEMC for N = 50 particles3 interacting with the pair potential
of figure 6.

Table 1. Gas–liquid coexistence data (T, ρi, ui, μi are respectively the
temperature, the density, the internal energy per particle, and the chemical
potential of the vapor i = v or liquid i = l phase. β = 1/kBT and Λ is the de
Broglie thermal wavelength) from GEMC for N = 50 particles (see footnote 3).

kBT ρv ρl uv ul −(3 ln Λ)/β+μv −(3 ln Λ)/β+μl

0.40 0.20 ± 0.01 1.61 ± 0.03 −0.224 ± 0.009 −0.907 ± 0.007 −0.97 ± 0.01 −0.97 ± 0.01
0.42 0.25 ± 0.02 1.51 ± 0.02 −0.26 ± 0.01 −0.873 ± 0.008 −0.95 ± 0.01 −0.943 ± 0.008
0.44 0.292 ± 0.007 1.46 ± 0.02 −0.290 ± 0.007 −0.854 ± 0.004 −0.938 ± 0.004 −0.921 ± 0.006
0.46 0.350 ± 0.007 1.32 ± 0.01 −0.340 ± 0.004 −0.815 ± 0.006 −0.90 ± 0.01 −0.89 ± 0.02
0.48 0.411 ± 0.007 1.21 ± 0.02 −0.370 ± 0.003 −0.77 ± 0.01 −0.886 ± 0.003 −0.86 ± 0.01
0.50 0.49 ± 0.01 1.04 ± 0.02 −0.420 ± 0.006 −0.71 ± 0.01 −0.87 ± 0.01 −0.862 ± 0.006

model is not Ruelle stable (as may be expected since it has a bounded core and a large
attractive region), and ρN = ρ5050 = constant, where β50 and ρ50 are the coexistence
data shown in figure 7 and table 1. For 50 � N � 100 we found α ≈ 1/2, for N ≈ 200
then α ≈ 2/3, and for N ≈ 300 then α ≈ 3/4.

We then added an hard core to the potential

Φ(r) =

{
ε r < 1

2[
√

−irK1(2
√

−ir) +
√

irK1(2
√

ir)] r ≥ 1,
(25)

3 The Monte Carlo simulations where carried out at the Center for High Performance Computing (CHPC), CSIR
Campus, 15 Lower Hope St, Rosebank, Cape Town, South Africa. Manufacturer: IBM e1350 Cluster, CPU: AMD
Opteron, CPU clock: 2.6 GHz, CPU cores: 2048, memory: 16GB, peak performance: 3.3 Tflops, storage: 94 TB
(multicluster), launch date: 2007.
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with ε a positive large number, and we saw, through GEMC, that the corresponding fluid
still admitted a gas–liquid phase transition (without N scaling of the densities ρ < 1)
in accord with the expectation that it is the large r tails of the potential that make this
model singular from the point of view of our argument.

For fluids with a pair potential Φ given by a hard core and a −1/rα tail we can take
Φ′′(r) = 0 for r < 1 and Φ′′(r) = −α(α − 1)/rα−2 for r > 1, and the resulting f function
(the Fourier transform of −Φ′′) is such that ln |f(x)| has non-integrable zeros. So this class
of models does not fall under the hypotheses of the proposition. And it is well known that
when 1 < α < 2 the corresponding fluid admits a phase transition [12].

6. Conclusions

Using the KSS theorem and a limit theorem of Szegö on Toeplitz matrices we were able
to give strong evidence for the exclusion of phase transitions in the phase diagram of the
PSW (or PS) fluid. The argument makes use of the fact that the smoothed pair potential
amongst the particles has an r cutoff. Even if we just consider two classes of stationary
points, i.e. the equally spaced points and equally spaced clusters, we believe that our
argument gives strong indications of the absence of a phase transition.

Our argument applies equally well to model fluids with large r tails in the pair
potential decaying in such a way that the condition of equation (24) does not hold. For
example it applies to the Gaussian core model. We believe this to be a rather large class
of fluid models.

We give an example of a model fluid which violates the condition of equation (24) and
find through GEMC simulations that it does indeed have a gas–liquid phase transition.

Our argument does not require the fluid to be a nearest neighbor one, for which it is
well known that the equation of state can be calculated analytically [20]–[22]. We think
that our argument can be a good candidate for complementing the well known van Hove
theorem for such systems, violating the hypotheses of the hard core impenetrability of the
particles and of the compactness of the support of the tails.
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Appendix. Alternative support to the Szegö result

Our original matrix HN (qρ) is a circulant matrix

HN(qρ) =

⎛
⎜⎜⎜⎜⎜⎝

hN
0 hN

1 hN
2 hN

3 · · · hN
N−1

hN
N−1 hN

0 hN
1 hN

2 · · · hN
N−2

hN
N−2 hN

N−1 hN
0 h1 · · · hN

N−3
...

. . .
...

hN
1 hN

2 hN
3 hN

4 · · · hN
0

⎞
⎟⎟⎟⎟⎟⎠
. (A.1)
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We have checked numerically that the determinant of HN(qρ) with one row and one
column removed converges in the large N limit to the product of the non-zero eigenvalues
of the matrix HN(qρ).

4

Let us assume that N = 2n+ 1 is odd. Then our matrix has the following additional
structure:

hN
i = h̃N

i , i = 1, . . . , n

hN
n+i = h̃N

n−(i−1), i = 1, . . . , n.
(A.2)

The eigenvalues of HN will be given by [23]

ψm =

N−1∑

k=0

hN
k e−(2π/N)imk, m = 0, 1, . . . , N − 1 (A.3)

with the additional constraint (see equations (16) and (17)) that

ψ0 =

N−1∑

k=0

hN
k = 0. (A.4)

The eigenvalues can be rewritten as follows:

ψm = h̃N
0 +

n∑

k=1

h̃N
k e−(2π/N)imk +

n∑

k=1

h̃N
n−(k−1)e

−(2π/N)im(n+k). (A.5)

Introducing the summation index j = n− k + 1 in the last sum we then obtain

ψm = h̃N
0 +

n∑

k=1

h̃N
k e−(2π/N)imk +

1∑

j=n

h̃N
j e+(2π/N)imj

=

n∑

k=−n

tNk e−(2π/N)imk, (A.6)

with n = (N − 1)/2 and tNk = tN−k = h̃N
k for k = 1, 2, . . . , n.

We take the logarithm of the absolute value of the product of the non-zero eigenvalues
to find

P =
1

N
ln

∣∣∣∣∣
N∏

m=1

ψm

∣∣∣∣∣ =
1

N

N∑

m=1

ln |ψm|. (A.7)

Now in the large N limit we have tk = limN→∞ tNk for k = 0, 1, 2, . . . and

ψm ∼
∞∑

k=−∞
tke

−(2π/N)imk ∼ f ((2π/N)m) , (A.8)

P ∼ 1

N

N∑

m=1

ln

∣∣∣∣f
(

2π

N
m

)∣∣∣∣ ∼
1

2π

∫ 2π

0

ln |f(x)| dx, (A.9)

where in the last part we have transformed the sum into an integral.

4 We have checked numerically that this property continues to hold as long as the circulant matrix is a symmetric
one.
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We apply a simple statistical mechanics cluster approximation for studying clustering in the Kern and

Frenkel model of Janus fluids. The approach is motivated by recent Monte Carlo simulations work on

the same model revealing that the vapor coexisting with the liquid phase contains clusters of different

sizes and shapes whose equilibrium concentrations in general depend on the interaction range as well as

on thermodynamic parameters. The approximation hinges on a separation between the intra- and inter-

cluster contribution to thermodynamics, where only the former is explicitly computed by Monte Carlo

simulations. Two level of a simple liquid theory approximations are exploited for the description of the

latter. In the first we use the ideal-gas expressions and obtain a qualitative agreement with extensive

Monte Carlo bulk simulations. This can be improved to a semi-quantitative agreement, by using

a hard-sphere description for the cluster-cluster correlations.

I. Introduction

Recent advances in experimental techniques for chemical

synthesis have provided a well defined set of different protocols

for obtaining colloidal particles with different shapes, chemical

compositions and surface patterns. In particular it is now

possible to obtain colloidal particles with a pre-defined number

and distribution of solvophobic and solvophilic regions on their

surface. These are usually referred to as patchy colloids.1–4

The simplest example within this realm is constituted by the so-

called Janus particles, where the surface is partitioned in only two

parts with an even distribution of the two philicities. In spite of

their apparent simplicity, Janus particles have aroused increasing

interest in the last few years both for their potential technological

applications and in view of the rather unusual displayed self-

assembly properties as compared to conventional isotropic

colloidal particles.5–8

A detailed study of the fluid–fluid transition for Janus fluids

has recently been carried out by Monte Carlo (MC) simula-

tion9,10 using the Kern–Frenkel pair potential.11 Within this

model, the solvophobic and solvophilic hemispheres are

mimicked by an attractive square-well potential and a repulsive

hard-sphere potential respectively, and two spheres attract each

other only provided that their centers are within a given distance,

as dictated by the width of the well, and the two attractive

patches on each sphere are properly aligned one another, that is,

lie within a predefined relative angular range.

The combined features of the equal amplitude of the two

philicities coupled with the specificity of the chosen potential

types give rise to a micellization process originating in the vapor

phase that severely destabilizes the condensation process thus

providing a re-entrant vapour coexistence curve that in the

temperature–density diagram is skewed toward higher densities

as the system is cooled to lower temperatures.9 A number of

additional unusual features were also found for the vapour

phase,10 including the fact that, for the chosen width of the

square-well potential (50% of the particle size), there appeared

a predominance of particular clusters formed by single-layer

(micelles of about 10 particles) and double-layer (vesicles of

about 40 particles) always exposing the hard-sphere part as an

external global surface, thus inhibiting the formation of a liquid

phase.

It should be emphasized that MC simulations are particularly

demanding for this system in that very low temperatures (of the

order of 0.25 or less in reduced units) are necessary to observe

these phenomena, and this is expected to be even more

demanding for decreasing range of the interactions.10

In this paper, we focus our interest on the study of the vapor

phase, following a different approach, hinging on a strategy

similar to that devised in the context of associating fluids, where

several different theories with different degrees of success have

been envisioned.12–15

Our approach has been inspired by the work of Tani and

Henderson,16 extending the Bjerrum theory for association in

electrolytic solutions17 where the total partition function is fac-

torized into a intra- and inter-cluster contribution, so that the

original task is reduced to the computation of the partition
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function for clusters of increasing sizes along with the interaction

among them.

While the original approach16 was limited by the necessity of

evaluating analytically even the intra-cluster partition function,

in addition to the inter-cluster contribution, we propose to

determine the former by explicit Monte Carlo simulations for

each cluster and the latter using physically motivated fluid

theories. Within MC simulation of each n-cluster, we are then

able to determine the energy per particle as a function of

temperature and thereby compute the excess free energy of the

isolated cluster by thermodynamic integration.

Clearly, this approach is particularly suited to study the vapor

phase as once the first n-particle clusters have been simulated the

resulting information can be inserted in the inter-cluster theory,

and this is enough to determine the partition function of the

vapor at all thermodynamic states. We can then follow and

predict the dependence of cluster population on thermodynamic

conditions and interaction parameters. This is particularly rele-

vant in cases in which spontaneous cluster formation is partic-

ularly slow, due for example to the low value of the temperature

at which clustering takes place, a common case when the inter-

action range is very short.

The paper is organized as follows: in section II we describe the

model, in sections III and IV we introduce the cluster theory, in

section V we describe how we determined the intra-cluster

partition function. Additional results are then presented in

section VI, and section VII is for final remarks.

II. The Kern and Frenkel model

As in the work of Sciortino et al.9,10 we used the Kern and

Frenkel11 patchy hard sphere model to describe the Janus fluid.

Two spherical particles attract via a short-range square-well

potential only if the line segment joining the centers of the two

spheres intercepts a patch on the surface of the first particle and

one on the surface of the other. In the case of a single patch per

particle, the pair potential reads11

F(1,2) ¼ f(r12)J(n̂1,n̂2,̂r12), (1)

where

fðrÞ ¼

8<:þN r\s

�3 s\r\ls

0 ls\r

(2)

and

J
�
n̂1; n̂2; r̂12

�
¼
(

1 if n̂1,r̂12 $ cosq0 and� n̂2,r̂12 $ cosq0

0 otherwise (3)

where q0 is the angular semi-amplitude of the patch. Here n̂1(u1)

and n̂2(u2) are unit vectors giving the directions of the center of the

patch in spheres 1 and 2, respectively, with u1 ¼ (q1,41) and u2 ¼
(q2,42) their corresponding spherical angles in an arbitrary

oriented coordinate frame. Similarly, r̂12(U) is the unit vector of

the separation r12 between the centers of the two spheres and is

defined by the spherical angle U. As usual, we have denoted with s

the hard core diameter and l¼ 1 + D/s with D the width of the well.

One can define the fraction of surface covered by the attractive

patch as

c ¼ J
�
n̂1; n̂2; r̂12

�1=2

u1 ;u2
¼ sin2

�
q0

2

�
(4)

where we have introduced h.iu ¼ (1/4p)
Ð

du(.) as the average

over the solid angle u.

Reduced units kBT/3 (kB is the Boltzmann constant) and rs3

will be used as a measure of the temperature and density in

numerical data.

III. A cluster theory for Janus particles

Following ref. 16, we split the partition function in an inter- and

intra-cluster contribution. Let Nn be the number of clusters

formed by n particles, where n ¼ 1,.,nc (nc being the number of

different clusters) and rn ¼ Nn/V their density. We then write the

total partition function as

Qtot ¼
X0
fNng

�Ync

n¼1

1

Nn!

�
qintra

n

�Nn

�
QinterðfNng;V ;TÞ; (5)

where the prime indicates that the sum is restricted to all possible

configurations satisfying the obvious constraint of conserving the

total number of particles N,Xnc

n¼1

nNn ¼ N: (6)

Here qintra
n is the ‘‘internal’’ partition function for an n-particle

cluster and Qinter({Nn},V,T) is the inter-cluster partition func-

tion. Additional controlled thermodynamic variables are the

total volume V and the temperature T.

The constraint can be dealt with by introducing a Lagrange

multiplier so that we minimize the quantity

ln bQtot ¼ lnQtot þ ðlnlÞ
Xnc

n¼1

nNn: (7)

In computing the partition function (5) we assume that the

sum can be replaced by its largest dominant contribution. With

the help of the Stirling approximation N! z (N/e)N one then

obtains

lnQtotz
Xnc

n¼1

�
Nnln qintra

n � ðNn lnNn �NnÞ
	
þ lnQinter: (8)

The correct cluster distribution { �Nn} is then found from the

variational condition

v

vNn

ln bQtot







fNn¼Nng

¼ 0 (9)

This allows the calculation of the resulting free energy, bFtot ¼
�lnQtot, in terms of the internal reduced free energy densities,

bf intra
n ¼ �lnqintra

n , so that

bFtot

V
¼
Xnc

n¼1

½�rn ln�rn � �rn� þ
Xnc

n¼1

�rnb f intra
n þ

Xnc

n¼1

�rn lnV � 1

V
lnQinter:

(10)

In the above expression, b ¼ 1/(kBT).
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IV. Specific models

We now consider two specific cases, where the inter-cluster

interaction is not accounted for (the ideal-gas case) or modeled as

an effective hard-sphere like interaction between clusters.

A. Ideal gas

The simplest possibility corresponds to considering different

clusters as non-interacting ideal particles so that

QinterðfNng;V ;TÞ ¼
Ync

n¼1

�
V

L3
n

�Nn

hQideal ; (11)

where Ln is the de Broglie thermal wavelength associated with

each n-cluster.

Using eqn (9) and (11) one easily obtains

�rn ¼ ln qintra
n

L3
n

; (12)

where �rn ¼ �Nn/V.

The actual value of the Lagrange multiplier l can then be

numerically obtained upon inverting the constraint (6)Xnc

n¼1

nln qintra
n

L3
n

¼ rh
N

V
: (13)

Substitution of eqn (11) into the general expression of the free

energy (10) leads to18

bFtot

V
¼
XN

n¼1

�
�rn ln

�
�rnL3

n

�
� �rn

	
þ
XN

n¼1

�rnb f intra
n : (14)

B. Chemical equilibrium

The above result (14) can be used to compute chemical equilib-

rium among different clusters. Indeed, on defining mn as the

chemical potential associated to the n-th cluster, we have

bmn ¼
vðbFtotÞ

vNn

¼ vðbFtot=VÞ
vrn

¼ ln
�
rnL3

n

�
þ b f intra

n (15)

We can then impose the equilibrium condition mn¼ nm1 to obtain

f intra
n ¼ nf intra

1 þ kBT ln

"
rnL3

n�
r1L3

1

�n

#
(16)

which can be used to compute the internal free energies, given the

cluster distributions. An alternative procedure, based on the

explicit computation of the internal energy per particle within

each cluster, will be discussed in Section V.

C. Connection with Wertheim association theory

An interesting comparison can be found with Wertheim first-order

association theory12 which is frequently used in this context (see e.g.

ref. 19 and references therein). Within this theory, the bond

contribution to the Hemholtz free energy can be computed from

a chemical equilibrium equation under the condition that only

a suitable subset of diagrams are included in the cluster expansion

and each attractive site is engaged at most in a single bond, the limit

of a single-bond per patch in the language of the present paper.

Consider a system formed by only monomers and dimers, that

is n¼ 1,2. Then from eqn (12) and condition (6) limited to n¼ 1,2

we can obtain a quadratic equation in the Lagrange multiplier l.

The only acceptable root can then be substituted into eqn (12) for

n¼ 1 to obtain the fraction of patches that are not bonded, that is

the fraction of monomers

�r1

r
¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r�D

p : (17)

Using numerical simulations for n ¼ 1,2 clusters we are able to

determine the energy per particle in an n-cluster as a function of

temperature and thereby determine the excess free energy of the

isolated cluster by integration where �D ¼ (qintra
2 /[qintra

1 ]2)(L2
1/L2)3.

This equation is identical to the result from Wertheim’s theory

(see eqn (10) in ref. 19) when translated into the appropriate

language. Therefore, the present formulation is equivalent to

Wertheim’s theory provided that temperatures are sufficiently

low (see ref. 19 for further details) and the condition single-bond

per binding site is satisfied. On the other hand, the present theory

allows for an arbitrary amplitude of the patch thus including the

possibility of multiple bonding.

Note that while in the case of only two clusters (n ¼ 1,2)

requires the solution of a system of 2 coupled equations that

results into a quadratic equation for l, a general case with clus-

ters up to the total number of clusters nc clearly requires the

solution of a system of nc coupled equation, a task that—in

general—has to be carried out numerically.

D. Effective hard sphere inter-cluster interaction

While simple, the ideal gas is clearly rather unphysical even at

very low densities. A more physical description amounts to

consider all n-particle clusters as identical hard spheres with

diameters sn and packing fractions hn ¼ (p/6)rns3
n. A rather

precise approximate solution in this case is provided by the

Boubl�ık, Mansoori, Carnahan, and Starling expression,20,21 but

for simplicity we here only consider the case sn ¼ s0 for all n,

whose thermodynamics is well described by the simple mono-

disperse Carnahan–Starling formulae.22 This can be motivated

by the fact that only a minor variation is found in the linear

cluster dimensions (see Table 1 and discussion further below) and

by the observation that instantaneous size variations of an n-

particle cluster are comparable with the variation of the average

cluster radii for n within a few tens. It is then attempting to

approximate the correlations between different shaped pop-

ulations of clusters by a single effective one-component hard

sphere system to take care of the average inter-cluster correla-

tions. Then

Qinter({Nn},V,T) ¼ Qideale
�bFcs (18)

where Qideal is given in eqn (11) and Fcs is the Carnahan–Star-

ling23 excess free energy

bFcsðhtÞ
Nt

¼ htð4� 3htÞ
ð1� htÞ

2
; (19)

where Nt ¼
Pnc

n¼1Nn is the total number of clusters and

ht ¼
Pnc

n¼1hn is the total cluster packing fraction. Following the

same steps as before one obtains
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�rn ¼ ln qintra
n

L3
n

GðhtÞ; (20)

where we have introduced the function

GðxÞ ¼ exp

"
� xð8� 9xþ 3x2Þ

ð1� xÞ3

#
: (21)

For the free energy one obtains from eqn (10)

bFtot

V
¼
Xnc

n¼1

�
�rnln

�
�rnL3

n

�
� �rn

	
þ
Xnc

n¼1

�rnb f intra
n þ bFcsð�htÞ

V
; (22)

that differs from the ideal gas counterpart eqn (14) only for the

last additional term. Clearly one recovers the ideal gas in the limit

�rn / 0 as it should. In order to find the correct solution for this

system of equation it is important to choose the one that is

continuously obtained from the solution of the ideal gas case at

s0 / 0.

E. Thermodynamic quantities

It proves convenient to express our analysis in terms of reduced

partition functions Z rather than of the full partition functions

Q used in Section III. This can be conveniently done by the

definitions

Qinter ¼
Ync

n¼1

Zinter

L3Nn

n

; qintra
n ¼ L3

nZintra
n : (23)

Given the partition function Qtot we can determine the Car-

nahan–Starling excess free energy

bF exc ¼ �ln

�
Qtot

V N

�
; (24)

the internal energy per particle

u ¼ 3

2b
þ 1

N

vðbF excÞ
vb

¼ 3

2b
�
Xnc

n¼1

Nn

N

v
�
lnZintra

n

�
vb

¼ 3

2b
þ
Xnc

n¼1

n
Nn

N
unðTÞ; (25)

where un is the internal energy per particle of an n-cluster (see

Section V). We can also determine the compressibility factor

bP

r
¼ 1

r

vðlnQtotÞ
vV

¼ 1

r

vðlnZinterÞ
vV

¼ 1þ ht þ h2
t � h3

t

ð1� htÞ
3

: (26)

V. Computation of the intra-cluster free energy

The simulation were carried out following the same prescription

used for the bulk fluid phases.9,10 Two kind of moves for each

chosen particle—a random translation and a random rotation—

were allowed, following standard recipes24 and a standard

Metropolis25 algorithm was used to compute the energy per

particle of the system of n particles.

Typical runs were of about 5� 106 steps, one step consisting of

n particles moves.

We studied first the case of clusters in the neighborhood of

n ¼ 10 particles which is expected to be sufficient to observe the

micellization process due to the single layer clustering.10

To this aim we started with an initial configuration of two

pentagons with particles at their vertices juxtaposed one above

the other. The two pentagons are parallel to the x–y plane, have

the z axis passing from their centers, and are one at z ¼ +s/2 and

the other at z ¼ �s/2. The unit vectors attached to the spheres

were chosen to connect the origin to the center of the given

sphere. We obtained the clusters with a lower number of particles

by simply deleting particles and obtained the clusters with

a higher number of particles by adding on the z axis a particle just

above the upper pentagon and/or just below the lower one.

However the results of the simulations are independent of the

initial configuration chosen.

In order to compare with previous studies,9 we consider the

D ¼ 0.5s case first.

We performed the simulations of the isolated cluster and we

have explicitly tested that results coincide with the calculation

stemming for the bulk low density Janus fluid from which we

extract cluster informations by taking all the clusters found with

the same size and averaging their properties.

During the simulation we allow all possible moves but we do

not count the configurations which are not topologically con-

nected, i.e. those configurations where it is not possible to go

from one sphere to all the others through a path; the path being

allowed or not to move from one particle 1 to particle 2

depending whether F(12) has value �3 or not.

At high temperatures the limiting value for the energy per

particle is �3(n � 1)/n. At low temperature (kBT/s < 0.15) the

clusters tend to freeze into certain energy minima. This can be

improved by ‘‘regularizing’’ the angular part of the Kern–Frenkel

potential into J(n̂1, n̂2, r̂12) ¼ {tanh[l(n̂1$r̂12 � cosq0)] +

1}{tanh[l(�n̂2$r̂12 � cosq0)] + 1}/4 and gradually increase

l starting from 1/2 during the simulation up to values where there

is no actual difference between the continuous potential and the

original stepwise one. This allowed us to reach the configuration

with the real minimum energy with a certain confidence.

In Fig. 1 we depict the relative cluster population Nn/N

as a function of the reduced density rs3 in the ideal-gas case for

n # 12 and two different temperatures kBT/3 ¼ 0.25 (top panel)

and kBT/3 ¼ 0.30 (bottom panel). Temperature values were

selected to bracket the expected critical temperature kBT/3 z
0.28 on transition from a vapor phase mostly formed by

Table 1 The low temperatures internal energy per particle of the clusters
with up to 12 particles when D ¼ 0.5s. Also shown is the gyration radius
Rg defined in eqn (27)

N U/n U Rg

1 0 0 0
2 �0.5 �1 �1/2
3 �1 �3 �1/O3
4 �1.5 �6 0.83
5 �2.0 �10 0.76
6 �2.50 �15 0.75
7 �2.71 �19 0.91
8 �2.88 �23 0.93
9 �3.10 �28 0.96
10 �3.20 �32 1.00
11 �3.36 �37 1.04
12 �3.42 �41 1.08
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monomers (at higher temperatures) and a vapor phase with

predominant clusters (at lower temperatures) in the chosen range

of densities.10

As expected, we observe a predominance of monomers and

higher order clusters at low and high density respectively. No

significant difference is apparent for the results of the two

temperatures. This is most likely due to the ideal-gas nature of

the interacting part and can be improved by using the Carnahan–

Startling fluid description, as we shall see.

Next we consider the internal energy per particle un ¼ hUi/n
within the n-th cluster along with the gyration radii defined by

R2
g ¼

Xn

j¼1




rj � rav




2=n (27)

with rav ¼
Pn

j¼1rj=n, rj being the position of the j-th particle.

Results for both internal energy and gyration radii for such

configurations are tabulated in Table 1. This provides an addi-

tional insight on the morphologies of the obtained clusters, in

particular on the relative weak n dependence of the linear size of

the obtained clusters.

The results for un as a function of temperature are reported in

Table 2 and can be conveniently fitted by a Gaussian profile

un(T) ¼ anexp[�bnT2] + cn, (28)

where the fitting parameters an, bn, and cn for the n ¼ 2,3,.,12

clusters (u1 ¼ 0 by definition) can also be found in Table 2.

From this expression we can determine the excess free energy

of the cluster fex,intra
n ¼ bFex,intra/n by thermodynamic integration

f ex;intra
n ðbÞ ¼

ðb

0

dxunð1=xÞ (29)

So that fintra
n ¼ fex,intra,

n + fid,intra
n with the ideal free energy

contribution being

fid,intra
n (b) ¼ 3lnLn + (lnn!)/n � lny0, (30)

where y0 ¼ ps3
0/6 is the volume of one n-cluster, and with the

excess part given by

f ex;intra
n ¼ cnbþ an

ffiffiffiffiffi
bn

p 8><>: e�bn=b2ffiffiffiffiffiffiffiffiffiffiffiffi
bn=b2

q þ
ffiffiffi
p
p �

erf

� ffiffiffiffiffiffiffiffiffiffiffiffi
bn=b2

q �
� 1

�9>=>;:
(31)

The intra-cluster partition function is then Zintra
n ¼ yn

0e
�nfex,intra

n (of

course Zintra
1 ¼ y0). As anticipated we here choose sn ¼ s0, for all

n, where s0 is the only undetermined parameter in the theory.

VI. Additional results

A. Carnahan–Starling results

In this case the theory depends upon the average diameter of

a cluster s0. This is obtained by the requirement that the Car-

nahan–Starling results best match MC results for the bulk

simulations.

To this aim, we consider Monte Carlo results at rs3 ¼ 0.01 on

the vapor phase, for the distribution of the cluster sizes, with our

theory. This is depicted in Fig. 2 where we compare the Carna-

han–Starling approximation with the MC data for the distribu-

tion of cluster sizes at decreasing values of temperatures starting

from kBT/3 ¼ 0.5 which provides a good match with MC results

for s0 z 2.64s. This value is then used in all subsequent calcu-

lations.

It is important to remark that, in order to find the correct

solution for this system of equations, it is important to choose the

one that is continuously obtained from the solution of the ideal

gas case at s0 / 0.

At lower temperatures the discrepancy with the MC data for

the vapor increases. This was to be expected in view of the fact

that the two-layer vesicles (n-clusters with n¼ 40) contribution to

Fig. 1 Values of Nn/N, n ¼ 1,2,3,.,12 as a function of the density for

D¼ 0.5s and kBT/3¼ 0.25 (top panels) and kBT/3¼ 0.30 (bottom panels).

In both cases curves for n ¼ 1,.,6 are on the left panels and those

associated with n ¼ 7,.,12 are on the right panels. All plots have been

reported on the same scale for a better comparison. Clusters associated

with values n ¼ 4,5 have curves lying below the lower limit of 0.001

concentration in the case kBT/3 ¼ 0.25.

Table 2 Fit to a Gaussian of the energy per particle as a function of the
temperature (see eqn (28)). cn values are common to the three cases

D ¼ 0.5s D ¼ 0.25s D ¼ 0.15s

n an bn an bn an bn cn

2 0 1 0 1 0 1 �0.50
3 �0.337 3.880 �0.339 6.905 �0.346 10.780 �0.67
4 �0.778 4.670 �0.771 7.502 �0.774 7.975 �0.75
5 �1.226 5.162 �1.025 5.890 �1.034 9.366 �0.80
6 �1.700 5.600 �1.381 7.361 �1.207 9.214 �0.83
7 �1.899 5.263 �1.423 6.767 �1.480 8.277 �0.86
8 �2.064 5.080 �1.520 4.179 �1.551 8.503 �0.88
9 �2.301 5.478 �1.579 4.367 �1.681 10.160 �0.89
10 �2.394 5.509 �1.725 4.271 �1.551 9.419 �0.90
11 �2.556 5.644 �1.846 4.829 �1.696 9.755 �0.91
12 �2.598 6.077 �1.854 5.723 �1.814 10.567 �0.92
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the vapor phase, and not included in the present computation,

becomes increasingly important.10 The agreement could be

clearly improved by allowing a temperature dependence of the

effective cluster diameter s0, but we have chosen to keep s0 fixed

to maintain a clear control of the approximations involved in our

approach.

In Fig. 3 (top panel) we show the resulting cluster distribution

for the Nn/N as a function of density for a temperature (kBT/3 ¼
0.27) at the onset of the expected critical micelle concentration.10

Unlike the previous case with an ideal gas, there is now a clear

predominance of the n z 10 clusters in the whole concentration

range. Additional insights can be obtained by plotting the

monomer density r1s3 versus the total concentration rs3 for

decreasing temperatures, as reported in the bottom panels of the

same figure, where the result of the present approach is con-

trasted with bulk numerical simulations of the same quantity.10

This clearly shows the onset of a critical concentration where

clusterization becomes the predominant mechanism at each

temperature (this can be obtained by extrapolating the flat part

of the curves to the vertical axis).

In order to assess the range of reliability of our results, we have

also attempted to include in the theory all clusters of size up to 20

particles. Fig. 4 shows how the theory compares with the MC

results at kBT/3 ¼ 0.4 for the distribution of the cluster sizes.

Note that the vertical axis spans about 8 order of magnitudes.

Here we used a slightly different value s0 z 2.92s for the cluster

diameters. Our theory nicely follows the MC data for the vapor

phase up to n # 12. For larger clusters discrepancies begin to

show up most likely due to the fact isolated clusters tend to

frequently disaggregate during the simulation thus providing

a very low acceptance ratio. As anticipated, for thes larger cluster

sizes, a full simulation of the bulk vapor phase begins to be

competitive with the present methodology, and this is the main

reason why, in the remainder of the paper, we only consider

a mixture of n-clusters with n # 12.

As remarked, the present theory depends upon a free param-

eter (the average cluster diameter s0) that is computed by a best

fit with the bulk MC simulations.

Fig. 5 displays the sensitivity of some of the computed quan-

tities to the choice of the average cluster diameter s0/s. In

particular, we have considered the compressibility factor bP/r,

the internal energy per particle u ¼ U/N and the reduced free

energy per particle ln(Qtot)/N. In all cases, there is a non-negli-

gible dependence on the s0/s value indicating the importance of

selecting the correct effective cluster diameter. This could be

improved by considering a distribution of cluster diameters.

Notice that as s0 increases the packing fraction of the clusters

ht quickly exceeds unity, thus limiting the possible range of

Fig. 3 Values of Nn/N, n ¼ 1,2,3,.,12 as a function of the density for

kBT/3 ¼ 0.27 (top panels). Clusters with n ¼ 1,.,6 are on the left, those

with n ¼ 7,.,12 on the right. The bottom panels depict the monomer

concentration r1s3 as a function of the total density rs3 for decreasing

temperatures. The result of the present approach (left) is contrasted with

MC simulations (right). All results refer to the D¼ 0.5s case with a cluster

diameter s0 ¼ 2.64s.

Fig. 4 Comparison between MC data and cluster theory using

the Carnahan–Starling approximation (for s0/s ¼ 2.92) for Nn/N,

n ¼ 1,2,3,.,20 as a function of the clusters size n at kBT/3 ¼ 0.4,

rs3 ¼ 0.01, and D ¼ 0.5s.

Fig. 2 Comparison between the MC data (points) and our calculations

using the effective one component hard sphere inter-cluster partition

function within the Carnahan–Starling approximation for s0 ¼ 2.64s

(lines), for Nn/N, n ¼ 1,2,3,.,12 as a function of the clusters size n at

rs3 ¼ 0.01, D ¼ 0.5s, and various temperatures. Also shown is the ideal

gas approximation.
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acceptance for the cluster diameter. Similarly, in Fig. 6 we report

the compressibility factor and the excess internal energy per

particle. The excess internal energy is compared with the MC

data for the vapor phase.9

B. Prediction for a different range of the square well

So far, we have considered the case where the range of interaction

(the width of the square well) D was 50% of the particle size s.

This is the value which has been exploited in details in past MC

studies of the bulk Janus fluid.9,10 As this range decreases, typical

relevant temperatures decrease and simulations become

increasingly more demanding from the computational point of

view to equilibrate. It is then not surprising that no results have

been yet reported in the literature for these ranges. On the other

hand, these are the ranges most frequently encountered in the

experiments,26 and this is where the usefulness of our method can

be assessed.

We have then repeated the calculations for D/s ¼ 0.25, that is

half of previous value.

Fig. 7 reports the cluster distributions for the ideal and the

Carnahan–Starling fluids (lower temperatures), the counterparts

of Fig. 1 and 3. Concentrations of the n-clusters are now shifted

towards higher densities with respect to the case with the twice as

wide range, as expected. Also now the roles of the 10-cluster and

the 11-cluster are inverted with respect to before. This means that

lower attractive range provides, on average, smaller stable clus-

ters, a results that can be understood on an intuitive basis.

We also found that the thermodynamic quantities considered

above are only marginally affected by the reduction of the width

well in the considered range of densities and temperature.

Fig. 6 Compressibility factor as predicted by the Carnahan–Starling

(s0 ¼ 2.64s) cluster theory (top panel). In the bottom panel we compare

the MC data and the Carnahan–Starling cluster theory (same diameter as

above) for the excess internal energy per particle for three different values

of temperatures. In all cases D ¼ 0.5s.

Fig. 5 Values for the compressibility factor, the internal energy per

particle, and the logarithm of the total partition function as a function of

the n-cluster diameter s0/s at rs3 ¼ 0.01, kBT/3 ¼ 0.5, and D ¼ 0.5s.

Fig. 7 Cluster distribution in the case of D ¼ 0.25s. The top panels

report the ideal gas result at kBT/3 ¼ 0.25 (n ¼ 1,.,6 on the left and n ¼
7,.,12 on the right). This is the same as Fig. 1. The bottom panels depict

with the same distribution of curves the results obtained with the Car-

nahan–Starling approximation at kBT/3 ¼ 0.27 which is the counterpart

of Fig. 3.
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We have also considered the case of D ¼ 0.15s. From Fig. 8 it

is apparent that the concentrations of the n-clusters are once

again shifted towards higher densities with respect to the case

with D ¼ 0.25s. Also now the 7- and 8-clusters seems to be the

ones favoured at T ¼ 0.27 in a range of densities in a neighbor-

hood of rs3 ¼ 0.1. This confirms the trend found in the case of

D ¼ 0.25s.

VII. Conclusions

In this paper, we have constructed a cluster theory for the vapor

of Janus fluid. This is an approach that is complementary to

previous studies based on highly demanding MC simulations,9,10

with the aim of providing a detailed description of the vapor

phase in view of its remarkable unusual micellization properties.

The main idea behind the present approach is to consider the

vapor phase as formed by clusters, containing an increasing

number of particles, that are weakly interacting among each

other so that simple fluid models—such as ideal gas or hard

spheres—can be used to mimick their physical properties. The

internal degrees of freedom of each clusters are instead obtained

through a direct MC simulation of a single isolated cluster,

a much simpler task as compared to the bulk simulation, and

a procedure akin to those used in the framework of simple

fluids16 is then used to combine the two calculations and obtain

the full description of the system.

It is worth noticing that, in the ideal-gas case, a similar

procedure has also been already implemented in micellization

theories by several groups,27,28 and the results we obtain in the

present context are quite consistent with those.

There are two basic reasons why we expect this approach to be

valuable. First because previous full bulk simulations showed

micelles to be only weakly interacting in the vapor density range

and hence a simple description for the inter-cluster part is

expected to be sufficient. Second, because it has been observed

that the vapor properties are mostly dominated by particular

cluster sizes corresponding to n z 10 and n z 40 particles, so

only a limited number of cluster sizes is necessary to obtain

a complete description.

In the present work, we have considered clusters up to 12

particles and compared the ideal-gas description with the

description of a gas of hard-spheres, mimicking the original

clusters and with an effective cluster diameter s0, using the

Carnahan–Starling approximate description. The value of s0 has

been obtained by a matching of the results for the internal energy

with full bulk MC simulations. A good agreement was found at

kBT/3 ¼ 0.5 and at densities rs3 ¼ 0.01 when s0 z 2.64s. Results

from the Carnahan–Starling theory is found to be far superior as

compared to the ideal-gas description, thus emphasizing the

importance of inter cluster correlations in the vapor phase.

We also considered higher sizes clusters (of up to 20 particles)

but the agreement with the simulations for the larger sizes

becomes less satisfactory. The theory becomes less and less

accurate as oscillations in the behavior of the concentrations of

the big clusters with size appear. This may be due to the difficulty

in an accurate determination of the internal energy of isolated big

clusters. In this respect in order to be able to observe the vesicles

(clusters of around 40 particles9) phenomenology we certainly

need to include additional insights to avoid the task of the

solution of a system of about 40 coupled equations. An addi-

tional difficulty consists in the fact that in this case the single

diameter effective approximation used for all clusters up to 12 in

the present study will no longer be realistic, not even at the

simplest possible level of description. Both these problems could

be tackled by focussing only on clusters bracketing the inter-

esting ones (n z 10 and n z 40 in the present case).

We showed that in accord with the simulation results of ref. 9,

at temperatures around kBT/3 ¼ 0.27 there is a gap of densities

where the number of clusters of 11 particles (micelles) surpasses

the number of any other cluster. This gap shrinks as we increase

the temperature.

The determined approximation to the partition function of the

vapor phase of the Janus fluid can then be used to compute

various thermodynamical quantities.

We found reasonable quantitative agreement between the

Monte Carlo data of ref. 9 and our theory for the excess internal

energy of the vapor phase of the Janus fluid. We additionally

computed the compressibility factor for which no simulation

data are yet available.

Having validated the model against numerical predictions for

D ¼ 0.5s we pursued the analysis for lower widths of the well,

values that are closer to the experimental range of interactions.26

In view of the overall decrease in the attractions, characteristic

critical temperatures also decrease, thus making numerical

simulations increasingly demanding from the computational

point of view.

For the case of D¼ 0.25s we produced new predictions for the

concentrations, the compressibility factor, and the internal

energy per particle as a function of density. In particular we saw

that as the range of the attraction diminishes the Janus fluid

prefers to form clusters of a lower number of particles.

Consistent results are also found for the case of D ¼ 0.15s,

a value which is rather close to those used in experiments.

An attempt to push the cluster theory to bigger cluster sizes

showed that the theory becomes less and less accurate as oscil-

lations in the behavior of the concentrations of the big clusters

Fig. 8 Same as Fig. 7 for D ¼ 0.15s.
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with size appear. This may be due to the difficulty in an accurate

determination of the internal energy of isolated big clusters. In

this respect in order to be able to observe the vesicles (clusters of

around 40 particles9) phenomenology we certainly need to

include additional insights to avoid the task of the solution of

a system of about 40 coupled equations. An additional difficulty

consists in the fact that in this case the single diameter effective

approximation used for all clusters up to 12 in the present study

will no longer be realistic, not even at the simplest possible level

of description. Both these problems could be tackled by focus-

sing only on clusters bracketing the interesting ones (n z 10 and

n z 40 in the present case).

Two additional perspectives will be the subject of a future

study. First the dependence on coverage c could also be tackled

using the present approach, and this would provide invaluable

information on the micellization mechanism for small coverage,

a task that is still out of reach of direct numerical simulations.

Secondly, it would be extremely interesting to address the issue of

the reentrant phase diagram and the (possible) existence of an

additional liquid–liquid critical point. This has been recently

attempted in a very recent preprint,29 using a monomer–cluster

equilibrium theory in the same spirit as that presented here.
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Pair effective interactions in soft-condensed-matter
physics can be of various nature and one can often
find real systems whose interaction is bounded at small
separations as, for instance, in the case of star and chain
polymers [1]. In this case, paradigmatic models, such as
square-well (SW) fluids, that have been rather successful
in predicting thermo-physical properties of simple liquids,
are no longer useful. Instead, different minimal models
accounting for the boundness of the potential have to
be considered, the Gaussian core model [2] and the
penetrable-sphere (PS) model [3–5] being well-studied
examples. More recently, the penetrable-square-well
(PSW) fluid has been added to this category [6–9]
with the aim of including the existence of attractive
effective potentials. The PSW model is obtained from the
SW potential by reducing to a finite value the infinite
repulsion at short range,

φPSW(r) =











ǫr, r� σ,

−ǫa, σ < r� σ+Δ,

0, r > σ+Δ,

(1)

(a)E-mail: rfantoni@ts.infn.it

where ǫr and ǫa are two positive energies accounting
for the repulsive and attractive parts of the potential,
respectively, Δ is the width of the attractive square well,
and σ is the width of the repulsive barrier. For ǫr→∞
one recovers the SW model, while for Δ= 0 or ǫa = 0 one
recovers the PS model.
For finite ǫa, the ratio ǫa/ǫr is a measure of the

penetrability of the barrier and we shall refer to ǫa/ǫr
as the penetrability ratio. PSW pair potentials can be
obtained as effective potentials for instance in polymer
mixtures [10,11]. While in the majority of the cases the
well depth ǫa is much smaller than the repulsive barrier
ǫr (low penetrability limit) these mesoscopic objects are
highly sensitive to external conditions (e.g., quality of the
solvent) and may thus in principle exhibit higher values of
the penetrability ratio ǫa/ǫr.
It is well known that three-dimensional SW fluids

exhibit a fluid-fluid phase transition for any width of the
attractive square well [12–16], the liquid phase becoming
metastable against the formation of the solid for a suffi-
ciently narrow well [15]. It is also well established that
in the PS fluid (that lacking an attractive component in
the pair potential cannot have a fluid-fluid transition) an
increase of the density leads to the formation of clusters
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of overlapping particles arranged in an ordered crystalline
phase [3,17–19].
While the novel features appearing even in the one-

dimensional case have been studied in some details [6–9],
no analysis regarding the influence of penetrability and
attractiveness on the phase behavior of PSW fluids have
been reported, so far, in three dimensions. The present
paper aims to fill this vacancy.
A system is defined to be Ruelle stable when the total

potential energy UN for a system of N particles satis-
fies the condition UN �−NB, where B is a finite posi-
tive constant [20,21]. In ref. [8] we proved that in the
one-dimensional case the PSW model is Ruelle stable if
ǫa/ǫr < 1/2(ℓ+1), where ℓ is the integer part of Δ/σ.
This result can be extended to any dimensionality d by
the following arguments. The configuration which mini-
mizes the energy of N particles interacting via the PSW
potential is realized when M closed-packed clusters, each
consisting of s=N/M particles collapsed into one point,
are distributed such that the distance between centers of
two neighbor clusters is σ. In such a configuration, all
the particles of the same cluster interact repulsively, so
the repulsive contribution to the total potential energy is
ǫrMs(s− 1)/2. In addition, the particles of a given clus-
ter interact attractively with all the particles of those
f∆ clusters within a distance smaller than σ+Δ. In the
two-dimensional case, f∆ = 6 and 12 if Δ/σ <

√
3− 1 and√

3− 1<Δ/σ < 1, respectively. For d= 3, the case we are
interested in, one has f∆ = 12, 18, and 42 if Δ/σ <

√
2− 1,√

2− 1<Δ/σ <
√
3− 1, and

√
3− 1<Δ/σ < 1, respec-

tively. The attractive contribution to the total potential
energy is thus −ǫa(M/2)[f∆− b∆(M)]s

2, where b∆(M)
accounts for a reduction of the actual number of clus-
ters interacting attractively, due to boundary effects.
This quantity has the properties b∆(M)< f∆, b∆(1) =
f∆, and limM→∞b∆(M) = 0. For instance, in the two-
dimensional case with Δ/σ <

√
3− 1 one has b∆(M) =

2(4
√
M − 1)/M . Therefore, the total potential energy is

UN (M)

Nǫr
=−
1

2
+
N

2M
F (M), (2)

where F (M)≡ (ǫa/ǫr)b∆(M)+ (1− f∆ǫa/ǫr). If ǫa/ǫr <
1/f∆, F (M) is positive definite, so UN (M)/N has a lower
bound and the system is stable in the thermodynamic
limit. On the other hand, If ǫa/ǫr > 1/f∆, one has F (1) = 1
but limM→∞F (M) =−(f∆ǫa/ǫr − 1)< 0. In that case,
there must exist a certain finite value M =M0 such
that F (M)< 0 for M >M0. As a consequence, in those
configurations with M >M0, UN (M)/N has no lower
bound in the limit N →∞ and thus the system may be
unstable.
We have performed an extensive analysis of the vapor-

liquid phase transition of the system using Gibbs Ensem-
ble Monte Carlo (GEMC) simulations [22–26], starting
from the corresponding SW fluid condition and gradually
increasing the penetrability ratio ǫa/ǫr until the transi-
tion disappears. A total number of N = 512 particles with

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0

ε
a
/ε

r

∆/σ

no transition

transition

Ruelle stable

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0

ε
a
/ε

r

∆/σ

no transition

transition

Ruelle stable

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0

ε
a
/ε

r

∆/σ

no transition

transition

Ruelle stable

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0

ε
a
/ε

r

∆/σ

no transition

transition

Ruelle stable

Fig. 1: (Colour on-line) Plot of the penetrability ratio ǫa/ǫr as
a function of Δ/σ. The displayed line separates the parameter
region where the PSW model admits a fluid-fluid phase
transition from that where it does not. The highlighted region
(ǫa/ǫr � 1/12 for Δ/σ <

√
2− 1, ǫa/ǫr � 1/18 for

√
2− 1<

Δ/σ <
√
3− 1, and ǫa/ǫr � 1/42 for

√
3− 1<Δ/σ < 1) shows

where the model is expected to be thermodynamically stable
in the sense of Ruelle for any thermodynamic state. The SW
model falls on the horizontal axis (ǫa/ǫr→ 0) and its fluid-fluid
transition is expected to be metastable against the freezing
transition for Δ/σ� 0.25 [15]. The circles are the points chosen
for the calculation of the coexistence lines (see figs. 2 and 5).
The crosses are the points chosen for the determination of
the boundary between extensive and non-extensive phases
(see fig. 3).

2N -particle random displacements, N/10 volume changes,
and N -particle swap moves between the gas and the liquid
box, on average per cycle, were considered. We find that
for any given width Δ/σ < 1 of the well, there is a limit
value of the penetrability ratio ǫa/ǫr above which no fluid-
fluid phase transition is observed. This is depicted in fig. 1
where it can be observed that (for Δ/σ < 1) this line lies
outside the Ruelle stable region ǫa/ǫr < 1/f∆.
It is instructive to analyze the detailed form of the

coexistence curves below (but close to) the limit line
of fig. 1. This is presented in fig. 2. We have explicitly
checked that our code reproduces completely the results
of Vega et al. [12] for the SW model. Following standard
procedures [12] we fitted the GEMC points near the
critical point using the law of rectilinear diameters (ρl+
ρg)/2 = ρc+A(Tc−T ), where ρl (ρg) is the density of the
liquid (gas) phase, ρc is the critical density, and Tc is
the critical temperature. Furthermore, the temperature
dependence of the density difference of the coexisting
phases is fitted to the scaling law ρl− ρg =B(Tc−T )

β

where β = 0.32 is the critical exponent for the three-
dimensional Ising model. The amplitudes A and B were
determined from the fit. In the state points above the limit
line of fig. 1 we have considered temperatures below the
critical temperature of the corresponding SW system. The
disappearance of the fluid-fluid transition is signaled by
the evolution towards an empty gas box and a clustered
phase in the liquid box.
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Fig. 2: (Colour on-line) Fluid-fluid coexistence line. The solid
circle represents the critical point (ρc, Tc). In the top panel,
for Δ/σ= 0.25 and ǫa/ǫr = 1/6, one has ρcσ

3 = 0.307 and
kBTc/ǫa = 0.762; in the middle panel, below the limit pene-
trability, for Δ/σ= 0.5 and ǫa/ǫr = 1/8, one has ρcσ

3 = 0.307
and kBTc/ǫa = 1.241; and in the bottom panel for Δ/σ= 1.0
and ǫa/ǫr = 1/11, one has ρcσ

3 = 0.292 and kBTc/ǫa = 2.803.
The lines are the result of the fit with the law of rectilinear
diameters. The SW results are the ones of Vega et al. [12].

As discussed, the PSW fluid is thermodynamically
Ruelle stable when ǫa/ǫr < 1/f∆ for all values of the ther-
modynamic parameters. For ǫa/ǫr > 1/f∆ the system is
either extensive or non-extensive depending on tempera-
ture and density. For a given density, one could then expect
that there exists a certain temperature Tinst(ρ), such
that the system is metastable if T > Tinst and unstable if

0.0
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Fig. 3: (Colour on-line) Regions of the phase diagram where the
PSW fluid, with Δ/σ= 0.5 and two different values of ǫa/ǫr, is
found to be extensive or non-extensive (here we used N = 512
particles). Representative snapshots in the two regions are
shown on the left-hand side. The instability line corresponding
to the higher penetrability case (dashed line) lies above the one
corresponding to lower penetrability (continuous line).

T < Tinst. We determined the metastable/unstable
crossover by performing NVT Monte Carlo simulations
with N = 512 particles initially uniformly distributed
within the simulation box. Figure 3 reports the results
in the reduced temperature-density plane for Δ/σ= 0.5
and for two selected penetrability ratios ǫa/ǫr = 1/7 and
1/4, the first one lying exactly just above the limit line of
fig. 1 while the second deep in the non-transition region.
We worked with constant size moves (instead of fixing the
acceptance ratios) during the simulation run, choosing
the move size of 0.15 in units of the the simulation box
side. A crucial point in the above numerical analysis is
the identification of the onset of the instability. Clearly
the physical origin of this instability stems from the fact
that the attractive contribution increases unbounded
compared to the repulsive one and particles tend to lump
up into clusters of multiply overlapping particles (“blob”).
Hence the energy can no longer scale linearly with the
total number of particles N and the thermodynamic limit
is not well defined (non-extensivity). We define a cluster
in the following way. Two particles belong to the same
cluster if there is a path connecting them, where we are
allowed to move on a path going from one particle to
another if the centers of the two particles are at a distance
less than σ.
The state points belonging to the unstable region are

characterized by a sudden drop of the internal energy
and of the acceptance ratios at some points in the system
evolution during the MC simulation. Representative snap-
shots show that a blob structure has nucleated around a
certain point and occupies only a part of the simulation
box with a few clusters. The number of clusters decreases
as one moves away from the boundary line found in fig. 3
towards lower temperatures. Upon increasing ǫa/ǫr the
number of clusters decreases and the number of particles
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Fig. 4: (Colour on-line) Radial distribution function for the
PSW model at Δ/σ= 0.5, kBT/ǫa = 1.20, and ρσ

3 = 0.7 for
two different values of the penetrability ratio ǫa/ǫr.

per cluster increases. We assume a state to be metastable
if the energy does not undergo the transition after 107N -
single-particle moves. The fluid-fluid transition above the
limit penetrability line of fig. 1 is not possible because the
non-extensive phase shows up before the critical point is
reached.
The boundary line of fig. 3 is robust with respect to

the size of the system, provided that a sufficiently large
size (N � 512) is chosen. When the number of particles in
the simulation goes below the number of clusters which
would form in the non-extensive phase the system seems
to remain extensive. For instance, with N = 1024 particles
we obtained under the ǫa/ǫr = 1/7, Δ/σ= 0.5 conditions
a threshold temperature kBT/ǫa ≈ 1.15 for ρσ

3 = 0.4 and
2.25 for ρσ3 = 0.8, which are close to the values obtained
with N = 512 particles.
There is an apparent hysteresis in forming and melt-

ing the non-extensive phase. For example when ǫa/ǫr =
1/7, Δ/σ= 0.5, and ρσ3 = 1.0 the non-extensive phase
starts forming when cooling down to kBT/ǫa = 2.75. Upon
increasing the temperature again, we observed a melting
transition at significantly higher temperatures (kBT/ǫa �
4). We also found the hysteresis to be size dependent; in
the same state for ρσ3 = 0.6 the melting temperatures are
kBT/ǫa ≈ 2.5 for N = 256, kBT/ǫa ≈ 4.5 for N = 512, and
kBT/ǫa ≈ 6.5 for N = 1024. This suggests that the exten-
sive phase in fig. 3 is actually metastable with respect
to the non-extensive phase in the thermodynamic limit.
However the metastable phase can be stabilized by taking
the size of the system finite. In addition we cannot exclude,
a priori, the possibility of a true extensive stable phase as
it is not prevented by the Ruelle criterion. We note that
the size dependence of the hysteresis in the melting could
be attributed to the fact that the blob occupies only part
of the simulation box and therefore a surface term has a
rather high impact on the melting temperature.
A convenient way to characterize the structure of the

fluid is to consider the radial distribution function g(r).
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Fig. 5: (Colour on-line) Isotherm kBT/ǫa = 1 for the PSW
system with Δ/σ= 0.5 and ǫa/ǫr = 1/8 and ǫa/ǫr = 1/15, as
obtained from NPTMC simulation withN = 108 particles. The
pressure axis is in logarithmic scale. Snapshots of the centers
of mass of the clusters in the solid are shown on the right-hand
side.

This is depicted in fig. 4 for the cases Δ/σ= 0.5, kBT/ǫa =
1.20, and ρσ3 = 0.7 at ǫa/ǫr = 1/8 and ǫa/ǫr = 1/7. The
latter case is in the non-extensive region, according to
fig. 3. We can clearly see that there is a dramatic change
in the structural properties of the PSW liquid. In the
non-extensive case, ǫa/ǫr = 1/7, the radial distribution
function grows a huge peak at r= 0 and decays to zero
after the first few peaks, which suggests clustering and
confinement of the system.
In order to study the solid phase of the PSW model

below the limit penetrability we employed isothermal-
isobaric (NPT) MC simulations. A typical run would
consist of 108 steps (particle moves or volume moves) with
an equilibration time of 107 steps. We used 108 particles
and adjusted the particle moves to have acceptance ratios
of ≈0.5 and volume changes to have acceptance ratios
of ≈0.1. Here we only consider the case of PSW with
Δ/σ= 0.5 and ǫa/ǫr = 1/8 and 1/15.
For the SW system with a width Δ/σ= 0.5 the critical

point is known to be at kBTc/ǫa = 1.23 and ρcσ
3 =

0.309, its triple point being at kBTt/ǫa = 0.508, Ptσ
3/ǫa =

0.00003, ρlσ
3 = 0.835, and ρsσ

3 = 1.28 [15]. No solid stable
phase was found in ref. [15] for temperatures above
the triple point, meaning that the melting curve in the
pressure-temperature phase diagram is almost vertical.
On the other hand, the phase diagram of the PSW
fluid with the same well width and a value of ǫa/ǫr =
1/8, just below the limit line of fig. 1, shows that the
melting curve has a smooth positive slope in the pressure-
temperature phase diagram. In order to establish this, we
used NPT simulations to follow the kBT/ǫa = 1 isotherm.
From fig. 5 we can clearly see the jumps in density
corresponding to the gas-liquid and to the liquid-solid
coexistence regions. The presence of a solid phase can
be checked by computing the Q6 order parameter [27],
calculated for the center of mass of individual clusters,
that in the present case turns out to be Q6 ≈ 0.35.
The crystal structure is triclinic with a unit cell with
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a= b= c= σ and α= β = π/3 and γ = cos−1(1/4). There
are possibly other solid-solid coexistence regions at higher
pressures. Moreover the relaxation time of the MC run in
the solid region is an order of magnitude higher than the
one in the liquid region.
We also run at the same temperature a set of simula-

tions for the PSW fluid with ǫa/ǫr = 1/15. The results (see
fig. 5) showed no indication of a stable solid, in agreement
with the fact that at this very low value of the penetrabil-
ity ratio the system is SW-like.
A peculiarity of the PSW in the region below the limit

penetrability of fig. 1, but not in the Ruelle stability
region, is a violation of the Clausius-Clapeyron equa-
tion [28] along the liquid-solid coexistence curve, which
represents a partial lack of thermodynamic consistency.
In the intermediate penetrability case (i.e., above

Ruelle’s threshold but below the limit penetrability),
the observed crystal structure is made of clusters of
overlapping particles (rarely more than two) located at
the sites of a regular crystal lattice. It is precisely this
additional degree of penetrability, not present in the SW
system, that allows for the coexistence of the liquid and
the solid at not excessively large pressures. In this respect
qualitative arguments along the lines suggested in ref. [19]
could be useful.
In conclusion, we have studied the phase diagram

of the three-dimensional PSW system. This model is
Ruelle stable for ǫa/ǫr < 1/f∆. For ǫa/ǫr > 1/f∆ is either
metastable or unstable (non-extensive), depending on the
values of temperature and density, as shown in fig. 3. The
instability is indicated by the collapse of the system in a
confined blob made up of a few clusters of several overlap-
ping particles. Moreover, the gas-liquid phase transition
disappears, as shown in fig. 1.
For the metastable fluid near the limit penetrability line

of fig. 1 we determined the phase diagram comparing it
with the corresponding SW case. We determined how the
gas-liquid coexistence curves are modified by the presence
of penetrability (see fig. 2) and discussed the main features
of the phase diagram, including the solid phase, for
Δ/σ= 0.5.
For the liquid-solid coexistence curves we generally

found that the solid density increases with respect to the
corresponding SW case, as expected, due to the formation
of clusters of overlapping particles in the crystal sites. For
Δ/σ= 0.5 the PSW model with a sufficient penetrability
to have a metastable system, but not a Ruelle stable
one, has a melting curve with a positive slope in the
pressure-temperature phase diagram with a violation of
the Clausius-Clapeyron thermodynamic equation, thus
confirming the metastable character of the phases. For
sufficient low penetrability the system is in the Ruelle
stable region, and behaves as the corresponding SW
model.
In summary, by experimentally tuning the repulsive

barrier relative to the well depth one could observe
a) stable phases resembling those of a normal fluid,

b) metastable phases with fluid-fluid and fluid-solid coexis-
tence, or c) the collapse of the system to a small region.

∗ ∗ ∗

We thank T. Zykova-Timan and B. M. Mladek
for enlighting discussions and useful suggestions. The
support of PRIN-COFIN 2007B58EAB, FEDER FIS2010-
16587 (Ministerio de Ciencia e Innovación), GAAS
IAA400720710 is acknowledged.

REFERENCES

[1] Likos C. N., Phys. Rep., 348 (2001) 267.
[2] Stillinger F. H., J. Chem. Phys., 65 (1976) 3968.
[3] Likos C. N., Watzlawek M. and Löwen H., Phys. Rev.
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I. INTRODUCTION

In this work we consider a system where a single polymer
chain is immersed in an ideal binary mixture of clustering
centers. The study of the resulting associating polymers has
a long history (see, e.g., in [1,2] and references therein).
Models for the reversible gelation of polymers range from
the consideration of pairwise associations of sticky chain
segments [3] to the formation of arbitrary size clusters due to
association of dipolar elements in polymer chains [4]. Whereas
a large number of theoretical treatments model association
with some form of crosslinking, that is, linking of two segments
only, or arbitrary size clusters, we present a treatment for
a small number of species of clusters consisting of a fixed
number of polymer segments. This falls into the so-called
closed multimerization scenario [5].

The reversible or permanent linking of polymer chains or
sections of polymers has been a topic of extensive investiga-
tions for many decades in a wide range of systems. The general
statistical physical scenario generally requires evaluating
both the statistical physics of the chains within a certain
linked scenario as well as a summation over all compatible
modes of linking the polymer constituents. Independent of
whether the linking (crosslinking, aggregation, clustering,
type of polycondensation, etc.) is permanent or reversible
the topologically and geometrically permissible combinations
of linking or clustering need to be evaluated, albeit with
different strategies for quenched or annealed situations [6].
Therefore it is natural to think in terms of the enumeration
of graphs, as extensively reviewed by Kuchanov et al. [7].
The ideas can then be applied to a variety of systems, such
as associating telechelics [8], polycondensation [9], polymers
with multiply aggregating groups [10], and general thermally
reversible aggregation, clustering, or association [11–19].

There are different possibilities in which the scenario of
fixed functionality clustering can be realized. One can think of
the segments of the chain connected to particles or sidechains
that assemble into structures with closed shells, akin to Janus

*rfantoni@ts.infn.it
†kkmn@physics.sun.ac.za

particles, where it was recently shown that monodisperse
ten-particle micelles, and 40-particle vesicles, are the ther-
modynamically dominant assembled structures [20–22].

We are interested in the properties of a solution of such a
polymer with clustering centers and in the relative dominance
of coexisting clusters with different, yet fixed, functionalities.
To this end we reformulate a field-theoretical method origi-
nally proposed by Edwards for permanent, arbitrary-functional
end-linking of chains [23]. The resultant field theory is highly
nonlinear, but can be treated analytically and numerically,
offering an additional theoretical tool to address questions
on the formation of localized, reversible structures of polymer
chains.

As already mentioned, in order to compute the partition
function or free energy one needs to evaluate the polymer
chain conformations subject to the restrictions imposed by the
functionalities of the linkers and include all possibilities of
linking or cluster formation. This is because we are modeling
a strong type of aggregation with fixed functionalities, where
the clusters are well-defined and local. In other words, all
permissible graphs must be generated, their connectivity
restrictions be imposed on the polymer chains and weighted
appropriately by Boltzmann factors. Kuchanov et al. [7], in
their exposition of strategies to do this, also point out the
very clear analogy between enumeration of spatially embedded
graphs and Feynman diagrams from field theories. The obvious
utility of a field-theoretical tactic lies in the large spectrum of
available approximation techniques and graphical expansions
but also in the freedom to choose the precise manner of
implementing the additional fields.

In this paper we introduce additional fields, with the
associated functional integration, whose role is to produce
the desirable linking, network-formation, or aggregate pos-
sibilities as well as enforcing the spatial consequences of
this on the appropriate monomers. The current approach is
similar to those used in Refs. [7,23] and in work that can be
seen as a precursor to the current formalism [24,25]. Whereas
the specific systems investigated in Refs. [23] and [7] are
addressed such that the ends of polymer chains or of star-like
polymer units can associate, respectively, the system under
investigation here deals with aggregation of segments of a
polymer chain. We show that this system allows a formulation

011808-11539-3755/2011/84(1)/011808(14) ©2011 American Physical Society

Field theoretical approach to a dense polymer with an ideal bi-
nary mixture of clustering centers 386
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of the field theory that has the mathematically advantageous
property that it is local in the introduced fields and these
additional fields also couple to the density of monomers in
a local way.

Clearly the sum over aggregated states, by whatever method
derived and approximated, would generally impose a compli-
cated form onto the polymer conformational averages. This
is also the case for theories with additional fields following
integration over the fields. In approximating the functional
integral over fields one expects to find nonlinear integral
equations for these fields in the kinds of self-consistent field
theory calculation that emerge in models for many systems
(as in [7,23]). However, in our formulation the saddle point
equations related to the additional fields (and taken before
integration over the polymer degrees of freedom) turn out
to be only algebraic, albeit nonlinear, providing a significant
advantage in tractability in comparison to nonlinear integral
equations obtained within other strategies (for other systems).
Analysis of the stability, etc. of the resulting theory is also
relatively simpler. Completing the integration over the fields
incorporates the clustering into the remaining weight for the
conformations of the chain (also in a local manner) giving
the “structural” contribution that is taken together with the
remaining polymer-polymer interactions.

Yet other path integration techniques have made use
of generating functional approaches to enumerate tree-like
configurations [26–28] in associating systems. Motivated by
a wide range of physical scenarios under which polymer
chains can aggregate, many different methods (mainly not
field theoretical in the sense as here) have been utilized
in determining the contribution of certain classes of con-
nections, ranging from summations over a subset of looped
conformations [4], sums of tree-like graphs [29], and trees
with cycles to analyses for stickers [3,8,30]. Typically the
effective polymer-polymer contributions can then be dealt
with through a further self-consistent field theory (e.g., [31])
or by determining fluctuations with respect to a reference
system (e.g., [32]) or through a mean-field treatment. In
principle, before our approximations at least, the field theory
introduced here is not restricted to subsets of connectivities
or specifically cyclized conformations nor is it a priori a
mean-field formalism.

In the current calculation we have a single polymer chain
that is immersed in an ideal binary mixture of pointwise
clustering centers with different functionality (number of links
that the center can have with the polymer segments). As a
mathematical device we can think of free segments of the
chain being part of clusters of functionality one, that is,
they cannot connect to any other segments. Moreover, the
system is in solution with clustering centers of functionalities
a and b �= a. The highly non-Gaussian field theory resulting
from the study of the model is quite complicated but can be
approached through the saddle point approximation. Assuming
the polymer to be highly dense we can then use the random
phase approximation (RPA) to describe the polymer degrees
of freedom. We are then able to extract the local densities
of segments that form part of clusters of different sizes, the
effective potential based on small density fluctuations around
a background of a given density, and the static structure factor.
In the current treatment we develop the formalism and then

investigate properties of the system in the scenario of the
uniform polymer segment density with Gaussian fluctuations.
However it is also shown where this approximation breaks
down. One could certainly expect nonhomogeneous phases
to develop which can in principle also be addressed by the
formalism together with the consideration of higher orders in
density fluctuations [33–35].

We shall refer to “polymer segments” as the monomeric
units of which the polymer chain is built. “Clustering centers”
refer to point-like seeds of “clusters” of segments of the
polymer chain. In other words, the clustering centers function
so as to attach to a specific number of the segments of
the polymer and in so doing to localize these segments
at a common point, binding them reversibly into a cluster.
Consequently, a polymer segment is also the basic unit to
which a single attachment to a single cluster is possible. We
shall deal with clustering centers of different functionalities
which form a multicomponent system with the polymer and
provide a “sea” of centers to form clusters with the polymer
segments.

Although our field-theoretical formulation includes no
precise model for the mechanism that causes clustering centers
of a given functionality to occur, we investigate in Sec. VI the
case where the functionalities (10 and 40) of the clustering
centers are the same as those determined for Janus particles
in recent studies [22]. Indeed there has recently been much
development in the techniques for the synthesis of new patchy
colloidal particles [36–39]. One particularly simple class of
these anisotropic particles, called Janus particles [40–43],
seem to form mainly clusters of either 10 or 40 particles. Here
Monte Carlo simulations [20,21] indicate that mainly stable
micelle (10 particles) or vesicle (40 particles) arrangements of
these particles are to be found in the vapor phase. Moreover,
it was found that the clusters behave very similarly to an ideal
gas, since the particles forming the cluster tend to arrange with
their active surfaces toward the cluster center.

Janus chains have been suggested as potentially useful
candidates for understanding interesting polymer phenomena
[44]. We will apply our formalism to the case of a dense
polymer in a Janus fluid and in so doing we hope to add to
the recent interest for Janus particles interacting with polymer
chains [43–45]. To the best of our knowledge there are no
results in the literature that prove the clustering in the Janus
fluid in the presence of the polymer. So we will take as a
working hypothesis the existence of such a clustering, and
make the approximation of treating the Janus fluid as an ideal
mixture of Janus particles, micelles of Janus particles, and
vesicles of Janus particles (in the spirit of Ref. [22]).

The paper is organized as follows: in Sec. II we describe the
model we are studying and formulate the field theory, in Sec. III
we perform the saddle point approximation, and discuss when
we expect the approximation to be most accurate. Section IV
is devoted to an investigation of dense polymer system with
clustering. We use the random phase approximation and derive
an expression for the free energy density of the system and
the effective interaction caused by the clustering centers. In
Sec. V we determine the structure factor and its curvature
at small wave vectors, in Sec. VI we finally solve the
Janus case numerically, and Sec. VII is devoted to the final
remarks.
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II. THE MODEL

The grand partition function for the ideal binary mixture of
clustering centers of functionality a and of functionality b can
be written as

� =
∞∑

N1=0

∞∑
Na=0

∞∑
Nb=0

(z1V )N1

N1!

(zaV )Na

Na!

(zbV )Nb

Nb!
,

where we also allowed for a third species of particles, of
functionality one, which cannot cause aggregation. zi are the
usual fugacities for species i, V is the volume of the system,
and N1 + Na + Nb is the total number of clustering centers.

We now wish to connect these to the polymer degrees of
freedom and develop a partition function for the system of
polymer together with the clustering centers. The “clusters or
clustering centers” represents the free macroparticles making
up the ideal mixture (a two component mixture with clusters of
two different functionalities that are living in a “sea” of clusters
of functionality one: the particles) in which the polymer is
immersed. These macroparticles are made up of a fixed number
of pointwise particles (i.e., they have fixed functionality) each
of which is linked with one polymer segment.

A suitable field-theoretic formalism was developed by
Edwards [23] to describe polymer gels. Consider a field
φ1 : R3 → R then the following Wick theorem holds (see
Appendix C)

I (r1,r2, . . . ,r2M )

= N
∫

[dφ1] φ1(r1)φ1(r2) · · · φ1(r2M ) e− 1
2

∫
dr φ2

1 (r)

=
∑

all pairing

δ
(
rl1 − rl2

)
δ
(
rl3 − rl4

) · · · δ(rl2M−1 − rl2M

)
, (1)

where li = 1,2, . . . ,2M and li �= lj for all i �= j , and N is the
Gaussian normalization.

If we introduce another field φ2, in terms of complex
fields ϕ = φ1 + iφ2 and ϕ� = φ1 − iφ2, the following identity
follows (see Fig. 1):

J = N ′
∫

[dφ1][dφ2]
M∏
i=1

[φ1(ri) + iφ2(ri)]
M ′∏
j=1

[φ1(Rj )

−iφ2(Rj )] e− ∫ dr φ2
1 (r)−∫ dr φ2

2 (r)

1ϕ (  )∗

R2ϕ (  )∗
r2ϕ(  )

r1ϕ(  )

R

FIG. 1. A schematic representation of the role of the field
theory. The fields ϕ and ϕ� are depicted as functions of spatial
variables. Multiplication by exp(− ∫ ϕϕ�) and subsequent functional
integration enforces the linking of the spatial coordinates between
pairs of ϕ and ϕ� (in all possible ways).

polymer

N

FIG. 2. Shows the polymer made up of N equispaced links that
are susceptible to being linked into clusters.

= N ′
∫

[dϕ][dϕ�]
M∏
i=1

ϕ(ri)
M ′∏
j=1

ϕ�(Rj ) e− ∫ dr ϕ(r)ϕ�(r)

= δM,M ′
∑

all pairing

δ
(
rl1 − Rm1

)
δ
(
rl2 − Rm2

)
· · · δ
(
rlM − RmM

)
, (2)

where li and mi can vary over (1,2, . . . ,M) with li �= lj and
mi �= mj for all i �= j . This means that each ϕ is associated
with another ϕ� through a Dirac δ function in all possible
pairwise combinations. As shown in Fig. 1, we can view the
fields ϕ and ϕ� as being complementary, since the δ-function
connection does not occur between pairs of ϕ or pairs of
ϕ�. This Gaussian theory, therefore, enumerates all possible
pairs of points ri and Rj and enforces this by inserting a
Dirac δ.

We consider a polymer chain consisting of N links (see
Fig. 2). Given the Green function G(r,r′) for the segment of
chain between two links, the conformation statistical weight
of the polymer, whose conformation is described by the points
{Ri}, is

P ({Ri}) = G(R1,R2)G(R2,R3) · · · G(RN−1,RN ). (3)

The polymer is immersed in an ideal mixture made up
of two types of crosslinked particles (see Fig. 3) with

(a)

(b)

micelle vescicle

FIG. 3. Shows the clusters of Janus particles: the micelles are
made of a = 10 links, whereas the vesicles of b = 40 links.
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functionalities a and b, respectively. We can also think of
the chain segments as forming two types of clusters (closed-
shell clusters, as for Janus particles [20]) called micelles
and vesicles. What is important is the fixed functionality.
The role of these clustering centers is to provide the links
of a certain fixed functionality between polymer segments,
thereby connecting a given number of segments of the
polymer chain together. Then the partition function can be

written as

ZN =
∞∑

N1,Na,Nb=0

ZN1,Na,Nb
, (4)

where N = N1 + aNa + bNb is the total number of polymer
segments or of particles (since the field theory requires that
each segment must be paired with a particle) and

ZN1,Na,Nb
= N
∫

dR1 · · · dRNe−v
∑N

n,m=1 δ(Rn−Rm)
∫

[dϕ][dϕ�] e− ∫ dr ϕ(r)ϕ�(r)ϕ�(R1)G(R1,R2)ϕ�(R2)G(R2,R3)

· · · G(RN−1,RN )ϕ�(RN )
1

N1!

[ ∫
dr z1ϕ(r)

]N1 1

Na!

[ ∫
dr zaϕ

a(r)

]Na 1

Nb!

[ ∫
dr zbϕ

b(r)

]Nb

, (5)

and the zi are generalized fugacities (that might also contain
a multiplicity associated with the functionality). We have
explicitly added clusters of functionality one (the single
particles) here to represent the sea of particles in which the
polymer and the a and b clusters are immersed. Clearly clusters
of size one simply link to a single polymer segment and
therefore do not cause association as the a and b clusters
do. Note that we are not interested in describing the precise
model for the mechanism by which the clusters of a given
functionality are formed from the aggregation of particles
(more on this in Sec. VI); we just assume that this aggregation
process takes place. At this level of description the physics
of the precise mechanism for the multimerization resides in
the fugacities. In our present formalism the clustering centers
and the particles are pointlike. In principle it is also possible
to extend the current formalism to model clusters of finite
extension. We have also added an excluded volume term v to
the polymer chain, with the dimensions of a volume.

It is possible to use the formalism without necessarily
introducing the essentially inert clusters of functionality one,
which turns out to be the fugacity z1 = 1 case of the equations
derived below. Appendix D shows the details. We continue
with the slightly more general formalism here, noting that
z1 → 1 will show no effects due to the addition of these
convenient clustering centers.

We then find in a short-hand notation, and neglecting for
the time being the excluded volume term,

ZN = N
∫

[dϕ][dϕ�]
{∏

dR
} {∏

G
}

ηN

× exp

{
−
∫

dr ϕ(r)ϕ�(r) +
∫

dr ρ(r) ln[ϕ�(r)/η]

+ z1

∫
dr ϕ(r) + za

∫
dr ϕa(r) + zb

∫
dr ϕb(r)

}
,

(6)

ZN = N
∫

[dϕ][dϕ�]
{∏

dR
} {∏

G
}

exp{F[ϕ,ϕ�]}, (7)

where we introduced the microscopic density of polymer links
ρ(r) =∑N

i=1 δ(r − Ri) and η is an arbitrary constant with the
dimensions of a length to the power −3/2. In the rest of the
paper we will measure lengths in units of η−2/3. A natural

choice would be η = 	−3/2, with 	 the Kuhn length of the
polymer segment.

A. A simple example

To clarify our formalism we consider here the simple
example of a polymer, with four polymer segments, interacting
with two clustering centers of functionality a = 2. Using
the properties of the Gaussian chains, the partition function,
neglecting the excluded volume term, is written as

Z = N
∫

[dϕ][dϕ�]

{
4∏

i=1

dRi

}{
2∏

i=1

dri

}{
3∏

i=1

G(Ri ,Ri+1)

}

×e− ∫ dr ϕ(r)ϕ�(r)

{
4∏

i=1

ϕ�(Ri)

}
z2

2ϕ
2(r1)ϕ2(r2)

= N z2
2

∫
dr1dr2

′∑
G(ri1 ,ri2 )G(ri2 ,ri3 )G(ri3 ,ri4 ). (8)

where we used Eq. (2) and the prime on the last summation
symbol indicates that we have to sum over all possible ways
of assigning to the indexes (i1,i2,i3,i4) the set (1,1,2,2). We
then see that the result is given by

Z = N z2
2

[
4
∫

dr1dr2G(r1,r1)G(r1,r2)G(r2,r2)

+ 4
∫

dr1dr2G(r1,r2)G(r2,r2)G(r2,r1)

+ 4
∫

dr1dr2G(r1,r2)G(r2,r1)G(r1,r2)

]

= 4

+ 4 + 4 ,

(9)
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where lines represent polymer segments and black circles
represent integration.

III. THE SADDLE POINT APPROXIMATION

We look at the saddle point equations for the fields ϕ and
ϕ� for any arbitrary yet fixed conformation of the polymer ρ =
ρ(r) � 0 ∀r ∈ R3. The saddle point approximation becomes
necessary because the field-theoretical formulation of the
system Eq. (6) is certainly highly non-Gaussian. We proceed
to calculate the saddle point and note that, for fixed polymer
conformation, the resulting condition is a set of algebraic
equations, that is, the saddle point depends only on the local
density. We shall also see that there always exists exactly one
saddle point, corresponding to the physical solution of the
equations.

We need to determine the critical point (ϕ̄,ϕ̄�), which
amounts to solving

δF
δϕ(r)

∣∣∣∣
ϕ̄,ϕ̄�

= 0,
δF

δϕ�(r)

∣∣∣∣
ϕ̄,ϕ̄�

= 0 (10)

or

−ϕ̄� + z1 + azaϕ̄
a−1 + bzbϕ̄

b−1 = 0, (11)

−ϕ̄ + ρ/ϕ̄� = 0. (12)

These can be combined to give

−ρ/ϕ̄ + z1 + azaϕ̄
a−1 + bzbϕ̄

b−1 = 0. (13)

A. Properties of the solutions of the saddle point approximation

From Eq. (13) we can write

−ρ + f (ϕ̄) = 0, (14)

where f (x) = z1x + azax
a + bzbx

b. We can then show that
there exists at least one positive solution of Eq. (13) for
ρ > 0. Indeed when ϕ̄ → 0 then −ρ + f (ϕ̄) = −ρ < 0,
whereas when ϕ̄ > ρ/z1 then −ρ + f (ϕ̄) > 0. Consequently
−ρ + f (ϕ̄) goes through a zero when ϕ̄ ∈ [0,∞). And it
is easy to show that there is exactly one positive solution
ϕ̄ > 0 for any ρ > 0. f ′(ϕ̄) = z1 + a2zaϕ̄

a−1 + b2zbϕ̄
b−1 so

f ′(ϕ̄) > 0 for all ϕ̄ � 0. Since the derivative is strictly positive
and the polynomial goes from negative to positive, there exists
exactly one positive root ϕ̄ for any ρ > 0. As we show in
Sec. IV B the local cluster densities of the saddle point are
proportional to z1ϕ̄, azaϕ̄

a, and bzbϕ̄
b, such that ϕ̄ must be

nonnegative.

B. Solutions for ϕ̄ and ϕ̄�

Consider the particular case a = 2, b = 0, corresponding
to reversible crosslinking, then from Eq. (13) we find for the
critical point

ϕ̄± =
−z1 ±

√
z2

1 + 8z2ρ

4z2
, (15)

ϕ̄�
± = 4z2ρ

−z1 ±
√

z2
1 + 8z2ρ

, (16)

which rules out the ϕ̄− solution, as the logarithm of ϕ̄�
− is not

well defined.

C. Expansion of F around the critical point

We can expand the function F around the critical point to
second order in the fluctuations 
ϕ = ϕ − ϕ̄ = 
φ1 + i
φ2

and 
ϕ� = ϕ� − ϕ̄� = 
φ1 − i
φ2,

F[ϕ̄ + 
ϕ,ϕ̄� + 
ϕ�] = F[ϕ̄,ϕ̄�] + 1

2

∫
dr1

∫
dr2[ 
φ1(r1) 
φ2(r1) ] · F2(r1,r2) ·

(

φ1(r2)

φ2(r2)

)
+ third order terms, (17)

where F2(r1,r2) is the following 2 × 2 matrix:

F2(r1,r2) =

⎛⎜⎝ δ2F
δφ1(r1)δφ1(r2)

∣∣
ϕ̄,ϕ̄�

δ2F
δφ1(r1)δφ2(r2)

∣∣
ϕ̄,ϕ̄�

δ2F
δφ2(r1)δφ1(r2)

∣∣
ϕ̄,ϕ̄�

δ2F
δφ2(r1)δφ2(r2)

∣∣
ϕ̄,ϕ̄�

⎞⎟⎠ . (18)

We have

δ2F
δφ1(r1)δφ1(r2)

∣∣∣∣
ϕ̄,ϕ̄�

=
[
−2 − ρ

ϕ̄�2
+ a(a − 1)zaϕ̄

a−2 + b(b − 1)zbϕ̄
b−2

]
δ(r1 − r2), (19)

δ2F
δφ1(r1)δφ2(r2)

∣∣∣∣
ϕ̄,ϕ̄�

= i

[
ρ

ϕ̄�2
+ a(a − 1)zaϕ̄

a−2 + b(b − 1)zbϕ̄
b−2

]
δ(r1 − r2), (20)

δ2F
δφ2(r1)δφ2(r2)

∣∣∣∣
ϕ̄,ϕ̄�

=
[
−2 + ρ

ϕ̄�2
− a(a − 1)zaϕ̄

a−2 − b(b − 1)zbϕ̄
b−2

]
δ(r1 − r2). (21)

We can then introduce the matrix M[ρ] as(−2 − ρ

ϕ̄�2 + a(a − 1)zaϕ̄
a−2 + b(b − 1)zbϕ̄

b−2 i
[

ρ

ϕ̄�2 + a(a − 1)zaϕ̄
a−2 + b(b − 1)zbϕ̄

b−2
]

i
[

ρ

ϕ̄�2 + a(a − 1)zaϕ̄
a−2 + b(b − 1)zbϕ̄

b−2
] −2 + ρ

ϕ̄�2 − a(a − 1)zaϕ̄
a−2 − b(b − 1)zbϕ̄

b−2

)
, (22)
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RICCARDO FANTONI AND KRISTIAN K. MÜLLER-NEDEBOCK PHYSICAL REVIEW E 84, 011808 (2011)

Then the partition function can be rewritten as

ZN ≈ N ′
∫ {∏

dR
} {∏

G
}

exp{M[ρ]}, (23)

where

M[ρ] = F[ϕ̄,ϕ̄�] − 1

2

∫
dr ln {det M[ρ]} , (24)

and

det M[ρ] = 4[1 + zaa(a − 1)ϕ̄a/ρ + zbb(b − 1)ϕ̄b/ρ].

(25)

For finite ρ the determinant is always positive with positive
real parts of the eigenvalues, if ϕ̄ > 0. Hence the saddle point
is stable.

As the density ρ increases we note that the free energy
calculation due to the saddle point F[ϕ̄,ϕ̄�] grows at least as
ρ, but that the fluctuation contribution − 1

2

∫
dr ln{det M[ρ]}

strives to a constant. Therefore at sufficiently high density we
expect the relative contribution of the fluctuations to become
negligible.

In the particular case a = 2, b = 0 we find

det M±[ρ] = 4(1 + 2z2ϕ̄±/ϕ̄�
±). (26)

IV. THE RANDOM PHASE APPROXIMATION

In this section we express the polymer in terms of a segment
density via the so-called random phase approximation. We
restrict ourselves to the situations where the polymer segments
are presumed to be distributed homogeneously with Gaussian
density fluctuations around this value. For sufficiently dense
systems this has been treated as a reasonable approximation
[6] in permanently networked systems. We do not investigate
the cases of possible inhomogeneous phases. In principle we
would then need to expand our results in the preceding sections
to higher orders in the density fluctuations [33–35] or attempt
to express our results in terms of more complex quantities
[46,47]. However, we do investigate where our RPA with the
homogeneity assumption fails as one indicator for possibly
different phase behavior in the system.

A. Basic formulation

Clearly our clustering formalism produces a significantly
nontrivial density dependence. Presuming that our system be-
haves like a highly dense polymer melt, where the fluctuations
of ρ = ρ̄ + 
ρ are small, one can use the following random
phase approximation [35] (RPA) (see Appendix B),

∫ {∏
dR
} {∏

G
}

· · · = N ′′
∫

[d
ρ] exp

[
−1

2

∫
dr
∫

dr′ 
ρ(r)
̂̃S−1

0 (|r − r′|)
V


ρ(r′)

]
· · ·

= N ′′
∫

[d
ρ̃] exp

[
−1

2

1

V

∑
k


ρ̃(k)
S̃−1

0 (k)

V

ρ̃(−k)

]
· · · , (27)

where we denoted with a tilde the Fourier transform [48] and
with a hat an inverse Fourier transform. We note that this
type of approach is not atypical in calculations for quenched
gels [49].

Expanding to second order in the density fluctuations we
find, from Eq. (24) and Eqs. (11) and (12),

M[ρ̄ + 
ρ]

= AV + B

∫
dr 
ρ(r) + C

∫
dr [
ρ(r)]2 + · · ·

= AV + C

∫
dr [
ρ(r)]2 + · · · , (28)

where we used the fact that
∫

dr 
ρ(r) = 0. V is the volume of
the box, A, B, and C are given functions of z1, z2, and ρ̄ and
for the particular case a = 2, b = 0 can be found in Appendix
A. Notice that in this case A− is not defined for any values of
the average density so only the A+, B+, and C+ solution is
physically meaningful, that is, they correspond to the expected
positive ϕ̄ solution (see Sec. III A).

We then obtain the following approximation for the parti-
tion function of Eq. (23):

ZN ≈ N ′′′eAV − 1
2

∫
dr ln(̂̃S−1

0 /V −2C), (29)

where ̂̃S−1
0 is the operator whose r,r′ component is given bŷ̃S−1

0 (|r − r′|).
In terms of the free energy density βf = − ln(ZN )/V we

find, in the thermodynamic limit (V → ∞ with ρ̄ = N/V

constant),

βf = −A − 1
2 ln(−2C). (30)

B. Local clustered segment densities

Following the usual method for grand-canonical ensemble
it is possible to calculate the local densities of segments that
form part of different sizes of clusters. We then compute

n1 = z1

N

∂ ln ZN

∂z1
(31)

for segments of the chain that are not crosslinked, and

nx = x
zx

N

∂ ln ZN

∂zx

(32)

for the density of segments part of clusters of size x.
Neglecting the logarithmic corrections due to the quadratic

fluctuations, we have

ln ZN = V A = M[ρ̄]. (33)
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Within the saddle point approximation we split the contri-
butions into parts due to the saddle point above and due to
the quadratic fluctuations [notice that this analysis holds also
locally at the level of the partition function for an arbitrary
ρ = ρ(r) profile of polymer chain density]

nx = x
zx

N

∂F[ϕ̄,ϕ̄�]|ρ=ρ̄

∂zx

− x
zxV

2N

∂ ln det M[ρ̄]

∂zx

= nS
x + nQ

x , (34)

where x = 1, x = a, or x = b. We then find

nS
x = xzxϕ̄

x

ρ̄
. (35)

Since nS
x ’s have to be real and nonnegative, in the saddle

point approximation, the solutions ϕ̄ also have to be real
and nonnegative. Immediately from the saddle point Eq. (13)
follows that

nS
1 + nS

a + nS
b = 1 (36)

must hold generally. We also find after some algebra

n
Q
1 + nQ

a + n
Q
b = 0. (37)

This means that the saddle point approximation conserves the
total number of segments for any density. Consequently, any
average over these density dependent expressions, irrespective
of the approximation, must satisfy the conservation. However
we note that the conservation laws (36) and (37) do not prevent
possibly negative nS

x + nQ
x which can arise in the region where

the fluctuation part is not sufficiently smaller than the saddle
point. As the validity of the saddle point improves with density,
this possibility also disappears.

For the special case a = 2, b = 0 we have

nS
1 = 2z1

z1 +
√

z2
1 + 8z2ρ̄

, (38)

n
Q
1 =

z1
(−z1 +

√
z2

1 + 8z2ρ̄
)

2ρ̄
(
z2

1 + 8z2ρ̄
) , (39)

as a consequence we see that the fraction of monomers not in
a crosslink decreases with the density.

C. The effective potential

Upon integrating over the degrees of freedom associated
with the clustering centers the remaining integral in the
partition function is that over the polymer density degrees
of freedom (in the RPA). This permits us to interpret the
effective interaction between polymer segments as caused by
the clustering. It consists of the typically attractive contribution
to the polymer-polymer quadratic density fluctuations from the
aggregating fields and any direct polymer-polymer interaction
(such as excluded volume interactions).

From Eqs. (23), (27), and (28) we can rewrite the partition
function as

ZN ≈ N ′′′
∫

[d
ρ]e− 1
2

∫
dr
∫

dr′ 
ρ(r)
̂̃
S
−1
0 (|r−r′ |)

V

ρ(r′)

× eAV e− 1
2

∫
dr
∫

dr′ 
ρ(r)W (r−r′)
ρ(r′), (40)

where the effective potential between the polymer segments
W is given by

W (r − r′) = − δ2M[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ(r)=ρ̄

= −2C(z1,za,zb; ρ̄)δ(r − r′). (41)

We can then split the contribution from the saddle point and
the quadratic contribution of Eq. (24) and write

C = CS + CQ, (42)

CS = 1

2

∂2f S(ϕ̄,ρ)

∂ρ2

∣∣∣∣
ρ=ρ̄

, (43)

CQ = 1

2

∂2f Q(ϕ̄,ρ)

∂ρ2

∣∣∣∣
ρ=ρ̄

, (44)

where

f S = −ρ + ρ ln(ρ/ϕ̄) + z1ϕ̄ + zaϕ̄
a + zbϕ̄

b, (45)

f Q = − 1
2 ln{4[1 + a(a − 1)zaϕ̄

a/ρ + b(b − 1)ϕ̄b/ρ]}. (46)

Now, using Eq. (13), we find ∂f S/∂ρ = ln ρ − ln ϕ̄ and,
using the property ∂ϕ̄/∂ρ = 1/(z1 + a2zaϕ̄

a−1 + b2zbϕ̄
b−1),

follows ∂2f S/∂ρ2 = 1/ρ − 1/(z1ϕ̄ + zaa
2ϕ̄a + zbb

2ϕ̄b). Let
us assume for definiteness that b > a. Then when ρ is very
small z1ϕ̄ ≈ ρ and ∂2f S/∂ρ2 ≈ a(a − 1)(za/z

a
1)ρa−2/[1 −

a(za/z
a
1)ρa−1], while when ρ is very large zbbϕ̄b ≈ ρ so that

∂2f S/∂ρ2 ≈ (b − 1)/(bρ). Moreover, we find in the large ρ

limit that ∂2f Q/∂ρ2 behaves at least as 1/ρ2.
We remark that in the small ρ limit in the a = 2, b = 0

case ∂2f Q/∂ρ2 ≈ 10z2
a/z

4
1, whereas in the a = 10, b = 40

case ∂2f Q/∂ρ2 ≈ −3240zaρ
7/z10

1 . However we guard against
interpreting this as a repulsive interaction as the saddle point
approximation to our field theory is not expected to be accurate
at small densities. This repulsive contribution in the small
density limit for the effective potential of the Janus case (see
Sec. VI) explains the fact that here the RPA can be valid
(see Sec. IV D) even if we do not add any excluded volume
interaction to the polymer.

For the simple case a = 2, b = 0 we then find that C+ =
CS + CQ where

CS = 1

4ρ̄

(
1 − z1√

z2
1 + 8z2ρ̄

)
, (47)

CQ = 1

8ρ̄2

[
64(ρ̄z2)2(

z2
1 + 8z2ρ̄

)2 − 1 + z3
1 + 12z1z2ρ̄(
z2

1 + 8z2ρ̄
)3/2

]
. (48)

Here we also find in the small ρ̄ limit

CS = z2

z2
1

− 6z2
2

z4
1

ρ̄ + O(ρ̄2), (49)

CQ = 5z2
2

z4
1

− 88z3
2

z6
1

ρ̄ + O(ρ̄2), (50)

which tells us that the energy to crosslink goes to a constant
proportional to z2.
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In the large ρ̄ limit

CS = 1

4ρ̄
− z1

8
√

2z2ρ̄3/2
+ z3

1

128
√

2z3
2ρ̄

5/2
+ O(ρ̄−3), (51)

CQ = 3z1

32
√

2z2ρ̄5/2
+ O(ρ̄−3), (52)

which tells us that the energy to crosslink goes to zero as 1/ρ̄,
in accord with the fact that we are in a dense system.

The effective potential calculated here, based on small
density fluctuations around a background of a given density, is
dependent on the average density. As expected, the clustering
produces a local attractive interaction.

However, it is interesting to note that the strength of this
interaction decreases with average density. We attribute this to
the fact that the fraction of free segments (i.e., those in clusters
of size 1) decreases with the average density according to
Eq. (38). Therefore, for large ρ̄, the number of additional free
segments gained by increasing the density from ρ̄ to ρ̄ + 
 is
proportional to ρ̄−1/2 leading to a pairwise contribution 
2/ρ̄

as found in Eq. (51).

D. Validity of RPA

The RPA is based on a homogeneity assumption which
no longer holds when the RPA itself predicts overly large
fluctuations. In order to obtain Eq. (29) we must have that
S̃−1

0 (k)/V − 2C is a strictly positive function for all values of
the wave vector k. Since S̃−1

0 (k) is a monotonically increasing
function of k, the RPA will be valid as long as

C <
S̃−1

0 (0)

2V
= 1

2V ρ̄2
. (53)

In the thermodynamic limit one would require that C < 0 for
the validity of RPA.

We can then extend the region of the validity of RPA by
adding an excluded volume effect [50] to the polymer which
amounts to taking M[ρ] → M[ρ] − v

∫
dr ρ2(r) with v a

positive constant with the dimensions of a volume. We will
then have

A → A − ρ̄2v, B → B − 2ρ̄v, C → C − v, (54)

and the validity of RPA becomes C < v.
For the a = 2, b = 0 case we have that C+ is always posi-

tive so the RPA cannot be applied without the excluded volume
interaction. As a matter of fact we have limρ̄→∞ C+ = 0
and limρ̄→0 C+ = z2(z2

1 + 5z2)/z4
1 and C+ is a monotonically

decreasing function of ρ̄. So by choosing v any arbitrarily
small positive constant we are able to extend the range of
validity of RPA to arbitrarily large densities.

In this case choosing z1 = 1, z2 = e2β , and v = 1 the
validity domain in the phase diagram is determined in Fig. 4.

In Fig. 5 we show the behavior of the free energy
density as a function of density in the case a = 2, b = 0.
Here we choose z1 = 1, z2 = e2β where β = 1/kBT with kB

Boltzmann constant and T is the temperature and v = 1.

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

ρ

β

RPA invalid

C=v

RPA valid

FIG. 4. (Color online) Shows the RPA validity region of the phase
diagram, in the a = 2, b = 0 case, for z1 = 1, z2 = e2β and v = 1.

V. THE STATIC STRUCTURE FACTOR

The Fourier transform of the pair correlation function is
defined as [51]

g̃(k) = 1

N
〈ρ̃(k)ρ̃(−k)〉 = 1

N
〈
ρ̃(k)
ρ̃(−k)〉, k �= 0.

(55)

The quantity g̃(k) can be measured experimentally by light
scattering. Moreover one can extract some important infor-
mation on the polymer properties from the small k = |k|
behavior:

g̃(k) = g̃(0)

(
1 − k2

3
R2

g + · · ·
)

, (56)
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FIG. 5. (Color online) Shows the free energy density as a function
of the average density in the a = 2, b = 0 case, for z1 = 1, z2 = e2β

and v = 1.
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where Rg is the radius of gyration of the polymer, namely

R2
g = 1

2N2

N∑
n=1

N∑
m=1

〈(Rn − Rm)2〉. (57)

Now using the result from the RPA we find

Ng̃(k) = V
[
S̃−1

0 (k)
/
V − 2C

]−1
, (58)

which when C = −v, agrees with Edwards’ result [50,52] for
polymer chains with only excluded volume interactions [53].
Notice that the effective potential C is in general a function
of ρ̄, z1, za, and zb. As shown in Sec. IV C, C + v tends to
be positive (attractive interaction between polymer segments)
in the presence of clustering centers. So we expect there to be
a regime of density for which there is a balance between the
repulsion due to the excluded volume effect and the attraction
due to clustering making C ≈ 0. In such case our result
reproduces the one for the ideal chain (see section 1.2.3 in
Ref. [51]).

In the small k limit we find

Ng̃(k) = V 2

1/ρ̄2 − 2CV

(
1 − k2

3
ξ 2 + · · ·

)
, (59)

where ρ̄ = N/V is the average polymer segment density for a
single long polymer chain and the “curvature” of the structure
factor at k = 0 is

ξ 2 = 	2ρ̄V

6 − 12ρ̄2CV
, (60)

where 	 is the Kuhn length of the polymer. And in the
thermodynamic limit

(ξ/	)2 → − 1

12ρ̄C
. (61)

So that at large polymer densities the curvature tends to a
constant [we note that C now includes the excluded volume as
in Eq. (54)].

We also find, in the thermodynamic limit, the following
expression for the structure factor:

g(k) → 12

(	k)2 − 24ρ̄C
. (62)

Notice that in the absence of the effective interaction (C = 0)
the structure factor diverges at k = 0.

In the a = 2, b = 0 case, at constant V , in the small N limit
we find the free polymer result ξ 2 = N	2/6 + O(N3). In the
large N limit we find

(ξ/	)2 = 1

12v

V

N
+ 1

48v2

V 2

N2
+ O(1/N5/2). (63)

Given the densest possible filling N/V ∼ 1/v the curvature
tends to a constant.

VI. THE JANUS CASE

Although our field-theoretical formulation includes no
precise model for the mechanism that causes clustering centers
of a given functionality to occur, we investigate here the case
where the functionalities (10 and 40) of the clustering centers
are the same as those determined for Janus particles in recent

studies. Indeed there has recently been much development
in the techniques for the synthesis of new patchy colloidal
particles [36–39]. One particularly simple class of these
anisotropic particles, called Janus particles [40–43], seem to
form mainly clusters of either 10 or 40 particles. Here Monte
Carlo simulations [20,21] indicate that mainly stable micelle
(10 particles) or vesicle (40 particles) arrangements of these
particles are to be found in the vapor phase. Moreover it was
found that the clusters behave very similarly to an ideal gas,
since the particles forming the cluster tend to arrange with
their active surfaces toward the cluster center.

Janus chains have been suggested as potentially useful
candidates for understanding interesting polymer phenomena
[44]. We will apply our formalism to the case of a dense
polymer in a Janus fluid and in so doing we hope to add to
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FIG. 6. (Color online) The upper panel shows the RPA validity
region of the phase diagram, in the Janus case, for z1 = 1, z10 =
e10β, z40 = e40β , in the absence of any excluded volume effect. At β =
0 the C = 0 equation has solution ρ 
 0.647933 . . . . Note that the
validity region is in the small density region, where the contribution
from the quadratic fluctuations of the theory dominates, and the whole
theory is expected to be less significant. The lower panel shows the
free energy density as a function of the average density. The rapid in-
crease at high density is indicative of the limit of the RPA applicability.
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FIG. 7. (Color online) Shows the free energy density as a function
of the average density in the Janus case, for z1 = 1, z10 = e10β,

z40 = e40β , and v = 15.

the recent interest for Janus particles interacting with polymer
chains [43–45]. To the best of our knowledge there is no results
in the literature that proves the clustering in the Janus fluid in
the presence of the polymer. So we will take as a working
hypothesis the existence of such a clustering. And make the
approximation of treating the backbone units of the polymer
(the Janus particles) as an ideal fluid.

Given the general setting described above we can apply
our theoretical model to a polymer in a Janus fluid. By this
we think of chain segments only clustering to form limited
closed shell conformations, that is, micelles and vesicles. As
mentioned before, we however do not consider the nature of
spacial extent of the clustering in detail and simply presume
that it still occurs in the same way as if the Janus particles were
not connected to the polymer.

In the Janus case we have to choose a = 10 and b = 40 (see
Fig. 3). We then find for the determination of the critical point
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FIG. 8. (Color online) In the Janus case for z1 = 1, z10 =
e10β, z40 = e40β , v = 15, and β = 1 shows the concentrations of
clusters of 1, 10, and 40 particles as a function of the density.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

n i

ρ

n1 β=0.1
n10 β=0.1
n40 β=0.1
n1 β=1.0

n10 β=1.0
n40 β=1.0

FIG. 9. (Color online) In the Janus case for z1 = 1, z10 =
e10β, z40 = e40β , and v = 15, shows the concentrations of clusters
of 1 (nS

1 ), 10 (nS
10), and 40 (nS

40) particles as a function of the density
when we do not use the logarithmic correction in Eq. (24).

an algebraic equation of degree 40 Eq. (13). As expected, this
equation has just one solution for which A [from Eq. (28)] is
real and nonnegative.

We can see the generalized fugacities defined as zi ∝
exp(−βui + βμi) for i = 1, 10, 40, where ui is the average
internal energies of the cluster of i Janus particles and μi is
the chemical potential of this cluster species. It is moreover
reasonable to take μi ≈ μ independent of i (μ being the
chemical potential of the vapor phase of the Janus fluid) so
that we get zi ∝ exp(−βui).

Choosing z1 = 1, z10 = e10β, and z40 = e40β we find that
at small densities (where the theory is expected to be not
good) the effective potential is repulsive (due to the quadratic
fluctuations in the theory) even without adding an excluded
volume to the polymer (see Sec. IV C). The range of validity
of RPA in the phase diagram is shown in Fig. 6. In Fig. 6 we
show the behavior of the free energy density which clearly
shows the signature for the breakdown of the RPA theory at
high density.

Notice that, also in this case, limρ̄→∞ C = 0 so that by
adding a small excluded volume will allow us to reach the
high densities domain with RPA. At a fixed temperature C, as
a function of density, has a global maximum, so that choosing
the excluded volume v bigger than this value, the RPA can
be made valid at any density (see Fig. 7). Moreover, we
expect the theory to give consistent results in the high density
regime.

Our choice for the fugacities is justified a posteriori since
for β < 1 we are in the high temperature regime of the Janus
vapor [20] where the internal energy of a cluster of i Janus
particles is with a good approximation given by −(i − 1) ≈ −i

(corresponding to a completely stretched cluster).
Since ZN is a grand canonical in the clusters of Janus par-

ticles, we can take derivatives with respect to the generalized
fugacity zi to determine the concentration ni of clusters of i
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Janus particles as follows:

ni = i〈Ni〉
N

= i

N

∂ ln ZN

∂ ln zi

, (64)

where ln ZN = V [A + ln(−2C)/2].
A graph of the concentrations as a function of the average

polymer density is shown in Fig. 8. From Fig. 8 one can see the
difference between nx = nS

x and nx = nS
x + nQ

x for x = 1, 10,

and 40 and β = 1. Note that the conservation of particles
n1 + n10 + n40 = 1 is exactly satisfied at all densities and
temperatures in both cases. In Fig. 9 we show the dependence
of the concentrations from the temperature. Thus we would
say that at sufficiently high densities the vesicles appear and
as a consequence the micelles are reduced.

We conclude that this suggests strong dominance of
nonclustering at low densities. As the density is increased
smaller clusters and eventually larger clusters dominate the
linking behavior.

VII. CONCLUSIONS

In this work we have studied and developed a field-
theoretical formalism for a polymer immersed in an ideal
mixture of clustering centers. These centers cause clustering of
either a particles or b particles, that is, clusters of either species
are monodisperse. The field theory couples fields associated
with stickers to the polymer chain density and provides a
formally exact expression for the partition function (canonical
in polymer and grand canonical for the clustering centers).
We showed that it is possible to compute quantities using the
nonlinear theory by means of a saddle point approximation
and we argue that the approximation improves as the density
of the polymer chain increases. The current system and the
choice of implementation of additional fields enabled us to
derive saddle-point equations that are simpler than those

that arise in some other formalisms by not requiring the
solution of nonlinear integral equations. The benefit of the
local saddle-point equations is that they also enable a relatively
simple analysis of the stability and applicability considerations
of the theory.

For a homogeneous, dense polymer system, we computed
the effective interaction potential (up to quadratic density
fluctuations) and computed properties of the structure factor
within the random phase approximation. As expected, the
addition of an excluded volume interaction will compensate for
the attraction due to aggregation effects and extend the validity
of the RPA. The effective pairwise potential obtained in this
approximation has interesting, nontrivial density dependence.
Another clear consequence of increasing chain density is the
growing dominance of the higher functional clustering centers.

The nature of the clustering process is definitely of impor-
tance in aggregating polymer systems. (Recently, a theory for
cluster formation in homopolymer melts was introduced by
Semenov [17]). One motivation for our study is the closed
multimerization scenario suggested by particles in a Janus
fluid, where micelles (a = 10) and vesicles (b = 40) are
known to occur [20,21]. Future work will focus the attention
on the stability of such Janus-type multimers when connected
to a polymer with more detailed models of the cluster itself.
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APPENDIX A: COEFFICIENTS A, B, AND C
FOR THE A = 2, B = 0 CASE

The A, B, and C coefficients are given by

A± = 1

8z2

{
−z2

1 ± z1

√
z2

1 + 8ρ̄z2 + 8ρ̄z2 ln

(
4ρ̄z2

−z1 ±
√

z2
1 + 8ρ̄z2

)
+ 4z2

[
ρ̄ + ln

(
1 ± z1√

z2
1 + 8ρ̄z2

)
− ln 8

]}
, (A1)

B± = − 2z2

z2
1 + 8ρ̄z2

+ 1

4ρ̄

(
1 ∓ z1√

z2
1 + 8ρ̄z2

)
+ ln

(
4ρ̄z2

−z1 ±
√

z2
1 + 8ρ̄z2

)
, (A2)

C± = 8z2
2(

z2
1 + 8ρ̄z2

)2 + 1

8ρ̄2

[
−1 ± z1√

z2
1 + 8ρ̄z2

+ ρ̄

(
2 ∓ 2z1

(
z2

1 − 2z2 + 8ρ̄z2
)(

z2
1 + 8ρ̄z2

)3/2

)]
. (A3)

APPENDIX B: THE RANDOM PHASE APPROXIMATION

For the polymer chain, with a Kuhn length 	, we can write∫ {∏
dR
} {∏

G
}

=
∫

[dρ]
∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r){ρ(r)−∫ L

0
ds
	

δ[r−R(s)]}

=
∫

[dρ]
∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r)ρ(r)

{
1 − i

∫
dr
∫ L

0

ds

	
ζ (r)δ[r − R(s)]

− 1

2

∫
dr
∫ L

0

ds

	
ζ (r)δ[r − R(s)]

∫
dr′
∫ L

0

ds ′

	
ζ (r′)δ[r′ − R(s ′)] + · · ·

}
, (B1)

where L = N	 is the total polymer length and the dot denotes a derivative with respect to s.
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Now the first term gives just a normalization constant N . To calculate the second term we introduce the polymer
center of mass R0 so that R(s) = R0 + 
R(s) and write∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r)ρ(r)
∫

dr
∫ L

0

ds

	
ζ (r)δ[r − R(s)]

=
∫

[dζ ]
∫

[dR] e− 3
2	

∫ L

0 ds Ṙ2(s)ei
∫

dr ζ (r)ρ(r)
∫

dr
∫ L

0

ds

	
ζ (r)

1

V

∑
k

eikr−ikR(s)

=
∫

[dζ ]
∫

[d
R]
∫

dR0 e− 3
2	

∫ L

0 ds 
Ṙ2(s)ei
∫

dr ζ (r)ρ(r)
∫

dr
∫ L

0

ds

	

1

V

∑
k

ζ (r)eikre−ik[R0+
R(s)]

=
∫

[dζ ]ei
∫

dr ζ (r)ρ(r)N 1

V

∫
dr
∫ L

0

ds

	

∑
k

ζ (r)δk,0

=
∫

[dζ ]ei
∫

dr ζ (r)ρ(r)N N

V

∫
dr ζ (r), (B2)

where V is the volume of the box and δk,0 is the Kronecker delta.
The third term gives∫

[dζ ]ei
∫

dr ζ (r)ρ(r)
∫

[d
R]
∫

dR0 e− 3
2	

∫ L

0 ds 
Ṙ2(s) 1

V 2

∑
k

∑
k′

∫
dr
∫ L

0

ds

	

∫
dr′
∫ L

0

ds ′

	

× ζ (r)ζ (r′)eikreik′r′
ei(k+k′)R0eik
R(s)eik′
R(s ′)

=
∫

[dζ ]ei
∫

dr ζ (r)ρ(r)N 1

V 2

∫ L

0

ds

	

∫ L

0

ds ′

	

∑
k

ζ̃ (k)ζ̃ (−k)〈eik[R(s)−R(s ′)]〉0, (B3)

where we denoted with the average

〈· · ·〉0 =
∫

[dR]e− 3
2	

∫ L

0 ds Ṙ2(s)[· · ·]∫
[dR]e− 3

2	

∫ L

0 ds Ṙ2(s)
, (B4)

and with the tilde the Fourier transform [48].
Now the average 〈eik[R(s)−R(s ′)]〉0 can be easily calculated by

discretizing the polymer and integrating over the bond vectors
bi = Ri+1 − Ri as follows:

〈eik[R(s)−R(s ′)]〉0 =
∫ ∏

i dbie
− 3

2	2

∑
i b2

i eik(b1+b2+···+bn)∫ ∏
i dbie

− 3
2	2

∑
i b2

i

= (e− k2	2

6
)n

, (B5)

where n = |s − s ′|/	. Since∫ L

0
ds

∫ L

0
ds ′ e−a|s−s ′ | = 2(aL − 1 + e−aL)

a2
, (B6)

we can introduce the function

S̃0(k) = 72
(
k2	L/6 − 1 + e− k2	L

6
)

V 2k4	4
, (B7)

with S̃0(0) = (N/V )2 = ρ̄2.
Then the expression we started with in Eq. (B1) can be

rewritten, omitting the functional integral over the density
collective variable, as

N
∫

[dζ̃ ]e
i
V

∑
k ζ̃ (k)ρ̃(−k)

[
1 − i

N

V
ζ̃ (0)

− 1

2V

∑
k

ζ̃ (k)V S̃0(k)ζ̃ (−k) + · · ·
]
. (B8)

We can now reconstruct the exponential to obtain∫
[dζ̃ ]e

i
V

∑
k ζ̃ (k)ρ̃(−k)e− 1

2V

∑
k ζ̃ (k)V S̃0(k)ζ̃ (−k)−i N

V
ζ̃ (0)

= N ′e− 1
2V

∑
k ln[S̃0(k)V ]e− 1

2V

∑
k 
ρ̃(k)

S̃
−1
0 (k)

V

ρ̃(−k). (B9)

Here 
ρ̃(k) = ρ̃(k) − ρ̄V δk,0.

APPENDIX C: THE GAUSSIAN DISTRIBUTION

The Gaussian distribution function for a set of real variables
x1,x2, . . . ,xN is defined as

�(x1,x2, . . . ,xN ) = C exp

(
−1

2

∑
n,m

Anmxnxm

)
, (C1)

where Anm is a symmetric positive definite matrix and
C is a normalization constant given by the requirement∫∞
−∞ · · · ∫∞

−∞
∏

n dxn� = 1.
Let 〈· · ·〉 be the average of the distribution function of

Eq. (C1),

〈· · ·〉 =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
n

dxn · · ·�(x1,x2, . . . ,xN ), (C2)

then it can be proved [50] that

〈xnxm〉 = [A−1]nm. (C3)

In general we have the following formula (Wick’s theorem):〈
xn1xn2 · · · xn2p

〉
=
∑

all pairing

〈
xm1xm2

〉〈
xm3xm4

〉 · · · 〈xm2p−1xm2p

〉
. (C4)
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If the subscript n of xn is regarded as a continuous variable,
the set of points (x1,x2, . . . ,xN ) represents a continuous
function, and the integral over the set (x1,x2, . . . ,xN ) reduces
to the integration over all the function, and it is called the
functional integral. It is denoted by the symbol [dx], that is,∫ ∏

n dxn · · · → ∫ [dx] · · ·.
Consider now the following Gaussian distribution func-

tional:

�[φ] = C exp

[
−1

2

∫ ∞

−∞
dxφ2(x)

]
, (C5)

where φ is a real function, then using the continuous limit of
Eq. (C3) we find

〈φ(x)φ(x ′)〉 = δ(x − x ′), (C6)

where δ is the Dirac δ function.
If now φ = φ1 + iφ2 is a complex function we consider the

Gaussian distribution functional

�[φ,φ�] = C exp

[
−
∫ ∞

−∞
dxφ(x)φ�(x)

]
. (C7)

Now we find from Eq. (C6)

〈φ(x)φ�(x ′)〉 = 〈φ1(x)φ1(x ′) + φ2(x)φ2(x ′)〉
= 1

2δ(x − x ′) + 1
2δ(x − x ′) = δ(x − x ′) (C8)

and

〈φ(x)φ(x ′)〉 = 〈φ1(x)φ1(x ′) − φ2(x)φ2(x ′)
+ iφ1(x)φ2(x ′) + iφ2(x)φ1(x ′)〉

= 1
2δ(x − x ′) − 1

2δ(x − x ′) = 0. (C9)

APPENDIX D: FIELD THEORY WITHOUT 1 CLUSTERS

An alternative way to formulate the clustering, without the
use of clusters of size 1 is presented below. We shall show that
a simple mapping reduces again to a special case of Eq. (6).

Consider a system in which we have only clusters of sizes
a and b but no “inert” clusters of size 1. As explained in
Sec. II the functional integration over the fields ϕ and ϕ�

requires matching each ϕ of a clustering center with a ϕ� on
the polymer, permitting no unmatched ϕ and ϕ� pairs. Since
size a and b clusters do not necessarily attach to each potential
site on the polymer, all possible attachment sites have to be
generated. The product

N∏
i=1

[1 + ϕ�(Ri)]

produces all equally weighted possibilities of the attaching
to the the sites {Ri},∀i ∈ {1, . . . ,N} of a given polymer
configuration.

The analog to Eq. (5) then becomes

Z ′
Na,Nb

= N
∫

dR1 · · · dRNe−v
∑N

n,m=1 δ(Rn−Rm)
∫

[dϕ][dϕ�] e− ∫ dr ϕ(r)ϕ�(r)

× [1 + ϕ�(R1)]G(R1,R2)[1 + ϕ�(R2)]G(R2,R3) · · · G(RN−1,RN )[1 + ϕ�(RN )]

× 1

Na!

[∫
dr zaϕ

a(r)

]Na 1

Nb!

[∫
dr zbϕ

b(r)

]Nb

, (D1)

leading by the same procedure as described in Sec. II to analog of Eq. (6),

Z′
N = N

∫
[dϕ][dϕ�]

{∏
dR
} {∏

G
}

dN exp

[
−
∫

dr ϕ(r)ϕ�(r)

+
∫

dr ρ(r) ln(1 + ϕ�(r)/d) + za

∫
dr ϕa(r) + zb

∫
dr ϕb(r)

]
. (D2)

We see that the trivial transformation ϕ� → ϕ� − 1 in Eq. (D2) above leads to the original field-theoretic equation in the main
text Eq. (6) with z1 → 1. For this reason we treat the marginally more general case in this paper.
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nature. This model was proposed as the simplest possibility of combining bounded repulsions at short scale and
short-range attractions. We prove that the model is thermodynamically stable for sufficiently low values of the
penetrability parameter, and in this case the system behaves similarly to the square-well model. For larger
penetration, there exists an intermediate region where the system is metastable, with well-defined fluid–fluid and
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1. Introduction

Unlike simple fluids, complex fluids are typically
characterized by a significant reduction in the
number of degrees of freedom, in view of the hierarchy
of different length and energy scales involved. As a
result, coarse-grained potentials accounting for effec-
tive interactions between a pair of the complex fluid

units adopt analytical forms that are often quite
different from those considered paradigmatic for
simple fluids [1].

An important example of this class of potentials is
given by those bounded at small separations, thus

indicating the possibility of a partial (or even total)
interpenetration. This possibility, completely unphysi-
cal in the framework of simple fluids, becomes on the
contrary very realistic in the context of complex fluids.
While the true two-body interactions always include a
hard-core part, accounting for the fact that energies
close to contact raise several orders of magnitude,
effective interactions obtained upon averaging micro-
scopical degrees of freedom may or may not present
this feature, depending on the considered particular
system.

Interesting examples with no hard-core part are
given by polymer solutions, where effective polymer–
polymer interactions can be argued to be of the

Gaussian form [2–4], and star polymers and dendri-

mers where the so-called penetrable sphere (PS) model

is frequently employed [5–7].
In spite of their markedly different phase behav-

iours [7], both these effective interactions have the

common attributes of being bounded at zero separa-

tion and lacking an attractive part. The latter feature,

however, appears to be particularly limiting in view of

the several sources of attractive interactions typical of

polymer solution, such as, for instance, depletion

forces [4], that are typically accounted through simple

attractive square-well (SW) tails.
A tentative combining of both the penetrability at

small separation and the attraction at slightly larger

scale, led to the introduction of the penetrable square-

well (PSW) potential [8–12]. This can be obtained

either by starting from the PS model and adding an

attractive well, or by starting from the SW model and

reducing the infinite repulsive energy to a finite one.

In this way, the model is characterized by two length

scales (the soft core and the width of the well) and by

two energy scales, the height �r of the repulsive barrier
and the depth �a of the attractive well.

The ratio �a/�r, hereafter simply referred to as

‘penetrability’, is a measure of the accessibility of the

repulsive barrier and, as we shall see, plays a very
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important role in the equilibrium properties of the

fluid. When �a/�r¼ 0, the PSW model reduces to the PS

model (if kBT/�r¼ finite, where T is the temperature) or

to the SW model (if kBT/�a¼ finite). In the latter case,

the model exhibits a fluid–fluid phase transition for

any width of the attractive square well [13–17], this

transition becoming metastable against the formation

of the solid for a sufficiently narrow well [17].

As penetrability �a/�r increases, different particles

tend to interpenetrate more and more because {this

becomes} energetically favourable (the precise degree

depending on the �a/�r ratio). As a result, the total

energy {may grow} boundlessly to negative values and

the system can no longer be thermodynamically stable.

The next question to be addressed is whether this

instability occurs for any infinitesimally small value �a/
�r40 or, conversely, whether there exists a particular

value where the transition from stable to unstable

regime occurs.
As early as the late 1960s, the concept of a well-

behaved thermodynamic limit was translated into a

simple rule, known as Ruelle’s criterion [18,19], for the

sufficient condition for a system to be stable. In a

previous paper [8], we have discussed the validity of

Ruelle’s criterion for the one-dimensional PSW case

and found that, indeed, there is a well-defined value of

penetrability �a/�r, that depends upon the range of the

attractive tail, below which the system is definitely

stable. Within this region, the phase behaviour of the

fluid is very similar to that of the SW fluid counterpart.

More recently [20], we have tackled the same issue in

the three-dimensional fluid. Here we build upon this

work by presenting a detailed Monte Carlo study of

the phase diagram for different values of penetrability

and well width. In this case the PSW fluid is proven to

satisfy Ruelle’s criterion below a well-defined value of

penetrability that is essentially related to the number of

interacting particles for a specific range of attractive

interaction. For higher values of penetrability, we find

an intermediate region where, although the system is

thermodynamically unstable (non-extensive) in the

limit N!1, it displays a ‘normal’ behaviour, with

both fluid–fluid and fluid–solid transitions, for finite

number of particles N. The actual limit of this

intermediate region depends critically upon the con-

sidered temperatures, densities, and size of the system.

Here the phase diagram is similar to that of the SW

counterpart, although the details of the critical lines

and point location depend upon the actual penetrabil-

ity value. For even higher penetrability, the system

becomes unstable at any studied value of N and the

fluid evolves into clusters of overlapping particles

arranged into an ordered phase at high concentration,

with a phenomenology reminiscent of that displayed
by the PS model, but with non-extensive properties.

The remainder of the paper is organized as follows.
In Section 2 we define the PSW model and in Section 3
we set the conditions for Ruelle’s criterion to be valid.
The behaviour of the system outside those conditions is
studied in Section 4, where we also determine the fluid–
fluid coexistence curves for the PSW model just below
the threshold line found before; in Section 5 we
determine the instability line, in the temperature–
density plane, separating the metastable normal phase
from the unstable blob phase. Section 6 is devoted to
the fluid–solid transition and in Section 7 we draw
some conclusive remarks and perspectives.

2. The penetrable square-well model

The PSW model is defined by the following pair
potential

�ðrÞ ¼

�r, r � �,

��a, �5 r � � þ D,

0, r4 � þ D,

8><
>: ð1Þ

where �r and �a are two positive constants accounting
for the repulsive and attractive parts of the potential,
respectively, D is the width of the attractive square
well, and � is diameter of the repulsive core.

As discussed above, this model encompasses both
the possibility of a partial interpenetration, with an
energy cost typical of the soft-matter interactions given
by �r, and a short-range attraction typical of both
simple and complex fluids given by �a. Both descrip-
tions can be clearly recovered as limiting cases of the
PSW potential: for �r!1 it reduces to the SW model,
while for D¼ 0 or �a¼ 0 one recovers the PS model
[21,22]. Figure 1 displays the characteristics of the
PSW potential (c), along with the two particular cases,
SW (a) and PS (b). The interplay between the two
energy scales �r and �a gives rise to a number of rather
unusual and peculiar features that are the main topic of
this paper.

In order to put the PSW model in perspective, let us
briefly summarize the main features of the SW and PS
potentials.

The SW model has a standard phase diagram
typical of a simple fluid, with fluid–fluid and fluid–
solid transitions in the intermediate range between the
triple and the critical points in the temperature–density
plane. The fluid–fluid transition becomes metastable,
against crystallization, if the width of the well goes
below a certain value that has been estimated to be
D� 0.25� [17].

2724 R. Fantoni et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

el
le

nb
os

ch
] 

at
 0

8:
56

 3
0 

Ja
nu

ar
y 

20
12

 

The penetrable square-well model: extensive versus non-
extensive phases 403



The PS fluid, on the other hand, does not display
any fluid–fluid coexistence, in view of the lack of any
attractive interactions. The fluid–solid transition is,
however, possible and highly unconventional with the
formation of multiple occupancy crystals coupled with

possible reentrant melting in the presence of a

smoother repulsive interaction, such as a Gaussian

form [7,23].
The PSW fluid combines features belonging to both

limiting cases within a very subtle interplay between

the repulsive and attractive energy scale that affects its

thermodynamic stability [8–10].

3. Ruelle’s stability criterion

The issue of thermodynamic stability has a long and

venerable history, dating back to the late 1960s [18],

and it is nicely summarized in Ruelle’s textbook which

is a standard reference for this problem [19].
A system is defined to be (Ruelle) thermodynam-

ically stable [18,19] if there exists a positive number B,

such that for the total potential energy FN for a system

of N particles it holds

FN ��NB: ð2Þ

The physical rationale behind this mathematical state-

ment is that the ratio �FN/N cannot grow unboundly

as N increases if the system is to be well behaved, but

must converge to a well-defined limit. This is usually

referred to as Ruelle’s stability criterion.
Consider the PSW fluid. As density increases and

temperature decreases, particles tend to lump together

into clusters (‘blobs’) as they pay some energetic price

set by �r but they gain a (typically larger) advantage

due to the attraction �a. Therefore, as the ratio �a/�r
increases, one might expect to reach an unstable regime

with very few clusters including a large number of

significantly overlapping particles, so that FN is no

longer proportional to N.
The ratio �a/�r (‘penetrability’) plays in PSW fluids

a very important role, as we shall see in the following

sections. In [10] we proved that the one-dimensional

(1D) PSW fluid satisfies Ruelle’s criterion if �a/�r�
1/2(‘þ 1), where ‘ is the integer part of D/�. In this
case, we are then guaranteed to have a well-defined

equilibrium state.
Here we show that this result can be extended to a

three-dimensional (3D) PSW fluid in that Ruelle’s

criterion is satisfied if �a/�r� 1/fD, where fD is the

maximum number of non-overlapping particles that

can be geometrically arranged around a given one

within a distance between � and �þD. Of course, fD
depends on the width of the attractive interaction D.
For D/�521/2� 1, for instance, one has fD¼ 12,

corresponding to a HCP closed-packed configuration.

In the following, we will use a generic d-dimensional

notation and consider d¼ 3 at the end.

s+ D
− a

r
s

φ

/2s

Ds+( ) /2

(a)

/2s

s + D

r

r
s

f(b)

/2s

Ds +( ) /2

s + D
a

r

r
s

f(c)

–

Figure 1. Sketch of the PSW potential used in the present
work (c). This potential interpolates between the SW
potential (a) and of the PS potential (b). In the SW case
(a), spherical particles have a perfect steric hindrance of size
� (the particle diameter) and attractive interactions of range
�þD highlighted as a halo in the picture. In the PS case (b),
nearest-neighbour particles can partially interpenetrate, with
some energy cost �r, but have no attractive tail. In the PSW
there is both the possibility of partial interpenetration (with
cost �r) and short-range SW attraction (with energy gain �a).
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The total potential energy of a PSW fluid formed
by particles at positions r1,. . ., rN can be written in
general as

FN r1, . . . , rNð Þ ¼
1

2

XN
i¼1

XN
j 6¼i

� ri � rj
�� ��� �

: ð3Þ

Consider now such a configuration where particles
are distributed in M clusters along each direction, each
made of s perfectly overlapped particles, and with
different clusters arranged in the close-packed config-
uration. In the Appendix we prove that indeed this is
the lowest possible energy configuration in the two-
dimensional (2D) case.

The total number of particles is N¼Mds. As
clusters are in a close-packed configuration, particles
of a given cluster interact attractively with all the
particles of those fD clusters within a distance smaller
than �þD. Consequently, the potential energy has the
form

FNðMÞ ¼
1

2
Mds s� 1ð Þ�r �

Md

2
fD � bDðMÞ½ �s2�a: ð4Þ

The first term represents the repulsive energy between
all possible pairs of particles in a given s-cluster, while
the second term represents the attractive energy
between clusters. Here bD(M) accounts for a reduction
of the actual number of clusters interacting attrac-
tively, due to boundary effects. This quantity clearly
depends upon the chosen value of D/� but we can infer
the following general properties

bDð1Þ ¼ fD, bDðM4 2Þ5 fD, lim
M!1

bDðMÞ ¼ 0: ð5Þ

In the 1D (with D/�51) and 2D (with D/�531/2� 1)
cases, FN(M) is given by Equations (16) and (23),
respectively, so that bD(M)¼ 2M�1 (1D) and bD(M)¼
2(4M�1�M�2) (2D). In general, bD(M) must be a
positive definite polynomial of degree d inM�1 with no
independent term}, its form becoming more compli-
cated as d increases. However, we need not specify the
actual form of bD(M) for our argument, but only the
properties given in Equation (5).

Eliminating s¼N/Md in favour of M in
Equation (4) one easily gets

FNðMÞ

N
¼ �

�r
2
þ
N

2
�aM

�dFðMÞ, ð6Þ

where we have introduced the function

FðMÞ � bDðMÞ � fD �
�r
�a

� �
: ð7Þ

Note that F(M) is independent of N. If �a/�r51/fD,
F(M) is positive definite and so FN/N has a lower

bound (��r/2) and the system is stable in the thermo-

dynamic limit. Let us suppose now that �a/�r41/fD. In

that case, F(1)¼ �r/�a40 but limM!1F(M)¼

� (fD� �r/�a)50. Therefore, there must exist a certain

finite value M¼M0 such that F(M)50 for M4M0.

In the 1D (with D/�51) and 2D (with D/�531/2� 1)

cases the values of M0 can be explicitly computed:

M0 ¼ 1�
�r
2�a

� ��1
, ðd ¼ 1Þ, ð8Þ

M0 ¼
2þ ð1þ �r=2�aÞ

1=2

3
1�

�r
6�a

� ��1
, ðd ¼ 2Þ: ð9Þ

In general, it is reasonable to expect that M0�

(1� �r/fD�a)
�1. Regardless of the precise value of M0,

we have that limN!1[�FN(M)]/N¼1 for M4M0

and thus the criterion (2) is violated.
This completes the proof that, if �a/�r51/fD, the

system is thermodynamically stable as it satisfies

Ruelle’s stability criterion, Equation (2).

Reciprocally, if �a/�r41/fD there exists a class of blob

configurations violating Equation (2). In those config-

urations the N particles are concentrated on a finite

(i.e. independent of N) number of clusters, each with a

number of particles proportional to N. For large N the

potential energy scales with N2 and thus the system

exhibits non-extensive properties.
In three dimensions, fD¼ 12, 18, and 42 if D/�5

21/2� 1, 21/2� 15D/�531/2� 1, and 31/2� 15D/�51,

respectively, and so the threshold values are �a/�r¼ 1/12,

1/18, and 1/42, respectively. There might (and do) exist

local configurations with higher coordination numbers,

but only those filling the whole space have to be

considered in the thermodynamic limit.
In general, Ruelle’s criterion (2) is a sufficient but

not necessary condition for thermodynamic stability.

Therefore, in principle, if �a/�r41/fD the system may or

may not be stable, depending on the physical state

(density � and temperature T). However, compelling

arguments discussed in [19] show that the PSW system

with �a/�r41/fD is indeed unstable (i.e. non-extensive)

in the thermodynamic limit for any � and T.

Notwithstanding this, even if �a/�r41/fD, the system

may exhibit ‘normal’ (i.e. extensive) properties at

finite N, provided the temperature is sufficiently high

and/or the density is sufficiently low. It is therefore

interesting to investigate this regime with the specific

goals of (i) defining the stability boundary (if any) and

(ii) outlining the fate of the SW-like fluid–fluid and

fluid–solid lines as penetrability increases. This will be

discussed in the next section, starting from the fluid–

fluid coexistence lines.

2726 R. Fantoni et al.
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4. Effect of penetrability on the fluid–fluid

coexistence

We have performed an extensive analysis of the fluid–
fluid phase transition of the three-dimensional PSW
fluid by Gibbs Ensemble Monte Carlo (GEMC)

simulations [24–28]. In all cases we have started with
the SW fluid (�a/�r¼ 0) and gradually increased pen-
etrability �a/�r until disappearance of the transition.
Following standard prescriptions [24–28], we construct

the fluid–fluid coexistence lines using two systems (the
gas and the liquid) that can exchange both volume and
particles in such a way that the total volume V and the
total number of particles N are fixed and the pressure

and chemical potential coincide in both systems.
N¼ 512 particles were used. By denoting with Li and
Vi (i¼ v, l) the respective sizes and volumes of the
vapour and liquid boxes, we used 2N particle random

displacements of magnitude 0.15Li, N/10 random
volume changes of magnitude 0.1 in ln[Vi/(V�Vi)],
and N particle swaps between the gas and the liquid
boxes, on average per cycle.

Our code fully reproduces the results of Vega et al.
[14] for the SW fluid, as further discussed below.

Figure 2 depicts some representative examples of the
effect of penetrability on the SW results at different
well widths D/�. As D/� increases, the upper limit set
by Ruelle’s stability condition �a/�r� 1/fD decreases,

and lower penetrability values �a/�r have to be used to
ensure the existence of the transition line. In Figure 2,
values �a/�r¼ 1/6, 1/8, 1/11 were used for D/�¼ 0.25,
0.5, 1, respectively. Figure 2 also includes an estimate

of the critical points for the PSW fluid obtained from
the law of rectilinear diameters, as discussed in [14],
that is

�l þ �v
2
¼ �c þ AðTc � TÞ, ð10Þ

where �l (�v) is the density of the liquid (vapour) phase,
�c is the critical density and Tc is the critical temper-

ature. Furthermore, the temperature dependence of the
density difference of the coexisting phases is fitted to
the following scaling form

�l � �g ¼ BðTc � TÞ�, ð11Þ

where the critical exponent for the three-dimensional

Ising model �¼ 0.32 was used to match the universal
fluctuations. Amplitudes A and B where determined
from the fit.

A detailed collection of the results corresponding to
Figures 2(a), (b) and (c) is reported in Table 1.

Note that seemingly stable transition curves are
found in all representative cases depicted in Figure 2,

thus suggesting a ‘normal’ fluid behaviour for the

SW
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a/  r = 1/11
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Figure 2. Fluid–fluid coexistence lines for different well
widths D/� and penetrabilities �a/�r. The SW results are those
by Vega et al. [14] for the same value of D/�. Circles and
boxes represent the estimated critical points for the PSW
and the SW fluids, respectively, and the dotted lines represent
the coexistence curves for the PSW case. (a) D/�¼ 0.25
and �a/�r¼ 1/6; (b) D/�¼ 0.5 and �a/�r¼ 1/8; (c) D/�¼ 1 and
�a/�r¼ 1/11.
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finite-size system studied. Increasing penetrability �a/�r
at fixed D/� progressively destabilize the transition,
until a threshold value (�a/�r)th is reached where no
fluid–fluid transition is observed. Upon changing D/�,
one can then draw a line of this values in the �a/�r and
D/� plane. This is depicted in Figure 3, where the
instability line (�a/�r)th is found to decrease as D/�
increases, thus gradually reducing the region where the
fluid–fluid transition can be observed, as expected. The
shadowed stepwise region identifies the thermodynam-
ically stable region, as guaranteed by Ruelle’s criterion
�a/�r� 1/fD discussed above. Note that points
(D/�¼ 0.25, �a/�r¼ 1/6), (D/�¼ 0.5, �a/�r¼ 1/8), and
(D/�¼ 1, �a/�r¼ 1/11), corresponding to the values
used in Figure 2 and highlighted by circles, lie in the
1/fD� �a/�r� (�a/�r)th region, that is, outside the stable
range guaranteed by Ruelle’s criterion.

5. Stable, unstable, and metastable phases

Interestingly, in Ruelle’s textbook [19], the three-
dimensional PSW model corresponding to point
(D/�¼ 1, �a/�r¼ 1/11) is exploited as an example of
‘catastrophic’ fluid (see especially Figure 4 and prop-
osition 3.2.2 both in [19]). This is clearly because this
state point lies outside the stable region identified by
Ruelle’s criterion, as discussed. As already remarked,
however, this criterion does not necessarily imply that

Table 1. Vapour–liquid coexistence data from GEMC of N¼ 512 PSW particles with D/�¼ 0.25 and �a/�r¼ 1/6 (top table),
D/�¼ 0.5 and �a/�r¼ 1/8 (central table) and D/�¼ 1.0 and �a/�r¼ 1/11 (bottom table). We used 107 MC steps. T, �i, ui, �i are,
respectively, the temperature, the density, the internal energy per particle, and the chemical potential of the vapour (i¼ v) or
liquid (i¼ l) phase (L being the thermal de Broglie wavelength). Numbers in parentheses correspond to the error on the last
digits. The estimated critical points are kBTc/�a¼ 0.762 and �c�

3
¼ 0.307 (top table), kBTc/�a¼ 1.241 and �c�

3
¼ 0.307 (central

table) and kBTc/�a¼ 2.803 and �c�
3
¼ 0.292 (bottom table).

kBT/�a �v�
3 �l�

3 uv/�a ul/�a �v/�a� kBT/�a lnL
3 �l/�a� kBT/�a lnL

3

D/�¼ 0.25, �a/�r¼ 1/6
0.66 0.0377(6) 0.5634(6) �0.343(8) �3.441(13) �2.410(7) �2.51(12)
0.70 0.0724(15) 0.5256(15) �0.614(16) �3.100(13) �2.253(5) �2.27(6)
0.73 0.1093(45) 0.4805(42) �0.862(38) �2.920(45) �2.157(12) �2.29(8)
0.75 0.1684(95) 0.4368(95) �1.204(67) �2.682(27) �2.211(8) �2.01(2)

D/�¼ 0.5, �a/�r¼ 1/8
1.00 0.0194(4) 0.5900(7) �0.254(7) �4.687(9) �4.19(2) �4.16(5)
1.05 0.0319(5) 0.5841(17) �0.400(9) �4.603(14) �4.00(1) �4.01(3)
1.10 0.0529(8) 0.5557(8) �0.651(14) �4.365(6) �3.832(6) �3.83(4)
1.15 0.0799(15) 0.5173(17) �0.934(18) �4.087(15) �3.726(7) �3.76(4)
1.20 0.1342(37) 0.4728(40) �1.464(40) �3.777(26) �3.642(6) �3.64(2)

D/�¼ 1.0, �a/�r¼ 1/11
2.35 0.0327(4) 0.5920(11) �0.693(8) �8.931(12) �8.90(2) �8.87(6)
2.45 0.0476(5) 0.5593(16) �1.004(11) �8.439(21) �8.66(1) �8.61(3)
2.50 0.0577(8) 0.5844(12) �1.201(17) �8.653(17) �8.54(2) �8.59(5)
2.54 0.0670(12) 0.5511(37) �1.377(25) �8.231(42) �8.48(2) �8.51(2)
2.58 0.0769(9) 0.5361(19) �1.556(20) �8.030(22) �8.41(1) �8.38(3)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.25 0.50 0.75 1.00

a/
  r

D/s

Fluid-Fluid transition

SW

1/15
1/11

1/8
1/7
1/6

1/4

( a/  r)th

Stable

No Fluid-Fluid transition

Figure 3. Plot of penetrability �a/�r as a function of D/�. The
displayed (�a/�r)th line separates the parameter region where
the PSW model, with N¼ 512, admits a fluid–fluid phase
transition (below this line) from that where it does not. The
shadowed stepwise line highlights the region (�a/�r� 1/12 for
D/�521/2� 1, �a/�r� 1/18 for 21/2� 15D/�531/2� 1, and
�a/�r� 1/42 for 31/2� 15D/�51) where the model is
guaranteed to be thermodynamically stable for any thermo-
dynamic state by Ruelle’s criterion. The SW model falls on
the �a/�r¼ 0 axis (with finite kBT/�a). The vertical dashed
arrow points to the SW value D/� & 0.25 below which the
fluid–fluid transition becomes metastable against the freezing
transition [17]. The circles are the points chosen for the
calculation of the coexistence lines (Figures 2 and 9), while
the crosses are the points chosen for the determination of the
boundary phases discussed in Figures 5 and 6.
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outside this region the system has to be unstable, but
only that it is ‘likely’ to be so. There are then two
possibilities. First, that in the intermediate region
1/fD� �a/�r� (�a/�r)th the system is indeed stable in the
thermodynamic limit, a case that is not covered by
Ruelle’s criterion. Numerical results reported in
Figures 2 and 3 appear to support this possibility.
The second possibility is that, even in this region, the
system is strictly unstable, in the thermodynamic limit,
but it appears to be a ‘normal’ fluid when considered at
finite N. This possibility cannot be ruled out by any
simulation at finite N, and would be more plausible as
hinted by Ruelle’s arguments.

In order to illustrate the fact that, at finite N, the

system in the intermediate region 1/fD� �a/�r� (�a/�r)th
behaves as a normal fluid, in Figure 4 we show two

representative snapshots of the gas and the liquid

phases at the point (D/�¼ 0.5, �a/�r¼ 1/8) that lies just

below the (�a/�r)th line (see Figure 3). In both the gas

and the liquid phases, the structure of the fluid presents

the typical features of a standard SW fluid, with no

significant overlap among different particles.
On the other hand, we have observed that above

the threshold line (�a/�r)th of Figure 3, at a temperature

close to the critical temperature of the corresponding

SW system, the GEMC simulation evolves towards an

empty box and a collapsed configuration in the

liquid box.
The second scenario described above can be

supported or disproved by a finite-size study of the

N-dependence of the transition, as described below.
Assume that at any finite N, the absolute minimum

of the internal energy corresponds to the ‘collapsed’

non-extensive configurations, referred to as ‘blob

phase’ in the following. As discussed in Section 3, the

internal energy of these configurations scales with N2

for large N. However, the system presumably also

includes a large number of ‘normal’ configurations

with an internal energy that scales linearly with N. This

will be referred to as ‘normal phase’.
There is then an energy gap between the total

energy associated with the normal and the collapsed

configurations with an energy ratio of order N. For

finite N and sufficiently high temperature, the

Boltzmann statistical factor exp(�FN/kBT) of the

collapsed configurations (in spite of the gap) might

not be sufficiently large to compensate for the fact that

the volume in phase space corresponding to normal

configurations has a much larger measure (and hence

entropy) than that corresponding to collapsed config-

urations. As a consequence, the physical properties

look normal and one observes a normal phase. Normal

configurations have a higher internal energy but also

may have a larger entropy. If N is sufficiently small

and/or T is high enough, normal configurations might

then have a smaller free energy than collapsed config-

urations. On the other hand, the situation is reversed at

larger N and finite temperature, where the statistical

weight (i.e. the interplay between the Boltzmann factor

and the measure of the phase space volume) of the

collapsed configurations becomes comparable to (or

even larger than) that of the normal configurations and

physical properties become anomalous. This effect

could be avoided only if T grows (roughly proportional

to N) as N increases, since entropy increases more

slowly with N than FN.

Figure 4. Two GEMC simulation snapshots (N¼ 512) at
D/�¼ 0.5, �a/�r¼ 1/8 (below the threshold value) and
kBT/�a¼ 1.20. The one on the top panel corresponds to the
gas phase (�v�

3
¼ 0.1342), and the one on the bottom to the

liquid phase (�l�
3
¼ 0.4728).
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In a PSW fluid above the stable region (�a/�r4
1/fD), we have then to discriminate whether the system
is truly stable in the thermodynamic limit N!1, or it
is metastable, evolving into an unstable blob phase at a
given value of N depending on temperature and
density.

In order to shed some more light onto this dual
metastable/unstable scenario, we performed NVT
Monte Carlo simulations using N¼ 512 particles ini-
tially distributed uniformly within the simulation box
(‘regular’ initial condition). We carefully monitored the
total potential energy of the fluid during the simulation
and found that, at any given density, there exists
a certain temperature Tins(�), such that the sys-
tem behaves normally after 107N single particle
moves (normal phase) if T4Tins and collapses to
a few clusters of overlapped particles (blob phase)
for T5Tins.

This is shown in Figure 5 for D/�¼ 0.5 and two
different penetrability values: �a/�r¼ 1/4 (upper dashed
line) and �a/�r¼ 1/7 (lower solid line). The first value
lies deeply in the instability region above the threshold
(�a/�r)th value of Figure 3, while the second is sitting
right on its top, for this value D/�¼ 0.5 of the well
width. Also depicted are two snapshots of two repre-
sentative configurations found under these conditions.
While the particles in the normal phase, T4Tins, are
arranged in a disordered configuration that spans the
whole box (see upper snapshot of Figure 5), one can
clearly see that for T5Tins a ‘blob’ structure has
nucleated around a certain point within the simulation

box with a few droplets of several particles each (see
lower snapshot of Figure 5).

The three fluid–fluid coexistence phase diagrams
displayed in Figure 2 are then representative of a
metastable normal phase that persists, for a given N,
up to (�a/�r)th as long as the corresponding critical
point (�c, Tc) is such that Tc4Tins(�c), as in the cases
reported in Figure 2. Below this instability line, the
fluid becomes unstable at any density and a blob
phase, where a few large clusters nucleate around
certain points and occupy only a part of the simula-
tion, is found. The number of clusters decreases (and
the number of particles per cluster increases) as one
moves away from the boundary line found in Figure 5
towards lower temperatures. Here a cluster is defined
topologically as follows. Two particles belong to the
same cluster if there is a path connecting them, where
we are allowed to move on a path going from one
particle to another if the centers of the two particles are
at a distance less than �.

These results, while not definitive, are strongly
suggestive of the fact that even the normal phase is in
fact metastable and becomes eventually unstable in the
N!1 limit.

This can be further supported by a finite size
scaling analysis at increasing N, as reported in Figure 6
in the higher penetrability (and hence most demanding)
case �a/�r¼ 1/4. In obtaining these results, we used
NVT simulations with 1010 single particle moves in all
cases.

As expected, the instability temperature line Tins(�)
moves to higher values as N increases, at fixed density
��3, from N¼ 100 to N¼ 2000, and the normal phase

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0

k B
T

/ a

Ds3

Blob phase

Normal phase

( a/  r) = 1/7( a/  r) = 1/4

Figure 5. Regions of the phase diagram where the PSW
fluid, with D/�¼ 0.5 and two different values of �a/�r, is
expected to exhibit a normal phase (above the instability line)
or a blob phase (below the instability line) for N¼ 512
particles. Note that the instability line corresponding to the
higher penetrability case (�a/�r¼ 1/4, dashed line) lies above
the one corresponding to the lower penetrability (�a/�r¼ 1/7,
solid line). The two insets depict representative snapshots of
respective typical configurations.
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Figure 6. Size dependence of the instability line of Figure 5
for the system �a/�r¼ 1/4 and D/�¼ 0.5.
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region significantly shrinks accordingly, being expected
to vanish in the thermodynamic limit N!1.

As said before, in all the above computations we
started with a regular initial condition having all
particles randomly distributed in the entire available
simulation box. Under these circumstances, for
T5Tins (where all particles are confined into a blob
of a few clusters) a large number of MC steps is
required in order to find the true equilibrium distribu-
tion. On the other hand, if we have a clustered
configuration to start with, a much higher ‘melting’
temperature Tins, above which one recovers a normal
phase, is expected. This ‘hysteresis’ effect is indeed
observed, as detailed below.

For �a/�r¼ 1/7, D/�¼ 0.5, and ��3¼ 1.0 the
normal-to-blob transition occurs upon cooling at
kBT/�a� 2.75. Inserting the obtained configuration
back in the MC simulation as an initial condition,
and increasing the temperature, we find the blob phase
to persist up to much higher temperatures kBT/�a� 4.
The hysteresis is also found to be strongly size
dependent. With the same system �a/�r¼ 1/7,
D/�¼ 0.5, but for ��3¼ 0.6, we found the blob-to-
normal melting temperatures to be kBT/�a¼ 2–3 for
N¼ 256, kBT/�a¼ 4–5 for N¼ 512, and kBT/�a¼ 6–7
for N¼ 1024. Analogously, in the state �a/�r¼ 1/4,
D/�¼ 0.5, and ��3¼ 0.3, the results are kBT/�a¼
2.1–2.2, kBT/�a¼ 3.7–3.8, kBT/�a¼ 9.0–9.1, and
kBT/�a¼ 31–32 for N¼ 100, N¼ 200, N¼ 512, and
N¼ 2000, respectively.

In the interpretation of the size dependence of the
hysteresis in the melting, one should also consider the
fact that the blob occupies only part of the simulation
box and therefore a surface term has a rather high
impact on the melting temperature.

Additional insights on the sudden structural change
occurring on the fluid upon crossing the threshold line
(�a/�r)th can be obtained by considering the radial
distribution function (RDF) g(r) [29] on two state
points above and below this line. We consider a state
point at D/�¼ 0.5, kBT/�a¼ 1.20, and ��3¼ 0.7 and
evaluate the RDF at �a/�r¼ 1/8 (slightly below the
threshold line, see Figure 3) and at �a/�r¼ 1/7. The
latter case is sitting right on the top of the threshold
line, according to Figure 3. The results are depicted in
Figure 7.

Drastic changes in the structural properties of the
PSW liquid are clearly noticeable. While in the normal
phase (�a/�r¼ 1/8) the RDF presents the typical
features of a standard fluid for a soft-potential and,
in particular, converges to unity, in the blob phase
(�a/�r¼ 1/7), the RDF presents a huge peak (note the
log-scale) at r¼ 0 and decays to zero after the first few
peaks, a behaviour that is suggestive of clustering and

confinement of the system. The amplitude of the first

maximum in the structure factor grows past the value

of 2.85, which is typically reckoned as an indication for

a freezing occurring in the system, according to [30].
As a further characterization of the structural

ordering of the system, we have also investigated a

set of rotationally invariant local order indicators that

have been exploited often to quantify order in crystal-

line solids, liquids, and colloidal gels [29]:

Ql ¼
4p

2lþ 1

Xl
m¼�l

�Qlm

�� ��2 !1=2

, ð12Þ

where �Qlm is defined as

�Qlm ¼

PNc

i¼1 NbðiÞ �qlmðiÞPNc

i¼1 NbðiÞ
, ð13Þ

where Nc is the number of clusters and

�qlm ið Þ ¼
1

Nb ið Þ

XNb ið Þ

j¼1

Ylm r̂ij
� �

: ð14Þ

Here Nb(i) is the set of bonded neighbours of the ith

cluster, the unit vector r̂ij specifies the orientation of

the bond between clusters i and j, and Ylmðr̂ijÞ are the

corresponding spherical harmonics.
A particularly useful probe of the possible crystal

structure of the system is a value ofQ6 close to unity (see

Appendix A of [29]). Results for Q6 from the PSW

10–2

10–1

100

100
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103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

g(
r)

r/s

a/ r = 1/7

a/ r = 1/8

Figure 7. Radial distribution function for the PSW model at
D/�¼ 0.5, kBT/�a¼ 1.20, and ��3¼ 0.7 for two different
values of the penetrability parameter �a/�r: �a/�r¼ 1/8 (lying
below the threshold line given in Figure 3) and �a/�r¼ 1/7
(that is on the top of it). The g(r) axis is in a log scale.
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model are reported in Table 2 for the two values of
penetrability considered in Figure 5 (�a/�r¼ 1/4 and �a/
�r¼ 1/7). In order to compute Q6, the center of mass of
each cluster (as topologically defined before) is
identified. Then, the cutoff distance for the nearest-
neighbours ‘bonds’ is selected to be approximately
equal to the second minimum of g(r)(r� 1.5�). As
detailed in Table 2, we find 0.03�Q6� 0.1 for �a/�r¼
1/4 (top table) and 0.05�Q6� 0.12 for �a/�r¼ 1/7
(bottom table), depending on the considered values of
temperature and density. These values have been
computed with N¼ 512 particles but an increase up to
N¼ 1024 yields only a slight increase of Q6. Besides Q6,
in Table 2 we report other properties of the blob phases
found with D/�¼ 0.5 and �a/�r¼ 1/4 and �a/�r¼ 1/7,
such as the number of clusters and the internal energy
per particle u/�a. We observe that the number of clusters
is rather constant (typically 40–60) for penetrability
�a/�r¼ 1/7. For the higher penetrability �a/�r¼ 1/4 the
number of clusters is generally larger, as expected, but is
quite sensitive to the specific density and temperature
values. As for the internal energy per particle, we
observe that its magnitude is always more than four
times larger than the kinetic contribution 3

2 kBT.

No conclusive pattern appears from the analysis of

results of Table 2, as there seems to be no well-defined

behaviour in any of the probes as functions of

temperature and density, and this irregular behaviour

can be also checked by an explicit observation of the

corresponding snapshots. Nonetheless, these results

give no indications of the formation of any regular

structure.
The final conclusion of the analysis of the fluid–

fluid phase diagram region of the PSW model is that

the system is strictly thermodynamically stable for
�a/�r51/fD and strictly thermodynamically unstable

above it, as dictated by Ruelle’s stability criterion.

However, if �a/�r41/fD there exists an intermediate

region where the system looks stable for finite N and

becomes increasingly unstable upon approaching the

thermodynamic limit.
The next question we would like to address is

whether this scenario persists in the fluid–solid tran-

sition, where already the PS model displays novel and

interesting features. This is discussed in the next
section.

6. The fluid–solid transition

It is instructive to contrast the expected phase diagram

for the SW model with that of the PSW model.
Consider the SW system with a width D/�¼ 0.5

that is a well-studied intermediate case where both a

fluid–fluid and a fluid–solid transition have been

observed [17]. The corresponding schematic phase
diagram is displayed in Figure 8 (top panel), where

the critical point is (kBTc/�a¼ 1.23, �c�
3
¼ 0.309) in the

temperature–density plane, and its triple point is (kBTt/

�a¼ 0.508, Pt�
3/�a¼ 0.00003) in the temperature–pres-

sure plane, with �l�
3
¼ 0.835 and �s�

3
¼ 1.28 [17].

In [17] no solid stable phase was found for tempera-

tures above the triple point, meaning that the melting

curve in the pressure–temperature phase diagram is

nearly vertical (see Figure 8, top panel). Motivated by

previous findings in the fluid–fluid phase diagram,

we consider the PSW model with D/�¼ 0.5 and
two different penetrability values �a/�r¼ 1/15 and

�a/�r¼ 1/8 in the intermediate region 1/fD� �a/�r�
(�a/�r)th (see Figure 3), where one expects a normal

behaviour for finite N, but with different details

depending on the chosen penetrability. In the present

case, the first chosen value (�a/�r¼ 1/15) lies very close

to the boundary (�a/�r¼ 1/fD) of the stability region

predicted by Ruelle’s criterion, whereas the second

chosen value lies, quite on the contrary, close to the

threshold curve (�a/�r)th.

Table 2. Number of clusters, Q6 parameter, and internal
energy per particle for the non-extensive phases found in the
case D/�¼ 0.5 and �a/�r¼ 1/4 (top table) and �a/�r¼ 1/7
(bottom table), just below the curves of Figure 5. The
parameter Q6 was calculated on the final equilibrated particle
configuration only, with a neighbour distance of 1.5� in all
cases.

��3 kBT/�a Nc Q6 u/�a

�a/�r¼ 1/4
0.1 1.0 13 0.04 �60
0.2 1.5 24 0.10 �57
0.3 1.7 115 0.03 �21
0.4 1.9 132 0.05 �19
0.5 2.1 116 0.05 �18
0.6 2.4 98 0.07 �19
0.7 2.6 84 0.04 �18
0.8 2.9 98 0.11 �19
0.9 3.2 74 0.09 �22
1.0 3.6 67 0.05 �23

�a/�r¼ 1/7
0.1 1.0 51 0.12 �25
0.2 1.0 39 0.06 �37
0.3 1.0 41 0.05 �37
0.4 1.0 42 0.07 �33
0.5 1.1 50 0.29 �24
0.6 1.0 38 0.07 �36
0.7 1.7 55 0.05 �22
0.8 2.1 58 0.11 �22
0.9 2.4 60 0.06 �21
1.0 2.8 62 0.06 �21
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We have studied the system by isothermal–isobaric
(NPT ) MC simulations, with a typical run consisting of
108 MC steps (particle or volume moves) with an
equilibration time of 107 steps. We considered N¼ 108
particles and adjusted the particle moves to have
acceptance ratios of approximately 0.5 and volume
changes to have acceptance ratios of approximately 0.1.
Note that the typical relaxation time in the solid region
is an order of magnitude higher than that of the
liquid region.

Consider the case �a/�r¼ 1/8 first. The result for the
isotherm kBT/�a¼ 1 is reported in Figure 9,
this temperature being smaller than the critical one
kBTc/�a¼ 1.241. From this figure we can clearly see the
jumps in the density corresponding to the gas–liquid
coexistence region and to the liquid–solid coexistence
region. On the basis of the obtained results, we can
foresee a phase diagram of the PSW system for this
particular value of penetrability to be the one sketched
in Figure 8 (bottom panel). In particular, the melting
curve has a positive slope in the pressure–temperature
phase diagram, unlike the almost vertical slope of
the SW counterpart, as discussed. This implies that
penetrability allows for a ‘softening’ of the liquid–solid

transition, so the liquid and the solid can coexist at a

temperature higher than the triple one without the

need for a huge increase of pressure.
Next we also consider a fluid with �a/�r¼ 1/15, just

outside the Ruelle stability region, at the same

temperature as before. The results are also reported

in Figure 8 and show no indications of a stable solid in

the considered range of pressures, in agreement with

the fact that at this very low value of penetrability the

behaviour of the system is very close to the SW

counterpart.
A specific interesting peculiarity of the PSW system

in the intermediate region 1/fD� �a/�r� (�a/�r)th of

Figure 3 is a lack of full consistency with known

thermodynamic relations. In this case, in fact, unlike

the SW counterpart, we were unable to trace the

coexistence curve between the liquid and the solid

using Kofke’s method [31,32], which is equivalent to

the numerical integration of the Clausius–Clapeyron

equation

d lnP

d�

� �
c

¼ �
Dh
�PDv

, � �
1

kBT
, ð15Þ

with Dh¼ hl� hs and Dv¼ vl� vs, where hi and vi
denote, respectively, the molar enthalpy and volume of

phase i (i¼ l for the liquid phase and i¼ s for the solid

phase); the subscript c indicates that the derivative is

taken along the coexistence line. Once a single point on

the coexistence curve between the two phases is known

one can use a trapezoid integration scheme [32] to

integrate Equation (15).
In our calculation, we have selected a penetrability

�a/�r¼ 1/8 and the isotherm of Figure 8, kBT/�a¼ 1,
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Figure 8. Schematic phase diagram of the SW fluid for
D/�¼ 0.5 (top panel) and phase diagram of the PSW fluid for
D/�¼ 0.5 and �a/�r¼ 1/8 (bottom panel).
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Figure 9. Isotherm kBT/�a¼ 1 for the PSW system with D/
�¼ 0.5 and �a/�r¼ 1/8 and �a/�r¼ 1/15, as obtained from
NPT MC simulations with N¼ 108 particles. The pressure
axis is in logarithmic scale. Three views of the same snapshot
of the centers of mass of the clusters in the solid are shown on
the right-hand side.
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as a reference point. The coexistence pressure at that
temperature is P�3/�a� 0.475 and the molar volume
jump is Dv/�3� 1/0.775� 1/1.313� 0.529. We have
then calculated themolar enthalpy in theNPT ensemble
by computing hPVþUi/N (whereU is the total internal
energy of the system) with the result
Dh/�a��5.042� (�7.593)¼ 2.551. Choosing a spacing
in � of �0.05/�a we get from Equation (15) a predicted
coexistence pressure P�3/�a� 0.789 at kBT/�a¼
1/0.95. 1.053. Instead, however, at the latter temper-
ature we found the coexistence pressure between 0.5 and
0.6. Despite this quantitative discrepancy, Equation
(15) is useful to understand that the relatively mild slope
of the PSW liquid–solid coexistence line in the pressure–
temperature phase diagram is essentially due to the fact
that the internal energies of the coexisting liquid and
solid phases are not too disparate.

A close inspection of several snapshots of the
obtained solid phase suggests that, in the intermediate
penetrability case, the obtained crystal is made of
clusters of overlapping particles located at the sites of a
regular crystal lattice with Q6� 0.35 [29] and a triclinic
structure characterized by a unit cell of sides
a¼ b¼ c¼ � and angles �¼ �¼	/3 and 
¼ cos�1(1/4)
(see three views of a common snapshot in Figure 9).

It is worth stressing that the additional degree of
penetrability, not present in the SW counterpart, is
responsible for the coexistence of the liquid and the
solid at not excessively large pressures. Clearly, we
cannot rule out the possibility of other additional
solid–solid coexistence regions at higher pressures.

7. Conclusions

In this paper, we have studied the phase diagram of the
three-dimensional PSW model. This model combines
penetrability, a feature typical of effective potential in
complex fluids, with a square-well attractive tail,
accounting for typical effective attractive interactions
that are ubiquitous in soft matter. It can then be
regarded as the simplest possible model smoothly
interpolating between PS (�a/�r! 0, kBT/�r¼ finite)
and SW (�a/�r! 0, kBT/�a¼ finite) fluids, as one
changes penetrability �a/�r and temperature.

We have proved that the model is thermodynam-
ically stable when �a/�r51/fD, as it satisfies Ruelle’s
stability criterion [19]. Above this value, the fluid is,
strictly speaking, unstable in the thermodynamic limit,
exhibiting non-extensive properties. For finite N,
however, it displays a rather rich and interesting
phenomenology. In particular, there exists an interme-
diate region 1/fD� �a/�r� (�a/�r)th in the penetrability-
width plane (see Figure 3) where the fluid displays

normal or anomalous behaviour depending on the
considered temperatures and densities. For sufficiently
large temperatures (T4Tins(�)) the fluid presents a
metastable normal behaviour with (apparently) stable
liquid–liquid and liquid–solid transitions, provided the
relative critical temperatures are above the instability
line T¼Tins. In this case, we have studied the effect of
penetrability on the fluid–fluid transition (see Figure 2)
close to the threshold line (�a/�r)th and found that in
general the transition has a higher critical temperature
than the SW counterpart. We have attributed this
result to the additional degree of freedom given by
penetrability that tends to oppose the formation of a
crystal until a sufficient large density is achieved.

Below the instability line Tins(�), however, different
particles tend to overlap into a few isolated clusters
(blobs) confined in a small portion of the available
volume and the total energy no longer scales linearly
with the number of particles N. As a consequence, the
fluid becomes thermodynamically unstable and its
properties very anomalous (Figure 5). The metastable
region shrinks as either �a/�r or N increase (Figure 6).

Above the threshold line (�a/�r)th (see Figure 3) the
fluid–fluid coexistence disappears, since in this case
Tins is too high to allow any phase-separation (for a
given N).

An additional interesting feature of the metastable/
unstable dualism is included in the hysteresis depen-
dence on the initial condition. When the initial
configuration is an unstable one (i.e. a blob) the
system melts back to a normal phase at temperatures
that are in generally significantly higher than those
where the transition normal-to-blob is achieved upon
cooling. We have attributed this behaviour to the small
statistical weight of the blob configuration in the
Boltzmann sampling, in spite of its significantly larger
energetic contribution.

We have also studied the fluid–solid transition in
the intermediate metastable region 1/fD� �a/�r�
(�a/�r)th. We find that the solid density typically
increases with respect to the corresponding SW case,
due to the formation of clusters of overlapping
particles in the crystal sites, as expected on physical
grounds. The melting curve is found to have a
relatively smooth positive slope, unlike the SW coun-
terpart, and this anomalous behaviour is also reflected
in the thermodynamic inconsistency present in the
Clausius–Clapeyron thermodynamic equation, thus
confirming the metastable character of the phase.
When penetrability is sufficiently low to be close to the
Ruelle stable region, the system behaves as the
corresponding SW system.

One might rightfully wonder whether the finite N
metastable phase presented here should have any
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experimental consequence at all. We believe the answer
to be positive. Imagine being able to craft, through a
clever chemical synthesis process, a fluid that may be
described by an effective interaction of the PSW form.
Our work has then set the boundary for observing a
very intriguing normal-to-collapsed phase by either
tuning the temperature/density parameters, or by
increasing the number of particles in the fluid. In this
case, it is the finite N state, rather than the true
thermodynamic limit N!1, the relevant one.
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Appendix 1. Ruelle’s stability criterion in d^ 2

Let us consider the two-dimensional PSW model character-
ized by �a/�r and D/�531/2� 1. The latter condition implies
that in a hexagonal close-packed configuration a particle can
interact attractively only with its nearest neighbours, so that
fD¼ 6.

Given the number of particles N, we want to get the
configuration with the minimum potential energy FN. We
assume that such a configuration belongs to the class of
configurations described by m rows, each row made of M
clusters, each cluster made of s perfectly overlapped particles.
The centers of two adjacent clusters (in the same row or in
adjacent rows) are separated a distance �. The total number
of particles is N¼mMs. Figure 10 shows a sketch of a
configuration with m¼ 4 rows and M¼ 6 clusters per row.
The potential energy of an individual row is the same as that
of the one-dimensional case [8], namely

Frow ¼Ms
s� 1

2
�r � M� 1ð Þs2�a: ð16Þ

The first term accounts for the repulsive energy between all
possible pairs of particles in a given s-cluster, while the
second term accounts for attractions that are limited to
nearest neighbours if D/�531/2� 1 in d¼ 2. The potential
energy of the whole system is mFrow plus the attractive
energy of nearest-neighbour clusters sitting on adjacent rows
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(and taking into account the special case of boundary rows).
The result is

FNðm, sÞ ¼ m Ms
s� 1

2
�r � M� 1ð Þs2�a

� �
� ðm� 1Þ 1þ 2ðM� 1Þ½ �s2�a

¼ N
s� 1

2
�r �

3m� 2

m
N� ð2m� 1Þs

� �
s�a: ð17Þ

For a given number of rows m, the value of s that minimizes
FN(m, s) is found to be

s	ðmÞ ¼ N
3m� 2

2mð2m� 1Þ
1�

m

2ð3m� 2Þ

�r
�a

� �
, ð18Þ

which is meaningful only if �a/�r4m/2(3m� 2)41/6.
Otherwise, s	(m)¼ 1. Therefore, the corresponding minimum
value is

F	NðmÞ � FNðm, s	ðmÞÞ

¼ �
N

2
�r

1þN
ð3m� 2Þ2

2m2ð2m� 1Þ

�a
�r

1�
m

2ð3m� 2Þ

�r
�a

� �2
,

�a
�r

4
m

2ð3m� 2Þ
,

2
3m� 2

m
�
2m� 1

N

� �
�a
�r
,

�a
�r

5
m

2ð3m� 2Þ
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

Let us first suppose that �a/�r51/6. In that case, �a/�r5
m/2(3m� 2) regardless of the value of m� 1 and, according
to Equation (19), the minimization of F	NðmÞ is achieved with
m¼M¼N1/2. As a consequence, Ruelle’s stability criterion
(2) is satisfied in the thermodynamic limit with B¼ 3�a.

Let us now minimize F	NðmÞ with respect to m if �a/�r4
m/2(3m� 2). This yields the quadratic equation (6� �r/�a)

m2
� 12mþ 4¼ 0, whose solution is

m		 ¼
2

3� ð3þ �r=�aÞ
1=2
: ð20Þ

The condition �a/�r4m		/2(3m		� 2) is easily seen to be
equivalent to the condition �a/�r41/6. Therefore, the abso-
lute minimum of the potential energy in that case is

F		N �F	Nðm		Þ

¼�
N

2
�r 1þ

N

8

�a
�r

3�ð3þ �r=�aÞ
1=2

� �3
1þð3þ �r=�aÞ

1=2
� �� �

:

ð21Þ

The corresponding value of s	 is

s		 � s	ðm		Þ ¼
N

4
3� ð3þ �r=�aÞ

1=2
� �2

: ð22Þ

Comparison between Equations (20) and (22) shows that
N ¼ m2

		s		, i.e. the number of clusters per row equals the
number of rows, M		¼m		, as might have been anticipated
by symmetry arguments.

Equation (21) shows that, if �a/�r41/6,
limN!1ð�F		N Þ=N ¼ 1 and thus Ruelle’s stability condition
(2) is not fulfilled.

We could have restricted to a symmetric arrangement
from the very beginning, i.e. m¼M and N¼M2s, in which
case Equation (17) yields

FNðM,s¼N=M2Þ ¼M2s
s�1

2
�r� 3M2�4Mþ1

� �
s2�a

¼
N

2

N

M2
�1

� �
�r� 3M2�4Mþ1

� �N2

M4
�a:

ð23Þ

The minimum value (if �a/�r41/6) corresponds to the value
M¼m		 given by Equation (20), as expected.

Figure 10. Sketch of a configuration with m¼ 4 rows and
M¼ 6 clusters per row.
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Chapter 27

Nonadditive hard-sphere fuid
mixtures. A simple analytical theory

Fantoni R. and Santos A., Phys. Rev. E 84, 041201 (2011)
Title: “Nonadditive hard-sphere fuid mixtures. A simple analytical theory”
Abstract: We construct a non-perturbative fully analytical approximation for the thermody-
namics and the structure of non-additive hard-sphere fluid mixtures. The method essentially
lies in a heuristic extension of the Percus-Yevick solution for additive hard spheres. Extensive
comparison with Monte Carlo simulation data shows a generally good agreement, especially
in the case of like-like radial distribution functions.
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I. INTRODUCTION

The van der Waals ideas [1] show that the most important
feature of the pair potential between atoms or molecules is the
harsh repulsion that appears at short range and has its origin
in the overlap of the outer electron shells. These ideas form
the basis of the very successful perturbation theories of the
liquid state. This, along with fruitful applications to soft matter
[2], explains the continued interest in hard-sphere reference
systems [3].

The simplest model for a fluid mixture is a system of ad-
ditive hard spheres (AHSs) for which the like-unlike collision
diameter (σij ) between a particle of species i and one of species
j is equal to the arithmetic mean σ add

ij ≡ 1
2 (σii + σjj ). A more

general model consists of nonadditive hard spheres (NAHSs),
where the like-unlike collision diameter differs from σ add

ij by
a quantity �ij = (σij − σ add

ij )/σ add
ij called the nonadditivity

parameter. As mentioned in the paper by Ballone et al. [4],
where the relevant references may be found, experimental
work on alloys, aqueous electrolyte solutions, and molten salts
suggests that homocoordination and heterocoordination [5,6]
may be interpreted in terms of excluded volume effects due
to nonadditivity (positive and negative, respectively) of the
repulsive part of the intermolecular potential. NAHS systems
are also useful models to describe real physical systems as
rare gas mixtures [7] and colloids [8–11]. For a short review
of the literature on NAHSs up to 2005 the reader is referred to
Ref. [12].

The well-known Percus–Yevick (PY) integral-equation the-
ory [1] is exactly solvable for a mixture of three-dimensional
(3D) AHS mixtures [13,14]. The solution has been recently
extended to any odd dimensionality [15]. On the other hand,
any amount of nonadditivity (�ij �= 0) suffices to destroy
the analytical character of the solution and so one needs to
resort to numerical methods to solve the PY or other integral
equations [4].

The aim of the present paper is to propose a nonperturbative
and fully analytical approach for 3D NAHS fluid mixtures,
which can be seen as a naı̈ve heuristic extension of the PY

*rfantoni@ts.infn.it, http://www-dft.ts.infn.it/rfantoni/
†andres@unex.es, http://www.unex.es/eweb/fisteor/andres

solution for AHS mixtures. In doing this, we are guided
by the exact solution of the one-dimensional (1D) NAHS
model [16–19] and some physical constraints are imposed:
the radial distribution function (RDF) gij (r) must be zero
within the diameter σij , the isothermal compressibility must be
finite, and the zero density limit of the RDF must be satisfied.
We find that this strategy gives very good results both for
the thermodynamics and the structure, provided that some
geometrical constraints on the diameters and the nonadditivity
parameter are satisfied. This makes our approach particularly
appealing as a reference approximation for integral equation
theories and perturbation theories of fluids.

The paper is organized as follows: In Sec. II we describe
the NAHS model outlining the physical constraints that we
want to embody in our approach. The latter is constructed
by a three-stage procedure (approximations RFA, RFA+, and
RFA(m)

+ ) in Sec. III. In Sec. IV we present the results for the
equation of state from our approximation, comparing them
with available Monte Carlo (MC) simulations. The results for
the structural properties are presented in Sec. V, where we
compare with our own MC simulations. Finally, Sec. VI is
devoted to some concluding remarks.

II. THE NAHS MODEL

An n-component mixture of NAHSs in the d-dimensional
Euclidean space is a fluid of Ni particles of species i (with
i = 1,2, . . . ,n), such that there are a total number of particles
N = ∑n

i=1 Ni in a volume V , and the pair potential between
a particle of species i and a particle of species j separated by
a distance r is given by

Uij (r) =
{∞, r < σij ,

0, r > σij ,
(2.1)

where σii = σi and σij = 1
2 (σi + σj )(1 + �ij ), so that �ii = 0

and �ij = �ji > −1. When �ij = 0 for all pairs (i,j ) we
recover the AHS system. In a binary mixture (n = 2), �12 =
�21 = � is the only nonadditivity parameter. If � = −1 one
recovers the case of two independent one-component hard-
sphere (HS) systems. In the other extreme case σ1 = σ2 = 0
with σ12 finite (so that � → ∞) one obtains the well known
Widom-Rowlinson (WR) model [20,21]. Another interesting
case is the Asakura-Oosawa model [22,23] (where σ2 = 0

041201-11539-3755/2011/84(4)/041201(17) ©2011 American Physical Society
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and � > 0), often used to discuss polymer colloid mixtures
and where the notion of a depletion potential was introduced.
The NAHS system undergoes a demixing phase transition for
positive nonadditivity [24–28]. A demixing transition might
also be possible, even for negative nonadditivity [29,30],
provided the asymmetry ratio σ1/σ2 is sufficiently far from
unity. In the present paper we will only consider the NAHS
system in its single fluid phase.

Let the number density of the mixture be ρ = N/V and
the mole fraction of species i be xi = ρi/ρ, where ρi = Ni/V

is the number density of species i. From these quantities one
can define the (nominal) packing fraction η = vdρMd , where
vd = (π/4)d/2�(1 + d/2) is the volume of a d-dimensional
sphere of unit diameter and

Mk ≡ 〈σ k〉 =
n∑

i=1

xiσ
k
i (2.2)

denotes the kth moment of the diameter distribution.
The NAHS model, in the thermodynamic limit N → ∞

with ρ ≡ N/V constant, admits an analytical exact solution
for the structure and the thermodynamics in d = 1 [16–19].
Moreover, the AHS model in odd dimensions is analytically
solvable in the PY approximation [13–15], the result reducing
to the exact solution of the problem for d = 1 but not for
d � 3.

A. Basic physical constraints on the structure

The RDF gij (r) must comply with three basic conditions:
(1) gij (r) must vanish for r < σij . More specifically, for

distances near σij ,

gij (r) = �(r − σij )[gij (σ+
ij ) + g′

ij (σ+
ij )(r − σij ) + · · ·],

(2.3)

where �(x) is the Heaviside step function.
(2) In the fluid phase the isothermal compressibility χ must

be finite. This implies (see below) that the Fourier transform
h̃ij (q) of the total correlation function hij (r) ≡ gij (r) − 1 has
to remain finite at q = 0 or, equivalently,∫ ∞

0
dr rαhij (r) = finite for 0 � α � d − 1. (2.4)

(3) In the low-density limit, the RDF is

lim
ρ→0

gij (r) = e−Uij (r)/kBT = �(r − σij ), (2.5)

kB and T being the Boltzmann constant and the absolute
temperature, respectively.

As a complement to Eq. (2.5), we give below the exact
expression of gij (r) to first order in density [31]:

gij (r) = �(r − σij )

{
1 + πρ

12r

n∑
k=1

xk�(σik + σkj − r)

×(r − σik − σkj )2[r2 + 2(σik + σkj )r

−3(σik − σkj )2] + O(ρ2)

}
. (2.6)

B. The two routes to thermodynamics

For an athermal fluid like NAHSs there are two main routes
that lead from the knowledge of the structure to the equation
of state (EOS) [1]. These may give different results for an
approximate RDF.

The virial route to the EOS of the NAHS mixture requires
the knowledge of the contact values gij (σ+

ij ) of the RDF,

Zv(η) = 1 + 2d−1

Md

η

n∑
i,j=1

xixjσ
d
ij gij (σ+

ij ), (2.7)

where Z = p/ρkBT is the compressibility factor of the
mixture, p being the pressure.

The isothermal compressibility χ , in a mixture, is in general
given by

χ−1 = 1

kBT

(
∂p

∂ρ

)
T ,{xj }

= 1

kBT

n∑
i=1

xi

(
∂p

∂ρi

)
T ,{xj }

= 1 − ρ

n∑
i,j=1

xixj c̃ij (0), (2.8)

where c̃ij (q) is the Fourier transform of the direct correlation
function cij (r), which is defined by the Ornstein-Zernike (OZ)
equation

h̃ij (q) = c̃ij (q) +
n∑

k=1

ρkh̃ik(q )̃ckj (q). (2.9)

Introducing the quantities ĥij (q) ≡ √
ρiρj h̃ij (q) and ĉij (q) ≡√

ρiρj c̃ij (q), the OZ relation becomes, in matrix notation,

ĉ(q) = ĥ(q) · [I + ĥ(q)]−1, (2.10)

where I is the n × n identity matrix. Thus Eq. (2.8) can be
rewritten as

χ−1 =
n∑

i,j=1

√
xixj [δij − ĉij (0)]

=
n∑

i,j=1

√
xixj [I + ĥ(0)]−1

ij . (2.11)

In Eq. (2.11), and henceforth, we use the notation A−1
ij to

denote the ij element of the inverse A−1 of a given square
matrix A.

In the particular case of binary mixtures (n = 2), Eq. (2.11)
yields

χ = [1 + ρx1ĥ11(0)][1 + ρx2ĥ22(0)] − ρ2x1x2ĥ
2
12(0)

1 + ρx1x2[̂h11(0) + ĥ22(0) − 2ĥ12(0)]
.

(2.12)

The compressibility route to the EOS can be obtained from

Zc(η) =
∫ 1

0
dx χ−1(ηx). (2.13)
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C. The one-dimensional system

The exact solution for nonadditive hard rods (d = 1) is
known [19,32,33]. First, let us introduce the Laplace transform

Gij (s) ≡
∫ ∞

0
dr e−srgij (r). (2.14)

In terms of this quantity the exact solution has the form

Gij (s) = 1√
xixj

n∑
k=1

Pik(s)Qkj (s), (2.15)

where

Pij (s) ≡ √
xixjKij

e−σij (s+ξ )

s + ξ
(2.16)

is proportional to the Laplace transform of the nearest-
neighbor probability distribution and

Q(s) ≡ [I − ρP(s)]−1. (2.17)

In Eqs. (2.15) and (2.16), ξ ≡ p/kBT = ρZ, while Kij =
Kji are state-dependent parameters that are determined as
functions of ξ from the condition (2.4), which implies
lims→0 sGij (s) = 1, as well as requiring the ratio Kij/Kik to
be independent of i [19]. Those conditions also provide the
exact EOS in implicit form, i.e., ρ as a function of ξ .

Of course, the above results also hold for additive hard rods.
In that case, the additive property σij = σ add

ij ≡ 1
2 (σi + σj )

allows us to rewrite the solution in other equivalent ways. To
that end, let us define

Lij = Kije
−ξσ add

ij , (2.18)

so that

Pij (s) = √
xixjLij

e
−σadd

ij
s

s+ξ
, (2.19)

Q−1
ij (s) = eaij s

√
xj

xi

s
s+ξ

Cij (s), (2.20)

where

aij ≡ 1
2 (σi − σj ) (2.21)

and

Cij (s) ≡
(

1 + ξ

s

)
δij − ρxi

s
Lij e

−σi s . (2.22)

Here we have made use of the property

σi = σ add
ij + aij . (2.23)

It is easy to prove that

Qij (s) = eaij s

√
xj

xi

s + ξ

s
C−1

ij (s), (2.24)

thanks to the property aik + akj = aij . Consequently, in the
additive case, Eq. (2.15) becomes

Gadd
ij (s) = e−σ add

ij s

s

n∑
k=1

LikC
−1
kj (s), (2.25)

where use has been made of the additivity property

σ add
ik − akj = σ add

ij . (2.26)

The additive solution turns out to be

Lij = ξ

ρ
= 1

1 − ρM1
. (2.27)

The fact that Lij = const allows one to rewrite Eq. (2.25) in
yet another equivalent form,

Gadd
ij (s) = e−σ add

ij s

s

n∑
k=1

LikB
−1
kj (s), (2.28)

where

Bij (s) ≡ δij − ρxi

s
Lijϕ0(σis)

= Cij (s) + ξ

s
(xi − δij ). (2.29)

In the first equality,

ϕ0(x) ≡ e−x − 1. (2.30)

While lims→0 sCij (s) = ξ (δij − xi) �= 0, but det[sC(s)] =
O(s), in the case of the matrix B(s) one has lims→0 sBij (s) = 0.
On the other hand, in both cases, lims→∞ Cij (s) =
lims→∞ Bij (s) = δij , so that lims→∞ seσ add

ij Gij (s) =
Lij = ξ/ρ.

It turns out that Eqs. (2.25), (2.27), and (2.28) are also
obtained from the PY solution for additive hard rods. Thus,
the PY equation yields the exact solution in the additive case,
but not in the nonadditive one.

It is important to bear in mind that, if one inverts the steps, it
is possible to formally get Eq. (2.15) from Eq. (2.25). In other
words, starting from the form (2.25) of the PY solution for the
1D AHS system, allowing Lij and ξ to be free, and carrying out
some formal manipulations, one arrives at an equivalent form,
Eq. (2.15), that, if heuristically extended to the NAHS case
(σij �= σ add

ij ), coincides with the exact solution to the problem.
However, it is not possible to recover (2.15) starting from the
form (2.28) since the property Lij = const, only valid in the
additive case, cannot be reversed.

D. PY solution for three-dimensional AHSs

In this subsection we recall the PY solution for AHSs in
three dimensions (d = 3) [13,14].

First, one introduces the Laplace transform of rgij (r),

Gij (s) ≡
∫ ∞

0
dr e−sr rgij (r). (2.31)

From Eq. (2.3) it follows that

seσij sGij (s) = σijgij (σ+
ij ) + [gij (σ+

ij ) + σijg
′
ij (σ+

ij )]s−1

+O(s−2). (2.32)

Next, Eq. (2.4) implies, for small s,

s2Gij (s) = 1 + H
(0)
ij s2 + H

(1)
ij s3 + · · · (2.33)

with H
(0)
ij = finite and H

(1)
ij = −h̃ij (0)/4π = finite, where in

general

H
(α)
ij ≡ 1

α!

∫ ∞

0
dr (−r)αrhij (r). (2.34)
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Finally, Eq. (2.5) yields

lim
ρ→0

Gij (s) = e−σij s

s2
(1 + σij s). (2.35)

Equations (2.31)–(2.35) hold both for NAHSs and AHSs.
The PY solution for AHSs can then be written as [13,14]

Gadd
ij (s) = e−σ add

ij s

s2

n∑
k=1

Lik(s)B−1
kj (s), (2.36)

where L(s) and B(s) are matrices given by

Lij (s) = L
(0)
ij + L

(1)
ij s, (2.37)

Bij (s) = δij + 2πρxi

s3

[
L

(0)
ij ϕ2(σis) + L

(1)
ij sϕ1(σis)

]
, (2.38)

where

ϕ1(x) ≡ e−x − 1 + x,
(2.39)

ϕ2(x) ≡ e−x − 1 + x − x2

2
.

Similarly to the 1D case, lims→0 sBij (s) = 0. In fact,
Eqs. (2.36)–(2.38) are the 3D analogs of Eqs. (2.28) and (2.29).
For the general structure of the PY solution with d = odd, the
reader is referred to Ref. [15].

Also as in the 1D case, lims→∞ Bij (s) = δij and so,
according to Eq. (2.32),

gadd
ij (σ+

ij ) = L
(1)
ij

σ add
ij

. (2.40)

Further, in view of Eq. (2.33), the coefficients of s0 and s

in the power series expansion of s2Gij (s) must be 1 and
0, respectively. This yields 2n2 conditions that allow us to
find [14]

L
(0)
ij = θ1 + θ2σj , L

(1)
ij = θ1σ

add
ij + 1

2θ2σiσj , (2.41)

where θ1 ≡ 1/(1 − η) and θ2 ≡ 3(M2/M3)η/(1 − η)2. It is
straightforward to check that Eq. (2.36) complies with the
limit (2.35).

The expressions (2.7) and (2.13) which follow from the
solution of the PY equation of AHS mixtures are

Zv
PY(η) = 1

1 − η
+ M1M2

M3

3η

(1 − η)2
+ M3

2

M2
3

3η2

(1 − η)2
, (2.42)

Zc
PY(η) = 1

1 − η
+ M1M2

M3

3η

(1 − η)2
+ M3

2

M2
3

3η2

(1 − η)3
. (2.43)

Usually, the virial route underestimates the exact results, while
the compressibility route overestimates them.

III. CONSTRUCTION OF THE APPROXIMATIONS

As stated in Sec. I, the main aim of this paper is to construct
analytical approximations for the structure and thermodynam-
ics of 3D NAHSs. On the one hand, the approximations will
be inspired by the exact solution in the 1D case (see Sec. II C).
On the other hand, they will reduce to the AHS PY solution
(see Sec. II D). Moreover, as a guide in the construction of
the approximations and also to determine the parameters,

the basic physical requirements (2.3)–(2.5) [or, equivalently,
(2.32), (2.33), and (2.35)] will be enforced.

The driving idea is to rewrite Eq. (2.36) in a form akin
to that of Eq. (2.15), by inverting the procedure followed in
Sec. II C. This method faces several difficulties. One of them
is that, as said before, Eq. (2.36) is the 3D analog of Eq. (2.28),
but not of Eq. (2.25), and it is not possible to recover directly
(i.e., without further assumptions) Eq. (2.15) from Eq. (2.28).
One could first try to rewrite Eq. (2.36) in a form akin to that of
Eq. (2.25), i.e., a form where the matrix B given by Eq. (2.38)
is replaced by a matrix C such that lims→0 sCij (s) �= 0. But,
given the intricate structure of Eq. (2.38) and the fact that
neither L

(0)
ij nor L

(1)
ij are constant, this does not seem to be

an easy task at all. Therefore, we will work from Eq. (2.36)
directly.

A. The AHS PY solution revisited

First, define

Pij (s) ≡ √
xixj e

−σ add
ij sLij (s), (3.1)

Qij (s) ≡ eaij s

√
xj

xi

B−1
ij (s), (3.2)

so that

Q−1
ij (s) = eaij s

√
xj

xi

Bij (s)

= δij + 2πρ
√

xixj

s3
eaij s

[
L

(0)
ij ϕ2(σis) + L

(1)
ij sϕ1(σis)

]
.

(3.3)

Inserting Eqs. (3.1) and (3.2) into Eq. (2.36) we finally get

Gij (s) = s−2

√
xixj

n∑
k=1

Pik(s)Qkj (s), (3.4)

where use has been made of the additive property (2.26).
We emphasize that Eq. (3.4) is fully equivalent to Eq. (2.36)

and thus it represents an alternative way of writing the PY
solution for AHSs. In both representations the coefficients
L

(0)
ij and L

(1)
ij are given by Eq. (2.41). On the other hand, since

the structure of Eq. (3.4) is formally similar to that of the exact
solution for 1D NAHSs, Eq. (2.15), it might be expected that
Eq. (3.4) is a reasonable starting point for an extension to 3D
NAHSs.

B. Approximation RFA

1. The proposal

A possible proposal for the structural properties of NAHSs
is defined by Eq. (3.4) with

Pij (s) = √
xixj e

−σij sLij (s), (3.5)

Q−1
ij (s) = δij + 2πρ

√
xixj

s3
eaij s

×[
L

(0)
ij ϕ2(bij s) + L

(1)
ij sϕ1(bij s)

]
, (3.6)

where Lij (s) is still given by Eq. (2.37) [with L
(0)
ij and L

(1)
ij yet

to be determined] and

bij ≡ σij + aij . (3.7)
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Equations (3.5) and (3.6) are obtained from Eqs. (3.1) and
(3.3), respectively, by the extensions σ add

ij → σij and σi → bij

[compare Eqs. (2.23) and (3.7)]. Note that Eq. (3.6) can also
be written as

Q−1
ij (s) = δij − 2πρ

√
xixj

s3
[Nij (s)eaij s − Lij (s)e−σij s],

(3.8)

where

Nij (s) ≡ L
(0)
ij

(
1 − bij s + b2

ij s
2

2

)
+ L

(1)
ij s(1 − bij s). (3.9)

Of course, the coefficients L
(0)
ij and L

(1)
ij are no longer given by

Eq. (2.41) but are obtained from the physical conditions

lim
s→0

s2Gij (s) = 1, (3.10)

lim
s→0

s−1[s2Gij (s) − 1] = 0, (3.11)

which follow from Eq. (2.33). To that purpose, it is convenient
to rewrite Eq. (3.4) as

s2
n∑

k=1

√
xixkGik(s)Q−1

kj (s) = Pij (s). (3.12)

Using Eqs. (3.5) and (3.6), Eq. (3.10) implies

1 + πρ

n∑
k=1

xkb
2
kj

(
L

(1)
kj − 1

3
L

(0)
kj bkj

)
= L

(0)
ij . (3.13)

Likewise, Eq. (3.11) gives

πρ

n∑
k=1

xkb
2
kj

[
akj

(
L

(1)
kj − 1

3
L

(0)
kj bkj

)
−1

3
bkj

(
L

(1)
kj − 1

4
L

(0)
kj bkj

)]
= L

(1)
ij − σijL

(0)
ij . (3.14)

Equations (3.13) and (3.14) imply that both L
(0)
ij and L

(1)
ij −

σijL
(0)
ij are independent of the subscript i, i.e.,

L
(0)
ij = Sj , L

(1)
ij = Tj + σijSj , (3.15)

where Sj and Tj are determined from Eqs. (3.13) and (3.14).
The solution is

Sj = 1 − πρ�j

(1 − πρ�j )(1 − πρ�j ) − π2ρ2μj |2,0�j

, (3.16)

Tj = πρ�j

(1 − πρ�j )(1 − πρ�j ) − π2ρ2μj |2,0�j

, (3.17)

where we have called

�j ≡ μj |2,1 − 1
3μj |3,0, (3.18)

�j ≡ 2
3μj |3,0 − μj |2,1, (3.19)

�j ≡ μj |3,1 − μj |2,2 − 1
4μj |4,0, (3.20)

and

μj |p,q ≡
n∑

k=1

xkb
p

kjσ
q

kj . (3.21)

In the additive case (bkj = σk) one has �j = 1
6M3 + 1

2M2σj ,
�j = 1

6M3 − 1
2M2σj , and �j = − 1

4M2σ
2
j , so that Sj = θ1 +

θ2σj and Tj = − 1
2θ2σ

2
j , in agreement with Eq. (2.41). In the

case of binary nonadditive mixtures (� �= 0), it can be easily
checked that the common denominator in Eqs. (3.16) and
(3.17) is positive definite. It only vanishes if � = −2σ2/(σ1 +
σ2) (assuming σ2 � σ1) and η = 1 + x2σ

3
2 /x1σ

3
1 .

Equation (3.15) closes the approximation (3.4)–(3.6). It
relies on the same philosophy as the so-called rational-function
approximation used in the past for HS and related systems
[15,34] and, therefore, we will use the acronym RFA to refer
to it. The explicit forms of Gij (s) for binary mixtures (n = 2)
are presented in Appendix A.

2. Low-density behavior

To first order in density, Eqs. (3.15)–(3.17) yield

L
(0)
ij = 1 + πρ�j + O(ρ2), (3.22)

L
(1)
ij = σij + πρ(σij�j + �j ) + O(ρ2). (3.23)

Thus,

Qij (s) = δij − 2πρ
√

xixj

s3
eaij s[ϕ2(bij s) + σij sϕ1(bij s)]

+O(ρ2). (3.24)

Insertion into Eq. (3.4) yields

Gij (s) = e−σij s

s2
(1 + σij s) + πρ

e−σij s

s2
[�j + (σij�j + �j )s] − 2πρ

s5

n∑
k=1

xke
−(σik+σkj )s(1 + σiks)(1 + σkj s)

+ 2πρ

s5

n∑
k=1

xke
−(σik−akj )s(1 + σiks)

[
1 − akj s − 1

2

(
σ 2

kj − a2
kj

)
s2

]
+ O(ρ2). (3.25)

Laplace inversion gives

gij (r) = �(r − σij ) + πρ

r
�(r − σij )(�jr + �j ) − πρ

12r

n∑
k=1

xk�(r − σik − σkj )(r − σik − σkj )2

×[r2 + 2(σik + σkj )r − 3(σik − σkj )2] + πρ

12r

n∑
k=1

xk�(r − σik + akj )(r − σik + akj )
[
r3 + (σik − akj )r2

− (
5σ 2

ik + 6σ 2
kj + 2σikakj − a2

kj

)
r + 3(σik + akj )

(
σ 2

ik + a2
kj − 2σ 2

kj

)] + O(ρ2). (3.26)
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As a consequence, approximation RFA is consistent with
the exact limits (2.5) and (2.35). To first order in density, the
approximation correctly accounts for singularities of gij (r)
at distances r = σij and r = σik + σkj , k = 1, . . . ,n [see
Eq. (2.6)]. On the other hand, we see from Eq. (3.25) that,
already to first order in density, approximation RFA introduces
spurious singularities at r = σik − akj �= σij . One might even
have dij ;k ≡ σik − akj − σij < 0. In particular, dii;k = σ add

ik �ik

becomes negative if �ik < 0. Analogously, dij ;i = −σ add
ij �ij

is negative if �ij > 0. Therefore, approximation RFA does
not verify in general the condition (2.3). It is worth noting,
however, that the hard-core condition (2.3) is also typically
violated by density-functional theories [35]. The inability
of approximation RFA to guarantee that gij (r) = 0 for r <

σij will be remedied by approximation RFA+ described in
Sec. III C.

3. Short-range behavior

Before presenting approximation RFA+, we will need to
restrict ourselves to cases where the first two singularities
of gij (r), as given by approximation RFA, are σij and τij ≡
min(σik − akj ; k = 1, . . . ,n; k �= j ). As proven in Appendix
B, the above requirement in the binary case (n = 2) implies
the constraint −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2), where,
without loss of generality, it has been assumed σ2 � σ1. This
region of applicability is shown in Fig. 1.

Appendix C gives the expressions for gij (r) in the range
0 � r � max(σij ,τij ) + ε, where ε is any positive value
smaller than the separation between max(σij ,τij ) and the
next singularity of gij (r), provided by approximation RFA
for binary mixtures. Extending to general n the arguments
presented there, we can write

Gij (s) = e−σij s�ij (s) + 2πρxκe
−τij s�iκj (s) + · · · , (3.27)

where k = κ is the index corresponding to τij , i.e., τij = σiκ −
aκj , and the ellipsis denotes terms headed by exponentials of

FIG. 1. (Color online) Plane � vs σ2/σ1 showing the shaded
region −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2) where the first two
singularities of gij (r), according to approximation RFA, are σij and
σik − akj with k �= j . The circles denote the systems analyzed in
Sec. V.

the form e−λs with λ > max(σij ,τij ). In Eq. (3.27),

�ij (s) ≡ 1

s2
Lij (s)Q̄jj (s), (3.28)

�ikj (s) ≡ 1

s5

Lik(s)Nkj (s)

D0(s)
, (3.29)

where

Q̄−1
ij (s) ≡ δij − 2πρ

√
xixj

s3
Nij (s), (3.30)

and D0(s) is the determinant of the matrix Q̄−1(s). Explicit
expressions of �ij (s) and D0(s) for binary mixtures are given
in Appendix C.

Taking the Laplace inversion of Eq. (3.27), one finds that,
in the interval 0 � r � max(σij ,τij ) + ε,

gij (r) = 1

r
�(r − σij )φij (r − σij )

+ 2πρ

r
xκ�(r − τij )γiκj (r − τij ), (3.31)

where φij (r) and γikj (r) are the inverse Laplace transforms of
�ij (s) and �ikj (s), respectively.

Note that φij (0) = lims→∞ �ij (s) = L
(1)
ij , while γikj (0) =

lims→∞ �ikj (s) = 0. Therefore, the contact values are

gij (σ+
ij ) = L

(1)
ij

σij

+ 2πρ

σij

xκ�(σij − τij )γiκj (σij − τij ). (3.32)

As expected, Eq. (3.32) reduces to Eq. (2.40) in the additive
case.

C. Approximation RFA+

This new option for gij (r) will differ from approximation
RFA only in the region min(σij ,τij ) � r � max(σij ,τij ). More
specifically,

gij (r)|RFA+ = gij (r)|RFA + 2πρ

r
xκ [�(r − σij )

−�(r − τij )]γiκj (r − τij ). (3.33)

On account of Eq. (3.31), Eq. (3.33) can be equivalently
rewritten as

gij (r)|RFA+ =

⎧⎪⎨⎪⎩
�(r − σij )gij (r)|RFA, τij < σij ,

gij (r)|RFA + �(r − σij )�(τij − r)

× 2πρ

r
xκγiκj (r − τij ), τij > σij .

(3.34)

We see from Eq. (3.34) that the idea behind approximation
RFA+ is twofold. On the one hand, it removes the unphysical
violation of the property gij (r) = 0 for r < σij that is present
in option RFA when τij < σij . On the other hand, if τij > σij ,
approximation RFA+ extrapolates to the region σij < r < τij

the functional form of gij (r) provided by approximation RFA
in the region between τij and the next singularity.

In the interval 0 � r � max(σij ,τij ) + ε,

gij (r)|RFA+ = 1

r
�(r − σij )[φij (r − σij )

+ 2πρxκγiκj (r − τij )]. (3.35)
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In particular,

gij (σ+
ij )|RFA+ = L

(1)
ij

σij

+ 2πρ

σij

xκγiκj (σij − τij ). (3.36)

D. Approximation RFA(m)
+

In approximation RFA+ the full functional form of γikj (r)
is used. This can create some artificial problems in the region
σij < r < τij when τij > σij and the distance τij − σij is
rather large (as happens in the WR model). Reciprocally, if
τij − σij is not large, it becomes unnecessarily complicated to
consider the entire nonlinear function γikj (r) in the interval
σij < r < τij . Thus, we now propose a variant of approxi-
mation RFA+, here denoted as RFA(m)

+ , whereby the full true
function γiκj (r) is preserved if τij < σij (in order to enforce
the physical constraint of a vanishing RDF for r < σij ) but is
replaced by its mth degree polynomial approximation γ

(m)
iκj (r)

if τij > σij . In summary, option RFA(m)
+ is defined by

gij (r)|RFA(m)
+

=

⎧⎪⎨⎪⎩
�(r − σij )gij (r)|RFA, τij < σij ,

gij (r)|RFA + �(r − σij )�(τij − r)

× 2πρ

r
xκγ

(m)
iκj (r − τij ), τij > σij .

(3.37)

Consequently, the contact values are

gij (σ+
ij )|RFA(m)

+

= L
(1)
ij

σij

+ 2πρ

σij

xκ

[
�(σij − τij )γiκj (σij − τij )

+�(τij − σij )γ (m)
iκj (σij − τij )

]
. (3.38)

The polynomial γ
(m)
ikj (r) is obtained by truncating after rm

the expansion of γikj (r) in powers of r . Such an expansion
is directly related to that of the Laplace transform �ikj (s) in
powers of s−1. For large s, �ikj (s) can be shown to be given by

�ikj (s) = s−2L
(1)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj + s−3

{
L

(0)
ik
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2
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(1)
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(1)
ik
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(0)
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(1)
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]

+ 2πρL
(1)
ik
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(0)
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− L

(1)
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]
bkj

n∑
�=1

x�

[
L

(0)
��

σ�

2
− L

(1)
��

]
σ�

}
+ O(s−4). (3.39)

Consequently, the linear and quadratic approximations are

γ
(1)
ikj (r) = L

(1)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj r, (3.40)

γ
(2)
ikj (r) = γ

(1)
ikj (r) +

{
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(0)
ik
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]
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ik
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]
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}
r2

2
. (3.41)

Of course, the three sets of approximations RFA, RFA+,
and RFA(m)

+ reduce to the PY solution in the additive case.
Obviously, RFA+ ≡ RFA(∞)

+ . In Sec. V we will generally use
RFA(1)

+ .

IV. COMPARISON WITH MONTE CARLO SIMULATIONS
FOR BINARY MIXTURES. THE EQUATION OF STATE

The compressibility factor Z is obtained via the virial and
compressibility routes by Eqs. (2.7) and (2.13), respectively.
In the case of the virial route one needs the contact values of
the RDF, which are given by Eqs. (3.32), (3.36), and (3.38) in
approximations RFA, RFA+, and RFA(m)

+ , respectively.
In the compressibility route, the isothermal compressibility

χ is obtained from Eq. (2.11), where ĥij (0) = ρ
√

xixj h̃ij (0) =
−4πρ

√
xixjH

(1)
ij , H

(1)
ij being the coefficient of s3 in the series

expansion of s2Gij (s) in powers of s [cf. Eq. (2.33)]. We
recall that Gij (s) is given by Eq. (3.4) in approximation RFA.

In approximations RFA+ and RFA(m)
+ , Eqs. (3.33) and (3.37)

imply that

H
(1)
ij

∣∣
RFA+

= H
(1)
ij

∣∣
RFA − 2πρxκ

∫ τij

σij

dr rγiκj (r − τij ), (4.1)

H
(1)
ij

∣∣
RFA(m)

+

= H
(1)
ij

∣∣
RFA − 2πρxκ

∫ τij

σij

dr r
[
�(σij − τij )γiκj (r − τij )

+�(τij − σij )γ (m)
iκj (r − τij )

]
. (4.2)

In any case, for the sake of simplicity, we will restrict ourselves
in most of this section to approximation RFA.

A. Dependence of the EOS on nonadditivity

Here we study the dependence of the EOS on the nonad-
ditivity parameter � by fixing all the other parameters of the
mixture (density, composition, and size ratio).
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FIG. 2. (Color online) Compressibility factor as a function of the
nonadditivity parameter for a symmetric binary mixture of NAHSs
at ρσ 3 = 0.2 and two different compositions. The MC data are taken
from Refs. [36,37].

1. Symmetric binary mixtures

Symmetric mixture are obtained when σ1 = σ2 = σ . There-
fore, in the additive case (� = 0) one recovers the one-
component HS system, i.e., g11(r) = g22(r) = g12(r) = g(r),
regardless of the value of x1.

Figure 2 compares the compressibility factor obtained from
MC simulations [36,37] with that predicted by approximation
RFA for some representative symmetric systems. We observe
that approximation RFA reproduces quite well the exact
simulation data at all values of the nonadditivity parameter.
At this low density (ρσ 3 = 0.2,η 
 0.105) the virial and
compressibility routes are not distinguishable on the scale of
the graph.

2. Asymmetric binary mixtures

Asymmetric mixtures correspond to σ1 �= σ2. In that case,
when � = 0 one recovers the AHS mixture.

Figure 3 shows the � dependence of Z for negative
nonadditivity and an equimolar (x1 = x2 = 1

2 ) asymmetric
mixture (σ2/σ1 = 1/3) at a relatively large density (η = 0.5).
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FIG. 3. (Color online) Compressibility factor as a function of the
nonadditivity parameter for an equimolar asymmetric binary mixture
of NAHSs with a size ratio σ2/σ1 = 1/3 at a packing fraction η = 0.5.
The symbols [v] and [c] stand for the virial and compressibility routes,
respectively. The MC data are taken from Ref. [38].

In this case the virial route of approximation RFA under-
estimates the values of Z, while the compressibility route
overestimates them. This is also a typical behavior of the
PY equation for AHSs. It is thus tempting to try the Z =
1
3Zv + 2

3Zc interpolation recipe [39–42], which is known to
work well in the additive case. From Fig. 3 we see that indeed
the interpolation formula, as applied to approximation RFA,
reproduces quite well the exact simulation data, except for
� � −0.8.
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FIG. 4. (Color online) Compressibility factor as a function of
the size ratio σ2/σ1 for binary asymmetric NAHS mixtures with
x2 = 1

2 , � = −0.05, and η = 0.5 (top panel); x2 = 1
4 , 1

2 , � = 0.2, and
η = 0.2 (middle panel); x2 = 1

4 , 1
2 , � = 0.5, and η = 0.075 (bottom

panel). In the bottom panel only the theoretical data obtained from
the virial route are shown since they practically coincide with those
obtained from the compressibility route. The MC data are taken from
Ref. [38].

041201-8

Nonadditive hard-sphere fuid mixtures. A simple analytical the-
ory 425



NONADDITIVE HARD-SPHERE FLUID MIXTURES: A . . . PHYSICAL REVIEW E 84, 041201 (2011)

B. Dependence of the EOS on the size ratio

Next, we study the dependence of Z on the size ratio σ2/σ1

by fixing all the other parameters of the mixture (density,
composition, and nonadditivity).

The three panels of Fig. 4 show Z vs σ2/σ1 for a
slightly negative nonadditivity � = −0.05 (top panel), a
moderate positive nonadditivity � = 0.2 (middle panel), and
a larger positive nonadditivity � = 0.5 (bottom panel). We
observe again that the interpolation recipe Z = 1

3Zv + 2
3Zc

for approximation RFA agrees well with the exact simulation
data, with the exception of a region close to the size symmetric
mixture (σ2/σ1 = 1) for positive nonadditivity and moderate
density (middle panel).

C. Contact values

In Sec. V we will analyze the RDF gij (r) predicted by
approximations RFA and RFA(1)

+ . Before doing so, and as a
bridge between the thermodynamic and structural properties,
it is worth considering the contact values. Table I provides
the contact values for some binary equimolar symmetric
NAHS mixtures (σ1 = σ2 = σ , x1 = x2 = 1

2 ), as obtained
from MC simulations [4], numerical solutions of the PY
integral equation [4], and our approximations RFA [Eq. (3.32)]
and RFA(1)

+ [Eq. (3.38)]. Since for binary symmetric mixtures
τ11 = τ22 = σ12 = σ (1 + �) and τ12 = σ , it turns out that
g11(σ+) = g22(σ+) is common in approximations RFA and
RFA(1)

+ if � < 0, while g12(σ+
12) is common in both approxi-

mations if � > 0.

TABLE I. Contact values for some binary equimolar symmetric
NAHS mixtures. The MC and PY data were taken from Ref. [4]. The
labels correspond to systems common to those listed in Table II.

Label � ρσ 3 Source g11(σ+) g12(σ+
12)

D 0.05 0.8 MC 5.305 3.762
PY 4.451 3.516
RFA 4.006 3.617
RFA(1)

+ 4.580 3.617
0.0 0.8 MC 3.971 3.971

PY 3.581 3.581
RFA 3.581 3.581
RFA(1)

+ 3.581 3.581
−0.05 0.8 MC 3.117 3.801

PY 2.925 3.394
RFA 2.971 3.148
RFA(1)

+ 2.971 3.445
A −0.1 1.0 MC 3.394 5.363

PY 3.209 4.395
RFA 3.497 3.883
RFA(1)

+ 3.497 4.763
−0.3 1.0 MC 2.168 2.798

PY 2.141 2.543
RFA 2.441 2.251
RFA(1)

+ 2.441 2.875
B −0.5 1.0 MC 2.103 1.528

PY 2.060 1.493
RFA 2.139 1.407
RFA(1)

+ 2.139 1.279

From Table I we observe that approximation RFA(1)
+ is

superior to the PY theory in estimating the true contact values,
both for positive and negative nonadditivity, except in the cases
of g11(σ+) for ρσ 3 = 1 and � = −0.3 and of g12(σ+

12) for
ρσ 3 = 1 and � = −0.5.

V. COMPARISON WITH MONTE CARLO SIMULATIONS
FOR BINARY MIXTURES. THE STRUCTURE

The RDF of approximation RFA is analytically and
explicitly given in Laplace space by Eqs. (3.4)–(3.6) and
(3.15)–(3.21). In real space, rgij (r) is easily found by taking
the inverse Laplace transform of Gij (s) through the numerical
scheme described in Ref. [44]. To get gij (r) in approximation
RFA(m)

+ , one needs to make use of Eq. (3.37), where γ
(m)
ikj (r)

is explicitly given by Eqs. (3.40) and (3.41) for m = 1 and
m = 2, respectively [45]. Notice that, while the true RDF
has to be symmetric under exchange of species indices, the
RDF obtained from approximation RFA or RFA+ is, except
for symmetric and equimolar mixtures, not symmetric, i.e.,
gij (r) �= gji(r) if i �= j . Although this artificial asymmetry is
generally small from a practical point of view, it represents a
penalty we pay for our extension of the AHS solution of the PY
equation. To cope with this shortcoming, we just redefine the
like-unlike RDF as the symmetrized one 1

2 [gij (r) + gji(r)].
In a binary mixture, τ11 = σ12 + a12 = σ1 + 1

2 (σ1 + σ2)�,
τ22 = σ12 − a12 = σ2 + 1

2 (σ1 + σ2)�, and τ12 = 1
2 (σ1 + σ2).

Therefore, τ11 < σ1 and τ22 < σ2 for � < 0, while τ12 < σ12

for � > 0. In what follows, we will truncate gij (r)|RFA for
r < σij when τij < σij .

In order to evaluate the merits and limitations of the
structural properties predicted by our approximations, we
have performed canonical MC simulations of the binary
NAHS system with N = 2196 particles and 105N MC steps
per run. The cell index method has been used [46]. The
statistical error on the RDF is within the size of the symbols
used in the graphs reported.

We have chosen six representative systems, all within the
region −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2) assumed in the
construction of approximation RFA+. Those six systems are
represented in Fig. 1 and their respective values of composition
and density are displayed in Table II. Three of the mixtures
have a negative nonadditivity (A, B, and C), while the other
three have a positive nonadditivity (D, E, and F). Moreover,
there are four equimolar symmetric mixtures (A, B, D, and
E) and two asymmetric ones (C and F). In those two latter

TABLE II. The six binary NAHS mixtures considered in the
analysis of the structure. The last column gives the compressibility
factor as obtained from our MC simulations.

Label σ2/σ1 � x1 ρσ 3
1 η ZMC

A 1 −0.1 1/2 1.0 0.5236 8.648
B 1 −0.5 1/2 1.0 0.5236 3.429
C 4/5 −0.444 1/3 1.0 0.3533 2.335
D 1 0.05 1/2 0.8 0.4189 9.083
E 1 0.25 1/2 0.3 0.1571 2.556
F 4/5 0.25 1/3 0.3 0.1060 1.876
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FIG. 5. (Color online) RDF for system A of Table II.

cases, however, both species contribute almost equally to the
(nominal) packing fraction η since x1σ

3
1 /x2σ

3
2 = (5/4)3/2 =

125/128 
 0.98.

A. Negative nonadditivity

1. Symmetric mixtures

Figures 5 and 6 display the RDF for systems A and
B, respectively. System A is only slightly nonadditive and
we observe that both approximations RFA and RFA(1)

+ do a
very good job. On the other hand, while RFA and RFA(1)

+
coincide for g11(r) with r > σ1, they differ for g12(r) in the
interval σ12 = 0.9σ1 � r � τ12 = σ1. In fact, approximation
RFA presents an artificial discontinuity of the first derivative
g′

12(r) at r = σ1. This is corrected by approximation RFA(1)
+ ,

which presents a good agreement with the MC results for
r < σ1. In spite of this, we observe that approximation RFA(1)

+
underestimates the contact value g12(σ+

12), in agreement with
the entry of Table I corresponding to case A.

In the case of system B the nonadditivity is larger and,
according to Fig. 6, the performance of our approximations
is still good for g11(r) but worsens for g12(r). In fact,
g12(r)|RFA turns out to be better than g12(r)|RFA(1)

+
in the region

σ12 = 0.5σ1 � r � τ12 = σ1, in agreement with the entry of
Table I corresponding to case B. In any case, it is interesting to
remark that approximation RFA(1)

+ succeeds in capturing the
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FIG. 6. (Color online) RDF for system B of Table II.

nonmonotonic behavior of g12(r) very near r = σ12 observed
in the simulations.

2. Asymmetric mixture

The only case representing an asymmetric mixture with
negative nonadditivity (system C) is shown in Fig. 7. Again,
the MC like-like RDF are very well reproduced by the two
approximations. In the case of the like-unlike function g12(r),
approximation RFA(1)

+ clearly improves approximation RFA
in the region σ12 = 0.5σ1 � r � τ12 = 0.9σ1. Apart from
that, both approximations overestimate g12(r) between r =
τ12 = 0.9σ1 and the location of the first minimum at about
r 
 1.25σ1. In Fig. 7 we have taken g12(r) → 1

2 [g12(r) +
g21(r)], as explained at the beginning of this section. Prior
to this symmetrization, the maximum relative deviation be-
tween g12(r) and g21(r) occurs at r 
 0.75σ1 and is less
than 5%.

B. Positive nonadditivity

1. Symmetric mixtures

Let us consider now positive nonadditivities, starting with
symmetric mixtures. Figures 8 and 9 show the results for
systems D and E, respectively. For a small nonadditivity
� = 0.05, both approximations provide very good results,
except for g11(r) near contact (see also Table I). Notice,
however, that approximation RFA(1)

+ improves approximation
RFA in the narrow region σ1 � r � τ11 = 1.05σ1.
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FIG. 7. (Color online) RDF for system C of Table II.

For a larger nonadditivity (system E), Fig. 9 shows the
excellent job made by approximation RFA(1)

+ in the interval
σ1 � r � τ11 = 1.25σ1. In the case of the like-unlike corre-
lation function, however, the approximations overestimate the
values between σ12 and the first minimum (r 
 2σ1).

2. Asymmetric mixture

Figure 10 displays the three functions gij (r) for the
asymmetric system F. As in case E, approximation RFA(1)

+
nicely reproduces the exact results from the simulation for
the like-like correlations and corrects the unphysical kink
of approximation RFA occurring at τ11 = 1.225σ1 and τ22 =
1.025σ1. Interestingly enough, although the values of � and
ρσ 3

1 are the same in systems E and F, the performance of the
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FIG. 8. (Color online) RDF for system D of Table II.

approximations for g12(r) is much better in case F (asymmetric
mixture) than in case E (symmetric mixture). This might be
partially due to the fact that the packing fraction η is smaller
in system F than in system E. For the asymmetric system F, we
have found that the maximum relative deviation between g12(r)
and g21(r) takes place at r = σ12 = 9

8σ1 and is less than 0.5%.

C. The Widom-Rowlinson model

As recalled in Sec. I, the WR model corresponds to an
equimolar symmetric binary NAHS mixture where σ1 = σ2 =
0 and σ12 �= 0. The model is then fully characterized by the
reduced density, ρσ 3

12. The critical demixing reduced density
for this model is around 0.75 [47,48].

The nonadditivity parameter of the WR model is � =
σ12/σ

add
12 − 1 → ∞, so it lies well outside the “safe” region

for our approximation RFA+ (see Fig. 1). To compensate for
this, we replace here approximation RFA(1)

+ by approximation
RFA(2)

+ .
We see from Figs. 11 and 12 that approximation RFA(2)

+
does a much better job than expected at the two densities
considered. The main drawbacks of the theory are that the
contact value g11(0) is dramatically overestimated and the
behavior of g12(r) for r � σ12 is qualitatively wrong. In spite
of this, it is remarkable that approximation RFA(2)

+ captures
well the global properties of the RDF in this extreme system.
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FIG. 9. (Color online) RDF for system E of Table II.

VI. SUMMARY AND CONCLUSIONS

The importance of the NAHS model in liquid state theory
cannot be overemphasized. When the reference or effective
interaction among the microscopic components (at an atomic
or a colloidal level of description) of a statistical system is
modeled as of hard-core type, there is no reason to expect
that the interaction range σij corresponding to the pair (i,j ) is
enslaved to be the arithmetic mean of the interaction ranges σi

and σj corresponding to the pairs (i,i) and (j,j ), respectively.
Therefore, in an n-component NAHS mixture the number of
independent interaction ranges is n(n + 1)/2, in contrast to
the number n in an AHS mixture. It is then not surprising
that, while an exact solution of the PY theory exists for AHS
systems [13], numerical methods are needed when solving
the PY and other integral-equation theories for NAHSs [4].
Therefore, analytical approaches to the problem can represent
attractive and welcome contributions.

In this paper we have constructed a nonperturbative fully
analytical approximation for the Laplace transforms Gij (s) of
rgij (r), where gij (r) is the set of RDF of a general 3D NAHS
fluid mixture. Our approach follows several stages. The start-
ing point is the analytical PY solution for AHSs, Eqs. (2.36)–
(2.38). Exploiting the connection between the exact solutions
for 1D NAHS and AHS mixtures [see Eqs. (2.15) and (2.28)],
the AHS PY solution is rewritten in an alternative form,
Eqs. (3.1)–(3.4). Our approximation RFA consists of keeping
the form (3.4), except that σ add

ij in Eq. (3.1) is replaced by σij

[cf. Eq. (3.5)] and σi in Eq. (3.3) is replaced by bij ≡ σij + aij
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FIG. 10. (Color online) RDF for system F of Table II.

[cf. Eq. (3.6)]. Moreover, the parameters L
(0)
ij and L

(1)
ij are no

longer given by Eq. (2.41) but are determined by enforcing
the condition (2.4) or, equivalently, Eq. (2.33). This results in
Eqs. (3.15)–(3.21), and so the problem becomes completely
closed and analytical in Laplace space. The equation of state
is obtained either via the virial route (2.7) through the contact
values (3.32) or via the compressibility route (2.11) through
the coefficients H

(1)
ij in the expansion of s2Gij (s) in powers of

s, Eq. (2.33).
The penalty we pay for “stretching” the AHS PY solution

to the NAHS domain in the way described above is that gij (r)
may not be strictly zero for r < σij or may exhibit first-order
discontinuities at artificial distances. To deal with this problem,
we have restricted ourselves to mixtures such that the first
two singularities of gij (r) are σij and τij ≡ min(σik − akj ;
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FIG. 11. (Color online) RDF for the WR model at ρσ 3
12 =

0.28748. The MC data are taken from Ref. [43].

k = 1, . . . ,n; k �= j ). In the binary case (n = 2) this restric-
tion corresponds to −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2) (see
Fig. 1). Next, we have constructed a modified approximation
RFA+ whereby either gij (r) is truncated for r < σij if τij < σj

or the behavior of gij (r) for r � τij is extrapolated to the
interval σij < r < τij if τij > σj [cf. Eq. (3.34)]. From a
practical point of view, the latter extrapolation can be replaced
by a polynomial approximation (e.g., linear or quadratic),
yielding approximation RFA(m)

+ [cf. Eq. (3.37)]. This is
sufficient to guarantee that the slope of gij (r) is continuous
everywhere for r > σij .

For comparison with MC data of the equation of state we
have used approximation RFA since its local limitations at the
level of the RDF are largely smoothed out when focusing on
the thermodynamic properties. The results show that, if the
density is low enough as to make both thermodynamic routes
practically coincide, our approximation accurately predicts the
MC data, as shown in Fig. 2 and in the bottom panel of Fig. 4.
For larger densities, the virial and compressibility routes tend
to underestimate and overestimate, respectively, the simulation
values, this being a typical PY feature. As in the AHS case, the
simple interpolation rule Z = 1

3Zv + 2
3Zc provides very good

results, except for large nonadditivities (see Fig. 3 and the top
and middle panels of Fig. 4).

Regarding the structural properties, approximation RFA(1)
+

is found to perform quite well. The contact values are generally
more accurate than those obtained from the numerical solution
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FIG. 12. (Color online) RDF for the WR model at ρσ 3
12 = 0.4.

The MC data are taken from Ref. [43].

of the PY integral equation, at least for symmetric mixtures, as
shown in Table I. Comparison with our own MC simulations
shows a very good agreement, except in the case of the
like-unlike RDF for distances smaller than the location of the
first minimum for large nonadditivities (see Figs. 5–10). On
the other hand, even in the case of the WR model (� → ∞,
well beyond the “safe” region of Fig. 1) our approximation
RFA(2)

+ does a much better job than expected, as illustrated in
Figs. 11 and 12.

In conclusion, one can reasonably argue that our approxi-
mation RFA, along with its variants RFA+ and RFA(m)

+ , repre-
sent excellent compromises between simplicity and accuracy.
We have tried other alternative analytical approaches (simpler
as well as more complex) also based on the PY solution for
AHSs, but none of them has been found to present a behavior
as sound and consistent as those proposed in this paper. We
expect that they can be useful in the investigation of such
an important statistical-mechanical system (both by itself and
also as a reference to other systems) as the NAHS mixture.

The work presented in this paper can be continued along
several lines. In particular, we plan to explore in the near
future the predictions for the demixing transition from our
approximations. It is also worth exploring the NAHS theory
that arises when the starting point is not the PY solution for
AHSs but the more advanced RFA proposed in Ref. [14], which
contains free parameters that can be accommodated to fit any
desired EOS in a thermodynamically consistent way.
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APPENDIX A: EXPLICIT EXPRESSIONS OF Gi j (s)
FOR BINARY MIXTURES IN APPROXIMATION RFA

By performing the inversion of the matrix (3.8) and carrying
out the matrix product in Eq. (3.4) one gets

G11(s) = s−2

D(s)

{
L11(s)

[
1 − 2πρx2

s3
N22(s)

]
e−σ1s + 2πρx2

s3
L11(s)L22(s)e−(σ1+σ2)s

−2πρx2

s3
L12(s)L21(s)e−2σ12s +2πρx2

s3
L12(s)N21(s)e−(σ12+a12)s

}
, (A1)

G12(s) = s−2

D(s)

{
L12(s)

[
1 − 2πρx1

s3
N11(s)

]
e−σ12s + 2πρx1

s3
L11(s)N12(s)e−(σ1+σ2)s/2

}
, (A2)

where the quadratic functions Nkj (s) can be found in Eq. (3.9) and

D(s) =
[

1 − 2πρx1

s3
N11(s)

] [
1 − 2πρx2

s3
N22(s)

]
− (2πρ)2x1x2

s6
N12(s)N21(s)

+ 2πρx1

s3
L11(s)

[
1 − 2πρx2

s3
N22(s)

]
e−σ1s + 2πρx2

s3
L22(s)

[
1 − 2πρx1

s3
N11(s)

]
e−σ2s

+ 4π2ρx1x2

s6
[L11(s)L22(s)e−(σ1+σ2)s − L12(s)L21(s)e−2σ12s

+L12(s)N21(s)e−(σ12+a12)s + L21(s)N12(s)e−(σ12−a12)s] (A3)

is the determinant of the matrix Q−1. The expressions for G22(s) and G21(s) can be obtained by the exchange 1 ↔ 2.

APPENDIX B: ORDERING OF SINGULAR DISTANCES
IN APPROXIMATION RFA FOR BINARY MIXTURES

By “singular” distances we will refer to those values of
r where the RDF gij (r) or any of its derivatives have a
discontinuity. Physical singularities are located, for instance,
at r = σij and r = σik + σkj , k = 1, . . . ,n. Apart from that,
approximation RFA introduces spurious singularities at other
distances.

Let us particularize to a binary mixture. The physical lead-
ing singularity of gij (r) should be located at r = σij . However,
according to Eq. (A1), the leading singularity of g11(r) takes
place at r = min(σ1,σ12 + a12,2σ12). Analogously, the leading
singularity of g22(r) is located at r = min(σ2,σ12 − a12,2σ12).
Finally, Eq. (A2) shows that the leading singularity of g12(r)
is r = 1

2 min(2σ12,σ1 + σ2). Note that we have assumed σ12 −
a12 > 0, so that the denominator D(s), Eq. (A3), does not
affect the leading singularity of gij (r).

It is thus important to determine the relative ordering of
the values σ1, σ2, σ12 − a12, σ12 + a12, 2σ12, and σ1 + σ2.
Such an ordering depends on the values of � and R ≡ σ2/σ1,
where, without loss of generality, we assume that σ2 � σ1.
A detailed analysis shows that the �-R plane can be split
into 13 disjoint regions with distinct order for the above

singular distances. Those regions are indicated in Fig. 13,
while Table III shows the order applying within each region.

FIG. 13. (Color online) Plane � vs R ≡ σ2/σ1 showing the
regions with different ordering of the distances σ1, σ2, σ12 − a12,
σ12 + a12, 2σ12, and σ1 + σ2.

041201-14

Nonadditive hard-sphere fuid mixtures. A simple analytical the-
ory 431



NONADDITIVE HARD-SPHERE FLUID MIXTURES: A . . . PHYSICAL REVIEW E 84, 041201 (2011)

TABLE III. Order of the singular distances σ1, σ2, σ12 − a12, σ12 + a12, 2σ12, and σ1 + σ2 in each of the regions of Fig. 13.

Region Order

Ia 0 � σ2 � σ12 − a12 � σ1 � σ12 + a12 � σ1 + σ2 � 2σ12

Ib 0 � σ2 � σ1 � σ12 − a12 � σ12 + a12 � σ1 + σ2 � 2σ12

Ic 0 � σ2 � σ12 − a12 � σ1 � σ1 + σ2 � σ12 + a12 � 2σ12

Id 0 � σ2 � σ1 � σ12 − a12 � σ1 + σ2 � σ12 + a12 � 2σ12

Ie 0 � σ2 � σ1 � σ1 + σ2 � σ12 − a12 � σ12 + a12 � 2σ12

IIa 0 � σ12 − a12 � σ2 � σ12 + a12 � σ1 � 2σ12 � σ1 + σ2

IIb 0 � σ12 − a12 � σ12 + a12 � σ2 � σ1 � 2σ12 � σ1 + σ2

IIc 0 � σ12 − a12 � σ2 � σ12 + a12 � 2σ12 � σ1 � σ1 + σ2

IId 0 � σ12 − a12 � σ12 + a12 � σ2 � 2σ12 � σ1 � σ1 + σ2

IIe 0 � σ12 − a12 � σ12 + a12 � 2σ12 � σ2 � σ1 � σ1 + σ2

IIf σ12 − a12 � 0 � σ2 � 2σ12 � σ12 + a12 � σ1 � σ1 + σ2

IIg σ12 − a12 � 0 � 2σ12 � σ2 � σ12 + a12 � σ1 � σ1 + σ2

IIh σ12 − a12 � 0 � 2σ12 � σ12 + a12 � σ2 � σ1 � σ1 + σ2

Note that σ12 − a12 is negative in Regions IIf, IIg, and IIh, i.e.,
if −1 � � � −2R/(1 + R), thus invalidating those regions
from the preceding analysis.

We observe that σ1 and σ2 are indeed the leading singulari-
ties of g11(r) and g22(r), respectively, for positive nonadditivity
(regions Ia–Ie). Reciprocally, σ12 is the leading singularity of
g12(r) for negative nonadditivity (regions IIa–IIh).

In order to construct approximation RFA+, we want to
restrict ourselves to those regions such that the two leading
singularities of g11(r) are σ1 and τ11 ≡ σ12 + a12. Inspection
of Table III shows that Regions IIc–IIh are discarded by this
criterion. In the remaining regions the leading singularity of
g11(r) is min(σ1,σ12 + a12) but the next one is not necessar-
ily max(σ1,σ12 + a12) since the latter value competes with
min(σ1,σ12 + a12) + min(σ2,σ12 − a12,2σ12), where the term
min(σ2,σ12 − a12,2σ12) comes from the denominator D(s)
[cf. Eq. (A3)]. It can be checked that max(σ1,σ12 + a12) �
min(σ1,σ12 + a12) + min(σ2,σ12 − a12,2σ12) in Regions Ic–
Ie. Therefore the two first singularities of g11(r) are σ1 and
τ11 = σ12 + a12 in Regions Ia, Ib, IIa, and IIb only. It turns out
that in those four regions the two leading singularities of g22(r)
are σ2 and τ22 ≡ σ12 − a12, and the two leading singularities
of g12(r) are σ12 and τ12 ≡ 1

2 (σ1 + σ2).
In summary, Regions Ia, Ib, IIa, and IIb are the only ones

where the two leading singularities of gij (r) are σij and τij ≡
σik − akj with k �= j .

APPENDIX C: SHORT-RANGE FORMS OF gi j (r) FOR
BINARY MIXTURES IN APPROXIMATION RFA

In what follows we assume that −σ2/(σ1 + σ2) � � �
2σ2/(σ1 + σ2), which corresponds to Regions Ia, Ib, IIa,
and IIb of Fig. 13. As discussed in Appendix B, this
guarantees that the first two singularities of gij (r) are σij and
τij ≡ σik − akj with k �= j . The aim of this Appendix is to give
the expressions of gij (r) in the region 0 � r � max(σij ,τij ) +
ε, where ε is smaller than the separation between max(σij ,τij )
and the next singularity.

It is convenient to assign a bookkeeping parameter z to e−s ,
so that, for instance, e−σij s becomes zσij e−σij s . We will set z = 1
at the end of the calculations. Therefore, the denominator D(s)

given by Eq. (A3) becomes

D(s) = D0(s) + o(z0), (C1)

where

D0(s) =
[

1 − 2πρx1

s3
N11(s)

] [
1 − 2πρx2

s3
N22(s)

]

− (2πρ)2x1x2

s6
N12(s)N21(s). (C2)

In Eq. (C1), o(zn) denotes terms that are negligible versus zn

in the (formal) limit z → 0, i.e., limz→0 z−no(zn) = 0. From
Eq. (A1) we see that the two leading terms in G11(s) are of
orders zσ1 and zσ12+a12 :

G11(s) = �11(s)e−σ1szσ1 + 2πρx2�121(s)e−(σ12+a12)s

×zσ12+a12 + o(zσ1 ) + o(zσ12+a12 ), (C3)

where

�11(s) ≡ s−2

D0(s)
L11(s)

[
1 − 2πρx2

s3
N22(s)

]
(C4)

and �ikj (s) is given by Eq. (3.29). Analogously,

G12(s) = �12(s)e−σ12szσ12 + 2πρx1�112(s)e−(σ1+σ2)s/2

× z(σ1+σ2)/2 + o(zσ12 ) + o(z(σ1+σ2)/2), (C5)

G21(s) = �21(s)e−σ12szσ12 + 2πρx2�221(s)e−(σ1+σ2)s/2

×z(σ1+σ2)/2 + o(zσ12 ) + o(z(σ1+σ2)/2), (C6)

G22(s) = �22(s)e−σ2szσ2 + 2πρx1�212(s)e−(σ12−a12)s

×zσ12−a12 + o(zσ2 ) + o(zσ12−a12 ), (C7)

where

�12(s) ≡ s−2

D0(s)
L12(s)

[
1 − 2πρx1

s3
N11(s)

]
, (C8)

�21(s) ≡ s−2

D0(s)
L21(s)

[
1 − 2πρx2

s3
N22(s)

]
, (C9)

�22(s) ≡ s−2

D0(s)
L22(s)

[
1 − 2πρx1

s3
N11(s)

]
. (C10)
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Laplace inversion of Eqs. (C3) and (C5)–(C7) shows that in
the interval 0 � r � max(σij ,τij ) + ε we obtain

g11(r) = 1

r
�(r − σ1)φ11(r − σ1) + 2πρx2

r
�(r − σ12 − a12)

×γ121(r − σ12 − a12), (C11)

g12(r) = 1

r
�(r − σ12)φ12(r − σ12)

+2πρx1

r
�

(
r − σ1 + σ2

2

)
× γ112

(
r − σ1 + σ2

2

)
,

(C12)

g21(r) = 1

r
�(r − σ21)φ21(r − σ12)

+2πρx2

r
�

(
r − σ1 + σ2

2

)
× γ221(r − σ1 + σ2

2
),

(C13)

g22(r) = 1

r
�(r − σ2)φ22(r − σ2) + 2πρx1

r
�(r − σ12 + a12)

×γ212(r − σ12 + a12), (C14)

where we have already set z = 1. In Eqs. (C11)–(C14), φij (r)
and γikj (r) are the inverse Laplace transforms of �ij (s) and
�ikj (s), respectively.

Since φij (0) = lims→∞ �ij (s) = L
(1)
ij , the contact values in

approximation RFA are

g11(σ+
1 ) = L

(1)
11

σ1
, (C15)

g12(σ+
12) = L

(1)
12

σ12
+ 2πρx1

σ12
γ112

(
σ12 − σ1 + σ2

2

)
, (C16)

g21(σ+
12) = L

(1)
21

σ12
+ 2πρx2

σ12
γ221

(
σ12 − σ1 + σ2

2

)
, (C17)

g22(σ+
2 ) = L

(1)
22

σ2
, (C18)

in Regions Ia and Ib (� > 0). On the other hand, in Regions IIa
and IIb (� < 0),

g11(σ+
1 ) = L

(1)
11

σ1
+ 2πρx2

σ1
γ121 (σ1 − σ12 − a12) , (C19)

g12(σ+
12) = L

(1)
12

σ12
, (C20)

g21(σ+
12) = L

(1)
21

σ12
, (C21)

g22(σ+
2 ) = L

(1)
22

σ2
+ 2πρx1

σ2
γ212 (σ2 − σ12 + a12) . (C22)

A more compact form is provided by Eq. (3.32).
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108, 3683 (1998).
[15] R. D. Rohrmann and A. Santos, Phys. Rev. E 83, 011201 (2011).
[16] Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood, J. Chem.

Phys. 21, 1098 (1953).
[17] J. L. Lebowitz and D. Zomick, J. Chem. Phys. 54, 3335 (1971).

[18] M. Heying and D. S. Corti, Fluid Phase Equilib. 220, 85 (2004).
[19] A. Santos, Phys. Rev. E 76, 062201 (2007).
[20] B. Widom and J. Rowlinson, J. Chem. Phys. 15, 1670 (1970).
[21] D. Ruelle, Phys. Rev. Lett. 16, 1040 (1971).
[22] S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
[23] S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958).
[24] M. Rovere and G. Pastore, J. Phys. Condens. Matter 6, A163

(1994).
[25] K. Jagannathan and A. Yethiraj, J. Chem. Phys. 118, 7907

(2003).
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A cluster theory for a Janus fluid
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Title: “A cluster theory for a Janus fluid”
Abstract: Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid
have revealed that in the vapour phase there is the formation of preferred clusters made
up of a well-defined number of particles: the micelles and the vesicles. A cluster theory is
developed to approximate the exact clustering properties stemming from the simulations. It
is shown that the theory is able to reproduce the micellisation phenomenon.
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Abstract. Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid have revealed
that in the vapour phase there is the formation of preferred clusters made up of a well-defined number of
particles: the micelles and the vesicles. A cluster theory is developed to approximate the exact clustering
properties stemming from the simulations. It is shown that the theory is able to reproduce the micellisation
phenomenon.

1 Introduction

In the statistical mechanics of fluids [1] the liquid state [2]
is a particularly fascinating one. A liquid is neither a gas
nor a solid, but the state where correlations really play an
important role. The pioneering work of Alder [3] showed
that, because of the absence of attractive forces, the hard-
sphere fluid admits only a single fluid phase. In order
to find the liquid phase it is sufficient to add an attrac-
tive square-well to the pair-potential of the hard-spheres.
The resulting hard-sphere square-well fluid admits a bell-
shaped gas-liquid coexistence curve [4,5] with the critical
point moving at low temperatures and high densities as
the attractive well width diminishes. Recently Kern and
Frenkel [6] studied, through computer experiments, a new
fluid model made of hard-spheres with patchy square-well
attractions. In its simplest version, the single patch case,
the model only depends on the surface coverage χ of the
patch and the attraction range. Between the two extreme
cases χ = 0, the hard-sphere model, and χ = 1, the
hard-sphere square-well model, where the particles pair-
potential is isotropic, the particles interaction is direc-
tional. The χ = 1/2 model is known as the Janus case,
as the particle, like the roman God, has two faces of dif-
ferent functionalities.

Another important process, which may lead to the
manifestation of macroscopic phenomena, in certain flu-
ids, is the clustering or association. In 1956, for example,
Cooper [7] found that the stable state of the degenerate
electron fluid in a metal is one in which particles of oppo-
site spin and opposite momentum form pairs. It was then
understood that whereas the electrons in a metal form
pairs with relative angular momentum zero, in 3He this
would be prevented by the hard core repulsion, and that

a e-mail: rfantoni27@sun.ac.za

therefore Cooper pairing had to occur in a state of finite
angular momentum. In 1961 Lenard [8] proved analyti-
cally that a two-component plasma living in one dimen-
sion undergoes a transition from the conducting to the
insulating state by the formation of neutral dimers made
of a positive and a negative charge. A two-component
plasma living in two dimensions is only stable at suf-
ficiently high temperatures [9]. But if one adds a hard
core to the charges it remains stable even at low temper-
atures where it undergoes the same transition [10]. The
hard core gives rise to anyonic statistics for the quantum
fluid living in two dimensions [11]. In three dimensions
the two-component plasma with a hard core, the so called
restricted-primitive model, also undergoes the clustering
transition at low temperature and low densities [12]. An
example of a one-component Janus fluid undergoing asso-
ciation is the dipolar hard-sphere fluid. Here a particle can
be viewed as the superposition of two uniformly charged
spheres: a positive one and a negative one [13].

In their study of the Kern and Frenkel single patch
χ = 1/2 Janus case, Sciortino et al. [14] found that the
gas branch of the coexistence curve bends at high den-
sities at low temperatures. Below the critical point, the
fluid tends to remain in the gas phase for a larger interval
of densities respect to the χ = 1 case. This behaviour is
due to the tendency of particles to associate due to the di-
rectional attractive component in the pair-potential and
form clusters. At low temperatures, these clusters inter-
act weakly amongst themselves because the particles of
which they are composed tend to expose the hard-sphere
hemisphere on the outside of the collapsed cluster.

By studying the clustering properties of the gas phase
of the Janus fluid, Sciortino et al. discovered that below
the critical temperature there is a range of temperatures
where there is formation of two kinds of preferred clusters:
the micelles and the vesicles. In the former the particles

A cluster theory for a Janus fluid 438



Page 2 of 12 Eur. Phys. J. B (2012) 85: 108

tend to arrange themselves into a spherical shell and in the
latter they tend to arrange themselves as two concentric
spherical shells.

It is important to confront existing cluster theories
with these new findings based on computer experiments.
In this work the Bjerrum cluster theory for electrolytes,
later extended by Tani and Henderson [15] to include
trimers, has been employed (preliminary results appeared
in Ref. [16]) for the description of the exact equilibrium
cluster concentrations found in the computer experiment
of Sciortino et al. The theory is extended to clusters of
up to 12 particles in an attempt to reproduce the micel-
lisation phenomenon observed in the simulations around
a reduced temperature of 0.27. A different determination
of the intra-cluster configurational partition function has
been devised in place of the one used by Lee et al. [17].

The Kern and Frenkel fluid has been used to describe
soft matter [18] biological and non-biological materials like
globular proteins in solution [6,19,20] and colloidal suspen-
sions [6,21], or molecular liquids [22]. Recently there has
been a tremendous development in the techniques for the
synthesis of patchy colloidal particles [23,24] in the labo-
ratory. These are particles with dimensions of 10–104 Å
in diameter, which obey to Boltzmann statistics1. From
the realm of patchy colloidal particles stems the family of
Janus particles for their simplicity [25,26]. It is possible
to create Janus particles in the laboratory in large quan-
tities [27] and to study their clustering properties [28,29].

The micelles and the vesicles are complex structures
observed in the chemistry of surfactant molecules analo-
gous to those which may be found in the physical biology
of the cell [30].

The paper is organized as follows: in Section 2 we de-
scribe the fluid model, in Section 3 we present the clus-
tering properties of the fluid found in the Monte Carlo
simulations of Sciortino et al., the cluster theory is pre-
sented and developed in Sections 4 and 5, in Section 6 we
compare the numerical results from our approximation to
the exact results of Sciortino et al., and Section 7 is for
final remarks.

2 The Kern and Frenkel model

As in the work of Sciortino et al. [14] we use the Kern and
Frenkel [6] single patch hard-sphere model of the Janus
fluid. Two spherical particles attract via a square-well po-
tential only if the line joining the centers of the two spheres
intercepts the patch on the surfaces of both particles. The
pair-potential is separated as follows:

Φ(1, 2) = φ(r12)Ψ(n̂1, n̂2, r̂12), (1)

1 The quantum effects start playing a role when the
de Broglie thermal wavelength Λ =

√
2π�2/(kBTm) becomes

comparable to the particle diameter σ. At room temperature
this means that the nanoparticles should have a mass of the
order of 10−26 kg whereas the microparticles should have a
mass of the order of 10−32 kg.

where

φ(r) =

⎧
⎨
⎩

+∞ r < σ
−ε σ < r < λσ
0 λσ < r

(2)

and

Ψ(n̂1, n̂2, r̂12) =

⎧
⎨
⎩

1 if n̂1 · r̂12 ≥ cos θ0

and −n̂2 · r̂12 ≥ cos θ0

0 otherwise
(3)

where θ0 is the angular semi-amplitude of the patch. Here
n̂i(ωi) are versors pointing from the center of sphere i
to the center of the attractive patch, with ωi their solid
angles and r̂12(Ω) is the versor pointing from the center of
sphere 1 to the center of sphere 2, with Ω its solid angle.
We denote with σ the hard core diameter and λ = 1+Δ/σ
with Δ the width of the attractive well.

A particle configuration is determined by its position
and its orientation.

We will use σ as the unit of length and ε as the unit
of energy.

One can determine the fraction of the particle surface
covered by the attractive patch as follows

χ = 〈Ψ(n̂1, n̂2, r̂12)〉1/2
ω1,ω2

= sin2

(
θ0

2

)
, (4)

where 〈. . .〉ω =
∫

. . . dω/(4π).
As in the work of Sciortino et al. [14] we limit ourselves

to the Janus case χ = 1/2.

3 Clustering properties

The Janus fluid just described will undergo clustering as
there is a directional attractive component in the interac-
tion between its particles. Moreover at low temperatures
the collapsed clusters are expected to interact weakly with
each other. This is responsible for the bending at high den-
sity of the low temperature gas branch of the gas-liquid
binodal curve recently determined in reference [14]. Below
the critical temperature, in the vapour phase, the appear-
ance of weakly interacting clusters destabilizes the liquid
phase in favour of the gas phase. Sciortino et al. during
their canonical ensemble (at fixed number of particles N ,
volume V , and temperature T , with ρ = N/V the den-
sity) Monte Carlo simulations of the fluid also studied its
clustering properties. In particular they used the following
topological definition of a cluster: an ensemble of n par-
ticles form a cluster when, starting from one particle, is
possible to reach all other particles through a path. The
path being allowed to move from one particle to another
if there is attraction between the two particles. During
the simulation of the fluid they counted the number Nn of
clusters of n particles, which depends on the particles con-
figurations, and took a statistical average of this number.

We show in Figure 1 the results they obtained for Δ =
σ/2 at a reduced density ρσ3 = 0.01 and various reduced
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Fig. 1. Exact cluster concentrations of the Janus fluid with
Δ = σ/2 at a reduced density ρσ3 = 0.01 and various re-
duced temperatures kBT/ε, from the Monte Carlo simulation
of Sciortino et al. [14].

temperatures kBT/ε. From the figure we can see how at a
reduced temperature of 0.27, in the vapour phase, there is
the formation of two kinds of preferred clusters: one made
up of around 10 particles and one made up of around
40 particles.

In their collapsed shape, expected at low temperatures,
the particles in the clusters tend to expose their inactive
hemisphere on the outside of the cluster, resulting in a
weak interaction between pairs of clusters.

In the clusters of around 10 particles the particles tend
to arrange themselves into a spherical shell, forming a mi-
cellar structure. In the clusters of around 40 particles the
particles are arranged into two concentric spherical shells,
forming a vesicular structure.

The aim of the present work is to see if we can approx-
imate the exact equilibrium cluster concentrations found
in the simulation using a cluster theory. We will restrict
ourselves to clusters made of up to 12 particles to see if the
theory is able to reproduce the micellisation phenomenon.
The theory is described next.

4 A cluster theory for Janus particles

Following reference [15], we describe the fluid of N par-
ticles undergoing clustering as a mixture of N species of
clusters. Clusters of species n = 1, . . . , N , which we call
n-clusters, are made up of n particles. We denote with Nn

the number of clusters of species n and with ρn = Nn/V
their density. We assume that the chemical potentials of
all the cluster species are zero (there is no cost in energy in
the formation or destruction of a cluster). Then the grand-
canonical partition function of the fluid can be written as

Qtot =

′∑

{Nn}

N∏

n=1

1

Nn!

(
qintra
n

)Nn
Qinter ({Nn}, V, T ) , (5)

where one separates the coordinates and momenta rela-
tive to the center of mass of a cluster from the ones of
the center of mass so that qintra

n will be the intra-cluster
partition function of the cluster of species n and Qinter

the inter-cluster partition function where we consider the
clusters as non identical. The prime indicates that the sum
is restricted by the condition that the number of particles
of the fluid is N ,

N∑

n=1

nNn = N. (6)

We approximate Qtot assuming that the sum can be re-
placed by its largest dominant contribution. Using the
Stirling approximation N ! ≈ (N/e)N one then obtains

ln Qtot ≈
N∑

n=1

[
Nn ln qintra

n − (Nn ln Nn − Nn)
]
+ ln Qinter.

(7)
The maximum of lnQtot as a function of {Nn} on the con-
straint of equation (6) is given by the point {Nn} where
the gradients of lnQtot and of the constraint have the
same direction. Introducing a Lagrange multiplier λ the
equilibrium cluster distribution {Nn} is then found from
the conditions

∂

∂Nn
ln Qtot

∣∣∣∣
{Nn=Nn}

+ ln λn = 0, n = 1, 2, 3, . . . (8)

The resulting Helmholtz free energy, βFtot = − ln Qtot,
can then be written in terms of the intra-cluster free en-
ergy, βf intra

n = − ln qintra
n , and the inter-cluster partition

function as follows

βFtot

V
=

N∑

n=1

[ρn ln ρn − ρn]

+

N∑

n=1

ρnβf intra
n +

N∑

n=1

ρn ln V − 1

V
ln Qinter, (9)

where β = 1/kBT with kB Boltzmann constant and ρn =
Nn/V .

We expect the equilibrium cluster concentrations,
Nn/N , to approximate the ones measured in the simu-
lation, 〈Nn〉/N .

5 Relationship between the configurational
partition functions

We will assume that equation (5) also holds at the level
of the configurational partition functions Z, as follows

Ztot =

′∑

{Nn}

N∏

n=1

1

Nn!

(
zintra

n

)Nn
Zinter ({Nn}, V, T ) . (10)

In the calculation we only work at the level of the config-
urational partition functions.
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Since we expect the clusters to be weakly interact-
ing amongst themselves we will approximate the inter-
clusters configurational partition function with: (i) the
ideal gas approximation for pointwise clusters and (ii) the
Carnahan-Starling approximation [31] for clusters of di-
ameter σ0. A third possibility, that we have not inves-
tigated, would be to use the Boubĺık et al. approxima-
tion [32,33] for clusters of different diameters σn.

We will only work with a limited number nc of dif-
ferent cluster species. Since we are investigating whether
the cluster theory is able to reproduce the micellisation
phenomenon we will only consider the first nc clusters:
n = 1, 2, 3, . . . , nc. And choosing nc = 12.

We will describe next the two approximations used for
the inter-cluster configurational partition function.

5.1 Ideal gas approximation

The simplest possibility is to approximate the mixture of
clusters as an ideal one so that

Zinter = V Nt , (11)

where Nt =
∑

n Nn is the total number of clusters.
The equations for the equilibrium numbers of clusters

are

Nn = λnV zintra
n , n = 1, 2, 3, . . . , nc (12)

N =
∑

n

nNn, (13)

from which we can determine all the concentrations Nn/N
and the Lagrange multiplier by solving the resulting alge-
braic equation of order nc. The case nc = 2 is described
in Appendix A.

5.2 Carnahan-Starling approximation

A better approximation is found if we use as the inter-
cluster configurational partition function the Carnahan-
Starling expression [31] for hard-spheres of diameter σ0,

ln Zinter = Nt ln V − Nt
ηt(4 − 3ηt)

(1 − ηt)2
, (14)

where ηt = (π/6)ρtσ
3
0 is the clusters packing fraction and

ρt = Nt/V their density.
In this case one needs to solve a system of nc + 1 cou-

pled transcendental equations,

Nn = λnV zintra
n G(ηt), i = 1, 2, 3, . . . , nc (15)

N =
∑

n

nNn, (16)

with ηt = (π/6)ρtσ
3
0 , ρt = N t/V , N t =

∑
n Nn, and

G(x) = exp

[
−x(8 − 9x + 3x2)

(1 − x)3

]
. (17)

In order to search for the correct root of this system of
equations it is important to choose the one that is contin-
uously obtained from the physical solution of the ideal gas
approximation as σ0 → 0. Giving a volume to the clus-
ters we introduce correlations between them which will
prove to be essential for a qualitative reproduction of the
micellisation phenomenon though the cluster theory. The
Carnahan-Starling approximation amounts to choosing for
the sequence of virial coefficients of the hard-spheres, a
general term which is a particular second order polynomial
and to determine the polynomial coefficients that approx-
imate the third virial coefficient by its closest integer [31].
It could be interesting to repeat the calculation using for
the inter-cluster partition function the hard-spheres one
choosing all but the first virial coefficient equal to zero,
to see if that is sufficient to reproduce the micellisation
phenomena.

Note that in order to study the vesicles we would have
to solve a system of around 40 coupled equations.

We will describe next how do we determine the intra-
cluster configurational partition function zintra

n .

5.3 The intra-cluster configurational partition function

To estimate the intra-cluster configurational partition
function we performed Monte Carlo simulations of an iso-
lated topological cluster.

We determined the reduced excess internal energy
per particle of the n-cluster uex

n = 〈∑n
i<j Φ(i, j)〉/(nε)

(uex
1 = 0 by definition) as a function of the temperature,

and then used thermodynamic integration to determine
the intra-cluster configurational partition function.

We found that the results for uex
n (T �) can be fitted by

a Gaussian as follows

uex
n (T �) = ane−bnT �2

+ cn, (18)

with T � = kBT/ε the reduced temperature.
Given the excess free energy of the n-cluster F ex,intra

n ,
we can then determine f ex,intra

n = βF ex,intra
n /n as follows

f ex,intra
n (β�) =

∫ β�

0

uex
n (1/x) dx

= cnβ� + an

√
bn

⎧
⎨
⎩

e−bn/β�2

√
bn/β�2

+
√

π

[
erf

(√
bn/β�2

)
− 1

]⎫
⎬
⎭ , (19)

with β� = 1/T � and v0 = πσ3
0/6 the volume of the

n-cluster. Then the intra-cluster configurational partition
function is given by zintra

n = vn
0 exp(−nf ex,intra

n ) with
zintra
1 = v0.

We studied only the first 10 clusters with n = 3, . . . , 12.
The dimer being trivial. To this end we started with an
initial configuration of two pentagons with particles at
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Fig. 2. Reduced excess internal energy per particle as a func-
tion of temperature for the 6-, 9-, and 12-cluster. The results
from the isolated (I) cluster calculation are compared with the
results of Sciortino (S) for the Janus fluid with Δ = σ/2 at a
reduced density ρσ3 = 0.01. Also shown is the Gaussian fit of
equation (18).

their vertexes juxtaposed one above the other. The two
pentagons are parallel to the (x, y) plane, have the z axis
passing through their centers, and are placed one at z =
+σ/2 and the other at z = −σ/2. The particles patches
all point towards the origin. We formed the clusters with a
lower number of particles by simply deleting particles and
the clusters with 11 and 12 particles by adding a particle
on the z axis just above the upper pentagon and just below
the lower one.

We performed the simulations of the isolated cluster
at a fictitious reduced density of ρσ3 = 0.05 which en-
sured a simulation box big enough that the cluster did
not percolate through the periodic boundary conditions.
We also compared our results for the excess internal en-
ergy calculation for the isolated cluster with the results of
Sciortino et al. for the low density Janus fluid, from which
one extracts cluster information by taking all the clusters
found with the same number of particles and averaging
their properties, as shown in Figure 2.

At high temperatures the limiting value for the ex-
cess internal energy per particle of the isolated n-cluster
is −ε(n − 1)/n corresponding to the stretched cluster. At
low temperature (T � < 0.15) the cluster tends to freeze
into certain energy minima. So in order to reach the abso-
lute minimum we used the following smoothing procedure.
We smoothed the Kern and Frenkel potential by choosing

Ψ(n̂1, n̂2, r̂12) = {tanh[l(n̂1 · r̂12 − cos θ0)] + 1}

× {tanh[l(−n̂2 · r̂12 − cos θ0)] + 1}/4.
(20)

We then gradually changed the parameter l, during the
simulation, starting from 1/2 and increasing up to values
where there is no actual difference between the smoothed
potential and the original stepwise one. The reduced ex-
cess internal energy per particle and gyration radii for such
minimum energy configurations are shown in Table 1.

Table 1. The low temperature reduced excess internal energy
per particle 〈U〉/(εn) (U is the potential energy of the cluster)
of the clusters with up to 12 particles when Δ = σ/2. Also
shown is the gyration radius R2

g =
∑n

i=1 |ri − rcm|2/n with
rcm =

∑n
i=1 ri/n, ri being the position of the ith particle in

the cluster.

n 〈U〉/(εn) 〈U〉/ε Rg

1 0 0 0
2 –0.5 –1 ∼1/2

3 –1 –3 ∼1/
√

3
4 –1.5 –6 0.83
5 –2.0 –10 0.76
6 –2.50 –15 0.75
7 –2.71 –19 0.91
8 –2.88 –23 0.93
9 –3.10 –28 0.96
10 –3.20 –32 1.00
11 –3.36 –37 1.04
12 –3.42 –41 1.08

In the Metropolis algorithm [34] used to sample the
probability distribution function proportional to e−βU ,
where U is the potential energy of the cluster, the ran-
dom walk moves through the configuration space of the
particles forming the cluster through two kinds of moves:
a displacement of the particle position and a rotation of
the particle (through the Marsaglia algorithm [35]). We
followed two different strategies in the simulations: (i) we
averaged only over the particles configurations that form
a cluster and (ii) we explicitly modified the acceptance
probability by rejecting moves that break the cluster. So
in the second strategy all the moves are counted in the
averages. The two strategies turned out to give the same
results, as they should. The second strategy is preferable
to simulate the bigger clusters at high temperature and
for small well widths because there is no loss of statistics.

In Appendix B we present the results for the reduced
excess internal energy of the isolated clusters as a function
of temperature and their fit of equation (18).

5.4 Thermodynamic quantities

Once the equilibrium cluster distribution {Nn} has been
determined (within the ideal gas or the Carnahan-Starling
approximation for the inter-cluster partition function) the
configurational partition function Ztot is known. Then the
excess free energy is

βF ex = − ln

(
Ztot

V N

)
, (21)

the reduced internal energy per particle of the fluid is

u =
3

2β�
+

1

N

∂(βF ex)

∂β�
=

3

2β�
−

∑

n

Nn

N

∂ ln zintra
n

∂β�

=
3

2β�
+

∑

n

n
Nn

N
uex

n , (22)
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and its compressibility factor, in the Carnahan-Starling
approximation for the inter-cluster configurational parti-
tion function, is

βP

ρ
=

1

ρ

∂ ln Ztot

∂V
≈ 1

ρt

∂ ln Zinter

∂V
=

1 + ηt + η2
t − η3

t

(1 − ηt)
3

.

(23)
Here we have used the approximation N ≈ N t which turns
out to be reasonable at the chosen value of the cluster
diameter, as shown in Figure 4.

In Figure 6 we show the results for the compressibility
factor and the reduced excess internal energy per particle.
The reduced excess internal energy is compared with the
Monte Carlo data of Sciortino et al. (Fig. 1 in Ref. [14]).

6 Results

We present here the numerical results from the cluster
theory and compare them with the results of Sciortino
et al. from the simulation of the Janus (χ = 1/2) fluid
with Δ = σ/2.

We studied three different attraction ranges: Δ = σ/2,
Δ = σ/4, and Δ = 0.15σ. To the best of our knowledge
there are no Monte Carlo results available for the two
smaller ranges.

We only present the results obtained from the
Carnahan-Starling approximation for the inter-cluster
partition function as the ideal gas approximation turned
out to be too crude an approximation even for a qualita-
tive description of the exact clustering properties.

6.1 Δ = σ/2

For Δ = σ/2 we found the following results.

6.1.1 Equilibrium cluster concentrations

In Figure 3 we compare the Monte Carlo data of Sciortino
et al. (the results reported in Fig. 1) and our results
from the cluster theory. From the figure one can see that
the ideal gas approximation for the inter-cluster partition
function is not appropriate even at high temperatures in
the single fluid phase above the critical point. In order to
find agreement with the Monte Carlo data at high tem-
peratures it is sufficient to give a volume to the clusters,
treating them as hard-spheres of a diameter σ0. In the
Carnahan-Starling approximation we gradually increased
σ0 from zero and found that for σ0 = 2.64σ the results
of the cluster theory were in good agreement with the
Monte Carlo data at kBT/ε = 0.5. Using the same clus-
ter diameter at all other temperatures, we saw that the
theory is able to qualitatively reproduce the micellisa-
tion phenomenon observed in the simulation of Sciortino
et al.

The results also suggest that with a temperature-
dependent cluster diameter, or more generally with a clus-
ter diameter dependent on the thermodynamic state of the
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Fig. 3. Comparison between the Monte Carlo (MC) data
(points) and the Carnahan-Starling (CS) approximation with
σ0 = 2.64σ (lines) for the cluster concentrations 〈Nn〉/N ,
n = 1, 2, 3, . . . , 12, as a function of the cluster size n at
ρσ3 = 0.01 and various temperatures. Also shown is the ideal
gas (IG) approximation at the same density and the highest
temperature kBT/ε = 0.5.
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a function of the clusters diameter σ0 at the thermodynamic
state ρσ3 = 0.01 and kBT/ε = 0.5 for Δ = 0.5σ.

fluid, we could achieve better agreement between our ap-
proximation and the exact results. Our topological def-
inition of a cluster has no direct geometrical interpre-
tation. Other definitions with a geometrical nature are
possible. For example Lee et al. in their studies of nu-
cleation define an assembly of particles to be a cluster if
they all lie within a sphere of radius σ0 centered on one
of the particles. In our simulations of the isolated clus-
ters these have a globular shape at low temperature and
a necklace shape at high temperature. The optimal clus-
ter diameter σ0 = 2.64σ (found to give good agreement
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Fig. 5. The equilibrium cluster concentrations Nn/N , n = 1, 2, 3, . . . , 12, as a function of density for kBT/ε = 0.27 (top panel)
and kBT/ε = 0.5 (bottom panel) as obtained from the CS approximation with σ0 = 2.64σ. Here Δ = σ/2.
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Fig. 6. The top panel shows the reduced excess internal energy per particle for three different values of temperature as a
function of density. The results from the Carnahan-Starling (CS) approximation are compared with the Monte Carlo (MC)
results of Sciortino et al. [14]. The bottom panel shows the compressibility factor for the same values of temperature as a
function of density from the CS approximation (no MC data is available).

between the exact and approximate clusters concentra-
tions at high temperature) suggests necklace clusters made
up of around 3 particles or globular clusters made up of
around 2π(σ0/σ)2/

√
3 ≈ 25 particles placed on a spherical

shell. Since σ0 is the only free parameter of the theory, it
is important to estimate how thermodynamic quantities
like the compressibility factor βP/ρ, the reduced inter-
nal energy per particle u, and the logarithm of the total
configurational partition function per number of particles,
ln Ztot/N , or per number of clusters, lnZtot/N t, are sensi-

ble to variations in σ0. From Figure 4 we can see that for
the thermodynamic state ρσ3 = 0.01 and kBT/ε = 0.5,
the thermodynamic quantities are roughly independent of
σ0 for σ0 � 3σ.

In Figure 5 we show the behaviour of the equilibrium
cluster concentrations, from the Carnahan-Starling ap-
proximation with σ0 = 2.64σ, as a function of density
at kBT/ε = 0.27.

From the figure we can see that at very low densi-
ties there are essentially no clusters. But as the density
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Fig. 7. Same as Figure 5 for Δ = σ/4.

increases, clusters of an increasing number of particles ap-
pear in the fluid. In particular, at kBT/ε = 0.27 there is
an interval of densities where clusters of 11 particles are
preferred.

6.1.2 Thermodynamic quantities

Following Section 5.4 we now use the cluster theory within
the Carnahan-Starling approximation with σ0 = 2.64σ to
extract thermodynamic information for the Janus fluid. In
Figure 6 we show the results obtained for the excess re-
duced internal energy per particle and the compressibility
factor.

From the figure we see that there is a qualitative agree-
ment between the results of the cluster theory and the
Monte Carlo results. No Monte Carlo results are available
for the compressibility factor.

6.2 Δ = σ/4

Decreasing the width of the attractive well to Δ = σ/4
yielded the results shown in Figure 7. We see that now, at
the reduced temperature 0.27, the preferred clusters are
the ones made up of 10 particles.

6.3 Δ = 0.15σ

Decreasing the width of the attractive well even further to
Δ = 0.15σ, we obtained the results of Figure 8. Now, at
the reduced temperature 0.27, there is a range of densities

around ρσ3 = 0.1 where the preferred clusters are made
up of 7 or 8 particles.

7 Conclusions

We constructed a cluster theory for a fluid undergoing
clustering and showed that it is able to reproduce the
micellisation phenomena recently observed in the simu-
lation of the vapour phase of Kern and Frenkel Janus
particles [14]. A topological definition of the cluster is
used. We determined the intra-cluster configurational par-
tition function through thermodynamic integration of the
excess internal energy of the cluster, estimated through
Monte Carlo simulations of an isolated cluster. In the sim-
ulation we restricted the random walk through the con-
figurations of the particles that compose the cluster by
rejecting the moves that break the cluster. Due to the
geometrical characteristics of the pair-potential it is ex-
pected that the clusters, when in their collapsed shape,
will be very weakly interacting amongst themselves as the
Janus particles will expose the hard-sphere hemisphere on
the outside of the cluster. We thus used for the estimation
of the inter-cluster configurational partition function first
the simple ideal gas approximation for pointwise clusters
and then the Carnahan-Starling approximation for clus-
ters seen as hard-spheres of diameter σ0. The equilibrium
cluster concentrations obtained with the ideal gas approx-
imation turned out to disagree, even at high tempera-
tures, with the ones obtained from the simulation of the
fluid [14] and were not able to reproduce the micellisa-
tion phenomenon in the vapour phase. We then gradually
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Fig. 8. Same as Figure 5 for Δ = 0.15σ.

increased σ0 from zero until we found good agreement
between the equilibrium cluster concentrations obtained
with the Carnahan-Starling approximation and the con-
centrations from the simulation of the fluid [14] at high
temperature (above the critical point). Using the same
value of σ0 for lower temperatures (below the critical
point) we were able to qualitatively reproduce the mi-
cellisation phenomenon observed in the simulation of the
fluid [14] around a reduced temperature of 0.27 and a re-
duced density of 0.01. This result is important for two
reasons. Firstly it shows that the clustering fundamentally
arising from the canonical ensemble description of the fluid
of particles can be approximated by a grand canonical en-
semble description of a particular clustered fluid. Secondly
the second description, which assumes from the start a
clustered structure of the fluid, is much less computa-
tionally costly than the first. Unlike most previous works
on cluster theories where the aim is usually to avoid the
Monte Carlo simulation [15,36], our approach is a hybrid
one where we still use the Monte Carlo experiment to de-
termine the intra-cluster properties. Of course our goal can
only be a qualitative description of the fluid as we specifi-
cally prescribe a particular description of the clusters and
this is the source of our approximation.

Studying the behaviour of the equilibrium cluster con-
centrations as a function of density and temperature, we
saw that the micellisation phenomenon only takes place
within a particular range of temperatures (below the crit-
ical point) and densities (in the vapour phase).

Once the equilibrium concentrations have been found
it is possible to determine how the cluster theory approxi-

mates the thermodynamic quantities of the fluid. We find
qualitative agreement between the Monte Carlo data of
Sciortino et al. [14] and our approximation for the excess
internal energy of the vapour phase. For the compressibil-
ity factor no Monte Carlo data is available so our results
remain a theoretical prediction.

We studied three different values of the attractive
square-well width: Δ = σ/2, Δ = σ/4, and Δ = 0.15σ.
Monte Carlo results [14] are available only for the largest
width. Our study shows that as the range of the attraction
diminishes the micelles tend to be made up of a smaller
number of particles.

A related interesting problem to that just discussed
is the one of trying to give a definition of a liquid drop
expected to form in the coexistence region as a result of
the condensation instability.

I would like to acknowledge the support of the National Insti-
tute for Theoretical Physics of South Africa.

Appendix A: Connection with Wertheim
association theory

At small χ, allowing only clusters of one (monomers) and
two (dimers) particles, we get

N1 = λV zintra
1 , (A.1)

N2 = λ2V zintra
2 , (A.2)

N = N1 + 2N2, (A.3)
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Table B.1. The tables refer from left to right to clusters made up of n = 3, 4, . . . , 12 particles. U is the potential energy of a
cluster of n particles. Below kBT/ε = 0.1 the reduced excess internal energy per particle remains roughly constant in all cases:
the smoothing procedure described in Section 5.3 was used. The data was obtained with a Monte Carlo simulation over 5 million
steps where one step consists of n particles moves. The strategy (i) described in Section 5.3 was used in the simulations.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.8 –0.724 0.001

0.6 –0.747 0.001

0.5 –0.769 0.002

0.4 –0.807 0.001

0.3 –0.877 0.001

0.2 –0.9663 0.0008

0.1 –1 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.8 –0.849 0.004

0.6 –0.898 0.004

0.5 –0.961 0.005

0.4 –1.081 0.004

0.3 –1.278 0.003

0.2 –1.460 0.002

0.1 –1.5 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.8 0

0.8 –0.942 0.009

0.6 –0.995 0.008

0.5 –1.085 0.008

0.4 –1.322 0.007

0.3 –1.606 0.004

0.2 –1.792 0.003

0.1 –2.0 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.833 0

0.8 –1.01 0.03

0.6 –1.10 0.02

0.5 –1.19 0.01

0.4 –1.49 0.01

0.3 –1.899 0.009

0.2 –2.16 0.01

0.1 –2.5 0

kBT/ε 〈U〉/(εn) Error

∞ –0.857 0

0.8 –1.04 0.04

0.6 –1.12 0.02

0.5 –1.28 0.02

0.4 –1.68 0.02

0.3 –2.11 0.04

0.2 –2.39 0.03

0.1 –2.7 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.875 0

0.8 –1.06 0.05

0.6 –1.25 0.05

0.5 –1.27 0.02

0.4 –1.82 0.02

0.3 –2.26 0.01

0.2 –2.60 0.02

0.1 –2.9 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.888 0

0.8 – –

0.6 –1.12 0.03

0.5 –1.39 0.03

0.4 –1.87 0.02

0.3 –2.38 0.01

0.2 –2.85 0.02

0.1 –3.1 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.8 – –

0.6 – –

0.5 –1.36 0.04

0.4 –1.88 0.02

0.3 –2.46 0.02

0.2 –2.94 0.03

0.1 –3.2 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.8 – –

0.6 – –

0.5 –1.35 0.03

0.4 –1.96 0.03

0.3 –2.55 0.02

0.2 –3.09 0.09

0.1 –3.36 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.916 0

0.8 – –

0.6 – –

0.5 –1.28 0.04

0.4 –1.92 0.04

0.3 –2.57 0.02

0.2 –3.00 0.02

0.1 –3.42 ≈0

which is a quadratic equation in λ. The solution for
the fraction of patches that are not bonded (fraction of
monomers) is

ρ1

ρ
=

2

1 +
√

1 + 8ρΔ
, (A.4)

with Δ = zintra
2 /[zintra

1 ]2 and ρ = N/V the density of
the fluid, in accord, at low T , with the recent analysis of
Sciortino et al. [37] (compare their X of Eq. (10) with
our ρ1/ρ and their Δ with our Δ), based on Wertheim
association theory [38–41]. Our theory, contrary to the
one of Wertheim, allows to consider the case of multiple
bonding of the patch.

At high temperature our Δ differs from the Δ of refer-
ence [37] but in this limit the clusters begin to dissociate.

Appendix B: Tables for the excess internal
energy per particle of the clusters

We present here the results for the reduced excess internal
energy per particle as a function of temperature of the

isolated n-cluster with n = 2, 3, . . . , 12 as obtained from
our Monte Carlo simulations.

In Table B.1 we show the results at Δ = 0.5σ ob-
tained with the strategy (i) described in Section 5.3. The
smoothing procedure described in Section 5.3 was used
at the lowest temperature. The excess internal energy per
particle of the n = 2 cluster is always −ε/2 given our
topological definition of a cluster.

In Table B.2 we show the results at Δ = 0.5σ obtained
with strategy (ii) described in Section 5.3. The smoothing
procedure described in Section 5.3 was not used at the
lowest temperature. Comparing Tables B.1 and B.2 we
can see that the two strategies lead to the same results.

In Table B.3 we show the results at Δ = 0.25σ ob-
tained with strategy (i) described in Section 5.3. The
smoothing procedure described in Section 5.3 was not used
at the lowest temperature.

In Table B.4 we show the results at Δ = 0.15σ ob-
tained with strategy (ii) described in Section 5.3. The
smoothing procedure described in Section 5.3 was not used
at the lowest temperature.

In Table B.5 we give the fit to the Gaussian of equa-
tion (18) of the reduced excess internal energy per particle
as a function of the temperature.
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Table B.2. The tables refer, from left to right, to clusters made up of n = 3, 4, 10, 11 particles. U is the potential energy of a
cluster of n particles. The smoothing procedure described in Section 5.3 was not used at the lowest temperature. The strategy
(ii) described in Section 5.3 was used in the simulations.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.8 –0.7211 0.0002

0.6 –0.7437 0.0003

0.5 –0.7659 0.0004

0.4 –0.8052 0.0005

0.3 –0.8723 0.0007

0.2 –0.9647 0.0005

0.1 –0.99881 0.00005

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.8 –0.8466 0.0005

0.6 –0.8995 0.0009

0.5 –0.959 0.001

0.4 –1.073 0.002

0.3 –1.280 0.002

0.2 –1.4597 0.0009

0.1 –1.49871 0.00006

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.8 –1.066 0.001

0.6 –1.200 0.003

0.5 –1.418 0.009

0.4 –1.884 0.009

0.3 –2.46 0.01

0.2 –2.96 0.03

0.1 –3.1982 0.0006

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.8 –1.078 0.002

0.6 –1.215 0.003

0.5 –1.423 0.008

0.4 –1.90 0.01

0.3 –2.52 0.02

0.2 –3.13 0.04

0.1 –3.16 0.01

Table B.3. Same as Table B.1 but with Δ = 0.25σ. The smoothing procedure described in Section 5.3 was not used at the
lowest temperature.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.7 –0.705 0.002

0.5 –0.732 0.002

0.3 –0.832 0.002

0.1 –0.99872 0.00008

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.7 – –

0.5 –0.866 0.007

0.3 –1.138 0.005

0.1 –1.4987 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.8 0

0.7 –0.87 0.02

0.5 –1.00 0.03

0.3 –1.427 0.008

0.1 –1.7984 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.833 0

0.7 – –

0.5 –0.95 0.01

0.3 –1.63 0.01

0.1 –2.1656 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.857 0

0.7 – –

0.5 –0.95 0.01

0.3 –1.79 0.01

0.1 –2.22 0.02

kBT/ε 〈U〉/(εn) Error

∞ –0.875 0

0.7 – –

0.5 – –

0.3 –1.91 0.03

0.1 –2.3706 0.0009

kBT/ε 〈U〉/(εn) Error

∞ –0.888 0

0.7 – –

0.5 – –

0.3 –1.95 0.02

0.1 –2.4416 0.0005

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.7 – –

0.5 – –

0.3 –2.07 0.04

0.1 –2.5969 0.0006

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.7 – –

0.5 – –

0.3 –2.10 0.04

0.1 –2.721 0.002

kBT/ε 〈U〉/(εn) Error

∞ –0.916 0

0.7 – –

0.5 – –

0.3 –2.01 0.03

0.1 –2.730 0.008

Table B.4. Same as Table B.1 but with Δ = 0.15σ. The smoothing procedure described in Section 5.3 was not used at the
lowest temperature. The strategy (ii) described in Section 5.3 was used in the simulation.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.7 –0.6914 0.0003

0.5 –0.7114 0.0004

0.3 –0.792 0.001

0.1 –0.9987 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.7 –0.7903 0.0007

0.5 –0.826 0.002

0.3 –1.138 0.005

0.1 –1.49871 0.00006

kBT/ε 〈U〉/(εn) Error

∞ –0.8 0

0.7 –0.8473 0.0009

0.5 –0.895 0.002

0.3 –1.230 0.008

0.1 –1.7989 0.0001

kBT/ε 〈U〉/(εn) Error

∞ –0.833 0

0.7 –0.884 0.001

0.5 –0.936 0.002

0.3 –1.35 0.01

0.1 –1.9985 0.0004

kBT/ε 〈U〉/(εn) Error

∞ –0.857 0

0.7 –0.913 0.001

0.5 –0.955 0.002

0.3 –1.61 0.03

0.1 –2.2848 0.0001

kBT/ε 〈U〉/(εn) Error

∞ –0.875 0

0.7 –0.928 0.001

0.5 –0.980 0.003

0.3 –1.63 0.03

0.1 –2.371 0.001

kBT/ε 〈U〉/(εn) Error

∞ –0.888 0

0.7 –0.945 0.001

0.5 –1.000 0.003

0.3 –1.55 0.06

0.1 –2.51 0.04

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.7 –0.956 0.001

0.5 –1.013 0.004

0.3 –1.56 0.05

0.1 –2.396 0.001

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.7 –0.9655 0.0009

0.5 –1.022 0.004

0.3 –1.61 0.03

0.1 –2.5427 0.0004

kBT/ε 〈U〉/(εn) Error

∞ –0.916 0

0.7 –0.973 0.001

0.5 –1.033 0.002

0.3 –1.59 0.02

0.1 –2.66 0.004
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Table B.5. Fit to the Gaussian of equation (18) of the reduced excess internal energy per particle of the first eleven n-clusters
as a function of temperature.

Δ = 0.5σ Δ = 0.25σ Δ = 0.15σ

n an bn an bn an bn cn = −(n − 1)/n

2 0 1 0 1 0 1 –0.5

3 –0.337525 3.88039 –0.33890 6.9050 –0.345587 10.7799 –0.66666

4 –0.778556 4.66976 –0.77059 7.5017 –0.773523 7.97531 –0.75

5 –1.22587 5.16189 –1.0248 5.8901 –1.03428 9.36621 –0.8

6 –1.69844 5.59919 –1.3810 7.3613 –1.20676 9.21365 –0.83333

7 –1.89814 5.26287 –1.4235 6.7666 –1.47964 8.27638 –0.85714

8 –2.06452 5.07916 –1.5201 4.1792 –1.55091 8.50313 –0.875

9 –2.30070 5.47737 –1.5793 4.3672 –1.68144 10.1592 –0.88888

10 –2.39363 5.50909 –1.7253 4.2708 –1.55096 9.41914 –0.9

11 –2.55636 5.64409 –1.8464 4.8294 –1.69591 9.75528 –0.90909

12 –2.59747 6.07744 –1.8541 5.7234 –1.81374 10.5661 –0.91666
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Two Component Plasma in a Flamm’s
Paraboloid
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Abstract: The two component plasma (TCP) living in a Flamm’s paraboloid is studied at a
value of the coupling constant Γ = 2 for which an analytic expression for the grand canonical
partition function is available. Two cases are considered, the plasma in the half surface with
an insulating horizon and the plasma in the whole surface. The Green’s function equation
necessary to determine the n-particle truncated correlation functions is explicitly found. In
both cases this proves too complicated to be solved analytically. So we present the method
of solution reducing the problem to finding the two linearly independent solutions of a linear
homogeneous second order ordinary differential equation with polynomial coefficients of high
degrees. In the flat limit one recovers the solution for the structure of the TCP in a plane
in the first case but the collapse of opposite charges at the horizon makes the structure of
the plasma physically not well defined in the second case.
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1. Introduction

The two component plasma (TCP) is a neutral mixture of point wise particles of charge
±q. The equation of state of the TCP living in a plane has been known since the work of
Salzberg and Prager [1]. In the plasma the attraction between oppositely charged particles
competes with the thermal motion and makes the partition function of the finite system
diverge when Γ = βq2 ≥ 2, where β = 1/kBT with kB the Boltzmann constant. The
system becomes unstable against the collapse of pairs of oppositely charged particles, and
as a consequence all thermodynamic quantities diverge, so that the point particle model is
well behaved only for Γ < 2 [2] when the Boltzmann factor for unlike particles is integrable
at small separations of the charges. In this case rescaling the particle coordinates so as
to stay in the unit disk one easily proves that the grand canonical partition function is a
function of

√
λ−λ+V

(1−Γ/4), where V is the volume of the plasma and λ± are the fugacities
of the two charge species, and as a consequence the equation of state is βP = n(1 − Γ/4),
where n = n+ + n− is the total particle number density. It also follows that the ratio√
λ−λ+/n

(1−Γ/4) must be a function of Γ only in the thermodynamic limit [3]. However, if
the collapse is avoided by some short range repulsion (hard cores for instance), the model
remains well defined for lower temperatures. Then, for Γ > 4 the long range Coulomb
attraction binds positive and negative particles in pairs of finite polarizability. Thus, at
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some critical value Γc ∼ 4 the system undergoes the Kosterlitz–Thouless transition [4]
between a high temperature (Γ < 4) conductive phase and a low temperature (Γ > 4)
dielectric phase. The same behavior also occurs in the TCP living in one dimension [5].

The structure of the TCP living in a plane at the special value Γ = 2 of the coupling
constant is solvable exactly analytically [6]. Through the use of an external potential
it has also been studied in various confined geometries [7]–[10] and in a gravitational
field [11, 12].

In curved surfaces it has only been studied in surfaces of constant curvature such as
the sphere [13, 14] and the pseudosphere [15]. Unlike the one component plasma where the
properties of the Vandermonde determinant allow analytical solution a Cauchy identity is
used for the solution of the TCP. Unlike in the one component case where the solution is
possible for the plasma confined in a region of the surface now this is not possible anymore
without the use of an external potential. In these cases the external potential is rather
given by −(Γ/q2) ln

√
g, where g is the determinant of the metric tensor.

In this work we study the TCP at the special value Γ = 2 of the coupling constant
in a Flamm’s paraboloid, a surface of non-constant curvature. In this surface the one
component plasma [16] has been studied in various situations: confined to one ‘universe’
by an insulating or a grounded perfect conductor ‘horizon’ or in the whole surface. Here
we will restrict ourselves to only the first and last situations.

In a curved surface, even though the finite system partition function will still be finite
for Γ < 2 since the surface is locally flat, the structure will change with respect to the flat
case. The purpose of the present work is to see how it changes for the special case Γ = 2
where an exact analytical solution is possible.

2. The Flamm’s paraboloid S

In this work, we want to study a two-dimensional TCP in the Flamm’s paraboloid. This
is a Riemannian surface S with the following metric:

ds2 = gμν dxμ dxν =

(
1 − 2M

r

)−1

dr2 + r2 dϕ2, (1)

or grr = 1/(1 − 2M/r), gϕϕ = r2, and grϕ = 0.
The Flamm’s paraboloid is an embeddable surface in the three-dimensional Euclidean

space. It is composed of two identical ‘universes’: S+ and S−. These are both multiply
connected surfaces connected by a hole of radius 2M . We will from now on call the
r = 2M region of the surface its ‘horizon’. The scalar curvature is R = −2M/r3.

The system of coordinates (r, ϕ) with the metric (1) has the disadvantage that it
requires two charts to cover the whole surface S. It can be more convenient to use the
variable

u = ±
√

r

2M
− 1 (2)

instead of r. This gives the following metric when using the system of coordinates (u, ϕ):

ds2 = 4M2(1 + u2)[4 du2 + (1 + u2) dϕ2]. (3)

The region u > 0 corresponds to S+ and the region u < 0 to S−.

doi:10.1088/1742-5468/2012/04/P04015 3

Two Component Plasma in a Flamm’s Paraboloid 454



J.S
tat.M

ech.
(2012)

P
04015

Two component plasma in a Flamm’s paraboloid

The Laplace–Beltrami operator is

Δf =
1√
g

∂

∂qμ

(√
g gμν ∂

∂qν

)
f

=

[(
1 − 2M

r

)
∂2

r +
1

r2
∂2

ϕ +

(
1

r
− M

r2

)
∂r

]
f, (4)

where q ≡ (r, ϕ). Finding the Green’s function of the Laplacian, naturally [16] leads us
to consider the system of coordinates (s, ϕ), with

s = (
√
u2 + 1 + u)2. (5)

The range for the variable s is ]0,+∞[. The lower paraboloid S− corresponds to the region
0 < s < 1 and the upper one S+ to the region s > 1. A point in the upper paraboloid
with coordinate (s, ϕ) has a mirror image by reflection (u → −u) in the lower paraboloid,
with coordinates (1/s, ϕ), since if

s = (
√
u2 + 1 + u)2 (6)

then
1

s
= (

√
u2 + 1 − u)2. (7)

In the upper paraboloid S+, the new coordinate s can be expressed in terms of the original
one, r, as

s =
(
√
r +

√
r − 2M)2

2M
. (8)

Using this system of coordinates, the metric takes the form of a flat metric multiplied
by a conformal factor

ds2 =
M2

4

(
1 +

1

s

)4

(ds2 + s2 dϕ2). (9)

The Laplacian also takes a simple form

Δf =
s√
g

Δflatf, (10)

where

Δflatf = ∂2
sf +

1

s
∂sf +

1

s2
∂2

ϕf (11)

is the Laplacian of the flat Euclidean space R2. The square root of the determinant of
the metric is now given by

√
g = (M/2)2s(1 + s−1)4.

It is useful to keep in mind the following small M behaviors:

s = 2
r

M
− 2 − 1

2

M

r
− 1

2

(
M

r

)2

− 5

8

(
M

r

)3

+ O(M4), (12)

√
g =

rM

2
+
M2

2
+

5M3

8r
+ O(M4). (13)

doi:10.1088/1742-5468/2012/04/P04015 4
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3. The Coulomb potential created by a point charge

We here summarize the results found in [16] on the determination of the Coulomb potential
between two charges living in a half Flamm’s paraboloid with an insulating horizon and
between two charges living in the full Flamm’s paraboloid.

The Coulomb potential G(s, ϕ; s0, ϕ0) created at (s, ϕ) by a unit charge at (s0, ϕ0) is
given by the Green’s function of the Laplacian

ΔG(s, ϕ; s0, ϕ0) = −2πδ(2)(s, ϕ; s0, ϕ0) (14)

with appropriate boundary conditions. The Dirac distribution is given by

δ(2)(s, ϕ; s0, ϕ0) =
1√
g
δ(s− s0)δ(ϕ− ϕ0). (15)

Notice that using the system of coordinates (s, ϕ) the Laplacian Green’s function
equation takes the simple form

ΔflatG(s, ϕ; s0, ϕ0) = −2π
1

s
δ(s− s0)δ(ϕ− ϕ0) (16)

which is formally the same Laplacian Green’s function equation as that for a flat space.
The Laplacian Green’s function equation (14) can be solved, as usual, by using the

decomposition as a Fourier series. Since equation (14) reduces to the flat Laplacian Green’s
function equation (16), the solution is the standard one

G(s, ϕ; s0, ϕ0) =

∞∑

n=1

1

n

(
s<

s>

)n

cos [n(ϕ− ϕ0)] + g0(s, s0) (17)

where s> = max(s, s0) and s< = min(s, s0).
We consider now the case of particles restricted to live in the half surface (hs) S+,

s > 1, by a hard wall located at the ‘horizon’, s = 1. The region S−, s < 1, is empty
and has the same dielectric constant as the upper region. We want to consider a model
where the interaction potential reduces to the flat Coulomb potential in the flat limit
M → 0. The solution of the Laplacian Green’s function equation is given in Fourier
series by equation (17). The 0th order Fourier component g0 can be determined by the
requirement that, in the limit M → 0, the solution reduces to the flat Coulomb potential

Gflat(r, r′) = − ln
|r − r′|
L

, (18)

where L is an arbitrary constant length. Recalling that s ∼ 2r/M , when M → 0, we find

g0(s, s0) = − ln s> − ln
M

2L
(19)

and in the half surface

Ghs(s, ϕ; s0, ϕ0) = − ln |z − z0| − ln
M

2L
, (20)

where we defined z = seiϕ and z0 = seiϕ0 . And limM→0G
hs = Gflat as desired.

A similar procedure [16] gives the Coulomb potential between charges living in the
whole surface (ws) 0 < s < ∞,

Gws(s, ϕ; s0, ϕ0) = − ln
|z − z0|√

|zz0|
− ln

L0

L
, (21)

with L0 another length scale.

doi:10.1088/1742-5468/2012/04/P04015 5
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4. The two component plasma model

The TCP is a neutral mixture of two species of point charges of charge ±q. In this work
we want to study the plasma in the Flamm’s paraboloid. In [16] the Coulomb potential
between two charges living in the whole paraboloid, in a half surface with an insulating
horizon, and in a half surface with a grounded horizon was found. The first and last cases
have been summarized in section 3 as they will be the two cases considered next.

5. TCP in a half surface with an insulating horizon

When the TCP lives in a half surface with an insulating horizon the Coulomb potential
is given by equation (20). We will use ui = sie

iϕi and vj = sje
iϕj to denote the

complex coordinates of the positively and negatively charged particles respectively, where
s = (

√
r +

√
r − 2M)2/2M > 1. Then, following [6], we use a Cauchy identity [17] to

rewrite e−βU2N , where U2N is the potential energy of a neutral system of N positive and
N negative charges, as follows:

exp

{
2
∑

i<j

[
ln

∣∣∣∣
ui − uj

2L/M

∣∣∣∣ + ln

∣∣∣∣
vi − vj

2L/M

∣∣∣∣
]

− 2
∑

i,j

ln

∣∣∣∣
ui − vj

2L/M

∣∣∣∣

}

=

(
2L

M

)2N
∣∣∣∣∣

∏
i<j(ui − uj)(vi − vj)∏

i,j(ui − vj)

∣∣∣∣∣

2

=

(
2L

M

)2N
∣∣∣∣∣det

(
1

ui − vj

)

(i,j)∈{1,...,N}2

∣∣∣∣∣

2

, (22)

where we had to choose the particular case of a coupling constant Γ = βq2 = 2.

Following [6], to avoid divergences we start from a discretized model in which two
sub-lattices U and V are introduced. The positive (negative) particles sit on the sub-
lattice U (V ). Each lattice site is occupied by no or one particle. The grand canonical
partition function defined as a sum including only neutral systems is then

Ξ = 1 +

∞∑

N=1

(
2L

M

)2N

λN
−λ

N
+

∑

u1,...,uN∈U

v1,...,vN∈V

∣∣∣∣∣det

(
1

ui − vj

)

(i,j)∈{1,...,N}2

∣∣∣∣∣

2

, (23)

where the sums are defined with the prescription that configurations which differ only by
a permutation of identical particles are counted only once, and λp is the constant fugacity
of the charges of species p = ±. This grand partition function is the determinant of an
anti-Hermitian matrix M explicitly shown in [7].

When passing to the continuum limit in the element Mij one should replace ui or
vi by z and uj or vj by z′, i.e. i → z and j → z′. Each lattice site is characterized by

its complex coordinate z and an isospinor which is
( 1

0

)
if the site belongs to the positive

sub-lattice U and
( 0

1

)
if it belongs to the negative sub-lattice V . We then define a matrix

doi:10.1088/1742-5468/2012/04/P04015 6
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MMM by

〈z|MMM|z′〉 =
σxxx + iσyyy

2

2L/M

z − z′ +
σxxx − iσyyy

2

2L/M

z̄ − z̄′ , (24)

where the σs are the 2×2 Pauli matrices operating in the isospinor space, and z = x+iy.
The matrix MMM can be expressed in terms of a simple Dirac operator

〈z|MMM|z′〉 =
2L

M
(σxxx∂x + σyyy∂y) ln |z − z′|, (25)

and the grand partition function can be rewritten as

Ξ = det

{
1δ(2)(z; z′) +

[
λ+

1 + σzzz

2
+ λ−

1 − σzzz

2

]
〈z|MMM|z′〉

}

= det[I + K−1], (26)

with I = 1δ(2)(z; z′) and

λ = λ+
1 + σzzz

2
+ λ−

1 − σzzz

2
, (27)

K−1 = λMMM. (28)

Then, since Δflat ln |z| = 2πδ(s)δ(ϕ)/s = 2πδ(z) (where s = |z| and δ(z) is the flat
Dirac delta function), the inverse operator K is

K = m−1(z)O, (29)

where

m(z) = m+(z)
1 + σzzz

2
+m−(z)

1 − σzzz

2
, (30)

O =
2

M
(σxxx∂x + σyyy∂y) . (31)

Here m±(z) = (2πLλ±
√
g/sS)(2/M)2 are rescaled position dependent fugacities, g =

det(gμν), and S is the area per lattice site which appears when the discrete sums are
replaced by integrals. Notice that in the flat limit M → 0 we find m± → m̃±, where
m̃± = 2πLλ±/S are the rescaled fugacities of the flat system [7, 6]. Moreover S is a local
property of the surface independent from its curvature.

We then find

ln Ξ = Tr
{
ln

[
I + K−1

]}
,

and the one-body densities and n-body truncated densities can be obtained in the usual
way by taking functional derivatives of the logarithm of the grand partition function with
respect to the fugacities λ±. Marking the sign of the particle charge at zi by an index
pi = ±1, and defining the matrix

Rp1p2(z1, z2) = 〈z1p1|K−1(I + K−1)−1|z2p2〉, (32)

doi:10.1088/1742-5468/2012/04/P04015 7
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it can then be shown [6, 7] that they are given by

ρ(1)
p1

(z1) = Rp1p1(z1, z1), (33)

ρ(2)T
p1p2

(z1, z2) = −Rp1p2(z1, z2)Rp2p1(z2, z1), (34)

ρ(n)T
p1p2,...,pn

(z1, z2, . . . , zn) = (−)n+1
∑

(i1,i2,...,in)

Rpi1
pi2

(zi1 , zi2) · · ·Rpinpi1
(zin , zi1), (35)

where mp(z)=(2πLλp
√
g/sS)(2/M)2=(m̃p

√
g/s)(2/M)2, m̃p = 2πLλp/S,

√
g = (M/2)2

s(1+1/s)4, and the summation runs over all cycles (i1, i2, . . . , in) built with {1, 2, . . . , n}.

5.1. Symmetries of the Green’s function R

Since m†(z) = m(z) and O† = −O we find

Rp1p2(z1, z2) = 〈z2p2|m−1O(I − m−1O)−1(m−1O)−1|z1p1〉. (36)

Expanding in O (by using (I − m−1O)−1 = I + m−1O + (m−1O)2 + · · ·) and comparing
with the definition Rp1p2(z1, z2) = 〈z1p1|(m−1O)−1(I + m−1O)−1m−1O|z2p2〉 we find

Rpp(z1, z2) = Rpp(z2, z1), (37)

Rp−p(z1, z2) = −R−pp(z2, z1), (38)

from which it also follows that Rpp(z1, z1) has to be real. If λ+ = λ− then we additionally
must have

Rpp(z1, z2) = R−p−p(z1, z2). (39)

5.2. Two-body truncated correlation functions and the perfect screening sum rule

For the two-body truncated correlation functions of equation (34) we then find

ρ
(2)T
++ (z1, z2) = −|R++(z1, z2)|2, (40)

ρ
(2)T
+− (z1, z2) = |R+−(z1, z2)|2. (41)

Notice that the total correlation function for the like particles h++(z1, z2)=ρ
(2)T
++

(z1, z2)/ρ
(1)
+ (z1)ρ

(1)
+ (z2) goes to −1 when the particles coincide, z1 → z2, as follows from

the structure of equations (33) and (34). Moreover, the truncated densities of any order
have to decay to zero as the two groups of particles are infinitely separated. In particular,
|R++(z1, z2)| = |R++(s1, s2;ϕ)|, with ϕ = ϕ1 −ϕ2, has to decay to zero as |s1 − s2| → ∞.

The perfect screening sum rule has to be satisfied for the symmetric mixture
∫

[ρ
(2)T
+− (z1, z2) − ρ

(2)T
++ (z1, z2)]

√
g1 ds1 dϕ1 = ρ±(z2), (42)

where g1 is g calculated on particle 1.

doi:10.1088/1742-5468/2012/04/P04015 8
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5.3. From the structure to the thermodynamics

Following [12], we note that if we solve the eigenvalue problem Kψn = λnψn (here ψn is
a spinor of components ψ+,n and ψ−,n), then

Ξ =
∏

n

(
1 +

1

λn

)
. (43)

Now the eigenvalue problem reads

{m+(z) + A[m−(z)]−1A†}ψ−(z) = (m−(z) − λ2)ψ−(z), (44)

{m−(z) + A†[m+(z)]−1A}ψ+(z) = (m−(z) − λ2)ψ+(z), (45)

where A = (2/M)(∂x +i∂y) and A† = (2/M)(−∂x +i∂y) and the left-hand side is the same
as the left-hand side for the Green’s functions equations (48) and (49).

Of course we know that the thermodynamic quantities all diverge in our Γ = 2 case
so equation (43), although suggestive, is of small practical interest.

5.4. Determination of the Green’s function R

The Green’s function matrix R is the solution of a system of four coupled partial
differential equations, namely

(I + K−1)KR(z1, z2) = (I + K)R(z1, z2) = 1δ(2)(z1; z2), (46)

where δ(2)(z1; z2) = δ(2)(s, ϕ; s0, ϕ0) = (
√
g)−1δ(s−s0)δ(ϕ−ϕ0) is the Dirac delta function

in the curved surface, δ(s − s0)δ(ϕ − ϕ0)/s = δ(s, ϕ; s0, ϕ0) = δ(z; z0) is the flat Dirac
delta function, and 1 is the identity matrix. These can be rewritten as follows:

[O + m(z1)]R(z1, z2) = m(z1)δ
(2)(z1; z2).

If instead of R one uses R = Gm̃, G satisfies the equation

[O + m(z1)]G(z1, z2) =
4

M2
1δ(z1; z2), (47)

where δ(z1; z2) is now the flat Dirac delta function1.
By combining the components of this equation one obtains decoupled equations for

G++ and G−− as follows:

{
m+(z1) + A†[m−(z1)]

−1A
}
G++(z1, z2) =

4

M2
δ(s1, ϕ1; s2, ϕ2), (48)

{
m−(z1) + A[m+(z1)]

−1A†}G−−(z1, z2) =
4

M2
δ(s1, ϕ1; s2, ϕ2), (49)

while

G−+(z1, z2) = − [m−(z1)]
−1AG++(z1, z2), (50)

G+−(z1, z2) = + [m+(z1)]
−1A†G−−(z1, z2). (51)

1 The same result could have been reached by noticing that the partition function of equation (23) rewritten
in the continuum is equivalent to the partition function of the flat system with position dependent fugacities
ζp(s) = λp(M/2)2(1 + 1/s)4(2L/M). This leads naturally [7] to definition of a Green’s function G̃ = (M/2)G
which satisfies the equation [(M/2)O + (2π/S)ζ(z)]G̃(z, z′) = 1δ(z; z′), which reduces to equation (47).
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Then equation (48) can be rewritten in Cartesian coordinates as
{
m+(z1)m−(z1) −

(
2

M

)2 [
(∂2

x1
+ ∂2

y1
) − 4(−x1 + iy1)

s2
1(1 + s1)

(∂x1 + i∂y1)

]}
G++(z1, z2)

=

(
2

M

)4 m̃−
√
g1

s2
1

δ(s1 − s2)δ(ϕ1 − ϕ2) =

(
2

M

)4 m̃−
√
g1√

x2
1 + y2

1

× δ(x1 − x2)δ(y1 − y2), (52)

where s =
√
x2 + y2. From the expression of the gradient in polar coordinates it follows

that

∂x = cosϕ∂s − sinϕ

s
∂ϕ, ∂y = sinϕ∂s +

cosϕ

s
∂ϕ, (53)

Which allows us to rewrite equation (52) in polar coordinates as
[
m̃+m̃−

(
1 +

1

s1

)8

−
(

2

M

)2 (
1

s1

∂s1(s1∂s1) +
1

s2
1

∂2
ϕ1

+
4

s1(1 + s1)
∂s1 +

4i

s2
1(1 + s1)

∂ϕ1

)]

× G++(z1, z2) =

(
2

M

)4 m̃−
√
g1

s2
1

δ(s1 − s2)δ(ϕ1 − ϕ2). (54)

From this equation we immediately see that G++(z1, z2) cannot be real. Notice that in
the flat limit M → 0 we have s ∼ 2r/M and equation (54) reduces to
[
m̃+m̃− − 1

r1
∂r1(r1∂r1) − 1

r2
1

∂2
ϕ1

]
G++(z1, z2) =

m̃−
r1
δ(r1 − r2)δ(ϕ1 − ϕ2), (55)

which, when m̃+ = m̃− = m̃, has the following well known solution [7, 6]:

G++(z1, z2) =
m̃

2π
K0(m̃|r1 − r2|), (56)

where K0 is a modified Bessel function.
Let us from now on restrict ourselves to the case of equal fugacities of the two species.

Then λ− = λ+ = λ with

m̃ =
2πL

S
λ =

2πLeβμ

Λ2
=

(
2πL

mq2

4π�2

)
e2μ/q2

, (57)

where � is Planck’s constant, m is the mass of the particles, and μ is the chemical potential.
So m̃ has the dimensions of an inverse length. From the symmetry of the problem we can
say that G++ = G++(s1, s2;ϕ1 − ϕ2). We can then express the Green’s function as the
following Fourier series expansion:

G++(s1, s2;ϕ) =
1

2π

∞∑

k=−∞
g++(s1, s2; k)e

ikϕ. (58)

Then, using the expansion of the Dirac delta function,
∑

k eikϕ = 2πδ(ϕ), we find that
g++, a continuous real function symmetric under exchange of s1 and s2, has to satisfy
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the following equation:

[Q0(k, s1) +Q1(s1)∂s1 +Q2(s1)∂
2
s1

]g++(s1, s2; k) =

(
2

M

)2

m̃s3
1(1 + s1)

5δ(s1 − s2), (59)

where

Q0(k, s) = m̃2(1 + s)9 +

(
2

M

)2

ks6(4 + k(1 + s)),

Q1(s) = −
(

2

M

)2

s7(5 + s),

Q2(s) = −
(

2

M

)2

s8(1 + s),

and the coefficients Qi are polynomials of up to degree 9.

5.5. Method of solution

We start from the homogeneous form of equation (59). We note that, for a given k, the
two linearly independent solutions fα(s; k) and fβ(s; k) of this linear homogeneous second
order ordinary differential equation are not available in the mathematical literature to the
best of our knowledge. Assuming that we knew these solutions we would then find the
Green’s function, g++(s1, s2; k), writing [18]

f(t1, t2; k) = ckfα(s<; k)fβ(s>; k), (60)

where s< = min(s1, s2), s> = max(s1, s2), and fβ has the correct behavior at large s. Then
we determine ck by imposing the kink in f due to the Dirac delta function at s1 = s2 as
follows:

∂s1f(s1, s2; k)|s1=s2+ε − ∂s1f(s1, s2; k)|s1=s2−ε = −m̃(1 + s2)
4

s5
2

, (61)

where ε is small and positive.
The Green’s function, symmetric under exchange of s1 and s2, is reconstructed as

follows:

G++(z1, z2) = G++(s1, s2;ϕ) =
1

2π

∞∑

k=−∞
ckfα(s<; k)fβ(s>; k)eikϕ. (62)

6. TCP in the whole surface

In the whole surface, using equation (21), we can now write e−βU2N at a coupling constant
Γ = 2 as follows:

∣∣∣∣∣∣
det

(
L

L0

√
|ujvj |

ui − vj

)

(i,j)∈{1,...,N}2

∣∣∣∣∣∣

2

. (63)
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The grand partition function will then be

Ξ = det
[
I + K−1

ws

]
, (64)

with

K−1
ws =

(
M

2L0

)
λwsMMM, (65)

λws = λ+|z|1 + σzzz

2
+ λ−|z|1 − σzzz

2
. (66)

The inverse operator is then given by

Kws =

(
2L0

M

)
MMM−1λ−1

ws , (67)

λ−1
ws =

1

λ+|z|
1 + σzzz

2
+

1

λ−|z|
1 − σzzz

2
, (68)

MMM−1 =
Ss

2πL
√
g

(
M

2

)2

O. (69)

Introducing position dependent fugacities2

mp(z) =
2π(L/L0)λp

√
g

Ss
= m̃p

√
g

s
, (70)

where now m̃p/L0 → m̃p, we can rewrite

Kws =
σxxx + iσyyy

2
a− +

σxxx − iσyyy

2
a+, (71)

with the operators

a− = − z̄

m−(z)|z|3 +
1

m−(z)|z|(∂x − i∂y), (72)

a+ = − z

m+(z)|z|3 +
1

m+(z)|z|(∂x + i∂y). (73)

Then the equations for the Green’s functions are

(1 − a−a+)R++(z1, z2) = δ(2)(z1; z2), (74)

(1 − a+a−)R−−(z1, z2) = δ(2)(z1; z2), (75)

R+− = −a−R−−, (76)

R−+ = −a+R++. (77)

2 Alternatively we could have left the one-body terms (
√

|z|) outside the determinant, and then considered them
as part of the position dependent fugacities, and simply applied the Cornu and Jancovici [7] formalism with these
position dependent fugacities.
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The equation for R++ in the symmetric mixture case is
[
m2(z1) − 2

s4
1

+
2∂s1

s3
1

− ∂2
s1

s2
1

− −i∂ϕ1 + ∂2
ϕ1

s4
1

]
R++(z1, z2)

=
m2(z1)√

g1
δ(s1 − s2)δ(ϕ1 − ϕ2) =

m̃2√g1

s2
1

δ(s1 − s2)δ(ϕ1 − ϕ2). (78)

From this equation we see that R++(z1, z2) will now be real.
By expanding equation (78) in a Fourier series in the azimuthal angle we now find

[Q0(k, s1) +Q1(s1)∂s1 +Q2(s1)∂
2
s1

]g++(s1, s2; k) =

(
M

2

)2

m̃s3
1(1 + s1)

4δ(s1 − s2), (79)

where

Q0(k, s) =

(
M

2

)4

m̃2(1 + s)8 + s4(k2 − k − 2),

Q1(s) = 2s5,

Q2(s) = −s6,

and the coefficients Qi are now polynomials of up to degree 8.
In the flat limit we find, for G++ = R++/m̃, the following equation:

[
m̃2 − 2

r4
1

+
2∂r1

r3
1

− ∂2
r1

r2
1

− −i∂ϕ1 + ∂2
ϕ1

r4
1

]
G++(z1, z2) =

m̃

r1
δ(r1 − r2)δ(ϕ1 − ϕ2). (80)

We then see that we now do not recover the TCP in the plane [7, 6]. This has to be
expected because in the flat limit the Flamm’s paraboloid reduces to two planes connected
by the origin.

After the Fourier expansion of equation (58) we now get

[P0(k, r1) + P1(r1)∂r1 + P2(r1)∂
2
r1

]g++(r1, r2; k) = m̃δ(r1 − r2), (81)

where

P0(k, r) = m̃2r +
k2 − k − 2

r3
,

P1(r) =
2

r2
, P2(r) = −1

r
.

The homogeneous form of this equation admits the following two linearly independent
solutions:

f1(r; −1) = [D−1/2(i
√

2m̃r) +D−1/2(i
√

2m̃r)]/2

f2(r; −1) = D−1/2(
√

2m̃r)
k = −1,

f1(r; 2) = [D−1/2((−2)1/4
√
m̃r) +D−1/2((−2)1/4

√
m̃r)]/2

f2(r; 2) = [D−1/2(i(−2)1/4
√
m̃r) +D−1/2(i(−2)1/4

√
m̃r)]/2

k = 2,

f1(t; k) =
√
rI−

√
7−4k+4k2/4(m̃r

2/2)

f2(t; k) =
√
rI√7−4k+4k2/4(m̃r

2/2)
else,
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where the Dν(x) are parabolic cylinder functions and the Iμ(x) are modified Bessel

functions of the first kind which diverge as ex/
√

2πx for large x 
 |μ2 − 1/4|.
Again we write g++(r1, r2; k) = ckfα(r<; k)fβ(r>; k) and impose the kink condition,

∂r1g++(r1, r2; k)|r1=r2+ε − ∂r1g++(r1, r2; k)|r1=r2−ε = −m̃r2, (82)

to find the ck. The Green’s function is then reconstructed using equation (62). But we
immediately see that curiously |G++| diverges. Even the structure of the plasma is not
well defined in this situation. The collapse of opposite charges at the horizon shrinking
to the origin makes the structure of the plasma physically meaningless.

7. Conclusions

An attempt was made to extend the solution of the one component plasma, at the special
value of the coupling constant Γ = 2, living in the Flamm’s paraboloid [16] to the two
component one, the TCP. The Flamm’s paraboloid is a Riemannian surface with non-
constant curvature which is asymptotically flat. Its curvature depends on a parameter M
(2M being the radius of the horizon) in such a way that for M → 0 the surface becomes
flat: two planes connected by the origin.

The work of Cornu and Jancovici [7, 6] on the TCP in a plane showed that at this
particular value of the coupling constant, using a Cauchy identity, it is possible to find an
analytic solution to the structure of the plasma starting from a discretized model to avoid
divergences and taking the continuous limit in the end. All the n-particle correlation
functions with n > 1 are well behaved except the particle density which diverges like
all the other thermodynamic quantities due to the competition between the attraction of
oppositely charged particles and the thermal motion. This can be prevented by adding a
hard core to the particles in order to prevent collapse.

In this work we repeated the same calculation for the plasma living in the Flamm’s
paraboloid, in the half surface case, s > 1, with an insulating horizon (at s = 1) and
in the full surface case, s > 0. The solution of the equation determining the structure,
the Green’s function equation, is reduced to the mathematical problem of finding the two
linearly independent solutions of a linear homogeneous second order ordinary differential
equation with polynomial coefficients of high degree (9th in the half surface case and
8th in the full surface case). To the best of our knowledge, an analytic solution of these
equations turns out to be out of mathematical reach. Nonetheless the many-body problem
has been reduced to finding the solutions of a simple differential equation. The further
step of finding explicitly the analytical form of the solutions from the given differential
equations is a matter of mathematical syntax and we think that it does not add much to
the present work.

We discussed the symmetries of the Green’s function, the perfect screening sum
rule, the relationship between the structure and the thermodynamics, and the method
of solution of the Green’s function equation.

We found that for the plasma living in the half Flamm’s paraboloid with an insulating
horizon the flat limit M → 0 reduces the system to the TCP on a plane [7, 6]. For the
plasma living in the full Flamm’s paraboloid taking the flat limit one does not recover the
plasma in a plane and this has to be expected since the paraboloid in this limit reduces
to two planes connected by a hole at the origin. Instead the resulting solution for the
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structure turns out to be physically meaningless. The collapse of opposite charges at the
horizon as it shrinks to the origin spoils the structure of the plasma.

We leave as an open problem the one of finding approximations to the two linearly
independent solutions of the homogeneous counterpart of equation (59), for the half surface
case, and of equation (79), for the whole surface case, as a function of the integer k, the
further determination of the Green’s function in these two cases, through equation (62),
the eventual analysis of the solution and discussion about the necessity of the addition
of a hard core to the particles (hard ‘disks’ of diameter D with δs < 2D(1 + 1/s)−2/M)
in order to cure the divergence of the densities ρp with the consequent determination of
the equation of state. These final steps are necessary in order to have the problem of the
structure of the fluid reduced to a closed form. In the present work we limited ourselves
to what can be said in an analytical form.

Acknowledgment

I would like to acknowledge the financial support and hospitality from the National
Institute for Theoretical Physics of South Africa during the preparation of the work.
I would also like to thank Peter Forrester for stimulating the work and Filippo Giraldi for
discussions on the solution of the Green’s function equation.

References

[1] Salzberg A and Prager S, 1963 J. Chem. Phys. 38 2587
[2] Hauge E H and Hemmer P C, 1971 Phys. Nor. 5 209
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I. INTRODUCTION

Colloidosomes are hollow spherical structures that are
formed by the assembly of colloidal particles at the interfaces
of two immiscible liquids [1]. As a result the particles are
arranged in a shell that is inherently porous.

The assembly of colloidal particles at liquid interfaces is
used in various applications [2]. Moreover, it is a promis-
ing technique for the synthesis of novel materials [3] and
has recently led to the development of colloidosomes [1],
nanocomposite particles [4], porous solids [5], and foams [6].

In this work, we study colloidosomes that are composed of
uncharged spherical polystyrene particles of μm size moving
on the surface of a water droplet in oil. Similar studies
have also been done with charged particles [7]. The study
of particles on the surface of a sphere dates back to the old
Thomson problem [8] for classical electrons. The statistical
physics problem of a one-component plasma on a sphere
has been solved exactly analytically at a special value of the
temperature [9]. Nonpointwise particles on a sphere have the
additional complication of the geometrical frustration, which
can be described through the so-called grain boundary scars
[10–12]. There have been attempts to formulate a statistical
geometry of particle packing [13]. These systems opened up
a field of research that studies the effect of curvature and
topology of various surfaces on the organization of matter
in a more general sense [14]. Structuring at the surface
of a droplet can be viewed as a two-dimensional analog
to fluid like behavior, crystallization, or glass formation in
three-dimensional systems [15].

Fluids on Riemannian surfaces have been the subject of
various studies with few exact analytical results [9,16,17],
some approximate theories [18], and many Monte Carlo (MC)
simulations [19]. Colloidosomes with tunable particle density
were synthesized experimentally [20]. A sintering procedure is
then used to create capsules, which can be easily handled. The
capsules are then dried to obtain colloidal cages. The synthetic
details are explained in the next section.

*rfantoni@ts.infn.it
†jorissalari@gmail.com
‡bklump@sun.ac.za

In this work we give the simplest statistical physics descrip-
tion of the colloidosome, where we describe the interaction of
the colloidal particles with the surrounding media, water and
oil, simply as a holonomic constraint on the particles positions
to stay at the water-oil (WO) interface and treat them as a fluid
of a fixed number of particles moving on a sphere, the droplet
of water in oil, with a mutual pairwise interaction, the pair
potential, at a temperature T . Additional frictional effects have
been neglected [21]. The assembly of particles on the sphere is
studied both in the laboratory and with a computer experiment
under certain conditions: number density and temperature. The
structural arrangement of the particles is characterized through
the radial distribution function. The colloidal particles created
in our laboratory are polystyrene solid spherical hairy particles
with controllable diameter of the order of 3 μm. The particles
will then exhibit a hard core interaction. Two types of particle
pair potentials were used in the Monte Carlo (MC) simulation
of the fluid, namely the hard-sphere one and the polarizable
hard-sphere one.

The work is organized as follows: in Sec. II the colloido-
some is described; in Sec. III the radial distribution function as
a means to probe the structure of the colloidosome is presented
in its mathematical definition described in Appendix A, its MC
estimator, and its experimental measure; in Sec. IV the MC
simulation results are presented; in Sec. V the theoretically
exact results of the MC simulation and the experimental results
are compared; Section VI is devoted to concluding remarks.

II. EXPERIMENTAL SYSTEM VERSUS STATISTICAL
PHYSICS PROBLEM

The details for the synthesis of the colloidosomes can
be found in our previous work [20]. Working at room
temperature, we first disperse the colloidal particles in a
hydrocarbon oil (heptane). Then, water is added while the
solution is being stirred vigorously. The function of the shear
is two fold. It causes the water to break up into small water
droplets and at the same time it allows to overcome the
barrier for adsorption of the particles, which are assembled
randomly at the WO interface of the droplets. Eventually
a stable Pickering emulsion [22] of water droplets covered
by polystyrene (pS) particles, the colloidosomes, in oil is
formed. The colloidosomes formed have all approximately

061404-11539-3755/2012/85(6)/061404(10) ©2012 American Physical Society
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FIG. 1. (Color online) The left panel shows a schematic representation of the equilibrium position of the particles at the WO interface; θ is
the three-phase contact angle, r is the particle separation, and σ is the particle diameter. The right panel shows a side view of the particle shell
of a colloidosome made with scanning electron microscopy.

the same diameter, and this, as well as the number of colloidal
particles on each colloidosome, does not change after the
colloidosomes are formed. For further imaging with scanning
electron microscopy (SEM) the particles surrounding the
droplets need to be (partially) sintered in order to form a
continuous and stable shell around the droplet, a capsule.
Heating the mixture to 35 ◦C for 30 minutes proved sufficient to
do so. A small amount of the sintered colloidosome dispersion
is placed on the SEM sample holder and dried in the fumehood.
This removes both the water and heptane remnants and leaves
only the capsules, the colloidal cages, which can then be
imaged by SEM.

The colloidal polystyrene solid particles are synthesized
by the dispersion polymerization of styrene in alcohol and
water [20], which is a well-established technique for the
formation of highly uniform polymer particles with a narrow
size polydispersity. AIBN [azo-bis(isobutyronitrile)] is used
as the initiator. The presence of a polymeric stabilizing
surface functional group is required for a controlled synthesis
of the particles. A nonionic polymeric stabilizer [poly(N-
vinylpyrrolidone) (pVP)] is used for this study. Hence, there
is no charge on the surface of the particles. During the
polymerization, pVP, which efficiently adsorbs on polystyrene,
is attached to the particle. In ethanol and water, pVP is soluble.
The polymeric chains are extended (with a radius of gyration
of Rg ≈ 15 nm) and are responsible for steric repulsion as
two particles get in close contact. This guarantees the steric
stabilization of the colloidal suspension. In the oil phase, pVP
is insoluble and the polymer chains are collapsed on the surface
of the particle, resulting in an attractive potential among the
particles. The final dispersion in ethanol and water, therefore,
consists of polystyrene particles that are sterically stabilized
with a layer of pVP. During the polymerization of styrene,
pVP attaches to the particle by both physical adsorption
to the particle’s surface and chemical grafting. These two
mechanisms occur simultaneously, however it is not known
to what extent. It is believed that the predominant mechanism
for stabilization is the physical adsorption. The particles are
washed with pure ethanol by three centrifugation-redispersion
cycles in order to remove the residual physically adsorbed pVP.
The particles settle due to the centrifugation. The supernatant

solution is decanted and clean ethanol is added to the remaining
particles. The particles are then redispersed and the whole
procedure is repeated three times. The physically adsorbed
pVP is removed, which produces a lower colloidal stability
of the particles in ethanol. Large aggregates were observed
during this procedure, which is an indication for the presence
of an attractive component in the pair potential between the
colloidal particles in the suspension. The chemically grafted
pVP remains attached to the particle’s surface. The remaining
particles are dried and redispersed in heptane, before the
colloidosomes are synthesized. In conclusion, the surface
chemical properties of the particles are mainly determined by
polystyrene and the fraction of pVP that is chemically grafted
to the surface, although a precise estimate of the grafting
density is lacking. It is believed that the grafting density is low,
due to the poor colloidal stability of the particles in ethanol
after removing the physically adsorbed pVP.

In Pickering emulsions, the particle is adsorbed at the WO
interface and is partly immersed in the oil and water phase.
The extent of immersion in both phases will eventually have an
influence on the particle pair potential. The three-phase contact
angle θ is used to denote the position at the interface as shown
in Fig. 1.1 It was determined in our earlier work [20] and is
approximately θ ≈ 130◦, which means that the particle is pre-
dominantly immersed in the oil. The surface tension of the par-
ticle is altered by the presence of the surface stabilizing groups,
which affects the wetting properties and the equilibrium posi-
tion of the particles at the interface [23]. An atomistic [24] level
of description of the core of the solid hairy particles suggests
the use of Hamaker [25] calculation for the determination of the
interaction between the two spherical cores. The calculation
predicts an attractive pair potential which, neglecting the
detailed behavior close to contact, is proportional to (σ/r)6, r

being the distance between the centers of the two cores of diam-
eter σ . Unlike this attraction, which is always present, the steric

1The right panel of Fig. 1 shows clearly flattening of the particles
on the inside of the capsules. We are convinced that this is an artifact
of the sintering process. During this process flattening of the particles
occurs, which we ascribe to particle deformation to reduce the contact
area between particle and water.
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repulsion will have a very small range when θ is obtuse since
in this case the particle’s contact occurs in the oil phase [26].
We thus expect the balance between the attractive interaction
and the steric effects to depend on the angle θ . Moreover other
kinds of interactions such as depletion, hydrophobic, solvation,
or capillary should be taken into account for an accurate
description of our system. The simplest description for the
pair potential between the particles is the hard-spheres one.

The surface of a sphere of diameter D = 2R is A = πD2.
The surface area that a particle, with diameter σ , can occupy
is approximately a = √

3σ 2/2. The maximum number of
particles that can pack the surface of a sphere is approximately

Nmax � A

a
= 2π√

3

(
D

σ

)2

, (1)

where we assumed that the particles are in a close packing
regular hexagonal lattice neglecting curvature effects. The
maximum reduced particle density on the sphere will then
be ρmaxσ

2 � 2/
√

3 ≈ 1.155.
Similar experiments [27] make use of water and a liquid of

higher density, for the initial solution of the two immiscible
liquids. The droplets in the emulsion will now be of the higher
density liquid. In the limit of droplets of very high density
the particles are expected to be essentially unable to move
on the droplet. Our working hypothesis will be, instead, to
consider the particles as moving freely on the droplet surface,
completely neglecting the presence of the solvent. We then
treat the colloidosome of diameter D, number of particles N ,
and temperature T , through a canonical ensemble classical
statistical physics description of the assembly of particles on
the water droplet as a fluid of particles constrained to move
on the surface of a sphere with a pairwise interaction, the pair
potential.

A. Pair potential

Fixing the pair potential completely defines the fluid model,
as described in Appendix A and Eq. (8).

The simplest interaction between two colloidal particles is
the hard-spheres (HS) pair potential

φHS(r) =
{+∞ r < σ

0 r > σ
, (2)

where σ is the diameter of the spheres and r is the Euclidean
center to center distance [see Eq. (5)].

The interaction between two neutral particles far apart is
dominated by dipolar forces. The simplest model potential,
suggested by the London forces [28], corresponds to hard
spheres of diameter σ with dispersion attractions, the polariz-
able hard spheres (PHS),

φPHS(r) =
⎧⎨
⎩

+∞ r < σ

−εPHS

(σ

r

)6
r > σ

, (3)

where εPHS = AH /36 is a positive energy proportional to
Hamaker constant [25] AH , which is a property of the material
of which the particles are made and of the environment where
the particles are immersed. We here neglect the details of
Hamaker’s macroscopic approximation [28], which when the

two spheres are close to contact predicts a −(AH/24)/(r/σ −
1) behavior, as we believe they have not much influence on the
calculation.

III. RADIAL DISTRIBUTION FUNCTION

In this work we probed the structure of the colloidosome
using the radial distribution function (RDF). We compare
the experimental RDFs with the ones obtained from MC
simulations of a fluid of particles moving on a sphere and
interacting with a model pair-potential of the kinds described
in Sec. II A. This procedure will allow us to determine which
interaction model best describes the experimental assembly of
particles. Choosing σ as the unit length, the statistical physics
problem only depends on the number of particles N and the
reduced density ρσ 2 = N/[π (D/σ )2] for the athermal HS
model and also on the reduced temperature kBT /εPHS for the
PHS one.

A. Monte Carlo simulation

On a sphere, the Monte Carlo simulation [29] solves exactly
the statistical physics problem as, since one does not have
the additional thermodynamic limit problem, it reduces to an
integration, as described in Appendix B.

The particle’s positions are R = (r1,r2, . . . ,rN ) with

ri = R[sin θi cos ϕi x̂ + sin θi sin ϕi ŷ + cos θi ẑ]. (4)

The Euclidean distance between particles i and j is given by

rij = R
√

2 − 2r̂i · r̂j , (5)

where r̂i = ri/R is the versor that from the center of the sphere
points towards the center of the ith particle.

The density of particles on the surface of the sphere is

ρ = N

4πR2
. (6)

In the MC simulation [29] the RDF between two points
on the sphere, r and r′, is calculated through the following
histogram estimator [see Eq. (A14)]

g(d) = 〈ghistogram(d,R)〉, (7)

where d = 2R sin[arccos(r̂ · r̂′)/2] is the Euclidean
distance between r and r′, 〈. . .〉 = ∫

SN
R

exp[−βUN (R)] . . .

dR/
∫
SN

R
exp[−βUN (R)] dR is the thermal average, here

UN (R) =
∑
i<j

φ(rij ), (8)

is the total potential energy of the fluid of particles, φ is the pair
potential, and the integrals are taken in such way that ri ∈ SR

for i = 1,2, . . . ,N with SR the sphere of diameter D = 2R, so
that dR = ∏

i dri with dri = R2d
i = R2 sin θidθidϕi , and

ghistogram(d,R) =
∑
i 
=j

1[d−�/2,d+�/2[(rij )

Nnid (d)
(9)

here 1[a,b[(r) = 1 if r ∈ [a,b[ and 0 otherwise, and

nid (d) = N

[(
d + �/2

2R

)2

−
(

d − �/2

2R

)2
]

, (10)
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is the average number of particles on the surface [d − �/2,d +
�/2[ for the ideal gas of density ρ. ρ2g(d) gives the probability
that sitting on a particle at r one has to find another particle at r′.

B. Experiment

The positional data of the particles in the colloidal cages
is directly extracted from SEM images, which allowed the
calculation of the particle separation for all visible particle
pairs. � is set to an arbitrary value of σ/20. To exclude
edge effects, a selection of particles located sufficiently at
the center of the SEM image of the colloidal cage is taken into
account. The RDF is determined from just one hemisphere.
The particle positions from five SEM images of similar
colloidal cages were used for the statistical average. The
detailed procedure, the selection of particles, and validation
of the procedure is described in our previous work [20]. In
that work we calculated the radial distribution function from
just one SEM image. Here we refined that analysis averaging
the results from five SEM images, which is in spirit closer
to the procedure used in the MC simulations. Although five
images are still a rather small number our present procedure
carries nevertheless more information than the one used in
Ref. [20]. The absolute error on the experimental g(r) is around
0.3. In the experiment unlike in the simulations each image
measurement is uncorrelated from the other.

IV. MONTE CARLO RESULTS

We performed constant N , ρ, and T canonical MC simu-
lations [29]. A typical run would consist of about 5 × 105N

single-particle moves, keeping the acceptance ratios constant
(≈ 0.3). In all the presented graphs of the simulated RDF the
statistical error from the MC integration are not visible on the
chosen scale.

We initially chose the PHS model pair potential to see how
the RDF would change upon changing the temperature and
the density. In order to find agreement with the experimental
results it proved necessary to use the simpler HS model, as
shown in Sec. V. We then compared the HS results with the
soft-sphere model φSS(r) = εSS( σ

r
)6 considered in Ref. [18].

For case “a” of Table I a reduced temperature of kBT /εSS =
0.05 is sufficient to have similar RDFs for the HS and the
SS model on the half hemisphere, but when looking at the
RDFs on the whole sphere, the SS RDF, unlike the HS one,

TABLE I. Characteristics of the experimental colloidosomes
analyzed. In all cases, the water droplet was of the same diameter
D = 64.8 μm. Different colloidosomes differed by the diameter σ

of the colloidal particles and by the number N of colloidal particles
they carried. The same systems, “a”, “b”, “c”, “d”, have been studied
through MC simulations.

case σ (μm) N D/σ ρσ 2

a 4.80 561 13.5 0.98
b 3.32 1065 19.5 0.89
c 2.72 1498 23.8 0.84
d 2.56 1449 25.3 0.72
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FIG. 2. (Color online) RDF for approximately one hemisphere of
the colloidosome “c” of Table I with N = 1498, D/σ = 23.8, and
various reduced temperatures, calculated with MC simulations of the
PHS fluid. Also shown are the locations (vertical lines) of the first
eight coordination shells of a regular planar hexagonal lattice of the
hard-core particles (here σ = 2.72 μm). The mismatch between the
peaks of the RDF and these shells is a manifestation of the curvature
of the surface.

shows relevant correlations between particles at opposite poles
(|g(2R) − 1| ≈ 0.3).

A. Dependence on temperature

The HS model is athermal so the structure is independent of
temperature but only depends on the density. We thus simulated
the colloidosome “c” in Table I with the PHS model. We chose
different values of the reduced temperature, kBT /εPHS to see
how the RDF would change.

As expected we found the occurrence of an ordered
structure at small reduced temperatures (see Fig. 2). In
particular we observe the formation of a regular hexagonal
lattice distorted by the curvature of the spherical surface.
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FIG. 3. (Color online) RDF for approximately one hemisphere of
the colloidosome with D/σ = 23.8 and σ = 2.72 μm at a reduced
temperature kBT /εPHS = 9.1 and various densities, calculated with a
MC simulation of the PHS fluid.
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FIG. 4. SEM images of colloidal cages with a fluidlike particle configuration (left panel, ρσ 2 = 0.84 and D/σ = 23.8) and a crystallinelike
particle configuration (right panel, ρσ 2 = 0.98 and D/σ = 13.5).

Recall that in a planar perfect hexagonal lattice arrangement
of spheres of diameter σ the first coordination shells are as
follows: r/σ = 1,

√
3,2,

√
7,3,2

√
3,

√
13,4,

√
19,

√
21,5, . . . .

From Fig. 2 we can clearly see how at this reduced density,
0.84, well below the maximum density, the PHS model reduces
to the HS model for reduced temperatures � 1. As we lower
the temperature, the attractive tail in the pair potential starts to
play a role resulting in a solidification of the fluid. As the fluid

crystallizes, it may experience the cage effect going through
glassy phases. The particles become confined in transient cages
formed by their neighbors. This prevents them from diffusing
freely on the surface of the sphere [30]. A related problem is
the extremely long MC equilibration time necessary to draw
the RDF of the figure at a temperature of 0.1, starting from a
disordered initial configuration. In the limit of T → 0, in our
calculation, the equilibrium configuration of the (classical)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25

g(
r)

r (μm)

simulation
experiment

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25

g(
r)

r (μm)

simulation
experiment

(b)

(a)

(b)

FIG. 5. (Color online) The experimental (dashed red line) and simulated (solid black line) RDF of colloidosomes “a” (top panel) and “b”
(bottom panel) of Table I. The fluid model used in the MC simulations was the HS. The graphical representation of a snapshot of the particle
positions when the MC has reached equilibrium, shows resemblance with the SEM images.

061404-5

The structure of colloidosomes with tunable particle density:
simulation vs experiment 472



FANTONI, SALARI, AND KLUMPERMAN PHYSICAL REVIEW E 85, 061404 (2012)

particles is the one R0 for which UN (R) has its minimum:
the probability density is zero everywhere except on R0. We
have a spontaneous breaking of the rotational symmetry (see
Appendix A). The monotonously increasing tails in the PHS
pair potential produce an equilibrium configuration with the
particles forming one cluster of touching spheres. On the
contrary, in the SS model the equilibrium configuration will
be one where the interparticle spacing depends on the density.

B. Dependence on density

For case “c” in Table I (D/σ = 23.8 and σ = 2.72 μm)
we chose different values of the density to see how the RDF
would change for the PHS model at a relatively high value of
the reduced temperature kBT /εPHS = 9.1.

We succeeded in reaching high particle densities (with-
out overlaps) by placing one particle at the north pole
and then others centered at θ = 2n arcsin(1/2R) and ϕ =
2m arcsin(1/2R sin θ ) with n,m = 1,2,3, . . . . This way we
were, in particular, able to reach the 0.91 critical density
observed by Prestipino Giarritta et al. [19] for HS. In
doing so we observed the splitting of the second peak
into a pair of adjacent peaks corresponding to the second
and third coordination shells of a regular hexagonal lattice
(see Fig. 3).

From Fig. 3 we can clearly see how the fluid tends to reach
an ordered phase at high densities (even at high temperatures).
The realization of these ordered phases will go through the
formation of colloidal geometrical cages (due to geometrical
frustration) on the surface of the water droplet, which is
inevitable as the density slowly approaches the maximum
density at any temperature.

V. COMPARISON BETWEEN EXPERIMENTAL AND
MONTE CARLO SIMULATION RESULTS

The results of the experimental colloidosomes are now
compared with the Monte Carlo (MC) simulations. Scanning
Electron Microscopy (SEM) images of two different colloidal
cages can be found in Fig. 4. The RDF of these colloidal cages
and two others are shown in Figs. 5 and 6. The experimental
colloidosomes studied differ from one another by particle
size and particle density; the water droplets were of the
same diameter and the temperature was room temperature,
as summarized in Table I. The same values for number of
particles, N , and sphere diameter, D/σ , are used in the MC
simulations. Our first choice for the pair potential was the HS
fluid model, as justified in Sec. II.

It is important to stress that in the experiment we measured
the RDF from five images of different colloidal cages. Now,
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FIG. 6. (Color online) Same as Fig. 5 for the colloidosomes “c” (top panel) and “d” (bottom panel) of Table I.
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FIG. 7. (Color online) The experimental (dashed red line) and simulated (solid black line) RDF of colloidosomes “a”, “b” (top panel) and
“c”, “d” (bottom panel) of Table I. The fluid model used in the MC simulations was the PHS with a reduced temperature of 0.3.

there are two processes responsible for the assembly of the
particles on the colloidosome: (i) the adsorption of the particles
on the interface at the moment of the formation of the Pickering
emulsion and (ii) the motion of the particles on the interface.
Our experimental measure is clearly not able to discriminate
which one of the two processes is the more relevant, even if we
expect that the structure of the colloidal cages obtained after
the sintering procedure will carry no history of the former
process. Moreover theoretical studies of process (i) are, to
the best of our knowledge [31], much less developed than the
ones of the latter. Our computer experiment only takes into
account the second process assuming that the colloidosome
is formed and the particles are in thermal equilibrium on the
droplet.

From Figs. 5 and 6 we can see that there is a good agreement
between the experimental and the theoretical RDF. This
indicates that the HS fluid model gives a good description of the
experimental system. The snapshots from the MC simulation
of the colloidosome differ from the SEM images of the
colloidal cages. The colloidal cages are formed by a network
of touching particles. The structure of the experimental fluid
points to a pretty strong short-range attraction between the
particles mainly as a result of the sintering process. The
measure of structure used, g(r), is not sensitive to these
structural differences.

We also simulated the experimental colloidosomes with
the more realistic PHS model. Initially, the fluid with the

highest particle density (“a”) was used to adjust the reduced
temperature. By trial and error we found that kBT /εPHS = 0.3
gave a satisfying agreement with the experiment (see Fig. 7).
However when we simulated the other colloidal cages with the
same reduced temperature (the experimental temperature in all
cases did not vary and the Hamaker constant did not change
from one colloidosome to the other) we found disagreement
between the MC simulation and the experiment as clearly
shown by the last panel of Fig. 7. This is an indication that the
particles used in the experiment do not interact as PHS. An
explanation for this is the balance, in the oil phase, between
the steric repulsion of the polymer chains and the Hamaker

TABLE II. Excess internal energy per particle uex = 〈UN 〉/N for
the simulated PHS fluids on the sphere.

kBT /εPHS N D/σ uex/εPHS

0.3 561 13.5 −2.1509(6)
0.3 1065 19.5 −1.862(3)
0.3 1498 23.8 −1.732(2)
0.3 1449 25.3 −1.586(3)
0.1 1498 23.8 −2.3484(8)
1.0 1498 23.8 −1.5450(4)
9.1 1498 23.8 −1.5136(3)
9.1 1747 23.8 −2.0932(2)
9.1 1248 23.8 −1.0741(2)
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attraction. However, steric repulsion through the oil phase
is unlikely, because pVP is insoluble in heptane. Another,
possible explanation is that during emulsification the attractive
interaction is balanced by the shear that is applied, and this
could be reflected on the capsules structures sintered after the
emulsification process.

In Table II we report the excess internal energy per particle
measured in the MC simulations of the PHS model in the
various systems studied. We can clearly see that as the fluid
develops towards a solid phase there is a lowering of the energy.

VI. CONCLUSION

We have studied a colloidosome of polystyrene hairy
particles of μm size moving on the surface of a water droplet
in oil both experimentally and theoretically through canonical
Monte Carlo simulations, which is the ensemble of choice
for the description of the experimental system where the
number of particles does not vary. In particular we studied the
radial distribution function. Agreement was found between
the experimental measure and the measure in the computer
experiment of the theoretical model of the fluid of pure
hard-sphere particles on the surface of a sphere. We did not
find agreement between the experiment and the polarizable
hard-sphere fluid model.

It would certainly be interesting to pursue a different
determination of the radial distribution function through the
imaging of the same colloidosome without going through the
sintering procedure. This would allow an unbiased determina-
tion of the structure of the fluid of particles in their thermal
equilibrium on the droplet surface.

Within the Monte Carlo simulation, a wide range of particle
densities on the colloidosome was studied. At high density, the
particles tend to arrange in a hexagonal lattice, distorted by
the curvature of the droplet and the radial distribution function
shows clear signatures of the first coordination shells. While
at low densities a fluidlike behavior is manifested.

Our Monte Carlo simulation results further show that
the addition of an attractive tail to the pure hard-sphere
pair potential allows to reach solidification by lowering the
temperature even at low densities. We discussed that for pair
potentials with support on the whole [0,2R], crystallization
has to be expected at low temperatures at any density.

In our Monte Carlo study we have only considered direct
interactions between the colloidal particles and not solvent-
mediated indirect interactions, such as excluded volume
depletion forces, the hairy hard-spheres interaction [32], or
the Gourney solvation interaction, which depend on the
thermodynamic state of the system [28]. We have simulated
two fluid models on the spherical surface: the athermal HS
one and the PHS one. By tuning the reduced temperature in
the PHS model so as to get a structure similar to the one of
the experimental case “a” of Table I, we were then unable to
reproduce the experimental radial distribution function of the
other cases “b”, “c”, and “d”. Only the HS model agrees with
all four experimental cases.

Our simulations show that the HS fluid model has small
correlations between particles at opposite poles even at high
densities [19], this is not any more so for particles with a soft
core [18]. From the point of view of our work this remains

just a theoretical prediction as our experimental measure of
the radial distribution function is only able to probe half
hemisphere. Moreover we expect the polystyrene particles
used to be well described by the hard-core pair interaction. A
further interesting comparison between the experiment and the
simulation would be to compute the orientational correlation
function Q6 [33].

A possible further development of the work could be the
realization of the binary mixture of small and large particles
on the water droplet [34] to find experimental evidences for
demixing predicted by the nonadditive hard-sphere model with
negative nonadditivity [35]. Or as a possible way to push the
fluidlike behavior at larger densities, diminishing the glass
gap, as predicted by the additive hard-sphere model [36]. A
natural extension would then be the multicomponent mixture,
which in its polydisperse limit may leave no space to the
glass. It would also be possible to simulate the particles as
penetrable-square-well ones [37].

Colloidosomes may be used to isolate viruses when at the
moment of the formation of the Pickering emulsion only one is
captured inside each droplet. This may be a way to overcome
the usual staining procedure. Of course the opposite situation
may also be possible when many living cells, for example
eukaryotic flagella [38], coordinate themselves in the confined
geometry of the drop.
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APPENDIX A: PAIR CORRELATION FUNCTION

Given a classical system of N particles of mass m moving
in a region R of a Riemannian manifold of dimension d and
metric tensor gμν(q) with Hamiltonian,

HN = TN + UN, (A1)

TN = 1

2m

N∑
i=1

gμν(qi)piμpiν, (A2)

UN = UN (q1, . . . ,qN ), (A3)

where we denote with q = (q1, . . . ,qd ) a point of the manifold,
with qi = (q1

i , . . . ,q
d
i ) the coordinates of particle i and with

pi = (pi1, . . . ,pid ) its canonically conjugate momenta, and we
use the Einstein summation convention to omit the sum over
the repeated Greek indices. The canonical ensemble probabil-
ity density to find the statistical system of distinguishable parti-
cles, the fluid, in thermal equilibrium at an inverse temperature
β = 1/kBT (with kB Boltzmann constant) with coordinates
Q = (q1, . . . ,qN ) and momenta P = (p1, . . . ,pN ) is

F(Q,P,N ) = 1




1

hdNN !
e−β(TN +UN ), (A4)

where h is Planck constant and the normalization factor 


is the partition function of the canonical ensemble of the
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identical particles


 = 1

hdNN !

∫
RN

dQ
∫

dPe−β(TN +UN )

= 1

�dNN !

∫
RN

dVe−βUN = e−βF , (A5)

where in the second equality we performed the Gaussian
integral over the conjugated momenta so that dV = dv1 · · ·
dvN with dvi = √

g
∏d

μ=1 dq
μ

i (here g = det ||gμν(qi)|| =
[det ||gμν(qi)||]−1) the infinitesimal volume element of the
manifold and � =

√
2πβh̄2/m is the de Broglie thermal

wavelength. To justify a classical treatment of the statistical
properties it is necessary that � be much less than the mean
nearest neighbor distance between the particles. In the last
equality we used the definition of entropy and F is the
Helmholtz free energy.

If the particles move on a sphere of radius one, R = S1,
then the coordinates are the polar coordinates on the sphere
qi = (θi,ϕi) with θi ∈ [0,π ] the polar angle and ϕi ∈ [0,2π )
the azimuthal angle, and the metric tensor is

||gμν(q)|| =
(

1 0

0 sin2 θ

)
, (A6)

so that det ||gμν(qi)|| = sin2 θi and dvi = sin θidθidϕi ≡ d
i

the solid angle spanned by the three-dimensional vector ri

of the position of particle i in the Euclidean space with
origin on the sphere center. Given a physical observable only
function of the coordinates ON = ON (Q), we can then
measure its average value as

〈ON 〉 =
∫
RN ON (Q)e−βUN (Q) ∏N

i=1 dvi∫
RN e−βUN (Q)

∏N
i=1 dvi

. (A7)

For example the one-body correlation function [39] for the
particles on a sphere of radius R is measured as

ρ(q) =
〈

N∑
i=1

δ(2)(q,qi)

R2

〉
, (A8)

where δ(2)(q,q′) = δ(θ − θ ′)δ(ϕ − ϕ′)/
√

g is the Dirac δ

function on the manifold. We now use the fact that our potential
energy (8) is invariant under any rotation of the reference frame
to say that ρ(q) has to be independent of q and [by integrating
(A8) over dv] we must have ρ(q) = ρ = N/(4πR2).

The two-body correlation function [39] is measured as

g(q,q′) =
〈∑

i 
=j

δ(2)(q,qi)

R2

δ(2)(q′,qj )

R2

〉/
[ρ(q)ρ(q′)] . (A9)

Because of rotational invariance g can only depend on the
geodesic distance d between q and q′. We can then calculate it
on a reference frame where ϕ = ϕ′ so that d = R(θ − θ ′) and

g(d) =
〈∑

i 
=j

δ(θ − θi)

R2 sin θi

δ(θ ′ − θj )

sin θ ′ δ(ϕ′ − ϕi)δ(ϕ′ − ϕj )

〉 /

× (R2ρ2). (A10)

If we now choose θ = θ̄ + θ ′ and integrate over dv′ we get

g(d) =
〈∑

i 
=j

δ(θ̄ − θij )

R2 sin θi

δ(ϕij )

〉 /
(Nρ), (A11)

where θij = θi − θj and ϕij = ϕi − ϕj . We can use rotational
invariance to choose the sphere north pole sitting on particle j

to get further

g(d) =
〈∑

i 
=j

δ(θ̄ − θij )δ(ϕij )

〉/
(NρR2 sin θ̄ ). (A12)

In place of the geodesic distance Rθ̄ we can use the Euclidean
distance d = 2R sin(θ̄/2). We can then use the equality δ(θ̄ −
θij ) = δ(d − dij )R cos(θ̄/2), here dij = 2R sin(θij /2), to write

g(d) =
〈∑

i 
=j

δ(d − dij )δ(ϕij )

〉/
(Nρd)

=
〈∑

i 
=j

δ(d − rij )δ(ϕij )

〉/
(Nρd), (A13)

where rij is defined in Eq. (5) of the main text. Now we use
rotational invariance noticing again that given any two point
qi and qj on the sphere one can always find a reference frame
in which ϕi = ϕj to get

g(d) =
〈∑

i 
=j

δ(d − rij )

〉/
(Nρ2πd). (A14)

APPENDIX B: MONTE CARLO SIMULATION

In the Monte Carlo integration one does a random walk [40]
in Q with θi ∈ [0,π ],ϕi ∈ [−π/2,π/2) for all i = 1, . . . ,N

with periodic boundary conditions: ϕ = ϕ + 2π and θ = θ +
π . In the Metropolis algorithm [40] one takes as the acceptance
probability

A[Q → Q′] = min

{
1,e−β[UN (Q′)−UN (Q)]

∏N
i=1 sin θ ′

i∏N
i=1 sin θi

}
. (B1)
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Chapter 31

Localization of acoustic polarons at
low temperatures: A path integral
Monte Carlo approach

Fantoni R., Phys. Rev. B 86, 144304 (2012)
Title: “Localization of acoustic polarons at low temperatures: A path integral Monte Carlo
approach”
Abstract: We calculate the low temperature properties of an acoustic polaron in three di-
mensions in thermal equilibrium at a given temperature using a specialized path integral
Monte Carlo method. In particular we show that the chosen Hamiltonian for the acoustic
polaron describes a phase transition from a localized state to an unlocalized state for the
electron as the phonon-electron coupling constant decreases. The phase transition manifests
itself with an jump discontinuity in the potential energy as a function of the coupling con-
stant. In the weak coupling regime the electron is in an extended state whereas in the strong
coupling regime it is found in the self-trapped state.
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We calculate the low-temperature properties of an acoustic polaron in three dimensions in thermal equilibrium
at a given temperature using a specialized path-integral Monte Carlo method. In particular we find numerical
evidence that the chosen Hamiltonian for the acoustic polaron describes a phase transition from a localized state
to an unlocalized state for the electron as the phonon-electron coupling constant decreases. The phase transition
manifests itself with a jump discontinuity in the potential energy as a function of the coupling constant. In the
weak coupling regime the electron is in an extended state whereas in the strong coupling regime it is found in a
self-trapped state.
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I. INTRODUCTION

An electron in an ionic crystal polarizes the lattice in
its neighborhood. An electron moving with its accompany-
ing distortion of the lattice has sometimes been called a
“polaron”.1,2 Landau addressed the possibility whether an
electron can be self-trapped (ST) in a deformable lattice.3–5

This fundamental problem in solid-state physics has been
intensively studied for an optical polaron in an ionic crystal.6–11

Bogoliubov approached the polaron strong coupling limit with
one of his canonical transformations. Feynman used his path-
integral formalism and a variational principle to develop an
all-coupling approximation for the polaron ground state.12 Its
extension to finite temperatures was studied by Osaka,13,14 and
more recently by Castrigiano et al.15–17 Recently the polaron
problem has gained interest in explaining the properties of
the high-Tc superconductors.18 The polaron problem has
been also studied to describe impurities of lithium atoms in
Bose-Einstein ultracold quantum gases condensate of sodium
atoms.19 In this context evidence for a transition between free
and ST polarons is found whereas for the solid-state optical
polaron no ST state has been found yet.8–10 The Bogoliubov
dispersion at low k is similar to that of acoustic phonons rather
than to that of optical phonons.

The acoustic modes of lattice vibration are known to be
responsible for the appearance of the ST state.1,20,21 Contrary
to the optical mode, which interacts with the electron through
Coulombic force and is dispersionless, the acoustic phonons
have a linear dispersion coupled to the electron through a
short-range potential, which is believed to play a crucial role in
forming the ST state.22 Acoustic modes have also been widely
studied.1 Sumi and Toyozawa generalized the optical polaron
model by including a coupling to the acoustic modes.23 Using
Feynman’s variational approach, they found that the electron
is ST with a very large effective mass and small radius as the
acoustic coupling exceeds a critical value. Emin and Holstein
also reached a similar conclusion within a scaling theory24 in
which the Gaussian trial wave function is essentially identical
to the harmonic trial action used in the Feynman’s variational
approach in the adiabatic limit.25

The ST state distinguishes itself from an extended state
(ES) where the polaron has lower mass and a bigger radius.
A polaronic phase transition separates the two states with
a breaking of translational symmetry in the ST one.1 The

variational approach is unable to clearly assess the existence
of the phase transition.1 Nevertheless Gerlach and Löwen1

concluded that no phase transition exists in a large class
of polarons. The three-dimensional acoustic polaron is not
included in this class but Fisher et al.25 argued that its ground
state is delocalized.

In this work we employ a particular path-integral (PI)
Monte Carlo (MC) method26,27 to the continuous, highly
nonlocal, acoustic polaron problem at low temperature, which
is valid at all values of the coupling strength and solves
the problem exactly. Our method differs from previously
employed methods28–34 since it hinges on the Lévy construc-
tion and the multilevel Metropolis method.26 We calculate
the potential energy and show that like the effective mass
it usefully signals the transition between the ES and the
ST state. Our results indicate the existence of the phase
transition.

The paper is organized as follows. In Sec. II we describe the
acoustic polaron mathematical model. In Sec. III we describe
the observables we are interested in. Section IV contains
the description of the numerical scheme used to solve the
path integral. In Sec. V we report our numerical results. And
Sec. VI is for final remarks.

II. MODEL

The acoustic polaron can be described by the following
quasicontinuous model:7,23

Ĥ = p̂2

2m
+

∑
k

h̄ωkâ
†
kâk +

∑
k

(i�kâke
ikx̂ + H.c.).

Here x̂ and p̂ are the electron coordinate and momentum
operators respectively and âk is the annihilation operator of the
acoustic phonon with wave vector k. The electron coordinate
x is a continuous variable, while the phonons wave vector
k is restricted by the Debye cutoff ko. The first term in
the Hamiltonian is the kinetic energy of the electron, the
second term the energy of the phonons, and the third term the
coupling energy between the electron and the phonons with
an interaction vertex �k = h̄uko(S/ρ0)1/2(k/ko)1/2, where S

is the coupling constant between the electron and the phonons
and ρ0 the number density of unit cells in the crystal
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[ρ0 = (4π/3)(ko/2π )3 in the Debye approximation]. The
acoustic phonons have a dispersion relation ωk = uk, u being
the sound velocity.

Using the path-integral representation (see Ref. 12,
Sec. 8.3), the phonon part in the Hamiltonian can be exactly
integrated owing to its quadratic form in phonon coordinates,
and one can write the partition function for a polaron in thermal
equilibrium at an absolute temperature T (β = 1/kBT , with
kB Boltzmann constant) as follows:

Z =
∫

dx
∫ −

−

∫ x=x(h̄β)

x=x(0)
e− 1

h̄
S[x(t),ẋ(t),t]Dx(t), (1)

where the action S is given by,35,36

S = m

2

∫ h̄β

0
ẋ2(t)dt − 1

2h̄

∫ h̄β

0
dt

∫ h̄β

0

× ds

∫
dk

(2π )3
�2

ke
ik·(x(t)−x(s))−ωk |t−s|. (2)

= Sf + U . (3)

Here Sf is the free particle action, and U the interaction
and we denoted with a dot a time derivative as usual. Setting
h̄ = m = uko = kB = 1 the inter-action becomes,

U =
∫ β

0
dt

∫ β

0
ds Veff(|x(t) − x(s)|,|t − s|), (4)

with the electron moving subject to an effective retarded
potential,

Veff = − S

2ID

∫
q�1

dq qe
i
√

2
γ

q·(x(t)−x(s))−q|t−s|
, (5)

where q = k/ko, ID = ∫
q�1 dq = 4π/3, and we have intro-

duced a nonadiabatic parameter γ defined as the ratio of
the average phonon energy, h̄uko, to the electron bandwidth,
(h̄ko)2/2m. This parameter is of order of 10−2 in typical ionic
crystals with broad band (∼eV) so that the ST state is well
defined.23 In our simulation we took γ = 0.02. One can expect
two kinds of polarons: Electrons in alkali halides and silver
halides are nearly ES while holes in alkali halides are in the ST
state.37 The hole is ES in AgBr38 and ST in AgCl.39 The most
dramatic observation of the abrupt change of exciton from ES
to ST states was made on mixed crystals AgBr1−xClx .40

III. OBSERVABLES

The free energy (the ground-state energy, E, in the large β

limit) of the polaron is F = −(∂Z/∂β)/Z = 〈K + P〉, where
the first term is the kinetic energy contribution, K, and the
second term is the potential energy contribution, P . We have,

F = = 1

Z

∫
dx

∫ −

−

∫
e−S ∂S

∂β
Dx =

〈
∂S
∂β

〉
. (6)

Scaling the Euclidean time t = βt ′ and s = βs ′ in Eq. (2),
deriving U with respect to β and undoing the scaling in the
end we obtain for the potential,

P = −3S

2β

∫ β

0
dt

∫ β

0
ds

∫ 1

0
dq q3

sin
(√

2
γ
q|x(t) − x(s)|)√

2
γ
q|x(t) − x(s)|

e−q|t−s|(2 − q|t − s|).

Taking the derivative with respect to β of the action after having scaled both the time as before and the coordinate x = √
βx′

and undoing the scaling in the end we obtain for the kinetic energy,

K = −3S

4β

∫ β

0
dt

∫ β

0
ds

∫ 1

0
dq q3

⎡
⎣cos

(√
2

γ
q|x(t) − x(s)|

)
−

sin
(√

2
γ
q|x(t) − x(s)|)√

2
γ
q|x(t) − x(s)|

⎤
⎦ e−q|t−s|. (7)

In the following we will be concerned with a numerical
determination of the potential energy.

IV. PATH-INTEGRAL MONTE CARLO

To calculate the PIMC, we first choose a subset of all paths.
To do this, we divide the independent variable, Euclidean time,
into steps of width τ = β/M . This gives us a set of times,
tk = kτ spaced a distance τ apart between 0 and β with k =
0,1,2, . . . ,M . At each time tk we select the special point xk =
x(tk), the kth time slice. We construct a path by connecting all
points so selected by straight lines. It is possible to define a sum
over all paths constructed in this manner by taking a multiple
integral over all values of xk for k = 1,2, . . . ,M − 1 where
x0 = xa and xM = xb are the two fixed ends. The simplest

discretized expression for the action can then be written as
follows:

S =
M∑

k=1

(xk−1 − xk)2

2τ
+ τ 2

M∑
i=1

M∑
j=1

V (ti ,tj ), (8)

where V (ti ,tj ) = Veff(|xi − xj |,|i − j |) is a symmetric two-
variables function. In our simulation we tabulated this
function taking |xi − xj | = 0,0.1,0.2, . . . ,10 and |i − j | =
0,1, . . . ,M . The total configuration space to be integrated over
is made of elements s = {x0,x1, . . . ,xM}, where xk are the
path time slices subject to the periodic boundary condition
xM = x0. In order to compute the potential energy P = 〈P〉
in the simulation we wish to sample these elements from the
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probability distribution, π (s) = e−S/Z, where the partition
function Z normalizes the function π in this space.

In our simulation we chose to use the bisection method,
a particular multilevel MC method,26,41,42 with correlated
sampling. The transition probability for the first level is
chosen as T1 ∝ exp[(xi+m/2 − x)2/2σ 2(m/2)] where m =
2l , l being the number of levels, x = (xi + xi+m)/2 and
σ (t0/τ ) =

√
〈[x(t) − (x(t + t0) + x(t − t0))/2]2〉 (for the first

levels these deviations are smaller than the free parti-
cle standard deviations used in the Lévy construction43

σf (�) = √
�τ/2 with �k = m/2k in the kth level, much

smaller in the ST state). And so on for the other lev-
els: s2 = {xi+m/4,xi+3m/4}, . . . ,sl = {xi+1,xi+2, . . . ,xi+m−1}.
And s0 = {x0, . . . ,xi ,xi+m, . . . ,xM−1} where i is chosen
randomly. Calling π̃ (s) = e−U/Z, the level interaction is
π̃k(s0, . . . ,sk) = ∫

dsk+1 . . . dsl π̃ (s). For the kth level inter-
action we thus chose the following expression:

π̃k ∝ exp

⎡
⎣−(τ�k)2

[M/�k ]∑
i=1

[M/�k ]∑
j=1

V (i�kτ,j�kτ )

⎤
⎦ . (9)

In the last level �l = 1 and the level interaction π̃l reduces
to the exact interaction π̃ . The acceptance probability for the
first level will then be, A1 = min[1, P1(s)

P1(s ′)
π̃1(s ′)π̃0(s)
π̃1(s)π̃0(s ′) ] with P1 ∝

exp{−(xi+m/2 − x)2[1/σ 2(m/2) − 1/σ 2
f (m/2)]/2}. The ini-

tial path was chosen with all time slices set to �0. During the
simulation we maintain the acceptance ratios in [0.15,0.65]
by decreasing (or increasing) the number of levels in the
multilevel algorithm as the acceptance ratios becomes too
low (or too high). We will call Monte Carlo step (MCS) an
attempted move.

V. RESULTS

We simulated the acoustic polaron fixing the adiabatic
coupling constant γ = 0.02 and the inverse temperature β =
15. Such temperature is found to be well suited to extract
close to ground-state properties of the polaron.32 For a given
coupling constant S we computed the potential energy P

extrapolating (with a linear χ square fit) to the continuum
time limit, τ → 0, three points corresponding to time steps
chosen in the interval τ ∈ [1/100,1/30]. In Fig. 1 and Table I
we show the results for the potential energy as a function of
the coupling strength. It is clear the transition between two
different regimes, which correspond to the so-called ES and
ST states for the weak and strong coupling region, respectively.
We found that paths related to ES and ST are characteristically
distinguishable. Two typical paths for the ES and ST regimes
involved in Fig. 1 are illustrated in Fig. 2. The path in ES state
changes smoothly on a large time scale, whereas the path in
ST state do so abruptly on a small time scale with a much
smaller amplitude, which is an indication that the polaron
hardly moves. The local fluctuations of the x(t) and of the
potential energy P(MCS) have an autocorrelation function,
which decay much more slowly in the ES state than in the ST
one. Moreover the ES simulations are more time consuming
than the ST ones.

Concerning the critical property of the transition between
the ES and ST states our numerical results are in favor of
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FIG. 1. (Color online) The behavior of the potential energy P

as a function of the coupling constant S. The points are the MC
results (see Table I), the dashed line is the second-order perturbation
theory result (perturbation) and the dot-dashed line is the variational
approach from Ref. 23 (variational) in the weak and strong coupling
regimes.

the presence of a discontinuity in the potential energy. Even if
there is no trace of a translational symmetry breaking as shown
by the ST path in Fig. 2 where the initial path was x(t) = �0 for
all t . With the increase of β, the values for the potential energy
P increase in the weak coupling regime but decrease in the
strong coupling region. From second-order perturbation theory
(see Ref. 12, Sec. 8.2) follows that the energy shift E(γ,S)
is given by −3Sγ [1/2 − γ + γ 2 ln(1 + 1/γ )] from which
one extracts the potential energy shift by taking P (γ,S) =
γ dE(γ,S)/dγ . From the Feynman variational approach of
Ref. 23 follows that in the weak regime the energy shift is
−3Sγ [1/2 − γ + γ ln(1 + 1/γ )] and in the strong coupling
regime −S + 3

√
S/5γ .

Note that since S and τ appear in the combination Sτ 2

in U (and Sτ in P) the same phase transition from an ES
to a ST state will be observed increasing the temperature.
With the same Hamiltonian we are able to describe two very
different behaviors of the acoustic polaron as the temperature
changes.

TABLE I. MC results for P as a function of S at β = 15 and
γ = 0.02 displayed in Fig. 1. The runs were made of 5 × 105 MCS
(with 5 × 104 MCS for the equilibration) for the ES states and 5 × 106

MCS (with 5 × 105 MCS for the equilibration) for the ST states.

S P

10 −0.573(8)
20 −1.17(2)
30 −1.804(3)
40 −2.53(3)
50 −3.31(4)
53.5 −3.61(1)
55 −11.4(3)
60 −16.1(5)
70 −23.3(3)
80 −30.0(3)
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FIG. 2. (Color online) The polaron closed path x(t) = [X(t),
Y (t),Z(t)] as a function of Euclidean time t in units of τ .

VI. CONCLUSION

In conclusion we used a specialized PIMC method to study
the low-temperature behavior of an acoustic polaron. At an
inverse temperature β = 15, close to the ground state of the
polaron, and at a nonadiabatic parameter γ = 0.02, typical
of ionic crystals, we found numerical evidence for a phase
transition between an ES state in the weak coupling regime
and a ST one in the strong coupling regime at a value of
the phonon-electron coupling constant S
 = 54.3(7) in good
agreement with the prediction of Ref. 23, S
 ∼ 1/γ , and the
MC simulations of Ref. 32.

To understand the motion of an electron in a deformable
lattice we have to consider the fact that the interaction of
the electron with the acoustic phonons induces a well barrier
proportional to the coupling constant, but it decays due to the
retarded property. In the weak coupling region, the electron can
easily tunnel through the barrier so that it almost freely moves
in the lattice. One can regard the tunneling of the electron
as an indication of the motion of the polaron. In this case,
a few phonons are involved and the acoustic polaron has a
small mass, which has a similar magnitude to the mass of
the electron and a large radius. In the strong coupling region,
the well barrier becomes sufficiently deep and the electron is
temporarily bounded in the polaron and cannot tunnel through
the barrier until it gains enough energy from the phonons.

Much more phonons are involved in the polaron and the mass
of the polaron becomes much greater than that of the electron
with a small radius. In this argument the specific form of the
interaction vertex is of fundamental importance.

We used a PIMC with the bisection method and correlated
sampling as an unbiased numerical mean to probe the low-
temperature properties of the acoustic polaron. This is an
independent route to Feynman’s variational approach and
proved to give reliable results on the existence of the ST
state for the electron in a deformable lattice as conceived
by Landau. However, the self-trapping we observe in our
numerical analysis is not a complete localization of the electron
within the polarization cloud of the phonons. The electron
path still undergoes small, nearly uncorrelated, fluctuations
in Euclidean time in this ST state. Our numerical results
support the presence of a discontinuity in the potential energy
as a function of the coupling constant and this would be an
indication of the existence of a phase transition between the ES
and the ST states even if we found no trace of a translational
symmetry breaking. Moreover the discontinuity of the ES–ST
transition, if it exists, may depend on the cutoff parameter
as pointed out by, for example, Ref. 9. In the cold-atom
context the role of this parameter is important and the existence
of a discontinuous transition is more questionable than in
the solid-state polaron case.19 The present study reports a
single-value study of the acoustic polaron case thus restricting
the generality of the conclusions.

In a truly localized state the polaron should not diffuse at
all (strong localization) or at least should attain a subdiffusive
behavior (weak localization). But these properties can be
checked by looking at the real-time dynamics of the system
and cannot be checked by the Monte Carlo methods such as
those used in this work, which deal with polaron properties
in imaginary time. Clearly our numerical MC results support
the claim of a dicontinuity but do not give any proof of a
localization transition.

A possible further study could involve the dynamic prop-
erties associated with the two different types of motion and
bipolarons for short-range interacting systems.
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Chapter 32

The density of a fluid on a curved
surface

Fantoni R., J. Stat. Mech. 10024 (2012)
Title: “The density of a fluid on a curved surface”
Abstract: We discuss the property of the number density of a fluid of particles living in a
curved surface without boundaries to be constant in the thermodynamic limit. In particular
we find a sufficient condition for the density to be constant along the Killing vector field
generating a given isometry of the surface and the relevant necessary condition. We then
show that the Coulomb fluid on any open surface asymptotically flat with a conformal metric
with a conformal factor not a function of the azimuthal angle must have constant density in
the thermodynamic limit.
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1. Introduction

The physics of fluids of particles living on surfaces is a well known subject in surface
physics. A special role is played by low-dimensional, exactly analytically solvable fluids,
as they give approximate solutions in higher dimensions and general sum rules. In
the statistical mechanics of continuous fluids, those where the particles are allowed to
move in a continuous space, one finds exact solutions for various Coulomb fluids [1].
For example the one-component Coulomb plasma (OCP) is exactly solvable in one
dimension [2]. In two dimensions Jancovici and Alastuey [3, 4] proved that the OCP
is exactly solvable analytically at a special value of the coupling constant. Since then,
a growing interest in two-dimensional plasmas has led to this system being studied on
various flat geometries [5]–[7] and two-dimensional curved surfaces, such as cylinders [8,
9], spheres [10]–[14], pseudospheres [15]–[17], and Flamm’s paraboloids [18, 19]. Among
these surfaces only the last one is of non-constant curvature. The statistical mechanics of
liquids and fluids in curved spaces is a field of growing interest [20].

Here we do not restrict ourselves to those exactly solvable cases but wish to find
a general property of any given fluid living on a curved surface without boundaries. A
homogeneous fluid living on a plane (or in general a Euclidean space) is known [21] to
have a constant density. This same conclusion holds for a (non-ideal) fluid living on a
surface of constant curvature in its thermodynamic limit1. In this paper we will state
what can be said about the constancy of the density for a fluid living on a Riemannian
surface without boundaries and embeddable in the three-dimensional Euclidean space, in
its thermodynamic limit. It is obvious that an ideal fluid (a gas) has a constant density
on any surface, whether or not we are in the thermodynamic limit. But what can be said
about a non-ideal fluid?

1 The notion of thermodynamic limit will become clear further on in the paper.
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The study of [18] showed that the OCP on a Flamm’s paraboloid is indeed
homogeneous. We expect this occurrence to be due to the long-range nature of the
Coulomb potential and argue that it cannot hold in general for other choices of the pair
potential or of the surface.

In this work we will give a physical interpretation of the curvature of the surface as an
external ‘force’ guiding the particles of the corresponding ‘flat’ fluid. We will show that
the Coulomb potential has to be a function of the geodesic distance between the charges
and we will restrict ourselves to a definition of a fluid as one made of particles with a
pair interaction potential which is a function of the geodesic distance between the two
particles. We will then find a necessary and sufficient condition for the density multiplied
by the square root of the determinant of the metric tensor to be constant along a certain
direction. We will show how this condition holds true both for non-quantum and quantum
fluids.

The paper is organized as follows: in section 2 we state the problem we want to solve
at the level of non-quantum fluids; in section 3 we reformulate the problem in such way
as to make explicit the physical interpretation of the curvature of the surface; section 4 is
devoted to the quantum fluid formulation of the problem; section 5 is for final remarks.

2. Statement of the problem

Given a non-quantum fluid of point-like particles living on a surface S embeddable in a
three-dimensional Euclidean space (note that we will not take into consideration those
surfaces deriving from a Riemannian metric but not embeddable or those not deriving
from a metric) and without boundaries one can define the canonical ensemble particle
number density as [21]

ρ(q1) =
N

Z

∫

Ω

e−βV (q1,...,qN )
N∏

i=2

√
g(qi)∧2

αi=1dq
αi , (1)

Z =

∫

Ω

e−βV (q1,...,qN )
N∏

i=1

√
g(qi)∧2

αi=1dq
αi , (2)

where N is the number of particles confined in the region Ω, β = 1/kBT with kB

Boltzmann’s constant and T the absolute temperature. The potential energy of the fluid
is V =

∑
1≤i<j≤Nv(d(qi,qj)) where v is the pair potential and d(q,q′) is the geodesic

distance between the two points q and q′. The surface is defined by a metric tensor gαβ
so that the square of the proper length of the infinitesimal line element is given, using the
usual Einstein summation convention, by ds2 = gαβ(q)dqα ⊗ dqβ, where ⊗ is the usual
tensor product. We denote with g(q) = det ‖gαβ(q)‖ the Jacobian of the transformation
from a locally flat reference frame to the local coordinates system on the surface. Here
we use a coordinate basis {eα = ∂qα} so that q = qαeα and the symbol d stands for the
exterior derivative. As usual we use superscript Greek indices for contravariant components
and subscript Greek indices for covariant components, and we use a subscript Roman
index to denote the (distinguishable) particle number. The symbol ∧ indicates the usual
wedge product. In the following we will call vol(Ω) =

∫
Ω

√
g(q)∧2

α=1dq
α the volume of the

region Ω.
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The problem we want to discuss is that of finding continuous transformations that
leave unchanged the density ρ(q) in the thermodynamic limit. Here we think of the surface
S as an embeddable one without boundaries. And by thermodynamic limit we mean that,
if S extends to infinity, vol(Ω)→∞ with ρ = N/vol(Ω) kept constant, or if S is closed,
Ω→ S with ρ = N/vol(S). We want to answer the question: ‘when is ρ(q) constant on S
in the thermodynamic limit?’.

The number density satisfies the following normalization condition

∫

Ω

ρ(q)
√
g(q)∧2

α=1dq
α = N = vol(Ω)ρ. (3)

So when the density is constant on the surface we must have ρ = ρ̄.

3. Reinterpretation of the curvature

Choosing the coordinate basis so that ξ = ∂qα is a Killing vector field [22] generating an
isometry, then g,α = 0, where we use the usual comma convention to indicate a partial
directional derivative. We know that if p is the momentum of a free particle on S then
p · ξ is a constant of motion pα(p · ξ);α = 0, where we use the usual semicolon convention
to indicate a covariant derivative. An ideal gas has constant density on every surface,
regardless of the curvature and of the thermodynamic limit. We thus have to worry about
the term exp(−βV ). Now, if one moves the N particles at q1, . . . ,qN along the vector field
ξ, the geodesic distances among the system of particles will stay constant as well as the
potential energy V . We then have proved that, given a Killing vector field ∂qα , then ρ,α = 0.
Strictly speaking, before taking the thermodynamic limit, the domain has boundaries, and
close to these one might not be able to move the particles along the Killing vector field,
invalidating the conclusion near the boundary. When taking the thermodynamic limit,
one needs to be able to quantify if these boundary effects will be negligible or not, and
how deep they can affect the bulk of the system. This depends on the pair potential v and
on the surface. In a flat space it is well known that the boundary effects are negligible (for
suitable short-range potentials and for the Coulomb potential for globally neutral systems
to have screening). But for a general curved surface, a proper study of what happens in
the thermodynamic limit with this boundary effect is needed and it will certainly impose
additional conditions on the pair potential v, and probably also on the surface, to keep
valid the conclusion that ρ,α = 0. The conditions on the surface might appear, for example,
in cases similar to the pseudosphere, where it has been shown that boundary effects can be
of the same order of magnitude as the bulk properties (see Refs. [15]–[17]). So, additional
work in this direction is needed.

This is clearly only a sufficient condition, but it is enough to say that on the sphere
(or the plane), a surface of constant curvature [23], where ξ = ∂ϕ, with ϕ the azimuthal
angle, the density will be constant in the thermodynamic limit. One, in fact, has that the
density is constant along parallels. And this, given the symmetries of the sphere, means
that the density is indeed everywhere constant over the whole sphere, with ρ = ρ.

On the other hand a necessary condition can be expressed as follows: Say that we find
a coordinate system such that, for all v, (

√
gρ),α = 0, then in particular for v = 0 we have

ρ =constant and g,α = 0. For a Flamm’s paraboloid [18] we can say that there certainly

doi:10.1088/1742-5468/2012/10/P10024 4
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exists a fluid (at least one v) such that (
√
gρ),r 6= 0, since ∂r is not a Killing vector of the

surface and g,r 6= 0. And we know [18] that the OCP is an example.
The problem then reduces to understanding what can be said about surfaces of non-

constant curvature. Note that we can as well rewrite equation (1) as follows

√
g(q1)ρ(q1) = N

∫
Ω e−β[V (q1,...,qN )+

∑N
i=1 φ(qi;β)]

∏N
i=2 ∧2

αi=1dq
αi

∫
Ω e−β[V (q1,...,qN )+

∑N
i=1 φ(qi;β)]

∏N
i=1 ∧2

αi=1dq
αi
, (4)

where φ(q; β) = −[ln g(q)]/2β is an ‘external potential’. A form which suggests, on
physical grounds, a local dependence of the density on the curvature. The fluid is seen
in this formulation as living on a ‘flat space’, the two-dimensional space determined by
the local coordinates chart (q1, q2) used in the surface, subject to an external potential
induced by the metric. This suggestive reinterpretation of the problem can sometimes lead
to a wrong intuition. For example, we know that the OCP on a Flamm’s paraboloid (see
section 4.2.4 of [18]) has a density that is everywhere constant, even if this surface is only
asymptotically flat but curved near the ‘horizon’, the scalar curvature being proportional
to the Euclidean distance r from the origin to the power of minus three. Whereas the
constancy of the density along the azimuthal direction ϕ has to be expected from the
sufficient condition stated above, the constancy of the density along the radial r direction
is not at all intuitive, even more so in the light of the discussion which follows.

For a surface with a conformal metric gαβ =
√
g(q)δαβ,2 the scalar curvature R can

be written as

R(q) = eβφ(q)β∆flatφ(q), (5)

where ∆flat = ∂2
q1 + ∂2

q2 is the flat Laplace operator. The external ‘force’ acting on the

particles due to the curvature is then −R exp(−βφ)/β. For a Flamm’s paraboloid [18] the
force acting on the charges turns out to be 4/[βs(1 + s)2], where s =

√
(q1)2 + (q2)2. As

we have already mentioned above, in this case, the OCP shows a constant density on the
surface. In section 3.2 we show that in general one would expect a non-constant density.

On the other hand the formulation of equation (4) suggests that
√
gρ should certainly

be regarded as a more fundamental quantity than ρ.

3.1. The Coulomb pair potential

Here we want to show that the Coulomb potential between two charged particles living
on a given surface S has to be a function of the geodesic distance between the charges [3,
8, 10, 15, 16, 18].

The Coulomb potential is defined by the Poisson equation,

∆qvCoul(q,q
′) = −2πδ(2)(q,q′), (6)

where ∆q is the Laplace–Beltrami operator and δ(2)(q,q′) = δ(2)(d(q,q′)) the Dirac delta
function, in the surface S. The Laplace-Beltrami operator is invariant to isometries. This
means that if the charge at q and the one at q′ are moved along the vector field of

2 Note that the following are all surfaces of this kind: the sphere embedded in three-dimensional Euclidean space√
g = 4/(1+s2)2, the pseudosphere embedded in three-dimensional Minkowski space

√
g = 4/(1−s2)2, the cylinder

embedded in three-dimensional Euclidean space
√
g = 1, and a Flamm’s paraboloid embedded in three-dimensional

Euclidean space
√
g = (1 + 1/s)4. Here s =

√
(q1)2 + (q2)2.
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an isometry the Laplace-Beltrami operator will not change. Neglecting eventual additive
functions which have a null Laplacian we must have

vCoul = f(d(q,q′)). (7)

For example on the sphere [10] of radius R one finds f(x) = − ln(2R sin(x/2R)/L), with
L a length scale. The conclusion of equation (7) is in agreement with Fermat’s principle
for light propagation [24].

3.2. The Coulomb fluid

For an open surface with a conformal metric gαβ = (
√
g(s)/s)δαβ, s ∈ [0,+∞[ the Laplace-

Beltrami operator can be rewritten as

∆f =
s√
g

∆flatf, (8)

where ∆flat is the usual Laplace operator in flat space (x = s cosϕ, y = s sinϕ). We can
then introduce a complex coordinate z = seiϕ and the Laplacian Green’s function (6)

∆flatvCoul((s, ϕ), (s0ϕ0)) = −2π
1

s
δ(s− s0)δ(ϕ− ϕ0) (9)

can be solved as usual, by using the decomposition as a Fourier series. Since (6) reduces
to the flat Laplacian Green’s function, the solution is the standard one

vCoul((s, ϕ), (s0ϕ0)) =
∞∑

n=1

1

n

(
s<
s>

)n
cos[n(ϕ− ϕ0)] + v0(s, s0), (10)

where s> = max(s, s0) and s< = min(s, s0). The Fourier coefficient for n = 0 has the form

v0(s, s0) =

{
a+

0 ln s+ b+
0 s > s0

a−0 ln s+ b−0 s < s0
, (11)

and it has to satisfy the boundary conditions that v0 should be continuous at s = s0,
a+

0 ln s0 + b+
0 = a−0 ln s0 + b−0 , and its derivative discontinuous due to the Dirac delta in

(9), a+
0 /s0 − a−0 /s0 = −1/s0. Summing explicitly the Fourier series (10) and requiring

additionally that the Coulomb potential vCoul(s1, s2) be symmetric under exchange of 1
and 2 we find

vCoul(s, ϕ; s0, ϕ0) = − ln
|z − z0|
h(s, s0)

+ a, (12)

with h(s, s0) = 1 or h(s, s0) =
√
ss0, and a a constant. Here if we imagine the plasma

confined into a disk ΩR of radius R we can choose

vCoul(s, ϕ; s0, ϕ0) = − ln
|z − z0|
h(s, s0)

+ b, (13)

with h(s, s0) = R and b = a − lnR, or h(s, s0) =
√
ss0 and b = a, so that if we rescale

all the s into λs and R into λR the Coulomb potential does not change apart from an
additive constant. Imagine now we are on a plane [3], then h(s, s0) = R. Then in the
definition of the density (1) at any temperature we can change integration variables in the

doi:10.1088/1742-5468/2012/10/P10024 6
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numerator from (si, ϕi) to (xi = sie
i(ϕi−ϕ1), yi = ϕi−ϕ1) for i = 2, 3, . . . , N with Jacobian

1. Calling vb = vb(s/R) = ρ̄
∫

ΩR
vCoul(s, ϕ; s′, ϕ′)

√
g(s′) ds′ϕ′ the neutralizing background

potential and v0 the self energy of the background we can write

ρ(s1, ϕ1) =
N

Z
e−β[vb(s1/R)+v0]

∫

ΩR

∏

i>j≥2

e−βvCoul(qi;qj)
N∏

k=2

( |xk − s1|
R

)βq2

× e−βvb(xke−iyk/R)
√
g (xke−iyk) dxk dyk. (14)

The integral does not depend on ϕ1, so ρ(s1, ϕ1) = ρ(s1). Now we can make a change of
variables where sk → sk/s1 for k = 2, 3, . . . , N and R/s1 → T so that

ρ(s1) =
N

Z
e−β[vb(1/T )+v0]

∫

ΩT

∏

i>j≥2

e−βvCoul(qi;qj)
N∏

k=2

( |xk − 1|
T

)βq2

× e−βvb(sk/T )
√
g (sks1) sN−1

1 dxk dyk. (15)

On a plane
√
g(ss1) = ss1, so that in equation (15) there is a multiplicative factor s

2(N−1)
1 .

So in the thermodynamic limit T →∞ and N →∞ we can say that ρ(s1) = constant,
since we know that we must have a well defined thermodynamic limit. The same conclusion
holds on a pseudosphere (see section 4.3.2 of [16]), on a cylinder (see equation (12a) of [9]),
and on a Flamm’s paraboloid (see section 4.2.4 of [18]). In these cases the explicit analytic
expression of the density has been determined for the finite system as a function of the
properties of the surface at the special value of the coupling constant βq2 = 2. To the
best of our knowledge there are no analytical results in the literature where the OCP has
been found to have a non-constant number density in the thermodynamic limit on a given
curved surface, and probably one has to resort to numerical simulations [25]. It certainly
has to be expected that in a general curved surface the OCP in the thermodynamic limit
may have a non-constant density, otherwise it would mean that an OCP in the plane
has a uniform density for an arbitrary external field. It might actually be true that the
effects of the metric and the background potential cancel one another when the potential
is determined by Poisson’s equation, but if it is true, it will be necessary to solve for the
potential in more detail to prove it.

4. The quantum case

For the quantum fluid we find for the canonical ensemble distinguishable density
matrix (the full density matrix for a system of bosons or fermions is then obtained by
symmetrization or anti-symmetrization respectively) [26]

ρD(Q′,Q; β) =

∫
ρD(Q′,Q((M − 1)τ); τ) · · · ρD(Q(τ),Q; τ)

M−1∏

j=1

√
g̃(j)

2N∏

α=1

dQα(jτ), (16)

where as usual we discretize the imaginary time in bits τ = ~β/M and Q = (q1, . . . ,qN)
with

g̃(i) = det ‖g̃µν(Q(iτ))‖, (17)

g̃µν(Q) = gα1β1(q1)⊗ . . .⊗ gαNβN (qN), (18)

doi:10.1088/1742-5468/2012/10/P10024 7
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to get to the path integral formulation, and in the small τ limit for particles of unitary
mass it follows that

ρ(Q(2τ),Q(τ); τ) = (2π~)−N g̃−1/4
(2)

√
D(Q(2τ),Q(τ); τ)g̃

−1/4
(1)

× e~τR(Q(τ))/12 e−(1/~)S(Q(2τ),Q(τ);τ), (19)

where R is the scalar curvature of the surface, S the action and D the van Vleck’s
determinant

Dµν = −∂
2S(Q(2τ),Q(τ); τ)

∂Qµ(2τ)∂Qν(τ)
, (20)

D(Q(2τ),Q(τ); τ) = det ‖Dµν‖. (21)

For example for free particles

H = 1
2

N∑

i=1

gαiβi(qi)pαipβi = 1
2

N∑

i=1

gαiβi(qi)q̇
αi q̇βi , (22)

S(Q(2τ),Q(τ); τ) = K(Q(2τ),Q(τ); τ) = 1
2

N∑

i=1

d2(qi(2τ),qi(τ))/τ, (23)

and for the fluid

S(Q(2τ),Q(τ); τ) = K(Q(2τ),Q(τ); τ) + τV (Q(τ)). (24)

We then find the partition function through the integral

Z =

∫
ρD(Q,Q; β)

√
g̃ dQ, (25)

and the number density by

√
g(q1)ρ(q1) = N

∫
ρD(Q,Q; β)

√
g̃
∏N
i=2 dqi

Z
. (26)

It is then apparent that by choosing the same isometry on each imaginary time slice
we reach the same conclusion as in section 3 for the classical (non-quantum) fluid.

5. Conclusions

We showed that in a surface of constant curvature without boundaries the local number
density ρ(q) of a non-ideal, (V 6= 0), fluid is a constant in the thermodynamic limit.
Clearly the ideal gas has constant density on every surface regardless of the curvature and
of the thermodynamic limit.

The Coulomb potential for particles living on the surface depends on the metric tensor
and is in general a function of the geodesic distance between the two charges. The Coulomb
fluid density is a constant in the thermodynamic limit in the plane [3] the sphere [10] and
the pseudosphere [15]–[17], all surfaces of constant curvature, but also on the Flamm’s
paraboloid [18], a surface of non-constant curvature.

We proposed a formulation for the number density which gives to the curvature of a
surface with a conformal metric (the sphere, the pseudosphere and the Flamm’s paraboloid

doi:10.1088/1742-5468/2012/10/P10024 8
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are three surfaces of this kind) a physical interpretation as an additional external ‘force’
acting on the system of particles moving in the corresponding ‘flat space’. The formulation,
although suggestive, partly masks the intuition of the properties of the density because of
the fact that the pair potential is inherently related to the properties of the curved surface,
i.e. the geodesic distance between two points, which cannot be translated in terms of the
properties of the corresponding fluid moving in the ‘flat space’ in a straightforward way. On
the other hand the formulation suggests that the combination

√
gρ is a more fundamental

quantity than just ρ itself. One can show both for the non-quantum and the quantum
fluid that if ∂qα is a Killing vector field of the surface then if we can neglect surface effects

[
√
g(q)ρ(q)],α = 0 and if [

√
g(q)ρ(q)],α = 0, ∀ v then g,α = 0. These are the main results

of our discussion. We can also say that g,α = 0 if and only if [
√
g(q)ρ(q)],α = 0, ∀ v.

The total potential energy of the fluid moving in the ‘flat space’ is U(Q) = V (Q) +∑
iφ(qi; β), where the functional dependence on Q of the first term depends both on

the fluid model, through v(d(qi,qj)), and the kind of surface, through d, whereas the
functional form of the second term depends only on the kind of surface. It is then to be
expected that given a fluid model the density can be non-constant on certain surfaces.

The OCP has uniform density on the cylinder (see equation (12a) of [9]), on the
pseudosphere (see section 4.3.2 of [16]), and on the Flamm’s paraboloid (see section 4.2.4
of [18]). In these cases the explicit expression of the density has been determined for the
finite system as a function of the properties of the surface at the special value of the
coupling constant βq2 = 2. To the best of our knowledge there are no analytical results
in the literature where the OCP has been found to have a non-constant number density
in the thermodynamic limit on a given curved surface, and probably one has to resort to
numerical simulations [25].

It would be important, in the future, to be able to understand if the surface effects
on the finite system have some influence in the conclusion that if ∂qα is a Killing vector

field of the surface then [
√
g(q)ρ(q)],α = 0 in the thermodynamic limit.

Acknowledgments

I would like to thank the National Institute for Theoretical Physics of South Africa and
the Institute of Theoretical Physics of the University of Stellenbosch, where the work was
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Chapter 33

Low temperature acoustic polaron
localization

Fantoni R., Physica B 412, 112 (2013)
Title: “Low temperature acoustic polaron localization”
Abstract: We calculate the properties of an acoustic polaron in three dimensions in thermal
equilibrium at a given low temperature using the path integral Monte Carlo method. The
specialized numerical method used is described in full details, thus complementing our pre-
vious paper [R. Fantoni, Phys. Rev. B 86, 144304 (2012)], and it appears to be the first
time it has been used in this context. Our results are in favor of the presence of a phase
transition from a localized state to an extended state for the electron as the phonon-electron
coupling constant decreases. The phase transition manifests itself with a jump discontinuity
in the potential energy as a function of the coupling constant and it affects the properties of
the path of the electron in imaginary time: In the weak coupling regime the electron is in
an extended state whereas in the strong coupling regime it is found in a self-trapped state.
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extended state whereas in the strong coupling regime it is found in a self-trapped state.
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1. Introduction

An electron in a ionic crystal polarizes the lattice in its
neighborhood. An electron moving with its accompanying distor-
tion of the lattice has sometimes been called a ‘‘polaron’’ [1,2].
Since 1933 Landau addresses the possibility whether an electron
can be self-trapped (ST) in a deformable lattice [3–5]. This funda-
mental problem in solid state physics has been intensively studied
for an optical polaron in an ionic crystal [6–11]. Bogoliubov
approached the polaron strong coupling limit with one of his
canonical transformations. Feynman used his path integral formal-
ism and a variational principle to develop an all coupling approx-
imation for the polaron ground state [12]. Its extension to finite
temperatures appeared first by Osaka [13,14], and more recently by
Castrigiano et al. [15–17]. Recently the polaron problem has gained
new interest as it could play a role in explaining the properties of
the high Tc superconductors [18]. The polaron problem has also
been studied to describe an impurity in a Bose–Einstein ultracold
quantum gas condensate of atoms [19]. In this context evidence for
a transition between free and self-trapped optical polarons is found.
For the solid state optical polaron no ST state has been found yet
[8,9,11].

The acoustic modes of lattice vibration are known to be
responsible for the appearance of the ST state [20,21,1]. Contrary
to the optical mode which interacts with the electron through
Coulombic force and is dispersionless, the acoustic phonons have
a linear dispersion coupled to the electron through a short range
potential which is believed to play a crucial role in forming the ST

state [22]. Acoustic modes have also been widely studied [1].
Sumi and Toyozawa generalized the optical polaron model by
including a coupling to the acoustic modes [23]. Using Feynman’s
variational approach, they found that the electron is ST with
a very large effective mass as the acoustic coupling exceeds a
critical value. Emin and Holstein also reached a similar conclusion
within a scaling theory [24] in which the Gaussian trial wave
function is essentially identical to the harmonic trial action used
in the Feynman’s variational approach in the adiabatic limit [25].

The ST state distinguishes itself from an extended state
(ES) where the polaron has lower mass and a bigger radius.
A polaronic phase transition separates the two states with a break-
ing of translational symmetry in the ST one [1]. The variational
approach is unable to clearly assess the existence of the phase
transition [1]. In particular Gerlach and Löwen [1] concluded that no
phase transition exists in a large class of polarons. The three-
dimensional acoustic polaron is not included in the class but Fisher
et al. [25] argued that its ground state is delocalized.

In a recent work [26] we employed for the first time a specialized
path integral Monte Carlo (PIMC) method [27,28] to the continuous,
highly non-local, acoustic polaron problem at low temperature
which is valid at all values of the coupling strength and solves the
problem exactly (in a Monte Carlo sense). The method differs from
previously employed methods [29–35] and hinges on the Lévy
construction and the multilevel Metropolis method with correlated
sampling. In such work the potential energy was calculated and
it was shown that like the effective mass it usefully signals the
transition between the ES and the ST state. Properties of ES and ST
states were explicitly shown through the numerical simulation.

Aim of the present paper is to give a detailed description of the
PIMC method used in that calculation and some additional numer-
ical results in order to complement the brief paper of Ref. [26].
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The work is organized as follows: in Section 2 we describe the
acoustic polaron model and Hamiltonian, in Section 3 we describe
the observables we are going to compute in the simulation, in
Section 4 we describe the PIMC numerical scheme employed, in
Section 5 we describe the multilevel Metropolis method for
sampling the path, in Section 6 we describe the choice of the
transition probability and the level action, in Section 7 we describe
the correlated sampling. Section 8 is for the results and Section 9 is
for final remarks.

2. The model

The acoustic polaron can be described by the following quasi-
continuous model [7,23]:

Ĥ ¼
p̂

2

2m
þ
X

k

_okâ
y

kâkþ
X

k

iGkâkeikx̂þH:c:
� �

: ð1Þ

Here x̂ and p̂ are the electron coordinate and momentum
operators respectively and âk is the annihilation operator of the
acoustic phonon with wave vector k. The first term in the
Hamiltonian is the kinetic energy of the electron, the second
term the energy of the phonons and the third term the coupling
energy between the electron and the phonons. The electron
coordinate x is a continuous variable, while the phonons wave
vector k is restricted by the Debye cut-off ko. The acoustic phonons
have a dispersion relation ok ¼ uk (u being the sound velocity) and
they interact with the electron of mass m through the interaction
vertex Gk ¼ _ukoðS=NÞ1=2

ðk=koÞ
1=2 according to the deformation

potential analysis of Ref. [36]. S is the coupling constant between
the electron and the phonons and N is the number of unit cells in
the crystal with N=V ¼ ð4p=3Þðko=2pÞ3 by Debye approximation
and V is the crystal volume.

Using the path integral representation (see Ref. [12] Section 8.3),
the phonon part in the Hamiltonian can be exactly integrated owing
to its quadratic form in phonon coordinates, and one can write the
partition function for a polaron in thermal equilibrium at an
absolute temperature T (b¼ 1=kBT, with kB Boltzmann constant)
as follows:

Z ¼

Z
dx

Z �
�

Z x ¼ xð_bÞ

x ¼ xð0Þ
e�ð1=_ÞS½xðtÞ, _xðtÞ,t�DxðtÞ, ð2Þ

where the action S is given by Ref. [37] 1

S ¼ m

2

Z _b

0

_x2
ðtÞ dt�

1

2_

Z _b

0
dt

Z _b

0
ds

Z
dk

ð2pÞ3
G2

keik�ðxðtÞ�xðsÞÞ�ok9t�s9

¼ Sf þU: ð3Þ

Here Sf is the free particle action and U is the inter action and we
denoted with a dot a time derivative as usual. Using dimensionless
units _¼m¼ uko ¼ kB ¼ V ¼ 1 the action becomes

S ¼
Z b

0

_x2
ðtÞ

2
dtþ

Z b

0
dt

Z b

0
ds Veff ð9xðtÞ�xðsÞ9,9t�s9Þ, ð4Þ

with the electron moving subject to an effective retarded potential

Veff ¼�
S

2ID

Z
qr1

dq qei
ffiffiffiffiffiffi
2=g
p

q�ðxðtÞ�xðsÞÞ�q9t�s9 ð5Þ

Veff ¼�
3S

2

ffiffiffi
g
2

r
1

9xðtÞ�xðsÞ9

Z 1

0
dq q2 sin

ffiffiffi
2

g

s
q9xðtÞ�xðsÞ9

 !
e�q9t�s9,

ð6Þ

where q¼ k=ko, ID ¼
R

qr1dq¼ 4p=3, and we have introduced a
non-adiabatic parameter g defined as the ratio of the average
phonon energy, _uko to the electron band-width, ð_koÞ

2=2m. This
parameter is of order of 10�2 in typical ionic crystals with broad
band so that the ST state is well-defined [23]. In our simulation we
took g¼ 0:02. Note that the integral in Eq. (6) can be solved
analytically and the resulting function tabulated.

3. The observables

In particular the internal energy E of the polaron is given by

E¼�
1

Z

@Z

@b
¼

1

Z

Z
dx
Z �
�

Z
e�S

@S
@b
Dx¼

@S
@b

� �
, ð7Þ

where the internal energy tends to the ground state energy in the
large b�!1 limit.

Scaling the Euclidean time t¼ bt0 and s¼ bs0 in Eq. (4), deriving
S with respect to b, and undoing the scaling, we get

@S
@b
¼�

1

b

Z b

0

_x2

2
dt�

S

2ID

Z b

0
dt

Z b

0
ds

�

Z
qr1

dq qei
ffiffiffiffiffiffi
2=g
p

q�ðxðtÞ�xðsÞÞ�q9t�s9 1

b
ð2�q9t�s9Þ, ð8Þ

where the first term is the kinetic energy contribution to the
internal energy, K, and the last term is the potential energy con-
tribution, P

P ¼� 3S

2b

Z b

0
dt

Z b

0
ds

Z 1

0
dq q3

sin
ffiffi
2
g

q
q9xðtÞ�xðsÞ9

� �
ffiffi
2
g

q
q9xðtÞ�xðsÞ9

e�q9t�s9

�ð2�q9t�s9Þ: ð9Þ

So that

E¼/KþPS: ð10Þ

An expression for K not involving the polaron speed, can be
obtained by taking the derivative with respect to b after having
scaled both the time, as before, and the coordinate x¼

ffiffiffi
b

p
x0.

Undoing the scaling in the end one gets

K¼� S

4bID

Z b

0
dt

Z b

0
ds

Z
qr1

dq qei
ffiffiffiffiffiffiffiffi
ð2=gÞ
p

q�ðxðtÞ�xðsÞÞ�q9t�s9

� i

ffiffiffi
2

g

s
q � ðxðtÞ�xðsÞÞ

" #
ð11Þ

K¼� 3S

4b

Z b

0
dt

Z b

0
ds

Z 1

0
dq q3 cos

ffiffiffi
2

g

s
q9xðtÞ�xðsÞ9

 !2
64

�
sin

ffiffi
2
g

q
q9xðtÞ�xðsÞ9

� �
ffiffi
2
g

q
q9xðtÞ�xðsÞ9

3
75e�q9t�s9: ð12Þ

In the following we will explain how we calculated the potential
energy P¼/PS.

4. Discrete path integral expressions

Generally we are interested in calculating the density matrix
r̂ ¼ expð�bĤÞ in the electron coordinate basis, namely

rðxa,xb;bÞ ¼
Z �
�

Z x ¼ xb

x ¼ xa

e�SDxðtÞ: ð13Þ

To calculate the path integral, we first choose a subset of all
paths. To do this, we divide the independent variable, Euclidean

1 This is an approximation as e�bok is neglected. The complete form is obtained by

replacing e�ok 9t�s9 by e�ok9t�s9=ð1�e�bok Þþeok9t�s9e�bok =ð1�e�bok Þ. But remember

that b is large.

R. Fantoni / Physica B 412 (2013) 112–118 113

Low temperature acoustic polaron localization 501



time, into steps of width

t¼ b=M: ð14Þ

This gives us a set of times, tk ¼ kt spaced a distance t apart
between 0 and b with k¼ 0,1,2, . . . ,M.

At each time tk we select the special point xk ¼ xðtkÞ, the k-th
time slice. We construct a path by connecting all points so selected
by straight lines. It is possible to define a sum over all paths
constructed in this manner by taking a multiple integral over all
values of xk for k¼ 1,2, . . . ,M�1 where x0 ¼ xa and xM ¼ xb are the
two fixed ends. The resulting equation is

rðxa,xb;bÞ ¼ lim
t-0

1

A

Z 1
�1

Z 1
�1

� � �

Z 1
�1

e�S
dx1

A
� � �

dxM�1

A
, ð15Þ

where the normalizing factor A¼ ð2ptÞ3=2.
The simplest discretized expression for the action can then be

written as follows:

S ¼
XM
k ¼ 1

ðxk�1�xkÞ
2

2t þt2
XM
i ¼ 1

XM
j ¼ 1

Vðti,tjÞ, ð16Þ

where Vðti,tjÞ ¼ Veff ð9xi�xj9,9i�j9Þ is a symmetric two variables
function, Vðs,tÞ ¼ Vðt,sÞ. In our simulation we tabulated this func-
tion taking 9xi�xj9¼ 0,0:1,0:2, . . . ,10 and 9i�j9¼ 0,1, . . . ,M.

In writing Eq. (16) we used the following approximate expres-
sions:

_xk ¼
xk�xk�1

t
þOðtÞ, ð17Þ

Z tk

tk�1

_x2
ðtÞ dt¼ _x2

ktþOðt2Þ, ð18Þ

Z ti

ti�1

Z tj

tj�1

Vðs,tÞ ds dt¼ Vðti,tjÞt2þOðt3Þ: ð19Þ

If we take V¼0 in Eq. (16) the M�1 Gaussian integrals in Eq. (15)
can be done analytically. The result is the exact free particle
density matrix

rf ðxa,xb;bÞ ¼ ð2pbÞ�3=2eð1=2bÞðxa�xbÞ
2

: ð20Þ

Thus approximations (17) and (18) allow us to rewrite the polaron
density matrix as follows:

rðxa,xb;bÞ ¼
Z
� � �

Z
dx1 � � � dxM�1 rf ðxa,x1; tÞ � � �rf ðxM�1,xM; tÞ

�e
t2
P

i

P
j
Vðti ,tjÞ: ð21Þ

In the next section we will see that this expression offers a useful
starting point for the construction of an algorithm for the sampling
of the path: the Lévy construction and the analogy with classical
polymer systems or the classical isomorphism described in Ref. [27].

The partition function is the trace of the density matrix

Z ¼

Z
dx rðx,x;bÞ: ð22Þ

This restrict the path integral to an integral over closed paths
only. In other words the paths we need to consider in calculating
Z (and hence F) are closed by the periodic boundary condition,
xM ¼ x0 ¼ x.

To calculate the internal energy we need then to perform the
following M-dimensional integral:

E¼
1

Z

Z 1
�1

Z 1
�1

� � �

Z 1
�1

dx0 dx1 � � � dxM�1 e�SðPþKÞ
����
xM ¼ x0

: ð23Þ

To do this integral we use the Monte Carlo simulation technique
described next.

5. Sampling the path

The total configuration space to be integrated over is made of
elements s¼ ½x0,x1, . . . ,xM� where xk are the path time slices
subject to the periodic boundary condition xM ¼ x0. In the simulation
we wish to sample these elements from the probability distribution

pðsÞ ¼ e�S

Z
, ð24Þ

where the partition function Z normalizes the function p in this space.
The idea is to find an efficient way to move the path in a

random walk sampled by p, through configuration space.
In order to be able to make the random walk diffuse fast

through configuration space, as t decreases, is necessary to use
multislices moves [27].

In our simulation we chose to use the bisection method (a
particular multilevel Monte Carlo sampling method [27]). That is
how an l levels move is constructed. Clip out of the path m¼ 2l

subsequent time slices xi,xiþ1, . . . ,xiþm (choosing i randomly).
In the first level we keep xi and xiþm fixed and, following Lévy
construction for a Brownian bridge [38], we move the bisecting
point at iþm=2 to:

xiþm=2 ¼
xiþxiþm

2
þg, ð25Þ

where g is a normally distributed random vector with mean zero
and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffi
tm=4

p
. As shown in next section this kind

of transition rule samples the path using a transition probability
distribution Tpexpð�Sf Þ. Thus we will refer to it as free particle

sampling.
Having sampled xiþm=2, we proceed to the second level bisect-

ing the two new intervals ð0,iþm=2Þ and ðiþm=2,iþmÞ generating
points xiþm=4 and xiþ3m=4 with the same algorithm. We continue
recursively, doubling the number of sampled points at each level,
stopping only when the time difference of the intervals is t.

In this way we are able to partition the full configuration s into l

levels, s¼ ðs0,s1, . . . ,slÞ where s0 ¼ ½x0, . . . ,xi,xiþm, . . . ,xM�1�, un-
changed; s1 ¼ ½xiþm=2�, changed in level 1; s2 ¼ ½xiþm=4,xiþ3m=4�,
changed in level 2; y; sl ¼ ½xiþ1,xiþ2, . . . ,xiþm�1� changed in
level l.

To construct the random walk we use the multilevel Metro-
polis method [39,40,27]. Call ðs01, . . . ,s0lÞ the new trial positions in
the sense of a Metropolis rejection method, the unprimed ones
are the corresponding old positions with s0 ¼ s00.

In order to decide if the sampling of the path should continue
beyond level k, we need to construct the probability distribution
pk for level k. This, usually called the level action, is a function
of s0,s1 . . . ,sk proportional to the reduced distribution function
of sk conditional on s0,s1 . . . ,sk�1. The optimal choice for the level
action would thus be

p%

k ðs0,s1 . . . ,skÞ ¼

Z
dskþ1 . . . dsl pðsÞ: ð26Þ

This is only a guideline. Non-optimal choices will lead to slower
movement through configuration space. One needs to require
only that feasible paths (closed ones) have non-zero level action,
and that the action at the last level be exact

plðs0,s1, . . . ,slÞ ¼ pðsÞ: ð27Þ

Given the level action pkðsÞ the optimal choice for the transi-
tion probability TkðskÞ, for sk contingent on the levels already
sampled, is given by

T%

k ðskÞ ¼
pkðsÞ

pk�1ðsÞ
: ð28Þ

One can show that T%

k will be a normalized probability if and only
if pk is chosen as in Eq. (26). In general one need to require only
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that Tk be a probability distribution non-zero for feasible paths. In
our simulation we used the free particle transition probability of
the Lévy construction as a starting point for a more efficient
correlated sampling that will be described in a later section.

Once the partitioning and the sampling rule are chosen, the
sampling proceeds past level k with probability

Akðs
0Þ ¼min 1,

TkðskÞpkðs
0Þpk�1ðsÞ

Tkðs
0
kÞpkðsÞpk�1ðs0Þ

" #
: ð29Þ

That is we compare Ak with a uniformly distributed random
number in ð0,1Þ, and if Ak is larger, we go on to sample the next
level. If Ak is smaller, we make a new partitioning of the initial
path, and start again from level 1. Here p0 needed in the first level
can be set equal to 1, since it will cancel out of the ratio.

This acceptance probability has been constructed so that it
satisfies a form of ‘‘detailed balance’’ for each level k

pkðsÞ

pk�1ðsÞ
Tkðs

0
kÞAkðs

0Þ ¼
pkðs

0Þ

pk�1ðs0Þ
TkðskÞAkðsÞ: ð30Þ

The moves will always be accepted if the transition probabilities
and level actions are set to their optimal values.

The total transition probability for a trial move making it
through all l levels is

Pðs-s0Þ ¼
Yl

k ¼ 1

Tkðs
0ÞAkðs

0Þ: ð31Þ

By multiplying Eq. (30) from k¼1 to k¼ l and using Eq. (27), one
can verify that the total move satisfy the detailed balance condition

pðsÞPðs-s0Þ ¼ pðs0ÞPðs0-sÞ: ð32Þ

Thus if there are no barriers or conserved quantities that restrict
the walk to a subset of the full configuration space (i.e. assuming
the random walk to be ergodic) the algorithm will asymptotically
converge to p, independent of the particular form chosen for
the transition probabilities, Tk, and the level actions, pk [41]. We
will call equilibration time the number of moves needed in the
simulation to reach convergence.

Whenever the last level is reached, one calculates the proper-
ties (K and P) on the new path s0, resets the initial path to the new
path, and start a new move. We will call Monte Carlo step (MCS)
any attempted move.

6. Choice of Tk and pk

In our simulation we started moving the path with the Lévy
construction described in the preceding section. We will now
show that this means that we are sampling an approximate T%

with free particle sampling.
For the free particle case ðU ¼ 0Þ one can find analytic expres-

sions for the optimal level action p%

k and the optimal transition
rule T%

k . For examples for the first level, Eq. (26) gives

p%

1ðxiþm=2Þprf ðxi,xiþm=2; tm=2Þrf ðxiþm=2,xiþm; tm=2Þ, ð33Þ

p%

1ðxiþm=2Þpeð1=mtÞðxi�xiþm=2Þ
2

eð1=mtÞðxiþm=2�xiþmÞ
2

, ð34Þ

p%

1ðxiþm=2Þpeð2=mtÞ½xiþm=2�ððxiþxiþmÞ=2Þ�2 : ð35Þ

This justify the Lévy construction and shows that it exactly
samples the free particle action (i.e. Ak¼1 for all k’s). This also
imply that for the interacting system we can introduce a level

inter action, ~pk such that

~pk ¼

Z
dskþ1 . . . dsl ~pðsÞ, ð36Þ

with

~pðsÞ ¼ e�U

Z
: ð37Þ

So that the acceptance probability will have the simplified
expression

Akðs
0Þ ¼min 1,

~pkðs
0Þ ~pk�1ðsÞ

~pkðsÞ ~pk�1ðs0Þ

� 	
: ð38Þ

For the k-th level inter action we chose the following expression:

~pkp exp �ðt‘kÞ
2
X½M=‘k �

i ¼ 1

X½M=‘k �

j ¼ 1

Vði‘kt,j‘ktÞ

2
4

3
5, ð39Þ

where ‘k ¼m=2k. In the last level ‘l ¼ 1 and the level inter action ~p l

reduces to the exact inter action ~p thus satisfying Eq. (27).
It is important to notice that during the simulation we never

need to calculate the complete level inter action since in the
acceptance probabilities enter only ratios of level inter actions
calculated on the old and on the new path. For example if for the
move we clipped out the interval ti, . . . ,tiþm with iþmoM,2 we
have

ln
~pkðs

0Þ

~pkðsÞ
¼�ðt‘kÞ

2
X2k

m ¼ 0

X2k

n ¼ 0

Vðtiþm‘kt,tiþn‘ktÞ

8<
:

þ
Xi�1

m ¼ 1

X2k

n ¼ 0

Vðm‘kt,tiþn‘ktÞþ
XM

m ¼ iþmþ1

X2k

n ¼ 0

Vðm‘kt,tiþn‘ktÞ

9=
;,

ð40Þ

which is computationally much cheaper than Eq. (39).

7. Correlated sampling

When the path reaches equilibrium (i.e. Pðs-s0Þ � pðs0Þ) if we
calculate

sðt0=tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ�

xðtþt0Þþxðt�t0Þ

2


 �� 	2
* +vuut , ð41Þ

we see that these deviations are generally smaller than the free
particle standard deviations used in the Lévy construction (see
Fig. 1)

sf ð‘kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘kt=2

q
: ð42Þ

As Fig. 1 shows, the discrepancy gets bigger as ‘k increases.
We thus corrected the sampling rule for the correct deviations.

For example for the first level we used

T1ðxiþm=2Þpe�ððxiþm=2�xÞ2Þ=2s2ðm=2Þ, ð43Þ

where x ¼ ðxiþxiþmÞ=2. Since the level action is given by

p1ðxiþm=2Þpe�ððxiþm=2�xÞ2Þ=2s2
f
ðm=2Þ ~p1ðxiþm=2Þ, ð44Þ

we can define a function

P1pe�ðxiþm=2�xÞ2=2½1=s2ðm=2Þ�1=s2
f
ðm=2Þ�

ð45Þ

and write the acceptance probability

A1ðs
0Þ ¼min 1,

P1ðsÞ

P1ðs0Þ

~p1ðs
0Þ ~p0ðsÞ

~p1ðsÞ ~p0ðs0Þ

� 	
, ð46Þ

which is a generalization of Eq. (38).

2 When iþmZM there is a minor problem with the periodic boundary

conditions and Eq. (40) will change.
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We maintain the acceptance ratios in [0.15, 0.65] by decreas-
ing (or increasing) the number of levels in the multilevel algo-
rithm as the acceptance ratios becomes too low (or too high).

In the Appendix we report some remarks on the error analysis
in our MC simulations.

8. Numerical results

We simulated the acoustic polaron fixing the adiabatic coupling
constant g¼ 0:02 and the inverse temperature b¼ 15. Such tem-
perature is found to be well suited to extract close to ground state
properties of the polaron. The path was M time slices long and the
time step was t¼ b=M. For a given coupling constant S we
computed the potential energy P extrapolating (with a linear w
square fit) to the continuum time limit, t-0, three points corre-
sponding to time-steps chosen in the interval tA ½1=100,1=30�. An
example of extrapolation is shown in Fig. 2 for the particular case
b¼ 15, g¼ 0:02, and S¼60.

In Fig. 5 and Table 1 we show that the results for the potential
energy as a function of the coupling strength. With the coupling
constant S¼52.5 we generated the equilibrium path which turns
out to be unlocalized (see Fig. 4). Changing the coupling constant
to S¼60 and taking the unlocalized path as the initial path we
sow the phase transition described in Fig. 3. The path after the
phase transition is localized (see Fig. 4).

Note that since S and t appear in the combination St2 in U (and
St in F) the same phase transition from an ES to a ST state will be
observed increasing the temperature. With the same Hamiltonian
we are able to describe two very different behavior of the acoustic
polaron as the temperature changes.

In Fig. 5 we show that the behavior of the potential energy as a
function of the coupling strength. The numerical results suggest
the existence of a phase transition between two different regimes
which corresponds to the so-called ES and ST states for the weak
and strong coupling region respectively. We found that paths
related to ES and ST are characteristically distinguishable. Two
typical paths for the ES and ST regimes involved in Fig. 5 are
illustrated in Fig. 4. The path in ES state changes smoothly in a
large time scale, whereas the path in ST state do so abruptly in a
small time scale with a much smaller amplitude which is an
indication that the polaron hardly moves. The local fluctuations
in the results for the potential energy have an autocorrelation
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Fig. 1. Shows the deviations (41) for a simulation with S¼60 and S¼52.5,

t¼ 0:025, l¼9. The free particle standard deviations (42) are plotted for compar-

ison. For S¼60 the path is localized while for S¼52.5 is unlocalized i.e. closer to

the free particle path.
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Fig. 2. Shows the time step, t, extrapolation for the potential energy, P¼/PS. We

run at b¼ 15, g¼ 0:02, and S¼60. The extrapolated value to the continuum limit is

in this case P¼�16:1ð5Þ which is in good agreement with the result of Ref. [33].

Table 1

MC results for P as a function of S at b¼ 15 and g¼ 0:02 displayed in Fig. 5. The

runs where made of 5� 105 MCS (with 5� 104 MCS for the equilibration) for the

ES states and 5� 106 MCS (with 5� 105 MCS for the equilibration) for the ST

states.

S P

10 �0.573(8)

20 �1.17(2)

30 �1.804(3)

40 �2.53(3)

50 �3.31(4)

53.5 �3.61(1)

55 �11.4(3)

60 �16.1(5)

70 �23.3(3)

80 �30.0(3)
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Fig. 3. At S¼60 the results for the potential energy P at each MC block (5� 103

MCS) starting from an initial unlocalized path obtained by a previous simulation at

S¼52.5. We can see that after about 30 blocks there is a transition from the ES

state to the ST state. In the inset is shown the autocorrelation function, defined in

Eq. (A.8), for the potential energy, for the two states. The correlation time, in MC

blocks, is shorter in the unlocalized phase than in the localized one. The computer

time necessary to carry on a given number of Monte Carlo steps is longer for the

unlocalized phase.
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function (defined in Eq. (A.8)) which decay much more slowly in
the ES state than in the ST state as shown in the inset of Fig. 3.
Concerning the critical property of the transition between the ES
and ST states our numerical results are in favor of the presence
of a discontinuity in the potential energy. In the large b limit at
b¼ 15 and fixing the adiabatic coupling constant to g¼ 0:02, the
ST state appears at a value of the coupling constant between
S¼52.5 and S¼55. With the increase of b, the values for
the potential energy P¼/PS increase in the weak coupling
regime but decrease in the strong coupling region.

From second order perturbation theory (see Ref. [12] Section 8.2)
follows that the energy shift Eðg,SÞ is given by �3Sg½1=2� gþg2

lnð1þ1=gÞ� from which one extracts the potential energy shift by
taking Pðg,SÞ ¼ gdEðg,SÞ=dg. From the Feynman variational approach
of Ref. [23] follows that in the weak regime the energy shift is
�3Sg½1=2�gþg lnð1þ1=gÞ� and in the strong coupling regime
�Sþ3

ffiffiffiffiffiffiffiffiffiffiffi
S=5g

p
.

9. Conclusions

We used for the first time a specialized path integral Monte
Carlo method to study the low temperature behavior of an acoustic
polaron. At an inverse temperature b¼ 15 (close to the ground
state of the polaron) and at a non-adiabatic parameter g¼ 0:02
typical of ionic crystals we found numerical evidence for a phase
transition between an extended state in the weak coupling regime
and a self-trapped one in the strong coupling regime at a value of
the phonons–electron coupling constant S¼54.3(7). The transition
also appears looking at the potential energy as a function of the
coupling constant where a jump discontinuity is observed. Com-
parison with the perturbation theory and the variational calcula-
tion of Ref. [23] is also presented.

The specialized path integral Monte Carlo simulation method
used as an unbiased way to study the properties of the acoustic
polaron has been presented in full detail. It is based on the Lévy
construction and the multilevel Metropolis method with corre-
lated sampling. Some remarks on the estimation of the errors in
the Monte Carlo calculation are also given in the Appendix. This
complement our previous paper [26] where fewer details on the
Monte Carlo method had been given.

Our method differs from previously adopted methods [29–34,
28,35]. Unlike the method of Ref. [29] our path integral is in real
space rather than in Fourier space, Refs. [34,35] put the polaron
on a lattice and not on the continuum as we did, while Refs. [33]
use PIMC single slice move whereas the multilevel PIMC we used
instead is a general sampling method which can efficiently make
multislice moves. The efficiency x (see the Appendix) for the
potential energy increases respect to the single slice sampling
because the coarsest movements are sampled and rejected before
the finer movements are even constructed. In Ref. [28] the Lévy
construction was used as in our case but the Metropolis test was
performed after the entire path had been reconstructed, using an
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effective action, and not at each intermediate level of the recon-
struction. In Ref. [28] the simpler Levy reconstruction scheme was
also found to be satisfactory for the efficient sampling of the
polaron configuration space even at strong coupling. Even if we
have not implemented the method of Ref. [28] we expect our
method to be of comparable efficiency to the one of these authors.
Infact it is true that the Levy construction is computationally cheap
but guiding the path as it is been reconstructed starting already
from the first levels as we did should have the advantage of refining
the sampling since the path is guided through configuration space
starting from the small displacements.

Although our results are of a numerical nature and we only
probed the acoustic polaron for one value of the non-adiabatic
parameter g we think that the analysis supports the existence of a
localization phase transition as the phonons–electron coupling
constant S is increased at constant temperature or as the tem-
perature is decreased at constant S. More so considering the fact
that the introduction of a cut-off parameter has shown to work
successfully in renormalization treatments.

Appendix A. Estimating errors

Since asymptotic convergence is guaranteed, the main issue is
whether configuration space is explored thoroughly in a reason-
able amount of computer time. Let us define a measure of the
convergence rate and of the efficiency of a given random walk.
This is needed to compare the efficiency of different transition
rules, to estimate how long the runs should be, and to calculate
statistical errors.

The rate of convergence is a function of the property being
calculated. Let OðsÞ be a given property, and let its value at step k

of the random walk be Ok. Let the estimator for the mean and
variance of a random walk with N MCS be

O¼/OkS¼
1

N

XN�1

k ¼ 0

Ok, ðA:1Þ

s2ðOÞ ¼/ðOk�OÞ2S: ðA:2Þ

Then the estimator for the variance of the mean will be

s2ðOÞ ¼
1

N

X
k

Ok�
1

N

X
k

O

 !2* +
, ðA:3Þ

s2ðOÞ ¼
1

N2

X
k

ðOk�OÞ

" #2* +
, ðA:4Þ

s2ðOÞ ¼
1

N2

X
k

/ðOk�OÞ2Sþ2
X
io j

/ðOi�OÞðOj�OÞS

8<
:

9=
;, ðA:5Þ

s2ðOÞ ¼
s2ðOÞ

N
1þ

2

Ns2ðOÞ
X
io j

/ðOi�OÞðOj�OÞS

8<
:

9=
;, ðA:6Þ

s2ðOÞ ¼
s2ðOÞkO

N
: ðA:7Þ

The quantity kO is called the correlation time and can be calculated
given the autocorrelation function for Ak ¼Ok�O. The estimator
for the autocorrelation function, ck, can be constructed observing
that in the infinite random walk, /AiAjS has to be a function of
9i�j9 only. Thus the estimator can be written

ck ¼
/A0AkS
s2ðOÞ ¼

1

ðN�kÞs2ðOÞ
XN�k

n ¼ 1

AnAnþk: ðA:8Þ

So that the estimator for the correlation time will be

kO ¼ 1þ
2

N

XN

k ¼ 1

ðN�kÞck: ðA:9Þ

To determine the true statistical error in a random walk, one needs
to estimate this correlation time. To do this, it is very important
that the total length of the random walk be much greater than kO.
Otherwise the result and the error will be unreliable. Runs in which
the number of steps NbkO are called well converged.

The correlation time gives the average number of steps needed
to decorrelate the property O. It will depend crucially on the
transition rule and has a minimum value of 1 for the optimal rule
(while sðOÞ is independent of the sampling algorithm).

Normally the equilibration time will be at least as long as the
equilibrium correlation time, but can be longer. Generally the
equilibration time depends on the choice for the initial path.
To lower this time is important to choose a physical initial
path. Since the polaron system is isotropic, we chose the initial
path with all time slices set to 0

!
.

The efficiency of a random walk procedure (for the property O)
is defined as how quickly the error bars decrease as a function
of the computer time, xO ¼ 1=s2ðOÞNT ¼ 1=s2ðOÞkOT where T is
the computer time per step. The efficiency depends not only on
the algorithm but also on the computer and the implementation.
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Chapter 34

Hellmann and Feynman theorem
versus diffusion Monte Carlo
experiment

Fantoni R., Solid State Communications 159, 106 (2013)
Title: “Hellmann and Feynman theorem versus diffusion Monte Carlo experiment”
Abstract: We discuss about the importance, in a computer experiment, of the choice of suit-
able estimators to measure a physical quantity. In particular we propose a new direct route
to determine estimators for observables which do not commute with the Hamiltonian, which
make use of the Hellmann and Feynman theorem. In a diffusion Monte Carlo simulation
this introduces a new bias to the measure due to the choice of the auxiliary function which
is independent from the bias due to the choice of the trial wave function. We used this route
to measure the radial distribution function of a spin one half Fermion fluid.
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In a computer experiment of a many particles system, a fluid,
the determination of suitable estimators to measure, through a
statistical average, a given physical quantity, an observable, plays
an important role. Whereas the average from different estimators
must give the same result, the variance, the square of the
statistical error can be different for different estimators. We will
denote with /OSf the measure of the physical observable O and
with / � � �Sf the statistical average over the probability distribu-
tion f. In this communication we use the word estimator to
indicate the function O itself, unlike the more common use of
the word to indicate the usual Monte Carlo estimator

PN
i ¼ 1Oi=N

of the average, where fOig is the set obtained by evaluating O over
a finite number N of points distributed according to f. This aspect
of finding out different ways of calculating quantum properties in
some ways resembles experimental physics. The theoretical
concept may be perfectly well defined but it is up to the ingenuity
of the experimentalist to find the best way of doing the measure-
ment. Even what is meant by ‘‘best’’ is subject to debate.

In this communication we propose a new direct route to
determine, in a diffusion Monte Carlo simulation, estimators for
observables which do not commute with the Hamiltonian. Our
new route makes use of the Hellmann and Feynman theorem and
it introduces a new bias to the measure due to the choice of the
auxiliary function. We show how this bias is independent from
the usual one due to the choice of the trial wave function. We

then use our route to measure the radial distribution function of a
spin one half Fermion fluid.

In ground state Monte Carlo simulations [1,2], unlike classical
Monte Carlo simulations [3–5] and path integral Monte Carlo
simulations [6], one has to resort to the use of a trial wave
function [1], C. While this is not a source of error, bias, in a
diffusion Monte Carlo simulation [2] of a system of Bosons, it is
for a system of Fermions, due to the sign problem [7]. Since this is
always present in a Monte Carlo simulation of Fermions we will
not consider it any further while talking about the bias.

Another source of bias inevitably present in all the three
experiments, which we will not take into consideration in the
following, is the finite size error. In the rest of the paper we will
generally refer to the bias to indicate the error (neglecting the
finite size error and the sign problem) that we make when
defining different estimators of the same quantity which do not
give the same average.

In a ground state Monte Carlo simulation, the energy has the
zero-variance principle [8]: as the trial wave function approaches
the exact ground state, the statistical error vanishes. In a diffusion
Monte Carlo simulation of a system of Bosons the local energy of
the trial wave function, ELðRÞ ¼ ½HCðRÞ�=CðRÞ, where R denotes a
configuration of the system of particles and H is the Hamiltonian
assumed to be real, is an unbiased estimator for the ground state.
For Fermions, the ground state energy measurement is biased by
the sign problem. For observables O which do not commute with
the Hamiltonian, the local estimator, OLðRÞ ¼ ½OCðRÞ�=CðRÞ, is
inevitably biased by the choice of the trial wave function. A way
of remedy to this bias can be the use of the forward walking
method [9,10] or the reptation quantum Monte Carlo method [11]
to reach pure estimates. Otherwise this bias can be made of

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ssc

Solid State Communications

0038-1098/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ssc.2013.01.028

n Corresponding author.

E-mail address: rfantoni@ts.infn.it

URL: http://www-dft.ts.infn.it/~rfantoni/

Solid State Communications 159 (2013) 106–109

Hellmann and Feynman theorem versus diffusion Monte Carlo
experiment 508



leading order d2, with d¼f0�C, where f0 is the ground state
wave function, introducing the extrapolated measure, O

ext
¼

2/OLSf�/OLSf vmc
where the first statistical average, the mixed

measure, is over the diffusion Monte Carlo (DMC) stationary
probability distribution f and the second, the variational measure,
over the variational Monte Carlo (VMC) probability distribution
f vmc which can also be obtained as the stationary probability
distribution of a DMC without branching [12].

One may follow different routes to determine estimators such
as the direct microscopic route, the virial route through the use of
the virial theorem, or the thermodynamic route through the use of
thermodynamic identities. In an unbiased experiment the differ-
ent routes to the same observable must give the same average.

In this communication we propose to use the Hellmann and
Feynman theorem as a direct route for the determination of
estimators in a diffusion Monte Carlo simulation. Some attempts
in this direction have been tried before [13,14]. The novelty of our
approach, in respect to Ref. [13], is a different definition of the
correction to the variational measure, necessary in the diffusion
experiment, and, in respect to Ref. [14], the fact is that the bias
stemming from the sign problem does not exhaust all the bias due
to the choice of the trial wave function.

We start with the eigenvalue expression ðHl
�ElÞCl

¼ 0 for the
ground state of the perturbed Hamiltonian Hl

¼HþlO, by taking
the derivative with respect to the parameter l, multiplying on the
right by the ground state at l¼ 0, f0, and integrating over the
particles configuration to getZ

dR f0ðH
l
�ElÞ

@Cl

@l
¼

Z
dR f0

dEl

dl
�

dHl

dl

 !
Cl:

Then we note that due to the Hermiticity of the Hamiltonian the
left hand side vanishes at l¼ 0 so that we further getR

dR f0OClR
dR f0C

l

�����
l ¼ 0

¼
dEl

dl

�����
l ¼ 0

: ð1Þ

This relation holds only in the l-0 limit unlike the more
common form [15] which holds for any l. Given El ¼R

dR f0HlCl=
R

dR f0C
l the ‘‘Hellmann and Feynman’’ (HF)

measure in a diffusion Monte Carlo experiment is then defined
as follows:

O
HF
¼

dEl

dl

�����
l ¼ 0

�/OLðRÞSf þ/DOa
L ðRÞSf þ/DOb

L ðRÞSf : ð2Þ

The a correction is

DOa
L ðRÞ ¼

HC0ðRÞ
C0ðRÞ

�ELðRÞ

� �
C0ðRÞ
CðRÞ

: ð3Þ

In a variational Monte Carlo experiment this term, usually, does
not contribute to the average (with respect to f vmcpC2) due to
the Hermiticity of the Hamiltonian. We will then define a
Hellmann and Feynman variational (HFv) estimator as OHFv

¼

OLþDOa
L . The b correction is

DOb
L ðRÞ ¼ ½ELðRÞ�E0�

C0ðRÞ
CðRÞ

, ð4Þ

where E0 ¼ El ¼ 0 is the ground state energy. It should be noticed
that our correction differs by a factor 1/2 from the zero-bias
correction defined in Ref. [13] because these authors chose

El ¼
R

dR ClHlCl=
R

dRðCl
Þ
2 right from the start. This correction

is necessary in a diffusion Monte Carlo experiment not to bias the
measure. The extrapolated Hellmann and Feynman measure will

then be O
HF�ext

¼ 2O
HF
�/OHFvSf vmc

. Both corrections a and b to

the local estimator depend on the auxiliary function,

C0 ¼ @Cl=@l9l ¼ 0. Of course if, on the left hand side of Eq. (2),

we had chosen Cl ¼ 0 as the exact ground state wave function, f0,
instead of the trial wave function, C, then both the corrections
would have vanished. When the trial wave function is sufficiently
close to the exact ground state function a good approximation to
the auxiliary function can be obtained from the first-order

perturbation theory for l51. So the Hellmann and Feynman
measure is affected by the new source of bias due to the choice of
the auxiliary function which is independent from the bias due to
the choice of the trial wave function.

We applied the Hellmann and Feynman route to the measure-
ment of the radial distribution function (RDF) of the Fermion fluid
studied by Paziani [16]. This is a fluid of spin one-half particles
interacting with a bare pair-potential vmðrÞ ¼ erfðmrÞ=r immersed
in a ‘‘neutralizing’’ background. The pair-potential depends on the
parameter m in such a way that in the limit m-0 one recovers the
ideal Fermi gas and in the limit m-1 one finds the Jellium model.
We chose this model because it allows to move continuously from
a situation where the trial wave function coincides with the exact
ground state, in the m-0 limit, to a situation where the correla-
tions due to the particles interaction become important, in the
opposite m-1 limit.

We chose as auxiliary function C0 ¼QC, the first one of
Toulouse et al. [17] (their Eq. (30))

Qs,s0 ðr,RÞ ¼�
r2

s

8pVnsns0

X
i,ja i

ds,si
ds0 ,sj

Z
dOr

4p
1

9r�rij9
, ð5Þ

where s and s0 denote the spin species, r ¼ 9r9 the separation

between two particles, rij the separation between particle i and j,

si the spin species of particle i, and dOr the solid angle element of
integration. The particles are in a recipient of volume V at a

density n¼ nþ þn� ¼ 1=½4pða0rsÞ
3=3� with a0 being the Bohr

radius, a¼ a0rs the lengths unit, and ns the density of the spin
s particles. With this choice the a correction partially cancels the

histogram estimator Is,s0 ðr,RÞ ¼
P

i,ja ids,si
ds0 ,sj

R
dðr�rijÞ dOr=

ð4pVnsns0 Þ, and one is left with a HFv estimator which goes to

zero at large r. This is because the quantity /DIas,s0 ðr,RÞSC2

¼�
R
@VNC2

ðRÞ=RQs,s0 ðr,RÞ � dS=r2
s equals minus one for all r with

rAV , instead of zero as normally expected. This is ultimately
related to the behavior of the auxiliary function on the border of VN.

The measure of the b correction also goes to zero at large r because
one is left with a statistical average of a quantity proportional to
ELðRÞ�E0. The Hellmann and Feynman measure then needs to be
shifted by þ1.

Our variational Monte Carlo experiments showed that in the
variational measure the average of the histogram estimator
agrees with the average of the HFv estimator within the square
root of the variance of the average sav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2K=N

p
(here s2 is the

variance, K the correlation time of the random walk, and N the
number of Monte Carlo steps) and the two sav are comparable.
This is expected since the HFv estimator is defined exactly in
Ref. [13] which correctly takes into account the definition of the
HF estimator within a variational Monte Carlo simulation. In the
fixed nodes diffusion experiment, where one has to add the
b correction not to bias the average (note once again that this is
defined by us as one half the zero-bias correction of Ref. [13]), the
Hellmann and Feynman measure has an average in agreement
with the one of the histogram estimator but sav increases. This is
to be expected from the extensive nature of b correction in which
the energy appears. Of course the averages from the extrapolated
Hellmann and Feynman measure and the extrapolated measure
for the histogram estimator also agree.

In the simulation for the Coulomb case, m-1, we made
extrapolations in time step and number of walkers for each value
of rs. Given a relative precision de0

¼De0=ex
p, where e0 ¼/ELSf =N,
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De0 is the statistical error on e0, and ep
x is the exchange energy,

we set relative precision de0
¼ 10�2% as our target. The extra-

polated values of the time step and number of walkers were then
used for all other values of m. We chose the trial wave function of
the Bijl–Dingle–Jastrow [18–20] form as a product of Slater
determinants and a Jastrow factor. The pseudo-potential was
chosen as in Ref. [21], J 2, is expected to give better results for
Jellium. Comparison with the simulation of the unpolarized fluid
at rs¼1 and m¼ 1 with the pseudo potential of Ref. [22], J 1, for

which the trial wave function becomes the exact ground state
wave function in the m-0 limit, shows that the two extrapolated
measures of the unlike histogram estimator differ one from the
other by less than 7� 10�3, the largest difference being at contact
(see the inset of Fig. 1). The use of more sophisticated trial wave
functions, taking into account the effect of backflow and three-
body correlations, is found to affect the measure even less. In
Table 1 we compare the contact values of the unlike RDF of the
unpolarized fluid at various rs and m from the measures of the
histogram estimator and the HF measures. We see that there is a
disagreement between the measure from the histogram estimator
and the HF measure only in the Coulomb m-1 case at rs ¼ 1,2.

In conclusions we defined a Hellmann and Feynman estimator
to measure a given physical property either in a variational Monte
Carlo experiment or in a diffusion Monte Carlo experiment. Our
definition coincides with the one of reference [13] in the varia-
tional case but is different in the diffusion case. We proof tested
our definitions on the calculation of the radial distribution
function of a particular Fermion fluid. Our simulations showed
that the bias is correctly accounted for in both kinds of experi-
ments but the variance increases in the diffusion experiment
relative to the one of the histogram estimator. We believe that the
one of determining the relationship between the choice of the
auxiliary function and the variance of the Hellmann and Feynman
measure is still an open problem.
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Fig. 1. (Color online) Unlike RDF for the unpolarized fluid of Paziani [16] at rs¼1

and m¼ 1 with 162 particles. On the left panel the calculation with the Jastrow J 1

with various measures: variational histogram (variational) and variational HFv

(HFv), mixed histogram (mixed) and HF (HF), and extrapolated histogram (extra-

polated). On the right panel the calculation with the Jastrow J 2 with the

histogram variational (variational J 2), mixed (mixed J 2), and extrapolated

(extrapolated J 2) measures. Also the extrapolated measure with the Jastrow J 2

is compared with the extrapolated measure with the Jastrow J 1. In the inset is

shown the difference between the histogram extrapolated measure of the

calculation with J 1 and the histogram extrapolated measure of the calculation

with J 2. 105 Monte Carlo steps were used in the simulations.

Table 1
Contact values for the unlike RDF of the unpolarized fluid of Paziani [16] at various

rs and m from the mixed measure of the histogram estimator (hist) and the HF

measure (HF) with the auxiliary function chosen as in Eq. (5), also reported are the

two extrapolated measures (ext and HF-ext). The trial wave function used was of

the Slater-Jastrow type with the Jastrow of Ref. [21], J 2. The last column gives the

error on the HF measure. One-hundred sixty two particles were used with

105 Monte Carlo steps.

rs m Hist Ext HF HF-ext sav on HF

10 1/2 1.000 (4) 0.91 (1) 1.00 0.92 0.03

10 1 0.644 (3) 0.582 (8) 0.65 0.59 0.03

10 2 0.182 (1) 0.146 (4) 0.18 0.14 0.06

10 4 0.0506 (8) 0.048 (2) 0.05 0.04 0.07

10 1 0.0096 (3) 0.0118 (8) 0.00 0.00 0.09

5 1/2 1.034 (3) 0.94 (1) 1.03 0.94 0.03

5 1 0.796 (3) 0.743 (9) 0.79 0.73 0.02

5 2 0.405 (2) 0.362 (6) 0.40 0.36 0.02

5 4 0.199 (1) 0.184 (4) 0.20 0.18 0.03

5 1 0.0799 (8) 0.080 (2) 0.06 0.06 0.03

2 1/2 1.0618 (4) 0.97 (1) 1.05 0.95 0.04

2 1 0.927 (3) 0.852 (9) 0.93 0.86 0.03

2 2 0.697 (3) 0.639 (9) 0.69 0.63 0.02

2 4 0.511 (2) 0.473 (7) 0.51 0.47 0.02

2 1 0.349 (2) 0.323 (5) 0.32 0.30 0.02

1 1/2 1.077 (3) 0.98 (1) 1.07 0.97 0.02

1 1 0.994 (3) 0.91 (1) 0.99 0.91 0.02

1 2 0.855 (3) 0.787 (9) 0.86 0.81 0.02

1 4 0.730 (2) 0.676 (8) 0.73 0.66 0.01

1 1 0.602 (2) 0.560 (7) 0.58 0.53 0.01

R. Fantoni / Solid State Communications 159 (2013) 106–109108

Hellmann and Feynman theorem versus diffusion Monte Carlo
experiment 510



References

[1] W.L. McMillan, Phys. Rev. A 138 (1965) 442.
[2] M.H. Kalos, D. Levesque, L. Verlet, Phys. Rev. A 9 (1974) 2178.
[3] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles,

McGraw-Hill, 1981.
[4] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press,

Oxford, 1987.
[5] D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press,

San Diego, 1996.
[6] D.M. Ceperley, Rev. Mod. Phys. 67 (1995) 279.
[7] D.M. Ceperley, J. Stat. Phys. 63 (1991) 1237.
[8] D.M. Ceperley, M.H. Kalos, in: K. Binder (Ed.), Monte Carlo Methods in

Statistical Physics, Springer-Verlag, Heidelberg, 1979, p. 145.
[9] K.S. Liu, M.H. Kalos, G.V. Chester, Phys. Rev. A 10 (1974) 303.

[10] R.N. Barnett, P.J. Reynolds, W.A. Lester Jr., J. Comput. Phys. 96 (1991) 258.
[11] S. Baroni, S. Moroni, Phys. Rev. Lett. 82 (1999) 4745.

[12] C.J. Umrigar, M.P. Nightingale, K.J. Runge, J. Chem. Phys. 99 (1993) 2865.
[13] R. Assaraf, M. Caffarel, J. Chem. Phys. 119 (2003) 10536.
[14] R. Gaudoin, J.M. Pitarke, Phys. Rev. Lett. 99 (2007) 126406.
[15] L.D. Landau, E.M. Lifshitz, third ed.,Quantum Mechanics. Non-relativistic

Theory, vol. 3, Pergamon Press, 1977. (Course of Theoretical Physics. Eq.
(11.16)).

[16] S. Paziani, S. Moroni, P. Gori-Giorgi, G.B. Bachelet, Phys. Rev. B 73 (2006)
155111.

[17] J. Toulouse, R. Assaraf, C.J. Umrigar, J. Chem. Phys. 126 (2007) 244112.
[18] A. Bijl, Physica 7 (1940) 869.
[19] R.B. Dingle, Philos. Mag. 40 (1949) 573.
[20] R. Jastrow, Phys. Rev. 98 (1955) 1479.
[21] D.M. Ceperley, in: G.F. Giuliani, G. Vignale (Eds.), Proceedings of the Inter-

national School of Physics Enrico Fermi, IOS Press, Amsterdam, 2004,

pp. 3–42. (Course CLVII).
[22] D. Ceperley, Phys. Rev. B 18 (1978) 3126.

R. Fantoni / Solid State Communications 159 (2013) 106–109 109

Hellmann and Feynman theorem versus diffusion Monte Carlo
experiment 511



Hellmann and Feynman theorem versus diffusion Monte Carlo
experiment 512



Chapter 35

The restricted primitive model of
ionic fluids with nonadditive
diamaters
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Title: “The restricted primitive model of ionic fluids with nonadditive diamaters”
Abstract: The restricted primitive model with nonadditive hard-sphere diameters is shown
to have interesting and peculiar clustering properties. We report accurate calculations of
the cluster concentrations. Implementing efficient and ad hoc Monte Carlo algorithms we
determine the effect of nonadditivity on both the clustering and the gas-liquid binodal. For
negative nonadditivity, tending to the extreme case of completely overlapping unlike ions,
the prevailing clusters are made of an even number of particles having zero total charge.
For positive nonadditivity, the frustrated tendency to segregation of like particles and the
reduced space available to the ions favors percolating clusters at high densities.
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Ionic soft matter [1,2] is a class of conventional
condensed soft matter whose interactions are dominated
by electrostatics crucially affecting its physical properties.
Among the most popular representatives of such a class of
materials are natural and synthetic saline environments,
like aqueous and nonaqueous electrolyte solutions and
molten salts, including room-temperature ionic liquids,
as well as a variety of polyelectrolytes and colloidal
suspensions. Equally well known are biological systems of
proteins.
The simplest fluid modeling an ionic colloidal suspen-

sion is the restricted primitive model (RPM) [3] a binary
mixture of uniformly charged hard spheres (HS) for which
the like-unlike collision diameter between a particle of
species 1, of diameter σ11 = σ, and a particle of species 2
of diameter σ22 = σ, is equal to the arithmetic mean
σadd12 = (σ11+σ22)/2 = σ. The two species are of charge ±q
with equal concentrations to ensure charge neutrality, and
the particles move in a medium of fixed dielectric constant
ǫ. The phase diagram of this model has been widely stud-
ied both within computer experiments [4–10] and through
analytical theories [11–18].
From these studies emerged how, in the vapor phase

of this fluid, and thus in the determination of the phase
diagram, an important role is played by association and
clustering. In an old paper, [19] one of us studied a more

general RPM fluid where it is allowed for size nonadditiv-
ity amongst the particles: the like-unlike collision diame-
ter differs from σadd12 by a quantity Δ= (σ12−σadd12 )/σadd12
called the nonadditivity parameter. It was suggested
through the use of integral equation theories, that such
a fluid might have a dramatic change of its clustering
properties. The nonadditivity of the HS diameters does
not destroy the simplifying symmetry of the model but
it introduces modifications of the properties of the pure
RPM model making it a paradigm for the self-assembly of
isotropic particles and a challenge to present-day theories
of fluids. There seems to be a lack of literature on this
subject excepted for ref. [20].
In this letter, we reconsider such a model fluid by

using more direct, highly efficient numerical simulations.
In particular we analyze the clustering properties outside
of the gas-liquid coexistence region. As we will see the
clustering turns out to be greatly affected by the nonaddi-
tivity parameter. To the best of our knowledge this is the
first time that such a model fluid is studied with numerical
simulations. The debate on the importance of clustering
in the RPM is rejuvenated by studying this new model
fluid.
The model system here considered may be realized

experimentally through a colloid-star polymer mixture
where both species are charged [21,22] and may be relevant

46003-p1

The restricted primitive model of ionic fluids with nonadditive
diamaters 514



Riccardo Fantoni and Giorgio Pastore

for modeling room temperature ionic liquids [23–26]. It is
the RPM of nonadditive charged hard spheres (NACHS).
The RPM consists of N/2 uniformly charged hard spheres
of diameter σ carrying a total charge +q and N/2
uniformly charged hard spheres of the same diameter
carrying a total charge −q. The spheres are moving
in a dielectric continuum of dielectric constant ǫ. The
interaction between ions of species i and j a distance r
apart is given by

βφij(r) =

⎧

⎨

⎩

+∞, r� σij ,
qiqj
kBTǫr

, r > σij ,
i, j = 1, 2, (1)

where β = 1/kBT with T the absolute temperature and kB
Boltzmann’s constant, qi the charge of an ion of species
i. The ions form a mixture of NACHS, i.e., σ11 = σ22 =
σ and σ12 = σ(1+Δ), with Δ>−1 the nonadditivity
parameter. A thermodynamic state is completely specified
by the reduced density ρ∗ = ρσ3 =Nσ3/V , where V is
the volume containing the fluid, the reduced temperature
T ∗ = kBTǫσ/q

2, and the nonadditivity parameter Δ.
We used canonical NV T Monte Carlo (MC) simulations

to study the fluid in a cubic simulation box of volume
V =L3 with periodic boundary conditions. The long range
of the 1/r interaction was accounted for using the Ewald
method [27].
We start from a simple cubic configuration of two

crystals one made of species 1 and one made of species
2 juxtaposed. The maximum particle displacement, the
same along each direction, is determined during the first
stage of the equilibration run in such a way to ensure an
average acceptance ratio of 50%. We need around 105 MC
steps (MCS) in order to equilibrate the samples and 106

MCS/particle for the statistics.
During the simulation we perform a cluster analysis

in the vapor phase. After each 100MCS we determine
the number Nn of clusters made of n particles, so that
∑

n nNn =N . We assume [28,29] that a group of ions
forms a cluster if the distance r, calculated using periodic
boundary conditions, between a particle of species i of
the group and at least one other particle of species j is
less then some fixed value, i.e., r < σij + δσ where δ is
a parameter1. In all our simulations we chose δ= 0.1 (in
ref. [5] a detailed study of the sensitivity of the clustering
properties on this parameter is carried out for the pure
RPM fluid). Then we take the average of these numbers
〈Nn〉. Here Qn = n〈Nn〉/N gives the probability that a
particle belongs to a cluster of size n. To establish a
criterion for percolation, we also find clusters without
using periodic boundary conditions. One of these clusters
percolates if, amongst its particles, there are two that do
not satisfy the cluster condition as a pair, but do satisfy
the condition if periodic boundary conditions are used.

1Many different ways of defining a cluster have been proposed
[12,15,30–32] since the Bjerrum theory [33] of ionic associations first
appeared. Our choice corresponds to the geometric one of Gillan [12].

In fig. 1 we simulated the fluid at a temperature T ∗ = 0.1
above the critical temperature, T ∗c ≈ 0.05, of the pure
RPM [6,9,10]. We see how, at high density, a positive
nonadditivity is responsible for a gain of clustering in the
fluid, which tends to admit percolating clusters also due
to the fact that a positive nonadditivity pushes the fluid
at densities closer to the maximum density attainable.
It is well known that in the neutral nonadditive hard-
sphere fluid a positive nonadditivity tends to demix the
mixture at lower densities as Δ increases [34–39], so in our
fluid we will have a competition between the tendency to
demix in the neutral nonadditive hard-sphere fluid and the
tendency to cluster in the RPM fluid. At ρ∗ = 0.45 both
the pure RPM and the Δ=+0.3 have percolating clusters.
Lowering the density we first reach a state, at ρ∗ = 0.3,
where the negative nonadditivity gives the same clustering
as the RPM and the positive nonadditivity gives higher
percolating clustering, then a state, at ρ∗ = 0.1, where the
positive nonadditivity gives the same clustering of RPM
and the negative nonadditivity a higher one, and finally
a state, at ρ∗ = 0.01, at low densities where a negative
nonadditivity increases the clustering over the RPM fluid
and a positive nonadditivity diminishes it. Summarizing,
for the fixed values of |Δ| used, we find, in agreement
with ref. [19], that: a) at high density and positive Δ
we have more clustering than in the additive model,
b) at high density and negative Δ we have less clustering
than in the additive model, c) at low density and positive
Δ we have less clustering than in the additive model,
d) at low densities and negative Δ we have more clustering
than in the additive model. These points can be explained
observing that a pair of unlike ions have a higher affinity
with negative Δ. Thus, in a bulk phase negative Δ favors
hetero-coordination. Clusters of a given number of ions
tend to be smaller when Δ is negative. As a result, at
low density (where excluded volume plays a small role),
the extra affinity due to negative Δ enhances cluster
formation. By contrast, at high densities, the increase in
available volume from the resulting hetero-coordination
with negative Δ has an important role, reducing the
density-driven imperative to form clusters in the negative
Δ case. The same arguments in reverse explain the
behavior of a system with positive nonadditivity where
now homo-coordination at high density is favored [19].
To qualitatively reproduce the curves with nonpercolat-

ing clusters we can use the Tani and Henderson cluster-
ing analysis [28,29,40] with an inter-cluster configurational
partition function the one of an ideal gas of clusters, in
reduced units, Zinter ≈ (V/σ3)Nt , where Nt =

∑nc
n=1Nn is

the total number of clusters and we assume to have only
clusters made of up to nc particles. Then the equations for
the equilibrium cluster concentrations are

〈Nn〉/N = λnzintran /ρ∗, n= 1, 2, . . . , nc, (2)

1 =

nc
∑

n=1

n〈Nn〉/N, (3)
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Fig. 1: (Color online) Clustering properties of the fluid at various values of nonadditivity and density. Nn are the number of
clusters made of n particles. We chose δ= 0.1. In the MC simulations we used N = 100 particles and a number of MCS= 107.
The insets allow α= 〈N1〉/N , the degree of dissociation, to be directly read off from the graph.

where zintran are the configurational intra-cluster partition
functions in reduced units with zintra1 = 2 and λ(= αρ∗/2)
is a Lagrange multiplier to be determined by eq. (3).
Moreover neglecting the excess internal energy of the
clusters we can approximate zintran ≈ (vn/σ3)(n−1)2n/n!
where vn is the volume of an n-cluster. Assuming further
the cluster to be in a closed packed configuration we can
approximate2 vn ≈ nσ3/

√
2. This simple approximation

is temperature independent and its usefulness is thereby
quite limited.
We checked the size dependence of the curves shown in

fig. 1 and saw that when we have no percolating clusters
the curve was unaffected by a choice of an higher number
of particles (up to 5000), while the curve changed in the
presence of percolating clusters. In this case we found that
a common curve is given by 〈Nx〉/N with x= n/N ∈ [0, 1].
Then, in order to satisfy the normalization condition,
1 =
∑

n n(〈Nn〉/N)≈
∫

dxxN2(〈Nx〉/N), we must have
(〈Nx〉/N ′)/(〈Nx〉/N ′′)≈ (N ′′/N ′)2 for two different sizes
N ′ and N ′′.
In fig. 2 we show the clustering analysis for the fluid

with Δ approaching −1 at T ∗ = 0.1 and ρ∗ = 0.45. We
see how letting Δ approach −1 stabilizes small neutrally
charged clusters and lowers the degree of dissociation
α= 〈N1〉/N . The first stable cluster is the dipole: the
“overlap” of a positive and a negative sphere. This are
dipoles of moment qr12 with r12 <σ(1+Δ+ δ) which

2Clearly a proper analysis of the cluster volume would itself
require a MC simulation [12].

Fig. 2: (Color online) We show the clustering properties of the
fluid at T ∗ = 0.1 and ρ∗ = 0.45 at various values of negative
nonadditivity approaching −1. Nn are the number of clusters
made of n particles. We chose δ= 0.1. In the MC simulations
we used N = 100 particles and a number of MCS= 5× 107.

may lack a gas-liquid criticality [41]. We clearly have a
transition from a conducting to an insulating phase as Δ
goes from 0 to −1. We expect that in the limiting case
of Δ=−1 the system we obtain is the neutral HS fluid of
half the density. This is confirmed by a comparison of
the like radial distribution functions with the one of the
neutral HS even if the Δ=−1 fluid simulation rapidly
slows down into the frozen configuration of the overlapping
anions and cations. In order to overcome this problem
one should alternate single-particle moves with neutrally
charged 2-cluster moves.
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In order to qualitatively reproduce the curve of fig. 2
we need to use eqs. (2), (3) with zintran =

∑n
s=0 z

intra
s,n−s

where zintras,t are the configurational intra-cluster partition
functions of a cluster made of s anions and t cations,

zintras,t =
1

s!t!

∫

Ωs,t

dr2 . . . drs+t
σ3(s+t−1)

×e−β
∑s+t
µ>ν=1 φiµjν (rµν) (4)

≈ (s+ t)
(s+t−1)

s!t!
(K/K0)

min{s,t}, (5)

K/K0 =

∫ λB/2

σ(1+∆)

r2e+λB/r dr
/

∫ λB/2

σ(1+∆)

r2 dr, (6)

where the configurational integral goes only over the
relative positions and it covers the region Ωs,t of s anions
clusters configuration space, λB = σ/T

∗ is the Bjerrum
length, Roman indices denote the particle species, Greek
indices denote the particle labels, a Roman index with
a Greek subindex denotes the species of the particle
corresponding to the Greek subindex, and rµν = rν − rµ
denotes the separation vector between particle μ and
particle ν. Equation (5) is justified as follows. Let us
call the anions i− = 1−, . . . , s− and the cations j+ =
1+, . . . , t+. From eq. (5) it follows that

zintrat,t =
1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i>j=1

e−2λB/ri+j+
t
∏

i,j=1

e+λB/ri+j−

≈ 1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i,j=1

e+λB/ri+j− , (7)

where we approximated e−λB/r ≈ 1 which is justified at
high T ∗ < 1/2(1+Δ) or low λB . Now we observe that
for example r1+2− = |r1+1− + r1−2− | with r1−2− >σ and
e+λB/r1+2− ≈ 1. So that for negative nonadditivity we can
further approximate

zintrat,t ≈ 1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i,j=1

e+λB/ri+j−

≈ 1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i=1

e+λB/ri+i−

∝∼ (2t)
(2t−1)

t!2
(K/K0)

t , (8)

where the factor (2t)(2t−1) takes into account the volume
of Ωt,t. Using the same chain of approximations we reach
eq. (5). We immediately see how zintra1,1 ∝K/σ3 becomes
bigger and bigger as Δ→−1 and the same holds for all
the zintrak,k which clearly dominate over all the others z

intra
s,t

with s �= t. And this qualitatively explains fig. 2.
Sufficiently close to the critical point we determined

the qualitative change in the behavior of the gas-liquid
coexistence region by switching on a negative or a positive
nonadditivity. To this aim we divided the simulation box
into m3 cubes of side ℓ=L/m and registered the density
inside each cell ρi =Ni/ℓ3, where Ni is the number of
particles inside the i-th cell so that

∑m3

i=1Ni =N . Then
we calculated the density distribution function Pm(ρ) =
∑m3

i=1 Pm(ρi)/m
3 [42,43], where Pm(ρi) is the distribution

function for the i-th cell. With
∫

Pm(ρ) dρ= 1. Above the
critical temperature the density probability distribution
function can be described by a Gaussian centered at the
simulation density, whereas below, it becomes bimodal
with two peaks one centered at the gas density and one at
the liquid density.
We start from an initial configuration of particles of

random species placed on a simple cubic lattice. We
equilibrate (melt) the fluid for 106 MCS/particle. We
then sampled the distribution function every 10 MCS.
To enhance the efficiency of the determination of the
cell density distribution, every 10 MCS, we choose the
subdivision of the simulation box into cells with a random
displacement r= (rx, ry, rz) with rx, ry, rz ∈ [0, L]. And
we measured the distribution function on runs of 106

MCS/particle.
Choosing m= 2 and N = 100 the results for the fluid at

a temperature T ∗ = 0.02, ρ∗ = 0.2, well within the coex-
istence region of the pure RPM fluid, and Δ= 0,±D
with D= 10−1, 10−2, 10−3 are shown in fig. 3. In this case
the minimum density that can be registered is 1/ℓ3 =
0.2× 8/100 = 0.016. We see that the pure RPM fluid shows
a density distribution function which has three peaks with
the first peak, which lies below the minimum density, at
approximately the low density of the gas phase, the second
peak at the simulations density ρ∗ = 0.2 which is due to
the fact that the fluid develops surfaces between the gas
and the liquid phase [44], and the third peak at approxi-
mately the high density of the liquid phase. We see from
the figure that increasing D the middle peak is lost first
in the positive additive model and then in the negative
nonadditive models. Moreover for the biggest D the peak
of the liquid phase is barely visible. This may be due to
the fact that one had to choose a proper simulation density
closer to the density of the liquid [42,43]. We clearly see
how this analysis works like a “microscope” on the degree
of nonadditivity predicting an increase(decrease) of the
coexistence region for small negative(positive) nonaddi-
tivity. This behavior can be explained as follows. Positive
nonadditivity increases the effective excluded-volume of
ions, thereby reducing the density of the liquid phase, and
negative nonadditivity does the opposite.
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Fig. 3: (Color online) Cell density distribution function for
the fluid at T ∗ = 0.02, ρ∗ = 0.2 and Δ= 0,±D with D=
10−3, 10−2, 10−1. We used N = 100 and m= 2 with 106

MCS/particle.

We believe that our results could be relevant for the
interpretation of experimental work on the phase diagrams
of room temperature ionic liquids [25]. In these experimen-
tal systems the liquid-liquid binodals shifted above and
below the one of the pure RPM are observed depending on
the kind of solvent. If on the one hand this can be ascribed
to the different dielectric constant of the solvent [24] on
the other hand it is clear that depending on the kind of
solvent used the anion-cation contact-pairing affinity may
vary [45] and thus the different experimental ionic liquids
considered should be more correctly described by compari-
son not just with the pure RPM but with the more realistic
primitive model with the addition of either a positive or
negative size nonadditivity.

In conclusion, we have performed for the first time a
MC simulations study of the vapor phase of the RPM
with nonadditive diameters, with particular emphasis on
its clustering properties. A density distribution func-
tion analysis shows how the gas-liquid coexistence region
evolves by switching on the nonadditivity. A negative
nonadditivity tends to enlarge the coexistence region while
a positive one to shrink it.
From the cluster analysis we where able to distinguish

between two kind of behaviors for the cluster concentra-
tions. When we are below the percolation threshold the
curves for the cluster concentrations as a function of the
cluster size are independent of the number of particles
used in the simulation and can be qualitatively explained
by a simple clustering theory where one approximates the
clusters to form an ideal gas and the n-cluster as formed
by n noninteracting particles, for not too small density or
nonadditivity. When we are above the percolation thresh-
old the curves depend on the number of particles used in
the simulation and obey a simple scaling relationship.
At low density, the negative nonadditive fluid has higher

clustering than the pure RPM whereas at high densities
the positive nonadditive fluid has a greater degree of
clustering. The positive nonadditive fluid is the first one
to reach the percolating clusters upon an increase of the
density. This is due to the less space available to the
ions, for a given density, for positive nonadditivity and
to the frustrated tendency to segregation of like particles
at high density. A negative nonadditivity tends to greatly
enhance the formation of the neutrally charged clusters,
starting with the dipole, as can be predicted from the
simple clustering theory refined at the intra-cluster level.
Traces of these features can also be read from an analysis
of the partial radial distribution function and structure
factors, which will be presented elsewhere.
In parallel with the density distribution function analy-

sis we are currently planning to perform a Gibbs ensemble
MC study of the gas-liquid binodal to establish more accu-
rately the dependence on the nonadditivity parameter.
We hope that the present study could foster additional

theoretical and computational studies as well as experi-
mental realizations of these simple but rich fluids.
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[39] Santos A., López de Haro M. and Yuste S. B.,

J. Chem. Phys., 132 (2010) 204506.
[40] Tani A. and Henderson D., J. Chem. Phys. , 79 (1983)

2390.
[41] Rovigatti L., Russo E. and Sciortino F., Phys. Rev.

Lett., 107 (2011) 237801.
[42] Rovere M., Heermann D. W. and Binder K., Euro-

phys. Lett., 6 (1988) 585.
[43] Rovere M., Heermann D. W. and Binder K., J. Phys.:

Condens. Matter, 2 (1990) 7009.
[44] Smit B., de Smedt Ph. and Frenkel D., Mol. Phys.,

68 (1989) 931.
[45] Kalcher I., Schulz J. C. F. and Dzubiella J., Phys.

Rev. Lett., 104 (2010) 097802.

46003-p6

The restricted primitive model of ionic fluids with nonadditive
diamaters 519



The restricted primitive model of ionic fluids with nonadditive
diamaters 520



Chapter 36

Janus fluid with fixed patch
orientations: theory and simulations

Maestre M. A. G., Fantoni R., Giacometti A. and Santos A., J. Chem. Phys. 138, 094904
(2013)
Title: “Janus fluid with fixed patch orientations: theory and simulations”
Abstract: We study thermophysical properties of a Janus fluid with constrained orientations,
using analytical techniques and numerical simulations. The Janus character is modeled by
means of a Kern-Frenkel potential where each sphere has one hemisphere of square-well and
the other of hard-sphere character. The orientational constraint is enforced by assuming that
each hemisphere can only point either North or South with equal probability. The analytical
approach hinges on a mapping of the above Janus fluid onto a binary mixture interacting via
a ”quasi” isotropic potential. The anisotropic nature of the original Kern-Frenkel potential
is reflected by the asymmetry in the interactions occurring between the unlike components of
the mixture. A rational-function approximation extending the corresponding symmetric case
is obtained in the sticky limit, where the square-well becomes infinitely narrow and deep,
and allows a fully analytical approach. Notwithstanding the rather drastic approximations
in the analytical theory, this is shown to provide a rather precise estimate of the structural
and thermodynamical properties of the original Janus fluid.
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We study thermophysical properties of a Janus fluid with constrained orientations, using analytical
techniques and numerical simulations. The Janus character is modeled by means of a Kern–Frenkel
potential where each sphere has one hemisphere of square-well and the other of hard-sphere charac-
ter. The orientational constraint is enforced by assuming that each hemisphere can only point either
North or South with equal probability. The analytical approach hinges on a mapping of the above
Janus fluid onto a binary mixture interacting via a “quasi” isotropic potential. The anisotropic nature
of the original Kern–Frenkel potential is reflected by the asymmetry in the interactions occurring
between the unlike components of the mixture. A rational-function approximation extending the cor-
responding symmetric case is obtained in the sticky limit, where the square-well becomes infinitely
narrow and deep, and allows a fully analytical approach. Notwithstanding the rather drastic approx-
imations in the analytical theory, this is shown to provide a rather precise estimate of the structural
and thermodynamical properties of the original Janus fluid. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4793626]

I. INTRODUCTION

Janus fluids refer to colloidal suspensions formed by
nearly spherical particles with two different philicities evenly
distributed in the two hemispheres.1, 2 Under typical exper-
imental conditions in a water environment, one of the two
hemispheres is hydrophobic, while the other is charged, so
that different particles tend to repel each other, hence forming
isolated monomers. On the other hand, if repulsive forces are
screened by the addition of a suitable salt, then clusters tend
to form driven by hydrophobic interactions.3

This self-assembly mechanism has recently attracted in-
creasing attention due to the unprecedented improvement in
the chemical synthesis and functionalization of such colloidal
particles, that allows a precise and reliable control on the ag-
gregation process that was not possible until a few years ago.4

From a technological point of view, this is very attractive as it
paves the way to a bottom-up design and engineering of nano-
materials alternative to conventional top-down techniques.5

One popular choice of model describing the typical du-
ality characteristic of the Janus fluid is the Kern–Frenkel
model.6 This model considers a fluid of rigid spheres hav-
ing their surfaces partitioned into two hemispheres. One of
them has a square-well (SW) character, i.e., it attracts other
similar hemispheres through a SW interaction, thus mimick-
ing the short-range hydrophobic interactions occurring in real
Janus fluids. The other part of the surface is assumed to have
hard-sphere (HS) interactions with all other hemispheres, i.e.,

a)Electronic mail: maestre@unex.es.
b)Electronic mail: rfantoni@ts.infn.it.
c)Electronic mail: achille.giacometti@unive.it.
d)Electronic mail: andres@unex.es. URL: http://www.unex.es/eweb/fisteor/

andres.

with both like HS as well as SW hemispheres. The HS hemi-
sphere hence models the charged part in the limit of highly
screened interactions that is required to have aggregation of
the clusters.

Although in the present paper only an even distribution
between SW and HS surface distributions will be considered
(Janus limit), other choices of the coverage, that is the fraction
of SW surface with respect to the total one, have been studied
within the Kern–Frenkel model.7 In fact, one of the most at-
tractive features of the general model stems from the fact that
it smoothly interpolates between an isotropic HS fluid (zero
coverage) and an equally isotropic SW fluid (full coverage).8, 9

The thermophysical and structural properties of the Janus
fluid have been recently investigated within the framework
of the Kern–Frenkel model using numerical simulations,7, 10

thus rationalizing the cluster formation mechanism charac-
teristic of the experiments.3 The fluid-fluid transition was
found to display an unconventional and particularly inter-
esting phase diagram, with a re-entrant transition associated
with the formation of a cluster phase at low temperatures and
densities.7, 10 While numerical evidence of this transition is
quite convincing, a minimal theory including all necessary in-
gredients for the onset of this anomalous behavior is still miss-
ing. Two previous attempts are however noteworthy. Rein-
hardt et al.11 introduced a van der Waals theory for a suitable
mixture of clusters and monomers that accounts for a re-
entrant phase diagram, whereas Fantoni et al.12, 13 developed
a cluster theory explaining the appearance of some “magic
numbers” in the cluster formation. This notwithstanding, the
challenge of an analytical theory fully describing the anomaly
occurring in the phase diagram of the Janus fluid still remains.

The aim of the present paper is to attempt a new route
in this direction. We will do this by considering a Janus fluid

0021-9606/2013/138(9)/094904/19/$30.00 © 2013 American Institute of Physics138, 094904-1
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within the Kern–Frenkel model, where the orientations of the
SW hemispheres are constrained to be along either North or
South, in a spirit akin to Zwanzig model for the isotropic-
nematic transition in liquid crystals.14

Upon observing that under those conditions, one ends
up with only four possible different interactions (North-
North, North-South, South-North, and South-South), this con-
strained model will be further mapped onto a binary mixture
interacting via a “quasi” isotropic potential. Here the term
“quasi” refers to the fact that a certain memory of the orig-
inal anisotropic Kern–Frenkel potential is left: after the map-
ping, one has to discriminate whether a particle with patch
pointing North (“spin-up”) is lying above or below that with
a patch pointing South (“spin-down”). This will introduce an
asymmetry in the unlike components of the binary mixture,
as explained in detail below. In order to make the problem
tractable from the analytical point of view, the particular limit
of an infinitely narrow and deep square-well (sticky limit)
will be considered. This limit was originally devised by Bax-
ter and constitutes the celebrated one-component sticky-hard-
sphere (SHS) or adhesive Baxter model.15 By construction,
our model reduces to it in the limit of fully isotropic attractive
interactions. The latter model was studied within the Percus–
Yevick (PY) closure16 in the original Baxter work and in a
subsequent work by Watts et al.17 The extension of this model
to a binary mixture was studied by several authors.18–22 The
SHS model with Kern–Frenkel potential was also studied in
Ref. 23, via a virial expansion at low densities.

A methodology alternative to the one used in the above
studies hinges on the so-called “rational-function approxima-
tion” (RFA),24, 25 and is known to be equivalent to the PY ap-
proximation for the one-component SHS Baxter model15 and
for its extension to symmetric SHS mixtures.18, 22, 24 The ad-
vantage of this approach is that it can be readily extended to
more general cases, and this is the reason why it will be em-
ployed in the present analysis to consider the case of asym-
metric interactions. We will show that this approach provides
a rather precise estimate of the thermodynamic and structural
properties of the Janus fluids with up-down orientations by
explicitly testing it against Monte Carlo (MC) simulations of
the same Janus fluid.

The remaining part of the paper is envisaged as follows.
Section II describes our Janus model and its mapping onto a
binary mixture with asymmetric interactions. It is shown in
Sec. III that the thermophysical quantities do not require the
knowledge of the full (anisotropic) pair correlation functions
but only of the functions averaged over all possible North or
South orientations. Section IV is devoted to the sticky-limit
version of the model, i.e., the limit in which the SW hemi-
sphere has a vanishing well width but an infinite depth lead-
ing to a constant value of the Baxter parameter τ . The ex-
act cavity functions to first order in density (and hence exact
up to second and third virial coefficients) in the sticky limit
are worked out in Appendix A. Up to that point all the equa-
tions are formally exact in the context of the model. Then, in
Sec. V we present our approximate RFA theory, which hinges
on a heuristic extension from the PY solution for mixtures
with symmetric SHS interactions to the realm of asymmetric
SHS interactions. Some technical aspects are relegated to Ap-

pendices B and C. The prediction of the resulting analytical
theory is compared with MC simulations in Sec. VI, where
a semi-quantitative agreement is found. Finally, the paper is
closed with conclusions and an outlook in Sec. VII.

II. MAPPING THE KERN–FRENKEL POTENTIAL
ONTO A BINARY MIXTURE

A. The Kern–Frenkel potential for a Janus fluid

Consider a fluid of spheres with identical diameters σ

where the surface of each sphere is divided into two parts.
The first hemisphere (the green one in the color code given in
Fig. 1) has a SW character, thus attracting another identical
hemisphere via a SW potential of width (λ − 1)σ and depth
ε. The second hemisphere (the red one in the color code of
Fig. 1) is instead a HS potential. The orientational dependent
pair potential between two arbitrary particles μ and ν (μ, ν

= 1, . . . , N, where N is the total number of particles in the
fluid) has then the form proposed by Kern and Frenkel6

�(rμν, n̂μ, n̂ν) = φHS(rμν) + φSW(rμν)	 (̂rμν, n̂μ, n̂ν),

(2.1)

where the first term is the HS contribution

φHS (r) =
{

∞, 0 < r < σ,

0, σ < r,
(2.2)

and the second term is the orientation-dependent attractive
part, which can be factorized into an isotropic SW tail

φSW (r) =
{

−ε, σ < r < λσ,

0, λσ < r,
(2.3)

multiplied by an angular dependent factor

	 (̂rμν, n̂μ, n̂ν) =
{

1, if n̂μ · r̂μν ≥ 0 and n̂ν · r̂μν ≤ 0,

0, otherwise.
(2.4)

n

n̂

r̂

^

μ

ν

μν

FIG. 1. The Kern–Frenkel potential for Janus fluids.
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Here, r̂μν = rμν/rμν , where rμν = rν − rμ, is the unit vector
pointing (by convention) from particle μ to particle ν and the
unit vectors n̂μ and n̂ν are “spin” vectors associated with the
orientation of the attractive hemispheres of particles μ and ν,
respectively (see Fig. 1). An attractive interaction then exists
only between the two SW portions of the surface sphere, pro-
vided that the two particles are within the range of the SW
potential.

B. Asymmetric binary mixture

We now consider the particular case where the only pos-
sible orientations of particles are with attractive caps pointing
only either North or South with equal probability, as obtained
by Fig. 1 in the limit n̂μ = ẑ, n̂ν = −̂z, and with ẑ pointing
North.

Under these conditions, one then notes that the Kern–
Frenkel potential (2.1)–(2.4) can be simplified by associating
a spin i = 1 (up) to particles with SW hemispheres pointing
in the North ẑ direction and a spin j = 2 (down) to particles
with SW hemispheres pointing in the South −̂z direction, so
one is left with only four possible configurations depending
on whether particles of type 1 lie above or below particles of
type 2, as illustrated in Fig. 2. The relationship between the
genuine Janus model (see Fig. 1) and the up-down model (see
Fig. 2) is reminiscent to the relationship between the Heisen-
berg and the Ising model of ferromagnetism. From that point
of view, our model can be seen as an Ising-like version of the
original Janus model. A similar spirit was also adopted in the
Zwanzig model for the isotropic-nematic transition in liquid
crystals.14

1

1

2

1

1

2

2

2

FIG. 2. (Top-left) A particle of type 1 is “below” another particle of type
1 providing SW/HS = HS interactions. (Top-right) A particle of type 1 is
“below” a particle of type 2 leading to SW/SW = SW interactions. (Bottom-
left) A particle of type 2 is “below” a particle of type 1 yielding HS/HS = HS
interactions. (Bottom-right) A particle of type 2 is “below” another particle
of type 2 thus leading again to HS/SW = HS interactions.

The advantage of this mapping is that one can disregard
the original anisotropic Janus-like nature of the interactions
and recast the problem in the form of a binary mixture such
that the interaction potential between a particle of species i
located at r1 and a particle of species j located at r2 has the
asymmetric form

φij (r1, r2) = φij (r12)

= ϕij (r12) � (cos θ12) + ϕji(r12) � (− cos θ12),

(2.5)

where cos θ12 = r̂12 · ẑ (recall our convention r12 = r2 − r1)
and

ϕij (r) = φHS(r) +
{
φSW(r), if i = 1 and j = 2,

0, otherwise.
(2.6)

In Eq. (2.5) � (x) = 1 and 0 for x > 0 and x < 0, respectively.
It is important to remark that, in general, ϕ12(r) �= ϕ21(r),

as evident from Eq. (2.6). Thus, the binary mixture is not nec-
essarily symmetric [unless ε = 0 or λ = 1 in Eq. (2.3)], un-
like standard binary mixtures where this symmetry condition
is ensured by construction. In the potential (2.5), there how-
ever is still a “memory” of the original anisotropy since the
potential energy of a pair of particles of species i and j sepa-
rated a distance r12 depends on whether particle j is “above”
(cos θ12 > 0) or “below” (cos θ12 < 0) particle i. In this sense,
the binary mixture obtained in this way is “quasi,” and not
“fully,” spherically symmetric.

Another important point to be stressed is that, while the
sign of cos θ12 represents the only source of anisotropy in
the above potential φij (r12), this is not the case for the corre-
sponding correlation functions, which will explicitly depend
upon the relative orientation cos θ12 and not only upon its
sign. This applies, for instance, to the pair correlation func-
tions gij (r) = gij (r; θ ), as shown in Appendix A to first order
in density in the sticky limit (see Sec. IV). As an illustration,
Fig. 3 shows the first-order pair correlation functions g

(1)
11 (r)

and g
(1)
12 (r) as functions of the radial distance r for several ori-

entations θ .
As our aim is to remove the orientational dependence in

the original potential altogether, a further simplification is re-
quired to reduce the problem to a simple binary mixture hav-
ing asymmetric correlation functions dependent only on dis-
tances and not on orientations of spheres. This will be the
orientational average discussed in Sec. III.

III. ORIENTATIONAL AVERAGE
AND THERMODYNAMICS

A. Orientational average

Most of the content of this section applies to a mix-
ture (with any number of components) characterized by any
anisotropic potential φij (r) = φji(−r) exhibiting the quasi-
isotropic form (2.5), where in general ϕij(r) �= ϕji(r) if
i �= j. In that case, we note that the thermodynamic quanti-
ties will generally involve integrals of the general form

Iij =
∫

dr gij (r)Fij (r) (3.1)
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FIG. 3. (Top) Plot of g
(1)
11 (r) as a function of r for (a) θ = 0 and π , (b)

θ = π
4 and 3π

4 , and (c) θ = π
2 . (Bottom) Plot of the regular part of g

(1)
12 (r)

as a function of r for (a) θ = 0, (b) θ = π
4 , (c) θ = π

2 , (d) θ = 3π
4 , and

(e) θ = π . The interaction potential is given by Eq. (2.6) (sketched in Fig. 2),
except that the sticky limit with Baxter’s temperature τ = 0.1 has been taken
(see Sec. IV).

with

Fij (r) = Fij (r) � (cos θ ) + Fji(r) � (− cos θ ) , (3.2)

where in general Fij(r) �= Fji(r) if i �= j. This strongly suggests
that one can define the two orientational averages g+

ij (r) and
g−

ij (r) as

g+
ij (r) ≡ gij (r) =

∫ 1

0
d (cos θ ) gij (r), (3.3)

g−
ij (r) ≡ gji(r) =

∫ 0

−1
d (cos θ ) gij (r). (3.4)

Note that g−
ij (r) = g+

ji(r), and this suggests the use of the no-
tation gij (r) and gji(r) instead of g+

ij (r) and g−
ij (r), respec-

tively. Taking into account Eqs. (3.2)–(3.4), Eq. (3.1) becomes

Iij = 1

2

∫
dr [gij (r)Fij (r) + gji(r)Fji (r)]. (3.5)

In the case of a double summation over i and j,∑
i,j

xixj Iij =
∑
i,j

xixj

∫
dr gij (r)Fij (r) , (3.6)

where xi denotes the mole fraction of species i.

B. Thermodynamics of the mixture: Energy, virial,
and compressibility routes

We can now particularize the general result (3.6) to spe-
cific cases.

In the case of the internal energy, Fij (r) = φij (r) and so
the energy equation of state can be written as16

uex = 1

2
ρ
∑
i,j

xixj

∫
dr gij (r) φij (r)

= 1

2
ρ
∑
i,j

xixj

∫
dr yij (r) ϕij (r)e−βϕij (r), (3.7)

where uex is the excess internal energy per particle, ρ is
the number density, β = 1/kBT (kB and T being the Boltz-
mann constant and the temperature, respectively), and yij (r)
≡ gij (r)eβϕij (r) is the orientational average of the cavity func-
tion yij (r) ≡ gij (r)eβφij (r).

A similar result holds for the virial route to the equation
of state,

Z ≡ P

ρkBT

= 1 + 1

6
ρ
∑
i,j

xixj

∫
dr yij (r) r · ∇e−βφij (r), (3.8)

where P is the pressure. First, note that

∇φij (r) =
[
dϕij (r)

dr
� (cos θ ) + dϕji (r)

dr
� (− cos θ )

]
r̂

− δ(z)[ϕij (r) − ϕji(r)]̂z. (3.9)

Therefore,

r · ∇φij (r) = r

[
dϕij (r)

dr
� (cos θ ) + dϕji(r)

dr
� (− cos θ )

]
,

(3.10)

and thus

Z = 1 + 1

6
ρ
∑
i,j

xixj

∫
dr yij (r) r

d

dr
e−βϕij (r). (3.11)

Finally, let us consider the compressibility route. In a
mixture, the (dimensionless) isothermal compressibility χT is
in general given by

χ−1
T = 1

kBT

(
∂p

∂ρ

)
T ,{xj }

=
∑
i,j

√
xixj

[
I + ĥ (0)

]−1

ij
, (3.12)

where ĥij (0) is proportional to the zero wavenumber limit of
the Fourier transform of the total correlation function hij (r)
= gij (r) − 1, namely

ĥij (0) = ρ
√

xixj

∫
dr hij (r)

= ρ
√

xixj

2

∫
dr [hij (r) + hji(r)]. (3.13)

In the specific case of a binary mixture considered here,
Eq. (3.12) becomes

χ−1
T = 1 + x2ĥ11(0) + x1ĥ22(0) − 2

√
x1x2ĥ12(0)

[1 + ĥ11(0)][1 + ĥ22(0)] − ĥ2
12(0)

. (3.14)

Janus fluid with fixed patch orientations: theory and simulations 525



094904-5 Maestre et al. J. Chem. Phys. 138, 094904 (2013)

Equations (3.7) and (3.11)–(3.13) confirm that the
knowledge of the two average quantities gij (r) and
gji(r) for each pair ij suffices to determine the ther-
modynamic quantities. In fact, Eqs. (3.7) and (3.11)–
(3.13) are formally indistinguishable from those corre-
sponding to mixtures with standard isotropic interac-
tions, except that in our case one generally has ϕij(r)
�= ϕji(r) and, consequently, gij (r) �= gji(r).

For future convenience, it is expedient to introduce the
Laplace transform of rgij (r):

Gij (s) =
∫ ∞

0
dr e−sr rgij (r). (3.15)

Its small-s behavior is of the form25

s2Gij (s) = 1 + H
(0)
ij s2 + H

(1)
ij s3 + · · · , (3.16)

where

H
(n)
ij ≡

∫ ∞

0
dr (−r)nrhij (r). (3.17)

Thus, Eq. (3.13) becomes

ĥij (0) = −2πρ
√

xixj

[
H

(1)
ij + H

(1)
ji

]
. (3.18)

Note that Eq. (3.16) implies

lim
s→0

s2Gij (s) = 1, (3.19)

lim
s→0

s2Gij (s) − 1

s
= 0. (3.20)

IV. THE STICKY LIMIT

The mapping of the Kern–Frenkel potential with fixed
patch orientation along the ±̂z axis onto a binary mixture rep-
resents a considerable simplification. On the other hand, no
approximation is involved in this mapping.

The presence of the original SW interactions for the ra-
dial part [see Eq. (2.3)] makes the analytical treatment of the
problem a formidable task. Progresses can however be made
by considering the Baxter SHS limit, for which a well defined
approximate scheme of solution is available in the isotropic
case for both one-component15 and multi-component18–22 flu-
ids. The discussion reported below closely follows the ana-
logue for Baxter symmetric mixtures.19, 20

Let us start by rewriting Eq. (2.6) as

ϕij (r) =
⎧⎨⎩

∞, r < σ,

−εij , σ < r < λσ,

0, r > λσ,

(4.1)

where ε11 = ε22 = ε21 = 0 and ε12 = ε > 0. However, in this
section we will assume generic energy scales εij. In that case,
the virial equation of state (3.11) becomes

Z = 1 + 4ηy(σ ) − 12η
∑
i,j

xixj tij
λ3yij (λσ ) − yij (σ )

λ3 − 1
,

(4.2)

where η ≡ π
6 ρσ 3 is the packing fraction,

y(r) =
∑
i,j

xixjyij (r) (4.3)

is the orientational average global cavity function, and

tij ≡ 1

12τij

≡ 1

3
(λ3 − 1)(eβεij − 1) (4.4)

is a parameter measuring the degree of “stickiness” of the SW
interaction ϕij(r). This parameter will be used later on to con-
nect results from numerical simulations of the actual Janus
fluid with analytical results derived for asymmetric SHS mix-
tures. Although Baxter’s temperature parameters τ ij are com-
monly used in the literature, we will employ the inverse tem-
perature parameters tij = 1/12τ ij in most of the mathematical
expressions.

In the case of the interaction potential (4.1), the energy
equation of state (3.7) reduces to

uex = −12
η

σ 3

∑
i,j

xixj εij e
βεij

∫ λσ

σ

dr r2yij (r). (4.5)

The compressibility equation of state (3.12) does not simplify
for the SW interaction.

Since the (orientational average) cavity function yij (r)
must be continuous, it follows that

gij (r) = yij (r)[eβεij � (r − σ ) − (eβεij − 1) � (r − λσ )].
(4.6)

Following Baxter’s prescription,15 we now consider the
SHS limit

λ → 1, εij → ∞, tij ≡ 1

12τij

→ (λ − 1)eβεij = finite,

(4.7)
so that the well (4.1) becomes infinitely deep and narrow and
can be described by a single (inverse) stickiness parameter τ ij.
Note that in the present Janus case (ε11 = ε22 = ε21 = 0, ε12

= ε > 0) one actually has t11 = t22 = t21 = 0 and t12 = t
= 1/12τ .

In the SHS limit (4.7), Eqs. (4.2), (4.5), and (4.6) become,
respectively,

Z = 1 + 4ηy(σ ) − 4η
∑
i,j

xixj tij [3yij (σ ) + σy ′
ij (σ )],

(4.8)

uex = −12η
∑
i,j

xixj εij tij yij (σ ), (4.9)

gij (r) = yij (r)[� (r − σ ) + tij σ δ+(r − σ )]. (4.10)

In Eq. (4.8), y ′
ij (σ ) must be interpreted as

limλ→1
d
dr

yij (r)|r=σ , which in principle differs from
d
dr

limλ→1 yij (r)|r=σ .26 However, both quantities coincide in
the one-dimensional case26 and are expected to coincide in
the three-dimensional case as well. This is just a consequence
of the expected continuity of d

dr
yij (r) at r = λσ in the SW

case.27
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Thermodynamic consistency between the virial and en-
ergy routes implies

ρ
∂uex

∂ρ
= ∂Z

∂β
=
∑
i,j

εij tij
∂Z

∂tij
. (4.11)

Using Eqs. (4.8) and (4.9) and equating the coefficients of εij

in both sides, the consistency condition (4.11) yields

xixj

[
σy ′

ij (σ ) − 3η
∂yij (σ )

∂η

]
=
∑
k,�

xkx�

{
∂yk�(σ )

∂tij
− tk�

∂

∂tij
[3yk�(σ ) + σy ′

k�(σ )]

}
.

(4.12)

For distances r � σ , the orientational averages of the cav-
ity functions can be Taylor expanded as

�(r − σ )yij (r) = �(r − σ )[yij (σ ) + y ′
ij (σ )(r − σ ) + · · ·].

(4.13)

Hence, if we denote by Yij(s) the Laplace transform of
�(r − σ )ryij (r), Eq. (4.13) yields for large s

eσssYij (s) = σyij (σ ) + [yij (σ ) + σy ′
ij (σ )]s−1 + · · · .

(4.14)
According to Eqs. (3.15) and (4.10), the relationship between
the Laplace function Gij(s) and Yij(s) is

Gij (s) = Yij (s) + σ 2tij yij (σ )e−σs . (4.15)

Inserting Eq. (4.14) into Eq. (4.15), we obtain the following
large-s behavior of Gij(s):

eσsGij (s) = σ 2tij yij (σ ) + σyij (σ )s−1

+ [yij (σ ) + σy ′
ij (σ )]s−2 + O(s−3).

(4.16)

A consequence of this is

lims→∞ eσsGij (s)

lims→∞ s[eσsGij (s) − lims→∞ eσsGij (s)]
= σ tij . (4.17)

V. A HEURISTIC, NON-PERTURBATIVE
ANALYTICAL THEORY

A. A simple approximate scheme within
the Percus–Yevick closure

The Ornstein–Zernike (OZ) equation for an anisotropic
mixture reads16

hij (r12) = cij (r12) + ρ
∑

k

xk

∫
dr3 hik(r13)ckj (r32)

= cij (r12) + ρ
∑

k

xk

∫
dr3 cik(r13)hkj (r32),

(5.1)

where cij (r) is the direct correlation function. The PY closure
reads

cij (r) = gij (r)[1 − eβφij (r)]. (5.2)

Introducing the averages c+
ij (r) = cij (r) and c−

ij (r) = cji(r)
for cij (r) in a way similar to Eqs. (3.3) and (3.4), Eq. (5.2)
yields

cij (r) = gij (r)[1 − eβϕij (r)]. (5.3)

Thus, the PY closure for the full correlation functions cij (r)
and gij (r) translates into an equivalent relation for the orienta-
tional average functions cij (r) and gij (r). A similar reasoning,
on the other hand, is not valid for the OZ relation. Multiplying
both sides of the first equality in Eq. (5.1) by �(cos θ12) and
integrating over cos θ12 one gets

hij (r12) = cij (r12) + ρ
∑

k

xk

∫
dr3

∫ 1

0
d (cos θ12)

×hik(r13)ckj (r32). (5.4)

The same result is obtained if we start from the second
equality in Eq. (5.1), multiply by �(−cos θ12), integrate over
cos θ12, and make the changes r12 → −r12, r13 → −r13, and
i ↔ j. Equation (5.4) shows that in the case of anisotropic po-
tentials of the form (2.5) the OZ equation does not reduce to a
closed equation involving the averages hij (r) and cij (r) only,
as remarked.

In order to obtain a closed theory, we adopt the heuristic
mean-field decoupling approximation∫

dr3

∫ 1

0
d (cos θ12) hik(r13)ckj (r32)

→
∫

dr3 hik (r13)ckj (r32). (5.5)

Under these conditions, the true OZ relation (5.4) is replaced
by the pseudo-OZ relation

hij (r12) = cij (r12) + ρ
∑

k

xk

∫
dr3 hik(r13)ckj (r32). (5.6)

This can then be closed by the PY equation (5.3) and standard
theory applies. An alternative and equivalent view is to con-
sider cij (r) not as the orientational average of the true direct
correlation function cij (r) but as exactly defined by Eq. (5.6).
Within this interpretation, Eq. (5.3) then represents a pseudo-
PY closure not derivable from the true PY closure (5.2).

Within the above interpretation, it is then important to
bear in mind that the functions gij (r) obtained from the solu-
tion of a combination of Eqs. (5.3) and (5.6) are not equivalent
to the orientational averages of the functions gij (r) obtained
from the solution of the true PY problem posed by Eqs. (5.1)
and complemented by the PY condition (5.2). As a conse-
quence, the solutions to Eqs. (5.3) and (5.6) are not expected
to provide the exact gij (r) to first order in ρ, in contrast to
the true PY problem. This is an interesting nuance that will be
further discussed in Sec. V C 3.

The main advantage of the approximate OZ relation (5.6)
in the case of anisotropic interactions of the form (2.5) is that
it allows to transform the obtention of an anisotropic function
gij (r), but symmetric in the sense that gij (r) = gji(−r), into
the obtention of an isotropic function gij (r), but asymmetric
since gij (r) �= gji(r). In the case of the anisotropic SHS po-
tential defined above, we can exploit the known solution of
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the PY equation for isotropic SHS mixtures to construct the
solution of the set made of Eqs. (5.3) and (5.6). This is done
in Subsection V B by following the RFA methodology.

B. RFA method for SHS

Henceforth, for the sake of simplicity, we take σ = 1 as
length unit. The aim of this section is to extend the RFA ap-
proximation proposed for symmetric SHS mixtures24, 25 to the
asymmetric case.

We start with the one-component case.26 Let us introduce
an auxiliary function F(s) related to the Laplace transform
G(s) of rg(r) by

G(s) = 1

2π

se−s

F (s) + ρe−s
. (5.7)

The next step is to approximate F(s) by a rational function,

F (s) = S(s)

L(s)
, (5.8)

with S(s) = S(0) + S(1)s + S(2)s2 + s3 and

L(s) = L(0) + L(1)s + L(2)s2. (5.9)

Note that lims→∞ F (s)/s = 1/L(2) = finite, so that
lims→∞ esG(s) = finite, in agreement with Eq. (4.16).
Furthermore, Eq. (3.19) requires F (s) + ρe−s = O(s3),
so that S(0) = −ρL(0), S(1) = ρ(L(0) − L(1)),
S(2) = ρ(L(1) − 1

2L(0) − L(2)). Taking all of this into ac-
count, Eq. (5.7) can be rewritten as

G(s) = e−s

2πs2

L(s)

1 − A(s)
, (5.10)

where

A(s) = ρ

s3

[
(1 − e−s)L(s) − L(0)s +

(
1

2
L(0) − L(1)

)
s2

]
.

(5.11)

In the case of a mixture, G(s), L(s), and A(s) become matrices
and Eq. (5.10) is generalized as

Gij (s) = e−s

2πs2
(L(s) · [I − A(s)]−1)ij , (5.12)

where I is the identity matrix and

Lij (s) = L
(0)
ij + L

(1)
ij s + L

(2)
ij s2, (5.13)

Aij (s) = ρ
xi

s3

[
(1 − e−s)Lij (s) − L

(0)
ij s

+
(

1

2
L

(0)
ij − L

(1)
ij

)
s2

]
. (5.14)

Note that lims→0 Aij (s) = finite, so that lims→0 s2Gij (s)
= finite �= 0 by construction. Analogously, lims→∞ esGij (s)
= finite also by construction.

The coefficients L
(0)
ij , L(1)

ij , and L
(2)
ij are determined by en-

forcing the exact conditions (3.19), (3.20), and (4.17). The de-
tails of the derivation are presented in Appendix B and here
we present the final results. The coefficients L

(0)
ij and L

(1)
ij do

not depend upon the first index i and can be expressed as lin-
ear functions of the coefficients {L(2)

kj }:

L
(0)
ij = 2π

1 + 2η

(1 − η)2
− 12η

1 − η

∑
k

xkL
(2)
kj , (5.15)

L
(1)
ij = 2π

1 + η/2

(1 − η)2
− 6η

1 − η

∑
k

xkL
(2)
kj , (5.16)

and the coefficients L
(2)
ij obey the closed set of quadratic

equations

L
(2)
ij

tij
= 2π

1 + η/2

(1 − η)2
− 6η

1 − η

∑
k

xk

(
L

(2)
ik + L

(2)
kj

)
+ 6

π
η
∑

k

xkL
(2)
ik L

(2)
kj . (5.17)

This closes the problem. Once L
(2)
ij are known, the contact

values are given by

yij (1) = L
(2)
ij

2πtij
. (5.18)

Although here we have taken into account that all the
diameters are equal (σ ij = σ = 1), the above scheme can
be easily generalized to the case of different diameters with
the additive rule σ ij = (σ i + σ j)/2. For symmetric interac-
tions (i.e., tij = tji) one recovers the PY solution of SHS
mixtures for any number of components.22, 24 It is shown in
Appendix C that the pair correlation functions gij (r) derived
here are indeed the solution to the PY-like problem posed by
Eqs. (5.3) and (5.6).

C. Case of interest: t11 = t22 = t21 = 0

In the general scheme described by Eqs. (5.12)–(5.18),
four different stickiness parameters (t11, t12, t21, and t22) are
in principle possible. With the convention that in tij the parti-
cle of species i is always located below the particle of species
j, we might consider the simplest possibility of having only
one SHS interaction t12 = t = 1/12τ and all other HS inter-
actions (t11 = t22 = t21 = 0), as illustrated in Fig. 2. This is
clearly an intermediate case between a full SHS model (tij = t
= 1/12τ ) and a full HS model (tij = 0), with a predominance
of repulsive HS interactions with respect to attractive SHS in-
teractions. This is meant to model the intermediate nature of
the original anisotropic Kern–Frenkel potential that interpo-
lates between a SW and a HS isotropic potentials upon de-
creasing the coverage, that is, the fraction of the SW surface
patch with respect to the full surface of the sphere.

1. Structural properties

If t11 = t22 = t21 = 0, Eq. (5.17) implies L
(2)
11 = L

(2)
22

= L
(2)
21 = 0. As a consequence, Eq. (5.17) for i = 1 and j = 2

yields a linear equation for L
(2)
12 whose solution is

L
(2)
12 = 2π

1 + η/2

1 − η

t

1 − η + 6ηt
. (5.19)
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According to Eq. (5.18),

y12(1) = 1 + η/2

(1 − η)2

(
1 − 6ηt

1 − η + 6ηt

)
. (5.20)

Next, Eqs. (5.15) and (5.16) yield

L
(0)
11

2π
= L

(0)
21

2π
= 1 + 2η

(1 − η)2
, (5.21)

L
(0)
12

2π
= L

(0)
22

2π
= 1 + 2η

(1 − η)2
− 12ηt

1 − η
x1y12(1), (5.22)

L
(1)
11

2π
= L

(1)
21

2π
= 1 + η/2

(1 − η)2
, (5.23)

L
(1)
12

2π
= L

(1)
22

2π
= 1 + η/2

(1 − η)2
− 6ηt

1 − η
x1y12(1). (5.24)

Once the functions Lij(s) are fully determined, Eq. (5.12)
provides the Laplace transforms Gij(s). From Eq. (4.15) it fol-
lows that Y11(s) = G11(s), Y22(s) = G22(s), Y21(s) = G21(s),
and

Y12(s) = G12(s) − ty12(1)e−s . (5.25)

A numerical inverse Laplace transform28 allows one to ob-
tain g11(r), g22(r), g21(r), and y12(r) for any packing frac-
tion η, stickiness parameter t = 1/12τ , and mole fraction x1.
In what follows, we will omit explicit expressions related to
g22(r) since they can be readily obtained from g11(r) by the
exchange x1 ↔ x2.

The contact values gij (1+) = yij (1) with (i, j) �= (1, 2)
cannot be obtained from Eq. (5.18), unless the associated tij
are first assumed to be nonzero and then the limit tij → 0
is taken. A more direct method is to realize that, if tij = 0,
Eq. (4.16) gives

gij (1+) = lim
s→∞ essGij (s), (i, j ) �= (1, 2). (5.26)

The results are

g11(1+) = y11(1) = 1 + η/2

(1 − η)2
− x2

6ηt

1 − η
y12(1), (5.27)

g21(1+) = y21(1) = 1 + η/2

(1 − η)2
, (5.28)

y(1) = 1 + η/2

(1 − η)2

(
1 − x1x2

12ηt

1 − η + 6ηt

)
. (5.29)

It is interesting to note the property g11(1+) + g22(1+)
= y12(1) + g21(1+).

To obtain the equation of state from the virial route we
will need the derivative y ′

12(1). Expanding esG12(s) in powers
of s−1 and using Eq. (4.16), one gets

y ′
12(1)

y12(1)
= η

(1 − η)2

[
3t

(
2 − 4η − 7η2

1 + η/2
+ 12x1x2η

)
− 9

2

1 − η2

1 + η/2

]
. (5.30)

2. Thermodynamic properties

a. Virial route. According to Eq. (4.8),

Zv = 1 + 4ηy(1) − 4x1x2ηt[3y12(1) + y ′
12(1)]

= Zv
HS − 4x1x2ηt

[
3

1 + 3η

1 − η
y12(1) + y ′

12(1)

]
,

(5.31)

where the superscript v denotes the virial route and

Zv
HS = 1 + 2η + 3η2

(1 − η)2
(5.32)

is the HS compressibility factor predicted by the virial route
in the PY approximation.

b. Energy route. From Eq. (4.9) we have
uex

ε
= −12x1x2ηty12(1). (5.33)

The compressibility factor can be obtained from uex via the
thermodynamic relation (4.11), which in our case reads

η
∂uex/ε

∂η
= 1

ε

∂Z

∂β
= t

∂Z

∂t
. (5.34)

Thus, the compressibility factor derived from the energy route
is

Zu = Zu
HS + η

∂

∂η

∫ t

0
dt ′

uex(η, t ′)/ε
t ′

= Zu
HS − 3x1x2

η

1 − η

⎡⎣4ty12(1) +
ln
(

1 + 6ηt

1−η

)
1 − η

⎤⎦ ,

(5.35)

where Zu
HS plays the role of an integration constant and thus

it can be chosen arbitrarily. It can be shown29, 30 that the en-
ergy and the virial routes coincide when the HS system is the
limit of a square-shoulder interaction with vanishing shoulder
width. From that point of view one should take Zu

HS = Zv
HS in

Eq. (5.35). On the other hand, a better description is expected
from the Carnahan–Starling (CS) equation of state

ZCS
HS = 1 + η + η2 − η3

(1 − η)3
. (5.36)

Henceforth we will take Zu
HS = ZCS

HS.

c. Compressibility route. Expanding s2Gij(s) in powers
of s it is straightforward to obtain H

(1)
ij from Eq. (3.16). This

allows one to use Eqs. (3.14) and (3.18) to get the inverse
susceptibility χ−1

T as

χ−1
T = 1 + 2η

(1 − η)4

1 + 2η − 24x1x2tη(1 − η)y12(1)

1 − x1x2

[
12tη(1+η/2)y12(1)

1+2η+36x1x2tη2y12(1)

]2 , (5.37)

that, for an equimolar mixture (x1 = x2 = 1
2 ), reduces to

χ−1
T =

[
(1 − η)2(1 + 2η) + 3ηt

(
2 + 5η − 5

2η2
)]2

(1 − η)5(1 − η + 6ηt)[(1 − η)2 + 3ηt(4 − η)]
.

(5.38)
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The associated compressibility factor is then

Zc = 1

η

∫ η

0
dη′ χ−1

T (η′). (5.39)

The above integral has an analytical solution, but it is too cum-
bersome to be displayed here.

3. Low-density expansion

In the standard case of SHS mixtures with symmetric co-
efficients in the potential parameters, the PY closure is known
to reproduce the exact cavity functions to first order in density
and thus the third virial coefficient (see Appendix A 2). How-
ever, this needs not be the case in the present RFA description
for the asymmetric case, as further discussed below. Note that
here, “exact” still refers to the simplified problem (orienta-
tional average + sticky limit) of Secs. III and IV.

The expansion to first order in density of the Laplace
transforms Yij(s) obtained from Eqs. (4.15), (5.12)–(5.14) and
(5.19)–(5.24) is

Yij (s) = e−s(s−1 + s−2) + Y
(1)
ij (s)ρ + · · · , (5.40)

where the expressions of the first-order coefficients Y
(1)
ij (s)

will be omitted here. Laplace inversion yields

y
(1)
ij (r) = y

(1)
ij (r)

∣∣∣
exact

− �y
(1)
ij (r), (5.41)

where y
(1)
ij (r)|exact are the exact first-order functions given by

Eqs. (A37)–(A39) and the deviations �y
(1)
ij (r) are

�y
(1)
11 (r) = �(2 − r)x2

2t2

r
cos−1 r

2
, (5.42)

�y
(1)
12 (r) = �(2 − r)t

(
2
√

1 − r2/4 − r cos−1 r

2

)
, (5.43)

�y
(1)
21 (r) = −�y

(1)
12 (r). (5.44)

In the case of the global quantity y(1)(r) the result is

y(1)(r) = y(1)(r)|exact − �y(1)(r), (5.45)

where y(1)(r)|exact is given by Eq. (A40) and

�y(1)(r) = �(2 − r)x1x2
2t2

r
cos−1 r

2
. (5.46)

While the main qualitative features of the exact cavity func-
tion are preserved, there exist quantitative differences. The
first-order functions y

(1)
11 (r), y

(1)
22 (r), and y(1)(r) predicted by

the RFA account for the exact coefficient of t but do not in-
clude the exact term of order t2 proportional to r−1cos −1(r/2).
In the case of y

(1)
12 (r) and y

(1)
21 (r) the exact term of or-

der t proportional to 2
√

1 − r2/4 − r cos−1(r/2) is lack-
ing. Also, while the combination y

(1)
11 (r) + y

(1)
22 (r) − y

(1)
12 (r)

− y
(1)
21 (r) vanishes in the RFA, the exact result is propor-

tional to t2r−1cos −1(r/2). In short, the RFA correctly accounts
for the polynomial terms in y

(1)
ij (r)|exact but misses the non-

polynomial terms.

As for the thermodynamic quantities, expansion of
Eqs. (5.31), (5.35), and (5.39) gives

Zv = 1 + 4 (1 − 3x1x2t) η + 10

[
1 − 6x1x2t

(
1 − 4

5
t

)]
η2

+O(η3), (5.47)

Zu = 1 + 4 (1 − 3x1x2t) η + 10

[
1 − 6x1x2t

(
1 − 6

5
t

)]
η2

+O(η3), (5.48)

Zc = 1 + 4 (1 − 3x1x2t) η + 10

[
1 − 6x1x2t

(
1 − 8

5
t

)]
η2

+O(η3). (5.49)

Comparison with the exact third virial coefficient, Eq. (A50),
shows that the coefficient of t2 is not correct, with the ex-
act factor 4 − 3

√
3/π � 2.35 replaced by 2, 3, and 4 in

Eqs. (5.47)–(5.49), respectively. One consequence is that the
virial and energy routes predict the third virial coefficient
much better than the compressibility route. A possible im-
provement is through the interpolation formula

Zv,u = α
(
Zv + ZCS

HS − Zv
HS

)+ (1 − α)Zu, (5.50)

where α = 3
√

3/π − 1 � 0.65 with the proviso that Zu
HS

= ZCS
HS in Eq. (5.35). Equation (5.50) then reduces to the CS

equation of state if t = 0 and reproduces the exact third virial
coefficient when t �= 0.

4. Phase transition and critical point

In the limit of isotropic interaction (tij = t), our model
reduces to the usual SHS Baxter adhesive one-component
model. In spite of the fact that the model is, strictly speak-
ing, known to be pathological,31 it displays a critical be-
havior that was numerically studied in some details by MC
techniques.32, 33 The corresponding binary mixture also dis-
plays well defined critical properties that, interestingly, are
even free from any pathological behavior.21 Moreover, the
mechanism behind the pathology of the isotropic Baxter
model hinges crucially on the geometry of certain close-
packed clusters involving 12 or more equal-sized spheres.31

On the other hand, our Janus model, having frozen orienta-
tions, cannot sustain those pathological configurations.

Within the PY approximation, the critical behavior of the
original one-component Baxter SHS model was studied us-
ing the compressibility and virial routes,15 as well as the en-
ergy route,17 in the latter case with the implicit assumption
Zu

HS = ZCS
HS. Numerical simulations indicate that the critical

point found through the energy route is the closest to numeri-
cal simulation results.32, 33

As the present specific model (with, tij = tδi1δj2) is, in
some sense, intermediate between the fully isotropic Bax-
ter SHS one-component model (that has a full, albeit pecu-
liar, gas-liquid transition) and the equally isotropic HS model
(that, lacking any attractive part in the potential, cannot have
any gas-liquid transition), it is then interesting to ask whether
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TABLE I. Location of the critical point in the RFA, according to different
routes.

Route τ c ηc Zc

Virial, Eq. (5.31) 0.02050 0.1941 0.3685
Energy, Eq. (5.35) 0.0008606 0.2779 0.2906
Hybrid virial-energy, Eq. (5.50) 0.01504 0.1878 0.3441

in the equimolar case (x1 = x2 = 1
2 ) it still presents a critical

gas-liquid transition.
The answer depends on the route followed to obtain the

pressure. As seen from Eq. (5.38), the compressibility route
yields a positive definite χ−1

T , so that no critical point is pre-
dicted by this route. On the other hand, an analysis of the
virial [Eq. (5.31)], energy [Eq. (5.35) with Zu

HS = ZCS
HS], and

hybrid virial-energy [Eq. (5.50)] equations of state reveals the
existence of van der Waals loops with the respective critical
points shown in Table I. The energy route predicts a critical
value τ c about 20 times smaller than the values predicted by
the other two routes.

As an illustration, Fig. 4 shows the binodal and a few
isotherms, as obtained from the virial route.
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FIG. 4. Binodals from the RFA virial route in the equimolar x1 = 1
2 case.

The phase diagram is depicted in the (η, τ ) plane (solid line, top panel) and
in the (η−1, ηZv) plane (dashed line, bottom panel). A few characteristic
isotherms are plotted in the bottom panel. The critical point is found at ηc

� 0.1941, τ c � 0.02050, and ηcZc � 0.07153 (indicated by a circle in both
panels).

5. A modified approximation

The failure of the RFA to reproduce the exact cavity func-
tions to first order in density (and hence the third virial coef-
ficient) for asymmetric interactions (tij �= tji) reveals the price
paid for using the orientationally averaged quantities gij (r)
instead of the true pair correlation functions gij (r).

A simple way of getting around this drawback for suffi-
ciently low values of both η and t consists of modifying the
RFA as follows:

yij (r) → yij (r) + �y
(1)
ij (r)ρ, (5.51)

where the functions �y
(1)
ij (r) are given by Eqs. (5.42)–(5.44).

We will refer to this as the modified rational-function ap-
proximation (mRFA). Note that Eq. (5.51) implies that gij (r)

→ gij (r) + �y
(1)
ij (r)ρ, except if (i, j) = (1, 2), in which case

g12(r) → g12(r) + �y
(1)
12 (r)ρ + �y

(1)
12 (1)δ+(r − 1)ρt .

Since the extra terms in Eq. (5.51) are proportional to t or
t2, this modification can produce poor results for sufficiently
large stickiness (say, t � 1) as, for instance, near the critical
point.

VI. NUMERICAL CALCULATIONS

A. Details of the simulations

In order to check the theoretical predictions previously
reported, we have performed NVT (isochoric-isothermal)
MC simulations using the Kern–Frenkel potential defined in
Eqs. (2.1)–(2.4) with a single attractive SW patch (green in
the color code of Fig. 1) covering one of the two hemispheres,
and with up-down symmetry as depicted in Fig. 2. Particles
are then not allowed to rotate around but only to translate
rigidly.

The model is completely defined by specifying the rela-
tive width λ − 1, the concentration of one species (mole frac-
tion) x1 = 1 − x2, the reduced density ρ* = ρσ 3, and the
reduced temperature T * = kBT/ε.

In order to make sensible comparison with the RFA
theoretical predictions, we have selected the value λ − 1
= 0.05 as a well width, which is known to be well represented
by the SHS limit,34 and use Baxter’s temperature parameter
τ = [4(λ3 − 1)(e1/T ∗ − 1)]−1 [see Eq. (4.4)] instead of T *.
It is interesting to note that, while the unconventional phase
diagram found in the simulations of Ref. 7 corresponded to a
larger well width (λ = 1.5), the value λ = 1.05 is in fact closer
to the experimental conditions of Ref. 3.

During the simulations we have computed the ori-
entational averaged pair correlation functions defined by
Eqs. (3.3) and (3.4), accumulating separate histograms when
z2 − z1 > 0 or z1 − z2 > 0 in order to distinguish between
functions g12(r) = g+

12(r) and g21(r) = g−
12(r).

The compressibility factor Z = βP/ρ has been evaluated
from the values of yij (r) at r = σ and r = λσ by following
Eq. (4.2) with tij = (12τ )−1δi1δj2, and the reduced excess in-
ternal energy per particle u∗

ex = uex/ε has been evaluated di-
rectly from simulations.

In all our simulations, we used N = 500 particles, peri-
odic boundary conditions, an equilibration time of around 105

MC steps (where a MC step corresponds to a single particle
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FIG. 5. Snapshot of an equilibrated MC simulation under non-equimolar
conditions (x1 = 1/5) with Baxter temperature τ = 0.1 and density
ρ* = 0.3. In the simulations we used a total number of particles N = 500.

displacement), and a production time of about 108 MC steps
for the structure calculations and up to 5 × 108 MC steps for
the thermophysical calculations. The maximum particle dis-
placement was determined during the first stage of the equili-
bration run in such a way as to ensure an average acceptance
ratio of 50% at production time.

B. Results for non-equimolar binary mixtures

As a preliminary attempt, we consider a binary mixture
under non-equimolar conditions, to avoid possible patholo-
gies arising from the symmetry of the two components akin
to those occurring in ionic systems. As we shall see below, no
such pathologies are found.

In the present case, we consider a system with x1 = 1/5
and x2 = 1 − x1 = 4/5, so that the majority of the spheres have
(green) attractive patches pointing in the direction of −̂z.

A snapshot of an equilibrated configuration is shown in
Fig. 5. This configuration was obtained using N = 500 parti-
cles at ρ* = 0.3 and Baxter temperature τ = 0.1 (correspond-
ing to T * � 0.354).

Note that the above chosen state point (ρ* = 0.3 and
τ = 0.1) lies well inside the critical region of the full
Baxter SHS adhesive model as obtained from direct MC
simulations,32, 33 although of course the present case is ex-
pected to display a different behavior as only a fraction of
about x1x2 = 4/25 of the pair contacts are attractive.

A good insight on the structural properties of the sys-
tem can be obtained from the computation of the radial distri-
bution functions g11(r), g+

12(r) = g12(r), g−
12(r) = g21(r), and

g22(r). This is reported in Fig. 6 for a state point at density ρ*
= 0.5 and Baxter temperature τ = 0.2 (corresponding to T *
� 0.457). Note that in the case of the pair (1, 2) what is actu-
ally plotted is the cavity function y12(r) rather than g12(r), as
explained in the caption of Fig. 6.
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FIG. 6. Comparison between MC simulations and the theoretical predictions
from RFA (top) and mRFA (bottom) for the orientational averaged distribu-
tion functions g11(r), y12(r), g21(r), and g22(r) under non-equimolar condi-
tions (x1 = 1/5) at density ρ* = 0.5 and Baxter temperature τ = 0.2. The
dashed vertical line indicates the range r = λ = 1.05 of the (1, 2) SW interac-
tion used in the simulations. Note that the radial distribution function g12(r)
is obtained in the MC case by multiplying y12(r) in the region 1 ≤ r ≤ λ

= 1.05 by the factor e1/T ∗ � 8.93; in the theoretical cases (SHS limit) g12(r)
is obtained by adding the singular term (12τ )−1y12(1)δ+(r − 1) to y12(r).
The error bars on the MC data are within the size of the symbols used.

The relatively low value τ = 0.2 gives rise to clearly
distinct features of the four MC functions gij (r) (which
would collapse to a common HS distribution function in
the high-temperature limit τ → ∞). We observe that g22(r)
� g21(r) > g11(r) > y12(r) in the region 1 ≤ r � 1.5.
Moreover, g11(r) and g12(r) exhibit a rapid change around
r = 2. This is because when a pair (1, 1) is separated a dis-
tance r ≈ 2 there is enough room to fit a particle of species
2 in between and that particle will interact attractively with
the particle of the pair (1, 1) below it. In the case of the pair
(1, 2) separated a distance r ≈ 2, the intermediate particle can
be either of species 1 (interacting attractively with the particle
of species 2 above it) or of species 2 (interacting attractively
with the particle of species 1 below it). The same argument
applies to a pair (2, 2) separated a distance r ≈ 2, but in that
case the intermediate particle must be of species 1 to produce
an attractive interaction; since the concentration of species 1
is four times smaller than that of species 2, the rapid change
of g22(r) around r = 2 is much less apparent than that of
g11(r) and g12(r) in Fig. 6. On the other hand, in a pair (2, 1)

Janus fluid with fixed patch orientations: theory and simulations 532



094904-12 Maestre et al. J. Chem. Phys. 138, 094904 (2013)

separated a distance r ≈ 2 an intermediate particle of either
species 1 or of species 2 does not create any attraction and
thus g21(r) is rather smooth at r = 2. In short, the pair correla-
tion function g21(r) exhibits HS-like features, g12(r) exhibits
SW-like features (very high values in the region 1 ≤ r ≤ λ and
discontinuity at r = λ due to the direct SW interaction; rapid
change around r = 2 due to indirect SW interaction), while
g11(r) and g22(r) exhibit intermediate features (rapid change
around r = 2 due to indirect SW interaction).

It is rewarding to notice how well the MC results are re-
produced at a semi-quantitative level by the RFA theory (top
panel of Fig. 6), in spite of the various approximations in-
volved. In this respect, it is worth recalling that while MC
simulations deal with the real Kern–Frenkel potential, albeit
with constrained angular orientations, the RFA theory deals
with the asymmetric binary mixture resulting from the map-
ping described in Sec. II, and this represents an indirect test
of the correctness of the procedure. In addition, the RFA does
not attempt to describe the true SW interaction (i.e., finite λ

− 1 and T *) but the SHS limit (λ − 1 → 0 and T * → 0
with finite τ ). This limit replaces the high jump of g12(r)
in the region 1 ≤ r ≤ λ by a Dirac’s delta at r = 1+ and
the rapid change of g12(r), g11(r), and g22(r) around r = 2
by a kink. Finally, the RFA worked out in Sec. V B results
from a heuristic generalization to asymmetric mixtures (τ ij

�= τ ji) of the PY exact solution for SHS symmetric mixtures
(τ ij = τ ji),18–22, 24 but it is not the solution of the PY theory
for the asymmetric problem, as discussed in Sec. V A. As
a matter of fact, the top panel of Fig. 6 shows that some of
the drawbacks of the RFA observed to first order in density
in Sec. V C 3 [see Eqs. (5.41)–(5.44)] remain at finite den-
sity: in the region 1 ≤ r � 1.5 the RFA underestimates y12(r),
g11(r), and g22(r), while it overestimates g21(r). These dis-
crepancies are widely remedied, at least in the region 1 ≤ r
� 1.25, by the mRFA approach [see Eq. (5.51)], as shown
in the bottom panel of Fig. 6. In particular, the contact val-
ues are well accounted for by the mRFA, as well as the prop-
erty g22(r) � g21(r). We have observed that the limitations of
the correlation functions gij (r) predicted by the RFA become
more important as the density and, especially, the stickiness
increase and in those cases the mRFA version does not help
much since the correction terms �y

(1)
ij (r)ρ, being proportional

to ρ and to t or t2, become too large.
Next we consider thermodynamic quantities, as repre-

sented by the compressibility factor Z = βP/ρ and the ex-
cess internal energy per particle uex/ε, both directly accessi-
ble from NVT numerical MC simulations. These quantities
are depicted in Fig. 7 as functions of the reduced density ρ*
and for a Baxter temperature τ = 0.1. In both cases, the results
for the RFA theory are also included. In the case of the com-
pressibility factor, all four routes are displayed: compressibil-
ity [Eqs. (5.20), (5.37), and (5.39)], virial [Eqs. (5.20), (5.30)
and (5.31)], energy [Eq. (5.20) and (5.35) with Zu

HS = ZCS
HS],

and hybrid virial-energy [Eq. (5.50)]. In the case of uex/ε,
only the genuine energy route, Eq. (5.33), is considered. Note
that all RFA thermodynamic quantities, including Eq. (5.39),
have explicit analytical expressions.

The top panel of Fig. 7 shows that up to ρ* ≈ 0.7 the
MC data for the compressibility factor are well predicted by
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FIG. 7. Comparison of MC simulations and RFA theory for the thermody-
namics. Both the compressibility factor Z = βP/ρ (top) and the excess inter-
nal energy per particle uex/ε (bottom) are displayed as functions of density
for the non-equimolar case x1 = 1/5 and for Baxter temperature τ = 0.1. In
the case of the compressibility factor (top), results for all four routes (com-
pressibility, virial, energy, and hybrid virial-energy) are reported.

the theoretical Zv and, especially, Zu and Zv,u. Beyond that
point, the numerical results are bracketed by the compress-
ibility route, that overestimates the pressure, and the hybrid
virial-energy route, that on the contrary underestimates it. It
is interesting to note that, while Zv < Zv,u < Zu to second
order in density [cf. Eqs. (5.47), (5.48), and (5.50)], the dif-
ference Zv − Zv

HS grows with density more rapidly than the
difference Zu − Zu

HS and so both quantities cross at a cer-
tain density (ρ* � 0.567 if x1 = 1/5 and τ = 0.1). Therefore,
even though Zv < Zu (because Zv

HS < ZCS
HS), Zv,u is no longer

bracketed by Zv and Zu beyond that density (ρ* � 0.567 in
the case of Fig. 7). On balance, the virial-energy route appears
to be the most effective one in reproducing the numerical sim-
ulations results of the pressure at x1 = 1/5 and τ = 0.1.

As for the internal energy, the bottom panel of Fig. 7
shows that the RFA underestimates its magnitude as a di-
rect consequence of the underestimation of the contact value
y12(1) [see Eq. (5.33)]. Although not shown in Fig. 7, we have
checked that the internal energy per particle obtained from the
virial equation of state (5.31) via the thermodynamic relation
(5.34) exhibits a better agreement with the simulation data
than the direct energy route.
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FIG. 8. Same as in Fig. 5, but for an equimolar mixture (x1 = x2 = 1/2).

C. Results for equimolar binary mixtures

Having rationalized the non-equimolar case, the equimo-
lar (x1 = x2 = 1/2) case can now be safely tackled. The
equimolarity condition makes the system be more akin to the
original Janus model (see Fig. 1) since both spin orientations
are equally represented.

We start with the snapshot of an equilibrated configura-
tion at density ρ* = 0.3 and Baxter temperature τ = 0.1, that
are the same values used in the non-equimolar case. From
Fig. 8 it can be visually inspected that, in contrast to the non-
equimolar case of Fig. 5, the number of particles with spin
up matches that with spin down. This equimolar condition
then facilitates the interpretation of the corresponding struc-
tural properties, as illustrated by the radial distribution func-
tion gij (r) given in Fig. 9.

This was obtained at a Baxter temperature τ = 0.2 and
a density ρ* = 0.5, a state point that is expected to be out-
side the coexistence curve (see below), but inside the liq-
uid region. Again, this is the same state point as the non-
equimolar case previously discussed. Now g11(r) = g22(r)
(independently computed) as it should. Notice that the main
features commented before in connection with Fig. 6 per-
sist. In particular, g21(r) > g11(r) = g22(r) > y12(r) in the re-
gion 1 ≤ r � 1.5, g11(r) = g22(r) and g12(r) present rapid
changes around r = 2, and g21(r) exhibits a HS-like shape.
Also, as before, the RFA captures quite well the behaviors of
the correlation functions (especially noteworthy in the case
of g11 = g22). On the other hand, the RFA tends to underes-
timate y12(r) and g11(r) = g22(r) and to overestimate g21(r)
in the region 1 ≤ r � 1.5. The use of the modified version
(mRFA) partially corrects those discrepancies near contact,
although the general behavior only improves in the case of
g21(r).

Comparison between Figs. 6 and 9 shows that y12(r)
and g21(r) are very weakly affected by the change in com-
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FIG. 9. Same as in Fig. 6, but for an equimolar mixture (x1 = x2 = 1/2).

position. In fact, the spatial correlations between particles of
species 1 and 2 mediated by a third particle (i.e., to first or-
der in density) depend strongly on which particle (1 or 2)
is above o below the other one but not on the nature of the
third intermediate particle, as made explicit by Eqs. (A38)
and (A39). Of course, higher-order terms (i.e., two or more
intermediate particles) create a composition-dependence on
y12(r) and g21(r), but this effect seems to be rather weak. On
the contrary, the minority pair increases its correlation func-
tion g11(r), while the majority pair decreases its correlation
function g22(r) in the region 1 ≤ r � 1.5 when the composi-
tion becomes more balanced. Again, this can be qualitatively
understood by the exact results to first order in density [see
Eq. (A37)].

D. Preliminary results on the critical behavior

One of the most interesting and intriguing predictions
of the RFA is the existence of a gas-liquid transition in the
equimolar model, despite the fact that only one of the four
classes of interactions is attractive (see Sec. V C 4). The elu-
siveness of this prediction is reflected by the fact that the com-
pressibility route does not account for a critical point and, al-
though the virial and energy routes do, they widely differ in its
location, as seen in Table I. In this region of very low values
of τ the hybrid virial-energy equation of state is dominated by
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the virial one and thus the corresponding critical point is not
far from the virial value.

A simple heuristic argument can be used to support the
existence of a true critical point in our model. According to
the Noro–Frenkel (NF) generalized principle of correspond-
ing states,35 the critical temperatures of different systems of
particles interacting via a hard-core potential plus a short-
range attraction are such that the reduced second virial co-
efficient B∗

2 = B2/B
HS
2 has a common value B∗c

2 � −1.21.
In our model, the reduced second virial coefficient is
B∗

2 = 1 − 3t/4 = 1 − 1/16τ [see Eq. (A49)]. Thus, assum-
ing the NF ansatz, the critical point would correspond to
τNF
c � 0.028, a value higher than but comparable to that listed

in Table I from the virial route.
From the computational point of view, a direct assess-

ment on the existence of a gas-liquid transition in the present
model is not a straightforward task. Unlike the original SHS
Baxter model, a Gibbs ensemble MC (GEMC) calculation
for a binary mixture is required to find the coexistence lines.
We are currently pursuing this analysis that will be reported
elsewhere. As a very preliminary study, we here report NVT
results with values of the Baxter temperature close to the crit-
ical value τNF

c � 0.028 expected on the basis of the NF con-
jecture. More specifically, we have considered τ = 0.030,
0.0205, and 0.018 (corresponding to T * � 0.251, 0.229, and
0.223, respectively). The numerical results for the pressure,
along with the RFA theoretical predictions, are displayed in
Fig. 10.

We observe that at τ = 0.030 (top panel) the four theo-
retical routes clearly indicate a single-phase gas-like behavior
with a monotonic increase of the pressure as a function of the
density, in consistence with the value τ c � 0.0205 obtained
from the RFA virial route. On the other hand, the MC data
show a practically constant pressure between ρ* = 0.2 and
ρ* = 0.4, which is suggestive of τ = 0.030 being close to
the critical isotherm (remember that τNF

c � 0.028). The mid-
dle panel has been chosen to represent the critical isotherm
predicted by the RFA-virial equation of state. In that case,
the simulation data present a clear van der Waals loop with
even negative pressures around the minimum. A similar be-
havior is observed at τ = 0.018 (bottom panel), except that
now the RFA-virial isotherm also presents a visible van der
Waals loop. Whereas the observation of negative values of
isothermal compressibility in the MC simulations can be at-
tributed to finite-size effects and are expected to disappear in
the thermodynamic limit, these preliminary results are highly
supportive of the existence of a gas-liquid phase transition in
our model with a critical (Baxter) temperature τ c ≈ 0.03.

In view of the extremely short-range nature of the poten-
tial, the stability of the above liquid phases with respect to the
corresponding solid ones may be rightfully questioned.7 This
is a general issue—present even in the original Baxter model,
as well as in the spherically symmetric SW or Yukawa po-
tentials with sufficiently small interaction range36–39—that is
clearly outside the scope of the present paper. In any case,
it seems reasonable to expect that at sufficiently low tem-
perature and high density the stable phase will consist of an
fcc crystal made of layers of alternating species (1-2-1-2-···)
along the z direction.
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FIG. 10. MC simulation data for the scaled pressure ηZ = π
6 σ 3βP as

a function of ρ* at τ = 0.030 (top panel), 0.0205 (middle panel), and
τ = 0.018 (bottom panel) in an equimolar mixture. Densities higher than ρ*
= 0.7 are not shown because at these very low temperatures the particles tend
to overlap their SW shells and then the calculations slow down considerably.
Also shown are the theoretical results for the four routes of the RFA.

VII. CONCLUSIONS AND FUTURE PERSPECTIVES

We have studied thermophysical and structural proper-
ties of a Janus fluid having constrained orientations for the
attractive hemisphere. The Janus fluid has been modeled us-
ing a Kern–Frenkel potential with a single SW patch point-
ing either up or down, and studied using numerical NVT MC
simulations.
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The above model has been mapped onto an asymmet-
ric binary mixture where the only memory of the original
anisotropic potential stems from the relative position along
the z-axis of particles of the two species 1 and 2. In this way,
only one [(1, 2) with our choice of labels] out of the four pos-
sible interactions is attractive, the other ones [(1, 1), (2, 1),
and (2, 2)] being simply HS interactions.

In the limit of infinitely short and deep SW interactions
(sticky limit), we discussed how a full analytical theory is
possible. We developed a new formulation for asymmetric
mixtures of the rational-function approximation (RFA), that is
equivalent to the PY approximation in the case of symmetric
SHS interactions, but differs from it in the asymmetric case.
Results from this theory were shown to be in nice agreement
with MC simulations using SW interactions of sufficiently
short width (5% of particle size), both for the structural and
the thermodynamic properties.

The above agreement is rather remarkable in view of the
rather severe approximations involved in the RFA analysis —
that are however largely compensated by the possibility of
a full analytical treatment— and, more importantly, by the
fact that simulations deal with the actual Kern–Frenkel poten-
tial with up-down constrained orientations of the patches and
SW attractions, while the RFA theory deals with the obtained
asymmetric binary mixture and SHS interactions. We regard
this agreement as an important indication on the correctness
of the mapping.

Within the RFA approximation, all three standard routes
to thermodynamics (compressibility, virial, and energy) were
considered. To them we added a weighted average of the virial
and energy routes with a weight fixed as to reproduce the ex-
act third virial coefficient. Somewhat surprisingly, our results
indicate that only the compressibility route fails to display a
full critical behavior with a well-defined critical point. The
existence of a critical point and a (possibly metastable) gas-
liquid phase transition in our model (despite the fact that at-
tractive interactions are partially inhibited) are supported by
the NF generalized principle of corresponding states35 and by
preliminary simulations results. We plan to carry out more de-
tailed GEMC simulations to fully elucidate this point.

The work presented here can foster further activities to-
ward an analytical theory of the anomalous phase diagram in-
dicated by numerical simulations of the (unconstrained) Janus
fluid. We are currently working on the extension of the present
model allowing for more general interactions where the red
hemispheres in Fig. 2 also present a certain adhesion (e.g.,
τ 12 < τ 11 = τ 22 = τ 21 < ∞). This more general model (to
which the theory presented in Sec. V B still applies) can be
continuously tuned from isotropic SHS (τ ij = τ ) to isotropic
HS interactions (τ ij → ∞). The increase in the (Baxter) crit-
ical temperatures and densities occurring when equating the
stickiness of both hemispheres would then mimic the corre-
sponding increase in the location of the critical point upon an
increase of the patch coverage in the Kern–Frenkel model.7
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APPENDIX A: EXACT LOW-DENSITY PROPERTIES
FOR ANISOTROPIC SHS MIXTURES

1. Cavity function to first order in density

To first order in density, the cavity function of an
anisotropic mixture is

yij (r) = 1 + y
(1)
ij (r)ρ + O(ρ2), (A1)

where

y
(1)
ij (r) =

∑
k

xky
(1)
ij ;k(r), (A2)

with

y
(1)
ij ;k(r) =

∫
dr′ fik(r′)fkj (r − r′). (A3)

Here, fij (r) = e−βφij (r) − 1 is the Mayer function. In the par-
ticular case of the anisotropic SHS potential considered in this
paper,

fij (r) = fHS(r) + δ(r − 1)[tij � (cos θ ) + tj i � (− cos θ )]

= f SHS
ji (r) + t−ij δ(r − 1) � (cos θ ), (A4)

where t−ij ≡ tij − tj i ,

fHS(r) = −�(1 − r), f SHS
ji (r) = fHS(r) + tj iδ(r − 1).

(A5)
Inserting Eq. (A4) into Eq. (A3), we get

y
(1)
ij ;k(r) = �(2 − r)

{
π

3
(2 − r)2(4 + r) − (tki + tjk)π (2 − r)

+ tki tjk2π

[
2δ(r) + 1

r

]
− (t−ik + t−kj )A(r)

+ (t−ik tjk + t−kj tki)L(r) + t−ik t
−
kjL0(r)

}
, (A6)

where

A(r) ≡
∫

dr′ δ(r ′ − 1) � (1 − |r − r′|) � (z′), (A7)

L(r) ≡
∫

dr′ δ(r ′ − 1)δ(|r − r′| − 1) � (z′), (A8)

L0(r) ≡
∫

dr′ δ(r ′ − 1)δ(|r − r′| − 1) � (z′) � (z − z′).

(A9)
It can be proved that

A(r) =

⎧⎪⎪⎨⎪⎪⎩
π (2 − r),

√
1 − r2/4 ≤ cos θ ≤ 1,

A(r/2, θ ), | cos θ | ≤
√

1 − r2/4,

0, −1 ≤ cos θ ≤ −
√

1 − r2/4,

(A10)
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L(r) =

⎧⎪⎪⎨⎪⎪⎩
2π/r,

√
1 − r2/4 ≤ cos θ ≤ 1,

L(r/2, θ ), | cos θ | ≤
√

1 − r2/4,

0, −1 ≤ cos θ ≤ −
√

1 − r2/4,

(A11)

L0(r) =

⎧⎪⎪⎨⎪⎪⎩
2π/r,

√
1 − r2/4 ≤ cos θ ≤ 1,

L0(r/2, θ ), 0 ≤ cos θ ≤
√

1 − r2/4,

0, cos θ ≤ 0,

(A12)

where

A(�, θ ) = 2π�(cos θ ) − π� − 2� sin−1 � cos θ√
1 − �2 sin θ

−2 tan−1

√
sin2 θ − �2

cos θ
, (A13)

L(�, θ ) = − 1

2�

∂

∂�
A(�, θ )

= 1

�

[
π

2
+ sin−1 � cos θ√

1 − �2 sin θ

]
, (A14)

L0(�, θ ) = L(�, θ ) − L(�, π − θ )

= 2

�
sin−1 � cos θ

sin θ
√

1 − �2
. (A15)

In Eqs. (A11) and (A12) we have omitted terms proportional
to δ(r) since they will not contribute to gij (r). Note the sym-
metry relations A(r) + A(−r) = π (2 − r), L(r) + L(−r)
= 2π/r , L(r) − L(−r) = L0(r) − L0(−r).

The orientational average

y
(1)
ij ;k(r) =

∫ π/2

0
dθ sin θy

(1)
ij ;k(r) (A16)

becomes

y
(1)
ij ;k(r) = �(2 − r)

{
π

3
(2 − r)2(4 + r) − (tki + tjk)π (2 − r)

+ tki tjk2π

[
2δ(r) + 1

r

]
− (t−ik + t−kj )A(r)

+ (t−ik tjk + t−kj tki)L(r) + t−ik t
−
kjL0(r)

}
, (A17)

where

A(r) = π (2 − r)
(
1 −

√
1 − r2/4

)+ A(r/2), (A18)

L(r) = 2π

r

(
1 −

√
1 − r2/4

)+ L(r/2), (A19)

L0(r) = 2π

r

(
1 −

√
1 − r2/4

)+ L0(r/2), (A20)

with

A(�) =
∫ π/2

sin−1 �

dθ sin θA(�, θ )

= 2
√

1 − �2 (π − π� − 1) + 2� cos−1 �, (A21)

L(�) =
∫ π/2

sin−1 �

dθ sin θL(�, θ )

= 1

�

(
π
√

1 − �2 − cos−1 �
)
, (A22)

L0(�) =
∫ π/2

sin−1 �

dθ sin θL0(�, θ )

= 1

�

(
π
√

1 − �2 − 2 cos−1 �
)
. (A23)

2. Second and third virial coefficients

The series expansion of the compressibility factor Z in
powers of density defines the virial coefficients:

Z = 1 + B2ρ + B3ρ
2 + · · · . (A24)

Using Eq. (A1) in Eq. (4.8), one can identify

B2 = 2π

3

⎛⎝1 − 3
∑
i,j

xixj tij

⎞⎠ , (A25)

B3 = 2π

3

∑
i,j,k

xixjxk

[
(1 − 3tij y

(1)
ij ;k(1) − tij y

(1)
ij ;k

′
(1)
]
.

(A26)
According to Eq. (A17),

y
(1)
ij ;k(1) = 5π

3
− (tki + tjk)π + tki tjk2π − (t−ik + t−kj )A(1)

+ (t−ik tjk + t−kj tki)L(1) + t−ik t
−
kjL0(1), (A27)

y
(1)
ij ;k

′
(1) = −3π + (tki + tjk)π − tki tjk2π − (t−ik + t−kj )A′

(1)

+ (t−ik tjk + t−kj tki)L
′
(1) + t−ik t

−
kjL

′
0(1), (A28)

where

A(1) = 4π

3
−

√
3, A′

(1) = −2π

3
, (A29)

L(1) = 4π

3
, L′

(1) = −2

3

(
2π −

√
3
)
, (A30)

L0(1) = 2π

3
, L′

0(1) = −2

3

(
π − 2

√
3
)
. (A31)

The second and third virial coefficients can also be ob-
tained from the compressibility equation (3.14). To that end,
note that

ĥij (0) = ĥ
(1)
ij (0)ρ + ĥ

(2)
ij (0)ρ2 + · · · , (A32)

where, according to Eq. (3.13),

ĥ
(1)
ij (0) = √

xixj 2π

(
−2

3
+ tij + tj i

)
, (A33)
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ĥ
(2)
ij (0) = √

xixj 2π

{
tij y

(1)
ij (1) + tj iy

(1)
ji (1)

+
∫ 2

1
dr r2

[
y

(1)
ij (r) + y

(1)
ji (r)

]}
. (A34)

Inserting this into Eq. (3.14) and making use of Eqs. (A17)–
(A23), one gets χ−1

T = 1 + 2B2ρ + 3B3ρ
2 + · · ·, with B2 and

B3 given by Eqs. (A25) and (A26), respectively. Furthermore,
it can be checked that the exact consistency condition (4.12)
is satisfied by Eqs. (A1), (A2), (A27), and (A28). The veri-
fication of these two thermodynamic consistency conditions
represent stringent tests on the correctness of the results de-
rived in this appendix.

3. Case t11 = t22 = t21 = 0

In the preceding equations of this appendix we have as-
sumed general values for the stickiness parameters tij. On
the other hand, significant simplifications occur in our con-
strained Janus model, where tij = tδi1δj2. More specifically,

y
(1)
11 (r) = �(2 − r)

{
π

12
(2 − r)2(4 + r) − x2t [π (2 − r)

−tL(r) + tL0(r)]

}
, (A35)

y
(1)
12 (r) = �(2 − r)

[ π

12
(2 − r)2(4 + r) − tA(r)

]
, (A36)

y
(1)
11 (r) = �(2 − r)

[
π

12
(2 − r)2(4 + r)

− x2πt

(
2 − r − 2t

πr
cos−1 r

2

)]
, (A37)

y
(1)
12 (r) = �(2 − r)

{
π

12
(2 − r)2(4 + r)

− t
[
π (2 − r) − 2

√
1 − r2/4 + r cos−1 r

2

] }
,

(A38)

y
(1)
21 (r) = �(2 − r)

{
π

12
(2 − r)2(4 + r)

− t

[
2
√

1 − r2/4 − r cos−1 r

2

]}
, (A39)

y(1)(r) = �(2 − r)

[
π

12
(2 − r)2(4 + r)

− x1x22πt

(
2 − r − t

πr
cos−1 r

2

)]
, (A40)

y
(1)
11 (1) = 5π

12
− x2πt

(
1 − 2t

3

)
, (A41)

y
(1)
12 (1) = 5π

12
− t

(
4π

3
−

√
3

)
, (A42)

y
(1)
21 (1) = 5π

12
− t
(√

3 − π

3

)
, (A43)

y
(1)
11

′
(1) = − 3π

4
+ x2t

[
π − 2t

3
(π +

√
3)

]
, (A44)

y
(1)
12

′
(1) = − 3π

4
+ t

2π

3
, (A45)

y
(1)
21

′
(1) = − 3π

4
+ t

π

3
, (A46)

y(1)(1) = 5π

12
− x1x22πt

(
1 − t

3

)
, (A47)

y(1)′(1) = − 3π

4
+ x1x22t

[
π − t

3
(π +

√
3)

]
, (A48)

6

π
B2 = 4 (1 − 3x1x2t) , (A49)

(
6

π

)2

B3 = 10

{
1 − 6x1x2t

[
1 − 2

5

(
4 − 3

√
3

π

)
t

]}
,

(A50)

uex

ε
= − 12ηx1x2t

{
1 + 5

2

[
1 − 4

5

(
4 − 3

√
3

π

)
t

]
η

}
+O(η2). (A51)

APPENDIX B: EVALUATION OF THE COEFFICIENTS
L(0)

ij , L(1)
ij , AND L(2)

ij

In order to apply Eqs. (3.19) and (3.20), it is convenient
to rewrite Eq. (5.12) as

1

2π
L(s) = Q(s) · [I − A(s)], (B1)

where we have introduced the matrix Q as

Qij (s) ≡ ess2Gij (s). (B2)

Thus, Eqs. (3.19) and (3.20) are equivalent to

Qij (s) = 1 + s + O(s2). (B3)

Expanding Aij(s) in powers of s and inserting the result into
Eq. (B1), one gets

1

2π
L

(0)
ij = 1 −

∑
k

A
(0)
kj , (B4)

1

2π
L

(1)
ij = 1 −

∑
k

(
A

(1)
kj + A

(0)
kj

)
, (B5)
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where

A
(n)
ij = (−1)nρxi

[
L

(0)
ij

(n + 3)!
− L

(1)
ij

(n + 2)!
+ L

(2)
ij

(n + 1)!

]
.

(B6)
Equations (B4) and (B5) constitute a linear set of equa-
tions which allow us to express the coefficients L

(0)
ij and L

(1)
ij

in terms of the coefficients {L(2)
kj }. The result is given by

Eqs. (5.15) and (5.16).
It now remains the determination of L

(2)
ij . This is done by

application of Eq. (4.17), i.e., the ratio first term to second
term in the expansion of esGij(s) for large s must be exactly
equal to tij. This is the only point where the stickiness param-
eters of the mixture appear explicitly.

The large-s behavior from Eq. (5.12) is

2πesGij (s) = L
(2)
ij + [L(1)

ij + (L(2) · D)ij
]
s−1 + O(s−2),

(B7)
where

Dij ≡ ρxi

(
1

2
L

(0)
ij − L

(1)
ij + L

(2)
ij

)
= ρxi

(
L

(2)
ij − π

1 − η

)
. (B8)

Comparison of Eq. (4.16) with Eq. (B7) yields Eq. (5.18) and

12τijL
(2)
ij

σij

= L
(1)
ij +

m∑
k=1

L
(2)
ik Dkj , (B9)

L
(2)
ij

tij
= L

(1)
ij +

∑
k

L
(2)
ik Dkj . (B10)

Taking into account Eqs. (5.16) and (B8), Eq. (B10) becomes
Eq. (5.17).

APPENDIX C: RECOVERY OF THE PSEUDO-PY
SOLUTION

The aim of this appendix is to prove that the pair cor-
relation functions gij (r) obtained from the RFA method in
Sec. V B satisfy Eqs. (5.3) and (5.6).

First, note that the pseudo-OZ relation (5.6) can be
rewritten in the form

ĉ(q) = ĥ(q) · [I + ĥ(q)
]−1

, (C1)

where I is the unit matrix and

ĉij (q) = ρ
√

xixj

∫
dr e−iq·rcij (r), (C2)

ĥij (q) = ρ
√

xixj

∫
dr e−iq·rhij (r). (C3)

Note that ĥij (0) = 1
2 [̂hij (0) + ĥj i(0)], where ĥij (0) is defined

by Eq. (3.13).

The Fourier transform ĥij (q) of the (orientational aver-
age) total correlation function hij (r) = gij (r) − 1 is related
to the Laplace transform Gij(s) [see Eq. (3.15)] by

ĥij (q) = − 2πρ
√

xixj

[
Gij (s) − Gij (−s)

s

]
s=iq

. (C4)

Making use of Eqs. (5.12)–(5.14), it is possible to obtain, after
some algebra,

ĉij (q)

ρ
√

xixj

= 4π

q3
C

(0)
ij (sin q − q cos q) + 4π

q4
C

(1)
ij [2q sin q

− 2 − (q2 − 2) cos q] + 4π

q6
C

(3)
ij [4q(q2 − 6)

× sin q + 24 − (24 − 12q2 + q4) cos q]

+ 4πtij yij (1)
sin q

q
, (C5)

where the coefficients C
(0)
ij , C(1)

ij , and C
(3)
ij are independent of q

but depend on the density, the composition, and the stickiness
parameters. Fourier inversion yields

cij (r) = [C(0)
ij + C

(1)
ij r + C

(3)
ij r3

]
� (1 − r)

+ yij (1)tij δ+(r − 1). (C6)

Taking into account Eq. (4.10) we see that Eq. (C6) has the
structure

cij (r) = gij (r) − yij (r). (C7)

But this is not but the PY closure relation (5.3). In passing,
we get the cavity function inside the core:

yij (r) � (1 − r) = −[C(0)
ij + C

(1)
ij r + C

(3)
ij r3

]
�(1 − r).

(C8)
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Chapter 37

Multicomponent fluid of nonadditive
hard spheres near a wall

Fantoni R. and Santos A., Phys. Rev. E 87, 042102 (2013)
Title: “Multicomponent fluid of nonadditive hard spheres near a wall”
Abstract: A recently proposed rational-function approximation [Phys. Rev. E 84, 041201
(2011)] for the structural properties of nonadditive hard spheres is applied to evaluate analyt-
ically (in Laplace space) the local density profiles of multicomponent nonadditive hard-sphere
mixtures near a planar nonadditive hard wall. The theory is assessed by comparison with
NV T Monte Carlo simulations of binary mixtures with a size ratio 1 : 3 in three possible
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I. INTRODUCTION

The study of mixtures near a fluid-solid interface is
important for the understanding of wetting and adsorption
phenomena where competition among different components
may occur. A simplified physical picture of adsorption may
be obtained at a microscopic level if one considers the solid
surface as a planar smooth hard wall confining the particles
of the mixture. Thereby, one can describe the expected
oscillations of the (partial) local particle densities in the
neighborhood of the wall with an abundance of particles right
at contact and a depletion nearby. Whereas confined fluid
mixtures of additive hard spheres (AHS) have been widely
studied within integral equation theories [1–8], Monte Carlo
simulations [8–13], and density-functional theories [9,13–23],
much less is known in the case of nonadditive hard spheres
(NAHS) [24–27].

In a recent paper [28], NAHS mixtures were studied through
the so-called rational-function approximation (RFA) technique
[29,30], which amounts to choosing simple (rational-function)
expressions for the Laplace space representation of the radial
distribution functions of the theory of liquids [31,32]. This
allowed us to determine a nonperturbative, fully analytical (in
Laplace space) approximation. When the nonadditivity is set
to zero, the approximation reduces to the Percus-Yevick (PY)
approximation for an AHS mixture.

The purpose of the present work is to use the RFA scheme
devised in Ref. [28] to determine the structural properties of
an n-component NAHS fluid near a hard wall interacting
either additively or nonadditively with the particles of the
fluid mixture. A realization of the problem is obtained from a
(n + 1)-component NAHS mixture, where one of the species,
species 0, is taken to have a vanishing concentration and

*rfantoni@ts.infn.it
†andres@unex.es; http://www.unex.es/eweb/fisteor/andres

an infinite diameter. A similar approach was employed by
Malijevsky et al. [13] to determine through the RFA the
structural properties of a multicomponent AHS fluid near
an additive hard wall. In the present case, however, not
only the particle-particle interaction may be nonadditive (i.e.,
the closest distance between the centers of two spheres of
species i and j is in general different from the arithmetic
mean of the respective diameters), but also the particle-wall
may be nonadditive as well. The latter possibility means that
the closest distance from the planar wall to the center of a
sphere may be different from the radius of the sphere. A
similar problem has recently been considered by González
et al. [33], where strong size selectivity is observed in a
binary AHS mixture confined in a narrow cylindrical pore
such that each species of the mixture sees a different cylinder
radius.

We will compare our approximation results for the local
density of particles at a distance z from the wall with exact
canonical (fixed number of particles N , volume V , and
temperature T ) Monte Carlo (MC) simulation results for
binary mixtures. In the simulation it is necessary to use two
hard walls on the opposite far square faces of a parallelepiped
simulation box with rectangular lateral faces and to choose the
two walls far enough so that bulk properties of the fluid can be
extracted by looking at the center of the box.

The agreement between theory and simulations is quite
satisfactory. It is worse at contact (similarly to what happens
with the PY theory in the additive case [13]) but it rapidly
improves as the distance from the wall increases, so that
the first minimum (depletion region) and the subsequent
oscillations are well predicted by our analytical approach.
To the best of our knowledge, our results constitute the first
proposal for an analytical expression (in Laplace space) for the
density profiles of a NAHS mixture confined by a (nonadditive
or additive) hard wall. As such, the theory is expected to
be useful to the experimentalist who needs easy formulas to
determine profiles to compare with experimental data, thus
bypassing the need of numerical experiments.
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The paper is organized as follows. In Sec. II we describe
the model of the confined fluid we are going to study. The
RFA used to extract the structural properties of the fluid is
presented in Sec. III, where some details of the wall limit
are given in the Appendix. In Sec. IV we describe some
details of the NV T MC simulation method we employed
for confined binary mixtures. The results for the structural
properties are presented in Sec. V, where the RFA and our
own MC simulation are compared. Finally, Sec. VI is left for
concluding remarks.

II. THE MODEL

An n-component NAHS mixture in the d-dimensional
Euclidean space is a fluid of Ni particles of species i with
i = 1,2, . . . ,n, such that there are a total number of particles
N = ∑n

i=1 Ni in a volume V , and the pair potential between
a particle of species i and a particle of species j separated by
a distance r is given by

φij (r) =
{∞, r � σij ,

0, r > σij ,
(2.1)

where σii = σi and σij = 1
2 (σi + σj )(1 + �ij ), so that �ii = 0

and �ij = �ji > −1. When �ij = 0 for every pair i–j we
recover the AHS system. In the present paper we will only
consider the NAHS system in its single fluid phase.

Let ρ̄ = N/V be the total number density of the mixture
and x̄i = Ni/N be the mole fraction of species i. These are
spatially averaged quantities that can differ from local values
in confined situations.

The one-dimensional (d = 1) NAHS fluid admits an exact
analytical solution for the structural and thermophysical
properties in the thermodynamic limit N → ∞ with ρ̄ =
N/V = const [34–37]. Moreover, the AHS fluid with d = odd
allows for an analytical solution of the PY approximate theory
[38–41]. Such a solution in the case d = 1 reduces to the exact
solution particularized to the additive mixture.

Inspired by both the exact solution for one-dimensional
NAHS mixtures and the PY solution for three-dimensional
AHS mixtures, we have recently proposed an analytical
approach for the three-dimensional NAHS system [28]. As
said in Sec. I, the aim of the present paper is to use that
approximation to determine the structural properties of a
ternary mixture where one of the species (i = 0) is subject
to the wall limit: x̄0 → 0 and σ0 → ∞. Such a ternary mixture
represents a binary mixture of AHS (�12 = 0) or NAHS
(�12 �= 0) in the presence of a hard wall, which, in addition,
may interact additively or nonadditively with the fluid particles
(see Sec. III B).

III. RATIONAL-FUNCTION APPROXIMATION

A. General scheme

In Ref. [28], the following proposal for the structural
properties of an n-component NAHS fluid defined through
the Laplace transform Gij (s) of rgij (r) was given:

Gij (s) = s−2
n∑

k=1

e−σiksLik(s)Bkj (s), (3.1)

with

B−1(s) = I − A(s), (3.2)

Aij (s) = 2πρ̄x̄i

s3
[Nij (s)eaij s − Lij (s)e−σij s], (3.3)

where I is the unit matrix,

Lij (s) ≡ L
(0)
ij + L

(1)
ij s, (3.4)

Nij (s) ≡ L
(0)
ij

(
1 − bij s + b2

ij s
2

2

)
+ L

(1)
ij s(1 − bij s), (3.5)

bij ≡ σij + aij , aij ≡ 1

2
(σi − σj ). (3.6)

Equations (3.1)–(3.5) provide the explicit s-dependence of
the Laplace transform Gij (s), but it still remains to obtain
the two sets of parameters L

(0)
ij and L

(1)
ij . This is done by

enforcing the physical requirements lims→0 s2Gij (s) = 1 and
lims→0 s−1[s2Gij (s) − 1] = 0 [28]. The result is

L
(0)
ij = Sj , L

(1)
ij = Tj + σijSj , (3.7)

where

Sj ≡ 1 − πρ̄�j

(1 − πρ̄�j )(1 − πρ̄�j ) − π2ρ̄2μj |2,0	j

, (3.8)

Tj ≡ πρ̄	j

(1 − πρ̄�j )(1 − πρ̄�j ) − π2ρ̄2μj |2,0	j

, (3.9)

�j ≡ μj |2,1 − 1

3
μj |3,0, (3.10)

�j ≡ 2

3
μj |3,0 − μj |2,1, (3.11)

	j ≡ μj |3,1 − μj |2,2 − 1

4
μj |4,0, (3.12)

and we have called

μj |p,q ≡
n∑

k=1

x̄kb
p

kjσ
q

kj . (3.13)

As discussed in Ref. [28], the inverse Laplace transform
L−1[Gij (s)](r) may present a spurious behavior in the shell
min(σij ,τij ) � r � max(σij ,τij ), where τij is the minimum of
the list of values σik − akj (k = 1, . . . ,n) that are different
from σij . If σik − akj = σij for all k, then τij = σij . The
anomalous behavior of L−1[Gij (s)](r) for min(σij ,τij ) � r �
max(σij ,τij ) can be avoided with a series of corrections, the
simplest one of which yields

gij (r) = �(r − σij )

{L−1[Gij (s)](r)

r

+Cij�(τij − r)

(
τij

r
− 1

)}
, (3.14)

where

Cij = 2πρ̄x̄κij
L

(1)
iκij

(
L

(1)
κij j

− Sj

bκij j

2

)
bκij j , (3.15)
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κij being the index associated with τij ; i.e., τij = σiκij
− aκij j .

The contact values are given by [28]

gij (σ+
ij ) = L

(1)
ij

σij

+ Cij

(
τij

σij

− 1

)
. (3.16)

The approximation (3.14) was referred to as RFA(1)
+ in

Ref. [28]. In the special case of AHS mixtures, one has σik −
akj = σij , so that τij = σij and gij (r) = r−1L−1[Gij (s)](r)
coincides with the PY solution [38,39].

B. Wall limit

Now we assume that a single sphere of diameter σ0 is
introduced in the n-component fluid. This gives rise to an
(n + 1)-component fluid, where the extra species (i = 0),
being made of a single particle, has a vanishing concentration
x̄0 = 0 in the thermodynamic limit N → ∞. With this proviso,
Eq. (3.1) can be easily extended to this (n + 1)-component
mixture.

According to Eq. (3.3), if x̄0 = 0, the row i = 0 of the
matrix A is zero. As a consequence, the row i = 0 and the
column j = 0 of the matrices B−1 and B have the forms

B−1
0j = δj0, B−1

i0 = −Ai0, i � 1, (3.17)

B0j = δj0, Bi0 =
n∑

k=1

BikAk0, i � 1. (3.18)

Thus, application of Eq. (3.1) to the pair i–0 with i � 1 yields

Gi0(s) = s−2e−σi0sLi0(s) +
n∑

j=1

Gij (s)Aj0(s). (3.19)

Therefore, the cross function Gi0(s) (with i = 1, . . . ,n), which
is related to the spatial correlation between a particle of species
i � 1 and the single particle i = 0, is expressed in terms of
the matrix Gij (s) of the n-component mixture and the cross
elements Li0(s) and Aj0(s).

In principle, the nonadditivity of the i–0 interaction would
be measured by the nonadditivity parameter �i0 defined by
σi0 = 1

2 (σ0 + σi)(1 + �i0). However, the use of �i0 is not
convenient in the wall limit σ0 → ∞ that we will take at
the end. Instead, we define a nonadditivity distance wi by
σi0 = 1

2 (σ0 + σi) + wi . Note that, since no 0–0 interaction is
present, the definition of the diameter σ0 is somewhat arbitrary.
In fact, if all wi = w are equal, the apparently nonadditive
i–0 interaction is indistinguishable from an additive interac-
tion with σ0 → σ0 + 2w. Therefore, a true nonadditive i–0
interaction requires, first, that n � 2 and, second, that not
all {wi} are equal. Therefore, without loss of generality, we
take min(wi ; i = 1, . . . ,n) = 0. This defines the diameter σ0

unambiguously.
As a next step toward the wall limit, we introduce the shifted

radial distribution function

γi(z) = gi0(z + σ0/2). (3.20)

Thus, while r is the distance between the centers of the pair
i–0, z = r − 1

2σ0 represents the distance from the center of a
sphere of species i to the surface of the single sphere j = 0.
If we call �i(s) the Laplace transform of γi(z), the following

relationship applies:

Gi0(s) = e−σ0s/2

[
σ0

2
�i(s) − �′

i(s)

]
, (3.21)

where �′
i(s) = ∂�i(s)/∂s.

Finally, we take the wall limit σ0 → ∞. In that case, the
function γi(z) becomes the ratio between the local number
density of particles of species i at a distance z from the
wall, ρi(z), and the corresponding density in the bulk, ρb

i .
In an infinite system (as implicitly assumed in the theoretical
approach), the bulk and average values coincide, i.e., ρb

i =
ρi(∞) = x̄i ρ̄.

In the wall limit �′
i(s) can be neglected versus σ0�i(s)/2 in

Eq. (3.21), so that

�i(s) = 2 lim
σ0→∞ σ−1

0 eσ0s/2Gi0(s)

= 2e−(σi/2+wi )s
L̃i(s)

s2
+ 2

n∑
j=1

Gij (s)Ãj (s), (3.22)

where in the second step we have made use of Eq. (3.19) and
have defined

L̃i(s) ≡ lim
σ0→∞ σ−1

0 Li0(s), (3.23)

Ãj (s) ≡ lim
σ0→∞ σ−1

0 eσ0s/2Aj0(s). (3.24)

These two quantities are evaluated in the Appendix.
Once the Laplace transform �i(s) is well defined, let

us consider the correction described by the second line of
Eq. (3.14). First, we subtract 1

2σ0 to the distances, so that
the shell min(σi0,τi0) � r � max(σi0,τi0) becomes min( 1

2σi +
wi,̃τi) � z � max( 1

2σi + wi,̃τi), where τ̃i is the minimum of
the list of values σik − 1

2σk (k = 1, . . . ,n) that differ from
1
2σi + wi . Again, τ̃i = 1

2σi + wi , if σik − 1
2σk = 1

2σi + wi for
all k. Finally, in the limit σ0 → ∞, one obtains

γi(z) = �
(
z − 1

2σi − wi

){L−1[�i(s)](r)

+ 2C̃i�(̃τi − z)(̃τi − z)}, (3.25)

with

C̃i = 2πρ̄x̄κi
L

(1)
iκi

(
L̃(1)

κi
− L̃(0) σκi

+ wκi

2

)
(σκi

+ wκi
),

(3.26)

where κi is the index associated with τ̃i , i.e., τ̃i = σiκi
− 1

2σκi
,

and the quantities L̃(0) and L̃
(1)
i are defined in the Appendix.

The inverse Laplace transform in Eq. (3.25) can be easily
performed numerically [42]. On the other hand, the density
ratio γi at the shortest distance from the wall z = 1

2σi + wi

can be derived analytically. From Eq. (3.16) we easily obtain

γi

(
z = 1

2σi + wi

) = 2L̃
(1)
i + 2C̃i

(̃
τi − 1

2σi − wi

)
. (3.27)

The fact that the general scheme gives well-defined expres-
sions in the wall limit (x̄0 = 0, σ0 → ∞) is a stringent test on
the internal consistency of the RFA approach. It also shows
the convenience of dealing with explicit, analytical expressions
from which the subsequent limits can be taken.
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TABLE I. Values of the nonadditivity parameters (�12, w1, and w2), the average mole fraction (x̄1), and the average density (ρ̄) for the
representative systems considered in this work. In all the cases σ2/σ1 = 3. The table also includes the values (xb

1 and ρb) measured in the bulk
region z ≈ Lz/2 in our MC simulations with Lz/σ1 = 30.

Label �12 w1/σ1 w2/σ1 x̄1 xb
1 ρ̄σ 3

1 ρbσ 3
1 η̄eff

A 0.2 0 0 0.5 0.469 1
30 0.0337 0.243

B −0.2 0 0 0.5 0.503 1
20 0.0513 0.237

C1 −0.2 0 0 0.9 0.896 1
10 0.1025 0.095

C2 −0.2 0 0 0.9 0.898 1
5 0.2040 0.190

D 0 0 0.35 0.5 0.475 1
30 0.0345 0.192

E 0 0.35 0 0.5 0.511 1
20 0.0503 0.288

F −0.2 0 0.35 0.5 0.486 1
30 0.0350 0.158

IV. MONTE CARLO SIMULATIONS

We have simulated a binary mixture (n = 2) of NAHS
through canonical NV T MC simulations in a box of fixed
volume and sides Lx , Ly , and Lz with Lx = Ly and Lz � Lx .
Periodic boundary conditions are enforced along the x and y

directions, but two impenetrable hard walls are located at z = 0
and z = Lz. The particles are initially placed on a simple cubic
regular configuration along the z direction with a first crystal
layer of particles of species 1 juxtaposed to a crystal layer of
particles of species 2. We reject the ith particle move only in
case of overlap with any other particle, i.e., if rij < σij for some
j , or with one of the walls, i.e., if min(zi,Lz − zi) < 1

2σi + wi .
The system is then equilibrated for 107 MC steps (where
a MC step corresponds to a single particle move) and the
properties are generally averaged over additional 109 MC steps
for production. The maximum particle displacement, the same
along each direction, is determined during the first stage of
the equilibration run in such a way as to ensure an average
acceptance ratio of 50% at production time. As a compromise
between the condition Lz � Lx and the computational need
of not having too high a number of particles, we have taken
Lx = 10σ1 and Lz = 30σ1 in all the simulations presented,
except a control case with Lz = 60σ1 (see below). The
local density profiles γi(z) = ρi(z)/ρb

i are obtained, for each
species, from histograms of the z coordinates of the particles
in bins of width 0.01σ1. The bulk values ρb

i are evaluated
in the region of the simulation box with z ≈ Lz/2, where a
negligible influence from the walls is expected. Due to the
finite value of Lz, the bulk total density ρb = ρb

1 + ρb
2 and

the bulk mole fraction xb
1 = ρb

1/ρb differ from their respective
average values ρ̄ and x̄1.

V. RESULTS

A. Representative systems

In the binary case, there are five independent dimension-
less parameters of the problem: the size ratio σ2/σ1, the
particle-particle nonadditivity parameter �12, the particle-wall
nonadditivity parameter max(w1,w2)/σ1 [remember that, by
convention, min(w1,w2) = 0], the average mole fraction x̄1,
and the average reduced density ρ̄σ 3

1 . Here, σ1 is chosen as the
diameter of the small spheres and henceforth it will be used to
define the length unit.

In order to focus on the nonadditivity parameters, we have
chosen σ2/σ1 = 3 for all the systems. Next, three classes of
systems have been considered: (i) a nonadditive mixture in
the presence of an additive wall, (ii) an additive mixture in
the presence of a nonadditive wall, and (iii) a nonadditive
mixture with a nonadditive wall. As representative examples
of class (i) we have chosen an equimolar mixture with either
positive (system A of Table I) or negative (system B of
Table I) nonadditivity and a mixture with an excess of small
spheres and negative nonadditivity at two densities (systems
C1 and C2, respectively). As examples of class (ii), we have
chosen an equimolar mixture where the wall presents an extra
repulsion to either the large spheres (system D) or the small
spheres (system E). Finally, class (iii) is represented by system
F, which is analogous to system D, except that the mixture has a
negative nonadditivity. The reduced densities ρ̄σ 3

1 range from
1
30 to 1

5 , so that the total number of particles N = ρ̄L2
xLz ranges

from 100 to 600. It is also convenient to measure the density in
terms of the effective packing fraction η̄eff = π

6 ρ̄
∑

i,j x̄i x̄j σ
3
ij

related to van der Waals’s one-fluid theory [43], whose values
are indicated in the last column of Table I. In the low-density
regime, two mixtures with the same value of η̄eff would have
the same compressibility factor.

B. Bulk values

The bulk values xb
1 and ρb measured in the MC simulations

with Lz = 30σ1 are also included in Table I. In all the cases
the bulk density ρb is larger than the average density ρ̄. This is
due to the fact that the effective length available to the spheres
of species i is not Lz but Lz − (σi + 2wi). As a consequence,
the larger deviation between ρb and ρ̄ takes place for systems
D (3.5%) and F (5.0%), i.e., those systems where the walls
produce an extra repulsion (w2/σ1 = 0.35) on the big spheres.
This compression effect is only partially compensated by the
accumulation of particles at contact with the walls. In the case
of the bulk mole fraction xb

1 , the situation is less obvious. Note
the identity

x̄1ρ̄

xb
1ρb

= 1

Lz/2

∫ Lz/2

σ1/2+w1

dz γ1(z). (5.1)

Even if the right-hand side of Eq. (5.1) is generally smaller than
1, the fact that ρb > ρ̄ can give rise to xb

1 < x̄1; i.e., the bulk
would be richer in big spheres than on average. This is what
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actually happens for systems A, C1, C2, D, and F. This effect
is especially important in systems A and D since in those cases
the right-hand side of Eq. (5.1) turns out to be larger than 1
(see Figs. 1 and 5 below for a visual confirmation). Exceptions
to the property xb

1 < x̄1 are represented by systems B and E.
In those cases, the right-hand side of Eq. (5.1) is sufficiently
smaller than 1 (see Figs. 3 and 6 below) as to compensate for
the ratio ρb/ρ̄ > 1.

Now we turn our attention to the density profiles. When
presenting the theoretical RFA results for each system we
have used two criteria. In the first criterion, the quantities
ρ̄ and x̄1 appearing in the theoretical scheme described in
Sec. III have been identified with the average values employed
in the simulations. In the second criterion, the RFA quantities
ρ̄ and x̄1 have been identified with the bulk values ρb and
xb

1 found in the MC simulations with Lz = 30σ1. As said
before, the theoretical approach deals with formally infinite
systems (Lz → ∞) where the average and bulk quantities
coincide. However, when making contact with simulation data
corresponding to finite Lz, the use of either the average or the
bulk values in the RFA may be important.

C. Nonadditive mixture and additive wall

Figure 1 shows the MC and RFA results for the two
(relative) density profiles γi(z) = ρi(z)/ρb

i (i = 1,2) in the
case of system A (positive nonadditivity). In this system τ̃1 =
0.9σ1 > 1

2σ1 and τ̃2 = 1.9σ1 > 1
2σ2, so that the correction term

given by the second line of Eq. (3.25) is used in the RFA curves.
The inset of Fig. 1 shows the MC results for both density

profiles in the whole region 0 < z < Lz = 30σ1. We can see
that the separation between both hard walls is large enough
as to identify a well-defined bulk region in the center. We
have chosen system A to assess the influence of finite Lz

by carrying out a control simulation with Lz = 60σ1. The

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

γ i
(z

)

z/σ1

γ1 MC (Lz=30σ1)
γ2 MC (Lz=30σ1)
γ1 MC (Lz=60σ1)
γ2 MC (Lz=60σ1)

RFA (average)
RFA (bulk)

0

1

2

3

4

0 5 10 15 20 25 30

γ i
(z

)

z/σ1

γ1 MC
γ2 MC

FIG. 1. (Color online) Local density profiles γi(z) = ρi(z)/ρb
i for

system A (σ2/σ1 = 3, �12 = 0.2, w1 = w2 = 0, x̄1 = 0.5, ρ̄σ 3
1 =

1/30). The lines represent the RFA theoretical predictions using the
average values x̄1 and ρ̄ (dashed lines) or the empirical bulk values
xb

1 and ρb (solid lines). The symbols represent our MC simulations
with Lz/σ1 = 30 (circles) or Lz/σ1 = 60 (squares). The inset shows
the MC data in the whole domain 0 < z < Lz with Lz/σ1 = 30. In
the MC results, the error bars are within the size of the symbols used
in the graph.
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FIG. 2. Differences �γi(z) = γi(z)|30 − γi(z)|60 between the lo-
cal densities γi(z) = ρi(z)/ρb

i evaluated in MC simulations with
Lz/σ1 = 30 and those evaluated in MC simulations with Lz/σ1 =
60 for system A (σ2/σ1 = 3, �12 = 0.2, w1 = w2 = 0, x̄1 = 0.5,
ρ̄σ 3

1 = 1/30).

new bulk values are xb
1 = 0.485 and ρbσ 3

1 = 0.0334, which,
as expected, are closer to the average values than in the
case Lz = 30σ1 (see Table I). As seen from Fig. 1, the
MC data obtained with Lz = 30σ1 and Lz = 60σ1 are hardly
distinguishable, except near contact where the smaller system,
having a larger bulk density, presents slightly higher values of
γi(z). A more detailed comparison is made in Fig. 2, where
the differences between the values of γi(z) as obtained with
both values of Lz are shown. Figure 2 confirms that the smaller
system (Lz = 30σ1) presents larger values for the two reduced
densities near contact than the larger system (Lz = 60σ1). For
higher separations the differences are much less important,
but yet it is interesting to note that the smaller system tends to
present larger values of γ2(z) but smaller values of γ1(z).

Now let us go back to Fig. 1 and comment on the perfor-
mance of the RFA. We observe that the RFA underestimates
the local densities at contact (i.e., at z = 1

2σi). On the other
hand, the decay of the local densities near the walls and the
subsequent oscillations are very well captured by the theory.
It is interesting to remark that the agreement with the MC
data near contact improves when the bulk values instead of the
average ones are used in the theory.

The profiles for system B (negative nonadditivity) are
displayed in Fig. 3. In this case τ̃1 = 0.1σ1 and τ̃2 = 1.1σ1.
Since τ̃i < 1

2σi , the correction term in the second line of
Eq. (3.25) vanishes. Comparison between Figs. 1 and 3
shows that, in going from system A to system B, the local
variation of the density of the big spheres is enhanced,
while the local density of the small spheres becomes less
structured. Here there are two competing effects at play. On
the one hand, at a fixed density, the change from positive to
negative nonadditivity produces a weaker density structure
near the wall, as the exact result to first order in density
clearly shows. On the other hand, at a fixed nonadditivity,
an increase in density induces a higher structure. It seems that,
in the transition from system A to system B, the latter effect
dominates in the case of the big spheres (which are very weakly
influenced by the small component) and the former effect does
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FIG. 3. (Color online) Local density profiles γi(z) = ρi(z)/ρb
i for

system B (σ2/σ1 = 3, �12 = −0.2, w1 = w2 = 0, x̄1 = 0.5, ρ̄σ 3
1 =

1/20). The lines represent the RFA theoretical predictions using the
average values x̄1 and ρ̄ (dashed lines) or the empirical bulk values
xb

1 and ρb (solid lines). The symbols represent our MC simulations
with Lz/σ1 = 30. In the MC results, the error bars are within the size
of the symbols used in the graph.

it in the case of the small spheres (which are strongly influenced
by the presence of the large component). It is interesting to
note that all these features are very well described by the
RFA, especially in the case of γ1(z). The contact value of γ2

is better estimated in system A than in system B, while the
opposite happens for the contact value of γ1. Note also that a
small discrepancy is observed near the second peak of γ2(z) in
Fig. 3. For this system the RFA is practically insensitive to the
use of the bulk values instead of the average ones.

In systems A and B the big spheres occupy as much as 27
times more volume than the small ones, so the global properties
of the mixture are dominated by species 2. A more balanced
situation takes place in systems C1 and C2, where the ratio of
partial packing fractions is x̄2σ

3
2 /x̄1σ

3
1 = 3. In these cases the

high concentration asymmetry requires a long simulation run
time to reach thermal equilibrium for the big spheres.

The results for systems C1 and C2 are shown in Fig. 4. At
the smaller density (system C1) the agreement between theory
and simulation is almost perfect. As the density is doubled
(system C2), some small deviations are visible, especially in
the case of the big spheres. Again, the RFA with the bulk values
behaves near contact better than with the average values.

D. Additive mixture and nonadditive wall

Now we consider the cases where the mixture is additive
but the wall treats differently both species. The extra repulsion
affects the big spheres in system D and the small spheres
in system E. In both cases τ̃i � 1

2σi + wi , so that again the
correction term in Eq. (3.25) does not apply.

The results for systems D and E are shown in Figs. 5 and 6,
respectively. In the case of system D, there is much more room
for the small spheres to sit between the wall and the big spheres
than in the case of system E. As a consequence, the big spheres
“feel” the presence of the wall more in the latter case than in
the former and, thus, the contact value and the oscillations
are more pronounced in system E. These effects are enhanced
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FIG. 4. (Color online) Local density profiles γi(z) = ρi(z)/ρb
i

for (a) system C1 (σ2/σ1 = 3, �12 = −0.2, w1 = w2 = 0,
x̄1 = 0.9, ρ̄σ 3

1 = 1/10) and (b) system C2 (σ2/σ1 = 3, �12 = −0.2,
w1 = w2 = 0, x̄1 = 0.9, ρ̄σ 3

1 = 1/5). The lines represent the RFA
theoretical predictions using the average values x̄1 and ρ̄ (dashed
lines) or the empirical bulk values xb

1 and ρb (solid lines). The symbols
represent our MC simulations with Lz/σ1 = 30. In the MC results,
the error bars are within the size of the symbols used in the graph.

by the larger density of system E relative to that of system
D. However, γ1(z) near contact is higher in system D than in
system E, so that the effect of wall nonadditivity compensates
for the increase of density in the case of the small spheres,
analogously to what happens with systems A and B (see Figs. 1
and 3). All these features are correctly accounted for by the
RFA, although the quantitative agreement near contact is again
worse than that after the first minimum, especially in the case
of γ2(z). Note also that the influence on the RFA curves of
the use of the bulk versus the average values is noticeable in
system D but not in system E.

E. Nonadditive mixture and nonadditive wall

The more general situations where both the particle-particle
and the wall-particle interactions are nonadditive is, of course,
richer than the preceding classes. As a simple representative
system we consider the same case as in system D (wall
additionally repelling the big spheres), except that, in addition,
species 1 and 2 interact with negative nonadditivity. The
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FIG. 5. (Color online) Local density profiles γi(z) = ρi(z)/ρb
i for

system D (σ2/σ1 = 3, �12 = 0, w1 = 0, w2/σ1 = 0.35, x̄1 = 0.5,
ρ̄σ 3

1 = 1/30). The lines represent the RFA theoretical predictions
using the average values x̄1 and ρ̄ (dashed lines) or the empirical
bulk values xb

1 and ρb (solid lines). The symbols represent our MC
simulations with Lz/σ1 = 30. In the MC results, the error bars are
within the size of the symbols used in the graph.

resulting system F (see Table I) is also close to system B, except
that now the wall is nonadditive and the density is smaller. As
in systems B–E, the correction term in Eq. (3.25) is not needed.

The local densities for system F are plotted in Fig. 7.
Comparison with Fig. 5 shows that the density profile of
the big spheres is practically unaffected by the nonadditive
character of the 1-2 interaction. This is not surprising taking
into account that, as said before, the big spheres occupy 27
times more volume than the small ones and, therefore, the
presence of the latter has little impact on the properties of the
former. On the contrary, the nonadditivity has a large influence
on the local density profile γ1(z). Since spheres of species 1 and
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FIG. 6. (Color online) Local density profiles γi(z) = ρi(z)/ρb
i for

system E (σ2/σ1 = 3, �12 = 0, w1/σ1 = 0.35, w2 = 0, x̄1 = 0.5,
ρ̄σ 3

1 = 1/20). The lines represent the RFA theoretical predictions
using the average values x̄1 and ρ̄ (dashed lines) or the empirical
bulk values xb

1 and ρb (solid lines). The symbols represent our MC
simulations with Lz/σ1 = 30. In the MC results, the error bars are
within the size of the symbols used in the graph.
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FIG. 7. (Color online) Local density profiles γi(z) = ρi(z)/ρb
i for

system F (σ2/σ1 = 3, �12 = −0.2, w1 = 0, w2/σ1 = 0.35, x̄1 = 0.5,
ρ̄σ 3

1 = 1/30). The lines represent the RFA theoretical predictions
using the average values x̄1 and ρ̄ (dashed lines) or the empirical
bulk values xb

1 and ρb (solid lines). The symbols represent our MC
simulations with Lz/σ1 = 30. In the MC results, the error bars are
within the size of the symbols used in the graph.

2 can overlap to a certain degree in system F, the big spheres
partially alleviate the influence of the wall on the small spheres
with respect to the case of system D. As a consequence, the
local density of the small spheres is less structured in system
F than in system D. Like in system D, the RFA performs very
well in system F, especially when the bulk values are used.

VI. CONCLUSIONS

In this work we have developed a simple analytical (in
Laplace space) nonperturbative theory for the local density
profiles of a multicomponent fluid of NAHS confined by an
additive or nonadditive hard wall. The theoretical approach
is based on the specialization of the RFA technique recently
proposed [28] to the case where an extra single particle of
diameter σ0 is added to the mixture and then the limit of an
infinite diameter σ0 → ∞ is taken. The RFA reduces to the
exact solution of the PY approximation for zero nonadditivity,
both in the particle-particle and in the particle-wall interac-
tions, but remains analytical even when nonadditivity prevents
one from obtaining an analytical solution of the PY theory.

While the theory applies to any number of components, we
have focused on a binary mixture with a size ratio 1:3 plus
a hard wall. This has allowed us to compare the theoretical
results against exact MC simulation. Several representative
scenarios have been considered (see Table I): a positive
(system A) or negative (systems B, C1, and C2) NAHS fluid
with an additive wall, an AHS mixture with a nonadditive
wall pushing either the big (system D) or the small (system E)
spheres, and a NAHS mixture with a nonadditive wall (system
F). In all the cases, a reasonably good agreement between
our theory and the MC simulations have been found for the
(relative) partial local densities γi(z). The agreement is worse
near contact, where the RFA underestimates the MC values, but
rapidly tends to improve for larger distances, so that the initial
decay of the local densities and the subsequent oscillations are

042102-7

Multicomponent fluid of nonadditive hard spheres near a wall 548
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rather well captured. Note that, since the RFA can be seen as a
sort of continuation of the AHS PY solution to the NAHS realm
[28], it is not surprising that some of the features of the PY
solution remain. One of those features is the underestimation
of the contact values [13]. Another PY feature, namely
the possibility of predicting a negative first minimum at
sufficiently high densities, is also inherited by the RFA.

As shown by Figs. 1 and 3–7, the performance of the RFA
is usually better in the case of the small spheres (i = 1) than
for the large spheres (i = 2). This is in part due to the physical
observation that the local density structure of species 1 is
milder than that of species 2. Another technical reason has
to do with the fact that, while the separation between both
walls is sufficiently large for the spheres near a wall not to
be much influenced by the presence of the other wall, the
unavoidable “compression” effect is more important for the big
spheres (Lz/σ2 = 10) than for the small spheres (Lz/σ1 = 30).
As Fig. 2 illustrates, when the separation between both walls
is doubled, the effect on the density near the walls is more
pronounced for the big spheres than for the small ones. Finite-
size effects are also related to the small differences between the
average densities and their bulk values in the central region z ≈
Lz/2. We have checked that our theoretical approach exhibits a
slightly better agreement with simulations when the empirical
bulk values are used instead of the average values.

Our theory, being a simple analytical one, can be efficiently
used to easily extract many-body approximate properties for
confined fluids under other interesting situations different from
the representative ones examined in this work. For instance, ex-
treme cases like the Widom-Rowlinson [44–46] (σ1 = σ2 = 0
with σ12 finite) or the Asakura-Oosawa [47,48] (σ1 = 0 and
�12 > 0) confined fluids can be studied. Another avenue for
application of the RFA is the depletion potential between two
big spheres immersed in a sea of small spheres [49] interacting
nonadditively with them.
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APPENDIX: EVALUATION OF ˜Li (s) AND ˜A j (s)

Let us recall that σi0 = 1
2 (σi + σ0) + wi with wi � 0.

Therefore, according to Eq. (3.6), bi0 = σi + wi . Thus,
Eqs. (3.10)–(3.12) yield

�0 = σ0

2
M2,0 + 1

6
M3,0 + 1

2
M2,1, (A1)

�0 = −σ0

2
M2,0 + 1

6
M3,0 − 1

2
M2,1, (A2)

	0 = −σ 2
0

4
M2,0 − σ0

2
M2,1 − 1

4
M2,2, (A3)

where

Mp,q ≡
n∑

k=1

x̄k (σk + wk)p w
q

k , q � 0. (A4)

Interestingly enough, the terms proportional to σ0 and to
σ 2

0 in the denominator of Eqs. (3.8) and (3.9) cancel, so that
the denominator becomes

D̃ ≡
(

1 − π

6
ρ̄M3,0

)2

− π2

4
ρ̄2(M2

2,1 − M2,0M2,2
)
. (A5)

Equations (A1)–(A5) apply to any value of σ0. From
Eqs. (3.7)–(3.9) it is easy to see that both L

(0)
i0 and L

(1)
i0 are

linear functions of σ0. Thus, taking the limit (3.23) one gets

L̃i(s) = L̃(0) + L̃
(1)
i s (A6)

with

L̃(0) = πρ̄M2,0

2D̃
, (A7)

L̃
(1)
i = 1

2D̃

[
1 − π

6
ρ̄(M3,0 + 3M2,1) +

(
σi

2
+ wi

)
πρ̄M2,0

]
.

(A8)

Analogously, from Eqs. (3.3) and (3.5), the limit (3.24)
becomes

Ãj (s) = 2πρ̄x̄j

s3
eσj s/2[Ñj (s) − L̃j (s)e−(σj +wj )s], (A9)

where

Ñj (s) = L̃(0)

[
1 − (σj + wj )s + (σj + wj )2s2

2

]
+ L̃

(1)
j s[1 − (σj + wj )s]. (A10)
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[30] M. López de Haro, S. B. Yuste, and A. Santos, in Theory and
Simulation of Hard-Sphere Fluids and Related Systems, edited
by A. Mulero, Vol. 753 of Lectures Notes in Physics (Springer-
Verlag, Berlin, 2008), pp. 183–245.

[31] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, London, 2006).

[32] R. Fantoni and G. Pastore, J. Chem. Phys. 119, 3810 (2003).
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I. INTRODUCTION

Ionic soft matter [1] is a class of conventional condensed
soft matter [2–8] with prevailing contribution from electrostat-
ics, in many cases crucially affecting its physical properties.
Among the most popular representatives of such a class of
materials are natural and synthetic saline environments, such
as aqueous and nonaqueous electrolyte solutions and molten
salts as well as a variety of polyelectrolytes and colloidal
suspensions. Equally well known are many biologically
important proteins.

The simplest theoretical model for ionic colloidal suspen-
sions is the restricted primitive model (RPM) [9], a binary
mixture of uniformly charged hard spheres of diameter σ :
two species of opposite charge ±q and equal concentrations
to ensure charge neutrality, moving in a medium of fixed
dielectric constant ε. The phase diagram properties of this
model have been widely studied both through analytical
theories [10–22] and within computer experiments starting
from the seminal works of Friedman and Larsen [23] and
Vorontsov-Veliaminov and co-workers [24,25], followed by
the pioneering Gibbs ensemble Monte Carlo calculation of
Panagiotopoulos [26] and by other numerical simulations
[27–34]. The more general primitive model with asymmetry
in ion charge [35], ion size [36–38], and both ion charge and
size [37,39] has also been studied.

From these studies emerged how, in the vapor phase, an
important role is played by association and clustering. In a
previous work [40] one of us studied a modified RPM fluid
where one allows for size nonadditivity particle diameters.
Controlling the nonadditivity, it was suggested through the
use of integral equation theories that such a fluid might
have a complex behavior due to the possible competition

*rfantoni@ts.infn.it
†pastore@ts.infn.it

between clustering tendency due to the Coulomb interaction
and demixing tendency due to entropic advantage driven by
the nonadditivity. Thus the nonadditivity of the hard-sphere
diameters does not destroy the simplifying symmetry of the
model, but enriches the properties of the pure RPM, making
it a paradigm for the self-assembly of isotropic particles and
a challenge to present day theories of fluids. In real systems,
the degree of nonadditivity might be directly related to the
anion-cation contact-pairing affinity [41], which in turn may
be mediated by the solvent.

It is the purpose of this paper to reconsider such a model
fluid from the point of view of accurate numerical experiments.
In particular, we want to study the clustering properties of the
fluid outside the gas-liquid coexistence region. To this aim we
determine the gas-liquid coexistence curve through the Gibbs
ensemble method after having studied semiquantitatively how
the coexistence region changes with the nonadditivity through
a density distribution analysis in the canonical ensemble. This
way we could be sure that our cluster analysis falls outside the
coexistence region in all the cases studied. Clustering turns
out to be greatly affected by the nonadditivity parameter,
the most striking effect being the prevalence of neutrally
charged clusters made up of an even number of particles
in the negatively nonadditive fluid. When the nonadditivity
allows complete overlap of the two species of particles, the
formation of a fluid of neutral hard spheres of half the
density is expected and our simulation results clearly show this
behavior. In contrast, for a positive nonadditivity, it is known
that the neutral hard-sphere mixture tends to demix the two
species and the demixing critical density decreases as the
nonadditivity increases [42–47]. We expect this property of the
neutral system to have some interesting effect on the clustering
properties of the charged fluid since demixing cannot occur in
a binary charged system: The frustrated tendency to segregate
like particles and the reduced space available to the ions
favor pairing of like ions and percolating clusters at high
densities. Preliminary results from our analysis are presented
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in [48]; here we extend that analysis and present the gas-
liquid binodal of the fluid as a function of the nonadditivity
parameter.

The model fluid considered in this paper may be realized
experimentally through a colloid-star polymer mixture where
both species are charged [49,50] or by room temperature ionic
liquids [51–54] as discussed in Sec. III C2. In particular in the
latter systems, liquid-liquid binodals shifted above and below
the one of the pure RPM are observed, depending on the kind
of solvent used. If, on the one hand, this can be ascribed to
the different dielectric constant of the solvent [52], on the
other hand, it is clear that, depending on the kind of solvent,
the anion-cation contact-pairing affinity may vary [41] and
thus the different experimental ionic liquids should be more
correctly described by comparison not just with the pure RPM,
but with the more realistic primitive model with the addition
of either a positive or negative size nonadditivity.

The paper is organized as follows. In Sec. II the model
for the fluid we want to study is described. In Sec. III the
results from the numerical experiments are reported. These are
divided into a cluster analysis in Sec. III A, an analysis of the
radial distribution function and structure factor in Sec. III B,
and an analysis of the gas-liquid coexistence in Sec. III C.
Theoretical remarks on the clustering properties are presented
in Sec. IV. We summarize in Sec. V.

II. MODEL

The model fluid we want to study is the restricted primitive
model of nonadditive hard spheres. The RPM consists of
N/2 uniformly charged hard spheres of species 1 of diameter
σ carrying a total charge +q each and N/2 uniformly
charged hard spheres of species 2 of the same diameter
carrying a total charge −q each. The spheres are moving in
a dielectric continuum of dielectric constant ε independent of
the thermodynamic state. The interaction between an ion of
species i and one of species j a distance r apart is given by

βφij (r) =
⎧⎨
⎩

+∞, r � σij

qiqj

kBT εr
, r > σij

(2.1)

for i,j = 1,2, where β = 1/kBT , with T the absolute temper-
ature and kB the Boltzmann constant, and qi is the charge of
an ion of species i. The ions form a mixture of nonadditive
hard spheres, i.e.,

σij =
{
σ, i = j

σ (1 + �), i �= j
(2.2)

for i,j = 1,2, with the nonadditivity parameter � > −1. A
thermodynamic state is completely specified by the reduced
density ρ∗ = ρσ 3 = Nσ 3/V , where V is the volume contain-
ing the fluid, the reduced temperature T ∗ = kBT εσ/q2 (q2/εσ

is taken as the unit of energy), and the nonadditivity parameter
�. We will call x1 = ρ−/ρ = 1/2 and x2 = ρ+/ρ = 1/2 the
anions and cations molar concentrations, respectively.

III. RESULTS

In Fig. 1 we show the phase diagram of the pure RPM fluid,
� = 0, as obtained from the Gibbs ensemble Monte Carlo
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FIG. 1. (Color online) Diagram showing the gas-liquid coexis-
tence curve of the RPM fluid from the Gibbs ensemble MC data of
Ref. [29] (closed circles) and ours (open circles), the triangle being
the critical point, and the points (closed squares) of the phase diagram
where we run our NVT MC simulations.

method by Orkoulas and Panagiotopoulos [29] and by us (see
Sec. III C2). The thermodynamic points where we probe the
fluid with our NVT Monte Carlo simulations are also shown as
closed squares.

In our canonical NVT Monte Carlo (MC) we study the
fluid in a simulation box of volume V = L3 with periodic
boundary conditions. The long range of the 1/r interaction is
accounted for using an Ewald sum for the interacting energy
in the periodic system [55]. The interaction energy per unit
box for ε = 1 is calculated as

U =
∑
μ<ν

∑
n

qiμqjν

erfc(κ|rμν + Ln|)
|rμν + Ln|

+ 2π

L3

∑
k �=0

e−(k/2κ)2

k2
|ρk|2 − κ√

π

∑
μ

q2
iμ

− π

2κ2L3

(∑
μ

qiμ

)2

, (3.1)

where a roman index with a greek subindex denotes the species
of the particle labeled by the greek subindex, rμν = rν − rμ

with rμ the position of particle μ, ρk = ∑
μ qiμe

−ik·rμ , erfc
denotes the complementary error function, n = (nx,ny,nz)
with nx,ny,nk = 0,±1,±2, . . . , and k = (2π/L)(nx,ny,nz)
are reciprocal lattice vectors. The parameter κ that governs
the rate of convergence of the real space and reciprocal space
contribution to the energy is taken to be κ ∼ 5/L. With this
value of κ , the real space contribution can be restricted to the
first term n = 0 only. The reciprocal space term includes all k
vectors such that n2

x + n2
y + n2

z < 27. The last term in Eq. (3.1)
is zero for the RPM, but it is important in the Gibbs ensemble
simulation where a particle exchange between the two boxes
can produce systems where there is an unequal number of
positive and negative charges. Our choice for the interaction
energy takes into account the fact that each charge has a
uniform background of neutralizing opposite charge density.

In our NVT MC simulations we used N = 100 (except for
the test of the size dependence of the clustering analysis, where
we considered up to 5000 particles), the acceptance ratio is
kept, on average, close to 50% after a preliminary adjustment
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FIG. 2. (Color online) Clustering properties of the fluid at T ∗ = 0.1 at various values of nonadditivity. The Nn are the numbers of clusters
made of n particles. In the MC simulations we used N = 100 particles and 1 × 107 MCS. The panels are ordered (left to right, top to bottom)
in order of decreasing density: ρ∗ = 0.45 (a), 0.3 (b), 0.2 (c), 0.1 (d), 0.01 (e), and 0.001 (f). The insets allow one to read off the degree of
dissociation.

of the maximum particle displacement. We start from a simple
cubic configuration of two crystals, one made of species 1 and
one made of species 2, juxtaposed in order to avoid overlaps
at high densities. We need around 105 MC steps (MCS) in
order to equilibrate the samples and 106 MCS/particle for the
statistics.

A. Cluster analysis

During the simulation we perform a cluster analysis. After
each 100 MCS we determine the number Nn of clusters made
of n particles so that

∑
n nNn = N . We assume [56,57] that a

group of ions forms a cluster if the distance r , calculated using
periodic boundary conditions, between a particle of species i of
the group and at least one other particle of species j is less than
some fixed value, i.e., r < σij + δcσ , where δc is a parameter.1

In all our simulations we choose δc = 0.1 (in Ref. [30] a
detailed study of the sensitivity of the clustering properties

1Many different ways of defining a cluster have been proposed
[12,16,58–60] since the Bjerrum theory [61] of ionic associations
first appeared. Our choice corresponds to the one of Gillan [12] and
Caillol and Weis [30].
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to this parameter is carried out for the pure RPM fluid).
Then we take the average of these numbers 〈Nn〉. Note that
Qn = n〈Nn〉/N gives the probability that a particle belongs to
a cluster of size n. To establish a criterion for percolation we
first find the clusters without employing periodic boundary
conditions to calculate the distances and then we check
whether, among the particles of any of these clusters, there are
two that satisfy the cluster condition calculating the distances
using periodic boundary conditions. Whenever we find one
such cluster the cluster is percolating.

In Fig. 2 we show the results of such an analysis for the fluid
at a temperature T ∗ = 0.1 well above the critical temperature
T ∗

c ≈ 0.05 of the pure RPM [31,33,34]. In the insets we show
a magnification of the region around n = 1 from which the
degree of dissociation [19,22] α = 〈N1〉/N can be read off.
In the figure we plot the cluster concentrations 〈Nn〉/N as a
function of the number of particles n in the cluster. We plot
n from n = 1 (isolated ions) up to n = N (in this case all
the particles of the fluid form one big percolating cluster).
At ρ∗ = 0.45 both the pure RPM and the � = 0.3 fluid form
percolating clusters. Lowering the density, we first reach a state
at ρ∗ = 0.3 where the negative nonadditivity gives the same
clustering of the RPM and the positive nonadditivity gives
bigger clustering (still with percolating clusters), then a state
at ρ∗ = 0.1 where the positive nonadditivity gives the same
clustering of the RPM and the negative nonadditivity a bigger
one, and finally a state ρ∗ = 0.01,0.001 at low densities where
a negative nonadditivity increases the clustering over the RPM
fluid and a positive nonadditivity diminishes it. Generally,
at high densities we find percolating clusters in the fluids,
whereas these disappear at low densities even at a positive
nonadditivity. Summarizing, in agreement with Ref. [40],
we find, for the fixed values of |�|, that at high density and
positive � we have more clustering than in the additive model
since there is a smaller effective volume for the particles, at
high density and negative � we have less clustering than in the
additive model because there is more effective volume for the
particles, at low density and positive � we have less clustering
than in the additive model due to the competition between the
tendency to demixing in the corresponding neutral mixture
and the tendency to local electroneutrality of the Coulombic
systems, and at low densities and negative � we have more
clustering than in the additive model because neutral clusters
are favored, as shown in the next section. We conclude that at
high temperature and high density the negative nonadditivity
gives lower clustering than in the RPM and by lowering
the temperature at constant density or lowering the density
at constant temperature it gradually tends to gives higher
clustering than in the RPM. In contrast, at low density the
positive nonadditivity gives lower clustering than in the RPM
and by increasing the density it gradually tends to give larger
clustering than in the RPM.

We determine the size dependence of the curves shown
in Fig. 2 and see that when we have no percolating clusters,
for example, the data at T ∗ = 0.1,ρ∗ = 0.3, and � = 0,−0.3,
the curves were unaffected by the choice of a higher number
of particles, while when we have percolating clusters, for ex-
ample, the data at T ∗ = 0.1,ρ∗ = 0.3, and � = 0.3, the curve
(n,〈Nn〉/N ) changes with N . In these latter cases we find that a
common curve is given by (x,〈Nx〉/N ) with x = n/N ∈ [0,1].

TABLE I. Fitting parameters aandb in the least-squares fit
〈Nn〉/N = annbn/n! for the simulation results of Fig. 2 without
percolating clusters (and with the exclusion of the nonsmooth data
at ρ∗ = 0.001). The reduced χ 2 is around 0.5 with greater error
approaching n = 1. Also shown is the number of particles nmax in the
biggest cluster formed in each simulation.

ρ∗ � a b nmax

0.45 −0.3 0.220(3) 1.074(4) 64
0.3 0 0.197(4) 1.084(6) 45
0.3 −0.3 0.204(3) 1.069(5) 43
0.2 0 0.206(7) 1.00(1) 23
0.2 0.3 0.200(4) 1.083(5) 45
0.2 −0.3 0.204(7) 1.04(1) 31
0.1 0 0.22(2) 0.86(3) 15
0.1 0.3 0.16(1) 1.01(4) 19
0.1 −0.3 0.15(1) 1.11(2) 29
0.01 0 0.41(7) 0.1(1) 8
0.01 0.3 0.36(8) 0.0(2) 7
0.01 −0.3 0.23(4) 0.72(7) 12

Then, in order to satisfy the normalization condition 1 =∑
n n(〈Nn〉/N ) ≈ ∫

dx xN2(〈Nx〉/N), we must have for two
different sizes N ′ and N ′′ that (〈Nx〉/N ′)/(〈Nx〉/N ′′) ≈
(N ′′/N ′)2. We have no general formula to determine when
the former behavior is to be expected over the latter. We can
only say that the first behavior is generally observed when
we do not have percolating clusters, whereas the second is
present when we have percolating clusters. In Sec. IV we show
that the size-independent curves that we find when there are
no percolating clusters can be fitted by 〈Nn〉/N = annbn/n!
[see Eq. (4.4) with zintra

n obtained from an ideal cluster
approximation], with a and b positive fitting parameters. In
Table I we show the fitting parameters a and b corresponding
to the simulated cases.

In Fig. 3 we show the clustering analysis at the thermo-
dynamic state below the critical temperature of the RPM
T ∗ = 0.04 in the gas phase ρ∗ = 5 × 10−5 and in the liquid
phase ρ∗ = 0.45. We see how in the gas phase only the first few
clusters are present, in agreement with similar results found
in Ref. [30], and for a negative nonadditivity the dipoles are
clearly the preferred kind of clusters with the smallest degree
of dissociation among the three fluids considered. In the liquid
phase all three fluids have percolating clusters.

In Fig. 4 we show the clustering analysis for the fluid
with � approaching −1 at T ∗ = 0.1 and ρ∗ = 0.45. We see
how by letting � approach −1 this stabilizes the neutrally
charged clusters and lowers the degree of dissociation. The
first stable cluster is the dipole: the “overlap” of a positive
and a negative sphere. These are dipoles of moment qr12, with
r12 < σ (1 + � + δc), which may lack a gas-liquid criticality
[62]. We clearly have a transition from a conducting to an
insulating phase as � goes from 0 to −1.

In Fig. 5 we show a snapshot of the equilibrated fluid at
T ∗ = 0.1,ρ∗ = 0.45, and � = −0.9 from which one can see
the formation of the dipoles. We expect that in the limiting
case of � = −1 the fluid we obtain is well reproduced by hard
spheres at half the density. This is confirmed by a comparison
of the like radial distribution functions with the one of the
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FIG. 3. (Color online) Clustering properties of the fluid at T ∗ =
0.04 and (a) ρ∗ = 0.45 and (b) ρ∗ = 5 × 10−5 at various values of
nonadditivity. The Nn are the numbers of clusters made of n particles.
In the MC simulations we used N = 100 particles and 1 × 107 MCS.

hard spheres even if the � = −1 fluid simulation rapidly slows
down into the frozen configuration of the overlapping anions
and cations. In order to overcome this problem one should
alternate single-particle moves and cluster moves where one
moves the center of mass of the neutrally charged pairs.
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FIG. 4. (Color online) Clustering properties of the fluid at
T ∗ = 0.1 and ρ∗ = 0.45 at various values of negative nonadditivity
approaching −1. The Nn are the numbers of clusters made of n

particles. In the MC simulations we used N = 100 particles and
5 × 107 MCS.

FIG. 5. (Color online) Snapshot of the fluid at T ∗ = 0.1,ρ∗ =
0.45, and � = −0.9 showing the formation of the dipoles.

B. Radial distribution function and structure factor

In Figs. 6–8 we show the partial radial distribution functions
(RDF) gij (r) = 〈∑′

μν δ(r + rj
ν − ri

μ)〉N/ρxixj , where ri
μ de-

notes the position of particle μ of species i and the prime to the
sum indicates that the terms μ = ν when i = j are omitted,
and the total RDF gtot = ∑2

i,j=1 gij xixj of the three fluids � =
0,±0.3 at the thermodynamic states T ∗ = 0.1,ρ∗ = 0.01,0.1
and T ∗ = 0.04,ρ∗ = 0.45. Of course, the restrictions x1 = x2

and σ11 = σ22 imply that g11 = g22. In the simulations we use
N = 100.

From Fig. 6 we see how the contact value of the like RDF in
the � = −0.3 case is higher than in the additive case and in the
� = 0.3 case it is lower than in the additive case. The contact
value of the unlike RDF is highest for negative nonadditivity,
indicating the tendency to form cation-anion pairs.

From Fig. 7 we see again the same behaviors of the contact
values of the like and unlike RDFs. In the negatively additive
case we begin to see an alternation of the distribution of
oppositely charged shells of ions around a reference ion.

From Fig. 8 we see how at this high density the contact
value of the like RDF is highest in the � = −0.3 case, but
in the � = 0.3 case it is still higher than in the additive case.
At � = −0.3 we see clearly the formation of a second peak
in the unlike RDF around 2 + � and the expected alternation
between the peaks of the like RDF with the ones of the unlike
RDF also present in the additive case. This alternation is not
present in the positively nonadditive case, indicating now the
tendency of like particles to cluster on a microscopic scale:
Like particles penetrate the shell of unlike particles around a
given reference ion. The contact value of the unlike RDF is
highest for negative nonadditivity, indicating the tendency to
form cation-anion pairs.

In Fig. 9 we show the Bhatia-Thornton [63] structure
factors SNN = [S11 + S22 + 2S12]/2 and SQQ = [S11 + S22 −
2S12]/2, where Sij (k) = 〈ρi

kρ
j

−k〉/N
√

xixj are the partial
structure factors and ρi

k = ∑
μ exp(−ik · ri

μ) is the Fourier
transform of the microscopic density of particles of species
i. In the figure we chose the same thermodynamic state and
nonadditivity considered in Fig. 1 of Ref. [40]. The positive
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FIG. 6. (Color online) Partial and total RDFs in the simulations at ρ∗ = 0.01,T ∗ = 0.1, and (a) � = 0, (b) � = 0.3, and (c) � = −0.3,
with the reduced excess internal energy per particle of the fluid U ex/N = −0.3924(1), −0.29120(7), and −0.6339(1), respectively.

nonadditivity case has percolating clusters. From the figure
we see that the charge-charge structure factor SQQ tends to
zero at k = 0, a consequence of electroneutrality in charged
systems [9] that suppresses long-wavelength fluctuations. In
order to enforce this condition the structure factor needs to
develop a peak at small k that reflects an essentially alternating
distribution of the oppositely charged shell of ions around a
reference ion. This type of short-range order is an indication
of the tendency to cluster. From the figure we see that at
high density the positive nonadditive fluid tends to cluster
more than the additive fluid and the negative nonadditive
fluid tends to cluster less than the additive fluid, in agreement
with the results presented in the previous section. With regard
to the number-number structure factor SNN , we see that as
the nonadditivity decreases, the isothermal compressibility
SNN (0) (see the Appendixes of Refs. [63,64]) increases and
the short-range order is reduced.

In Table II we report the excess internal energy per particle
U ex/N = εσ 〈U〉/Nq2, the compressibility factor Z = βP/ρ,
and the total clusters concentration

∑
n〈Nn〉/N for the cases

simulated. The compressibility factor is calculated according
to the virial theorem

Z = 1 + U ex

3NT ∗ + πρ∗

3
[g11(σ ) + (1 + �)3g12(σ (1 + �))].

(3.2)

If the clusters do not interact, as in the independent
cluster model (ICM) of Gillan [12], one should have

ZICM = ∑
n〈Nn〉/N . From Table II we can see how this

condition is never satisfied in the cases considered.

C. Gas-liquid coexistence

An important question we try to answer is how the gas-
liquid coexistence curve of the pure RPM fluid changes upon
switching on of the nonadditivity parameter. To this aim we
first perform a density distribution analysis within the NVT
ensemble that allows us to easily extract a semiquantitative
result and then we use the Gibbs ensemble technique for a
careful quantitative determination of the binodals.

1. Density distribution approach

Sufficiently close to the critical point we determine how
semiquantitatively the behavior of the gas-liquid coexistence
region changes by switching on a negative or a positive
nonadditivity. To this aim we divide the simulation box into m3

cubes of side Lc = L/m and register, as the run progresses, the
density inside each cell ρi = Ni/L

3
c , where Ni is the number

of particles inside the ith cell so that
∑m3

i=1 Ni = N . Then we
calculate the density distribution function [65–67] Pm(ρ) =∑m3

i=1 Pm(ρi)/m3, where Pm(ρi) is the distribution function
for the ith cell, with

∫
Pm(ρ) dρ = 1. Above the critical

temperature the density probability distribution function can be
described by a Gaussian distribution centered at the simulation
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FIG. 7. (Color online) Same as Fig. 6, but at ρ∗ = 0.1 and T ∗ = 0.1. The reduced excess internal energy per particle of the fluid is
(a) U ex/N = −0.505 89(8), (b) U ex/N = −0.412 08(6), and (c) U ex/N = −0.7179(1).

density, whereas below it becomes bimodal with two peaks,
one centered at the gas density and one at the liquid density.

We start from an initial configuration of particles of random
species placed on a simple cubic lattice. We equilibrate (melt)
the fluid for 106 MCS/particle. We then sample the distribution
function every 10 MCS. To allow the particles to diffuse
out of the cells we choose the subdivision of the simulation
box in cells with a random displacement r = (rx,ry,rz),
with rx,ry,rz ∈ [0,L]. This procedure turned out to greatly
enhance the efficiency of the determination of the cell density
distribution. In addition, we measure the distribution function
on runs of 1 × 106 MCS/particle.

Using m = 2 and N = 100, we obtain the results for the
fluid at a temperature T ∗ = 0.025 above the triple point of
the RPM [68], a density ρ∗ = 0.2 well within the coexistence
region of the pure RPM fluid, and � = 0, ± D, with D =
10−1,10−2,5 × 10−2, as shown in Fig. 10. In this case the
minimum density that can be registered is 1/L3

c = 0.2 ×
(8/100) = 0.016. We see that the pure RPM fluid shows a
density distribution function with two peaks: the first one,
which lies below the minimum density (and is not visible in
our data), at approximately the low density of the gas phase
and the second one at approximately the high density of the
liquid phase around a reduced density of 0.3. At D = 10−2

the positions of the peaks are roughly the same as for the
pure RPM. At D = 5 × 10−2 the density of the liquid peak
in the negatively nonadditive fluid is higher than the one
of the pure RPM, whereas the positively nonadditive fluid

has a gas peak, now visible, at higher density than for the
pure RPM and a liquid peak at lower density than for the
pure RPM. At D = 10−1 this separation tends to increase: In
the positively nonadditive model the critical temperature is
too close to 0.025 and the bimodal degenerates into a curve
with a single peak centered on the simulation density 0.2,
whereas in the negatively nonadditive fluid the liquid peak is
changed into a broad tail extending up to a density of 0.8. This
finding suggests that at a given temperature the width of the
coexistence region, relative to the one of the pure RPM, tends
to increase for the negatively nonadditive model and decrease
for the positively nonadditive model. This result is made more
clear and precise in the following section where we present
our Gibbs ensemble Monte Carlo calculation.

2. Gibbs ensemble analysis

In order to quantitatively determine the gas-liquid coexis-
tence line of our fluid we use the Gibbs ensemble MC (GEMC)
technique [69–73], starting from the pure RPM and gradually
switching on the nonadditivity. Here we are interested not in
the behavior really close to the critical point, but rather in the
shape of the binodal curve and how it moves as a function of �.

The GEMC method of Panagiotopoulos is now widely
adopted as a standard method for calculating phase equilibria
from molecular simulations. According to this method, the
simulation is performed in two boxes containing the coexisting
phases. Equilibration in each phase is guaranteed by moving
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FIG. 8. (Color online) Same as Fig. 6, but at ρ∗ = 0.45 and T ∗ = 0.04. The reduced excess internal energy per particle of the fluid is
(a) U ex/N = −0.690 94(4), (b) U ex/N = −0.552 42(5), and (c) U ex/N = −0.961 44(7).

particles. Equality of pressures is satisfied in a statistical sense
by expanding the volume of one of the boxes and contracting
the volume of the other. Chemical potentials are equalized by
transferring particles from one box to the other. Like the first
simulations for the RPM performed by Panagiotopoulos [26],
we use single-ion transfer by introducing a background charge
density to ensure charge neutrality at all times during the
run. This way the system remains overall neutral, but the
modified model is similar to a two-component plasma and in
a strict sense different from the original RPM, which assumes
a zero charge density for the background. To overcome the
electroneutrality problem Orkoulas and Panagiotopoulos [29]
considered pair transfers.

In the GEMC run we have at each step a probabil-
ity ap/(ap + av + as) for a particle random displacement,
av/(ap + av + as) for a volume change, and as/(ap + av + as)
for a particle swap move between the gas and the liquid box.
We generally choose ap = 1, av = 1/10, and as = 1. The
maximum particle displacement is kept equal to Li/1000,
where Li is the side of the ith box with i = 1,2. Regarding
the volume changes, following Ref. [69] we perform a random
walk in ln[V1/V2], with Vi the volume of the ith box choosing
a maximum volume displacement of 1%–10%. Volume moves
are computationally the cheapest since the energy scales with
the length of the box with inverse proportionality. We generally
use a total number of N = 100 particles, except close to the
critical point, where it proves necessary to increase the number
of particles in order to avoid large fluctuations in the two

densities. We use (10–40) × 106 MCS for the equilibration
and (100–200) × 106 MCS for the production.2

The results are summarized in Table III and Fig. 11. Note
that since we get the same coexistence curve as that of Orkoulas
and Panagiotopoulos [29] for the pure RPM, as Fig. 1 clearly
shows, we consider as equivalent, at the present level of ac-
curacy, our procedure, employing single-neutralized-particle
transfers, and the one of Orkoulas and Panagiotopoulos, where
pair-particle transfers between the two boxes are used. This
can be justified by observing that the fluctuations of charge
in the various statistical physics ensembles are expected to
decay to zero with the system size and we empirically find that
in our case they are already practically irrelevant. The only
relevant difference we observe with respect to the calculation
of Orkoulas and Panagiotopoulos is the fact that in our case
there is a much more considerable emptying of the gas box at
low temperatures, which may have some effect on the point
at the lowest temperature. We do not carry out a systematic
study of the possible system size dependence of the results,
but for the pure RPM we repeat the calculation at T ∗ = 0.045
and 0.0475 for two different system sizes with the largest
being N = 370. The comparison suggests that the critical
point tends to shift slightly at higher temperatures upon a

2The GEMC code took ≈26 min of CPU time for 10 million steps
of a system of size N = 200 on an IBM PLX (iDataPlex DX360M3)
cluster (2.40 GHz).
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FIG. 9. (Color online) Bhatia-Thornton structure factors (a) SNN (k) and (b) SQQ(k) for ρ∗ = 0.412 53,T ∗ = 0.12, and � = 0, ±0.5, as in
Fig. 1 of Ref. [40]. Note that our abscissa has to be divided by 1.2 in order to compare with the units used in [40].

system size increase, but far away from the critical point the
coexistence curve is not affected appreciably by the system
size. However, we stress that an accurate study of critical
properties of the present model is beyond the scope of this
work.

From the figure we can see clearly the trend: A positive
nonadditivity tends to lower the critical temperature, whereas
a negative one tends to push the binodal to higher temperatures.
This is in agreement with the findings from the density

distribution analysis previously presented. It is well known that
RPM condensation is almost identical to that of charged hard
dumbbells, underlining the fact that the vapor is essentially
already fully associated into dimers and higher neutral clusters
and that the liquid structure and thermodynamics are only
weakly perturbed by fusing ions together. Hence, if one imag-
ines cooling down on the critical isochore, we can say that the
critical point is reached when ion association is complete and
then it becomes convenient for the system to phase separate.

TABLE II. Excess internal energy per particle U ex = εσ 〈U〉/q2, compressibility factor Z = βP/ρ, and total clusters concentration∑
n〈Nn〉/N for the cases simulated.

T ∗ ρ∗ � −U ex/N Z − U ex/3NT ∗ ∑
n〈Nn〉/N

0.1 0.45 0 0.627 11(9) 3.764(5) 0.317
0.1 0.45 0.3 0.462 12(9) 9.16(1) 0.026
0.1 0.45 −0.3 0.813 57(9) 3.019(3) 0.410

0.1 0.3 0 0.588 27(6) 2.869(3) 0.528
0.1 0.3 0.3 0.474 93(7) 4.837(6) 0.255
0.1 0.3 −0.3 0.7814(1) 2.797(3) 0.483

0.1 0.2 0 0.553 90(6) 2.445(2) 0.637
0.1 0.2 0.3 0.456 39(6) 3.231(3) 0.540
0.1 0.2 −0.3 0.754 83(9) 2.657(3) 0.530

0.1 0.1 0 0.505 89(8) 2.098(2) 0.730
0.1 0.1 0.3 0.412 08(6) 2.218(2) 0.747
0.1 0.1 −0.3 0.7179(1) 2.539(3) 0.579

0.1 0.01 0 0.3924(1) 1.7373(8) 0.830
0.1 0.01 0.3 0.291 20(7) 1.493(3) 0.900
0.1 0.01 −0.3 0.6339(1) 2.409(2) 0.652

0.1 0.001 0 0.3076(1) 1.582(1) 0.870
0.1 0.001 0.3 0.1971(1) 1.2962(6) 0.943
0.1 0.001 −0.3 0.5992(1) 2.355(2) 0.677

0.04 0.45 0 0.690 94(4) 5.863(8) 0.104
0.04 0.45 0.3 0.552 42(5) 12.83(2) 0.012
0.04 0.45 −0.3 0.961 44(7) 7.09(1) 0.028

0.04 5 × 10−5 0 0.488 04(2) 4.112(1) 0.563
0.04 5 × 10−5 0.3 0.353 42(2) 3.254(1) 0.681
0.04 5 × 10−5 −0.3 0.697 64(1) 5.230(2) 0.493
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FIG. 10. (Color online) Cell density distribution function for the fluid at T ∗ = 0.025,ρ∗ = 0.2, and � = 0, ±D with (a) D = 10−2,

(b) D = 5 × 10−2, and (c) D = 10−1. We use N = 100 and m = 2 with 1 × 106 MCSs/particle.

With positive nonadditivity, ion association is less favorable
and the critical temperature must go down (association is com-
plete only at lower temperatures); with negative nonadditivity,
ion association is more favorable and the critical tempera-
ture must go up (association is complete already at higher
temperatures).

In order to determine the critical point (T ∗
c ,ρ∗

c ) we
empirically fit the binodals using the “diameter” (ρ∗

g + ρ∗
l )/2

equation [74]

ρ∗
g + ρ∗

l

2
= ρ∗

c + A|T ∗ − T ∗
c | + C|T ∗ − T ∗

c |2βI

+D|T ∗ − T ∗
c |1−αI (3.3)

and the form of the Wegner expansion [74,75] for the width
of the coexistence curve

ρ∗
l − ρ∗

g = B|T ∗ − T ∗
c |βI + B1|T ∗ − T ∗

c |βI +�I

+B2|T ∗ − T ∗
c |βI +2�I , (3.4)

where A,C,D, and B,B1,B2 are coefficients that we take as
fitting parameters as well as ρ∗

c ,T ∗
c . We stress that our data do

not extend sufficiently close to the critical region to allow quan-
titative estimates of critical exponents and nonuniversal quan-
tities, still we used the above functional forms as convenient
fitting formulas, able to capture the typical flatness of the fluid
coexistence curves [69]. The pure RPM is believed [33,76–78]
to belong to the three-dimensional Ising universality class,
so we choose βI = 0.325,αI = 0.11, and �I = 0.51. We are
then able to fit the pure RPM case � = 0, for which we find

the critical point at ρ∗
c = 0.0319 and T ∗

c = 0.0476; the RPM
with positive nonadditivity � = 0.1, for which the critical
point is found at ρ∗

c = 0.0275 and T ∗
c = 0.0432; and the RPM

with negative nonadditivity � = −0.1, for which ρ∗
c = 0.0495

and T ∗
c = 0.0526. We stress that these numbers, in particular

the values of critical densities, should be considered more as
indicative of the dependence of the critical point location on
diameter nonadditivity than as accurate estimates.

We believe that our results can be relevant for the in-
terpretation of experimental work on the phase diagrams of
room temperature ionic liquids [53] such as the phospho-
nium halogenide in alkanes solvents and 1-hexyl 3-methyl
imidazolium tetrafluoro borate (C6mimBF4) in alcohols and
water. The degree of nonadditivity seems directly related to
the anion-cation contact-pairing affinity [41]. The salts in the
(hydrocarbon) solution dissociate in cations (the phospho-
nium) and anions (the halogen atoms). The contact affinity
between anions and cations is mediated by the solvent and dif-
ferent solvents produce different affinities. As a consequence,
in the experimental work of Ref. [53], liquid-liquid coexistence
curves were observed that, depending on the kind of solvent
used in the ionic liquid mixture, can be above (C6mimBF4

in alcohols and water) the one of the purely theoretical RPM
or below (phosphonium halogenide in alkanes) it in reduced
units. Moreover, when plotted onto a corresponding state
representation, all the experimental binodals seem to collapse
on the same curve even if this occurs very close to the
critical point. We then try to see whether or not the law of
corresponding states holds for our fluid; we find that far from
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TABLE III. Phase coexistence properties for the pure RPM (� = 0) and the nonadditive RPM (� �= 0). Here T ∗ is the reduced temperature,
N is the total number of particles in the system for a certain run, Ng is the average number of particles in the gas box during the run,
μ∗

l = μlεσ/q2 − T ∗ ln �3 is the reduced chemical potential of the liquid box (� being the de Broglie thermal wavelength), U ex
i is the total

excess internal energy, and ρ∗
i is the reduced density of the gas phase i = g and the liquid phase i = l.

� T ∗ N Ng/N −μ∗
l −U ex

g /N −U ex
l /N ρ∗

g ρ∗
l

0 0.0475 370 0.51(1) 0.63(1) 0.547(1) 0.609(1) 5.2(9) × 10−3 0.11(3)
0 0.0475 200 0.33(1) 0.63(1) 0.559(2) 0.604(1) 1.1(3) × 10−2 0.08(3)
0 0.045 370 0.26(1) 0.69(3) 0.528(4) 0.6400(7) 2.3(5) × 10−3 0.22(5)
0 0.045 100 0.27(1) 0.63(2) 0.537(4) 0.6393(9) 3.1(7) × 10−3 0.22(5)
0 0.0425 100 0.166(8) 0.65(1) 0.52(1) 0.6576(8) 2.3(4) × 10−3 0.29(2)
0 0.04 100 0.069(5) 0.73(1) 0.50(2) 0.6745(5) 8(3) × 10−4 0.35(3)
0 0.0375 100 0.036(2) 0.72(1) 0.4(1) 0.6835(5) 4(2) × 10−4 0.38(5)
0 0.035 100 0.0020(6) 0.75(2) 0.05(40) 0.6938(5) 2(20) × 10−5 0.42(2)

−0.1 0.0525 200 0.297(9) 0.71(2) 0.602(2) 0.6844(9) 9(2) × 10−3 0.19(5)
−0.1 0.05 100 0.37(1) 0.67(1) 0.609(4) 0.712(1) 4.8(7) × 10−3 0.33(5)
−0.1 0.0475 100 0.094(4) 0.71(2) 0.562(7) 0.7240(8) 1.7(3) × 10−3 0.36(7)
−0.1 0.045 100 0.092(5) 0.69(2) 0.590(9) 0.7380(8) 1.3(2) × 10−3 0.42(5)
−0.1 0.0425 100 0.031(3) 0.85(3) 0.4(1) 0.7503(8) 5.6(10) × 10−4 0.46(4)
−0.1 0.04 100 0.0034(7) 0.83(2) 0.08(40) 0.7582(7) 5(30) × 10−5 0.48(4)

0.1 0.0425 100 0.40(2) 0.58(1) 0.493(3) 0.5620(9) 5(1) × 10−3 0.11(3)
0.1 0.04 100 0.23(1) 0.62(3) 0.487(2) 0.5877(9) 1.6(4) × 10−3 0.19(5)
0.1 0.0375 100 0.068(5) 0.70(2) 0.40(4) 0.6068(5) 8(1) × 10−4 0.24(3)
0.1 0.035 100 0.015(2) 0.72(2) 0.17(26) 0.6157(6) 1.7(40) × 10−4 0.28(2)

the critical point it is not strictly satisfied, as shown by Fig. 12.
Interestingly enough, a plot of the RDF between corresponding
states shows an almost complete overlap of the three curves
upon a shift by ±� in r , as shown in Fig 13. We think that
the only visible difference, the contact values of the like RDF,
is a direct hallmark of the breakup of the corresponding states
as a physical consequence of the existence of a third relevant
interaction parameter in addition to the unlike hard-sphere
diameter and the electric charge. While the Cl− ion and the
BF−

4 anion may be approximated reasonably well by a sphere
so that the center of charge is identical to the center of mass,
the NTF−

2 anion is by no means spherical. The NTF−
2 anion

is flexible and allows for different conformers. The nitrogen
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FIG. 11. (Color online) Binodals obtained with the GEMC
simulations. The dashed lines are the results of the extrapolation
described in the text. The closed circles are the critical points.

atom in the anion is not necessarily identical to the center of
mass and the center of charges [54]. In these cases, instead of
the RPM it is better to choose the primitive model with ions
of differing sizes as the reference system [36–38].

IV. THEORETICAL REMARKS ON THE CLUSTERING

Under highly diluted conditions [79] we can approximate
the fluid as an ideal mixture of cation and anions, anions,
and cations with partial densities ρ± = (1 − α)ρ/2 and ρ− =
ρ+ = αρ/2, respectively, and for the chemical potentials
μ± = kBT ln[(1 − α)ρ�3

+�3
−/2K], μ− = kBT ln(αρ�3

+/2),
and μ+ = kBT ln(αρ�3

−/2), where �− and �+ are the
de Broglie thermal wavelengths of the anions and cations,
respectively. Here K is the configurational integral of a
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FIG. 12. (Color online) Corresponding state representation of the
phase diagram.
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cation-anion pair

K = 4π

∫ rc

σ (1+�)
r2eλB/rdr, (4.1)

where λB = σ/T ∗ is the Bjerrum length and rc is a cutoff
radius conventionally chosen equal to λB/2 corresponding to
the minimum of the integrand. At equilibrium μ± = μ+ + μ−,
which implies (1 − α)/α2 = Kρ/2. Solving for α yields

α =
√

1 + 2Kρ − 1

Kρ
. (4.2)

An approximate closed form expression for K valid at low T ∗
can be obtained by writing for the anion-cation pair distance
r = σ (1 + �) + δr with δr small. Then σ/r ≈ 1/(1 + �) −
σδr/σ 2(1 + �)2 = 2/(1 + �) − r/σ (1 + �)2. Substituting
into Eq. (4.1) and performing the integral with rc = ∞ yields

K ≈ 4πσ 3(1 + �)4e1/T ∗(1+�)T ∗

×{1 + 2(1 + �)T ∗[1 + (1 + �)T ∗]}. (4.3)

In our simulations we are never in this very diluted condition
and as a consequence we observe the formation of clusters
of a higher number of particles than just the dimers. Thus, to
estimate the cluster concentrations xc

n = 〈Nn〉/N , we need a
different analysis closer in spirit to the one of Tani and Hen-
derson [56,57,80]. Simplifying that analysis, we can consider
as the intercluster configurational partition function the one of
an ideal gas of clusters, in reduced units, Zinter ≈ (V/σ 3)Nt ,
where Nt = ∑nc

n=1 Nn is the total number of clusters and we
assume to have only clusters made of up to nc particles. Then
the equations for the equilibrium cluster concentrations xc

n are

xc
n = λnzintra

n /ρ∗, n = 1,2, . . . ,nc, (4.4)

1 =
nc∑

n=1

nxc
n, (4.5)

where zintra
n are the configurational intracluster partition

functions in reduced units, with zintra
1 = 2, and λ (= αρ∗/2)

is a Lagrange multiplier. Moreover, neglecting the excess
internal energy of the clusters, we can approximate zintra

n ≈
(vn/σ

3)n−1 ∑n
s=0[s!(n − s)!]−1 = (vn/σ

3)n−12n/n! where vn
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FIG. 14. (Color online) Cluster analysis described in the text for
nc = 100 at various densities.

is the volume of an n cluster. Moreover, assuming further the
cluster to be in a closed packed configuration, we can approx-
imate, for � = 0, vn ≈ nσ 3/

√
2. Notice that for � �= 0 we

would expect vn to change by a constant multiplicative factor
that would still give the same result for the cluster concentra-
tions. Clearly a proper analysis of the n-cluster volume would
require a MC simulation [12]. This temperature-independent
approximation gives for nc = 100 the results shown in Fig. 14
(note that the results have a very small dependence on nc).

From the figure we can say that our simulation results
for T ∗ = 0.1 and � = −0.3 have qualitatively the same
behavior as of our oversimplified analysis. This justifies the
fit of Table I where the Laplace multiplier is considered as a
fitting parameter. The strong dependence on the nonadditivity
(and on temperature) that we observe in the simulation
is an indication that the approximation of neglecting the
excess internal energy of a cluster is too severe. One should
consider zintra

n = e−nf ex
n /T ∗

(vn/σ
3)n−12n/n!, where f ex

n (T ∗) =∫ 1/T ∗

0 uex
n (1/x) dx is the excess free energy per particle of

the n cluster and uex
n (T ∗) = (εσ/q2)〈∑n

i>j=1 φij (rij )〉/n is the
reduced excess internal energy per particle of the n cluster.
Note once again that choosing an f ex

n independent of n would
lead to the same oversimplified result we described for the
cluster concentrations. What really matters is the combined
dependence of f ex

n (T ∗) on n and T ∗, which can be assessed
within the MC simulation [12,56,57]. For example, the curves
of Figs. 2 and 3 with percolating clusters are better fitted by
the three-parameter expression xc

n ≈ λn+an2
nbn/n!.

One thing that can be done is to distinguish among the
clusters of n particles between the ones formed by s negative
particles and t positive particles with t + s = n, as done in
Ref. [30], in order to be able to approximate analytically the
intracluster excess free energy per particle

zintra
n =

n∑
s=0

zintra
s,n−s , (4.6)

zintra
s,t = 1

s!t!

1

σ 3(s+t−1)

∫
�s,t

dr2 · · · drs+t

×exp

⎛
⎝−β

s+t∑
μ>ν=1

φiμjν
(rμν)

⎞
⎠ , (4.7)
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FIG. 15. (Color online) Cluster analysis described in the text
for nc = 30, T ∗ = 0.1, ρ∗ = 0.45, a = 1.5, and b = 0.9 at various
values of �.

where the configurational integral goes only over the relative
positions and covers the region �s,t of cluster configuration
space. This way one can quantitatively [30] estimate how
Tani and Henderson’s theory [80] deviates from the exact MC
results.

We immediately see how zintra
1,1 ∝ K/σ 3 becomes increas-

ingly bigger as � → −1 and the same holds for all the zintra
k,k

that clearly dominate over all the other zintra
s,t with s �= t . This

qualitatively explains Fig. 4 and is shown in Fig. 15, where
we show the results from the approximation described in
Appendix for nc = 30, T ∗ = 0.1, ρ∗ = 0.45, a = 1.5, b =
0.9, and various values of � (note that the results have a
very small dependence on nc).

V. CONCLUSION

We have performed NVT MC simulations of the RPM with
nonadditive hard-sphere diameters outside the coexistence
region with particular emphasis on the clustering properties.
In order to establish whether the cluster analysis falls outside
the gas-liquid coexistence region for a given value of the
nonadditivity, we accurately determined the binodals of the
nonadditive fluid using the Gibbs ensemble method after a
density distribution function analysis to get insight into the
shift of the coexistence region with the nonadditivity. It turned
out that a negative nonadditivity tends to shift the critical
point to higher temperatures and higher densities whereas
a positive one shifts it to lower temperatures and densities.
The law of corresponding states does not seem to be strictly
fulfilled over an extended region below the critical point for
� = 0,±0.1. Our results can be used as a theoretical support
to the analysis of experimental work on room temperature
ionic liquids [52–54] where shifts in the liquid-liquid binodals
akin to ours are observed as a function of the kind of solvent
used in the ionic mixture.

From the cluster analysis, we were able to distinguish
between two kind of behaviors for the cluster concentrations.
When we do not observe percolating clusters during the
simulation, the curves for the cluster concentrations as a
function of the cluster size are independent of the number of

particles used in the simulation. When we observe percolation
during the simulation the curves depend on the number of
particles used in the simulation, but obey a straightforward
scaling with N relationship.

At low densities the negative nonadditive fluid has stronger
clustering than in the pure RPM, whereas at high densities
the positive nonadditive fluid has the strongest clustering.
The positive nonadditive fluid is the first one reaching the
percolating clusters upon an increase of density. This certainly
depends on the fact that for a positive nonadditivity the ions
have less space in which to move at a given density and,
due to the presence of two oppositely charged species, there
is a competition between the tendency to clustering driven
by the Coulomb interaction and the tendency to demixing
due to entropic reasons. A negative nonadditivity tends to
favor the formation of the neutrally charged clusters starting
with dipolar ones. Traces of these features can also be read
from an analysis of the partial radial distribution function and
structure factors. Our clustering results can be summarized
by observing that at high density for a positive deviation
from additivity we have more clustering than in the additive
model, whereas for a negative deviation from additivity we
have less clustering than in the additive model. At low
density the reverse behavior is found. These results can be
explained by the following arguments: At high density a
positive nonadditivity leaves less effective volume to the
particles and a negative nonadditivity leaves more effective
volume relative to the additive model; at low density a negative
nonadditivity favors the formation of neutral clusters and
a positive nonadditivity favors the competition between the
tendency to demixing in a neutral mixture and the tendency
to microscopic intermixing of the two species favored by the
Coulombic interactions. These observations are in agreement
with the fact that the energy of a cation-anion pair at contact
increases for positive nonadditivity and decreases for negative
nonadditivity.

A simple temperature-independent clustering theory where
we regard the clusters as forming an ideal gas and we
approximate the n cluster as an ideal ensemble of n particles
in a closed packed configuration can be used to qualitatively
explain the cluster concentrations observed at not to high
density and absolute value of the nonadditivity. In order to
qualitatively explain the prevalence of the neutral clusters in
the negatively nonadditive fluid it is necessary to refine the
approximation at the intracluster level.

In the future it would be desirable to make quantitative the
comparison between clustering theory and MC exact results.
The determination of the percolation threshold as a function
of nonadditivity would also be interesting. In the temperature
density phase diagram, one can determine the percolation
threshold by calculating the fraction of configurations with
percolating clusters within the NVT simulation as a function
of density for two systems of different size N . A point of the
percolation threshold results then where the curves of the two
systems meet.
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APPENDIX: APPROXIMATED INTRACLUSTER
CONFIGURATIONAL PARTITION FUNCTION FOR

NEGATIVE NONADDITIVITY

Let us call the anions i− = 1−, . . . ,s− and the cations j+ =
1+, . . . ,t+. From Eq. (4.7) it follows that

zintra
t,t = 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

×
t∏

i>j=1

e−2λB/ri+j+
t∏

i,j=1

e+λB/ri+j−

≈ 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

t∏
i,j=1

e+λB/ri+j− ,

(A1)

where we approximated e−λB/r ≈ 1, which is justified at
high T ∗ < 1/2(1 + �) or low λB . Now we observe that,
for example, r1+2− = |r1+1− + r1−2−|, with r1−2− > σ and
e+λB/r1+2− ≈ 1. Thus, for negative nonadditivity we can further

approximate

zintra
t,t ≈ 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

t∏
i,j=1

e+λB/ri+j−

≈ 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

t∏
i=1

e+λB/ri+ i−

∝∼ (2t)b(2t−1)

t!2
(K/K0)t , (A2)

where the factor (2t)b(2t−1) takes into account the volume of
�t,t with b a free parameter and

K/K0 =
∫ λB/2

aσ (1+�)
r2e+λB/rdr

/ ∫ λB/2

aσ (1+�)
r2dr (A3)

with a a second free parameter. With the same approximations
we can say that

zintra
s,t

∝∼ (s + t)b(s+t−1)

s!t!
(K/K0)min{s,t}. (A4)
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[47] A. Santos, M. López de Haro, and S. B. Yuste, J. Chem. Phys.

132, 204506 (2010).
[48] R. Fantoni and G. Pastore, Europhys. Lett. 101, 46003 (2013).
[49] W. C. K. Poon, S. U. Egelhaaf, J. Stellbrink, J. Allgaier, A. B.

Schofield, and P. N. Pusey, Philos. Trans. R. Soc. London Ser.
A 359, 897 (2001).

[50] W. C. K. Poon, J. Phys.: Condens. Matter 14, R859 (2002).
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Chapter 39

Radial distribution function in a
diffusion Monte Carlo simulation of a
Fermion fluid between the ideal gas
and the Jellium model

Fantoni R., Eur. Phys. J. B 86, 286 (2013)
Title: “Radial distribution function in a diffusion Monte Carlo simulation of a Fermion fluid
between the ideal gas and the Jellium model”
Abstract: We study, through the diffusion Monte Carlo method, a spin one-half fermion
fluid, in the three dimensional Euclidean space, at zero temperature. The point particles,
immersed in a uniform “neutralizing” background, interact with a pair-potential which can
be continuously changed from zero to the Coulomb potential depending on a parameter µ.
We determine the radial distribution functions of the system for various values of density,
µ, and polarization. We discuss about the importance, in a computer experiment, of the
choice of suitable estimators to measure a physical quantity. The radial distribution function
is determined through the usual histogram estimator and through an estimator determined
via the use of the Hellmann and Feynman theorem. In a diffusion Monte Carlo simulation
the latter route introduces a new bias to the measure of the radial distribution function due
to the choice of the auxiliary function. This bias is independent from the usual one due to
the choice of the trial wave function. A brief account of the results from this study were
presented in a recent communication [R. Fantoni, Solid State Communications, 159, 106
(2013)].
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Abstract. We study, through the diffusion Monte Carlo method, a spin one-half fermion fluid, in the three
dimensional Euclidean space, at zero temperature. The point particles, immersed in a uniform “neutral-
izing” background, interact with a pair-potential which can be continuously changed from zero to the
Coulomb potential depending on a parameter μ. We determine the radial distribution functions of the
system for various values of density, μ, and polarization. We discuss about the importance, in a computer
experiment, of the choice of suitable estimators to measure a physical quantity. The radial distribution
function is determined through the usual histrogram estimator and through an estimator determined via
the use of the Hellmann and Feynman theorem. In a diffusion Monte Carlo simulation the latter route
introduces a new bias to the measure of the radial distribution function due to the choice of the auxiliary
function. This bias is independent from the usual one due to the choice of the trial wavefunction. A brief
account of the results from this study were presented in a recent communication [R. Fantoni, Solid State
Commun. 159, 106 (2013)].

1 Introduction

The Jellium model is a system of pointwise electrons of
charge e and number density n in the three dimensional
Euclidean space filled with a uniform neutralizing back-
ground of charge density −en. The zero temperature,
ground-sate, properties of the statistical mechanical sys-
tem thus depends just on the electronic density n or the
Wigner-Seitz radius rs = (3/4πn)1/3/a0 where a0 is Bohr
radius. The model can be used for example as a first
approximation to describe free electrons in metallic ele-
ments [1] (2 � rs � 4) or a white dwarf [2] (rs � 0.01).

When an impurity of charge q is added to the system,
the screening cloud of electrons will experience the Friedel
oscillations. In the Thomas-Fermi description of the static
screening an electric potential qvH(r) (the Hartree po-
tential) is created by the impurity and by the redistri-
bution of the electronic charge n(r) − n. It obeys the
Poisson equation qe∇2vH(r) = 4πe[−qδ(r) − en(r) + en]
and the equilibrium condition on the electrochemical po-
tential, μc(n(r)) + qevH(r) = constant. An analytic solu-
tion can be obtained for |q| � 1, when we find n(r)− n �
−qevH(r)∂n/∂μc by expansion of μ around the homoge-
neous state. Assuming ∂n/∂μc is positive and with the

definition ks =
√

4πe2∂n/∂μc, the Poisson equation yields

vH(r) =
e−ksr

r
. (1)

a e-mail: rfantoni@ts.infn.it

It is clear from this result that the quantity 1/ks measures
the distance over which the self consistent potential asso-
ciated with the impurity penetrates into the electron gas.
Thus, 1/ks has the meaning of a screening length. The
Thomas-Fermi value of the screening length is obtained
by replacing the thermodynamic quantity ∂n/∂μc by its
value for non-interacting fermions, using for μc the Fermi
energy. Clearly we have that vH(r) → 1/r as 1/ks → ∞
and vH(r) → 0 as 1/ks → 0. Also vH is short ranged.

It is important to study the ground-state properties
of a model of point fermions of spin one-half interacting
with a bare pair-potential vμ(r) which can be continuously
changed from zero (μ → 0, ideal gas) to the Coulomb po-
tential (μ → ∞, Jellium model) depending on a parame-
ter μ. We chose the following functional form:

vμ(r) =
erf(μr)

r
. (2)

Still the fluid is immersed in a static uniform background
of continuously distributed point particles which interact
with the particles of the fluid with the same pair-potential
but of opposite sign.

A major challenge in the Kohn-Sham scheme of den-
sity functional theory is to devise approximations to the
exchange-correlation functional that accurately describes
near-degeneracy or long-range correlation effects such as
van der Waals forces. Among recent progresses to circum-
vent this problem, we mention “range-separated” den-
sity functional schemes which combine the Kohn-Sham
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formalism with either random-phase approximation [3]
or multideterminantal approaches [4]. Such schemes re-
quire a local density functional for particles interacting
via modified potentials defined in terms of a suitable pa-
rameter μ, which either softens the core or suppresses the
long-range tail. Further insight into electronic correlations
in molecules and materials can be gained through the anal-
ysis of the on-top pair correlation function [5].

Within quantum Monte Carlo, the diffusion Monte
Carlo is the method of choice for the calculation of
ground-state properties of appropriate reference homoge-
neous systems (the path integral method [6] can be used
to extend the study to non-zero temperatures degenerate
systems [7]), the most relevant example being the corre-
lation energy of the electron gas obtained by Ceperley
and Alder back in 1980 [8]. This is even more so in the
present days, since better wavefunctions and optimization
methods have been developed, better schemes to minimize
finite-size effect have been devised, and vastly improved
computational facilities are available.

Recently, Zecca et al. [9] have provided a local den-
sity functional for short-range pair potentials v(r) =
erfc(μr)/r, whereas Paziani et al. [10] have developed a
local spin density functional for the softened-core, long
range case, v(r) = erf(μr)/r.

It is the purpose of this work to build on previous
work [9,10] and provide the radial distribution function
(RDF), most notably the on-top value, i.e. its value at
contact, at a zero radial distance, for the pair potential
of reference [10], given in equation (2). A brief account of
the results from this study has been presented in a recent
communication [11]. Aim of the present work is to give a
complete and detailed account of the calculations that has
been carried on for such a study.

We performed fixed-nodes diffusion Monte Carlo sim-
ulations [12], where we used modern techniques [13] to
optimize Slater-Jastrow wavefunctions with backflow and
three-body correlations [14] and Hellmann and Feynman
(HFM) measures [15] to calculate the RDF, particu-
larly the on-top value, which suffers from poor statistical
sampling in its conventional histogram implementation.
Twist-averaged boundary conditions [16] and RPA-based
corrections [17] to minimize finite-size effects were not
found essential for the RDF calculation.

For the fully polarized and unpolarized fluid, we ex-
plored a range of densities and of the parameter μ. This
required simulating several different systems. We also
needed to evaluate and extrapolate out, for representa-
tive cases, time-step errors, population control bias, and
size effects. We plan to explore intermediate polarizations
in a future work.

In the study, we use two kinds of Jastrow-correlation-
factors, one better for the near-Jellium systems and one
better for the near-ideal systems.

An important component of a computer experiment of
a system of many particles, a fluid, is the determination of
suitable estimators to measure, through a statistical aver-
age, a given physical quantity, an observable. Whereas the
average from different estimators must give the same re-

sult, the variance, the square of the statistical error, can be
different for different estimators. We compare the measure
of the histogram estimator for the RDF with a particular
HFM one.

In ground state Monte Carlo simulations [18,19], un-
like classical Monte Carlo simulations [20–22] and path
integral Monte Carlo simulations [6], one has to resort
to the use of a trial wavefunction [18], Ψ . While this is
not a source of error, bias, in diffusion Monte Carlo sim-
ulation [19] of a system of bosons, it is for a system of
Fermions, due to the sign problem [23]. Another source
of bias inevitably present in all three experiments is the
finite size error.

In a ground state Monte Carlo simulation, the energy
has the zero-variance principle [24]: as the trial wavefunc-
tion approaches the exact ground state, the statistical er-
ror vanishes. In a diffusion Monte Carlo simulation of a
system of bosons the local energy of the trial wavefunction,

EL(R) = [HΨ(R)]/Ψ(R),

where R denotes a configuration of the system of parti-
cles and H is the Hamiltonian, which we will here assume
to be real, is an unbiased estimator for the ground state.
For fermions the ground state energy measurement is bi-
ased by the sign problem. For observables O which do not
commute with the Hamiltonian the local estimator

OL(R) = [OΨ(R)]/Ψ(R),

is inevitably biased by the choice of the trial wavefunction.
A way to remedy to this bias can be the use of the forward
walking method [25,26] or the reptation quantum Monte
Carlo method [27], to reach pure estimates. Otherwise this
bias can be made of leading order δ2 with δ = φ0 − Ψ ,
where φ0 is the ground state wavefunction, introducing the

extrapolated measure O
ext

= 2〈OL〉f − 〈OL〉fvmc , where
the first statistical average, the mixed measure, is over the
diffusion Monte Carlo (DMC) stationary probability dis-
tribution f and the second, the variational measure, over
the variational Monte Carlo (VMC) probability distribu-
tion fvmc, which can also be obtained as the stationary
probability distribution of a DMC without branching [28].

One may follow different routes to determine estima-
tors as the direct microscopic one, the virial route through
the use of the virial theorem, or the thermodynamic route
through the use of thermodynamic identities. This aspect
of finding out different ways of calculating quantum prop-
erties in some ways resembles experimental physics. The
theoretical concept may be perfectly well defined but it
is up to the ingenuity of the experimentalist to find the
best way of doing the measurement. Even what is meant
by “best” is subject to debate. In an unbiased experiment
the different routes to the same observable must give the
same average.

In this work, we propose to use the Hellmann and
Feynman theorem as a direct route for the determination
of estimators in a diffusion Monte Carlo simulation. Some
attempts in this direction have been tried before [29,30].
The novelty of our approach is a different definition of the
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correction to the variational measure, necessary in the dif-
fusion experiment, respect to reference [29] and the fact
that the bias stemming from the sign problem does not
exhaust all the bias due to the choice of the trial wave-
function, respect to reference [30].

The work is organized as follows: in Section 2, we intro-
duce the fluid model; in Section 3, we describe the Ewald
sums technique to treat the long range pair-potential; in
Section 4, we describe the fixed-nodes diffusion Monte
Carlo (DMC) method; in Section 5, we describe several
different ways to evaluate expectation values in a DMC
calculation; in Section 6, we describe the choice of the
trial wavefunction; in Section 7, we define the RDF and
describe some of its exact properties; the numerical results
for the RDF are presented in Section 8; Section 9 is for
final remarks.

2 The model

The Jellium is an assembly of N electrons of charge e
moving in a neutralizing background. The average particle
number density is n = N/Ω, where Ω is the volume of
the fluid. In the volume Ω there is a uniform neutralizing
background with a charge density ρb = −en. So that the
total charge of the system is zero.

In this paper lengths will be given in units of
a = (4πn/3)−1/3. Energies will be given in Rydbergs
�2/(2ma2

0), where m is the electron mass and a0 =
�2/(me2) is the Bohr radius.

In these units the Hamiltonian of Jellium is

H = − 1

r2
s

N∑

i=1

∇∇∇2
ri

+ V (R), (3)

V =
1

rs

⎛
⎝2

∑

i<j

1

|ri − rj |
+

N∑

i=1

r2
i + v0

⎞
⎠, (4)

where R = (r1, r2, . . . , rN ) with ri the coordinate of the
ith electron, rs = a/a0, and v0 a constant containing the
self energy of the background.

The kinetic energy scales as 1/r2
s and the poten-

tial energy (particle-particle, particle-background, and
background-background interaction) scales as 1/rs, so for
small rs (high electronic densities), the kinetic energy
dominates and the electrons behave like an ideal gas. In
the limit of large rs, the potential energy dominates and
the electrons crystallize into a Wigner crystal [8,31]. No
liquid phase is realizable within this model as the pair-
potential has no attractive parts even though a supercon-
ducting state [32] may still be possible (see Chapt. 8.9 of
Ref. [33]).

Modified long range pair-potential

The fluid model studied in this work is obtained modify-
ing the Jellium by replacing the 1/r Coulomb potential

between the electrons with the following long range bare
pair-potential [10]

vμ(r) =
erf(μr)

r
, (5)

whose Fourier transform is

ṽμ(k) =
4π

k2
e

− k2

4μ2 . (6)

When μ → ∞, we recover the standard Jellium model; in
the opposite limit μ → 0, we recover the non-interacting
electron gas. Notice that vμ is a long range pair-potential
with a penetrable core, vμ(0) = 2μ/

√
π. So μ controls the

penetrability of two particles. For this kind of system it is
lacking a detailed study of the RDF. In this work, we will
only be concerned about the fluid phase.

3 Ewald sums

Periodic boundary conditions are necessary for extrapo-
lating results of the finite system to the thermodynamic
limit. Suppose the bare pair-potential, in infinite space, is
v(r),

v(r) =

∫
dk

(2π)3
e−ik·rṽ(k), ṽ(k) =

∫
dr eik·rv(r). (7)

The best pair-potential of the finite system is given by the
image potential

vI(r) =
∑

L

v(|r + L|) − ṽ(0)/Ω (8)

where the L sum is over the Bravais lattice of the simula-
tion cell L = (mxL, myL, mzL), where mx, my, mz range
over all positive and negative integers and Ω = L3. We
have also added a uniform background of the same den-
sity but opposite charge. Converting this to k-space and
using the Poisson sum formula we get

vI(r) =
1

Ω

′∑

k

ṽ(k)e−ik·r, (9)

where the prime indicates that we omit the k = 0 term;
it cancels out with the background. The k sum is over
reciprocal lattice vectors of the simulation box

kn = (2πnx/L, 2πny/L, 2πnz/L),

where nx, ny, nz range over all positive and negative
integers.

Because both sums, equations (8) and (9), are so
poorly convergent [21] we follow the scheme put forward
by Natoli and Ceperley [34] for approximating the image
potential by a sum in k-space and a sum in r-space,

va(r) =
∑

L

vs(|r + L|) +
∑

|k|≤kc

vl(k)eik·r − ṽ(0)/Ω,

(10)
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where vs(r) is chosen to vanish smoothly as r ap-
proaches rc, where rc is less than half of the distance across
the simulation box in any direction. If either rc or kc go to
infinity then va → vI . Natoli and Ceperley show that in
order to minimize the error in the potential, it is appropri-
ate to minimize χ2 =

∫
Ω[vI(r) − va(r)]2 dr/Ω, and choose

for vs(r) an expansion in a fixed number of radial func-
tions. This same technique has also been applied to treat
the Jastrow-correlation-factor described in Section 6.1.

Now let us work with N particles of charge e in a
periodic box and let us compute the total potential energy
of the unit cell. Particles i and j are assumed to interact
with a potential e2v(rij) = e2v(|ri − rj |). The potential
energy for the N particle system is

V =
∑

i<j

e2vI(rij) +
∑

i

e2vM , (11)

where vM = 1
2 limr→0[vI(r) − v(r)] is the interaction of a

particle with its own images; it is a Madelung constant [35]
for particle i interacting with the perfect lattice of the
simulation cell. If this term were not present, particle i
would only see N − 1 particles in the surrounding cells
instead of N .

4 The fixed-nodes diffusion Monte Carlo
(DMC) method

Consider the Schrödinger equation for the many-body
wavefunction, φ(R, t) (the wavefunction can be assumed
to be real, since both the real and imaginary parts of
the wavefunction separately satisfy the Schrödinger equa-
tion), in imaginary time, with a constant shift ET in
the zero of the energy. This is a diffusion equation in
a 3N -dimensional space [36]. If ET is adjusted to be
the ground-state energy, E0, the asymptotic solution is
a steady state solution, corresponding to the ground-state
eigenfunction φ0(R) (provided φ(R, 0) is not orthogonal
to φ0).

Solving this equation by a random-walk process with
branching is inefficient, because the branching rate, which
is proportional to the total potential V (R), can diverge to
+∞. This leads to large fluctuations in the weights of the
diffusers and to slow convergence when calculating aver-
ages. However, the fluctuations, and hence the statistical
uncertainties, can be greatly reduced [19] by the technique
of importance sampling [37].

One simply multiplies the Schrödinger equation by a
known trial wavefunction Ψ(R) that approximate the un-
known ground-state wavefunction, and rewrites it in terms
of a new probability distribution

f(R, t) = φ(R, t)Ψ(R), (12)

whose normalization is given in equation (A.1). This leads
to the following diffusion equation:

−∂f(R, t)

∂t
= −λ∇∇∇2f(R, t) + [EL(R) − ET ]f(R, t)

+ λ∇∇∇[f(R, t)F(R)]. (13)

Here λ = �2/(2m), t is the imaginary time measured in
units of �, EL(R) = [HΨ(R)]/Ψ(R) is the local energy of
the trial wavefunction, and

F(R) = ∇∇∇ lnΨ2(R). (14)

The three terms on the right hand side of equation (13)
correspond, from left to right, to diffusion, branching, and
drifting, respectively.

At sufficiently long times the solution to equa-
tion (13) is

f(R, t) ≈ N0Ψ(R)φ0(R) exp[−(E0 − ET )t], (15)

where N0 =
∫

φ0(R)φ(R, 0) dR. If ET is adjusted to
be E0, the asymptotic solution is a stationary solution
and the average 〈EL(R)〉f of the local energy over the
stationary distribution gives the ground-state energy E0.
If we set the branching to zero EL(R) = ET then
this average would be equal to the expectation value∫

Ψ(R)HΨ(R) dR, since the stationary solution to equa-
tion (13) would then be f = fvmc = Ψ2. In other words,
without branching we would obtain the variational en-
ergy of Ψ , rather than E0, as in a variational Monte Carlo
(VMC) calculation.

The time evolution of f(R, t) is given by:

f(R
′
, t + τ) =

∫
dRG(R

′
,R; τ)f(R, t), (16)

where the Green’s function

G(R
′
,R; τ) = Ψ(R′)〈R′| exp[−τ(H − ET )]|R〉Ψ−1(R)

is a transition probability for moving the set of coordinates
from R to R

′
in a time τ . Thus, G is a solution of the

same differential equation (Eq. (13)), but with the initial

condition G(R
′
,R; 0) = δ(R

′ − R). For short times τ an
approximate solution for G is

G(R
′
,R; τ) = (4πλτ)−3N/2e−|R′−R−λτF(R)|2/4λτ

× e−τ{[EL(R)+EL(R′)]/2−ET } + O(τ2).
(17)

To compute the ground-state energy and other expecta-
tion values, the N -particle distribution function f(R, t)
is represented, in diffusion Monte Carlo, by an aver-
age over a time series of generations of walkers each of
which consists of a fixed number of nw walkers. A walker
is a pair (Rα, ωα), α = 1, 2, . . . , nw, with Rα a 3N -
dimensional particle configuration with statistical weight
ωα. At time t, the walkers represent a random realization
of the N -particle distribution, f(R, t) =

∑nw

α=1 ωt
αδ(R −

Rt
α). The ensemble is initialized with a VMC sample from

f(R, 0) = Ψ2(R), with ω0
α = 1/nw for all α. Note that if

the trial wavefunction were the exact ground-state then
there would be no branching and it would be sufficient
nw = 1. A given walker (Rt, ωt) is advanced in time (dif-
fusion and drift) as:

Rt+τ = Rt + χ + λτ∇∇∇ lnΨ2(Rt)
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where χ is a normally distributed random 3N -dimensional
vector with variance 2λτ and zero mean [38]. In order
to satisfy detailed balance we accept the move with a
probability

A(R,R′; τ) = min[1, W (R,R′)],

where

W (R,R′) =
[
G(R,R′; τ)Ψ2(R′)

]
/
[
G(R′,R; τ)Ψ2(R)

]
.

This step would be unnecessary if G were the exact
Green’s function, since W would be unity. Finally, the
weight ωt

α is replaced by ωt+τ
α = ωt

αΔωt
α (branching), with

Δωt
α = exp

{
−τ [(EL(Rt

α) + EL(Rt+τ
α ))/2 − ET ]

}
.

However, for the diffusion interpretation to be valid, f
must always be positive, since it is a probability distri-
bution. But we know that the many-fermions wavefunc-
tion φ(R, t), being antisymmetric under exchange of a pair
of particles of the parallel spins, must have nodes, i.e.
points R where it vanishes. In the fixed-nodes approxi-
mation one restricts the diffusion process to walkers that
do not change the sign of the trial wavefunction. One can
easily demonstrate that the resulting energy, 〈EL(R)〉f ,
will be an upper bound to the exact ground-state energy;
the best possible upper bound with the given boundary
condition [23].

A detailed description of the algorithm used for the
DMC calculation can be found in reference [28].

5 Expectation values in DMC

In a DMC calculation there are various different possibili-
ties to measure the expectation value of a physical observ-
able, as for example the RDF. If 〈O〉f is the measure and
〈. . .〉f the statistical average over the probability distribu-
tion f we will, in the following, use the word estimator
to indicate the function O itself, unlike the more common
use of the word to indicate the usual Monte Carlo esti-
mator

∑N
i=1 Oi/N of the average, where {Oi} is the set

obtained evaluating O over a finite number N of points
distributed according to f . Whereas the average from dif-
ferent estimators must give the same result, the variance,
the square of the statistical error, can be different for dif-
ferent estimators.

5.1 The local estimator and the extrapolated measure

To obtain ground-state expectation values of quantities O
that do not commute with the Hamiltonian we introduce
the local estimator OL(R) = [OΨ(R)]/Ψ(R) and then
compute the average over the DMC walk, the so-called
mixed measure,

O
mix

= 〈OL(R)〉f =

∫
φ0(R)OΨ(R) dR/

∫
φ0(R)Ψ(R)dR.

This is inevitably biased by the choice of the trial wave-
function. A way to remedy to this bias is the use of the
forward walking method [25,26] or the reptation quantum
Monte Carlo method [27] to reach pure estimates. Oth-
erwise, this bias can be made of leading order δ2, with
δ = φ0 − Ψ , introducing the extrapolated measure

O
ext

= 2O
mix − O

var
, (18)

where O
var

= 〈OL〉fvmc is the variational measure. If
the mixed measure equals the variational measure then
the trial wavefunction has maximum overlap with the
ground-state.

5.2 The Hellmann and Feynman measure

Toulouse et al. [15] and Assaraf and Caffarel [29] observed
that the zero-variance property of the energy [24] can be
extended to an arbitrary observable, O, by expressing it
as an energy derivative through the use of the Hellmann-
Feynman theorem.

In a DMC calculation the Hellmann-Feynman theo-
rem takes a form different from the one in a VMC cal-
culation. Namely we start with the eigenvalue expression
(Hλ − Eλ)Ψλ = 0 for the ground-state of the perturbed
Hamiltonian Hλ = H + λO, take the derivative with re-
spect to λ, multiply on the right by the ground-state at
λ = 0, φ0, and integrate over the particle coordinates to
get

∫
dRφ0(H

λ − Eλ)
∂Ψλ

∂λ
=

∫
dRφ0

(
∂Eλ

∂λ
− ∂Hλ

∂λ

)
Ψλ.

(19)
Then, we notice that due to the hermiticity of the
Hamiltonian, at λ = 0 the left hand side vanishes, so that
we get [11]

∫
dRφ0OΨλ

∫
dRφ0Ψλ

∣∣∣∣
λ=0

=
∂Eλ

∂λ

∣∣∣∣
λ=0

. (20)

This relation holds only in the λ → 0 limit unlike the
more common form [39], which holds for any λ. Also it
resembles equation (3) of reference [30].

Given

Eλ =

∫
dRφ0(R)HλΨλ(R)/

∫
dRφ0(R)Ψλ(R),

the “Hellmann and Feynman” (HFM) measure in a DMC
calculation is

O
HFM

=
dEλ

dλ

∣∣∣∣
λ=0

≈ 〈OL(R)〉f

+〈ΔOα
L(R)〉f + 〈ΔOβ

L(R)〉f . (21)

The α correction is [11]

ΔOα
L(R) =

[
HΨ ′

Ψ ′ − EL(R)

]
Ψ ′(R)

Ψ(R)
. (22)
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This expression coincides with equation (18) of refer-
ence [15]. In a VMC calculation this term, usually, does
not contribute to the average, with respect to fvmc = Ψ2,
due to the hermiticity of the Hamiltonian. This is of course
not true in a DMC calculation. We will then define a
Hellmann and Feynman variational (HFMv) estimator as
OHFMv = OL(R) + ΔOα

L(R). The β correction is [11]

ΔOβ
L(R) = [EL(R) − E0]

Ψ ′(R)

Ψ(R)
, (23)

where E0 = Eλ=0. Which differs from equation (19) of
reference [15] by a factor of one half. This term is neces-
sary in a DMC calculation not to bias the measure. The
extrapolated Hellmann and Feynman measure will then be

O
HFM-ext

= 2O
HFM − 〈OHFMv〉fvmc . (24)

Both corrections α and β to the local estimator depend on
the auxiliary function, Ψ ′ = ∂Ψλ/∂λ|λ=0. Of course if we
had chosen Ψλ=0, on the left hand side of equation (21),
as the exact ground state wavefunction, φ0, instead of the
trial wavefunction, then both corrections would have van-
ished. When the trial wavefunction is sufficiently close to
the exact ground state function a good approximation to
the auxiliary function can be obtained from first order
perturbation theory for λ � 1. So, the Hellmann and
Feynman measure is affected by the new source of bias
due to the choice of the auxiliary function independent
from the bias due to the choice of the trial wavefunction.

It is convenient to rewrite equations (22) and (23) in
terms of the logarithmic derivative Q(R) = Ψ ′(R)/Ψ(R)
as follows:

ΔOα
L(R) = − 1

r2
s

N∑

k=1

[
∇∇∇2

rk
Q(R) + 2vk(R) · ∇∇∇rk

Q(R)
]
,

(25)

ΔOβ
L(R) = [EL(R) − E]Q(R), (26)

where vk(R) = ∇∇∇rk
lnΨ(R) is the drift velocity of the

trial wavefunction. For each observable a specific form of
Q has to be chosen.

6 Trial wavefunction

We chose the trial wavefunction of the Bijl-Dingle-
Jastrow [40–42] or product form

Ψ(R) ∝ D(R) exp

⎛
⎝−

∑

i<j

u(rij)

⎞
⎠ . (27)

The function D(R) is the exact wavefunction of the non-
interacting fermions (the Slater determinant) and serves
to give the trial wavefunction the desired antisymmetry

D(R) =
1√
N+!

det(ϕ+
n,m)

1√
N−!

det(ϕ−
n,m), (28)

where for the fluid phase ϕσ
n,m = eikn·rmδσm,σ/

√
Ω with

kn a reciprocal lattice vector of the simulation box such
that |kn| ≤ kσ

F , σ the z-component of the spin (±1/2),
rm the coordinates of particle m, and σm its spin z-
component. For the unpolarized fluid there are two sepa-
rate determinants for the spin-up and the spin-down states
because the Hamiltonian is spin independent. For the po-
larized fluid there is a single determinant. For the gen-
eral case of N+ spin-up particles the polarization will be
ζ = (N+ − N−)/N and the Fermi wave-vector for the
spin-up (spin-down) particles will be k±

F = (1 ± ζ)1/3kF

with kF = (3π2n)1/3 = (9π/4)1/3/(a0rs) the Fermi wave-
vector of the paramagnetic fluid. On the computer we fill
closed shells so that Nσ is always odd. We only store kn

for each pair (kn, −kn) and use sines and cosines instead
of exp(ikn · ri) and exp(−ikn · rj).

The second factor (the Jastrow factor) includes in
an approximate way the effects of particle correlations,
through the “Jastrow-correlation-factor”, u(r), which is
repulsive.

6.1 The Jastrow-correlation-factor

Neglecting the cross term between the Jastrow and the
Slater determinant in equation (A.6) (third term) and the
Madelung constant, the variational energy per particle can
be approximated as follows:

eV =
〈EL(R)〉f

N
=

∫
Ψ(R)HΨ(R) dR

N

≈ eF +
1

2Ω

′∑

k

[e2ṽμ(k) − 2λk2ũ(k)][S(k) − 1]

+
1

NΩ2

′∑

k,k′

λk · k′ũ(k)ũ(k′)〈ρk+k′ρ−kρ−k′〉f + . . . ,

(29)

where eF = (3/5)λ
∑

σ Nσ(kσ
F )2/N is the non-interacting

fermions energy per particle, ũ(k) is the Fourier trans-
form of the Jastrow-correlation-factor u(r), ṽμ(k) =
4π exp(−k2/4μ2)/k2 is the Fourier transform of the bare
pair-potential, S(k) is the static structure factor for a

given u(r) (see Sect. 7.3), ρk =
∑N

i=1 exp(ik · ri) is the
Fourier transform of the total number density ρ(r) =∑

i δ(r−ri), and the trailing dots stand for the additional
terms coming from the exclusion of the j = k term in the
last term of equation (A.6). Next, we make the random
phase approximation [43] and we keep only the terms with
k + k′ = 0 in the last term. This gives

eV ≈ eF +
1

2Ω

′∑

k

{ [
e2ṽμ(k) − 2λk2ũ(k)

]

× [S(k) − 1] − 2nλ[kũ(k)]2S(k)
}

+ . . . (30)
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In the limit k → 0, we have to cancel the Coulomb singu-
larity and we get

ũ2(k) = me2ṽμ(k)/(�2nk2)

�
[
(4πe2/k2)/(�ωp)

]2

(where ωp =
√

4πne2/m is the plasmon frequency) or in
adimensional units

ũ(k) =

√
rs

3

4π

k2
, small k. (31)

This determines the correct behavior of ũ(k) as k → 0 or
the long range behavior of u(r)

u(r) =

√
rs

3

1

r
, large r. (32)

Now to construct the approximate Jastrow-correlation-
factor, we start from the expression

ε = eF +
1

2Ω

′∑

k

[e2ṽμ(k) − Aλk2ũ(k)][S(k) − 1], (33)

and use the following perturbation approximation, for how
S(k) depends on ũ(k) [44,45],

1

S(k)
=

1

Sx(k)
+ Bnũ(k), (34)

where A and B are constant to be determined and Sx(k)
the structure factor for the non-interacting fermions (see
Eq. (62)), which is Sx =

∑
σ Sx

σ,σ with

Sx
σ,σ(k) =

⎧
⎨
⎩

nσ

n

yσ

2
(3 − y2

σ) yσ < 1

nσ

n
else

(35)

where nσ = Nσ/Ω and yσ = k/(2kσ
F ).

Minimizing ε with respect to u(k), we obtain [46]

Bnũ(k) = − 1

Sx(k)
+

[
1

Sx(k)
+

Bne2ṽμ(k)

λAk2

]1/2

. (36)

This form is optimal at both long and short distances but
not necessarily in between. In particular, for any value
of ζ, the small k behavior of ũ(k) is

√
2rs/3AB(4π/k2),

which means that

u(r) =

√
2rs

3AB
1

r
, large r. (37)

The large k behavior of ũ(k) is (rs/A)ṽμ(k)/k2, for any
value of ζ, which in r space translates into

du(r)

dr

∣∣∣∣
r=0

=

{
− rs

2A μ → ∞
0 μ finite.

(38)

In order to satisfy the cusp condition for particles of an-
tiparallel spins (any reasonable Jastrow-correlation-factor

has to obey to the cusp conditions (see Ref. [13], Sect. 4.F)
which prevent the local energy from diverging whenever
any two electrons (μ = ∞) come together) we need to
choose A = 1, then the correct behavior at large r (31)
is obtained fixing B = 21. We will call this Jastrow J1 in
the following.

It turns out that, at small μ, but not for the Coulomb
case, a better choice is given by [47]

2nũ(k) = − 1

Sx(k)
+

[(
1

Sx(k)

)2

+
2ne2ṽμ(k)

λk2

]1/2

, (39)

which still has the correct long (37) and short (38) range
behaviors. We will call this Jastrow J2 in the following.
This is expected since, differently from J1, J2 satisfies the
additional exact requirement limμ→0 u(r) = 0, as immedi-
ately follows from the definition (39). Then, as confirmed
by our results (see Sect. 8.5)), at small μ (and any rs),
the trial wavefunction is expected to be very close to the
stationary solution of the diffusion problem.

6.2 The backflow and three-body correlations

As shown in Appendix A, the trial wavefunction of equa-
tion (27) can be further improved by adding three-body
(3B) and backflow (BF) correlations [14,48] as follows:

Ψ(R) = D̃(R) exp

⎡
⎣−

∑

i<j

ũ(rij) −
N∑

l=1

G(l) · G(l)

⎤
⎦ .

(40)
Here

D̃(R) =
1√
N+!

det(ϕ̃+
n,m)

1√
N−!

det(ϕ̃−
n,m), (41)

with ϕ̃σ
n,m = eikn·xmδσm,σ/

√
Ω and xm quasi-particle co-

ordinates defined as:

xi = ri +

N∑

j �=i

η(rij)(ri − rj). (42)

The displacement of the quasi-particle coordinates xi from
the real coordinate ri incorporates effects of hydrody-
namic backflow [49], and changes the nodes of the trial
wavefunction. The backflow correlation function η(r), is
parametrized as [14]:

η(r) = λB
1 + sBr

rB + wBr + r4
, (43)

1 Note that the probability distribution in a variational cal-
culation is (from Eq. (27)) Ψ2(R) ∝ D2(R) exp[−2U(R)] with
U(R) =

∑
i<j u(rij). Then, if one formally writes D2(R) =

exp[−2W (R)], Ψ2 becomes the probability distribution for a
classical fluid with potential W + U at an inverse temperature
β = 2. Then one sees that with the choice B = 2, equation (34)
coincides with the well-known random phase approximation in
the theory of classical fluids (see Ref. [57] Sect. 6.5) where W
is the potential of the reference fluid and U the perturbation.
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Table 1. Optimized variational parameters of backflow and three-body correlation functions for N = 54 and ζ = 0 and various
combinations af rs and μ.

rs μ λB sB rB wB a b c
10 1/2 – – – – – – –
10 1 8.408d–4 1.658d+2 –1.383d–3 3.168 0.447 –0.212 1.036
10 2 7.189d–5 9.793d+2 9.478d–6 0.446 1.379d+1 –3.688 0.450
10 4 1.116d–4 6.522d+2 –2.553d–5 0.179 5.981d+1 –4.773 0.462
10 ∞ 0.781 –0.499 0.324 2.958 0.514 0.327 1.358
5 1/2 – – – – – – –
5 1 – – – – – – –
5 2 2.768d–2 –0.420 0.893 –0.673 1.322d+6 –9.003 0.408
5 4 0.331 –0.680 1.467 1.442 2.729d+1 –2.607 0.659
5 ∞ 0.161 –0.585 0.335 0.841 0.802 –7.310d–2 1.344
2 1/2 – – – – – – –
2 1 – – – – – – –
2 2 – – – – – – –
2 4 5.272d–2 –1.616 1.732 1.687d–2 804.135 –2.875 0.847
2 ∞ 5.018d–2 –1.221 0.393 0.681 1.655 –0.596 1.229
1 1/2 – – – – – – –
1 1 – – – – – – –
1 2 – – – – – – –
1 4 1.187d–2 –6.834 0.495 1.295 0.186 0.489 4.739
1 ∞ 2.1945d–2 –3.086 0.320 1.631 0.306 0.367 2.467

which has the long-range behavior ∼ 1/r3.
Three-body correlations are included through the vec-

tor functions

G(i) =
N∑

j �=i

ξ(rij)(ri − rj). (44)

We call ξ(r) the three-body correlation function which is
parametrized as [50]:

ξ(r) = a exp
{
−[(r − b)c]2

}
. (45)

To cancel the two-body term arising from G(l) · G(l), we
use ũ(r) = u(r) − 2ξ2(r)r2

The backflow and three-body correlation functions are
then chosen to decay to zero with a zero first derivative
at the edge of the simulation box.

6.3 Optimized parameters

Optimizing the trial wavefunction (see Ref. [13], Sect. 7)
is extremely important for a fixed-nodes DMC calculation
as, even if the Jastrow-correlation-factor is parameter free,
the backflow changes the nodes. We carefully studied how
the RDF depends on the quality of the trial wavefunction
choosing a simple Slater determinant (S) (Eq. (27) with-
out the Jastrow factor), a Slater-Jastrow (SJ) (Eq. (27)),
and a Slater-Jastrow with the backflow and three-body
corrections (SJ+ BF+3B) (Eq. (40)).

In Table 1, we report the optimized parameters for
the backflow and three-body correlation functions for a
system of N = 54 and ζ = 0 at various rs and μ. We
have used these values of the parameters in all subsequent
calculations, unrespective of the value of ζ.

In Figure 1, we show the optimized η and ξ for N = 54,
ζ = 0, rs = 10. The optimization of the 7 parameter de-
pendent trial wavefunction gives a backflow correlation η
ordered in μ but a three-body correlation ξ erratic in μ.
As one moves away from the Coulomb μ → ∞ case the
system of particles becomes less interacting and the rele-
vance of the backflow and three-body correlations dimin-
ishes. This is supported by the fact that at μ = 4, 2, 1, in
correspondence of the erratic behavior, the effect of the
three-body correlations on the expectation value of the
energy is irrelevant.

7 The radial distribution function (RDF)

The main purpose of the present work is to determine
the radial distribution function (RDF) of our fluid model
through the DMC calculation.

7.1 Definition of the radial distribution function

The spin-resolved RDF is defined as [51,52]:

gσ,σ′(r, r
′
) =

〈∑
i,j �=i δσ,σiδσ′,σj δ(r − ri)δ(r

′ − rj)
〉

nσ(r)nσ′ (r′)
,

(46)

nσ(r) =

〈
N∑

i=1

δσ,σiδ(r − ri)

〉
, (47)

where here, and in the following, 〈. . .〉 will denote the ex-
pectation value respect to the ground-state. Two exact
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Fig. 1. The optimized correlation functions η and ξ for N = 54, ζ = 0, and rs = 10 and different values of μ.

conditions follow immediately from the definition: (i) the
zero-moment sum rule

∑

σ,σ′

∫
drdr′ nσ(r)nσ(r′)[gσ,σ′(r, r

′
) − 1] = −N, (48)

also known as the charge (monopole) sum rule in the
sequence of multipolar sum rules in the framework of
charged fluids [53], (ii) gσ,σ(r, r) = 0 due to the Pauli
exclusion principle.

For the homogeneous and isotropic fluid nσ(r) =
Nσ/Ω where Nσ is the number of particles of spin σ and

gσ,σ′ depends only on the distance r = |r − r
′ |, so that

gσ,σ′(r) =
1

4πr2

Ω

NσNσ′

〈∑

i,j �=i

δσ,σiδσ′,σj δ(r − rij)

〉
.

(49)
The total (spin-summed) radial distribution function
will be

g(r) =
1

n2

∑

σ,σ′
nσnσ′gσ,σ′(r)

=

(
1 + ζ

2

)2

g+,+(r) +

(
1 − ζ

2

)2

g−,−(r)

+
1 − ζ2

2
g+,−(r). (50)

7.2 From the structure to the thermodynamics

As it is well-known the knowledge of the RDF gives access
to the thermodynamic properties of the system. The mean
potential energy per particle can be directly obtained from
g(r) and the bare pair-potential vμ(r) as follows:

ep =
∑

σ,σ′

nσnσ′

2n

∫
dr e2vμ(r)[gσ,σ′ (r) − 1], (51)

where we have explicitly taken into account of the back-
ground contribution. Suppose that ep(rs) is known as a

function of the coupling strength rs. The virial theorem
for a system with Coulomb interactions (v∞(r) = 1/r)
gives N(2ek + ep) = 3PΩ with P = −d(Ne0)/dΩ the
pressure and e0 = ek + ep the mean total ground-state
energy per particle. We then find

ep(rs) = 2e0(rs) + rs
de0(rs)

drs
=

1

rs

d

drs
[r2

se0(rs)], (52)

which integrates to

e0(rs) = eF +
1

r2
s

∫ rs

0

dr′
s r′

sep(r
′
s). (53)

We can rewrite the ground-state energy per particle of the
ideal Fermi gas, in reduced units, as

eF =

(
9π

4

)2/3
3

10
φ5(ζ)

1

r2
s

, (54)

where φn(ζ) = (1−ζ)n/3+(1+ζ)n/3. And for the exchange
potential energy per particle in the Coulomb case

ex
p = −

(
2

3π5

)1/3
9π

8
φ4(ζ)

1

rs
, (55)

which follows from equation (51) and equations (59), (60).
The expression for finite μ can be found in reference [10]
(see their Eqs. (15), (16)).

7.3 Definition of the static structure factor

If we introduce the microscopic spin dependent number
density

ρσ(r) =

N∑

i=1

δσ,σiδ(r − ri), (56)

and its Fourier transform ρk,σ, then the spin-resolved
static structure factors are defined as:

Sσ,σ′(k) = 〈ρk,σρ−k,σ′〉/N,

Radial distribution function in a diffusion Monte Carlo simula-
tion of a Fermion fluid between the ideal gas and the Jellium
model 576



Page 10 of 18 Eur. Phys. J. B (2013) 86: 286

which, for the homogeneous and isotropic fluid, can be
rewritten as

Sσ,σ′(k) =
nσ

n
δσ,σ′ +

nσnσ′

n

∫
[gσ,σ′(r) − 1]

× e−ik·r dr +
nσnσ′

n
(2π)3δ(k). (57)

From now on we will ignore the delta function at k = 0.
The total (spin-summed) static structure factor is S =∑

σ,σ′ Sσ,σ′ . Due to the charge sum rule (48) we must have

limk→0 S(k) = 0. In Section 7.3.2 we will show that the
small k behavior of S(k) has to start from the term of
order k2.

7.3.1 Analytic expressions for the non-interacting fermions

Usually gσ,σ′ is conventionally divided into the (known)
exchange and the (unknown) correlation terms

gσ,σ′ = gx
σ,σ′ + gc

σ,σ′ , (58)

where the exchange term corresponds to the uniform sys-
tem of non-interacting fermions.

Radial distribution function

We, thus, have (from the definition of the RDF (46) and
using Slater determinants for the wavefunction)

gx
+,−(r) = 1, (59)

gx
σ,σ(r) = 1 −

[
3j1(k

σ
F r)

kσ
F r

]2

, (60)

where j1(x) = [sin(x)−x cos(x)]/x2 is the spherical Bessel
function of the first kind and (kσ

F )3 = 6π2nσ is the Fermi
wave-number for particles of spin σ.

Static structure factor

Again we will have the splitting Sσ,σ′ = Sx
σ,σ′ + Sc

σ,σ′ into
the exchange and the correlation parts. So that for the
non-interacting fermions we get

Sx
+,−(k) = 0, (61)

Sx
σ,σ(k) =

nσ

n
− n2

σ

n
Θ(2kσ

F − k)

× 3π2

(kσ
F )3

(
1 − k

2kσ
F

)2(
2 +

k

2kσ
F

)

=
nσ

n

{
1 k > 2kσ

F

3
4

k
kσ

F
− 1

16

(
k

kσ
F

)3

k < 2kσ
F

, (62)

where Θ(x) is the Heaviside step function.

7.3.2 RDF sum rules

Both the behaviors of the RDF at small r and at large r
have to satisfy to general exact relations or sum rules.

Cusp conditions

When two electrons (μ = ∞) get closer and closer to-
gether, the behavior of gσ,σ′(r) is governed by the exact
cusp conditions [54–56]

d

dr
gσ,σ(r)

∣∣∣∣
r→0

= 0, (63)

d3

dr3
gσ,σ(r)

∣∣∣∣
r→0

=
3

2a0

d2

dr2
gσ,σ(r)

∣∣∣∣
r→0

, (64)

d

dr
g+,−(r)

∣∣∣∣
r→0

=
1

a0
g+,−(0), (65)

where in the adimensional units a0 → 1/rs. For finite μ, we
only have the condition gσ,σ(0) = 0 due to Pauli exclusion
principle.

The random phase approximation (RPA) and the long range
behavior of the RDF

Within the linear density response theory [57]2 one in-
troduces the space-time Fourier transform, χ(k, ω), of the
linear density response function. Which is related through
the fluctuation dissipation theorem,

S(k, ω) = −(2�/n)Θ(ω)Imχ(k, ω),

to the space-time Fourier transform, S(k, ω) (dynamic
structure factor), of the van Hove correlation function [58],
〈ρ(r, t)ρ(0, 0)〉/n, where

ρ(r, t) = exp(iHt/�)ρ(r) exp(−iHt/�).

In the random phase approximation (RPA) we have [59]

1

χRPA(k, ω)
=

1

χ0(k, ω)
− e2ṽμ(k), (66)

where χ0 is the response function of the non-interacting
Fermions (ideal Fermi gas), known as the Lindhard sus-
ceptibility [60]. This corresponds to taking the “proper po-
larizability” (the response to the Hartree potential) equal
to the response of the ideal Fermi gas [61]. The RPA static
structure factor is then recovered from the fluctuation dis-
sipation theorem as follows:

SRPA(k) = −�
n

∫ ∞

0

dω

π
ImχRPA(k, ω), (67)

2 Note that, unlike in the classical case, in quantum statis-
tical physics even the linear response to a static perturbation
requires the use of imaginary time correlation functions [53].
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where

ImχRPA =
Imχ0

(1 − e2ṽμReχ0)2 + (e2ṽμImχ0)2
. (68)

The small k behavior of the RPA structure factor is ex-
act [59]. One finds

SRPA(k) =
�k2

2mωp
, k � kF , (69)

where ωp =
√

4πne2/m is the plasmon frequency [33].
This is also known as the second-moment sum rule for the
exact RDF and can be rewritten as: n

∫
dr r2[g(r) − 1] =

−6(�/2mωp). We can then say that g(r) − 1 has to de-
cay faster than r−5 at large r. The fourth-moment (or
compressibility) sum rule links the thermodynamic com-
pressibility, χ = [nd(n2de0/dn)/dn]−1 [61], to the fourth-
moment of the RDF. For the equivalent classical system it
is well-known that the correlation functions have to decay
faster than any inverse power of the distance [53,62,63] (in
accord with the Debye-Hükel theory). We are not aware of
the existence of a similar result for the zero temperature
quantum case.

8 Results of the calculation

We considered fourty systems corresponding to rs =
1, 2, 5, 10, μ = ∞, 4, 2, 1, 1/2, ζ = 0, 1. For each system
we calculated the RDF using the histogram estimator in
a variational, mixed, and extrapolated measure and a par-
ticular HFM measure. Before starting with the simulations
we determined the optimal values for the time step τ and
the number of walkers nw for each density.

8.1 Extrapolations

For the Coulomb case, μ → ∞, we made extrapolations
in time step τ and number of walkers nw for each value of
rs within our DMC simulations. Given a relative precision
δe0 = Δe0/ex

p, where e0 = 〈EL〉f/N , Δe0 is the statistical
error on e0, and ex

p is the exchange energy per particle
(see Eq. (55)), we set as our target relative precision δe0 =
10−2%.

8.1.1 In time step

Our results are summarized in Table 2. As the characteris-
tic dimension of one particle diffusing walk is σ =

√
2λτ or√

2τ/r2
s in adimensional units, this has to remain of the

order of the mean nearest neighbor separation a which
is chosen to be a constant in our units. Then we expect
that at lower rs one needs to choose smaller time steps
τ . For this reason we chose different time steps in the
simulations of the table: τ = 0.5, 0.1, 0.05 for rs = 10,
τ = 0.3, 0.1, 0.05 for rs = 5, τ = 0.05, 0.03, 0.005 for
rs = 2, and τ = 0.01, 0.005, 0.001 for rs = 1. Note that,
at fixed rs, the statistical errors increase as the time step
diminishes.

Table 2. Extrapolation in time step for N = 66 unpolarized
electrons (μ = ∞) at a fixed number of nw = 600 walkers with
a trial wavefunction of the SJ type. We run the simulation for
3 different time steps and did a linear fit of the (τ, e0) data,
e0 = a + bτ . The optimal τ is the largest one compatible with
the target precision.

rs a b χ2 Optimal τ

10 –0.107456(7) 0.00010(2) 0.9 0.09
5 –0.153352(4) 0.00024(3) 0.1 0.07
2 –0.00416(8) 0.003(2) 4.4 0.01
1 1.14579(7) 0.032(9) 1.1 0.003

Table 3. Extrapolation in number of walkers for N = 66 un-
polarized electrons (μ = ∞) with a time step τ = 0.1 for
rs = 10, 5, τ = 0.05 for rs = 2, and τ = 0.01 for rs = 1 with
a trial wavefunction of the SJ type. We run the simulation
for 4 different numbers of walkers and did a linear fit of the
(1/nw , e0) data, e0 = a+ b/nw. The optimal nw is the smallest
one compatible with the target precision.

rs a b χ2 optimal nw

10 –0.107443(3) 0.0032(4) 0.1 354
5 –0.153329(6) 0.0044(7) 0.2 243
2 –0.004036(6) 0.0026(7) 0.2 56
1 1.14609(6) 0.01(1) 1.2 40
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Fig. 2. The mixed measure of the RDF calculated in DMC
for N = 162, ζ = 0, μ = ∞, rs = 10 with a S, SJ, SJ+ BF + 3B
trial wavefunction.

8.1.2 In the number of walkers

Our results are summarized in Table 3. The fluctuations
of the statistical weight of a walker depend on the fluctu-
ations of the local energy, i.e. by the quality of the trial
wavefunction. The quality of the trial wavefunction wors-
ens as rs becomes larger (for the strongly correlated sys-
tem), and one expects that the necessary number of walk-
ers increases. This is in agreement with the results of the
table. Note that, at fixed rs, the statistical errors increase
as the number of walkers diminishes.

8.2 Effect of backflow and three-body correlations

In Figure 2, we show the mixed measure of the RDF cal-
culated in DMC for N = 162, ζ = 0, μ = ∞, rs = 10
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right, the difference of the unlike RDF is shown.

with different kinds of trial wavefunctions. Of course in a
VMC calculation using the Slater determinant wavefunc-
tion gives us gx

σ,σ′ , the RDF of the ideal gas (see Eqs. (59)

and (60)).
In Figure 3, we show the difference between the RDF

calculated with the SJ wavefunction and the one calcu-
lated with the SJ +BF+ 3B wavefunction using the vari-
ational, the mixed, and the extrapolated measure.

With the extrapolated measure the results from the
SJ computation differs by less than 0.005 from the ones
from the SJ+ BF+3B. We then decided to perform our
subsequent calculations using the SJ trial wavefunction.

8.3 Size effects

In order to estimate the size effects on the RDF calcula-
tion, we performed a series of VMC calculation with the
SJ wavefunction on an unpolarized system with different
number of particles. The results (see Fig. 4) show that the

size dependence mainly affects the long range behavior of
the RDF and the on-top value for the unlike one.

In the simulation the RDF is defined on r ∈ [0, rmax]
with rmax = L/2, where L = Ω1/3 = (4πN/3)1/3 is the
size of the simulation box. To minimize size effects we
chose to perform our RDF calculation with N = 162 in
the unpolarized case and N = 147 in the polarized case.

8.4 The HFM measure

From the definition (49), we can write the RDF as:

gσ,σ′(r) =
〈Iσ,σ′(r,R)〉

Ωnσnσ′
. (70)

Since the operator Iσ,σ′ is diagonal in coordinate represen-
tation then Iσ,σ′ = (Iσ,σ′)L. Indicating with Ωr the solid
angle spanned by the r vector, we can write

Iσ,σ′ (r,R) =
∑

i,j �=i

δσ,σiδσ′,σj

∫
dΩr

4π
δ(r − rij), (71)

Radial distribution function in a diffusion Monte Carlo simula-
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which is the usual histogram estimator [21]. Follow-
ing Toulouse et al. [15], we choose for Q the following
expression:

Qσ,σ′(r,R) = − r2
s

8π

∑

i,j �=i

δσ,σiδσ′,σj

∫
dΩr

4π

1

|r − rij |
,(72)

so that (using the identities ∇∇∇2
rij

1/|r−rij| = −4πδ(r−rij)

and ∇∇∇rif(rkj) = ∇∇∇rkj
f(rkj)[δik − δij ], for a given func-

tion f) the first term in equation (25) exactly cancels the
histogram estimator Iσ,σ′ . Then the HFMv estimator is

IHFMv
σ,σ′ (r,R) =

1

2π

∑

i,j �=i

δσ,σiδσ′,σjvi(R) ·
∫

dΩr

4π
∇∇∇rij

× 1

|r − rij |

= − 1

4π

∑

i,j �=i

δσ,σiδσ′,σjvi(R) · rij

r3
ij

× [1 + sgn(rij − r)], (73)

which goes to zero at large r 3. The correct (taking care
of the missing factor of two in Ref. [15]) β correction is

ΔIβ
σ,σ′ (r,R) = −[EL(R) − E0]

r2
s

8π

×
∑

i,j �=i

δσ,σiδσ′,σj

∫
dΩr

4π

1

|r − rij |

= −[EL(R) − E0]
r2
s

16π

×
∑

i,j �=i

δσ,σiδσ′,σj

(
rij + r − |rij − r|

rijr

)
.

(74)

Note that also 〈ΔIβ
σ,σ′ (r,R)〉 goes to zero at large r. This

particular HFM measure needs to be shifted gσ,σ′(r) =
gHFM

σ,σ′ (r) + 1. We chose to do the shift as follows:

gσ,σ′(r) = gHFM
σ,σ′ (r) + gmix

σ,σ′(L/2) − gHFM
σ,σ′ (L/2).

Nonetheless it is expected to give better results for the
on-top value of the RDF where the histogram estimator
of equation (49), after the necessary discretization of the
Dirac delta function, leads, in the measure, to a statisti-
cal average divided by zero. Moreover it does not suffer
from any discretization error and can be calculated for
any value of r.

In Figure 5, we show a comparison for the RDF of the
N = 162, ζ = 0, μ = ∞, rs = 10 system, calculated in
DMC SJ with various kinds of measures. The length of

3 Note that with the given choice of Q we obtain
〈ΔIα

σ,σ′(r,R)〉Ψ2 = −
∫

∂ΩN Ψ2(R)∇∇∇Qσ,σ′(r,R) · dS/r2
s =

−Ωnσnσ′ , for all r with r ∈ Ω, instead of zero as normally
expected. This is ultimately related to the behavior of the aux-
iliary function Ψ ′ = QΨ on the border of ΩN .
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Fig. 5. The RDF of the N = 162, ζ = 0, μ = ∞, rs = 10
system, calculated in DMC SJ with various kinds of measures:
mixed histogram (mixed), extrapolated histogram (extrapo-
lated), and HFM (HF) with the choice of equation (72).

the run was always the same 50 blocks of 500 steps each.
From the figure one can see that with our choice of the β
correction the HFM measure has the correct average value
(coinciding with the usual histogram estimator). From the
figure it is also evident that the HFM measure is much less
efficient than the other measures (clearly with a sufficient
number of blocks the statistical error on the HFM measure
can be made small at will).

This inefficiency is entirely due to the ZB correction
(essential in the DMC calculation). From its definition (see
Eq. (74)) one can see that it is the small difference of two
large terms involving the (extensive) total energy . So the
statistical error on the HFM measure is completely dom-
inated by that of the β part, the α part having statistical
errors comparable with the ones of the usual histogram
estimator, as shown in the left panel of Figure 6.

8.5 Choice of the Jastrow

We noticed that at small rs, μ, and r the variational mea-
sure for the unlike RDF, with the chosen Jastrow J1 of
equation (36), deviates strongly from the mixed one. This
is no longer so with the modified Jastrow J2 of equa-
tion (39), which at small μ gives also better variational
energies (but not for μ → ∞ where J1 is better. Note
that the Jastrow factor does not change the nodes of the
wavefunction so the energies calculated from the diffusion
with J1 or J2 coincide). The extrapolated measures do
not change appreciably in the two cases apart from near
r = 0. In Figure 6 we show the difference for the two cal-
culations with J1 and J2 for the ζ = 0, rs = 1, μ = 1
model. From the inset in the left panel, we can see that
among the two extrapolated measures there is a difference
of the order of 0.005.

Our results with the two Jastrow factors show that J1

is better than J2 for the near-Jellium systems (μ large)
while J2 is better than J1 for the near-ideal systems (μ
small).

Radial distribution function in a diffusion Monte Carlo simula-
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Fig. 6. Unlike RDF for the unpolarized fluid of Paziani et al. [10] at rs = 1 and μ = 1 with N = 162. On the left, the calculation
with the Jastrow J1 of equation (36) with various measures: variational histogram (variational) and variational HFMv (HFMv)
using the estimator of equation (73), mixed histogram (mixed) and HFM (HFM), and extrapolated histogram (extrapolated).
On the right, the calculation with the Jastrow J2 of equation (39) with the histogram variational (variational), mixed (mixed),
and extrapolated (extrapolated) measures. In the inset is shown the difference between the histogram extrapolated measure of
the calculation with J1 and the histogram extrapolated measure of the calculation with J2. 105 Monte Carlo steps were used
in the simulations.

8.6 The histogram estimator

In Figure 7, we show the DMC results for the histogram
extrapolated measure of the RDF of our fluid model at
ζ = 0. The time step, τ , and number of walkers, nw, were
chosen according to the indications given in Section 8.1.
Figure 8 is for the ζ = 1 case.

In Table 4, we show the on-top values for the unlike
RDF, g+−(0), of the unpolarized system, calculated with
the histogram variational, the histogram mixed, the his-
togram extrapolated measure, the HFM measure, and the
HFM extrapolated measure (of Eq. (24)).

9 Conclusions

We studied through variational and diffusion Monte Carlo
techniques the fluid of spin one-half particles interact-
ing with the bare pair-potential vμ(r) = erf(μr)/r and
immersed in a uniform counteracting background. When
μ → ∞ the system reduces to the Jellium model whereas
when μ → 0 it reduces to the ideal Fermi gas. We per-
formed a detailed analysis of the spin-resolved radial dis-
tribution function for this system as a function of the
density parameter rs = 1, 2, 5, 10 and the penetrability
parameter μ = 1/2, 1, 2, 4, ∞ at two values of the polar-
ization, ζ = 0, 1.

Initially we carefully fine tuned our DMC calculation
determining the optimal values for the time step τ and
the number of walkers nw for each value of the density
parameter rs. Increasing the system size N the RDF ex-
tends its range [0, rmax] at larger rmax. We estimated that
for N ≥ 66 the size dependence of the RDF is lower than
2%. As a compromise between computational cost and re-
duction of the size effects, the largest uncontrolled source
of uncertainty on our RDF measurements, we chose to

perform the RDF calculation with N = 162 in the unpo-
larized case and N = 147 in the polarized case.

We calculated the RDF using two different routes:
through the usual histogram estimator and through a par-
ticular HFM measure. As expected, in the VMC calcu-
lations the HFMv estimator gives better results for the
on-top value of the RDF. In the DMC calculation the in-
clusion of the β correction (which must be omitted in the
VMC calculation) is indispensable. Moreover, the HFMv
estimator is zero for r > rmax so it has to be shifted by +1.
From our variational and fixed nodes diffusion Monte
Carlo experiments turns out that although in the vari-
ational measure the average of the histogram estimator
agrees with the average of the HFMv estimator within the
square root of the variance of the average σav =

√
σ2K/N ,

where σ2 is the variance, K the correlation time of the ran-
dom walk, and N the number of Monte Carlo steps, and
the two σav are comparable, in the diffusion experiment,
where one has to add the β correction not to bias the aver-
age, the Hellmann and Feynman measure has an average
in agreement with the one of the histogram estimator but
the σav increases. This is to be expected from the extensive
nature of the β correction in which the energy appears. Of
course the averages from the extrapolated Hellmann and
Feynman measure and the extrapolated measure for the
histogram estimator also agree.

In the simulation, for the Coulomb case, μ → ∞, we
made extrapolations in time step and number of walk-
ers for each value of rs. Given a relative precision δe0 =
Δe0/ex

p, where e0 = 〈EL〉f/N , Δe0 is the statistical error
on e0, and ex

p is the exchange energy, we set as our target

relative precision δe0 = 10−2%. The extrapolated values
of the time step and number of walkers was then used for
all other values of μ. We chose the trial wavefunction of
the Bijl-Dingle-Jastrow [40–42] form as a product of Slater
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Fig. 7. The histogram extrapolated measure for the RDF of a system of 162 unpolarized (ζ = 0) particles calculated using the
SJ trial wavefunction. The VMC calculation was made of 106 steps while the DMC by 105. The trial wavefunction used was of
the SJ type with the Jastrow J1 of equation (36).

determinants and a Jastrow factor. The pseudo potential
was chosen as in reference [46], J2, which is expected to
give better results for Jellium. Comparison with the simu-
lation of the unpolarized fluid at rs = 1 and μ = 1 with the
pseudo potential of reference [47], J1, for which the trial
wavefunction becomes the exact ground state wavefunc-
tion in the μ → 0 limit, show that the two extrapolated
measures of the unlike histogram estimator differ one from
the other by less than 7×10−3, the largest difference being
at contact (see Fig. 1). The use of more sophisticated trial
wavefunctions, taking into account the effect of backflow
and three-body correlations, is found to affect the measure
by even less in the range of densities considered. For the
same reason we discarded the use of the twist-averaged
boundary conditions [16] and only worked with periodic
boundary conditions. In Table 4, we compare the contact
values of the unlike RDF of the unpolarized fluid at vari-
ous rs and μ from the measures of the histogram estimator
and the HFM measures. We see that there is disagreement
between the measure from the histogram estimator and

the HFM measure only in the Coulomb μ → ∞ case at
rs = 1, 2.

Our results complement the ones of Paziani et al. [10],
which only reported a limited number of RDF data. We
plan, in the future, to complete the calculation at interme-
diate polarizations, 0 < ζ < 1, complementing the work
of Ortiz and Ballone [64], and Kwon et al. [14].

We believe it is still an open problem the one of deter-
mining the relationship between the choice of the auxil-
iary function, the bias it introduces in the Hellmann and
Feynman measure, and the variance of this measure.

Appendix A: Jastrow, backflow,
and three-body

In terms of the stochastic process governed by f(R, t) one
can write, using Kac theorem [65,66]:
∫

dR f(R, τ) =

〈
exp

[
−
∫ τ

0

dt EL(Rt)

]〉

DRW

, (A.1)
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Fig. 8. The histogram extrapolated measure for the RDF of a system of 147 fully polarized (ζ = 1) particles calculated using
the SJ trial wavefunction. The VMC calculation was made of 106 steps while the DMC by 105. The trial wavefunction used was
of the SJ type with the Jastrow J1 of equation (36).

where 〈. . .〉DRW means averaging with respect to the dif-
fusing and drifting random walk. Choosing a complete set
of orthonormal wavefunctions Ψi, we can write for the true
time dependent many-body wavefunction:

φ(R, τ) =
∑

i

Ψi(R)

∫
dR′Ψi(R

′)φ(R′, τ)

≈ Ψ(R)

∫
dR f(R, τ)

= Ψ(R)

〈
exp

[
−
∫ τ

0

dt EL(Rt)

]〉

DRW

,

(A.2)

where Ψ is the wavefunction, of the set, of maximum
overlap with the true ground-state, the trial wavefunc-
tion. Assuming that at time zero we are already close
to the stationary solution, for sufficiently small τ we can

approximate
〈

exp

[
−
∫ τ

0

dt EL(Rt)

]〉

DRW

≈ e−τEL(Rτ ). (A.3)

By antisymmetrising we get the Fermion wavefunction

φF (R, τ) ≈ A
[
e−τEL(R)Ψ(R)

]
, (A.4)

where given a function f(R), we define the operator (a
symmetry of the Hamiltonian)

A[f(R)] =
1

NP

∑

P

(−1)P f(PR), (A.5)

here NP = N+!N−! is the total number of allowed permu-
tations P .

This is called the local energy method to improve a
trial wavefunction. Suppose we start from a simple un-
symmetrical product of single particle plane waves of N+
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Table 4. Contact values for the unlike RDF of the unpolarized fluid of Paziani et al. [10], at various rs and μ, from the
histogram variational (variational), mixed (mixed), and extrapolated (extrapolated) measures, and the HFM (HFM) and HFM
extrapolated (HFM-ext) measures. The trial wavefunction used was of the SJ type with the Jastrow J1 of equation (36). The

last column gives the error σav =
√

σ2K/N (σ2 is the variance, K the correlation time of the random walk, and N the number
of Monte Carlo steps) on the HFM measure. 162 particles were used with 105 × nw Monte Carlo steps.

rs μ Variational Mixed Extrapolated HFM HFM-ext σav on HFM
10 1/2 1.085(8) 1.000(4) 0.91(1) 1.0006 0.9222 0.03
10 1 0.706(6) 0.644(3) 0.582(8) 0.6474 0.5949 0.03
10 2 0.219(4) 0.182(1) 0.146(4) 0.1798 0.1450 0.06
10 4 0.053(2) 0.0506(8) 0.048(2) 0.0460 0.0394 0.07
10 ∞ 0.0074(6) 0.0096(3) 0.0118(8) 0.0045 0.0029 0.09
5 1/2 1.129(8) 1.034(3) 0.94(1) 1.0277 0.9381 0.03
5 1 0.850(7) 0.796(3) 0.743(9) 0.7912 0.7325 0.02
5 2 0.448(5) 0.405(2) 0.362(6) 0.4022 0.3565 0.02
5 4 0.214(3) 0.199(1) 0.184(4) 0.1960 0.1782 0.03
5 ∞ 0.080(2) 0.0799(8) 0.080(2) 0.0625 0.0557 0.03
2 1/2 1.158(8) 1.0618(4) 0.97(1) 1.0545 0.9484 0.04
2 1 1.003(8) 0.927(3) 0.852(9) 0.9270 0.8561 0.03
2 2 0.754(7) 0.697(3) 0.639(9) 0.6919 0.6299 0.02
2 4 0.549(6) 0.511(2) 0.473(7) 0.5127 0.4687 0.02
2 ∞ 0.376(4) 0.349(2) 0.323(5) 0.3236 0.3030 0.02
1 1/2 1.171(8) 1.077(3) 0.98(1) 1.0705 0.9683 0.02
1 1 1.077(8) 0.994(3) 0.91(1) 0.9938 0.9070 0.02
1 2 0.924(8) 0.855(3) 0.787(9) 0.8640 0.8053 0.02
1 4 0.784(7) 0.730(2) 0.676(8) 0.7295 0.6628 0.01
1 ∞ 0.645(6) 0.602(2) 0.560(7) 0.5771 0.5263 0.01

spin-up particles with k < k+
F occupied and N− spin-up

particles with k < k−
F occupied, for the zeroth order trial

wavefunction. Equation (A.4) will give us a first order
wavefunction of the Slater-Jastrow type (see Eq. (27)).
If we start from an unsymmetrical Hartree-Jastrow trial
wavefunction the local energy with the Jastrow factor has
the form

EL = V − λ
∑

i

⎡
⎣−k2

i − 2iki · ∇∇∇i

∑

j<k

u(rjk)

−∇∇∇2
i

∑

j<k

u(rjk) +

∣∣∣∣∣∣
∇∇∇i

∑

j<k

u(rjk)

∣∣∣∣∣∣

2
⎤
⎥⎦, (A.6)

where V = V (R) is the total potential energy and rij =
|rij | = |ri − rj |. Then the antisymmetrized second order
wavefunction has the form in equation (40), which includes
backflow (see the third term), which is the correction in-
side the determinant and which affects the nodes, and
three-body boson-like correlations (see last term) which
do not affect the nodes.

The MC simulations presented were carried out at the Center
for High Performance Computing (CHPC), CSIR Campus, 15
Lower Hope St., Rosebank, Cape Town, South Africa.
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A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemi-
spheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo
simulations and simple analytical approximations. These fluids can be experimentally realized by
the application of an external static electrical field. The gas-liquid and demixing phase transitions
in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid
transition is present in all the models, even if only one of the four possible patch-patch interactions
is attractive. Moreover, provided the attraction between like particles is stronger than between un-
like particles, the system demixes into two subsystems with different composition at sufficiently low
temperatures and high densities. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827861]

I. INTRODUCTION

Engineering new materials through direct self-assembly
processes has recently become a new concrete possibility due
to the remarkable developments in the synthesis of patchy
colloids with different shapes and functionalities. Nowadays,
both the synthesis and the aggregation process of patchy col-
loids can be experimentally controlled with a precision and
reliability that were not possible until a few years ago.1–5

Within the general class of patchy colloids, a particularly
interesting case is provided by the so-called Janus fluid, where
the surface of the colloidal particle is evenly partitioned be-
tween the hydrophobic and the hydrophilic moieties, so that
attraction between two spheres is possible only if both hy-
drophobic patches are facing one another.6 Several experi-
mental and theoretical studies have illustrated the remarkable
properties of this paradigmatic case.7, 8

The behavior of patchy particles under external fields has
received recent attention.9, 10 By applying an external electri-
cal or magnetic field, appropriately synthesized dipolar Janus
particles may be made to align orientationally, so as to expose
their functionally active hemisphere either all up or all down
(see Ref. 9, Secs. 1.4.3.1 and 1.4.3.2, and references therein).
By mixing the two species one could have in the laboratory
a binary mixture of Janus particles where the functionally ac-
tive patch points in opposite directions for each species.

While theoretical studies have been keeping up with, and
sometimes even anticipated, experimental developments, the
complexities of the anisotropic interactions in patchy colloids
have mainly restricted these investigations to numerical sim-

a)Electronic mail: rfantoni@ts.infn.it
b)Electronic mail: achille.giacometti@unive.it
c)Electronic mail: maestre@unex.es
d)Electronic mail: andres@unex.es. URL: http://www.unex.es/eweb/fisteor/

andres.

ulations, which have revealed interesting specificities in the
corresponding phase diagrams.

Motivated by the above scenario, we have recently in-
troduced a simplified binary-mixture model of a fluid of
Janus spheres (interacting via the anisotropic Kern–Frenkel
potential),11 where the hydrophobic patches on each sphere
could point only either up (species 1) or down (species
2).12 This orientational restriction, which is reminiscent of
Zwanzig’s model for liquid crystals, clearly simplifies the the-
oretical description while still distilling out the main features
of the original Janus model.

In the present paper, we generalize the above Janus fluid
model by assuming arbitrary values for the energy scales εij

of the attractive interactions associated with the four possible
pair configurations (see Fig. 1), which allows for a free tun-
ing of the strength of the patch-patch attraction. In some cases
this can effectively mimic the reduction of the coverage in the
original Kern–Frenkel model. Note that, in Fig. 1, εij is the
energy associated with the (attractive) interaction between a
particle of species i (at the left) and a particle of species j (at
the right) when the former is below the latter, with the arrow
always indicating the hydrophobic (i.e., attractive) patch. The
original Kern–Frenkel model then corresponds to ε12 > 0 and
ε11 = ε22 = ε21 = 0, whereas the full coverage limit is equiva-
lent to ε11 = ε22 = ε12 = ε21 > 0. On the other hand, the effect
of reducing the coverage from the full to the Janus limit, can
be effectively mimicked by fixing ε12 > 0 and progressively
decreasing ε21 and ε11 = ε22. Moreover, the class of models
depicted in Fig. 1 allows for an interpretation more general
and flexible than the hydrophobic-hydrophilic one. For in-
stance, one may assume that attraction is only possible when
patches of different type are facing one another (i.e., ε11 = ε22

> 0 and ε12 = ε21 = 0). As shown below, this will provide a
rich scenario of intermediate cases with a number of interest-
ing features in the phase diagram of both the gas-liquid and
the demixing transitions.

0021-9606/2013/139(17)/174902/9/$30.00 © 2013 AIP Publishing LLC139, 174902-1
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We emphasize the fact that in the simulation part of the
present study we will always assume “global” equimolarity,
that is, the combined number of particles of species 1 (N1) is
always equal to the combined number of particles of species
2 (N2), so that N1 = N2 = N/2, where N is the total number of
particles. On the other hand, the equimolarity condition is not
imposed on each coexisting phase.

The organization of the paper is as follows. The class
of models is briefly described in Sec. II. Next, in Sec. III
we present our Gibbs ensemble Monte Carlo (GEMC) results
for the gas-liquid and demixing transitions. The complemen-
tary theoretical approach is presented in Sec. IV. The paper is
closed with some concluding remarks in Sec. V.

II. DESCRIPTION OF THE MODELS

In our class of binary-mixture Janus models, particles of
species 1 (with a mole fraction x1) and 2 (with a mole fraction
x2 = 1 − x1) are dressed with two up-down hemispheres with
different attraction properties, as sketched in Fig. 1. The pair
potential between a particle of species i at r1 and a particle of
species j at r2 is

φij (r12) = ϕij (r12)�(z12) + ϕji(r12)�(−z12), (1)

where �(z) is the Heaviside step function, r12 = r2 − r1, z12

= z2 − z1, and

ϕij (r) =
⎧⎨
⎩

∞, 0 ≤ r < σ

−εij , σ ≤ r < σ + �

0, σ + � ≤ r

(2)

is a standard square-well (SW) potential of diameter σ , width
�, and energy depth εij, except that, in general, ε12 �= ε21. By
symmetry, one must have ε22 = ε11 (see Fig. 1), so that (for
given values of σ and �) the space parameter of the inter-
action potential becomes three-dimensional, as displayed in
Fig. 2. Except in the case of the hard-sphere (HS) model (εij

= 0), one can freely choose one of the non-zero εij to fix the
energy scale. Thus, we call ε = max i, j{εij} and use the three

1

1

1

2

2

1

2

2

FIG. 1. Sketch of a binary-mixture Janus fluid with up-down constrained
orientations. The energy scales of the attractive interactions are (from left to
right and from top to bottom) ε11, ε12, ε21, and ε22 = ε11, respectively. Here
we have adopted the convention that εij is the energy scale when a particle of
species i is “below” a particle of species j.

FIG. 2. Parameter space of the class of Janus models defined in the paper.

independent ratios εij/ε as axes in Fig. 2. The model repre-
sented by the coordinates (1, 1, 1) is the fully isotropic SW
fluid, where species 1 and 2 become indistinguishable. Next,
without loss of generality, we choose ε12 ≥ ε21. With those
criteria, all possible models of the class lie either inside the tri-
angle SW-I0-B0-SW or inside the square SW-B0-A0-J0-SW.
One could argue that any point inside the cube displayed in
Fig. 2 may represent a distinct model, but this is not so. First,
the choice ε = max i, j{εij} restricts the models to those lying
on one of the three faces ε11/ε = 1, ε12/ε = 1, or ε21/ε = 1.
Second, the choice ε12 ≥ ε21 reduces the face ε21/ε = 1 to
the line SW-J0 and the face ε11/ε = 1 to the half-face SW-I0-
B0-SW. The vertices SW, I0, B0, A0, and J0 define the five
distinguished models we will specifically study. Those mod-
els, together with the HS one, are summarized in Table I.

The rationale behind our nomenclature for the models
goes as follows. Models with ε12 = ε21 are isotropic and
so we use the letter I to denote the isotropic models with
0 ≤ ε12/ε = ε21/ε ≤ 1 and ε11/ε = 1. Apart from them, the
only additional isotropic models are those with ε12/ε = ε21/ε
= 1 and 0 ≤ ε11/ε ≤ 1, and we denote them with the letter (J)
next to I. All the remaining models are anisotropic (i.e., ε12

�= ε21). Out of them, we use the letter A to denote the partic-
ular subclass of anisotropic models (0 ≤ ε11/ε = ε21/ε ≤ 1
and ε12/ε = 1) which can be viewed as the anisotropic coun-
terpart of the isotropic subclass I. Analogously, we employ
the letter (B) next to A to refer to the anisotropic counter-
part (ε11/ε = ε12/ε = 1 and 0 ≤ ε21/ε ≤ 1) of the isotropic
models J. Finally, the number 0 is used to emphasize that the

TABLE I. Definition of the models.

Model ε11 ε12 ε21 ε22

HS 0 0 0 0
A0 0 ε 0 0
I0 ε 0 0 ε

J0 0 ε ε 0
B0 ε ε 0 ε

SW ε ε ε ε

Phase diagrams of Janus fluids with up-down constrained orien-
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corresponding models are the extreme cases of the subclasses
I, J, A, and B, respectively.

Model A0 is the one more directly related to the original
Kern–Frenkel potential and was the one analyzed in Ref. 12.
Also related to that potential is model B0, where only the in-
teraction between the two hydrophilic patches is purely repul-
sive. On the other hand, in models I0 and J0 (where ε12 = ε21)
the interaction becomes isotropic and the Janus character of
the model is blurred. In model I0 the fluid reduces to a binary
mixture with attractive interactions between like components
and HS repulsions between unlike ones. This model was pre-
viously studied by Zaccarelli et al.13 using integral equation
techniques. In the complementary model J0 attraction exists
only between unlike particles. The points A0, B0, I0, and J0
can be reached from the one-component SW fluid along mod-
els represented by the lines A, B, I, and J, respectively. Of
course, other intermediate models are possible inside the tri-
angle SW-I0-B0-SW or inside the square SW-B0-A0-J0-SW.

In addition to the energy parameters εij, the number den-
sity ρ, and the temperature T, each particular system is spec-
ified by the mixture composition (i.e., the mole fraction x1).
In fact, in Ref. 12 the thermodynamic and structural prop-
erties of model A0 were studied both under equimolar and
non-equimolar conditions.

III. GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

In this paper, we use GEMC techniques14–16 to study
the gas-liquid condensation process of models SW, A0, B0,
I0, and J0 and the demixing transition of models I0 and B0.
We have chosen the width of the active attractive patch as
in the experiment of Hong et al.3 (�/σ = 0.05). Given the
very small width of the attractive wells, we expect the liq-
uid phase to be metastable with respect to the corresponding
solid one.17–19 Reduced densities ρ∗ = ρσ 3 and temperatures
T∗ = kBT/ε will be employed throughout.

A. Technical details

The GEMC method is widely adopted as a standard
method for calculating phase equilibria from molecular simu-
lations. According to this method, the simulation is performed
in two boxes (I and II) containing the coexisting phases. Equi-
libration in each phase is guaranteed by moving particles.
Equality of pressures is satisfied in a statistical sense by ex-
panding the volume of one of the boxes and contracting the
volume of the other one, keeping the total volume constant.
Chemical potentials are equalized by transferring particles
from one box to the other one.

In the GEMC run we have on each step a probability
ap/(ap + av + as), av/(ap + av + as), and as/(ap + av + as)
for a particle random displacement, a volume change, and
a particle swap move between both boxes, respectively. We
generally chose the relative weights ap = 1, av = 1/10, and
as = 20. To preserve the up-down fixed patch orientation,
rotation of particles was not allowed. The maximum parti-
cle displacement was kept equal to 10−3L(γ ) where L(γ ) is
the side of the (cubic) box γ = I, II. Regarding the volume
changes, following Ref. 20 we performed a random walk in
ln(V (I)/V (II)), with V (γ ) the volume of the box γ , choosing

a maximum volume displacement of 1%. The volume move
is computationally the most expensive one. This is because,
after each volume move, it is necessary, in order to determine
the next acceptance probability, to perform a full potential en-
ergy calculation since all the particle coordinates are rescaled
by the factor associated with the enlargement or reduction of
the boxes. However, this is not necessary for the other two
moves since in those cases only the coordinates of a single
particle change.

Both in the condensation and in the demixing problems,
the Monte Carlo swap move consisted in moving a particle
selected randomly in one box into the other box, so that the
number of particles of each species in both boxes (N (I)

1 , N
(I)
2 ,

N
(II)
1 , and N

(II)
2 ) were fluctuating quantities. The only con-

straint was that the total number of particles was the same
for both species, i.e., N1 ≡ N

(I)
1 + N

(II)
1 = N

(I)
2 + N

(II)
2 ≡ N2

= N/2. In the condensation problem we fixed the global den-
sity ρ = N/(V (I) + V (II)) (in all the cases we took ρ∗ = 0.3,
a value slightly below the expected critical density) and then
varied the temperature T (below the critical temperature). The
measured output quantities where the partial densities ρ(I)

= N (I)/V (I) and ρ(II) = N (II)/V (II), where N (γ ) = N
(γ )
1

+ N
(γ )
2 is the total number of particles in box γ = I, II.

Note that (ρ(II) − ρ)/(ρ − ρ(I)) = V (I)/V (II). In contrast, in
the demixing problem we fixed T (above the critical tempera-
ture) and varied ρ, the output observables being the local mole
fractions x

(I)
1 = N

(I)
1 /N (I) and x

(II)
1 = N

(II)
1 /N (II). In this case,

the lever rule is (x(II)
1 − 1

2 )/( 1
2 − x

(I)
1 ) = N (I)/N (II).

The total number of particles of each species was
N1 = N2 = 250, what was checked to be sufficient for our
purposes. We used (50–100)×106 MC steps for the equilibra-
tion (longer near the critical point) and (100–200) ×106 MC
steps for the production.21

B. Gas-liquid coexistence

Results for the gas-liquid transition are depicted in
Fig. 3 in the temperature-density plane. Some representative

ρ

FIG. 3. Gas-liquid binodals for models SW, B0, I0, J0, and A0. The points
indicated as SHS in the legend are grand canonical MC (GCMC) results taken
from Ref. 22, where the actual one-component SHS model was studied. The
remaining results are those obtained in this work from GEMC simulations.
In each case, the solid line is a guide to the eye, while the dashed line is
the result of the extrapolation to the critical point, which is represented by a
square.

Phase diagrams of Janus fluids with up-down constrained orien-
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TABLE II. Gas-liquid coexistence properties for models A0, B0, I0, and J0, as obtained from our GEMC simulations. T∗ is the reduced temperature, ρ∗
γ is the

reduced density of the gas (γ = g) and liquid (γ = l) phases, N(g) is the average number of particles in the gas box, and U
(γ )
ex /N (γ ) is the excess internal energy

per particle in box γ .

Model T∗ ρ∗
g ρ∗

l N(g)/N −U
(g)
ex /εN (g) −U

(l)
ex /εN (l)

A0 0.075 0.1994(6) 0.590(1) 0.493(2) 1.69(1) 1.796(7)
0.1 0.214(2) 0.559(5) 0.535(4) 1.785(4) 1.780(8)
0.125 0.223(1) 0.530(6) 0.556(3) 1.63(9) 1.71(5)
0.15 0.231(1) 0.503(4) 0.574(4) 1.60(1) 1.78(1)
0.175 0.250(2) 0.455(8) 0.630(6) 1.42(1) 1.632(9)

B0 0.3 0.112(2) 0.887(5) 0.284(5) 1.6(1) 3.27(1)
0.325 0.128(1) 0.839(3) 0.324(3) 0.761(1) 3.239(7)
0.328 0.145(5) 0.771(5) 0.363(9) 0.88(2) 2.99(1)
0.33 0.15(1) 0.73(1) 0.380(1) 0.95(1) 3.016(9)
0.335 0.18(3) 0.65(3) 0.45(1) 1.0(7) 2.83(2)
0.337 0.23(5) 0.54(5) 0.59(1) 1.273(4) 2.36(4)

I0 0.3 0.202(3) 0.61(1) 0.5146(7) 2.48(6) 3.04(1)
0.325 0.211(5) 0.58(2) 0.5371(6) 1.76(4) 2.765(8)
0.35 0.24(1) 0.50(3) 0.612(3) 1.24(3) 2.30(1)
0.36 0.25(2) 0.45(4) 0.657(5) 1.01(1) 1.85(5)
0.365 0.28(3) 0.42(5) 0.71(1) 0.96(2) 1.6(1)

J0 0.2 0.10(1) 0.93(3) 0.249(5) 1.67(2) 2.48(3)
0.25 0.14(1) 0.83(5) 0.34(1) 0.82(2) 2.25(3)
0.255 0.17(2) 0.70(5) 0.433(9) 0.90(2) 1.99(2)
0.257 0.19(3) 0.60(6) 0.62(6) 1.10(7) 1.5(2)

numerical values for models A0, B0, I0, and J0 are tabu-
lated in Table II. In this case, one of the two simulation boxes
(I = g) contains the gas phase and the other one (II = l) con-
tains the liquid phase. Since ρg < ρ < ρ l, the choice of the
global density ρ establishes a natural bound as to how close to
the critical point the measured binodal curve can be. In fact,
N(g) → 0 if ρ l → ρ, while N(g) → N if ρg → ρ. As is apparent
from the values of N(g)/N in Table II, the latter scenario seems
to take place in our case ρ∗ = 0.3.

Although not strictly enforced, we observed that N
(g)
1

	 N
(g)
2 and N

(l)
1 	 N

(l)
2 (so both boxes were practically

equimolar) in models A0, B0, and J0. On the other hand,
in the case of model I0 the final equilibrium state was non-
equimolar (despite the fact that, as said before, N1 = N2 glob-
ally), the low-density box having a more disparate composi-
tion than the high-density box. The mole fraction values are
shown in Table III. Thus, in contrast to models A0, B0, and
J0, the GEMC simulations at fixed temperature and global
density ρ∗ = 0.3 spontaneously drove the system I0 into two

TABLE III. Mole fractions in the gas and liquid boxes in model I0 at differ-
ent temperatures and with a global density ρ∗ = 0.3. For the gas and liquid
densities, see Table II. Because of the symmetry under label exchange 1 ↔ 2,
we have adopted the criterion x

(g)
1 ≤ x

(g)
2 without loss of generality.

T∗ x
(g)
1 x

(l)
1

0.3 0.03(1) 0.992(6)
0.325 0.09(2) 0.98(1)
0.35 0.18(3) 0.955(15)
0.36 0.26(3) 0.93(3)
0.365 0.34(3) 0.89(4)

coexisting boxes differing both in density and composition.
This spontaneous demixing phenomenon means that in model
I0 the equimolar binodal curve must be metastable with re-
spect to demixing and so it was not observed in our simula-
tions. It is important to remark that, while the equimolar bin-
odal must be robust with respect to changes in the global den-
sity ρ (except for the bound ρg < ρ < ρ l mentioned above),
the non-equimolar binodal depends on the value of ρ.

In addition to cases SW, B0, I0, J0, and A0, we have also
included in Fig. 3, for completeness, numerical results ob-
tained by Miller and Frenkel22 on the one-component Bax-
ter’s sticky-hard-sphere (SHS) model.23 As expected, they
agree quite well with our short-range SW results, the only
qualitative difference being a liquid branch at slightly larger
densities.

In order to determine the critical point (T ∗
c , ρ∗

c ) we
empirically extrapolated the GEMC binodals using the law
of rectilinear “diameters,”24 1

2 (ρ∗
g + ρ∗

l ) = ρ∗
c + A|T ∗ − T ∗

c |,
and the Wegner expansion24, 25 for the width of the coexis-
tence curve, ρ∗

l − ρ∗
g = B|T ∗ − T ∗

c |βI . The critical coordi-
nates (T ∗

c , ρ∗
c ) and the coefficients A and B are taken as fitting

parameters. The four points corresponding to the two high-
est temperatures were used for the extrapolation in each case.
We remark that our data do not extend sufficiently close to the
critical region to allow for quantitative estimates of critical ex-
ponents and non-universal quantities. However, assuming that
the models belong to the three-dimensional Ising universality
class, we chose βI = 0.325. The numerical values obtained
by this extrapolation procedure will be presented in Table V
below.

The decrease in the critical temperatures and densities in
going from the one-component SW fluid to model B0 and

Phase diagrams of Janus fluids with up-down constrained orien-
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FIG. 4. Snapshot of the liquid-phase box in model A0 at T∗ = 0.15.

then to model A0 is strongly reminiscent of an analogous
trend present in the unconstrained one-patch Kern–Frenkel
model upon decrease of the coverage.26

It is interesting to remark that, even though the influence
of attraction in model A0 is strongly inhibited by the up-down
constrained orientation (εij = εδi1δj2), this model exhibits a
gas-liquid transition. This surprising result was preliminarily
supported by canonical NV T MC simulations in Ref. 12, but
now it is confirmed by the new and more appropriate GEMC
simulations presented in this paper. Given the patch geometry
and interactions in model A0, one might expect the formation
of a lamellar-like liquid phase (approximately) made of al-
ternating layers (up-down-up-down-· · ·) of particles with the
same orientation. This scenario is confirmed by snapshots of
the liquid-phase box, as illustrated by Fig. 4.

The Kern–Frenkel analogy is not applicable to the
isotropic models I0 and J0. Model J0 presents a critical point
intermediate between those of models B0 and A0, as ex-
pected. However, while the decrease in the total average at-
tractive strength is certainly one of the main mechanisms
dictating the location of the gas-liquid coexistence curves, it
cannot be the only discriminating factor, as shown by the re-
sults for the isotropic model I0, where the critical temperature
is higher and the binodal curve is narrower than that corre-
sponding to the anisotropic model B0. This may be due to the
fact that, as said before, the binodal curve in model I0 is not
equimolar and this lack of equimolarity is expected to extend
to the critical point, as can be guessed from the trends ob-
served in Table III. In other words, two demixed phases can
be made to coexist at a higher temperature and with a smaller
density difference than two mixed phases.

C. Demixing transition

The bi-component nature of the systems raises the ques-
tion of a possible demixing transition in which a rich-1 phase
coexists with a rich-2 phase at a given temperature T, provided
the density is larger than a certain critical consolute density
ρcc(T). The points ρcc(T) or, reciprocally, Tcc(ρ) define the
so-called λ-line.27 The interplay between the gas-liquid and
demixing transitions is a very interesting issue and was dis-
cussed in a general framework by Wilding et al.28

Since all the spheres have the same size, a necessary
condition for demixing in the case of isotropic potentials is
that the like attractions must be sufficiently stronger than the
unlike attractions.28, 29 Assuming the validity of this condi-
tion to anisotropic potentials and making a simple estimate
based on the virial expansion, one finds that demixing re-
quires the coefficient of x1x2 in the second virial coefficient
to be positive, i.e., 2eε11/kBT > eε12/kBT + eε21/kBT . While this
demixing criterion is only approximate, it suggests that, out
of the five models considered, only models B0 and I0 are ex-
pected to display demixing transitions. As a matter of fact,
we have already discussed the spontaneous demixing phe-
nomenon taking place in model I0 when a low-density phase
and a high-density phase are in mutual equilibrium. In this
section, however, we are interested in the segregation of the
system, at a given T and for ρ > ρcc(T), into a rich-2 phase
I with x

(I)
1 = xd (ρ) < 1

2 and a symmetric rich-1 phase II with

x
(II)
1 = 1 − xd (ρ) > 1

2 , both phases at the same density.
Our GEMC simulation results are presented in Fig. 5 and

Table IV. We observe that, as expected, x(I)
1 = 1 − x

(II)
1 within

statistical fluctuations. We have also checked that ρ(I) 	 ρ(II),
even though this equality is not artificially enforced in the
simulations. Such equality is also equivalent to ρ(I) 	 ρ and
we checked that it was satisfied within a standard deviation
of 0.02σ−3 in all cases considered in Table IV. To obtain the
critical consolute density ρ∗

cc for each temperature, we extrap-
olated the data again according to the Ising scaling relation
1
2 − xd (ρ) = C(ρ − ρcc)βI .

It is interesting to note that just the absence of attraction
when a particle of species 2 is below a particle of species 1
(ε21 = 0) in model B0 is sufficient to drive a demixing transi-
tion. However, as expected, at a common temperature (see T∗

= 0.4 in Fig. 5), demixing requires higher densities in model
B0 than in model I0.

As said above, the interplay of condensation and demix-
ing is an interesting problem by itself.28, 30 Three alternative
scenarios are in principle possible for the intersection of the λ-
line and the binodal curve: a critical end point, a triple point,
or a tricritical point.28 Elucidation of these scenarios would
require grand canonical simulations (rather than GEMC sim-
ulations), what is beyond the scope of this paper.

IV. SIMPLE ANALYTICAL THEORIES

Let us now compare the above numerical results with
simple theoretical predictions. The solution of integral equa-
tion theories for anisotropic interactions and/or multicompo-
nent systems requires formidable numerical efforts, with the
absence of explicit expressions often hampering physical in-
sight. Here we want to deal with simple, purely analytical the-
ories that yet include the basic ingredients of the models.

First, we take advantage of the short-range of the at-
tractive well (�/σ = 0.05) to map the different SW interac-
tions into SHS interactions parameterized by the “stickiness”
parameters12

tij ≡ 1

12τij

≡ �

σ

(
1 + �

σ
+ �2

3σ 2

)
(eεij /kBT − 1), (3)

Phase diagrams of Janus fluids with up-down constrained orien-
tations 592



174902-6 Fantoni et al. J. Chem. Phys. 139, 174902 (2013)

FIG. 5. Demixing curves for models (a) I0 and (b) B0 at two temperatures,
as obtained from GEMC simulations, in the density-mole fraction plane. In
each case, the solid line is a guide to the eye, while the critical consolute point
is represented by a square. For model I0 we found ρ∗

cc(T ∗ = 0.4) = 0.336
and ρ∗

cc(T ∗ = 0.45) = 0.429; for model B0 the results are ρ∗
cc(T ∗ = 0.35)

= 0.650 and ρ∗
cc(T ∗ = 0.4) = 0.665. The dashed-dotted lines are the theo-

retical predictions (see Sec. IV C).

which combine the energy and length scales. This mapping
preserves the exact second virial coefficient of the genuine
SW systems, namely,

B2

BHS
2

= 1 − 3t11 + 3x1x2(2t11 − t12 − t21), (4)

where BHS
2 = 2πσ 3/3 is the HS coefficient. The exact expres-

sion of the third virial coefficient B3 in the SHS limit for arbi-
trary tij is12

B3

BHS
3

= 1 − 6t11 + 72

5
t2
11 − 48

5
t3
11 − 6

5
x1x2

[
(12t11 − 5)

× (2t11 − t12 − t21) − 8t11
(
t2
11 − t12t21

)
− 2(4t11 − 3)

(
2t2

11 − t2
12 − t2

21

) + 2α(t12 − t21)2
]
,

(5)

TABLE IV. Demixing coexistence properties for models I0 and B0, as ob-
tained from our GEMC simulations. T∗ is the reduced temperature, ρ∗ is the
reduced density, and x

(γ )
1 is the mole fraction of species 1 in each one of the

two coexisting phases γ = I, II.

Model T∗ ρ∗ x
(I)
1 x

(II)
1

I0 0.4 0.7 0.005(5) 0.992(5)
0.65 0.006(6) 0.985(6)
0.6 0.01(1) 0.97(1)
0.5 0.05(3) 0.93(3)
0.4 0.19(4) 0.81(4)
0.38 0.23(6) 0.77(6)
0.36 0.32(9) 0.68(9)
0.34 0.4(1) 0.6(1)

0.45 0.7 0.01(1) 0.99(1)
0.6 0.05(2) 0.96(2)
0.5 0.14(4) 0.87(4)
0.45 0.25(7) 0.74(7)
0.43 0.4(1) 0.6(1)

B0 0.35 0.725 0.09(2) 0.91(2)
0.7 0.11(2) 0.90(2)
0.675 0.15(3) 0.87(3)
0.66 0.18(4) 0.80(4)
0.65 0.40(6) 0.60(6)

0.4 0.725 0.20(3) 0.82(3)
0.7 0.22(4) 0.78(4)
0.675 0.31(5) 0.69(5)
0.665 0.45(6) 0.55(6)

where BHS
3 = 5π2σ 6/18 and

α ≡ 3
√

3

π
− 1. (6)

A. Equations of state

One advantage of the SW → SHS mapping is that the
Percus–Yevick (PY) integral equation is exactly solvable for
SHS mixtures with isotropic interactions (t12 = t21).31, 32 In
principle, that solution can be applied to the models SW, I0,
and J0 represented in Fig. 2. On the other hand, if t11 �= 0
(models SW and I0), the PY solutions are related to algebraic
equations of second (SW) or fourth (I0) degrees, what cre-
ates the problem of disappearance of the physical solution for
large enough densities or stickiness. In particular, we have ob-
served that the breakdown of the solution preempts the exis-
tence of a critical point in model I0. However, in the case of
model J0 (t11 = 0, t12 = t21 = t), the PY solution reduces to a
linear equation whose solution is straightforward. Following
the virial (v) and the energy (u) routes, the respective expres-
sions for the compressibility factor Z ≡ P/ρkBT (where P is
the pressure) have the form

Zv(η, t, x1) = ZHS
v (η) − x1x2Z

(1)
v (η, t) − x2

1x
2
2Z(2)

v (η, t),
(7)

Zu(η, t, x1) = ZHS
u (η) − x1x2Z

(1)
u (η, t), (8)
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where η = πρ∗/6 is the packing fraction,

ZHS
v (η) = 1 + 2η + 3η2

(1 − η)2
(9)

is the HS compressibility factor derived from the PY equa-
tion via the virial route, ZHS

u is an indeterminate integration
constant, and the explicit expressions for Z(1)

v , Z(2)
v , and Z(1)

u

are

Z(1)
v (η, t) = 24ηt

(1 − η + 6ηt)2

[
1 + 2η

1 − η
+ 3ηt

2 + 2η − 5η2/2

(1 − η)2

+ 6η2t2 2 − 4η − 7η2

(1 − η)3

]
, (10)

Z(2)
v (η, t) = 288η3t2(2 + η)

(1 − η + 6ηt)3

[
1

1 − η
− t

2 − 11η

(1 − η)2

+ t2 2 − 10η + 61η2/2

(1 − η)3

]
, (11)

Z(1)
u (η, t) = 6η

(1 − η)2

[
2t(2 + η)

1 − η + 6ηt
+ ln

1 − η + 6ηt

1 − η

]
.

(12)

To the best of our knowledge, this extremely simple solution
of the PY integral equation for a model of SHS mixtures had
not been unveiled before.

As apparent from Fig. 2, model A0 is a close relative of
model J0. However, the fact that ε12 �= ε21 = 0 (or t12 �= t21

= 0) makes the interaction anisotropic and prevents the PY
equation from being exactly solvable in this case. On the other
hand, we have recently proposed12 a simple rational-function
approximation (RFA) that applies to models with t12 �= t21 and
reduces to the PY solution in the case of isotropic models (t12

= t21). The RFA solution for model A0 yields once more a
linear equation. The virial and energy equations of state are
again of the forms (7) and (8), respectively, with expressions
for Z(1)

v , Z(2)
v , and Z(1)

u given by

Z(1)
v (η, t)= 12ηt

1 − η + 6ηt

[
1 + 2η

(1 − η)2
+ 2ηt

1 − 2η − 7η2/2

(1 − η)3

]
,

(13)

Z(2)
v (η, t) = 72η3t2(2 + η)

(1 − η)3(1 − η + 6ηt)
, (14)

Z(1)
u (η, t) = 3η

(1 − η)2

[
2t(2 + η)

1 − η + 6ηt
+ ln

1 − η + 6ηt

1 − η

]
.

(15)

In the RFA solution for model A0 the exact third virial coef-
ficient (5) is recovered by the interpolation formula

Z = ZHS
CS + α

(
Zv − ZHS

v

) + (1 − α)
(
Zu − ZHS

u

)
= ZHS

CS − x1x2
[
αZ(1)

v + (1 − α)Z(1)
u

] − x2
1x2

2αZ(2)
v ,

(16)

where

ZHS
CS (η) = 1 + η + η2 − η3

(1 − η)3
(17)

is the HS Carnahan–Starling compressibility factor and the
interpolation weight α is given by Eq. (6). By consis-
tency, Eq. (16) will also be employed in the PY solution of
model J0.

In the cases of models with ε11 �= 0 (i.e., SW, B0, and
I0), the PY and RFA theories fail to have physical solutions
in regions of the temperature-density plane overlapping with
the gas-liquid transition. In order to circumvent this problem,
we adopt here a simple perturbative approach:

Z = Zref + (
B2 − Bref

2

)
ρ + (

B3 − Bref
3

)
ρ2, (18)

where Zref is the compressibility factor of a reference model
and Bref

2 and Bref
3 are the associated virial coefficients. As a

natural choice (see Fig. 2), we take the models J0, A0, and
HS (which lie on the plane ε11/ε = 0) as reference systems
for the models SW, B0, and I0 (which lie on the plane ε11/ε
= 1), respectively. More specifically,

ZSW = ZJ0 + (
BSW

2 − BJ0
2

)
ρ + (

BSW
3 − BJ0

3

)
ρ2, (19)

ZB0 = ZA0 + (
BB0

2 − BA0
2

)
ρ + (

BB0
3 − BA0

3

)
ρ2, (20)

ZI0 = ZHS
CS + (

BI0
2 − BHS

2

)
ρ + (

BI0
3 − BHS

3

)
ρ2. (21)

Here, ZJ0 and ZA0 are given by Eq. (16) (with the correspond-
ing expressions of Z(1)

v , Z(2)
v , and Z(1)

u ) and the virial coeffi-
cients are obtained in each case from Eqs. (4) and (5) with the
appropriate values of t11, t12, and t21.

From the explicit knowledge of Z(η, t, x1), standard ther-
modynamic relations allow one to obtain the free energy per
particle a(η, t, x1) and the chemical potentials μi(η, t, x1) as

βa(η, t, x1) =
∫ η

0
dη′ Z(η′, t, x1) − 1

η′ + x1 ln(x1η)

+ (1 − x1) ln[(1 − x1)η] + const, (22)

βμ1(η, t, x1) = βa(η, t, x1) + Z(η, t, x1)

+ (1 − x1)
∂βa(η, t, x1)

∂x1
, (23)

μ2(η, t, x1) = μ1(η, t, 1 − x1), (24)

where β ≡ 1/kBT.

B. Gas-liquid coexistence

The critical point (ηc, tc) of the gas-liquid transition
is obtained from the well-known condition that the critical
isotherm in the pressure-density plane presents an inflection
point with horizontal slope at the critical density.33 In terms
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TABLE V. Comparison between the critical points measured in simulations
with those obtained from theoretical approaches.

Method SW B0 I0 J0 A0

T ∗
c

Simulation 0.369a 0.338b 0.368b 0.258b 0.193b

Our theory 0.377 0.341 0.331 0.278 0.214
Noro–Frenkel 0.369 0.335 0.297 0.297 0.247

ρ∗
c

Simulation 0.508a 0.373b 0.344b 0.344b 0.342b

Our theory 0.356 0.330 0.366 0.376 0.359

aGCMC results for the one-component SHS fluid From Ref. 22.
bOur GEMC simulation results.

of the compressibility factor Z, this implies

∂
[
ηZ(η, tc, 1/2)

]
∂η

∣∣∣∣∣
η=ηc

= ∂2
[
ηZ(η, tc, 1/2)

]
∂η2

∣∣∣∣∣
η=ηc

= 0,

(25)
where equimolarity (x1 = 1

2 ) has been assumed. For tem-
peratures below the critical temperature (i.e., t > tc) the
packing fractions ηg and ηl of the gas and liquid coexist-
ing phases are obtained from the conditions of equal pres-
sure (mechanical equilibrium) and equal chemical potential
(chemical equilibrium),33 i.e.,

ηgZ(ηg, t, 1/2) = ηlZ(ηl, t, 1/2), (26)

μ1(ηg, t, 1/2) = μ1(ηl, t, 1/2). (27)

In order to make contact with the GEMC results, the the-
oretical values of tc have been mapped onto those of T ∗

c by
inverting Eq. (3), namely,

1

T ∗ = ln

[
1 + t

(�/σ )
(
1 + �/σ + �2/3σ 2

)
]

(28)

with �/σ = 0.05.
Table V compares the critical points obtained in simula-

tions for the one-component SW fluid (in the SHS limit) and
for models B0, I0, J0, and A0 (see Fig. 2) with those stem-
ming from our simple theoretical method. Results from the
Noro–Frenkel (NF) corresponding-state criterion,34 accord-
ing to which B2/B

HS
2 = −1.21 at the critical temperature, are

also included. We observe that, despite its simplicity and the
lack of fitting parameters, our fully analytical theory predicts
quite well the location of the critical point, especially in the
case of T ∗

c . It improves the estimates obtained from the NF
criterion, except in the SW case, where, by construction, the
NF rule gives the correct value. In what concerns the gas-
liquid binodals, Fig. 6 shows that the theoretical curves agree
fairly well with the GEMC data, except in the cases of models
I0 and A0, where the theoretical curves are much flatter than
the simulation ones. The lack of agreement with the binodal
curve of model I0 can be partially due to the fact that in the
theoretical treatment the two coexisting phases are supposed
to be equimolar, while this is not the case in the actual simu-
lations (see Table III).

FIG. 6. Gas-liquid binodals for models SW, A0, B0, I0, and J0, as obtained
from our theoretical method (solid lines). The critical points are represented
by open squares. The symbols joined by dashed lines correspond to our
GEMC data (see Fig. 3).

C. Demixing transition

In the case of the demixing transition, the critical conso-
lute density ηcc at a given temperature is obtained from

∂2a(ηcc, t, x1)

∂x2
1

∣∣∣∣
x1= 1

2

= 0. (29)

For η > ηcc, the demixing mole fraction x1 = xd(η) is the
solution to

μ1(η, t, xd ) = μ1(η, t, 1 − xd ). (30)

In terms of the compressibility factor Z, Eqs. (29) and (30)
can be rewritten as∫ ηcc

0
dη

∂2Z(η, t, x1)/∂x2
1

∣∣
x1= 1

2

η
= −4, (31)

∫ η

0
dη′ ∂Z(η′, t, xd )/∂xd

η′ = ln
1 − xd

xd

, (32)

respectively.
The perturbative approximations for models I0 and B0

succeed in predicting demixing transitions, even though their
respective reference systems (HS and A0) do not demix.
In the case of model I0, the critical consolute densities are
ρ∗

cc(T ∗ = 0.4) = 0.306 and ρ∗
cc(T ∗ = 0.45) = 0.390, which

are about 9% lower than the values obtained in our GEMC
simulations. In the case of model B0, our simple theory pre-
dicts a critical consolute point only if t > 0.7667, i.e., if T∗

< 0.364, so no demixing is predicted at T∗ = 0.4, in contrast
to the results of the simulations. At T∗ = 0.35 the theoreti-
cal prediction is ρ∗

cc = 0.406, a value about 39% smaller than
the GEMC one. The theoretical demixing curves at T∗ = 0.4
and T∗ = 0.45 for model I0 and at T∗ = 0.35 for model B0
are compared with the GEMC results in Fig. 5. We can ob-
serve a fairly good agreement in the case of model I0, but not
for model B0. In the latter case, the theoretical curve spans a
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density range comparable to that of model I0, while simula-
tions show a much flatter demixing curve.

V. CONCLUDING REMARKS

In conclusion, we have proposed a novel class of binary-
mixture Janus fluids with up-down constrained orientations.
The class encompasses, as particular cases, the conventional
one-component SW fluid, mixtures with isotropic attractive
interactions only between like particles (model I0) or unlike
particles (model J0), and genuine Janus fluids with anisotropic
interactions and different patch-patch affinities (models A0
and B0). Both GEMC numerical simulations and simple the-
oretical approximations have been employed to analyze the
gas-liquid transition under global equimolar conditions for
the five models and the demixing transition for the two mod-
els (I0 and B0) where the attraction between like particles
is stronger than between unlike ones. The theoretical anal-
ysis employed a mapping onto SHS interactions that were
then studied by means of the PY theory (model J0), the RFA
(model A0), and low-density virial corrections (models SW,
I0, and B0), with semi-quantitative agreement with numerical
simulations.

Interestingly, the presence of attraction in only one out of
the four possible patch-patch interactions (model A0) turns
out to be enough to make the gas-liquid transition possi-
ble. Reciprocally, the lack of attraction in only one of the
two possible patch-patch interactions between unlike parti-
cles (model B0) is enough to produce a demixing transi-
tion. Except in model I0, the coexisting gas and liquid phases
have an equimolar composition. As the average attraction
is gradually decreased, the gas-liquid critical point shifts to
lower temperatures (except for an interesting inversion of ten-
dency observed when going from the isotropic model I0 to
the anisotropic model B0) and lower densities. Moreover,
the coexistence region progressively shrinks, in analogy with
what is observed in the unconstrained one-component Janus
fluid35, 36 and in the empty liquid scenario.37 On the other
hand, the imposed constraint in the orientation of the attrac-
tive patches does not allow for the formation of those inert
clusters38–40 which in the original Janus fluid are responsible
for a re-entrant gas branch.26, 38, 41
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the surface-to-surface distance by means of canonical Monte Carlo simulations and through a
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representative scenarios are investigated: symmetric solute particles and the limit where
one of the two solute spheres becomes a planar hard wall, in both cases with symmetric and
asymmetric solvents. In all cases, the influence on the depletion force due to the nonadditivity
in the solvent is determined in the mixed state. Comparison between results from the
theoretical approximation and from the simulation shows a good agreement for surface-to-
surface distances greater than the smallest solvent diameter.
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The mutual entropic depletion force felt by two solute “big” hard spheres immersed in a binary mix-
ture solvent of nonadditive “small” hard spheres is calculated as a function of the surface-to-surface
distance by means of canonical Monte Carlo simulations and through a recently proposed rational-
function approximation [R. Fantoni and A. Santos, Phys. Rev. E 84, 041201 (2011)]. Four represen-
tative scenarios are investigated: symmetric solute particles and the limit where one of the two solute
spheres becomes a planar hard wall, in both cases with symmetric and asymmetric solvents. In all
cases, the influence on the depletion force due to the nonadditivity in the solvent is determined in the
mixed state. Comparison between results from the theoretical approximation and from the simulation
shows a good agreement for surface-to-surface distances greater than the smallest solvent diameter.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884353]

I. INTRODUCTION

In chemical physics, one often finds solute particles im-
mersed in a solvent. Even though the solute particles interact
through a true potential, an important problem consists of re-
ducing the solute-solvent system of particles to an equivalent
one made of only the solute particles but interacting through
an effective potential. This problem has been much studied
for the paradigmatic case of an athermal mixture of additive
hard spheres (AHS)1 and for the more general case of nonad-
ditive hard spheres (NAHS).2–4 The problem is usually solved
in a two-step procedure. Starting from the pioneering work of
Asakura and Oosawa,5 one first determines the effective pair
potential, the so-called depletion entropic potential, between
two “big” solute hard spheres (in three6–8 or two9 dimensions)
immersed in a solvent of “small” hard spheres. Once this stage
has been carried out, one can study the properties of a fluid
of particles interacting with such an effective pair potential.10

While the assumption of pairwise additivity is essentially un-
controlled, since the presence of a third particle in the vicinity
of a pair of solutes will alter the solvent (the depletant) spatial
distribution, it is expected that such limitations of the pairwise
additivity approximation become progressively less relevant
on decreasing the solute density and/or the size ratio between
the diameter of a solvent particle and that of a solute particle.
The oscillations in the depletion potential, for example, are
found to be responsible for gelation in binary mixture of hard
spheres11 and for spatial heterogeneity in bimodal colloidal
suspensions.12

In the present work, we are interested in the first step of
such a programme. The depletion potential problem has been

a)Electronic mail: rfantoni@ts.infn.it
b)Electronic mail: andres@unex.es. URL: http://www.unex.es/eweb/fisteor/

andres/.

studied in several different scenarios. One can have nonspher-
ical solute13 or solvent14 particles. For spherical solute and
solvent particles, the case we are interested in, the solvent
itself may be an AHS mixture (binary,15 multicomponent,16

or polydisperse17, 18). Additionally, the solvent particles may
have various kinds of interaction.19–22 When the solvent par-
ticles interact with a potential which has some attraction, an
interesting issue is the one of understanding how the depletion
or force will be affected upon approaching the gas-liquid co-
existence critical point of the solvent, where the critical fluc-
tuations are expected to give rise to the so-called thermody-
namic Casimir forces.23–26

Recently, we constructed an approximate theory for the
structure and the thermodynamics of a general NAHS mul-
ticomponent mixture,27, 28 which we called the (first order)
rational-function approximation (RFA). The theory provides
a fully analytical representation of the radial distribution func-
tions in Laplace space which extends to the nonadditive case
the exact solution of the Percus–Yevick (PY) integral equation
for AHS mixtures.29, 30 It is the purpose of the present work
to use the RFA theory to predict the depletion force when the
solvent is a NAHS binary mixture and to compare our theo-
retical predictions with Monte Carlo (MC) simulation results.
We clearly want to avoid demixing31, 32 in the solvent. This re-
stricts the combinations of solvent density and (positive) non-
additivity that we are allowed to choose. An interesting open
problem, that we leave to a future study, is the study of how
the depletion force is affected by approaching the demixing
critical point on the critical isochore.

In order to find the depletion force in the simulations,
we followed the MC method of Dickman et al.33 In molec-
ular dynamics simulations, however, a different strategy34 is
more suitable. We decided not to determine the depletion po-
tential from the force because the spatial integration of the
latter can introduce additional uncontrolled uncertainties. On

0021-9606/2014/140(24)/244513/9/$30.00 © 2014 AIP Publishing LLC140, 244513-1
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the other hand, it is possible to determine the depletion po-
tential directly in a MC simulation by allowing the two solute
impurities to move.26

We will consider four different scenarios: (i) two sym-
metric solute particles in a symmetric solvent, (ii) two sym-
metric solute particles in an asymmetric solvent, (iii) ex-
tremely asymmetric solutes, in the limit where one of the two
solute spheres reduces to a planar hard wall,28 in a symmet-
ric solvent, and (iv) the same situation but in an asymmetric
solvent.

The paper is organized as follows. In Sec. II, we intro-
duce the fluid model we set up to study further on, while in
Sec. III the observable to be measured in MC simulations and
estimated with our RFA theory is described. Details about our
MC simulations are given in Sec. IV. Section V presents the
numerical and theoretical results for the depletion force and
compares them. The paper is closed in Sec. VI with some
final remarks.

II. THE MODEL

We consider the following general model. Two solute big
hard spheres (the impurities) of species a and b and diameters
σ a = σ aa and σ b = σ bb with σab = 1

2 (σa + σb) are immersed
in a NAHS binary mixture solvent made of Nμ small hard
spheres of species μ = 1, 2 of diameter σμ = σμμ in a volume
V , such that

σ12 = σ1 + σ2

2
(1 + �) (2.1)

with � > −1 measuring the solvent nonadditivity. The
solute-solvent interaction is assumed to be additive, i.e., σμα

= 1
2 (σμ + σα) with μ = 1, 2 and α = a, b.

Without loss of generality, we take σ 1(≤σ 2) as length
unit. Thus, we define the solvent/solvent size ratio σ 2/σ 1 ≥ 1,
the solute/solute size ratio σ b/σ a ≥ 1, and the solute/solvent
size ratio σ a/σ 1 > 1. The solvent total number density is
ρ = N/V = ∑2

μ=1 Nμ/V = ∑2
μ=1 ρμ and the mole fraction

of species μ = 1, 2 is xμ = ρμ/ρ, with x1 + x2 = 1. From this
we can introduce the partial packing fractions ημ = π

6 ρxμσ 3
μ

and the nominal total packing fraction η = ∑
μημ.

The model is characterized by the following set of six
independent dimensionless parameters: η, x1, σ 2/σ 1, and �,
defining the solvent, and σ b/σ a and σ a/σ 1, defining the so-
lute. Note that the model can also be obtained from the more
general one of a quaternary mixture with a = 3, b = 4 in the
limit of infinite solute dilution x3 → 0, x4 → 0.7

The depletion force is formally independent of the
solvent-solvent interaction (see Sec. III).33, 35 But of course
it depends on the local solvent density in the neighborhood
of the solute particles and such a density is affected by
the solvent-solvent and solvent-solute interactions. A natu-
ral question then arises: As the solvent-solvent nonadditivity
is switched on, how the induced change in the local solvent
density affects the depletion force? Clearly, far away from the
solute spheres there will be no change in the almost constant
local density, i.e., the bulk density. But the local density in
the vicinity of the solute particles would change and thereby
so would the force. To first order in density, however, the de-

pletion force is completely independent of the solvent-solvent
interaction,7 so the influence of nonadditivity is absent. Thus,
one can expect the effect to be small for dilute solvents but its
impact as the bulk solvent density increases is uncertain.

We could alternatively switch on a solute-solvent
nonadditivity,2, 4, 36 but this case is somewhat less interesting
than the previous one. For example, in the case of two solute
spheres of diameter σ a immersed in a one-component solvent
of spheres of diameter σ 1 with σ1a �= 1

2 (σ1 + σa), one can
map the problem onto an additive one where the solute par-
ticles have an effective diameter σ eff

a = 2σ1a − σ1, provided
that σ1a ≥ 1

2σ1. The effective problem determines the deple-
tion force for r > σ eff

a , so that the original problem becomes
completely solved in the case of negative nonadditivity (since
then σa > σ eff

a ), while in the case of positive nonadditivity it
only remains unsolved in the region σa < r < σ eff

a . For this
reason, we will not consider solute-solvent nonadditivity in
our analysis.

In this study, we will first restrict ourselves to the partic-
ular case of equal solute impurities (σ b/σ a = 1) and consider
both a symmetric (σ 2/σ 1 = 1, x1 = 1

2 ) and an asymmetric
(σ 2/σ 1 �= 1, x1 �= 1

2 ) nonadditive solvent. Our aim is to assess
in both cases the effect of the solvent nonadditivity on the de-
pletion force. Then, we will consider the case of extremely
asymmetric solute impurities in the limit σ b/σ a → ∞, where
one of the two impurities is seen as a hard planar wall both by
the other solute sphere and by the solvent species.

III. THE DEPLETION FORCE

We want to determine the force exerted on one big so-
lute sphere immersed in a solvent of small spheres due to the
presence of a second big solute sphere, assuming a hard-core
repulsion between the solvent and the solute. The solvent in
the presence of only one solute sphere at the origin will keep
being an isotropic fluid (even if not homogeneous anymore)
and the solute sphere will feel a zero net force. However, if we
add a second solute sphere in the solvent, the isotropy sym-
metry will be broken (we are then left with a solvent fluid with
axial symmetry around the axis connecting the centers of the
two solute spheres) and, as a consequence, each solute sphere
will exert an effective force F on the other one, mediated by
the solvent. This force has the form35

βF(r) = −
∫

S

dAρ(r)(rs )̂n, (3.1)

where β = 1/kBT is the inverse temperature parameter, the
integral is carried out over the surface S of the sphere cen-
tered on the solute particle experiencing the force, dA is an
elementary area on S, n̂ is the outward normal unit vector,
and ρ(r)(rs) is the local density of the solvent (in the presence
of the two solute spheres) at the point rs on the surface S.

A. Monte Carlo implementation

1. One-component solvent

Let us first assume a one-component solvent made of N
spheres of diameter σ 1 and coordinates ri (i = 1, . . . , N) in
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a volume V . The solute particle of species a is centered at
ra and the solute particle of species b is centered at rb = ra

+ r̂r. According to Eq. (3.1), the force Fab(r) = Fab(r )̂r felt
by sphere b due to the presence of sphere a is then35

βFab(r) = −σ 2
1b

∫
d	s cos θsρ

(r)(rb + σ1b̂s), (3.2)

where d	s = sin θ sdθ sdϕs is the elementary solid an-
gle spanned by ŝ taking the polar axis along r̂, ρ(r)(q)
= 〈∑i δ(q − ri)〉 is the local density of the solvent in the
presence of the two solute spheres at a center-to-center dis-
tance r, and 〈···〉 is a thermal average.

The expression (3.2) for the depletion force is formally
independent of the interaction between the solvent particles
and holds as long as we have a hard-sphere interaction be-
tween the solvent and the two solute spheres. Clearly, due
to the axial symmetry of the solvent fluid, ρ(r)(rb + σ1b̂s)
= 〈∑i δ(σ1b̂s − si)〉, with si = ri − rb, is a function of σ1b

and θ s only. Notice that, by Newton’s third law, we must have
Fab = −Fba. In terms of the potential of mean force βuab(r)
= −ln gab(r), where gab(r) is the solute-solute radial distribu-
tion function in the presence of the solvent, we have

βFab(r) = −β
duab(r)

dr
= g′

ab(r)

gab(r)
. (3.3)

In MC simulations, we can calculate the force by means of

βFab(r) = − σ 2
1b

〈∑
i

∫
d	s cos θsδ(σ1b̂s − si)

〉

≈ − 3σ 2
1b

〈∑
i


si− ε
2 ,si+ ε

2
(σ1b) cos θsi(

si + ε
2

)3 − (
si − ε

2

)3

〉
, (3.4)

where the boxcar function 
a,b(x) = 1 if a ≤
x < b and zero otherwise, ε is a discretiza-
tion of the s variable, and in the second line of
Eq. (3.4) we have discretized the radial part of the Dirac delta
function. We can also rewrite Eq. (3.4), by neglecting the
term in ε3 in the denominator, as follows:

F ∗
ab(r) ≡ σ1βFab(r) ≈ −σ1I

(r)(σ1b), (3.5)

where F ∗
ab(r) is the dimensionless force and

I (r)(s) =
〈∑

i


s− ε
2 ,s+ ε

2
(si) cos θsi

ε

〉
. (3.6)

In the simulations, I(r)(s) is evaluated at s = sκ = σ 1b + (2κ

+ 1)ε/2 with κ = 0, 1, 2, . . . . The force F ∗
ab(r) is obtained by

extrapolating the data at the contact value s = σ 1b.

2. Multicomponent solvent

In a multicomponent solvent, we have ρ(r)(q)
= ∑

μ ρ(r)
μ (q) with ρ(r)

μ (q) = 〈∑i δμi ,μδ(q − ri)〉, where
the Greek index stands for the species, the Roman index
stands for the particle label, and μi denotes the species of
particle i. The depletion force is now given by

βFab(r) = −
∑

μ

σ 2
μb

∫
d	s cos θsρ

(r)
μ (rb + σμb̂s). (3.7)

The output from the MC simulations are the functions

I (r)
μ (s) =

〈∑
i

δμ,μi


s− ε
2 ,s+ ε

2
(si) cos θsi

ε

〉
, (3.8)

calculated at s = sκ = σμb + (2κ + 1)ε/2 with κ = 0, 1, 2,
. . . , so that we now have

F ∗
ab(r) = σ1βFab(r) = −σ1

∑
μ

I (r)
μ (σμb). (3.9)

B. Rational-function approximation

Within the RFA7, 27, 28, 37 one explicitly obtains the
Laplace transform Gab(s) of rgab(r) in the solute infinite-
dilution limit (xa → 0 and xb → 0) of a quaternary mixture
where the solvent is made of species 1 and 2 and the solute
is made of species a = 3 and b = 4. Then, from Eq. (3.3) we
have

βFab(r) = [rgab(r)]′

rgab(r)
− 1

r

=L−1[sGab(s) − e−σabsσabgab(σ+
ab)]

L−1[Gab(s)]
− 1

r
, (3.10)

where L−1 stands for an inverse Laplace transform. In this
equation, it is understood that r > σ ab since the force is of
course singular in the region 0 ≤ r ≤ σ ab. Thus, given that
L−1[e−σabs] = δ(r − σab), we may rewrite

βFab(r) = L−1[sGab(s)]

L−1[Gab(s)]
− 1

r
, r > σab. (3.11)

As discussed in Ref. 27, the RFA inverse Laplace trans-
forms for NAHS mixtures could in principle present a spu-
rious behavior in the shell min (σ ab, τ ab) ≤ r ≤ max (σ ab,
τ ab), where τ ab is the minimum of the list of values σ bk − (σ k

− σ a)/2 (k = 1–4) that are different from σ ab. In our case,
however, since the solute-solvent interaction is additive, we
have σ bk − (σ k − σ a)/2 = σ ab for all k, so that τ ab = σ ab and
the spurious behavior vanishes.

In the limit σ b/σ a → ∞, the solute sphere b is felt
as a planar hard wall by both a solvent particle and by
the solute particle a. Before taking the limit we intro-
duce the shifted radial distribution function γ ab(D) = gab(D
+ σ ab) for a surface-to-surface distance D ≥ 0. In Laplace
space,

Gab(s) = e−σabs[σab�ab(s) − �′
ab(s)], (3.12)

where �ab(s) is the Laplace transform of γ ab(D) and �′
ab(s)

= d�ab(s)/ds. In the wall limit, Eq. (3.12) yields

�aw(s) = lim
σb/σa→∞

2

σb

eσabsGab(s). (3.13)

The corresponding expression for the depletion force
is

βFaw(D) =γ ′
aw(D)

γaw(D)
= L−1[s�aw(s)−γaw(0)]

L−1[�aw(s)]

=L−1[s�aw(s)]

L−1[�aw(s)]
, (3.14)
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where in the last step we have taken into account that
D > 0 and thus the term coming from L−1[1] = δ(D) can
be ignored.

Appendix A gives some details on how to carry out the
solute infinite-dilution limit analytically, while Appendix B
shows how to subsequently carry out the wall limit. Once
Gab(s) and �aw(s) are known, the inverse Laplace trans-
forms may be carried out numerically following the recipe of
Ref. 38. When the solvent nonadditivity is switched off
(� = 0) our RFA approach reduces to the usual PY
approximation.7, 27

The RFA for NAHS systems inherits from the PY ap-
proximation for AHS fluids the possibility of yielding non-
physical results near contact for the big-big correlation func-
tion in the case of strongly asymmetric mixtures.39–41 As
proposed by Henderson,42 a simple and convenient way
of circumventing this difficulty consists in the replacement
g → exp (g − 1). Thus, in order to correct the breakdown
of the theory near solute contact, we have also considered an
“exponential” RFA (exp-RFA) approximation where21

g
exp-RFA
ab (r) = exp

[
gRFA

ab (r) − 1
]
. (3.15)

IV. SIMULATION DETAILS

We performed canonical MC simulations in a paral-
lelepipedal box (−H/2 < x < H/2, −L/2 < y < L/2, −L/2
< z < L/2) with periodic boundary conditions. The two solute
spheres a and b are fixed in space, centered at (− r/2, 0, 0) and
(r/2, 0, 0), respectively, as shown in Fig. 1. The solvent is in
general a binary NAHS mixture, but we will always assume
additivity between the solute and the solvent. According to
the Metropolis algorithm,43 a solvent particle move is rejected
whenever it overlaps with another solvent particle or with any
of the two solute spheres. The maximum random particle dis-
placement was chosen so as to have acceptance ratios close to
50%. During the run we measured the shell integrals I (r)

μ (s)
of Eq. (3.8) and the local solvent density. We chose H and
L large enough so that away from the two solute spheres the
local solvent density shows a bulk-like plateau and thus the

σb

σa

L/2

−H/2

−L/2

H/2

x

y,z

−r/2

s

θs

r/2

FIG. 1. Schematic simulation arrangement. The simulation box is the par-
allelepiped −H/2 < x < H/2, −L/2 < y < L/2, −L/2 < z < L/2 with pe-
riodic boundary conditions. H and L are chosen large enough so as to have
a solvent density exhibiting a bulk-like plateau away from the two solute
spheres.

2.0

2.5

3.0

3.5

4.0

4.5

3.0 3.5 4.0 4.5

σ 1
I μ(r

) (s
)

s/σ1

μ=1
μ=2

FIG. 2. Shell integrals I
(r)
μ (s) at r/σ 1 = 5 for the case x1 = 1

2 , σ 2/σ 1 = 1, �

= 0, σ b/σ a = 1, σ a/σ 1 = 5. Here, H/σ 1 = 18, L/σ 1 = 12, N = 1134. The bulk
packing fraction is η ≈ 0.239(5) and the simulation time was τ = 4 × 105N
single particle moves. The lines are least-square quartic fits on the interval
3 ≤ s/σ 1 ≤ 4 used to extrapolate I

(r)
μ (s) at contact (s/σ 1 = σ 1b/σ 1 = 3).

The estimated force is then found to be F ∗
ab(r) = −σ1

[
I

(r)
1 (σ1b) + I

(r)
2 (σ2b)

]
≈ −7.78(8). This case is close to the one in Fig. 6(b) of Ref. 33.

solvent density in a cubic cell of side � centered at (x, y, z)
= ( − H/2, L/2, L/2) can be accepted as a good estimate of the
bulk density ρ.

A typical output for the shell integrals from a single sim-
ulation is shown in Fig. 2. The uncertainty on each measured
value at a given s is determined as

√
σ 2

v K/τ where τ is the
number of single particle moves, σ 2

v is the variance of the
measures during the run, and K is an estimate of the corre-
lation time of the sequence of measurements assumed as in-
dependent from s. In order to determine the depletion force
according to Eq. (3.9), we need to find the contact values
I (r)
μ (σμb). We do this with a least-square quartic fit of the

shell integrals near contact, as shown in Fig. 2. Since the sol-
vent binary mixture for the choice of the model parameters in
Fig. 2 reduces to a one-component system, no partial demix-
ing is possible, so that the 1 ↔ 2 symmetry implies the con-
sequent equality of the two shell integrals. This is reasonably
well satisfied within the error estimates. The slight asymmetry
observed in Fig. 2 favors one species or the other, in different
runs, with equal probabilities.

In the study of the wall limit σ b/σ a → ∞, we removed
the periodic boundary conditions along the x direction and
placed a hard wall at x = −H/2 and another one at x = H/2,
rejecting solvent-particle moves producing an overlap with
the walls. The solute sphere a was placed on the x axis at
x = −H/2 + D + σ a/2 and the depletion force felt by the so-
lute impurity x̂Fwa(D) was calculated as a function of D > 0.
The solvent bulk density was evaluated in a cubic cell of side
� centered at (x, y, z) = (D/2 + σ a/2, L/2, L/2).

One can take into account the volume excluded to the
solvent particles by the solutes to define a (nominal) average
packing fraction η = η1 + η2, where

ημ =
π
6 Nxμσ 3

μ

HL2 − π
6

(
σ 3

μa + σ 3
μb

) (4.1)
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if σb/σa = finite and

ημ =
π
6 Nxμσ 3

μ

(H − σμ)L2 − π
6 σ 3

μa

(4.2)

if σ b/σ a = ∞.
In all the cases presented in Sec. V, we took N = 500

solvent particles, box sides H/σ 1 = 18, L/σ 1 = 12, a number
τ = 1.4 × 106N of single particle moves, and a discretization
step ε/σ 1 = 0.05. The side of the cell employed to evaluate
the bulk density was � = σ 1.

V. RESULTS

In this section, we present our results for four represen-
tative classes of systems: two symmetric solute impurities in
a symmetric (class S) or asymmetric (class A) solvent, and
a planar wall and a solute impurity in a symmetric (class
wS) or asymmetric (class wA) solvent. For each class, we
have considered three solvent nonadditivities: zero, positive,
and negative. This will allow us to assess the effect of sol-
vent nonadditivity on the depletion force between the impu-
rity particles or between the impurity and the wall. The RFA
predictions will be compared with our MC simulations. The
parameters characterizing the 12 different systems are given
in Table I. The last column gives the average packing fraction
η = η1 + η2 defined by Eqs. (4.1) (solute-solute systems) and
(4.2) (wall-solute systems). In the asymmetric-solvent cases
(σ2/σ1 = 3

2 ), the value of the mole fraction (x1 = 193
250 ) has

been chosen such that both species occupy practically equal
volumes (x1σ

3
1 /x2σ

3
2 = 1.003).

As an illustration, Fig. 3 shows a snapshot of an equili-
brated MC configuration of system S0 with the two identical
solute particles at contact.

A. Symmetric solvent and symmetric solute
impurities

We first consider a symmetric 1 ↔ 2 solvent (systems
S0, S+, S−). In general, for positive nonadditivity (� > 0)
and sufficiently high densities, the solvent may undergo
demixing,32 so that in the simulation we would get I

(r)
1 (s)

�= I
(r)
2 (s) by spontaneous symmetry breaking. On the other

TABLE I. Values of the parameters defining the 12 systems considered in
this work.

Label σ b/σ a σ a/σ 1 x1 σ 2/σ 1 � η

S0 1 5 1
2 1 0 0.1021

S+ 1
4

S− − 1
4

A0 1 5 193
250

3
2 0 0.1576

A+ 1
5

A− − 1
5

wS0 ∞ 5 1
2 1 0 0.1076

wS+ 1
4

wS− − 1
4

wA0 ∞ 5 193
250

3
2 0 0.1685

wA+ 1
5

wA− − 1
5

FIG. 3. Snapshot of an equilibrated MC configuration of system S0. The
solutes are the two big red spheres while the solvent binary mixture is made
of small light and dark blue spheres.

hand, if, at a given density, the positive nonadditivity is not
too large, the solvent will be in a mixed state and the equality
of the two shell integrals is expected. However, we found that,
even in states with a mixed solvent in the bulk, the solvent
may be partially demixed in the region between the two solute
particles because of density compression effects.35 This may
be responsible for an asymmetry in the two shell integrals,
which is expected to be maximal near a surface-to-surface
distance of the two solute impurities equal to one solvent di-
ameter. In order to avoid this effect, we chose a sufficiently
small value for the nonadditivity (system S+).

The first columns of Table II present the simulation re-
sults for the depletion force and for the bulk packing fraction
of systems S0, S+, and S− as functions of the surface-to sur-
face distance D = r − σ ab. We observe that the bulk packing
fraction is weakly dependent on D and on �, being slightly
larger than the average value η.

The MC results for the depletion force are compared with
the semi-analytical RFA predictions in Fig. 4. We recall that
the RFA theory reduces to the PY theory in the additive case
(� = 0), so the middle solid and dashed lines in Fig. 4 ac-
tually represent the PY and exp-PY predictions, respectively.
As we can see, those curves for the additive system S0 agree
quite well with the simulation data at and beyond a surface-
to-surface separation between the two solute impurities equal
to half the solvent diameter, D � σ 1/2. In that region, our
RFA theory successfully accounts for the influence of the sol-
vent nonadditivity on the depletion force. A specially good
agreement is observed at D = σ 1, where the theory predicts
a kink in the force stemming from the first spatial derivative
of the solute-solute radial distribution function. On the other
hand, a less satisfactory result is observed near contact of the
impurities (D < σ 1/2), where both the PY (system S0) and
the RFA (systems S+ and S−) theories exhibit an artificial up-
ward bending of the curves (instead of the correct quasilin-
ear behavior), implying a force less attractive than it should
be. This is, at least qualitatively, corrected by the exp-PY and
exp-RFA versions of the theories. Another possible correction
could be to develop the second-order RFA,44 which is known
to work well in the additive solvent case.7
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TABLE II. MC results for the symmetric cases S0, S+, S−, and the asymmetric cases A0, A+, A− (see Table I). D is the surface-to-surface separation between
the two solutes and η is the bulk packing fraction of the solvent.

S0 S+ S− A0 A+ A−

D/σ 1 F ∗
ab η F ∗

ab η F ∗
ab η F ∗

ab η F ∗
ab η F ∗

ab η

0.00 − 2.35(3) 0.109(1) − 2.59(2) 0.108(1) − 2.22(2) 0.110(1) − 3.09(3) 0.167(1) − 3.39(3) 0.169(1) − 2.86(2) 0.168(1)
0.25 − 1.71(2) 0.109(1) − 1.73(3) 0.109(1) − 1.59(2) 0.110(1) − 2.26(2) 0.166(1) − 2.43(4) 0.169(1) − 2.23(3) 0.171(1)
0.50 − 1.03(2) 0.109(1) − 0.93(3) 0.109(1) − 1.01(3) 0.110(1) − 1.40(3) 0.168(1) − 1.33(3) 0.170(1) − 1.41(2) 0.169(1)
0.75 − 0.30(3) 0.109(1) − 0.00(2) 0.109(1) − 0.40(2) 0.110(1) − 0.56(3) 0.169(1) − 0.24(3) 0.169(1) − 0.68(3) 0.170(1)
0.84 − 0.03(2) 0.109(1) 0.25(3) 0.108(1) − 0.12(3) 0.110(1) − 0.22(3) 0.168(1) 0.13(3) 0.168(1) − 0.35(3) 0.169(1)
0.92 0.26(2) 0.109(1) 0.49(3) 0.108(1) 0.06(3) 0.110(1) 0.10(2) 0.168(1) 0.55(3) 0.168(1) − 0.10(3) 0.170(1)
1.00 0.36(3) 0.109(1) 0.66(3) 0.109(1) 0.21(3) 0.109(1) 0.45(2) 0.171(1) 0.95(4) 0.168(1) 0.17(2) 0.169(1)
1.08 0.32(4) 0.110(1) 0.63(4) 0.109(1) 0.27(3) 0.110(1) 0.50(4) 0.169(1) 0.76(6) 0.171(1) 0.15(4) 0.170(1)
1.16 0.17(4) 0.109(1) 0.28(3) 0.108(1) 0.08(3) 0.110(1) 0.21(4) 0.169(1) 0.36(5) 0.165(1) 0.03(3) 0.170(1)
1.25 − 0.02(4) 0.109(1) 0.01(4) 0.108(1) − 0.02(3) 0.110(1) 0.07(5) 0.168(1) 0.23(4) 0.170(1) − 0.07(3) 0.170(1)
1.50 − 0.01(4) 0.110(1) 0.02(4) 0.109(1) − 0.03(3) 0.110(1) 0.22(4) 0.169(1) 0.48(5) 0.166(1) 0.14(4) 0.170(1)
1.75 0.01(2) 0.109(1) − 0.13(4) 0.109(1) − 0.05(3) 0.109(1) − 0.07(4) 0.169(1) − 0.20(5) 0.168(1) 0.01(4) 0.170(1)
2.00 0.01(3) 0.109(1) − 0.11(3) 0.109(1) − 0.00(2) 0.110(1) − 0.10(3) 0.169(1) − 0.04(3) 0.168(1) − 0.02(3) 0.170(1)
2.25 − 0.03(3) 0.109(1) − 0.06(3) 0.108(1) − 0.02(3) 0.110(1) − 0.04(3) 0.170(1) − 0.12(4) 0.171(1) − 0.06(3) 0.171(1)
2.50 0.02(2) 0.109(1) 0.04(2) 0.109(1) − 0.00(2) 0.109(1) − 0.00(3) 0.169(1) 0.09(3) 0.167(1) − 0.02(2) 0.169(1)

The positive nonadditivity enhances the depletion force
and the negative nonadditivity inhibits it. These trends for the
effect of the solvent nonadditivity on the depletion force could
be expected from the following simple argument. To first or-
der in density, the bulk compressibility factor of the solvent
is 1 + B2ρ, with B2 = (2π/3)

∑
i,j xixjσ

3
ij being the second

virial coefficient. Therefore, in the low-density regime, one
would expect the NAHS solvent with a packing fraction η to
behave similarly to an effective AHS solvent with an effective
packing fraction

ηeff = η

∑
i,j xixjσ

3
ij∑

i,j xixj [(σi + σj )/2]3
. (5.1)

Thus, introducing a positive nonadditivity in the solvent is
qualitatively analogous to increasing its density, which in turn
produces an enhancement of the solute-solute depletion force.
Of course, a negative nonadditivity produces the opposite
effect.

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 2.5

F* ab
(D

)

D/σ1

MC Δ=0
MC Δ=+1/4
MC Δ=−1/4

RFA
exp-RFA

FIG. 4. Depletion force between two identical big hard spheres immersed in
a solvent binary mixture of small hard spheres, as a function of their surface-
to-surface separation, for systems S0, S+, and S− (see Table I). The bulk
packing fraction used to obtain the (exp-)RFA results was taken as η = 0.109
in all cases. The MC results are the ones of Table II.

B. Asymmetric solvent and symmetric
solute impurities

Next, we consider the asymmetric-solvent systems A0,
A+, and A−. In those cases, the two shell integrals are obvi-
ously different, i.e., I

(r)
1 (s) �= I

(r)
2 (s). As before, we want to

measure the effect on the depletion force of adding a certain
nonadditivity to the solvent.

The MC values for the depletion force and the bulk pack-
ing fraction are given in Table II. As in the symmetric-solvent
cases, the bulk packing fractions are slightly larger than the
nominal average values, but now the influence of the solute-
solute separation on the bulk values is more pronounced.

Figure 5 compares the MC and RFA results for systems
A0, A+, and A−. As in the symmetric case, RFA=PY for the
AHS solvent (� = 0). Now, in addition to a kink in the de-
pletion force at D = σ 1, the RFA predicts a second kink at
D = σ 2, with smooth oscillations around zero beyond that
point. Again, the variation of the depletion force with distance

-3.0

-2.0

-1.0

0.0

1.0

0.0 0.5 1.0 1.5 2.0 2.5

F* ab
(D

)

D/σ1

MC Δ=0
MC Δ=+1/5
MC Δ=−1/5

RFA
exp-RFA

FIG. 5. Depletion force between two identical big hard spheres immersed in
a solvent binary mixture of small hard spheres, as a function of their surface-
to-surface separation, for systems A0, A+, and A− (see Table I). The bulk
packing fraction used to obtain the (exp-)RFA results was taken as η = 0.170
in all cases. The MC results are the ones of Table II.
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TABLE III. MC results for the symmetric cases wS0, wS+, wS−, and the asymmetric cases wA0, wA+, wA− (see Table I). D is the surface-to-surface
separation between the wall and the solute sphere and η is the bulk packing fraction of the solvent.

wS0 wS+ wS− wA0 wA+ wA−

D/σ 1 F ∗
aw η F ∗

aw η F ∗
aw η F ∗

aw η F ∗
aw η F ∗

aw η

0.00 − 4.44(3) 0.110(1) − 4.68(3) 0.108(1) − 4.10(2) 0.111(1) − 5.73(2) 0.172(1) − 6.20(2) 0.169(1) − 5.20(2) 0.170(1)
0.25 − 3.29(2) 0.109(1) − 3.30(2) 0.108(1) − 3.11(2) 0.110(1) − 4.34(3) 0.168(1) − 4.49(3) 0.168(1) − 4.02(1) 0.172(1)
0.50 − 1.99(2) 0.109(1) − 1.82(3) 0.108(1) − 2.01(2) 0.111(1) − 2.70(2) 0.171(1) − 2.55(3) 0.165(1) − 2.69(2) 0.171(1)
0.75 − 0.66(2) 0.109(1) − 0.11(3) 0.108(1) − 0.79(3) 0.110(1) − 1.03(3) 0.170(1) − 0.32(4) 0.168(1) − 1.26(3) 0.172(1)
0.84 − 0.06(2) 0.110(1) 0.60(3) 0.108(1) − 0.38(3) 0.111(1) − 0.30(3) 0.170(1) 0.56(3) 0.170(1) − 0.72(3) 0.172(1)
0.92 0.42(3) 0.109(1) 1.06(3) 0.108(1) 0.05(2) 0.110(1) 0.28(3) 0.169(1) 1.24(3) 0.169(1) − 0.22(3) 0.172(1)
1.00 0.95(3) 0.110(1) 1.66(2) 0.108(1) 0.59(3) 0.110(1) 1.00(3) 0.168(1) 2.01(3) 0.167(1) 0.34(3) 0.171(1)
1.08 0.83(5) 0.109(1) 1.42(6) 0.108(1) 0.52(4) 0.110(1) 0.92(7) 0.168(1) 1.91(10) 0.165(1) 0.43(5) 0.172(1)
1.16 0.33(5) 0.109(1) 0.44(7) 0.108(1) 0.19(4) 0.110(1) 0.41(8) 0.168(1) 0.99(10) 0.168(1) 0.16(5) 0.172(1)
1.25 − 0.06(5) 0.110(1) 0.04(7) 0.109(1) − 0.05(5) 0.110(1) 0.11(8) 0.169(1) 0.54(10) 0.167(1) − 0.04(7) 0.171(1)
1.50 0.08(6) 0.110(1) − 0.02(7) 0.109(1) 0.12(5) 0.110(1) 0.55(7) 0.171(1) 0.93(9) 0.165(1) 0.38(7) 0.172(1)
1.75 − 0.06(5) 0.109(1) − 0.17(6) 0.109(1) − 0.07(4) 0.110(1) − 0.15(7) 0.170(1) − 0.56(8) 0.167(1) − 0.07(6) 0.171(1)
2.00 − 0.00(2) 0.110(1) − 0.06(3) 0.108(1) 0.01(2) 0.110(1) − 0.04(5) 0.171(1) − 0.28(5) 0.167(1) − 0.02(3) 0.171(1)
2.25 − 0.03(3) 0.109(1) 0.05(3) 0.108(1) 0.00(2) 0.110(1) − 0.05(4) 0.168(1) − 0.16(4) 0.167(1) − 0.00(3) 0.172(1)
2.50 0.05(2) 0.109(1) 0.03(3) 0.108(1) − 0.03(2) 0.111(1) 0.07(3) 0.170(1) − 0.01(3) 0.165(1) 0.01(2) 0.172(1)

increases (decreases) if a positive (negative) nonadditivity is
included, as expected from the argument behind Eq. (5.1).
Analogous to Fig. 4, a reasonable agreement between our the-
oretical approximation and the simulation results is observed
for D � σ 1/2, but the agreement breaks down when the so-
lutes are near contact. On the other hand, the exp-RFA ap-
proximation has the correct linear behavior near contact, even
if it underestimates the contact values. Note also that, while
RFA and exp-RFA are practically indistinguishable for D �
σ 1/2 in Fig. 4, both approximations are slightly different in
the region near the kink at D = σ 1 in the case A+, RFA being
more accurate than exp-RFA.

C. A wall and one solute impurity in
a symmetric solvent

We now explore the cases of extreme solute asymmetry
in the limit σ b/σ a → ∞, where sphere b becomes a planar
hard wall.

We start with the cases of a symmetric solvent (systems
wS0, wS+, and wS−). The MC data for the depletion force
and the bulk packing fraction are listed in the first columns
of Table III. Since the solvents in systems wS0, wS+, and
wS− are in the same bulk state (except for small changes of
η) as in systems S0, S+, and S−, respectively, we can test
the Derjaguin approximation45 F ∗

aa(D) ≈ 1
2F ∗

aw(D). As can
be seen from comparison of Tables II and III, the Derjaguin
approximation is rather well satisfied in our simulations, even
in the cases of NAHS solvents, 1

2F ∗
aw(D) being typically

1%–10% smaller than F ∗
aa(D).

Theory and simulation are compared in Fig. 6. Not sur-
prisingly, our RFA approximation (which is again equivalent
to the PY approximation in the case � = 0) performs quite
well for D � σ 1/2 but it breaks down near contact between
the wall and the solute spherical impurity, this effect being
now more important than in the cases of two identical solutes
(Fig. 4). On the other hand, the exp-RFA approximation ex-

hibits a better (quasilinear) behavior near contact, although it
underestimates the contact values. Also, analogous to what is
observed in Fig. 5, exp-RFA is less accurate than RFA near
the kink at D = σ 1 when a positive nonadditivity is present.

D. A wall and one solute impurity in
an asymmetric solvent

To complete the picture, we finally consider the wall-
solute force in a NAHS solvent (systems wA0, wA+, and
wA−). The corresponding MC data can be found in Table III.
The Derjaguin approximation F ∗

aa(D) ≈ 1
2F ∗

aw(D) is again
well satisfied, although the deviations are slightly larger than
in the wS cases, 1

2F ∗
aw(D) being about 4%–10% smaller than

F ∗
aa(D).

As Fig. 7 shows, in contrast to the cases S+, A+, and
wS+ plotted in Figs. 4–6, respectively, the RFA for a positive
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FIG. 6. Depletion force between a hard wall and a big hard sphere im-
mersed in a solvent binary mixture of small hard spheres, as a function of
their surface-to-surface separation, for systems wS0, wS+, and wS− (see
Table I). The bulk packing fraction used to obtain the (exp-)RFA results was
taken as η = 0.109 in all cases. The MC results are the ones of Table III.
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FIG. 7. Depletion force between a hard wall and a big hard sphere immersed
in a solvent binary mixture of small hard spheres, as a function of their
surface-to-surface separation, for systems wA0, wA+, and wA− (see Table
I). The bulk packing fraction used to obtain the (exp-)RFA results was taken
as η = 0.170 in all cases. The MC results are the ones of Table III.

nonadditivity (system wA+) is not able to capture accurately
the values of the depletion force in the region near the first
kink at D = σ 1, while the related approximation exp-RFA
does. Moreover, the artificial upward bend of the PY curve
(� = 0) and of the two RFA curves (� = ± 1

5 ) in the region
D � σ 1/2 is much more dramatic than in Figs. 4–6. Again, the
exp-RFA lines tend to correct this behavior but they underes-
timate the contact values.

VI. CONCLUSIONS

We have studied in this paper the mutual depletion force
acting on two solute hard spheres immersed in a solvent
consisting in a binary NAHS mixture. We have employed
two complementary tools: canonical MC simulations and the
semi-analytical RFA (which is fully equivalent to the PY so-
lution when the solvent nonadditivity is switched off). Four
different settings have been considered: two symmetric so-
lutes in a symmetric and in an asymmetric solvent, and two
extremely asymmetric solutes (in the limit where one of the
two spheres reduces to a planar hard wall) again in a sym-
metric and in an asymmetric solvent. For each class of sys-
tems, we have chosen three possibilities: zero nonadditivity,
positive nonadditivity, and negative nonadditivity. In all the
systems, the solvent remained in a mixed state.

We have found that the RFA performs reasonably well
in all cases for a surface-to-surface distance D greater than
the radius of the smallest solvent particles, except in the case
wA+ of a wall with an asymmetric solvent with positive non-
additivity, where the theory overestimates the height of the
first kink. The approximation in all cases breaks down at and
near contact (D = 0). To correct this, we have also consid-
ered an exp-RFA, which shows the correct quasilinear behav-
ior near contact, even if it is still not able to quantitatively
capture the contact values. The approximations correctly pre-
dict kinks in the depletion force when D equals any of the two
solvent diameters. Our results show how in all cases a positive
solvent nonadditivity enhances the depletion force whereas a

negative one inhibits it. Moreover, the Derjaguin approxima-
tion is well satisfied in our simulations, even for the nonaddi-
tive solvent.

As possible further developments of our study, we plan
to try to correct the theoretical approximation near contact
and to study the behavior of the force as one approaches the
demixing transition of the solvent on the critical isochore.
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APPENDIX A: THE SOLUTE INFINITE-DILUTION LIMIT
IN THE RFA

For convenience, we here use Roman indexes for the
species instead of Greek indexes as done in the main text.
In Ref. 27, the following proposal for the structural properties
of an n-component NAHS fluid defined through the Laplace
transform Gij(s) of rgij(r) was given:

Gij (s) = s−2
n∑

k=1

e−σiksLik(s)Bkj (s), (A1)

with

B−1(s) = I − A(s), (A2)

Aij (s) = 2πρxi

s3

[
Nij (s)eaij s − Lij (s)e−σij s

]
, (A3)

where I is the unit matrix,

Lij (s) ≡ L
(0)
ij + L

(1)
ij s, (A4)

Nij (s) ≡ L
(0)
ij

(
1 − bij s + b2

ij s
2

2

)
+ L

(1)
ij s(1 − bij s), (A5)

bij ≡ σij + aij , aij ≡ 1

2
(σi − σj ). (A6)

Equations (A1)–(A5) provide the explicit s-dependence of the
Laplace transform Gij(s), but it still remains to determine the
two sets of parameters L

(0)
ij and L

(1)
ij . This is done by en-

forcing the physical requirements27 lims → 0s2Gij(s) = 1 and
lims → 0s−1[s2Gij(s) − 1] = 0. The results are

L
(0)
ij = Sj , L

(1)
ij = Tj + σijSj , (A7)

where

Sj ≡ 1 − πρ�j(
1 − πρ�j

) (
1 − πρ�j

) − π2ρ2μj |2,0	j

, (A8)
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Tj ≡ πρ	j(
1 − πρ�j

) (
1 − πρ�j

) − π2ρ2μj |2,0	j

, (A9)

�j ≡ μj |2,1 − 1

3
μj |3,0, (A10)

�j ≡ 2

3
μj |3,0 − μj |2,1, (A11)

	j ≡ μj |3,1 − μj |2,2 − 1

4
μj |4,0, (A12)

and we have called

μj |p,q ≡
n∑

k=1

xkb
p

kjσ
q

kj . (A13)

We now choose our quaternary mixture (n = 4) in such a
way that the first two species (i = 1 and i = 2) describe the
solvent and the last two species (i = 3 = a and i = 4 = b)
describe the solute. Then, in the infinite-dilution limit xa → 0
and xb → 0 we have that

B−1 =

⎛⎜⎜⎜⎝
(B−1)11 (B−1)12 −A1a −A1b

(B−1)21 (B−1)22 −A2a −A2b

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ , (A14)

and thus

B =

⎛⎜⎜⎜⎝
B11 B12 C1a C1b

B21 B22 C2a C2b

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ , (A15)

where

Cij =
2∑

k=1

BikAkj , i = 1, 2 and j = a, b. (A16)

We have reduced the inversion of the original 4 × 4 matrix
B−1 to the inversion of just the 2 × 2 submatrix corresponding
to the solvent.

We then find

s2Gab(s) = e−σabsLab(s) +
2∑

k=1

e−σaksLak(s)Ckb(s), (A17)

where now μj |p,q = ∑2
k=1 xkb

p

kjσ
q

kj .

APPENDIX B: THE WALL LIMIT IN THE RFA

Taking the limit σ b → ∞, we find from Eq. (A17),

�aw(s) = lim
σb→∞

2

σb

eσabsGab(s)

= 2

s2

[
L̃aw(s) +

2∑
k=1

Lak(s)C̃kw(s)

]
, (B1)

where

L̃aw(s) ≡ lim
σb→∞

Lab(s)

σb

, (B2)

C̃kw(s) ≡ lim
σb→∞

eakbsCkb(s)

σb

, k = 1, 2. (B3)
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Two theories for associating fluids recently used to study clustering in models for self-assembling
patchy particles, Wertheim’s and Bjerrum-Tani-Henderson theories, are carefully compared. We
show that, for a fluid allowing only for dimerization, Wertheim theory is equivalent to the Bjerrum-
Tani-Henderson theory neglecting intercluster correlations. Nonetheless, while the former theory is
able to account for percolation and condensation, the latter is not. For the Bjerrum-Tani-Henderson
theory we also rigorously prove the uniqueness of the solution for the cluster’s concentrations
and the reduction of the system of equations to a single one for a single unknown. We carry
out Monte Carlo simulations of two simple models of dimerizing fluids and compare quantita-
tively the predictions of the two theories with the simulation data. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4892878]

I. INTRODUCTION

Recent advances in the experiments and modeling of
patchy colloids,1, 2 i.e., colloidal particles whose interaction
is dominated by the presence of selective, short range inter-
action sites on their surface, have renewed interest in theories
able to describe liquid and vapour phases of associating fluids.

Fluid phase theories able to cope with the strong attrac-
tions of associating fluids have been developed starting from
the seventies, when hydrogen bond in molecular liquids was
a prototype problem. Two of the approximations developed
a few decades ago, namely, the approach developed by Tani
and Henderson,3 extending Bjerrum’s theory4 for electrolytic
solutions, and the more ambitious statistical mechanics ap-
proach by Wertheim5 have been recently applied to the study
of simple models of patchy colloids.6–19 The novelty intro-
duced by applications to self-assembling colloids is the huge
variety of interactions which can be engineered and conse-
quently the richness of the behaviors as far as the cluster pop-
ulation and its dependence on the thermodynamic state are
concerned. Both approaches identify in the fluid and predict
populations of suitably defined clusters.

In both theories, a cluster is defined on the basis of bond-
ing in configuration space. For example, if we describe the
fluid, as made by particles interacting with a certain pair-
potential φ(12) between particles 1 and 2, we may consider
two particles as bonded whenever their pair-potential is less
than a given negative value −εbond. Clusters made of one par-
ticle are called “monomers,” the ones formed by two parti-
cles “dimers,” the ones formed of three particles “trimers,”
. . . and the ones formed by a higher but small number of par-
ticles “oligomers.” A cluster made of a number i of particles

a)Electronic mail: rfantoni@ts.infn.it
b)Electronic mail: pastore@ts.infn.it

can also be denoted as an i-mer. If we measure the concen-
trations of the i-mers in an associating fluid we will find that
these are functions of the thermodynamic state: The temper-
ature T and the density ρ of the fluid. One can give various
definitions of a cluster20 either of a geometrical nature or of a
topological one, depending on the spatial arrangement of the
bonded particles. A more physical approach would require to
introduce the concept of physical cluster21, 22 but virtually all
the existing calculations have been based on clusters defined
in configuration space.

In this work we will compare Wertheim’s theory5 and the
one of Bjerrum-Tani-Henderson (BTH).3, 4 The former one
starts from a thorough theoretical analysis, from which it is
possible to derive a thermodynamic perturbation theory. Here,
we will only discuss the first order term. At high temperature
the associating fluid reduce to the “reference” fluid that can
also be considered as the one obtained from the associating
fluid sending to zero all attractions. The theory is only appli-
cable when some “steric incompatibility” conditions are ful-
filled by the associating fluid. The latter starts already by the
description of the associating fluid as a mixture of nc differ-
ent species of oligomers where the numbers Ni of i-mers are
allowed to vary subject to the constraint of a fixed total num-
ber of particles. One only assumes that the canonical partition
function as a function of all the Ni, the volume and the temper-
ature be factorisable into the product of nc intra-cluster parti-
tion functions and an inter-cluster partition function. More-
over the clusters are assumed to interact weakly with each
other.

We will show that for nc = 2 Wertheim theory coin-
cides with the Bjerrum-Tani-Henderson theory when the clus-
ters are described as an ideal gas. Bjerrum-Tani-Henderson
theory, on the other hand, allows to improve on this first
level of approximation since one can always build better ap-
proximations to describe the inter-cluster partition function.

0021-9606/2014/141(7)/074108/10/$30.00 © 2014 AIP Publishing LLC141, 074108-1
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In this work we will only consider the Carnahan-Starling
approximation,23 i.e., we approximate intercluster correla-
tions with effective spherically symmetric ones. On the other
hand the simple and elegant theory of Wertheim is able, unlike
the Bjerrum-Tani-Henderson theory, to describe fluids with
percolating (nc → ∞) clusters. Due to this fact Wertheim’s
theory is able to describe in a consistent way the liquid phase
while the Bjerrum-Tani-Henderson one is not. So, for nc fi-
nite, Bjerrum-Tani-Henderson theory is expected to be more
powerful and flexible than Wertheim theory since it allows
to have more accurate results and it is not restricted to sys-
tems obeying the steric incompatibility conditions. Instead,
Wertheim’s theory is the method of choice whenever a con-
sistent picture of the phase diagram is required.

We will then present a comparison and a critical assess-
ment of the two theories by comparison with new Monte
Carlo simulation results for two model fluids with nc = 2: a bi-
nary mixture and a one-component system, both particularly
suitable for comparing theories for association. In particular
we will show an, apparently unavoidable, subtle short-come
that may appear in the Bjerrum-Tani-Henderson when ap-
plied to multicomponent fluid mixtures: At high temperatures,
when the fluid is dissociated, in the Bjerrum-Tani-Henderson
theory one is left with a one-component mixture of monomers
which may differ strongly from the original multicomponent
mixture.

The paper is organized as follows: In Sec. II we introduce
the thermodynamic quantities we will take in consideration
in the following; in Sec. III we describe the two association
theories discussing the problem of finite and infinite clusters
(Sec. III B 1) and the problem of one attractive site
(Sec. III B 2); in Sec. III C we introduce the problem of
the gas-liquid coexistence; in Sec. III D we comment on the
relevance of the pair-potential microscopic level of descrip-
tion; in Sec. IV we summarize some results obtained apply-
ing Wertheim theory to specific fluids with identical sites and
sites of two different kinds; in Sec. V we apply the two theo-
ries to two simple dimerizing associating fluids (a binary mix-
ture (Sec. V A 1) and a one-component fluid (Sec. V A 2))
and compare them with our Monte Carlo simulation results;
in Sec. V B we consider again the problem of infinite clusters
for the Bjerrum-Tani-Henderson theory; Sec. VI summarizes
the main results and contains a few final remarks.

II. THERMODYNAMICS

Consider a one-component fluid of N associating parti-
cles in a volume V at an absolute temperature T = 1/βkB with
kB Boltzmann constant. The inter-particle interaction is as-
sumed to include a hard sphere (HS) part, an isotropic attrac-
tion, and localized bonding interaction, in general anisotropic.

The Helmholtz free energy A of a hard-sphere associating
fluid can be written as a sum of separate contributions24

A = AHS + Abond, (2.1)

where AHS is the free energy due to the hard-sphere repulsive
cores and Abond is the change in the free energy due to the
bonding interaction responsible for association. We will gen-

erally use the notation a(ρ, T) = a = A/N for the free energy
per particle, where ρ = N/V is the density of the fluid.

The excess hard-sphere free energy per particle can be
modeled by the Carnahan and Starling23

βaex
HS = 4η − 3η2

(1 − η)2
, (2.2)

where η = (π /6)ρσ 3 is the packing fraction of the hard-
spheres of diameter σ . So that adding the ideal gas contribu-
tion βaid = ln (ρ	3/e), with 	 the de Broglie thermal wave-
length, we obtain aHS = aid + aex

HS .
We can always define a unit of length, S, and a unit

of energy, E , so that we can introduce a reduced density,
ρ∗ = ρS3, and a reduced temperature, T ∗ = kBT /E .

The association contribution Abond will be discussed in
Sec. III.

III. BJERRUM-TANI-HENDERSON VS WERTHEIM

We present now the two association theories of BTH3

and of Wertheim (W).5 We derive in each case the bond free
energy per particle abond such that the full free energy per
particle of the associating fluid can be written as a = a0
+ abond, where a0 = aid + aex

0 is the contribution of the refer-
ence fluid, the one obtained from the associating fluid setting
to zero all the bonding localized attractions.

A. Bjerrum-Tani-Henderson thermodynamic theory

We assume that our fluid is composed of nc species of
clusters. The species i contains Ni clusters each made of i par-
ticles. Tani and Henderson3, 15–19 assumed that the total par-
tition function of the fluid can be written factorizing the nc
intra-cluster partition functions of the single clusters known
a priori as functions of the temperature T alone. Moreover,
assuming that the inter-cluster partition function can be ap-
proximated treating the (weakly interacting) clusters as hard-
spheres of diameter σ c, they find the following solution as a
result of an extremum procedure,

N1 = Nλz1/ρG(ηc), (3.1)

Ni = N1λ
i−1zi/z1, i = 1, 2, . . . , nc (3.2)

with

N =
n

c∑
i=1

iNi, (3.3)

Nc =
n

c∑
i=1

Ni < N, (3.4)

where N is the total number of particles, ρ = N/V is the den-
sity of the fluid, Nc the total number of clusters, ρc = Nc/V

is the density of the clusters, ηc = (π/6)ρcσ
3
c is the packing

fraction of the clusters of diameter σ c, zi > 0 the intra-cluster
configuration partition function for the species i (z1 = 1 by
definition), and λ > 0 is determined through the constraint of
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Eq. (3.3),

0 =
n

c∑
i=1

iλizi − ρG(ηc), (3.5)

G(x) = exp

[
d(xβaex

0 (x))

dx

]
= exp

[
x(8 − 9x + 3x2)

(1 − x)3

]
,

(3.6)

where aex
0 (η) = aex

HS . This equation for the unknown param-
eter λ always admits a unique solution. In fact, G(x) is a
strictly monotonous increasing function of 0 ≤ x < 1 with
G(0) = 1 and limx→1− G(x) = +∞. We introduce the con-
centration of clusters of species i, the i-mers, as xi = Ni/N,
and the total concentration of clusters xc = Nc/N = ∑n

c

i=1 xi

= ∑n
c

i=1 λizi/
∑n

c

i=1 iλizi . Then we notice that limλ → 0xc
= 1, limλ → ∞ xc = 1/nc < 1, and xc is a strictly monotonous
decreasing function of λ.25 So G(ηc) is a strictly monotonous
decreasing function of λ with limλ→0 G(ηc) = G[(π/6)ρσ 3

c ]
and limλ→∞ G(ηc) = G[(π/6nc)ρσ 3

c ]. We also notice that we
must require (π/6)ρσ 3

c < 1. Observing next that
∑n

c

i=1 iλizi

is a strictly monotonous increasing function of λ which is zero
at λ = 0, we conclude that Eq. (3.5) must admit always only
one solution λ > 0 such that limρ → 0 λ = 0 and limρ → 0
x1 = 1.

The total partition function Qtot of the fluid is given then
by

ln Qtot =
∑

i

[Ni ln zi − (Ni ln Ni − Ni)] + ln Zc

= Nc − Nc ln N1 − (N − Nc) ln λ + ln Zc, (3.7)

where Zc is the inter-cluster configurational partition func-
tion and βAex

c = − ln(Zc/V N
c ) is the inter-cluster excess free

energy.
Introducing the concentration of monomers x1 = N1/N

and the concentration of clusters x1 < xc = Nc/N < 1 (note
that 1/xc can be considered as a measure of the average cluster
size), we can rewrite

βaBT H
bond = β

[
a − (

aid + aex
0

) ]
= xc ln x1 + (1 − xc) ln(λe/ρ)

+β
(
aex

c − aex
0

) + constants, (3.8)

where βa = −(ln Qtot)/N is the associating fluid total free en-
ergy per particle and aex

0 + aid is the reference system to-
tal free energy per particle. Note that, in the absence of at-
tractions and therefore in the presence of monomers only
x1 = xc = 1, in order to have aBT H

bond = 0 we must have aex
0

= limx
c
→1 aex

c . Only for σ c = σ this condition is satisfied by
the Carnahan-Starling reference system, aex

HS of Eq. (2.2). In
the most general case we may think at σ c as a function of the
thermodynamic state of the associating fluid. In the present
work we will always restrict to the case of a constant σ c.

At high temperatures all zi → 0 for i > 1 and x1 → xc
→ 1 or λ → ρG[(π/6)ρσ 3

c ]/z1, which means we have com-
plete dissociation. At low temperatures all zi → ∞ for i > 1
and x1 → 0 or λ → 0, which means that we have association.

B. Wertheim thermodynamic theory

In Wertheim theory5 one assumes that each hard-sphere
of the one-component fluid (the case of a mixture will be con-
sidered in detail in Sec. V A) is decorated with a set � of M
attractive sites. Under the assumptions of (i) a single bond per
site, (ii) no more than one bond between any two particles,
and (iii) no closed loop of bonds, one can write in a first or-
der thermodynamic perturbation theory framework, valid at
reasonably high temperatures,

βaW
bond =

∑
α∈�

(
ln xα − xα

2

)
+ M

2
, (3.9)

where xα = Nα/N is the fraction of sites α that are not bonded
(not to be confused with xi the concentration of clusters made
of a number i of particles. We will always use a Greek index to
denote a specific site) and can be solved by the “law of mass
action,”

xα = 1

1 + ρ
∑

β∈� xβ
αβ

, α ∈ �, (3.10)

where the probability to form a bond, once the available sites
of the two particles are chosen, is given by ρ
αβ = ρ
βα and
approximated as


αβ =
∫

v
αβ

g0(r12)〈fαβ(12)〉�1,�2
dr12. (3.11)

Here the integral is over the volume vαβ of the bond αβ, g0 is
the radial distribution function of the reference system, fαβ is
the Mayer function between site α on particle 1 and site β on
particle 2 (see Sec. III D), and 〈. . .〉�1,�2

denotes an angular
average over all orientations of particles 1 and 2 at a fixed
relative distance r12. Equation (3.10) should be solved for the
real physically relevant solution such that limρ → 0 xα = 1.

At high temperatures 
αβ → 0 and xα → 1, which
means we have complete dissociation. At low temperatures
(Wertheim theory is a high temperature expansion but here we
just mean the formal low T limit of the first order Wertheim
results) 
αβ → ∞ and xα → 0, which means that we have
complete association.

The number of attractive sites controls the physical be-
havior. Models with one site allow only dimerization. The
presence of two sites permits the formation of chain and ring
polymers. Additional sites allow formation of branched poly-
mers and amorphous systems.

1. Finite vs infinite clusters

Wertheim theory, unlike BTH one, allows for the exis-
tence of infinite clusters in the fluid: The percolation phe-
nomenon. In particular, in Wertheim theory one can define10

Ps = ∑
i ixi as the probability to have a particle in a finite

cluster (in BTH theory Ps = 1 by construction). One can then
define the mean cluster size, or number averaged size of the
finite clusters, Nn = ∑

i ixi/
∑

i xi, the mean size of a cluster
to which a randomly chosen particle belongs, or weight aver-
aged cluster size, Nw = ∑

i i
2xi/

∑
i ixi , or higher moments

of the cluster size distribution xi.
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The interplay between condensation and clustering in as-
sociating fluids has been the subject of many studies.10 In
particular, Coniglio et al.22 proposed a general theory of the
equilibrium distribution of clusters, establishing a relation be-
tween percolation and condensation. Percolation is generally
believed to be a prerequisite for condensation. As a matter of
fact in Sec. V B we will show explicitly that BTH theory is
unable to account for condensation.

2. One attractive site

The simplest case we can consider in Wertheim theory
is the one with a single site α, M = 1. In this case only
monomers and dimers can ever form. Solving the law of mass
action for x = xα , the fraction of non-bonded sites α which
coincides with the concentration of monomers x1, we find

x = 2

1 + √
1 + 4ρ


, (3.12)

with 
 = 
AA, which has the correct low density limit
limρ → 0 x = 1.

Analogously we can solve this simple case in BTH theory
allowing only for monomers and dimers, nc = 2, and choos-
ing the ideal gas approximation for the inter-cluster configura-
tional partition function, G = 1 (the σ c → 0 limit of Eq. (3.6)).
Then we should solve for λ > 0 in the following quadratic
equation:

x1 = λz1/ρ, (3.13)

x2 = λ2z2/ρ, (3.14)

1 = x1 + 2x2. (3.15)

The solution for the monomers concentration is

x1 = 2

1 +
√

1 + 8ρz2/z
2
1

. (3.16)

We then see that we have agreement between the two theories
if we choose


 = 2z2/z
2
1 = 2z2. (3.17)

Already for this simple case we see that the bond con-
tribution to the free energy predicted by the two theories,
Eqs. (3.9) and (3.8), coincide. In fact, from BTH theory of
Eq. (3.8), since the excess free energy of the reference system
and the inter-cluster excess free energy are both zero, we find,
up to an additive constant,

βaBT H
bond = xc ln x1 + (1 − xc) ln(λe/ρ)

= ln x1 + (1 − xc)

= ln x1 − x1/2 + 1/2 = βaW
bond, (3.18)

where the second equality follows from Eq. (3.13), the third
one from observing that x2 = (1 − x1)/2, and the last one from
Eq. (3.9).

BTH theory, on the other hand, allows to be more accu-
rate and to treat the fluid of clusters instead of just as an ideal

gas as a fluid of hard-spheres of diameter σ c. In this case one
should solve numerically Eqs. (3.1), (3.2), and (3.5) with G
given by Eq. (3.6). And the inter-cluster excess free energy
will be given by

βaex
c = 4ηc − 3η2

c

(1 − ηc)2
, (3.19)

whereas the excess free energy per particle of the reference
system will be the usual Carnahan-Starling one of Eq. (2.2).26

Taking a = aHS + abond and choosing z2 = 
/2
we compared the behavior of the two theories. Following
Ref. 7 and approximating the radial distribution function of
the reference system, in Eq. (3.31) which appears next in the
text, with its zero density limit, we choose 
 = K0[exp (βε)
− 1] with K0 = πd4(15σ + 4d)/30σ 2 ≈ 0.332 × 10−3σ 3.
This choice is dictated by the fact that Wertheim theory gives
only a semi-quantitative agreement with simulation data and
we did not find any substantial improvement, at least in the
density ranges we considered, by choosing a better refined
low density approximation, as is done in other works.7, 12 In
Fig. 1 we show the comparison of the behavior of the pressure
(from Eq. (3.20) which appears next in the text) and dimers
concentration as functions of density calculated analytically
in Wertheim theory and numerically in BTH theory with σ c
= σ , on several isotherms. As expected even at very small
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FIG. 1. Comparison of the behavior of the excess pressure, βpex = βp − ρ

(top panel) and dimers concentration (bottom panel) as functions of density
for the BTH theory (thick lines), for σ c = σ , and the W theory (thin lines),
on several isotherms.
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temperatures there is no sign of a gas-liquid coexistence, the
pressure being a monotonously increasing function of den-
sity. We have just shown that at low density the two theo-
ries must coincide since limρ → 0 G = 1, but from the figure
we see that the interval of densities over which the two theo-
ries agree increases of width as T increases. The figure shows
how at high temperatures the two theories tend to become
coincident but at low temperatures they differ strongly. This
raises the question of which one of the two theories is a better
approximation when compared to the exact Monte Carlo re-
sults. We will delay the answer to this legitimate question until
Sec. V A 2. BTH theory naturally demands an approximation
for the intra-cluster partition functions. In this work, unlike
previous ones,3, 15–19 we will always use the relation (3.17)
when comparing the two theories.

Nonetheless we expect Wertheim theory to become more
simple and elegant than BTH theory for M > 1. As a matter
of fact we expect in these cases the presence in the fluid of
i-mers of any size i. So that using BTH theory we will nec-
essarily introduce the additional approximation of the maxi-
mum number of cluster species i ≤ nc, an artificial cutoff not
needed in Wertheim theory.

C. The gas-liquid coexistence

In order to determine the gas-liquid coexistence line (the
binodal) one needs to find the compressibility factor z = βp/ρ,
with p the pressure, and the chemical potential μ of the asso-
ciating fluid according to the thermodynamic relations

z(ρ, T ) = ρ

(
∂βa

∂ρ

)
T ,N

, (3.20)

βμ(ρ, T ) =
(

∂βaρ

∂ρ

)
T ,V

= z + βa. (3.21)

The coexistence line is then given by the Gibbs equilib-
rium condition of equality of the pressures and chemical po-
tentials of the two phases

ρgz(ρg, T ) = ρlz(ρl, T ), (3.22)

βμ(ρg, T ) = βμ(ρl, T ), (3.23)

from which one can find the coexistence density of the gas
ρg(T) and of the liquid ρ l(T) phases.

The critical point (ρc, Tc) is determined by solving the
following system of equations:

∂zρ

∂ρ

∣∣∣∣
ρ

c
,T

c

= 0, (3.24)

∂2zρ

∂ρ2

∣∣∣∣
ρ

c
,T

c

= 0. (3.25)

D. Microscopic description: Importance
of the pair potential

The fluid is assumed to be made of particles interact-
ing only through a pair-potential φ(12) = φ(r1,�1, r2,�2),

where ri and �i are the position vector of the center of parti-
cle i and the orientation of particle i, respectively.

To give structure to the fluid we further assume that the
particles have an isotropic hard-core of diameter σ with

φ(12) = φHS(r12) + �(12), (3.26)

where r12 = |r12| = |r2 − r1| is the separation between the
two particles 1 and 2 and

φHS(r) =
{

+∞ r ≤ σ

0 r > σ
. (3.27)

The anisotropic part �(12) in Wertheim theory is gener-
ally chosen as

�(12) =
∑
α∈�

∑
β∈�

ψαβ(rαβ), (3.28)

where

rαβ = r2 + dβ(�2) − r1 − dα(�1) (3.29)

is the vector connecting site α on particle 1 with site β on par-
ticle 2. Here dα is the vector from the particle center to site α

with dα < σ /2. The site-site interactions ψαβ ≤ 0 are assumed
to be purely attractive. The Mayer functions introduced in
Sec. III B are then defined as fαβ(12) = exp [−βψαβ (rαβ)]
− 1.

Wertheim theory depends on the specific form of the site-
site potential only through the quantity 
α, β of Eq. (3.11), as
long as the three conditions of a single bond per site, no more
than one bond between any two particles, and no closed loop
of bonds, are satisfied. A common choice, for example, is a
square-well form

ψαβ (r) =
{

−εαβ r ≤ dαβ

0 r > dαβ

, (3.30)

where εαβ > 0 are site-site energy scales, the wells depths,
and dαβ are the wells widths. In this case we must have
dα + dβ > σ − dαβ moreover we will have


αβ = Kαβ(σ, dαβ, η)(eβε
αβ − 1). (3.31)

We will also call limρ→0 Kαβ = K0
αβ some purely geometric

factors. Remember that limρ → 0 g0(r) = �(r − σ ) with �

the Heaviside step function. Another common choice is the
Kern-Frenkel patch-patch pair-potential model.27

In BTH theory on the other hand, we are allowed to relax
these conditions and the choice of the pair-potential is more
flexible as long as it includes some attractive component re-
sponsible for the association.

IV. SOME RESULTS FROM WERTHEIM THEORY

Wertheim theory of associating fluids has been recently
tested extensively by Sciortino and co-workers. In a se-
ries of papers, they have studied fluids of hard-spheres with
identical sites allowing for “chaining”6–9 and with sites of
two different kinds allowing for “branching”10–12 and for
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“rings” formation.13, 14 They showed how the parameter-free
Wertheim theory is flexible enough to accommodate a vast
number of different microscopic pair-potentials descriptions
and nonetheless pointed out some relevant classes of micro-
scopic features giving rise to specific macroscopic behaviors
at the level of the clustering, the percolation threshold, and
the gas-liquid coexistence.

In all these cases nc → ∞ so they cannot be treated with
the BTH theory which as we will see in Sec. V B is unable
to account for the gas-liquid coexistence. Thus, in order to
compare the two theories we have to choose different systems.

V. COMPARISON BETWEEN WERTHEIM THEORY
AND BJERRUM-TANI-HENDERSON THEORY

In order to test the accuracy of the Wertheim and BTH
theories we carried out some Monte Carlo (MC) simulations
on simple models of associating fluids.

A. One attractive site, nc = 2

We limit ourselves to the case nc = 2 and we consider
two different realizations of this scenario: A binary mixture
and a one-component fluid.

1. A binary mixture

To test the single site case we considered a symmetric
binary mixture of particles with the following pair-potential
between a particle of species ᾱ (in this section a Greek index
with an over-bar labels the particle species) and one of species
β̄ a center-to-center distance r apart

φᾱβ̄(r) =

⎧⎪⎨
⎪⎩

+∞ r ≤ σᾱβ̄

−(1 − δᾱβ̄)ε σᾱβ̄ < r ≤ σᾱβ̄ + W
0 r > σᾱβ̄ + W

, (5.1)

where σᾱβ̄ = (1/2)(σᾱ + σβ̄)(1 + Dᾱβ̄) with σᾱ = σ and
Dᾱβ̄ = −(1 − δᾱβ̄) with ᾱ and β̄ equal to 1, 2 and δ the
Kronecker delta. So that σᾱβ̄ = σδᾱβ̄ . ε > 0 and W > 0 are,
respectively, the square well depth and width for the attrac-
tion of unlike particles. Also we choose the symmetric case
where the concentrations of particles of species ᾱ, Xᾱ = 1/2
for ᾱ = 1, 2. In this case the ideal part of the free energy will
be given by βaid = ln(ρ	3/e) + X1 ln X1 + X2 ln X2, where
the entropy of mixing, the last two terms, is just an additive
constant.

It is then clear that, for W < σ/2, this model fluid allows
for dimerization only, just as the M = 1 case of Wertheim.
In fact, whenever two unlike particles bind, a third particle
can never bind to the formed dimer because of the hard-core
repulsion between like particles. Moreover by choosing W
small at will we may reach the ideal condition of σ c = σ with
σ c the diameter of the dimers in the BTH theory. The refer-
ence fluid, the one with ε = 0, is a symmetric non-additive-
hard-sphere (NAHS) mixture with non-additivity D12 = −1.

We will then take

βaex
0 = 2η − (3/4)η2

[1 − (1/2)η]2
. (5.2)

Wertheim theory has been extended to multicomponent
mixtures by Chapman et al.28 For a mixture with a num-
ber ns of species and Nᾱ = NXᾱ particles of species ᾱ =
1, 2, . . . , ns , we have

βaW
bond =

n
s∑

ᾱ=1

Xᾱ[ln xᾱ − xᾱ/2 + 1/2], (5.3)

where xᾱ = Nᾱ
1 /Nᾱ is the monomer fraction of species ᾱ,

with Nᾱ
1 the number of monomers of species ᾱ, and is de-

termined by the following law of mass action,

xᾱ = 1

1 + ρ
∑n

s

β̄=1
Xβ̄xβ̄
ᾱβ̄

, (5.4)

where


ᾱβ̄ = 
β̄ᾱ =
∫

v
ᾱβ̄

g0
ᾱβ̄

(r12)〈fᾱβ̄(12)〉�1,�2
dr12, (5.5)

with g0
ᾱβ̄

the partial radial distribution of the reference fluid

and fᾱβ̄(12) = e
−β[φ

ᾱβ̄
(r12)−φ0

ᾱβ̄
(r12)] − 1 the Mayer function be-

tween particle 1 of species ᾱ and particle 2 of species β̄, with
φ0

ᾱβ̄
the pair-potential of the reference fluid.
In our symmetric binary case xᾱ=1 = xᾱ=2 = x and 


= 
12 = K12(eβε − 1) (with 
ᾱᾱ = 0 for ᾱ = 1, 2), where,
since the unlike radial distribution function of the reference
system is the one of the ideal gas, equal to one everywhere,
we have exactly K12 = (4/3)πW3. The solution of Eq. (5.4)
is

x = 2

1 + √
1 + 2ρ


. (5.6)

Here we will choose W = 0.1σ .
On the other hand BTH theory continues to hold just as

in its one component fluid formulation given in Sec. III A.
We expect the cluster diameter to vary within the interval
σ ≤ σc ≤ σ + W even if for the comparison with the sim-
ulation data we will need to consider σ c < σ . We will now
choose z2 = 
/4.

At high temperatures z2 = 
/4 → 0 and x1 → 1,
xc → 1 so βaW = βaid + [2η − (3/4)η2]/[1 − (1/2)η]2,
whereas βaBT H = βaid + [4ηc − 3η2

c ]/[1 − ηc]2. Then for
σ c �= σ /21/3 the parameter free Wertheim theory is cer-
tainly a better approximation than BTH. At low temperatures
z2 = 
/4 → ∞ and x1 → 0, xc → 1/2, and the two theories
become equivalent for σ c = σ (see the Appendix). Within
BTH one is free to choose σ c in such way to get more accu-
rate results.

The opposite behavior was observed for the one-
component case of Sec. III B 2 where the two theories, for
σ c = σ , become equivalent at high temperature and at low
temperature they differ and BTH is expected to become better
than W.

We carried out MC simulations of this mixture in the
canonical ensemble using a total number N = 500 of parti-
cles. In the simulation we measure the pressure from the virial
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theorem as29

zMC = 1 + 1

3
πρ

[
σ 3g11(σ+) − (eβε − 1)W3g12(W+)

]
,

(5.7)

where gᾱβ̄ are the partial radial distribution functions. In the
simulation we define a dimer as any two particles for which
the pair-potential equals −ε. So, we measure the dimers con-
centration xMC

2 = −uex/ε, where uex is the excess internal en-
ergy per particle of the fluid. As usual we choose σ as the unit
of length and ε as the unit of energy. At the lowest tempera-
ture studied, T∗ = 0.1, the probability of breaking a bond is of
the order of exp (1/0.1), thus requiring 2 × 104 MC attempts
to break such a bond. Our simulations were of the order of
4 × 105 MC steps long, with a MC step made by N single
particle moves.

We compare the simulation data with the dimers concen-
trations, xW

2 and xBT H
2 , and pressures, ρzW and ρzBTH, pre-

dicted by Wertheim and BTH theories, where

zW = 1 + ρ
∂β

(
aex

0 + aW
bond

)
∂ρ

, (5.8)

zBT H = 1 + ρ
∂β

(
aex

0 + aBT H
bond

)
∂ρ

, (5.9)

with aex
0 given by Eq. (5.2), aW

bond given by Eq. (5.3), and
aBT H

bond given by Eq. (3.8) with nc = 2 and z2 = 
/4.
In Fig. 2 we compare the equation of state and the dimers

concentration as a function of density predicted by Wertheim
and BTH theories with the MC results at a low reduced tem-
perature T∗ = 0.1. We see that by choosing the cluster diam-
eter opportunely, σ c < σ , one can get the BTH results for the
pressure to overlap with MC data over a wide range of densi-
ties. Fig. 3 shows the same comparison at the high tempera-
ture T∗ = 0.4 for the optimal σ c = σ /21/3. From the figures we
conclude that BTH theory, with the optimal σ c for the equa-
tion of state, improves at low temperatures, where it becomes
more accurate than Wertheim theory, but fails a correct de-
scriptions of the clusters concentration at high temperatures
and high densities. By appropriately tuning the cluster diam-
eter σ c it is possible to get better agreement for the dimer
concentration but then the theory would fail to reproduce the
pressure correctly. So it is never possible to get good agree-
ment for both the pressure and the dimer concentration.

In Fig. 4 we compare the pressure and the dimers con-
centration as functions of temperature predicted by the two
theories, when σ c = σ /21/3 in BTH, with the MC results at a
low reduced density ρ∗ = 0.6. The figure shows how in this
case the Wertheim theory is better than BTH.

2. A one-component fluid

As a one-component fluid we chose the single patch
Kern-Frenkel model15, 27 where the particles interact with the
following pair-potential

φ(r12) = φHS(r12) + φSW (r12)γ (n̂1, n̂2, r̂12), (5.10)

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

βp
σ3

ρ*

W
BTH

MC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x 2

ρ*

W
BTH
MC

FIG. 2. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the T∗ = 0.1 isotherm for W = 0.1σ . The broken line
is the prediction of W theory, the continuous line the one of BTH theory with
σ c = 0.98σ , and the points are the exact MC data.

where

φSW (r) =
{

−ε σ < r ≤ σ + W
0 else

, (5.11)

and

γ (n̂1, n̂2, r̂12)

=
{

1 n̂1 · r̂12 ≥ cos θ0 and − n̂2 · r̂12 ≥ cos θ0

0 else
,

(5.12)

here n̂i is a unit vector pointing from the center of parti-
cle i towards the center of her attractive patch and θ0 is
the angular semi-amplitude of the patch. The fraction of the
particle surface covered by the attractive patch will then be
χ =

√
〈γ 〉�1,�2

= sin2(θ0/2).

In order to have nc = 2 we must choose θ0 < π /6 or
χ < (

√
3 − 1)2/8 ≈ 0.0670 in the sticky limit W → 0 and

cos 2θ0 >
1

2
+ 1

2σ (σ + W)

×
√

6σ 3W − σ 2W2 − 4σW3 − W4, (5.13)
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FIG. 3. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the T∗ = 0.4 isotherm for W = 0.1σ . The broken line
is the prediction of W theory, the continuous line the one of BTH theory with
σ c = σ /21/3, and the points are the exact MC data.

more generally, for small W . As before we choose W = 0.1σ

and in order to fulfill the single bond per patch condition
(5.13) we take θ0 = π /12 or χ = 0.0170. This choice cor-
responds to a patch-patch bonding volume vpp = (π/3)[(σ
+ W)3 − σ 3](1 − cos θ0)2 ≈ 0.402 × 10−3σ 3. We then
choose for 
 its zero density limit approximation

 = vpp(eβε − 1).

We carried out MC simulations of this one-component
fluid in the canonical ensemble using a number N = 500
of particles. The pressure is calculated during the simulation
from the virial theorem as follows,27

zMC = 1 + 2π

3
ρσ 3[g(σ+) − (1 + W/σ )3{gpp[(σ + W)−]

− gpp[(σ + W)+]}], (5.14)

where gpp(r) is the radial patch-patch distribution function:
The partial radial distribution function which considers only
particles with facing patches. Again, we measure the dimers
concentration as xMC

2 = −uex/ε. As usual we choose σ as the
unit of length and ε as the unit of energy. A MC move here
consisted of both a random displacement of the center of the
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FIG. 4. Pressure (top panel) and dimers concentration (bottom panel) as a
function of temperature on the ρ∗ = 0.6 isochore for W = 0.1σ . The broken
line is the prediction of W theory, the continuous line the one of BTH theory
with σ c = σ /21/3, and the points are the exact MC data.

particle and a random rotation of the particle (according to the
Marsaglia algorithm30).

In Figs. 5 and 6 we compare the simulation data on two
different isotherms, at low temperature T∗ = 0.1 and high tem-
perature T∗ = 0.4, with the dimers concentrations, xW

2 and
xBT H

2 , and pressures, ρzW and ρzBTH, predicted by Wertheim
and BTH theories as shown in Sec. III B 2. From the compari-
son emerges that at low temperatures one can adjust σ c in the
BTH theory to obtain good agreement either with the pres-
sure or with the dimers concentration data, but not with both
simultaneously. In the high temperature limit the two theories
coincide for σ c = σ , but again BTH fails at high densities at
large but finite temperature.

For this system we also tried to use in the BTH theory
an intercluster partition function derived from the Freasier
et al.31 equation of state for dumbbells with a center-to-center
distance equal to σ . But we soon discovered that such an
equation of state is very similar to a Carnahan-Starling with
a σ c ≈ 2.5σ . This implied that we could study only a den-
sity range ρ∗ < 6σ 3/(πσ 3

c ) ≈ 0.1222. At such low densities
the fluid tends to dissociate into monomers and as a conse-
quence such refined BTH becomes worst than the usual BTH
with a Carnahan-Starling intercluster partition function with
σ c close to σ .
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FIG. 5. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the T∗ = 0.1 isotherm for W = 0.1σ and θ0 = π /12.
The broken line is the prediction of W theory, the continuous line the one of
BTH theory with σ c = 1.23σ , and the points are the exact MC data.

B. Number of cluster species nc > 2

We have seen in various ways that as long as nc ≤ 2 we
expect, either from the Wertheim theory or from the BTH the-
ory, the absence of the liquid phase. So now we want to un-
derstand if there exists a critical nc, n̄c, such that for nc > n̄c

we may have the appearance of the liquid in the associating
fluid.

According to Wertheim:5 “As long as [nc] is finite, or at
least a reasonably small number, we would expect increasing
association with decreasing T, but no gas-liquid transition.
On this basis one may conjecture that the gas-liquid transi-
tion is related to the catastrophic increase with s of allowed
s-mer[s] [...] when no cutoff [...] is provided.”

Wertheim also suggests that, releasing the single bond
per site condition, a pair-potential of the form given by
Eqs. (3.26)–(3.30) allows to have fluids with nc > 2 finite. If
Wertheim is correct we would be unable to predict the liquid
phase within the BTH theory.

In order to understand better this point we looked if it is
possible to have the appearance of a van der Waals loop in
βpBTH = ρzBTH = ρ2∂βaBTH/∂ρ for nc > 2. We looked then
at the low temperature T → 0 and large number of cluster
species nc → ∞ limit. We choose the zi → ∞ for i > 1 in
the low temperature limit, in such a way to fulfill complete
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FIG. 6. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the T∗ = 0.4 isotherm for W = 0.1σ and θ0 = π /12.
The broken line is the prediction of W theory, the continuous line the one of
BTH theory with σ c = σ , and the points are the exact MC data.

association, i.e., limT →0 xn
c
= 1/nc. Specifically we realized

this by the choice zi = (z2)i − 1, which can be justified from
the extensive property of the intra-cluster excess free energy.
Then, due to the complete association, we have

xc

T →0−−−−→ 1

nc

n
c
→∞

−−−−→ 0, (5.15)

so aex
c → 0. Moreover, it is easy to see, either from a numer-

ical analysis or analytically, that

−ρ < α(nc) = lim
T →0

ρ2 ∂[xc ln x1 + (1 − xc) ln(λe/ρ)]

∂ρ

≤ −ρ

2
, (5.16)

with α(nc) = (1/nc − 1)ρ (remember that limT → 0 λ = 0 and
temperature and density are two independent variables) and
limn

c
→∞ α(nc) = −ρ and α(2) = −ρ/2 (see the Appendix).

So that, in particular,

lim
n

c
→∞ lim

T →0
pBT H = 0. (5.17)

This result strongly suggests that BTH will never be able
to account for the liquid phase, contrary to the Wertheim
theory.6, 11, 14
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VI. CONCLUSIONS

We compared Wertheim and BTH association theories.
Whereas Wertheim theory is able to account for fluids with
an infinite number of cluster species, BTH is not. As a result,
only Wertheim’s approach is able to account for the percola-
tion and the condensation phenomena.

For the special case of fluids allowing for dimerization
only, Wertheim theory becomes equivalent to BTH provided
an ideal gas description of the inter-cluster partition function
is used. For the Bjerrum-Tani-Henderson theory we also rig-
orously proved the uniqueness of the solution for the cluster’s
concentrations and the reduction of the system of equations to
a single one for a single unknown.

To assess the accuracy of Wertheim and the full BTH
using a hard-sphere (Carnahan-Starling) description of the
inter-cluster partition function, we performed some MC
simulations of two dimerizing systems: a binary mixture of
associating non-additive hard-spheres and a one component
single patch Kern-Frenkel fluid. Our results show that the
parameter free Wertheim’s theory captures well, at low
density, the behavior of the MC data, both for the pressure
and the concentration of dimers, and the range of densities
where it is valid increases with increasing temperature. BTH,
on the other hand, has the dimer diameter as a free parameter
which can be adjusted to find more accurate agreement with
the simulation data, even if the breakdown of its validity at
high density still remains.
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APPENDIX: LOW TEMPERATURE LIMIT
OF BTH AND W THEORIES

For the case studied in Sec. V A, from W theory we find,
for the compressibility factor,

zW
bond = ρ

∂βaW
bond

∂ρ
= − 
ρ(

1 + √
1 + 2
ρ

)2 , (A1)

so, in the low temperature limit, we have

lim

→∞

zW
bond = −1/2. (A2)

In BTH theory instead

zBT H
bond = ρ

∂βaBT H
bond

∂ρ
. (A3)

Recalling that xc = (1 + λz2)/(1 + 2λz2), we find, in the low
temperature limit, limz2→∞ xc = 1/2. Then, for σ c = σ , we
have aex

c → aex
0 . So, since z2 and ρ are independent variables,

we find

lim
z2→∞ zBT H

bond = lim
z2→∞ ρ

∂[xc ln x1 + (1 − xc) ln(λe/ρ)]

∂ρ
. (A4)

Observing further that limz1→∞ λ = 0 we then find

limz2→∞ zBT H
bond = −1/2 as for Wertheim.
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Chapter 43

Gas-liquid coexistence for the bosons
square-well fluid and the 4He binodal
anomaly

Fantoni R., Phys. Rev. E 90, 020102(R) (2014)
Title: “Gas-liquid coexistence for the bosons square-well fluid and the 4He binodal anomaly”
Abstract: The binodal of a boson square-well fluid is determined as a function of the particle
mass through the newly devised quantum Gibbs ensemble Monte Carlo algorithm [R. Fantoni
and S. Moroni, to be published]. In the infinite mass limit we recover the classical result.
As the particle mass decreases the gas-liquid critical point moves at lower temperatures. We
explicitely study the case of a quantum delocalization de Boer parameter close to the one of
4He. For comparison we also determine the gas-liquid coexistence curve of 4He for which we
are able to observe the binodal anomaly below the λ-transition temperature.
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The binodal of a boson square-well fluid is determined as a function of the particle mass through a quantum
Gibbs ensemble Monte Carlo algorithm devised by R. Fantoni and S. Moroni [J. Chem. Phys. (to be published)].
In the infinite mass limit we recover the classical result. As the particle mass decreases, the gas-liquid critical
point moves at lower temperatures. We explicitly study the case of a quantum delocalization de Boer parameter
close to the one of 4He. For comparison, we also determine the gas-liquid coexistence curve of 4He for which
we are able to observe the binodal anomaly below the λ-transition temperature.

DOI: 10.1103/PhysRevE.90.020102 PACS number(s): 05.30.Jp, 64.70.F−, 67.10.Fj

Soon after Feynman rewrote quantum mechanics and
quantum statistical physics in terms of the path integral
[1,2] it was realized that this new mathematical object could
be used as a powerful numerical instrument. The statistical
physics community soon realized that a path integral could be
calculated using the Monte Carlo method [3].

Consider a fluid of N bosons at a given absolute temper-
ature T = 1/kBβ, with kB the Boltzmann constant. Let the
system of particles have a Hamiltonian Ĥ = −λ

∑N
i=1 ∇2

i +∑
i<j φ(|ri − rj |) symmetric under particle exchange, with

λ = �2/2m, m the mass of the particles, and φ(|ri − rj |) the
pair potential of the interaction between particle i at ri and
particle j at rj . The many-particle system will have spatial
configurations {R}, with R ≡ (r1, . . . ,rN ) the coordinates
of the N particles. The partition function of the fluid can
be calculated [3] as a sum over the N ! possible particle
permutations P of a path integral over many-particle closed
paths X ≡ (R0, . . . ,RP ) in the imaginary time interval τ ∈
[0,β = Pε], discretized into P intervals of equal length ε, the
time step, with RP = PR0 the β-periodic boundary condition.

More recently a grand-canonical ensemble algorithm has
been devised by Boninsegni et al. [4] for the path integral
Monte Carlo method. This paved the way to the development of
a quantum Gibbs ensemble Monte Carlo algorithm (QGEMC)
to study the gas-liquid coexistence of a generic boson fluid [5].
This algorithm is the quantum analog of the Panagiotopoulos
[6] method, which has now been successfully used for several
decades to study first-order phase transitions in classical fluids
[7]. However, as simulations in the grand-canonical ensemble,
the method does rely on a reasonable number of successful
particle insertions to achieve compositional equilibrium. As a
consequence, the Gibbs ensemble Monte Carlo method cannot
be used to study equilibria involving very dense phases. Unlike
previous extensions of the Gibbs ensemble Monte Carlo that
include quantum effects (some [8] only consider fluids with
internal quantum states; others [9] successfully exploit the
path integral Monte Carlo isomorphism between quantum
particles and classical ring polymers, but lack the structure
of particle exchanges which underlies the Bose or Fermi
statistics), the QGEMC scheme is viable even for systems
with strong quantum delocalization in the degenerate regime

*rfantoni@ts.infn.it

of temperature. Details of the QGEMC algorithm will be
presented elsewhere [5].

In this Rapid Communication we will apply the QGEMC
method to the fluid of square-well (SW) bosons in three spatial
dimensions as an extension of the work of Vega et al. [10]
on the classical fluid. The de Boer quantum delocalization
parameter � = �/σ (mE)1/2, with E and σ measures of the
energy and length scale of the potential energy, can be
used to estimate the quantum mechanical effects on the
thermodynamic properties of nearly classical liquids [11].
We will consider square-well fluids with two values of the
particle mass m: � = 1/

√
50, close but different from zero,

and � = 1/
√

5. In the first case we compare our result with
the one of Vega and in the second case with the one of 4He,
which we consider in our second application. When studying
the binodal of 4He in three spatial dimensions we are able to
reproduce the binodal anomaly appearing below the λ point,
where the liquid branch of the coexistence curve shows a
reentrant behavior.

In our implementation of the QGEMC [5] algorithm we
choose the primitive approximation to the path integral action
discussed in Ref. [3]. The simulation is performed in two boxes
(representing the two coexisting phases) of varying volumes
V1 and V2 = V − V1 and numbers of particles N1 = V1ρ1

and N2 = V2ρ2 = N − N1 with V and N = Vρ constants.
The Gibbs equilibrium conditions of pressure and chemical
potential equality between the two boxes is enforced by
allowing changes in the volumes of the two boxes (the
volume move, q = 5) and by allowing exchanges of particles
between the two boxes (the open-insert move, q = 1, plus the
complementary close-remove move, q = 2, plus the advance-
recede move, q = 3) while at the same time sampling the
closed path configuration space (the swap move, q = 4, plus
the displace move, q = 6, plus the wiggle move, q = 7). We
thus have a menu of seven, q = 1,2, . . . ,7, different Monte
Carlo moves where a single random attempt of any one of them
with a probability Gq = gq/

∑7
q=1 gq constitutes a Monte

Carlo step.
We denote with V the maximum displacement of ln(V1/V2)

in the volume move, with L(p) the maximum particle dis-
placement in box p = 1,2 in the displacement move, and with
Mq < P the maximum number of time slices involved in the
q �= 5,6 move. In order to fulfill a detailed balance we must
choose M1 = M2.

1539-3755/2014/90(2)/020102(4) 020102-1 ©2014 American Physical Society
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Letting the system evolve at a given absolute temperature T

from a given initial state (for example, we shall take ρ1 = ρ2 =
ρ), we measure the densities of the two coexisting phases,
ρ1 < ρ and ρ2 > ρ, which soon approach the coexistence
equilibrium values.

First we study a system of bosons in three dimensions
interacting with a square-well pair potential,

φ(r) =
⎧⎨
⎩

+∞, r < σ,

−A, σ � r < σ (1 + 
),
0, σ (1 + 
) � r,

(1)

which, for example, can be used as an effective potential for
cold atoms [12] with a scattering length a = σ (1 + 
)[1 −
tan(σ


√A/2λ)/σ (1 + 
)
√A/2λ]. We choose A > 0 as the

unit of energies and σ as the unit of length. We then introduce
a reduced temperature T ∗ = kBT /A and a reduced density
ρ∗ = ρσ 3. When the mass of the boson is very large, i.e.,
λ∗ = λ/(Aσ 2) � 1, we are in the classical limit. The classical
fluid has been studied originally by Vega et al. [10], who found
that the critical point of the gas-liquid coexistence moves at
lower temperatures and higher densities as 
 gets smaller. The
quantum mechanical effects on the thermodynamic properties
of nearly classical liquids can be estimated by the de Boer
quantum delocalization parameter � = √

2λ∗.
During the subcritical temperature runs we register the

densities of the gas, ρg , and of the liquid, ρl (>ρg), phase
(box). When the densities of the two boxes are too close to one
another, we may observe the curves crossing, which implies
that the two boxes exchange identity. It is then necessary to
compute the density probability distribution function, created
using the densities of both boxes. When we are at temperatures
sufficiently below the critical point, this distribution appears to
be bimodal, i.e., it has two peaks approximated by Gaussians.
In some representative cases we checked that the peaks of
the bimodal calculated thusly occur at the same densities as
the peaks of the bimodal obtained from the single density
distribution of the worm algorithm after a careful tuning of the
chemical potential [13].

We study the model with 
 = 0.5 near their classical
limit λ∗ = 1/100 (� ≈ 0.14,a∗ = a/σ ≈ 1.44) and at an in-
termediate case λ∗ = 1/10 (� ≈ 0.45,a∗ ≈ 0.58). We choose
N = 50, ρ∗ = 0.3, L(p) = V

1/3
p /10, V = 1/10, and we take

all Mq equal, adjusted so as to have the acceptance ratios of
the wiggle move close to 50%, g1 = g2 = g3 = g4 = g7 = 1,
g5 = 0.0001, and g6 = 0.1. Moreover, we choose the relative
weight of the Z and G sectors of our extended worm algorithm
C [4] so as to have the Z-sector acceptance ratios close to
50%. We started from an initial configuration where we have
an equal number of particles in boxes of equal volumes at a
total density ρ∗ = 0.3.

All our runs were made of 105 blocks of 105 MC steps with
property measurements every 102 steps [14]. The time needed
to reach the equilibrium coexistence increases with P and in
general with a lowering of the temperature.

If we choose λ∗ = 1/100 and P = 2, Mq = 1 (in this
case the advance-recede move cannot occur), we find that our
algorithm gives results close to the ones of Vega [10] obtained
with the classical statistical mechanics (λ∗ = 0) algorithm
of Panagiotopoulos [6,15]. As we diminish the time step
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FIG. 1. (Color online) Linear fit to the zero time-step limit P →
∞ for T ∗ = 1 and λ∗ = 1/100.

ε∗ = 1/PT ∗ at a given temperature, we can extrapolate to
the zero time-step limit P → ∞ as shown in Fig. 1. We
thus obtain the fully quantum statistical mechanics result for
the binodal shown in Fig. 2, which turns out to exist for
T ∗ � 1. This shows that the critical point due to the effect
of the quantum statistics moves at lower temperatures. For the
temperatures studied the superfluid fraction [16] of the system
was always negligible as in the systems studied in Ref. [9], such
as neon (� ≈ 0.095) and molecular hydrogen (� ≈ 0.276).

In order to extrapolate the binodal to the critical point
we used the law of “rectilinear diameters,” ρl + ρg = 2ρc +
a|T − Tc|, and the Fisher expansion [17], ρl − ρg = b|T −
Tc|β1 (|T − Tc| + c)β0−β1 , with β1 = 1/2 and β0 = 0.3265, and
a,b,c fitting parameters with c = 0 for λ = 0 and c �= 0 for
λ �= 0.
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FIG. 2. (Color online) Binodal for the square-well fluid in three
dimensions. Shown are the classical results of Vega et al. [10] at
λ∗ = 0 and our results in the P → ∞ limit for λ∗ = 1/100,1/10.
In the simulations we used N = 50 and for the extrapolation to the
zero time-step limit up to P = 20 for λ∗ = 1/100 and P = 500 for
λ∗ = 1/10. The curves extrapolating to the critical point are obtained
as described in the text. The solid triangles are the expected critical
points.
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Upon increasing λ∗ to 1/10, the binodal now appears at
T ∗ � 0.008, where we had a non-negligible superfluid fraction
[16] [ρs/ρ ≈ 0.32(2) at T ∗ = 0.006 on the liquid branch]. As
a consequence it proves necessary to use larger P in the ex-
trapolation to the zero time-step limit. Notice also that at lower
temperature it is necessary to run longer simulations due to the
longer paths and equilibration times. We generally expect that
by increasing λ∗ the gas-liquid critical temperature decreases
and the normal-superfluid critical temperature increases. So
the window of temperature for the normal liquid tends to close.

Our second study is on 4He, for which λ∗ = 6.0596. We
now take 1 Å as the unit of length and kB K as the unit of
energy. In this case σ ≈ 2.5 Å, E ≈ 10.9 K, and � ≈ 0.42.
This situation is comparable to a square-well case with λ∗ =
1/10. We use N = 128 and the Aziz HFDHE2 pair potential
[18]

φ(r) =
{
εφ∗(x), r < rcut,

0, r � rcut,
(2)

φ∗(x) = A exp(−αx) −
(

C6

x6
+ C8

x8
+ C10

x10

)
F (x), (3)

F (x) =
{

exp[−(D/x − 1)2], x < D,

1, x � D,
(4)

where x = r/rm, rm = 2.9673, ε/kB = 10.8, A = 0.544
850 4, α = 13.353 384, C6 = 1.373 241 2, C8 = 0.425 378 5,
C10 = 0.178 100, D = 1.241 314, and rcut = 6 Å (here we
explicitly checked that during the simulation the conditions
V

1/3
p > 2rcut for p = 1,2 are always satisfied). In this case

it proves convenient to choose ρ∗ = 0.01, L(p) = V
1/3
p /10,

V = 1/10, g1 = g2 = g3 = g4 = g7 = 1, g5 = 0.0001, and
g6 = 0.1. As for the SW case we observe a decrease in the
width of the coexistence curve ρl − ρg as the number of
time slices increases. We thus work at a small (fixed) time
step ε∗ = 0.002, about 1/1000 of the superfluid transition
temperature, as advised in Ref. [3] to be necessary when
studying helium with the primitive approximation for the
action.

The results for the binodal are shown in Fig. 3. The exper-
imental critical point is at Tc = 5.25 K and ρc = 17.3 mol/l
[19]. Factors explaining the discrepancy with experiment
could be the size error or the choice of the pair potential.
Choosing larger sizes N it is possible to increase rcut and this
shifts the simulated critical temperature to higher values. For
the three-dimensional 4He we expect to have the superfluid
below a λ temperature T ∗

λ = 2.193(6) [4], so our results again
show that our method works well even in the presence of a
non-negligible superfluid fraction. Moreover, as shown by the
points, at the two lowest temperatures we observe the expected
[20] binodal anomaly below the λ point.
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FIG. 3. (Color online) Binodal for the 4He of Aziz [18] in three
dimensions. In our simulations we used N = 128, r∗

cut = 6, and a
time step ε∗ = 0.002. The continuous (red) curve extrapolating to the
critical point is obtained as described in the text. The solid triangle is
the estimated critical point. The experimental results from Ref. [19]
are also shown as a dashed curve.

In conclusion, we determined the gas-liquid binodal of a
square-well fluid of bosons as a function of the particle mass
and of 4He, in three spatial dimensions, from first principles.
The critical point of the square-well fluid moves to lower
temperatures as the mass of the particles decreases, or as the
de Boer parameter increases, while the critical density stays
approximately constant.

Our results for 4He compare well with the experimental
critical density even if a lower critical temperature is observed
in the simulation. We expect this to be due mainly to a finite-
size effect that is unavoidable in the simulation. Nonetheless,
we are able to determine the binodal anomaly [20] occurring
below the λ-transition temperature. The anomaly that we
observe in the simulation appears to be more accentuated than
in the experiment and the liquid branch of the binodal falls at
slightly lower densities.

Even if our QGEMC method is more efficient at high
temperatures, it is able to detect the liquid phase at low
temperatures even below the superfluid transition temperature.
This numerical method is extremely simple to use and, unlike
current methods, does not need the matching of free energies
calculated separately for each phase or the simulation of large
systems containing both phases and their interface.

R.F. would like to acknowledge the use of the PLX
computational facility of CINECA through the ISCRA grant.
We are grateful to Michael Ellis Fisher for correspondence and
helpful comments.
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coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte
Carlo to include quantum effects, our scheme is viable even for systems with strong quan-
tum delocalization in the degenerate regime of temperature. This is demonstrated by an
illustrative application to the gas-superfluid transition of 4He in two dimensions.
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We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs
ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a clas-
sical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects,
our scheme is viable even for systems with strong quantum delocalization in the degenerate regime
of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of
4He in two dimensions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895974]

I. INTRODUCTION

Monte Carlo (MC) simulations1 in the Gibbs ensem-
ble (GEMC) of Panagiotopoulos2 have now been extensively
used for several years to study first order phase transitions in
classical fluids. According to the GEMC method, the simula-
tion is performed in two boxes each of which contains one of
two coexisting phases. Equilibration in each phase is guaran-
teed by moving particles within the respective box. Equality
of pressures is satisfied in a statistical sense by expanding the
volume of one of the boxes and contracting the volume of
the other. Chemical potentials are equalized by transferring
particles from one box to the other. This procedure avoids ei-
ther the laborious search for matching free energies calculated
separately for each phase, or the simulation of a system large
enough to contain both phases and their interface.

Notwithstanding the isomorphism between quantum par-
ticles and classical ring polymers underlying the path integral
formulation of quantum statistical physics,3 and the recog-
nition that path integral Monte Carlo (PIMC) is a tremen-
dously useful numerical tool4 to extract unbiased statistical
properties of quantum systems, the development of Monte
Carlo methods for quantum systems is more complex, and
correspondingly less complete, than for classical ones. Putting
aside the well known sign problem for fermions5 an important
aspect is the development of methods able to simulate a given
quantum system in different statistical ensembles.

Recently, a new approach to continuous space PIMC sim-
ulation was devised6 which makes use of the “Worm Algo-
rithm” (WA) previously employed to study lattice models.7

The WA is formulated in an enlarged configuration space,
which features the possible presence of an open world-line,
the worm. It can simulate a system either in the grand canon-
ical or the canonical ensemble, and it enjoys a favorable
scaling of the computational cost with the system size for
the calculation of properties related to the formation of long
permutation cycles,8 such as the superfluid fraction or the
one-body density matrix.

a)Electronic mail: rfantoni@ts.infn.it
b)Electronic mail: moroni@democritos.it

It is the purpose of the present work to exploit the WA6

to obtain an algorithm that is the full quantum analogue of
the GEMC and thus can be used to study the gas-liquid phase
transition of any (bosonic) quantum fluid.9 Several quantum
generalizations of GEMC have appeared. However, some of
them only consider particles which have internal quantum
states but are otherwise classical;10 others11 are limited to
particles isomorph to relatively compact classical polymers
(hence, high enough temperature and/or small enough quan-
tumness); none of them features the structure of particle ex-
changes which underlies Bose (or Fermi) statistics. We apply
the quantum Gibbs ensemble Monte Carlo (QGEMC) method
to the liquid-gas coexistence of two-dimensional 4He where
strong quantum effects, including superfluidity, are present.

II. CLASSICAL GIBBS ENSEMBLE MONTE CARLO

We begin with a brief summary of the Gibbs Ensemble
Monte Carlo method that we deem useful for the subsequent
quantum generalization. A detailed presentation is given in
Ref. 12.

The system comprises a box of volume �1 containing N1
particles and a box of volume �2 containing N2 particles. The
temperature T, the total number of particles N = N1 + N2,
and the total volume � = �1 + �2 are fixed, and there is
no interaction between particles enclosed in different boxes.
Starting from the partition function for the Gibbs ensemble

ZG(N,�, T ) = 1

�

N∑
N1=0

∫
d�1Z(N1,�1, T )Z(N2,�2, T ),

(1)
where Z is the canonical partition function, the probability
density for the coordinates R = {r1, . . . , rN} of the particles,
the number N1, and the volume �1 can be cast in the form

PN,�,T (R,N1,�1) ∝ �
N1+1
1 �

N2+1
2

N1!N2!
e−βV (R). (2)

0021-9606/2014/141(11)/114110/6/$30.00 © 2014 AIP Publishing LLC141, 114110-1
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Here, β = 1/kBT and the potential energy in the Boltzmann
weight, assuming a central pair potential v(r), is

V (R) =
N1−1∑
i=1

N1∑
j=i+1

v(rij ) +
N−1∑

i=N1+1

N∑
j=i+1

v(rij ). (3)

The Monte Carlo simulation proceeds via three kinds of
moves:

(1) Displace the position ri of a randomly selected parti-
cle within its own box; this is done as in standard canonical
ensemble simulations.

(2) Change the volumes; this is done by uniformly sam-
pling a displacement of the quantity ln(�1/�2), with � kept
fixed.

(3) Exchange particles; this is done by transferring a ran-
domly chosen particle to a random position in the other box.

The acceptance probabilities are obtained imposing de-
tailed balance.12 After equilibration, provided N/� is within
the coexistence region at the temperature T, each of the two
boxes will contain one of the coexisting phases.

III. QUANTUM GIBBS ENSEMBLE MONTE CARLO

The QGEMC is based on the Path Integral Monte Carlo
method in the Worm Algorithm implementation. We refer to
the literature4, 6 for a full account of these techniques, giving
here only a brief discussion of some aspects relevant to the
quantum generalization of the classical GEMC.

A. Path integral Monte Carlo

We consider an assembly of N identical particles obeying
Bose statistics. In the position representation, the canonical
partition function is

Z = 1

N !

∑
P

∫
dRρ(R,PR; β), (4)

where ρ(R, R′; β) = 〈R|e−βH|R′〉 is the thermal density matrix
for distinguishable particles, and the sum over the permuta-
tions P accounts for Bose symmetry. The density matrix can
be expressed in a form amenable to Monte Carlo simulation
in terms of discretized path integrals

ρ(R,R′; β) �
∫

dR1 . . . dRK−1

K∏
j=1

ρ̃(Rj−1, Rj ; ε), (5)

with R0 = R, RK = R′, and {R1, . . . , RK − 1} a sequence (path)
of intermediate configurations. An adjacent pair {Rj − 1, Rj}
is called a link. In Eq. (5), the factors ρ̃ have an argument
ε = β/K which corresponds to a temperature K times higher
than T, and for high temperature the unknown many-body
density matrix can be accurately approximated by an explicit
expression of the general form

ρ̃(R,R′; ε) = ρF (R,R′; ε)e−U (R,R′;ε), (6)

where

ρF (R,R′; ε) = (4πλε)−dN/2
N∏

i=1

e−(r
i
−r′

i )
2/4λε (7)

is the density matrix for N non-interacting particles in d spa-
tial dimensions, and the function U takes into account the ef-
fect of correlations. In the limit ε → 0, ρ̃(R,R′, ε) approaches
ρ(R, R′, ε) and the approximate equality (5) becomes
exact.

For each particle, Eq. (5) defines a trajectory, or world
line (WL), {ri; 0, ri; 1, . . . , ri; K}, where the bead ri; j is the
position of the ith particle at the jth “time” discretization in-
dex. In the calculation of thermal averages, 〈A〉 = TrρA/Z, the
presence of the traces and the Bose symmetry of Eq. (4) re-
quire periodic boundary conditions in time, ri;K = rPi;0: the
trajectory of a particle ends in the initial position of either the
same or another particle, according to the permutation cycles
contained in the permutation P . All the interlinked trajecto-
ries of a permutation cycle of k particles form a single WL
with kK steps, so that all WLs are closed. The WL of a single
particle has a spatial extent limited by the thermal wavelength,
while the WL of a long permutation cycle can span the whole
system.

The simulation proceeds by sampling a density proba-
bility proportional to the integrand of Eq. (5). Specific tech-
niques are devised to update not only the particle positions
along the WLs, but also the permutations.

The WLs can be mapped onto classical ring polymers,
with peculiar interactions defined through Eq. (5) by viewing
the integrand as a Boltzmann weight. Thus, it seems possi-
ble to apply the GEMC method to the quantum system as
well. However, an issue arises with the exchange move: a
quantum particle corresponds, in the classical mapping, to
a whole polymer, and the acceptance rate for transferring a
polymer to the other box can be expected to be low, partic-
ularly at low temperature when the thermal wavelength in-
creases and the spatial extension of the polymers grows. The
problem is further compound by the presence of interlinked
trajectories belonging to a permutation cycle. This is why
quantum applications of GEMC have been limited to rela-
tively high temperature and/or relatively low quantumness.11

We will show how to overcome these difficulties using the
WA.

B. Worm algorithm

The WA enlarges the configuration space: along with
the closed WLs of Sec. III A, there are configurations with
an open WL in which one particle is created in rM at time
jMε and destroyed in rI at a later time jIε. The difference
jI − jM is intended modulo K, and the open WL can belong
to a permutation cycle involving other particles. The points
rI and rM are called Ira and Masha, respectively, and the
WL connecting them is called the worm. Configurations with
only closed WLs belong to the “Z sector” and contribute to
the partition function. Configurations with a worm belong to
the “G sector” and contribute to the one-body Green func-
tion g(rM, rI ; (jI − jM)ε)/Z. All physical properties, with
the exception of the Green function, are calculated only on
configurations of the Z sector. The full set of configurations
corresponds to the extended partition function

ZW = Z + Z′, (8)
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where Z can be either the canonical or the grand partition
function,

Z′ = C
∑
jI ,jM

∫
drIdrMg(rM, rI ; (jI − jM)ε), (9)

and the arbitrary parameter C defines the relative weight of
the Z and G sectors. The discretized path integral expression
of Eq. (9) is obtained in close analogy with Sec. III A in terms
of ρ̃(Rj−1, Rj ; ε).

The simulation proceeds via a set of local moves – the
complementary pairs Open and Close, Insert and Remove,
Advance and Recede, and the self-complementary Swap –
which guarantee ergodic sampling of the enlarged configura-
tion space by switching between the Z and the G sectors and
displacing the coordinates of the particles.6

The usefulness of the WA for the implementation of the
QGEMC can be appreciated by considering the process of
adding a particle to the system (we assume here that Z is the
grand partition function): starting from the Z sector, a worm
may be inserted; once in the G sector, the worm may advance,
possibly swap with existing closed WLs, and eventually get
closed, thus switching back to the Z sector with one more
particle. Each single move is a local update that involves only
a limited number of time steps, so that the acceptance rate can
be high even in a dense system.

C. Gibbs ensemble

We consider N1 particles in a volume �1 and N2 particles
in a volume �2, with �, N, and T fixed (see Sec. II). The con-
figurations of the system in the Gibbs ensemble are distributed
according to the partition function ZG of Eq. (1), with each of
the canonical partition functions Z of the two subsystems ex-
pressed as discretized path integrals with closed WLs, as in
Sec. III A. These configurations define the Z sector.

Following the strategy of the WA we enlarge the config-
uration space allowing for open WLs, while strictly enforcing
the constraint of fixed N: whenever there is a worm in box 1,
with Masha at rM1;j and Ira at rI1;j ′ , there is a worm in box 2
as well, with Masha at rM2;j ′ and Ira at rI2;j , as schematically
illustrated in Fig. 1. These configurations define the G sector.
In the G sector, the number of particles in box α (α = 1, 2)
varies between Nα and Nα − 1, with N1 + N2 = N + 1, and
the total number of particles within each link is N.

The extended partition function is ZW = ZG + Z′, where

Z′ = 1

�

∑
N1

∫
d�1C

K∑
j,j ′=1

′F1(j, j ′)F2(j ′, j ). (10)

The primed summation excludes the terms with j = j′ to make
sure there is a worm per box in the G sector, and the function
Fα – the integral of Eq. (9) for box α – is expressed in terms
of density matrices as

Fα(j, j ′) = 1

Nα!

∑
P

α

∫
ρ({Rα, rMα},Pα{R′

α, rIα}; τj,j ′ )

×ρ(R′
α, Rα; τj ′,j )dRαdR′

αdrMαdrIα. (11)

FIG. 1. Schematic illustration of open WLs in the G sector.

Here, the pair {Rα, rMα} indicates the coordinates of Masha
and of all the other particles of box α at time index j (the
first argument of Fα) and {R′

α, rIα} the coordinates of Ira and
of the other particles at j′. The argument τj,j ′ of the density
matrices ρ is the positive interval from jε to j′ε – possibly
wrapping around the periodic boundary condition, i.e., τj,j ′

= [(j ′ − j + K)modK]ε. Finally, the density matrices are
expanded in discretized path integrals using the high temper-
ature approximation ρ̃ as in Sec. III A.

The probability density for all the coordinates X in the
system, the number N1 and the volume �1 is13

PN,�,T (X) ∝ Cδ
G

K∏
j=1

ρ̃(Xj−1, Xj ; ε), (12)

where δG is 1(0) in the G(Z) sector, Xj indicates the positions
of all the particles in either box at time jε, and the dependence
on N1 and �1, as well as all possible permutations of parti-
cle labels, are implicitly contained in the configuration X. No
sums over permutations appear in P because the symmetriza-
tions of Eq. (11) or (4) are carried out concurrently with the
Monte Carlo integration over the coordinates, through updates
of the permutation cycles.

We next describe a set of moves which sample the con-
figuration space with probability density PN, �, T(X). They are
the standard moves of PIMC and the WA, in some cases com-
bined in pairs to preserve the two-worm structure of the G sec-
tor illustrated in Fig. 1, and the volume change move specific
of the GEMC method; the particles exchange move of GEMC
builds spontaneously through a sequence of WA moves. The
acceptance probabilities are obtained by enforcing detailed
balance according to the generalized Metropolis algorithm12

(if the current configuration is in a sector where the proposed
move is not applicable, the move is rejected immediately).

(1a) Open-insert. This move, schematically illustrated in
Fig. 2, is applicable only in the Z sector. It switches from the
Z to the G sector by opening an existing closed WL in one
box and inserting a new open WL in the other box. A particle
is picked randomly, and the links of its WL from j to j + M
are removed. The time index j is uniformly sampled in [1, K],
and the number of removed links M is uniformly sampled in
[1, M̄], where M̄ < K is a parameter of the simulation which
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FIG. 2. Schematic illustration of the open-insert move. Two worms are cre-
ated by removing the white beads and inserting the grey beads.

controls the size of the move. Let α be the label of the other
box. The initial bead rMα;j of the new WL is placed at a po-
sition r0 randomly sampled in �α , and M further beads are
sampled from

∏M
ν=1 ρ0(rν−1, rν ; ε), where

ρ0(r, r′; ε) = (4πλε)−d/2e−(r−r′)2/4λε (13)

is the one-particle free propagator. The acceptance probability
is pop−in = min{1, e�

U πop−in}, where

πop−in = CM̄K�αN

2ρ0(rIγ , rMγ ; Mε)
(14)

and �U = ∑M
ν=1[U (Xν−1, Xν ; ε) − U (X∗

ν−1, X
∗
ν ; ε)] is the

change of the interacting part of the action U between the ini-
tial configuration X and the proposed configuration X∗.

(1b) Close-remove is the complementary move of open-
insert. A box – say γ – is selected at random. If M

= τIγ,Mγ /ε > M̄ , the move is rejected. Otherwise, a WL
of M links connecting r0 = rIγ to rM = rMγ is sampled

from
∏M

ν=1 ρ0(rν−1, rν ; ε). If the open WL in the other box
contains more than M̄ links the move is rejected, otherwise
the worm is removed. The acceptance probability is pcl−rm
= min{1, e�

U /πop−in}.
(2) Advance-recede. This move is self-complementary, as

are all the remaining moves. It applies only to the G sector,
and we refer to Fig. 1 for a representation of the initial config-
uration. A box – say γ – is selected at random. An integer M is
uniformly sampled in [1, M̄] and a time direction is selected
at random. If the time direction is positive, a new portion of
WL sampled from a product of M free-particle propagators is
added in box γ starting from rIγ , and a corresponding, M-link
portion of the open WL existing in box α is removed, starting
from rMα . If the time direction is negative, the new portion
of WL is added in box γ starting from rMγ and going back-
wards in time, and the WL in box α is shortened starting from
rIα . The move is rejected if M ≥ τIγ,Mγ /ε (this restriction
could be avoided using more elaborate combinations of the
WA moves). The acceptance probability of advance-recede is
pad−re = min{1, e�

U }.

(3) Swap. This move applies only to the G sector. A box
is selected at random, and within the chosen box the move
proceeds in the same way as in the WA.6

(4) Volume change. We choose to apply this move only
to configurations of the Z sector. For the classical GEMC up-
date of the volumes, it proves convenient to make the depen-
dence on N1 and �1 explicit. This is achieved12 by rescaling
all lengths in box α by �

−1/d
α and formally performing the

Monte Carlo integration over the rescaled coordinates �(X).
Furthermore, the move is usually implemented12 by changing
the quantity ln(�1/�2), rather than �1 itself, by an amount
uniformly sampled in [−��,��] with �� a parameter which

controls the size of the move. A factor �
N1
1 �

N2
2 appears in

PN, �, T as a result of rescaling the coordinates, and another
factor �1�2 as a result of updating the logarithm of the vol-
ume (cf. Eq. (2)). In the quantum case, we adopt the same
changes of variables. Since each particle is mapped onto K
beads, each of which gets rescaled coordinates, the probabil-
ity density is

PN,�,T (�,N1,�1) ∝ �
KN1+1
1 �

KN2+1
2

×
∏
j

ρ̃(Xj−1(�), Xj (�); ε). (15)

The acceptance probability for a move from �1 to �∗
1 is

pvol = min

{
1,

(
�∗

1

�1

)KN1+1 (
�∗

2

�2

)KN2+1

e�
S

}
, (16)

where �S is the change of the full action between the initial
configuration X and the proposed configuration X∗

�S = −
K∑

ν=1

ln[ρ̃(Xν−1, Xν ; ε)/ρ̃(X∗
ν−1, X

∗
ν ; ε)]. (17)

The proposed configuration is X∗ = (�∗
α/�α)1/dX, with

α = 1 or 2 as appropriate to the particle index of each compo-
nent of X. Hence, both the equal-time interparticle distances,
|ri; j − rk; j|, and the single-particle displacements along the
WL, |ri; j − 1 − ri; j|, are modified upon volume changes. This
prescription departs from that recommended for classical sys-
tems of composite particles,12 where only the center of mass
follows the variation of the volume while the internal struc-
ture remains unchanged (in the quantum analogue, only the
centroid of each ring polymer would change while the size
and shape of the polymers would stay fixed11). The reason for
the prescription chosen here is that for polymers interlinked
through permutation cycles the equal-time interparticle dis-
tance and the single-particle paths are not independent.

In our implementation, we also include moves which
wiggle an existing portion of a WL, or displace the whole
WL of a particle. These moves are standard in PIMC4 and
since they are not strictly needed for the QGEMC we do not
describe them here.

IV. TWO-DIMENSIONAL 4He

The phase diagram of 4He in two dimensions has been
studied in Ref. 14 by PIMC simulations of individual phases
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FIG. 3. Data trace of the densities of the gas (blue) and the liquid (red) in the
initial stages of the simulation for T = 0.5 K.

for many values of density and temperature. A gas-liquid co-
existence region is found below 0.87 K. At these tempera-
tures, on account of the large De Boer parameter of 4He,
� = 0.429,9 quantum exchange of particles is an important
effect:4, 8 in the thermodynamic limit the normal-superfluid
transition temperature at saturated vapour pressure is 0.65 K,6

and for finite systems of a few hundred particles the superfluid
fraction is non-zero even for T = 1 K. Therefore, the gas-
liquid coexistence of two-dimensional 4He is a telling test of
the QGEMC algorithm for a degenerate quantum system. An
application to a square well model and 4He in three dimen-
sions has also appeared.15

We simulate a two-dimensional system of N = 64 4He
atoms distributed between two square boxes with periodic
boundary conditions. Within each box, the atoms interact with
the HFDHE2 pair potential.16 We use the primitive approxi-
mation

ρ̃(R,R′; ε) = ρF (R,R′; ε)e−ε[V (R)+V (R′)]/2 (18)

to the high temperature density matrix, with ε = 0.002 K−1.
The acceptance rate of the moves can be varied by tuning the
relevant parameters. In this calculation, we set M̄ = 125, with
acceptances between 35% and 75% for the close-remove,
advance-recede, swap and wiggle moves, but only a few per-
cent for the open-insert move. The acceptances of the volume
move are between 20% and 40% with �� = 10−2, across the
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FIG. 4. A portion of the data trace of the densities for the simulation at
T = 0.75 K, showing an exchange of identity between the two boxes.

TABLE I. The densities ng and nl of the coexisting gas and liquid phases as
a function of the temperature T.

T (K) ng (Å−2) nl (Å−2)

This work
0.125 <10−6 0.0422(2)
0.250 0.00009(2) 0.0424(4)
0.500 0.0016(2) 0.0416(4)
0.750 0.0106(6) 0.0396(7)
0.875 0.0209(9) 0.0343(10)

Ref. 14
0.250 0.000(2) 0.044(2)
0.500 0.000(2) 0.044(2)
0.750 0.009(2) 0.043(2)
0.860 0.020(2) 0.030(2)

whole temperature range. We also adjust the parameter C to
maintain the fraction of configurations in the Z sector between
0.15 and 0.55. In principle, a different value of M̄ should be
used for each move, and all these parameters, as well as the
relative frequency of the moves, should be optimized by max-
imizing the efficiency. We study the temperature range be-
tween 0.125 K and 1 K. For each temperature, the simulation
starts from a configuration with boxes of equal volume con-
taining 32 atoms each at a density 0.025 Å−2.

After equilibration, deep in the subcritical temperature
regime one of the boxes contains a gas of very low den-
sity ng, and the other a superfluid liquid with a density nl
close to the equilibrium density of the system at T = 0 (see
Fig. 3). For temperatures closer to the critical point, ng and
nl approach each other, and we frequently observe that the
two boxes exchange identity, i.e., the phase of the system in
each box switches back and forth between gas and liquid (see
Fig. 4). In this case, the density has a bimodal distribution
peaked at the values ng and nl of the coexisting phases. This
bimodal distribution can be obtained in a grand canonical sim-
ulation of a single box, but this requires a fine tuning of the
chemical potential.17 For T = 1 K, the two peaks merge into
a single gaussian centered at the average density 0.025 Å−2.

Our results for the densities ng and nl of the coexisting
phases are listed in Table I and displayed in Fig. 5. They com-
pare favorably with the results of Ref. 14. For each T, the

0.0
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0.6

0.8

1.0

0.00 0.01 0.02 0.03 0.04 0.05

T
 (

K
)

n (Å −2)

this work
Ref. 14
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FIG. 5. The binodal line of 4He in two dimensions. Black points: QGEMC.
Blue points: Ref. 14. Red line: extrapolation of the QGEMC results to the
critical point (red triangle).
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TABLE II. The superfluid fraction ns in the coexisting gas and fluid phases
as a function of T.

ns

T (K) Gas Liquid

1.000 0.032(1)
0.875 0.14(3) 0.36(2)
0.750 0.06(3) 0.63(3)
0.500 0.0014(5) 0.938(7)
0.250 <10−3 0.963(10)
0.125 0 0.985(16)

latter are obtained from an integral of the isothermal pressure
calculated in the canonical ensemble for several values of the
density across the coexistence region; the QGEMC method is
simpler because ng and nl are obtained with a single simu-
lation, either directly or via the analysis of a bimodal distri-
bution. Each of the present QGEMC calculations took ∼300
CPU hours on a 2 GHz processor. If needed, the efficiency
could be significantly improved using a better approximation
to the high temperature density matrix.4

The boundary of the gas-liquid coexistence region is
called the binodal line. It can be extrapolated to the crit-
ical point (CP) using the law of “rectilinear diameters,”18

ρ l + ρg = 2ρc + a|T − Tc|, and the expansion19 ρl − ρg

= b|T − Tc|β1 (|T − Tc| + c)β0−β1 . Here, β1 = 1/2 and β0
= 1/8, while ρc, Tc, a, b, and c are fitting parameters. We
find ρc = 0.028 Å−2 and Tc = 0.90 K.

Finally, we list in Table II the winding number estimator8

of the superfluid fraction ns for the two phases as a function
of the temperature. A non-zero value on the liquid branch of
the binodal over the full range of temperatures considered is
a clear indication of the importance of quantum exchanges.
On the gas branch of the binodal a finite superfluid fraction
also appears, but only at T � 0.5 K, where the density begins
to increase significantly entailing a corresponding increase of
the degeneracy temperature (although, as mentioned, a finite
value of ns for T > 0.65 K is a finite size effect6).

V. CONCLUSIONS

We have presented the QGEMC method, a full quantum
extension of classical Gibbs Ensemble Monte Carlo based

on the Worm Algorithm. The method is demonstrated for
the binodal of 4He in two dimensions, a physical property
of a strongly quantum system in the degenerate temperature
regime. Good agreement is found with the results of previous
PIMC simulations in the canonical ensemble. In analogy with
applications of GEMC to classical fluids,20–22 the QGEMC
method offers a convenient approach for problems such as
gas-liquid coexistence in quantum systems and phase equilib-
ria in quantum mixtures.
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We critically discuss the application of the Wertheim’s theory to classes of complex associating fluids that can be today
engineered in the laboratory as patchy colloids and to the prediction of their peculiar gas–liquid phase diagrams. Our
systematic study, stemming from perturbative version of the theory, allows us to show that, even at the simplest level of
approximation for the inter-cluster correlations, the theory is still able to provide a consistent and stable picture of the
behaviour of interesting models of self-assembling colloidal suspension. We extend the analysis of a few cases of patchy
systems recently introduced in the literature. In particular, we discuss for the first time in detail the consistency of the
structural description underlying the perturbative approach and we are able to prove a consistency relationship between the
valence as obtained from thermodynamics and from the structure for the one-site case. A simple analytical expression for
the structure factor is proposed.
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1. Introduction

Recently, there have been interesting developments of tech-
niques for the synthesis of new colloidal patchy particles in
the laboratory [1], including seeded growth, swelling, and
phase separation. Whereas in the laboratory, relatively less
work has been done on the thermodynamic characterisation
of self-assembly of these particles, from a theoretical point
of view, or in recent computer experiments, these kind of as-
sociating fluids [2] and their clustering and phase behaviour
are actively studied [3–9].

In principle, statistical mechanics should be able to de-
scribe all equilibrium phases. However, the strong and con-
fined attractions responsible of association call for a more
clever approach than brute force. In particular, it has been
found useful to describe an associating fluid as one where
there are nc species of clusters made of a number i of parti-
cles, denoted i-mers. Many definitions of cluster are possi-
ble [10–15] either of a geometric nature or of a topological
one, depending on the spatial arrangement of the bonded
particles. If we measure the concentrations of the i-mers in
an associating fluid, we will find that they are functions of
the thermodynamic state: for one-component systems, the
temperature T and the density ρ of the fluid. Then, special
statistical mechanics approaches have been developed to
obtain such information and phase diagrams from models
of interactions.

In our previous work [2], we compared two theories for
cluster equilibria, the Wertheim association theory [16–19]

∗
Corresponding author. Email: pastore@ts.infn.it

and the Bjerrum-Tani-Henderson theory [20–26] and we
showed that for nc = 2, the two approaches coincide when
inter-cluster correlation are ignored, i.e. the system behaves
as an ideal gas of clusters. Nonetheless, the simple and el-
egant perturbation theory described in Wertheim’s work
is able, unlike the one of Bjerrum-Tani-Henderson, to de-
scribe the case of nc → ∞ fluids. Due to this fact, Wertheim
theory is able to describe the liquid phase, thus giving access
to the study of liquid–gas coexistence in a coherent way,
while the Bjerrum-Tani-Henderson one is not. The first or-
der in the Wertheim perturbation theory approximation is a
simple but very useful tool. At high temperature, the asso-
ciating fluid reduces to the ‘reference’ fluid that can also be
considered as the one obtained from the associating fluid
switching off all attractions. However, in its original form,
the theory is only applicable when some ‘steric incompat-
ibility’ conditions are fulfilled by the associating fluid: a
single bond per site, no more than one bond between any
two particles, and no closed loop, or ring, of bonds.

Patchy colloids are systems of current experimental and
theoretical [1,27] interest. Simple models for their interac-
tions, for example fluids of hard-spheres (HSs) decorated
with attractive sites distributed on their surface, are well
suited for application of Wertheim theory. For particles
with M identical bonding sites, Bianchi et al. [3–5] discov-
ered the ‘empty liquid’ scenario as M approaches two, i.e.
when the clusters allowed in the fluid are just the ‘chains’.
Even more rich phenomenology is found when there are

C© 2015 Taylor & Francis
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sites of two different kinds [6,7] and ‘junctions’ formation
becomes possible. Such structures become responsible for
a re-entrance of the liquid branch of the binodal, and for
‘rings’ formation [8,9]. Moreover, extending Wertheim the-
ory beyond its steric incompatibility conditions, the rings
formation has been found to be responsible for a re-entrance
also in the gas branch and the appearance of a second lower
critical point (recently appeared studies which further ex-
tend Wertheim theory to allow also for doubly bonded sites
[28–30]). From all these studies emerged how Wertheim
theory has very good semi-quantitative agreement with ex-
act Monte Carlo (MC) simulations, when applied to these
one-component patchy particle fluids (especially so at the
level of the clusters concentrations behavior). Far from be-
ing a purely theoretical speculation, these fluids can be
engineered in the laboratory [1] from patchy colloids.

In the present work, while critically reviewing such
theoretical results, in particular elucidating the role of the
accuracy of inter cluster correlations, we will discuss the
solution of the Wertheim theory applied to HSs with M
identical bonding sites and with sites of two different kinds.
Our analysis is intended to be as simple and systematic as
possible while re-analysing the many works found in the
literature on various particular highly idealised associating
colloidal suspension models. This will allow us to treat
the ring forming systems of Rovigatti et al. [8,9] fully
analytically as freely jointed chains. We show that also the
results in Ref. [31], extending Russo et al. [6,7] results
to take into account the ‘X-junctions’ formation, and
in particular, the existence of characteristic ‘R’-shaped
spinodals, are largely independent on the choice of the
reference system correlations. Moreover, we find the
indication of a gas–liquid coexistence with a critical point
at extremely low densities and temperatures at r < 1/3,
with r the ratio between the gain in energy between the
bond of two unlike sites and the one between two like sites.

We also study in detail the relationship between struc-
tural and thermodynamic information within Wertheim the-
ory, and in particular between the effective valence as ob-
tained from the thermodynamics and from the structure.

The paper is organised as follows: in Section 2, we
introduce the thermodynamic quantities we will take un-
der consideration in the rest of the work; in Section 3,
we will review Wertheim association theory in the light
of the present work needs, the problem of identical at-
tractive site (Section 3.1.2), and the problem of attractive
sites of two different kinds (Section 3.1.3); in Section 3.2,
we introduce the problem of the gas–liquid coexistence;
in Section 3.3, we comment on the relevance of the pair-
potential microscopic level of description; and in Section
4, we systematically re-analyse many results obtained ap-
plying Wertheim theory to specific fluids with identical
sites (Section 4.1) and sites of two different kinds (Sec-
tion 4.2). We show, in a systematic way, that all the results
present in the literature are structurally stable with respect

to changes in the reference system accuracy; in Section 6,
we determine a simple analytical expression for the radial
distribution function which we then use to calculate the
valence; in Section 7, we determine a simple analytical ex-
pression for the structure factor; and Section 8 is for final
remarks.

2. Thermodynamics

Consider a one-component fluid of N associating HS par-
ticles in a volume V at an absolute temperature T = 1/βkB

with kB Boltzmann constant.
The Helmholtz free energy A of a HS associating fluid

can be written as a sum of separate contributions [32]

A = A0 + Amf + Abond, (1)

where A0 is the free energy of a HS fluid at a density ρ =
N/V, Amf is the mean-field contribution due to the dispersion
forces, and Abond is the change in the free energy due to
association. We will generally use the notation a(ρ, T) =
a = A/N for the free energy per particle.

The HS free energy per particle in excess of the ideal
gas one is accurately given by the Carnahan and Starling
expression [33]

βaex
0 = 4η − 3η2

(1 − η)2
, (2)

where η = (π /6)ρσ 3 is the packing fraction of the HSs of
diameter σ . So that adding the ideal gas contribution βaid =
ln (ρ�3/e), with � the de Broglie thermal wavelength, we
obtain a0 = aid + aex

0 .
The mean-field contribution has the van der Waals

form

βamf = −εmf ρ

kBT
, (3)

where the constant εmf is the measure of the strength of the
mean-field attractions. The addition of this contribution to
A0 is essential to have a gas–liquid coexistence.

From a microscopic point of view, one can see, for ex-
ample, the mean-field contribution as arising from the first
order in β in a high-temperature expansion of a thermo-
dynamic perturbation theory treatment of the square-well
(SW) fluid, with the HS taken as the reference system. So,
the free energy of the corresponding associating fluid will
be given by A = ASW + Abond. But, as we will see in Section
4, one can have gas–liquid coexistence with just A = A0 +
Abond for a properly chosen Abond.

We can define a unit of length, S, and a unit of energy,
E , so that we can introduce a reduced density, ρ∗ = ρS3,
and a reduced temperature, T ∗ = kBT /E .

The association contribution Abond will be discussed in
the next section.
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3. Associating fluids

We recall here the main result of Wertheim association the-
ory [16–19]. We write the bond free energy per particle
abond such that the full free energy per particle of the asso-
ciating fluid can be written as a = a0 + abond, where a0

is the contribution of the reference fluid, the one obtained
from the associating fluid setting to zero all the bonding
attractions. We discuss the importance of the choice of a
proper pair-potential for the fulfillment of the steric incom-
patibility conditions in the microscopic description of the
fluid. And we discuss the problem of the determination of
the gas–liquid coexistence line (the binodal) in our one-
component fluid.

3.1. Wertheim statistical thermodynamic theory

In Wertheim theory [16–19], one assumes that each HS
of the one-component fluid is decorated with a set 	 of
M attractive sites. Under the assumptions of: (1) a single
bond per site, (2) no more than one bond between any two
particles, and (3) no closed loop, or ring, of bonds, one can
write in a first-order thermodynamic perturbation theory
framework, valid at reasonably high temperatures,

βaW
bond =

∑
α∈	

(
ln xα − xα

2

)
+ M

2
, (4)

where xα = Nα/N is the fraction of sites α that are not
bonded. We will also introduce the symbol xi to denote the
concentration of clusters made of a number i of particles.
We will always use a Greek index to denote a specific site.
We can solve for the xα from the ‘law of mass action’

xα = 1

1 + ρ
∑

β∈	 xβ�αβ

, α ∈ 	 (5)

where the probability to form a bond, once the available
sites of the two particles are chosen, is given by ρ�αβ =
ρ�βα and approximated as

�αβ =
∫

g0(r12)〈fαβ(12)〉�1,�2dr12. (6)

Here, g0 is the radial distribution function of the reference
system, fαβ is the Mayer function between site α on particle
1 and site β on particle 2 (see Section 3.3), and 〈. . .〉�1,�2

denotes an angular average over all orientations of particles
1 and 2 at a fixed relative distance r12. Equation (5) should
be solved for the real physically relevant solution such that
limρ → 0xα = 1. Even if we cannot exclude the possibility
of having multiple solutions satisfying to this condition, we
never encountered such a case in the present work. Clearly,
we cannot assign any physical value to the branches with
xα 	∈ [0, 1].

At high temperatures �αβ → 0 and xα → 1, which
means we have complete dissociation. At low tempera-
tures (Wertheim theory is a high-temperature expansion but
here we just mean the formal low T limit of the first-order
Wertheim results) �αβ → ∞ and xα → 0, which means
that we have complete association.

The number of attractive sites controls the physical be-
haviour. Models with one site allow only dimerisation. The
presence of two sites permits the formation of chain and
ring polymers. Additional sites allow formation of branched
polymers and amorphous systems.

3.1.1. One attractive site

The case of a single attractive site was carefully considered
in our previous work [2] where a comparison between the
Wertheim theory and the Bjerrum-Tani-Henderson theory
[20–26] was made.

3.1.2. Identical attractive sites

Another simple case we can consider in Wertheim theory
is the one with M identical attractive sites of kind A (we
will always use a capital letter to denote a site kind). Now,
the law of mass action for x = xA (the fraction of unbonded
specific sites of kind A) is solved by

x = 2

1 + √
1 + 4Mρ�

, (7)

with � = �AA.
The free energy contribution due to association is now

given by

βaW
bond = M(ln x − x/2) + M/2. (8)

In this case, x1 = xM.

3.1.3. Attractive sites of two kinds

A more complex case in Wertheim theory is the one with MA

identical attractive sites of kind A and MB identical attractive
sites of kind B. Now, the law of mass action reduces to the
following system of two coupled quadratic equations

xA + MAρ�AAx2
A + MBρ�ABxAxB = 1, (9)

xB + MBρ�BBx2
B + MAρ�ABxAxB = 1, (10)

which admits in general a set of four different solutions for
(xA, xB) from which it is necessary to single out the phys-
ically relevant one. In the event that there is no attraction
between a site of kind A and a site of kind B, then �AB = 0
and the system simplifies to
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4 R. Fantoni and G. Pastore

xA = 2

1 + √
1 + 4MAρ�AA

, (11)

xB = 2

1 + √
1 + 4MBρ�BB

. (12)

In the event that there is no attraction between sites of the
same kind, it simplifies to

xA = 2/{1 + (MB − MA)ρ�AB

+
√

[1 + (MB − MA)ρ�AB]2 + 4MAρ�AB}, (13)

and xB obtained exchanging A↔B in the equation above.
The free energy contribution due to association is now

given by

βaW
bond = MA(ln xA − xA/2) + MA/2

+MB(ln xB − xB/2) + MB/2. (14)

In this case, x1 = x
MA

A x
MB

B .

3.2. The gas–liquid coexistence

In order to determine the gas–liquid coexistence line (the
binodal), one needs to find the compressibility factor z =
βp/ρ, with p the pressure, and the chemical potential μ

of the associating fluid according to the thermodynamic
relations

z(ρ, T ) = ρ

(
∂βa

∂ρ

)
T ,N

, (15)

βμ(ρ, T ) =
(

∂βaρ

∂ρ

)
T ,V

= z + βa. (16)

The coexistence line is then given by the Gibbs equilib-
rium condition of equality of the pressures and chemical
potentials of the two phases

ρgz(ρg, T ) = ρlz(ρl, T ), (17)

βμ(ρg, T ) = βμ(ρl, T ), (18)

from which one can find the coexistence density of the gas
ρg(T) and of the liquid ρ l(T) phases.

The critical point (ρc, Tc) is determined by solving the
following system of equations

∂zρ

∂ρ

∣∣∣∣
ρc,Tc

= 0, (19)

∂2zρ

∂ρ2

∣∣∣∣
ρc,Tc

= 0. (20)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T*

ρ*

Figure 1. Gas–liquid binodal for the HS plus the van der
Waals mean-field term. The circle is the critical point at ρ∗

c ≈
0.249129, T ∗

c ≈ 0.180155, and zc ≈ 0.358956 [34].

3.2.1. The mean-field case

For the HS fluid in the presence of just a van der Waals
mean-field free energy contribution, described by Equation
(1) without the last association term, the thermodynamics
is parameter free. We take the diameter of the spheres σ as
the unit of length (so that ρ∗ ∈ [0,

√
2] with

√
2 the close-

packing reduced density) and εmf as the unit of energy.
Solving the Gibbs equilibrium conditions of Equations (17)
and (18), we find the binodal of Figure 1 and from Equations
(19) and (20), we find the critical point.

We can see this case as describing a thermodynamic
perturbation theory approximation for a SW fluid to first
order in β small [35]. MC simulations of the SW fluid are
well known to show a gas–liquid binodal with the critical
point shifting at lower temperatures and higher densities as
the width of the attractive well decreases [36,37].

Recently [38], it was shown through numerical simu-
lation and theoretical approaches that a binodal with two
maxima, implying the existence of a low-density liquid and
a high-density liquid, can arise solely from an isotropic
interaction potential with an attractive part and with two
characteristic short-range repulsive distances.

We consider the binodal of Figure 1 as ‘standard’ in
the sense that the gas branch Tg(ρ) is a monotonously in-
creasing function of density and the liquid branch Tl(ρ) a
monotonously decreasing function of density. We will see
in the next section that using Wertheim association theory,
it is possible to obtain non-standard binodals by replacing
the mean-field contribution Amf with a proper association
contribution Abond.

3.3. Microscopic description: importance of the
pair-potential

The fluid is assumed to be made of particles interacting only
through a pair-potential φ(12) = φ(r1,�1, r2,�2) where ri
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Molecular Physics 5

and �i are the position vector of the centre of particle i and
the orientation of particle i, respectively.

To give structure to the fluid, we further assume that the
particles have an isotropic hard-core of diameter σ with

φ(12) = φ0(r12) + �(12), (21)

where r12 = |r12| = |r2 − r1| is the separation between the
two particles 1 and 2 and

φ0(r) =
{+∞ r ≤ σ

0 r > σ
, (22)

The anisotropic part �(12) in Wertheim theory is generally
chosen as

�(12) =
∑
α∈	

∑
β∈	

ψαβ(rαβ), (23)

where

rαβ = r2 + dβ(�2) − r1 − dα(�1), (24)

is the vector connecting site α on particle 1 with site β on
particle 2. Here, dα is the vector from the particle centre
to site α with dα < σ /2. The site–site interactions ψαβ ≤
0 are assumed to be purely attractive. The Mayer functions
introduced in Section 3.1 are then defined as fαβ(12) = exp [
− βψαβ (rαβ)] − 1.

Wertheim theory depends on the specific form of the
site–site potential only through the quantity �αβ of Equa-
tion (6), as long as the three conditions of a single bond per
site, no more than one bond between any two particles, and
no closed loop of bonds, are satisfied. A common choice,
for example, is a SW form

ψαβ(r) =
{−εαβ r ≤ dαβ

0 r > dαβ
, (25)

where εαβ > 0 are site–site energy scales, the wells depths,
and dαβ are the wells widths. In this case, we must have dα

+ dβ > σ − dαβ, moreover we will have

�αβ = Kαβ(σ, dαβ, η)(eβεαβ − 1). (26)

We will also call limρ→0 Kαβ = K0
αβ some purely geometric

factors. Remember that limρ → 0g0(r) = �(r − σ ) with �

the Heaviside step function.
Another common choice is the Kern–Frenkel patch–

patch pair-potential model [39].

4. Structural stability of Wertheim theory

There has recently been some relevant progress on the study
of several complex associating fluids through MC simula-

tions and theoretically through the Wertheim theory out-
lined above. The comparison between the two approaches
shows semi-quantitative agreement, between the exact MC
results and the approximated theoretical results, at the level
of description of clusters concentrations and of gas–liquid
binodal. We will here return on some of the systems studied
from Bianchi et al. [3–5], Russo et al. [6,7], and Rovigatti
et al. [8,9] from a unified perspective, and concentrating
ourselves on the structural stability of the Wertheim theory,
i.e. we will show that all the qualitative non-standard fea-
tures of the phase diagrams at a large extent do not depend
on the accuracy of description of the reference system.

4.1. Identical sites

The case of HSs with a number M of identical attractive
sites in various geometries on the surface of the spheri-
cal particle has been studied by Bianchi et al. [3–5]. They
showed that the properties of the resulting fluid are largely
independent from the sites geometry [5]. And the gas–
liquid binodal has a liquid branch moving at lower densi-
ties as M decreases. In particular, the binodal vanishes for
M → 2, a scenario that they called ‘empty liquid’: the
critical temperature Tc(M) and critical density ρc(M) are
such that limM→2 Tc = T̄c > 0 and limM → 2ρc = 0. There
is then the formation of a homogeneous disordered mate-
rial at small densities below T̄c, i.e. a stable equilibrium gel.
Moreover, in their fluid with M = 2, Bianchi et al. observed
linear ‘chains’ formation: ‘chaining’.

This is quite different from what happens in fluids of
Kern and Frenkel patchy HSs varying the patches surface
coverages [40]. In Ref. [40], a study of criticality similar to
the one of Bianchi was made varying the attractive patch
surface coverage χ . As the surface coverage χ vanishes,
limχ → 0Tc = limχ → 0ρc = 0 was found in such cases.

Liu et al. [35] repeated Bianchi study for a system of
SWs, instead of HSs as in the Bianchi case, with a number
M of identical attractive sites. In their study, the gas–liquid
coexistence remains also for M → 0, as expected in view
of the comments of Section 3.2.1.

4.1.1. Gas–liquid binodal

With M identical sites of kind A, we have in the site–site
interaction εAA = ε which we take as unit of energy and
again we take σ as unit of length.

We now choose a = a0 + abond with the association
part given by the Wertheim theory Equation (4) with M
identical sites (see Section 3.1.2).

Following Ref. [4], we choose the identical sites dis-
tributed on the surface of the spherical particle and

dAA = d =
(√

5 − 2
√

3 − 1

)
σ/2 ≈ 0.120σ, (27)

which guarantees that each site is engaged at most in one
bond. Moreover, we approximate the radial distribution
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6 R. Fantoni and G. Pastore

function of the reference system with its zero density limit
taking �AA = � = K0[eβε − 1] and using, in Equation (26),
the following expressions

〈fAA(12)〉 = (eβε − 1)mAA(r12) r12 > σ, (28)

mAA(r) =
⎧⎨
⎩

(d + σ − r)2(2d − σ + r)

6rσ 2
σ < r < σ + d

0 r > σ + d
,

(29)

K0
AA = K0 = 4π

∫ σ+d

σ

mAA(r)r2dr

= πd4(15σ + 4d)/30σ 2 (30)

≈ 0.332 × 10−3σ 3.

In Figure 2, we show the evolution of the gas–liquid bin-
odal as a function of M, the only free parameter in Wertheim
thermodynamic perturbation theory. Compared with Figure
4 of Bianchi et al. [3], we see how the qualitative behaviour
stays the same even if the two figures differ slightly quanti-
tatively due to our further approximation of taking the radial
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Figure 2. Top panel: evolution of the gas–liquid binodal as a
function of M. The continuous thick black line is the locus of the
critical points for M ∈ ]2, 5]. Bottom panel: pressure–temperature
diagram.

distribution of the reference system equal to one in the range
where bonding occurs. This shows how the Wertheim the-
ory is robust in its qualitative phase diagram predictions.
The binodal appears to be always a standard one. And, as
we can see from the figure, upon approaching M → 2, the
coexistence disappears. Bianchi et al. [3] called this phe-
nomenon the empty liquid scenario. It in particular tells us
that the fluid with M = 2, with the two sites chosen at the
spherical particle poles in order to avoid the formations of
rings (closed loops of bonds), is made only by chains and
does not admit a gas–liquid coexistence. The non-integer
M cases can be realised through a binary mixture [3,41,42].

From the point of view of Wertheim theory, the reason
for this scenario can be explained simply by looking at
the low-temperature limit for the bond contribution to the
pressure

βpW
bond = ρzW

bond = ρ2 ∂βaW
bond

∂ρ

= − 2M2�ρ2(
1 + √

1 + 4M�ρ
)2 �→∞−→ −M

2
ρ. (31)

From which immediately follows that for M > 2, the pres-
sure as a function of density on a low-temperature isotherm
shows a van der Waals loop at low densities, which implies
the occurrence of a gas–liquid coexistence region.

4.2. Sites of two kinds

Tavares et al. [43,44] studied the case of HS with three
sites, two identical A sites at the poles and a third B one.
In addition to chaining, here they observe the formation
of ‘junctions’: ‘branching’; rings formation is inhibited in
these cases since the A sites at the poles have very small
well widths and the B site position is chosen so as to avoid
small bond loops, i.e. triangular and square arrangements
of bonded particles. Two types of junctions are possible in
models where AA bonds are responsible for the chaining: X-
shaped junctions, due to BB bonds, and Y-shaped junctions,
due to AB bonds. They found that when two of the three
interaction strengths vanish simultaneously, there can be no
liquid–vapour coexistence. These correspond to the limits
of non-interacting linear chains (εAA 	= 0, εBB = εAB = 0),
dimers (εBB 	= 0, εAA = εAB = 0), and hyperbranched poly-
mers (εAB 	= 0, εAA = εBB = 0) of Equation (13). They
also showed that the phase transition always disappears as
εAA → 0. Moreover, they showed that whereas ‘X-junctions’
only yield a critical point if their formation is energetically
favourable, fluids with ‘Y-junctions’ will exhibit a critical
point, even if forming them raises the energy, provided this
increase is below a certain threshold.

Russo et al. [6,7] extended Tavares study to the case of
two identical small A sites at the poles and nine equispaced
identical big B sites on the equator. Killing the interaction
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between two B sites (εBB = 0), they observed the forma-
tion of chains and Y-junctions (and possibly hyperbranched
polymers for εAB/εAA large enough) and eventually a re-
entrant behaviour of the liquid branch of the gas–liquid
binodal pinched at low temperatures.

Rovigatti et al. [8,9] extended Russo model selecting an
off-pole position of the A sites, thus adding the possibility
of ‘rings’ formation, and observed re-entrance both in the
gas and in the liquid branch of the binodal with a second
lower critical point where the coexistence curves close itself
at low temperatures without the pinch. They needed to relax
assumption (3) in Wertheim theory [45–47].

4.2.1. Gas–liquid binodal

Russo et al. [6] studied the case of sites of two different
kinds when the site–site interaction is restricted to εBB = 0
(no X-junctions). Then, choosing as unit of energy εAA and
again σ as the unit of length, the Wertheim theory depends
on only five parameters: r = εAB/εAA > 0 and MA, MB, KAA,
KAB.

We now choose a = a0 + abond with the association
part given by the Wertheim theory Equation (4) with sites
of two different kinds (see Section 3.1.3). In particular with
the condition εBB = 0, Equations (9) and (10) admit just a
set of three different solutions for (xA, xB) from which it is
necessary to single out the real physically relevant one such
that limρ → 0xA = limρ → 0xB = 1.

Following Ref. [6], we choose MA = 2, MB = 9 (see Fig-
ure 3) and K0

AA = 1.80 × 10−4σ 3,K0
AB = 1.56 × 10−2σ 3.

In order to fulfil the Wertheim condition [(1), of a single
bond per site, the small A sites are meant to reside at the
particle poles and the big B sites equispaced on the particle
equator. The choice of K0

AA � K0
AB and the large MB make

Figure 3. (color online) Pictorial view of a colloidal particle with
attractive sites of two different kinds: two A sites on the poles and
nine B sites on the equator.

branching entropically favourable. We then approximate
�AA = K0

AA(eβεAA − 1) and �AB = K0
AB(eβεAB − 1).

In Figure 4, we show the evolution of the gas–liquid
binodal as a function of r. Once again, comparing with Fig-
ure 3 of Russo et al. [6], we observe a complete qualitative
agreement, even if in our calculation we further approxi-
mated the radial distribution of the reference system equal
to one independently of density. We see that for r < 1/2, we
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Figure 4. Top panel: evolution of the gas–liquid binodal as a
function of r. The continuous thick black line is the locus of
the critical points for r ∈ ]1/3, 1/2]. Middle panel: pressure–
temperature diagram. Bottom panel: binodals of Russo et al. [7]
Figure 4 as obtained from their analysis (lines) of the Wertheim
theory and from their MC simulations (points); the big circles are
their predicted critical points.
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8 R. Fantoni and G. Pastore

have a non-standard binodal with a re-entrant liquid branch
and a ‘pinched’ shape evidence that indeed the topologi-
cal phase separation of Tlusty and Safran [48] is observed.
Russo et al. [6] were able to provide a qualitative expla-
nation for this behaviour by analysing the energetic of the
junction formation process: since the energy cost of form-
ing a chain end is εchain = εAA/2 > 0 and the energy cost
of forming a Y-junction is εY − junction = −εAB + εAA/2 =
εAA(1/2 − r), for r < 1/2 we have εY − junction < 0, and at
low temperatures only chains, which we already saw that
do not phase separate, are present.

They are also able to conclude that phase separation oc-
curs only if r > 1/3. For r < 1/3, the energy cost of forming
junctions being too high or, alternatively, the entropy gain
being too small to offset the loss of translational entropy of
chains in the liquid phase.

This behaviour can be understood by look-
ing at f (T , ρ; r) = dβp/dρ = dβ(p0 + pW

bond)/dρ. Dif-
ferently from Bianchi et al. case, now we have
limρ→0 dβpW

bond/dρ = 0. The zeroes of f are two lines in
the (ρ, T) plane, one for the minima of the pressure and
one for the maxima. The union of the two lines is called the
spinodal line for the coexistence. The equal area construc-
tion tells us that the binodal line encloses the spinodal line
and the two lines are tangent at the critical point. In Figure
5, we show a tridimensional plot of f for r = 0.36, 2/5, 1/2
as a function of temperature and density. Clearly, the three
different scenarios do not depend on the specific values of
KAA, KAB, MA, MB which only influence the region in the
phase diagram (ρ, T) where we have the van der Waals loop.

The cluster populations for the chain ends, 2xA, and Y-
junctions, 9(1 − xB), along the binodal were studied in Ref.
[6] and are shown in their Figure 4. From Figure 9 of Ref.
[7], we see how the mean value of the number of bonds
per particle (the valence), 2(1 − xA) + 9(1 − xB), tends
to 2 at low temperatures, i.e. the fluid tends to be formed
essentially by chains which, in agreement with Bianchi et al.
analysis, are unable to sustain the gas–liquid coexistence.

The study of Russo et al. differs substantially from the
Janus fluid case [22–24,49] where it is found a re-entrant
gas branch for the gas–liquid binodal.

Rovigatti et al. [9] extended Russo study to take ac-
count of rings formation. In this case, the expression for the
Wertheim bond free energy per particle of Equation (14)
with MA = 2 should be corrected as follows:

βaW
bond = ln

(
yx

MB

B

)
− xA − MB

2
xB

+ 1 + MB

2
− G0

ρ
, (32)

where Gn is the nth moment of the rings size distribution

Gn =
∞∑

i=imin

inWi(2ρ�AAy)i , (33)

Figure 5. Tridimensional plots of f(T, ρ; r) = dβp/dρ (green
surface) for r = 0.36, 2/5, 1/2 from top to bottom. Also, shown
is the plane f = 0 (blue surface). For r = 1/3, the two surfaces
become tangent at small temperatures and small densities. For
r > 1/2, the minimum in the pressure moves at larger densities at
smaller temperatures.
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here imin is the minimum ring size, y is the fraction of par-
ticles with the two A sites unbonded, and Wi is the number
of configurations of a ring of size i. Assuming for the rings
the freely jointed chain level of description, we can approx-
imate [45]

(i + 1)Wi+1 = i(i − 1)

8π

l∑
j=0

(−1)j

j !(i − j )!

(
i − 1 − 2j

2

)i−2

,

(34)

for l the smallest integer which satisfies l ≥ (i − 1)/2 −
1. Expression (34) is due to Treloar [50] and is the value
of the end-to-end distribution function for a freely jointed
chain of i links, when the end links are the length of one link
apart (the link length is equal to the diameter of a sphere
which we take to be our unit of length). For i � 1, it has
the following asymptotic behaviour [50]

(i + 1)Wi+1 ≈
(

3

2πi

)3/2

e−3/2i , i � 1, (35)

The laws of mass action of Equations (9) and (10), for εBB

= 0, should now be corrected to take into account of the
Gn 	= 0 as follows:

x2
A = y(1 − G1/ρ), (36)

1 − xA = MBρ�ABxBxA + 2ρ�AAx2
A + G1/ρ, (37)

1 − xB = 2ρ�ABxAxB. (38)

Note that solving for xA Equation (36) and for xB Equation
(38) and substituting into Equation (37), one finds an equa-
tion in y only, which always admits just one solution ȳ with
the properties 0 ≤ ȳ ≤ 1 and limT →0 ȳ = 0.

In Figure 6, we show our theoretical numerical results
for the gas–liquid binodal of the ring forming fluid. A com-
parison with Figure 1 of Rovigatti et al. [9] shows again a
good qualitative agreement between the two calculations.
In our calculation, we retained the first 50 terms in the con-
vergent series of Equation (33) and chose MB = 9 and �AA,
�AB as before. As we can see, the rings formation is respon-
sible for the re-entrance in both the gas and liquid branches
of the binodal and for the appearance of a second lower
critical point. At r = 0.37, we could not find a coexistence
line, leaving a system for which self-assembly is the only
mechanism for aggregation.

In particular, upon approaching the upper critical point,
at T = T u

c , if we make a reversible transformation going
from the liquid phase to the vapour phase on an isotherm,
at T < T u

c , we will have, as usual

�S =
∫

δQ

T
= λvm

T
> 0, (39)
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Figure 6. Top panel: evolution of the gas–liquid binodal as a
function of r. The thin lines are the binodals of Figure 4. The thick
lines are the results obtained for the rings forming fluid. Bottom
panel: pressure–temperature diagram.

with �S the change in entropy S = −(∂A/∂T)N, V, δQ the
infinitesimal heat exchanges along the path of the transfor-
mation, λv the ‘latent’ heat of vaporisation, and m the mass
of the fluid. Whereas Rovigatti et al. [9] show that upon
approaching the lower critical point, at T = T l

c , in the same
transformation at T > T l

c , one finds

∫
δQ

T
= λvm

T
= �S < 0, (40)

so that the ‘latent’ heat of vaporisation changes sign as
T varies from T u

c to T l
c . This can be seen directly from

our pressure–temperature diagram of Figure 6 using the
Clapeyron–Causius formula [51].

Rovigatti analysis neglects the rings with AB bonds. We
think that their inclusions may have dramatic effects on the
phase diagram.

4.2.2. A possible extension

It is possible to extend Russo et al. [6,7] results allowing
for the εBB 	= 0 condition, responsible for the X-junctions
formation [31]. The analysis for just three sites, two of kind
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A and one of kind B, can be found in Refs. [43,44] were,
interestingly enough, it is found the disappearance of crit-
icality as εAA → 0. In our extension, we can introduce an
additional parameter s = εBB/εAA > 0. One immediately
verifies that the law of mass action of Equations (9) and
(10) admits now four solutions (xA, xB) from which one has
to determine the physical one such that xA, xB ∈ [0, 1] and
limρ → 0xA = limρ → 0xB = 1. Clearly, in the limit r → 0, the
problem is similar to the one of Bianchi et al. [3] (compare
Equations (11) and (12) and Equation (7)) and in the limit
s → 0, we fall back to Russo et al. [6,7] case. We are inter-
ested in the non-trivial case: �AA 	= �BB or MA 	= MB. We
will choose for MA,MB,K0

AA, and K0
AB , the same values of

the Russo’s case of Section 4.2.1. Moreover, we will choose
K0

BB = K0
AA. Again, one has limρ→0 dβpW

bond/dρ = 0. For
s small, we are still able to see the re-entrant liquid scenario
contrary to the predictions of Ref. [44]. In other words, we
are able to observe a re-entrant liquid branch even in the
presence of X-junctions in the fluid, as long as the energy
cost for their formation, εX − junction = εAA(1 − s), is posi-
tive and big enough. This is shown in Figure 7. The figure
also shows how an ‘R’-shaped spinodal is possible in these
cases with a majority of Y-junctions in correspondence of
the coexistence region at high temperature, a majority of
X-junctions in correspondence of the coexistence region at
low temperature, and a majority of chains in between in
correspondence of the bottleneck in the ‘R’, in agreement
with the study of Tavares et al. [31]. Moreover, we find
gas–liquid coexistence also for r < 1/3 as long as s is large
enough. This is shown in Figure 8 from which it is also
apparent the existence of a gas–liquid coexistence with a
critical point at extremely low densities and temperatures,
unpredicted by the study of Tavares et al. [31]. As a matter
of fact, the critical temperature can be made small at will
by a proper choice of the control parameters s; the spinodal
being essentially independent from r.

5. Break-down of the theory

Apart from the necessity to fulfil the steric incompatibility
conditions, the Wertheim theory will break-down in the
following cases:

5.1. Low temperature limit

Both the Wertheim theory and the canonical MC simula-
tion break-down at low temperatures. The Wertheim theory
is a high-temperature perturbation theory. The first-order
version that we have been using until now clearly breaks-
down at low temperature when from the mass action law (5)
follows that xα → 0 which in turn produces an undefined
bond free energy (4). Also, the usual MC simulation will
break-down at very low temperatures. In fact, imagine we
have to break a bond with a single particle move. Then,
the total energy difference between the final configuration

Figure 7. Tridimensional plots of f(T, ρ; r, s) = dβp/dρ (green
surface) and of the plane f = 0 (blue surface) for (r, s) = (2/5,
1/5). We show two plots one at high temperature and one at low
temperature because the (xA, xB) physical solution determination
changes in the two regions of the phase diagram. The negative f
in the high temperature and high density corner of the lowest plot
is due to another change in the physical solution determination.

and the initial one would be ε and we would need around
1/e−βε single particle moves. So, at low temperatures, we
would need a very long simulation in order to fully explore
configuration space. Depending from the computational re-
sources at one disposal, the range of inaccessible tempera-
tures, before the solidification at zero temperature where the
fluid chooses spontaneously the minimum potential energy
configuration, may vary. Even if it is possible that patchy
fluids, with short-ranged and tunable pair-interactions and
with limited valence, will not crystallise at zero temperature
[52] remaining a liquid in that limit.

5.2. Infinite number of attractive sites

The Wertheim theory will not be applicable anymore to
particles decorated with too many attractive sites. In the
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Figure 8. Tridimensional plots of f(T, ρ; r, s) = dβp/dρ (green
surface) for (r, s) = (1/4, 1/4), (1/4, 1/2), (1/8, 1/2). Also shown is
the plane f = 0 (blue surface). As we can see, the spinodals of the
two cases (r, s) = (1/4, 1/2), (1/8, 1/2) look essentially the same.

limit of an infinite number of sites uniformly distributed
over the particle surface, one recovers the SW fluid or the
mean-field solution of Section 3.2.1.

6. The radial distribution function

Using the fact that the angular average of the functional
derivative of the free energy per particle respect to the angle
dependent pair-potential is equal to ρ/2V times the radial
distribution function of colloid centres, we can write

g(r) = g0(r) + 2V

ρ

〈 δaW
bond

δφ(1, 2)

〉
(41)

= g0(r) + 2

ρ

1

4πr2

∑
γ∈	

(
1

xγ

− 1

2

)

×
〈

δxγ

δ
[∑

α,β∈	 βψαβ (rαβ)
]
〉
, (42)

where we denote with 〈. . .〉 the orientational average, and
in the second equality, we used Equations (4) and (21).

To make some progress, we use the following property

〈δ〈fαβ〉
δβψαβ

〉
= −mαβ(r)eβεαβ = −mαβ(r) − 〈fαβ〉 (43)

where in the last equality, we used Equations (28) and (29).
From Equation (6) follows

δ�αβ/δ〈fαβ (12)〉 = 4πr2
12g0(r12)Iαβ(r12), (44)

where Iαβ(r) is equal to one on the support of 〈fαβ〉 and zero
otherwise. Next, we observe that

〈
δxγ

δ
[∑

α,β∈	 βψαβ

]
〉

=
〈 1

M2

∑
α,β∈	

δxγ

δβψαβ

〉

= −4πr2g0(r)
1

M2

∑
α,β∈	

mαβ(r)eβεαβ
∂xγ

∂�αβ

, (45)

where M is the total number of sites per particle and in the
last equality, we used the chain rule. So, we obtain

g(r)

= g0(r)

⎡
⎣1 + 1

M2ρ

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

mαβ (r)eβεαβ

⎤
⎦ ,

(46)

where the terms ∂xγ

∂�αβ
can be determined from the law of

mass action, Equation (5). In particular, using the symmetry
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�αβ = �βα , it follows

1

ρ

∑
γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

= xαxβ. (47)

From Equation (46), we can extract the contact value for
the radial distribution function

g(σ+) = g0(σ+)

×
⎡
⎣1 + 1

M2ρ

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

mαβ (σ )eβεαβ

⎤
⎦ ,

(48)

where mαβ(σ ) is the product of the two solid angle fractions
for the αβ bond when two particles are located at relative
centre-to-centre distance σ . For example, for the Kern and
Frenkel pair-potential [39], we would have mαβ = χαχβ

with χpatch the patch surface coverage. In the Bianchi et al.
case [4] of Section 4.1, we have instead mαα(σ ) = (d/σ )3/3,
from Equation (29). For g0(σ + ), we can use the analytic
solution to the Percus–Yevick approximation for the HS
fluid [34], namely

g0(σ+) = (1 + η/2)/(1 − η)2. (49)

Next, we observe that, since ρg(r)4πr2dr gives the number
of particles in the spherical shell [r, r + dr] around a
particle fixed on the origin, the coordination number can be
estimated as follows:

Cn = ρ

∫ σ+d

σ

4πr2g0(r)

×
⎡
⎣1 + 1

M2ρ

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

mαβ (r)eβεαβ

⎤
⎦ dr,

(50)

where d = min {dαβ}. The mean number of bonds per
particle (the valence), vT = ∑α ∈ 	(1 − xα), can be also
estimated from the structure as follows:

vS = Cn − lim
T →∞

Cn

= 1

M2

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

�αβ. (51)

Then, using Equation (47) we immediately find

vS = ρ

M2

∑
α,β∈	

xαxβ�αβ = 1

M2

∑
α∈	

(1 − xα), (52)

where the last equality follows from the law of mass action,
Equation (5). The sought for consistency between the va-
lence calculated from the thermodynamics and the valence

calculated from the structure only holds in the single site
per particle case, M = 1.

For example, for M identical sites, we find vT = M(1 − x)
and, choosing Kern–Frenkel patches for which d represents
the width of the attractive SW of each patch and χ the patch
surface coverage, from Equation (47) follows

Cn = ρ

∫ σ+d

σ

4πr2g0(r)
[
1 + x2χ2eβε

]
dr. (53)

7. The structure factor

We then determined the structure factor S(k) = 1 + ρĥ(k)
with h(r) = g(r) − 1 the total correlation function and the
hat denotes the Fourier transform.

7.1. Identical sites

For the case of Bianchi et al. of Section 4.1, we find

S(k) = 1 + 4πρ

∫ ∞

0

{
g0(r)

[
1 + x2m(r)eβε

]− 1
}

× sin(kr)

k
r dr, (54)

where x is given by Equation (7) and m(r) is given by
Equation (29). Choosing for g0(r) = �(r − σ ), the one
obtained from the zero density limit of the HS fluid, we find
the ‘triangular’ approximation result of Equation (A1) of
Appendix. From this result follows immediately

lim
k→0

S(k) = 1

+ 20η

[ (
eβε − 8Mη(eβε − 1)

)
(15d4 + 4d5)

− 4
(

5 +
√

5
√

5 + 4d4Mη(eβε − 1)(15 + 4d)
) ]/

(
5 +

√
5
√

5 + 4d4Mη(eβε − 1)(15 + 4d)
)2

. (55)

Moreover, we find

lim
T →0

S(0) = 1 − 8η + 1

M
, (56)

lim
T →∞

S(0) = 1 − 8η +
(

3d4 + 4

5
d5

)
η, (57)

whereas for the structure factor of the reference system, we
have S0(0) = 1 − 8η.

In Figure 9, we show the structure factor of Equation
(A1) for M = 4 and T∗ = 0.1, η = 0.1.

A comparison with the simulation results of Sciortino
et al. [4] (see their Figure 13) at M = 2 and T∗ = 0.055
shows that approximation (55) breaks-down at high densi-
ties. This is shown in Figure 10 where the data of Sciortino
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Figure 9. Structure factor for M = 4 and T∗ = 0.1, η = 0.1 in
the Bianchi et al. case using for the radial distribution function of
the reference system, g0, the zero density limit of the hard-sphere
fluid. Also shown, for comparison, is the structure factor of the
reference system, S0(k) = 1 + 24η(kcos (k) − sin (k))/k3.

et al. simulations are compared with the isothermal com-
pressibility sum rule,

S(0) =
[

∂

∂ρ

(
ρ2 ∂βa

∂ρ

)]−1

, (58)

and the relationship between the activity �−3eβμ and the
density is obtained through Equation (16). We think that the
fact that the structure as determined by the Equation (54)
does not satisfy the isothermal compressibility sum rule
of Equation (58) is a thermodynamical inconsistency not
universally recognised for the Wertheim theory. In order to
find accurate results for the structure, one needs to solve the

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005

S(
0)

ρσ3

Sciortino et al.
T
S

S PY

Figure 10. Structure factor at zero wave-number as a function
of density for M = 2 and T∗ = 0.055 in the Sciortino et al.
simulations of Ref. [4], from the thermodynamic route (T) of the
isothermal compressibility of Equation (58), from the structure
route (S) of Equation (55), and from the zero wave-number limit
of Equation (54) taking as a reference system the Percus–Yevick
analytic solution for hard-spheres (S PY).

Wertheim Ornstein–Zernike equation with an appropriate
closure [53].

8. Conclusions

We have critically analysed some recent applications of
the Wertheim perturbation theory to classes of associating
fluids of with non-standard phase diagrams and increasing
complexity which can be today engineered in the laboratory
[1]. In particular, we have illustrated the strong structural
stability of the theory, which allows to get a first correct
qualitative understanding of the resulting phase diagrams,
even at the simplest level where all correlations of the ref-
erence system are neglected.

For fluids of HSs with M identical bonding sites, Bianchi
et al. [3–5] discovered the ‘empty liquid’ scenario as M
approaches two, i.e. in the presence of ‘chains’ only. The
phenomenology when there are sites of two different kinds
is more rich [6,7] and one can have ‘junctions’, responsible
for a re-entrance of the liquid branch of the binodal, and
‘rings’ [8,9], responsible for a re-entrance also in the gas
branch and the appearance of a second lower critical point.

In our detailed analysis of these results, we show that
all the important conclusions on the qualitative behaviour
of the phase diagrams can be derived uniquely from theo-
retical analytical considerations without the need of inputs
from simulation results. For example, for the case of rings
forming fluids we used as the partition function of an iso-
lated ring the Treloar analytic expression for a freely jointed
chain, unlike Rovigatti et al. [8,9] who use a fit of the MC
data. This approximation makes immediately available a
useful tool of analysis of complex phase diagrams even in
the absence of more accurate but heavy numerical results.

Also, in the case of the more demanding condition of
the presence of X-junctions we find that, when the energy
gain for an X-junction formation, s, is low enough, we
still observe a re-entrant liquid branch for r < 1/2 in the
fluid, eventually with an ‘R’-shaped spinodal in agreement
with the study of Tavares et al. [31]. When s is sufficiently
large, we observe gas–liquid coexistence also at r < 1/3 in
agreement with the predictions of Ref. [44]. In these latter
cases, a gas–liquid coexistence with a critical point at an
extremely low density and temperature, unpredicted by the
work of Tavares et al. [31], can be observed.

Moreover, we have discussed in detail the consistency
between structural and thermodynamic description within
Wertheim perturbation theory and in particular, the valence
as obtained from the thermodynamics and from the struc-
ture. We can conclude that while the overall structural in-
formation underlying the first order perturbative level is
not accurate, the theory provides a consistency condition
on the estimate of bonded particles, which is satisfied only
in the one-site case. An analytical expression for the radial
distribution function and the structure factor has also been
proposed.
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Appendix. The structure factor in the ‘triangular’
approximation

Choosing g0(r) = �(r − σ ) in Equation (54) with m(r) defined as
in Equation (29), we find

S(k) = 1 + 80η
[
(15k3 − 90d4k3Mη − 24d5k3Mη) cos(k)

+ (90d4k3Mη + 24d5k3Mη + 10d3k3)eβε cos(k)

+ 3
√

5k3
√

5 + 4d4Mη(eβε − 1)(15 + 4d) cos(k)

+ (−15k2 + 90d4k2Mη + 24d5k2Mη) sin(k)

+ (−90d4k2Mη − 24d5k2Mη)eβε sin(k)
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+ (15d2k2 + 30)eβε sin(k)

+ − 3
√

5k2
√

5 + 4d4Mη(eβε − 1)(15 + 4d) sin(k)

+ 30(dk cos(k(1 + d)) − sin(k(1 + d)))eβε
]/

[
k5
(

5 +
√

5
√

5 + 4d4Mη(eβε − 1)(15 + 4d)
)2
]

.

(A1)

From this expression, one immediately sees that the high-
temperature limit, β → 0, of the structure factor is independent
from the number of sites, M.
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Chapter 46

Bridging and depletion mechanisms in
colloid-colloid effective interactions: A
reentrant phase diagram?

Fantoni R., Giacometti A., and Santos A., J. Chem. Phys. 142, 224905 (2015)
Title: “Bridging and depletion mechanisms in colloid-colloid effective interactions: A reen-
trant phase diagram?”
Abstract: A general class of nonadditive sticky-hard-sphere binary mixtures, where small
and large spheres represent the solvent and the solute, respectively, is introduced. The solute-
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A general class of nonadditive sticky-hard-sphere binary mixtures, where small and large spheres
represent the solvent and the solute, respectively, is introduced. The solute-solute and solvent-solvent
interactions are of hard-sphere type, while the solute-solvent interactions are of sticky-hard-sphere
type with tunable degrees of size nonadditivity and stickiness. Two particular and complementary
limits are studied using analytical and semi-analytical tools. The first case is characterized by zero
nonadditivity, lending itself to a Percus–Yevick approximate solution from which the impact of
stickiness on the spinodal curves and on the effective solute-solute potential is analyzed. In the
opposite nonadditive case, the solvent-solvent diameter is zero and the model can then be reckoned
as an extension of the well-known Asakura–Oosawa model with additional sticky solute-solvent
interaction. This latter model has the property that its exact effective one-component problem
involves only solute-solute pair potentials for size ratios such that a solvent particle fits inside the
interstitial region of three touching solutes. In particular, we explicitly identify the three competing
physical mechanisms (depletion, pulling, and bridging) giving rise to the effective interaction. Some
remarks on the phase diagram of these two complementary models are also addressed through
the use of the Noro–Frenkel criterion and a first-order perturbation analysis. Our findings suggest
reentrance of the fluid-fluid instability as solvent density (in the first model) or adhesion (in the
second model) is varied. Some perspectives in terms of the interpretation of recent experimental
studies of microgels adsorbed onto large polystyrene particles are discussed. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4922263]

I. INTRODUCTION

Many years ago, Asakura and Oosawa1 (AO) provided an
explanation of the clustering and gelation phenomenon occur-
ring when small nonadsorbing polymers, such as polystyrene
(PS), were added to a solution of large spherical colloids, say
polymethylmethacrylate (PMMA). The basic idea is illustrated
in Fig. 1 considering two PMMA colloids, modeled as big
spheres, immersed in a fluid formed by a uniform background
(that we will neglect henceforth) as well as by PS particles,
assumed to be small noninteracting spheres that, however,
experience a hard-sphere (HS) interaction with the larger ones.
Under these conditions, when the separation between the two
large spheres is less than the diameter of the small spheres (see
Fig. 1), there is an unbalanced pressure of the “sea” of small
spheres, providing an entropic gain compared to the case when
the separation is large, which can be reckoned as an effective
attractive interaction driving the clustering of large colloidal
spheres.

In real systems, however, the solvent particles do not
always behave as an ideal gas or interact only sterically.
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andres.

Typically, they experience an additional short-range attrac-
tion (or repulsion) with the solute, usually due to dispersion
forces.3–6 The simplest way of accounting for a short-range
solute-solvent attraction is by means of Baxter’s sticky-hard-
sphere (SHS) model7 characterized by a stickiness parameter
τsl. Both issues (solvent-solvent repulsion and solute-solvent
short-range attraction) were recently addressed by two exper-
imental studies8,9 on adsorbing microgels (MGs) to large PS
latex suspension. In this case, the expected mechanism will be
clearly different, as illustrated by Fig. 2, inspired by a similar
figure of Ref. 8.

Let σl and σs be the diameters of the large and small
spheres, respectively, and suppose we fix the volume fraction
ηl of the large colloidal spheres and gradually increase the
volume fraction ηs of the small solvent spheres. In the absence
of solvent particles, the solute particles will behave essentially
as HSs, as depicted in Fig. 2(a). Now imagine we gradually
add the small solvent particles. Because of the solute-solvent
attraction, they will tend to get adsorbed on the surface of
the larger particles and mediate an effective attraction between
them. This bridging mechanism destabilizes the solution as the
large colloidal spheres tend to form aggregates, as schemati-
cally illustrated in Fig. 2(b). The global effect is the formation
of a gel phase caused by a free-energy driven phase separa-
tion of the large and small spheres. As ηs increases, solvent
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FIG. 1. Cartoon of the AO depletion interaction. The
shaded region around each solute represents the volume
excluded to the centers of the solvent particles.2

particles tend to progressively cover the solute surface, as
depicted in Fig. 2(c). We can easily estimate10 the critical value
η∗s at which all large spheres will be completely covered to
be η∗s ≈ ηl(2π/

√
3)σs/σl, as discussed in Appendix A. At this

point, all the solute colloids can be “fully covered” by solvent
particles and they will behave essentially again as HSs with an
effective diameter σl + σs, with a few additional free solvent
particles. This situation is pictured in Fig. 2(c). Upon adding
further solvent particles, however, depletion forces between
the small and the covered colloids set in Fig. 2(d) and phase
separation occurs again, this time entropically rather than free-
energetically, as in the case of Fig. 2(b). A useful way to
represent the phase diagram of such a binary mixture is through
an (ηl, ηs) diagram at fixed values of size ratio q = σs/σ1 and
stickiness τ−1

sl . In this diagram, there will be geometrically
inaccessible regions, for example, for ηs or ηl larger than
π/3
√

2, and lines separating the various phase coexistence re-
gions. The topology of the phase diagram would be controlled
by q, while ηs would play the role of an inverse temperature.

Motivated by these new experimental perspectives,
recently Chen et al.11 considered a HS-SHS binary mixture
where one can tune the attraction parameter τsl between the
unlike spheres, with like spheres only interacting via HS
interactions. Note that this is the same model already studied
by Fantoni et al.,12 as well as by other groups.29 The study of
Ref. 11 provided a well defined framework to rationalize the
experimental results obtained in Refs. 8 and 9.

In the present work, we will build upon this idea and go
further to introduce also an additional—and, to the best of
our knowledge, new—model that has the interesting feature

of including the standard AO model1,11 as a particular case. In
both cases, we will illustrate how an effective one-component
solute-solute interaction potential can be obtained and the
merits and drawbacks of this procedure.

Both models can be seen as extreme realizations of a
general class of nonadditive sticky-hard-sphere (NASHS) bi-
nary mixtures where the small-small (or solvent-solvent) and
large-large (or solute-solute) interactions are of HS type with
diameters σss and σll = σl, respectively, while the small-large
(or solvent-solute) interactions are of SHS type characterized
by a cross diameter σsl = (σs + σl)/2 = σl(1 + q)/2 and an
inverse stickiness τsl. Note that here we denote byσs = qσl the
diameter of the small spheres as seen by the large ones, while
σss is the diameter of the small spheres as seen by themselves.
Thus, the nonadditivity of the unlike interactions is monitored
by the ratio σss/σs ≤ 1 (where we have restricted ourselves to
zero or positive nonadditivity). The NASHS class reduces to
the nonadditive hard-sphere (NAHS) class if the solute-solvent
stickiness is switched off.

In the first model that we will study, one has σss/σs = 1,
so that the HS interactions are additive. This model, denoted
henceforth as the additive sticky-hard-sphere (ASHS) model,
is the one depicted in Fig. 2 and considered in Refs. 11 and 12.
Interestingly, the ASHS model can be solved exactly within
the Percus–Yevick (PY) approximation12–15 and the instability
region in the (ηs, ηl) plane enclosed by the spinodal line can
be computed. This will be found to form a closed region, in
agreement with previous results.11

The second model represents an extreme case of positive
nonadditivity, namely, σss/σs = 0, i.e., the solvent spheres

FIG. 2. Different mechanisms occurring in the presence
of a short-range attraction between solvent and solute,
as the solvent concentration increases: (a) ηs = 0, HS
behavior; (b) 0 <ηs <η

∗
s, the small fraction of solvent

particles act as bridges connecting the solute into a clus-
ter; (c) ηs ≈η∗s, most of the solute colloids are covered
and again behave as HSs with an effective diameter σs

+σl; (d) ηs >η
∗
s, the “dressed” solutes feel an effective

depletion attraction. The dark and light shaded regions
around the solute particles in panel (d) represent the
effective solute size and the effective volume excluded
to the centers of the solvent particles, respectively.
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behave among themselves as an ideal gas. This particular
case of the general class of NASHS models reduces to the
conventional AO model if the stickiness is switched off (i.e., τsl

→ ∞). Because of that, we will term this model as the sticky
Asakura–Oosawa (SAO) model. The need of supplementing
the AO model with a short-range solute-solvent attraction has
been recognized, for instance, in Ref. 5. While, in contrast
to the ASHS model, the SAO model does not allow for an
analytical solution in the PY approximation, its associated
effective solute-solute pair potential can be exactly derived in
the semi-grand-canonical ensemble, analogously to the case of
the pure AO model.16–18 Moreover, and also in analogy with the
AO model,17,19–21 such a pair potential turns out to be the only
one contributing to the exact effective interaction among the
solutes if the size ratio q = σs/σl is smaller than the threshold
value q0 = 2/

√
3 − 1 ≈ 0.1547. A careful comparison between

the results of the two models (ASHS and SAO) allows us to
pave the way for an improved theoretical understanding of the
above experiments.

It is interesting to observe that when the solute-solvent
adhesion is set to zero, the model ASHS reduces to a size-
asymmetric additive HS (AHS) binary mixture, while the SAO
model becomes the original AO model, these two mixtures
having quite different critical behaviors upon varying q.16,17,22

The metastable fluid-fluid demixing coexistence, responsible
for the broadening at ηs > 0 of the stable fluid-solid coex-
istence (0.492 ≤ ηl ≤ 0.543) for pure HSs (ηs → 0),23,24 re-
mains always metastable and exists at small enough q in the
AHS case, whereas it becomes stable at large q in the AO case,
where a triple point appears. Figure 3 sketches (in the plane
σss/σs vs τ−1

sl ) the different models referred to above.
The organization of this paper is as follows. Section II

presents the problem of the effective solute interaction medi-
ated by the solvent particles within a general framework. This
is followed by Sec. III, where the PY solution for the ASHS
model is exploited to find the spinodal curves of the original
mixture and the effective solute-solute pair potential. The exact
derivation of the effective potential in the SAO model with a
size ratio q < q0 is addressed in Sec. IV, its three contributions
being clearly identified. Next, the different scenarios for crit-
icality in the ASHS and SAO effective systems are analyzed

FIG. 3. Plane σss/σs vs τ−1
sl sketching different models mentioned in the

text. The general class of NASHS models includes, as limiting cases, ASHS
(σss/σs = 1), SAO (σss/σs = 0), and NAHS (τ−1

sl = 0). The intersection of
the NAHS line with the ASHS and SAO lines defines the AHS and AO
models, respectively. In this paper, we will be concerned with the ASHS and
SAO models.

via the second virial coefficient and the Noro–Frenkel (NF)
criterion25 in Sec. V. A more detailed analysis for the SAO
model is performed via a first-order perturbation theory in
Sec. VI. Finally, our findings are discussed and put in perspec-
tive in Sec. VII. The most technical details are relegated to four
appendixes.

II. GENERAL FRAMEWORK

Consider a colloidal binary mixture of Ns small (solvent)
and Nl large (solute) particles, identified by the coordinates
{r(s)1 ,r(s)2 , . . . ,r(s)Ns

} and {r(l)1 ,r
(l)
2 , . . . ,r

(l)
Nl
}, respectively, in a

volume V .
Assuming pair interactions, i.e., assuming the particles

are nondeformable, nonpolarizable, . . . , (see Ref. 26 for a
recent discussion on the reliability of this assumption), the total
potential U can be written as U = Uss +Ull +Usl, where

Uss =

Ns−1
i=1

Ns
j=i+1

ϕss(|r(s)i − r(s)j |), (2.1)

Ull =

Nl−1
i=1

Nl
j=i+1

ϕll(|r(l)i − r(l)j |), (2.2)

Usl =

Ns
i=1

Nl
j=1

ϕsl(|r(s)i − r(l)j |). (2.3)

The canonical free energy F(Ns,Nl,V,T) is then given by

e−βF =
Λ
−3Ns
s Λ

−3Nl
l

Ns!Nl!


drNs


drNle−β(Uss+Ull+Usl), (2.4)

where β = 1/kBT (kB being the Boltzmann constant), Λs and
Λl are the de Broglie thermal wavelengths associated with the
small and large particles, respectively, and we have used the
short-hand notation drNα = dr(α)1 · · · dr(α)Nα

with α = s, l.
Following standard prescriptions,16,17,27 one can in prin-

ciple trace out all the microscopic degrees of freedom asso-
ciated with the solvent particles and recast Eq. (2.4) in a
form of an effective one-component system for only the solute
particles with a potential energy Ueff

ll (r(l)1 ,r
(l)
2 , . . . ,r

(l)
Nl
). More

specifically,

e−βU
eff
ll =

e−βUll

Ns!Λ
3Ns
s


drNse−β(Uss+Usl), (2.5)

so that Eq. (2.4) becomes

e−βF =
1

Nl!Λ
3Nl
l


drNle−βU

eff
ll . (2.6)

In general, however, the effective potential Ueff
ll is not pairwise

additive, meaning that apart from pair-interaction terms (and
less relevant zero- and one-body terms), it requires three-body,
four-body, . . . terms. Thus, the general structure of Ueff

ll would
be

Ueff
ll = Nlv

(0)
ll +

Nl
i=1

v
(1)
ll (r(l)i ) +

Nl
i< j

v
(2)
ll (|r(l)i − r(l)j |)

+

Nl
i< j<k

v
(3)
ll (r(l)i ,r(l)j ,r(l)k ) + · · ·. (2.7)
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The physically most relevant contribution is expected to
be the one associated with the effective pair potential vll(r)
≡ v (2)ll (r), in which case one can approximately neglect v (n)ll
with n ≥ 3.

Now we specialize to the general class of NASHS models
described in Sec. I. The ϕss(r) and ϕll(r) pair interactions are of
HS type characterized by diameters σss and σll, respectively,
while the small-large interaction ϕsl(r) is of SHS type7,28

with a hard-core distance σsl and a stickiness parameter τ−1
sl ,

the latter measuring the strength of surface adhesiveness.
Therefore, the relevant Mayer functions fαγ(r) = e−βαγ(r ) − 1
are

fss(r) = −Θ(σss − r), (2.8)
f ll(r) = −Θ(σll − r), (2.9)

fsl(r) = −Θ(σsl − r) + σsl

12τsl
δ(r − σsl). (2.10)

Here,Θ(x) is the Heaviside step function and δ(x) is the Dirac
delta function. To simplify the notation, we adopt the view-
point of the large spheres by calling σl = σll their diameter
and defining σs as the diameter of the small spheres as felt
by the large ones, so that σsl = (σs + σl)/2. Thus, the size
asymmetry of the mixture (again from the viewpoint of the
solute particles) is measured by the ratio q = σs/σl < 1, while
the nonadditivity of the hard-core interactions is measured by
the ratioσss/σs ≤ 1 (where, as said before, we discard here the
case of negative nonadditivity). For later use, let us introduce
the partial packing fraction of species α as ηα = πρασ3

α/6,
where xα = Nα/N is the concentration of species α = s, l and
ρα = Nα/V is its density. The total number of particles and
number density of the fluid mixture are N = Nl + Ns and ρ
= N/V , respectively.

As discussed in Sec. I, we now particularize to two inter-
esting particular cases that are identified by the ratio σss/σs:
the ASHS model (where σss/σs = 1) and the SAO model
(where σss/σs = 0). The first model was studied before by
two of us (it was called system A in Sec. V of Ref. 12) and
has been rejuvenated by a recent study by Chen et al.11 The
second model is an extension of the well-known AO model,
except that a sticky (or adhesive) interaction exists between the
solvent and the solute particles. To the best of our knowledge,
it has not been studied before. In both cases, we will be able to
derive the effective pair potential vll(r) = v (2)ll (r) [see Eq. (2.7)]
either within the PY approximation in the canonical ensemble
(ASHS model) or in an exact way in the semi-grand-canonical
ensemble (SAO model).

III. THE PY APPROXIMATE SOLUTION OF THE ASHS
MODEL

The solution of the PY approximation for the ASHS model
was recently studied in Ref. 12. The PY solution actually
extends to the more general formulation where the Baxter
stickiness coefficient7,28 between a particle of species α and
one of species γ is τ−1

αγ.
13–15 Since here we choose τss → ∞ and

τll → ∞, we can only have adhesion between unlike particles
and τ−1

sl > 0 measures its strength.

FIG. 4. PY spinodal for q = q0 and several values of τsl. The straight line is
ηs = η

∗
s and the circle is the critical point at τsl= 0.014 448.

A. Spinodal curve

From Eq. (85) of Ref. 12, we find the following expression
for the spinodal of the full binary mixture in the (ηs, ηl) plane,
as obtained from the PY approximation:

τ
sp
sl (ηs, ηl) =


1 + (1 + q)(1 − ηs − ηl)/3(ηs + qηl)
1 +

(
1 + 1−ηs−ηl

3ηs

) (
1 + 1−ηs−ηl

3ηl

) − 1


× (1 + q)(ηs + qηl)
4q(1 − ηs − ηl) , (3.1)

which, as it should, is symmetric under the exchanges ηs ↔ ηl
and q ↔ 1/q. For a fixed q, there is a maximum value of τsp

sl for
which Eq. (3.1) admits a solution with ηs > 0 and ηl > 0. We
will denote this maximum value with τ̃sl and the corresponding
solution, the critical point, with (η̃s, η̃l). In particular, at q = q0,
we find τ̃sl = 0.014 448, η̃s = 0.019 839, and η̃l = 0.101 645.
For τsl < τ̃sl, the solution of Eq. (3.1) is a closed curve in the
(ηs, ηl) plane within which the thermodynamically unstable
region lies, as shown in Fig. 4. As we can see, the spinodal
curve does not change much for τsl < 0.001, where it is crossed
by the straight line representing the critical packing fraction
ηs = η

∗
s. These findings are in complete agreement with those

reported in Ref. 11.
Note that Eq. (3.1) is a particular case of an equation for a

general mixture derived by Barboy and Tenne,29 which should
however be handled with great care.30

B. Approximate effective one-component fluid

As explained in Sec. II, one could in principle integrate
out the solvent degrees of freedom to obtain the effective
solute potential Ueff

ll [see Eqs. (2.5) and (2.7)]. Here, we want
to focus on the pair interaction potential vll(r) = v (2)ll (r). This
function can be identified from the solute-solute radial distribu-
tion function gll(r) in the infinite dilution limit (xl → 0) since in
that limit only pair interactions contribute to gll(r). Therefore,
gll(r) → e−βvll(r ), and hence,

βvll(r) = − lim
xl→0

ln gll(r). (3.2)

In the limit of no adhesion (τsl → ∞), vll(r) becomes the
usual depletion potential.31,32 For further use, we will refer to
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entropic regime as the one with τsl ≫ 1, close to a size-
asymmetric binary HS mixture. Reciprocally, the nonentropic
regime will refer to a system with a small τsl. The transitional
regime will correspond to τsl ∼ 1.

Since ηs is supposed to be finite in Eq. (3.2), it is not
possible to obtain the exact effective pair potential vll(r). On the
other hand, it can be obtained again from the PY solution, as
described in Appendix B. Note that although the infinite dilu-
tion limit is applied as a short-cut to derive the pair potential
vll(r), at a nonzero solute concentration, the full effective many-
body potential Ueff

ll includes nonpairwise terms, as represented
by v (3)ll (ri,r j,rk) and higher-order terms in Eq. (2.7).

In Fig. 5, we report a few representative examples of
the effective solute-solute pair potential corresponding to the
ASHS model in the PY approximation (see Appendix B).
Figure 5(a) shows the influence of the solute-solvent sticki-
ness at fixed ηs = 0.1 and q = q0. One can clearly observe
the different shape of the potential in the entropic (τsl = 104),
transitional (τsl = 1), and nonentropic (τsl = 0.12) regimes. In
the former case (τsl = 104), the potential is essentially attractive
(except for a slight hump in the region r/σl . 1 + q), thus
reflecting the depletion mechanisms (see Fig. 1). Moreover, at
this very high value of τsl, the discontinuity of the potential at
r/σl = 1 + q [see Eq. (B15)] is not visible. In the transitional
regime (τsl = 1), however, the discontinuity at r/σl = 1 + q is
already noticeable and the potential in most of the inner region

FIG. 5. Effective solute-solute pair potential in the ASHS model, as obtained
from the PY approximation (see Appendix B). In panel (a), the stickiness
parameter is varied at a fixed solvent packing fraction ηs = 0.1, while in panel
(b), ηs is varied at fixed τsl= 0.12. In all the cases, the size ratio is q = q0.

1 < r/σl < 1 + q has changed from attractive to repulsive.
These two features are widely enhanced in the nonentropic
regime (τsl = 0.12): there is a high discontinuity at r/σl = 1 +
q and the effective potential is strongly repulsive in the whole
region 1 < r/σl < 1 + q. Furthermore, a strong repulsion ap-
pears as well in the outer region r/σl & 1 + q. Figure 5(b)
shows that an increase of the solvent density magnifies the
characteristic features of the effective potential in the nonen-
tropic regime. The physical origin of the repulsive regions in
the nonentropic regime can be ascribed to the net pulling role
played by the solvent particles attached to the two solutes. This
effect will be identified more clearly in the SAO model (see
Sec. IV). As for the (attractive) discontinuity at r/σl = 1 + q,
it can be attributed to the bridging effect of solvent particles
attached to both solutes. This bridging mechanism is absent if
r/σl = (1 + q)+ but appears if r/σl = (1 + q)−.

Dijkstra et al.16,27 already showed that the effective poten-
tial in the entropic regime is unable to produce a stable demix-
ing phase transition with reasonably small q. On the other hand,
the step attraction at r/σl = 1 + q in the potential associated
with the nonentropic regime can lead to a demixing transition,
as shown in Ref. 12. This is the phase instability studied in the
(ηs, ηl) plane in Sec. III A.

With all due cares, the shape of the effective potential in
the nonentropic regime depicted in Fig. 5(b) can be schemati-
cally represented as a square-well (SW) potential of width qσl

and depth ϵ ∼ |vll(σl(1 + q)−)|, with an additional repulsive tail
starting at r = σl(1 + q)+. We can then exploit the fact that the
phase behavior of a one-component SW fluid is well estab-
lished.33–36 For example, it is sufficient to heuristically consider
the approximate critical value35 of the reduced temperature
T∗ = kBT/ϵ to find the appearance of an open phase coexis-
tence region at high ηs (well separated from the closed one
predicted in Sec. III A at low ηs). This coexistence region is
known to be present in the highly asymmetric AHS mixture16,27

(i.e., for small q in the limit τsl → ∞). The effective problem
procedure that we followed suggests that, quite intuitively,
such a region will not disappear when the attraction is switched
on at small τsl. It is interesting to observe that such a reentrance
at large ηs is not predicted by an analysis of the behavior of the
effective second virial coefficient Beff

2 [see Eq. (B16)], accord-
ing to which 1/T∗ = ln

�
1 + (1 − Beff

2 /BHS
2 )/(3q + 3q2 + q3)�,

where BHS
2 =

2π
3 σ

3
l
. The two heuristic criteria based on an

effective SW temperature T∗ agree quite well for small values
of ηs [as expected from the curve ηs = 0.01 in Fig. 5(b)],
but the Beff

2 criterion presents a diverging T∗ at a value of
ηs such that Beff

2 = BHS
2 and becomes meaningless thereafter

(i.e., when Beff
2 > BHS

2 ). For instance, if q = q0 and τsl = 0.12,
the condition Beff

2 > BHS
2 is satisfied for ηs > 0.274. The fact

that Beff
2 > BHS

2 if ηs is large enough is directly related to the
increase of the effective size of the dressed solute particles, as
depicted in Figs. 2(c) and 2(d).

Of course, the effective one-component fluid is not fully
equivalent to the original binary mixture, as we are neglecting
three-body (and higher) terms in the effective total potential
[see Eq. (2.7)]. Moreover, the potentials of Fig. 5 are the
outcome of the PY approximation. Yet, they are expected to
give reasonable approximate results in the spirit of an effective
fluid. Chen et al.11 devised a similar approximate mapping
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of the PY solution for the true binary mixture onto a one-
component SHS model, from which they were able to read-off
the binodal using accurate Monte Carlo (MC) results by Miller
and Frenkel.37

While some caution must be exercised when using the
pairwise potential formally obtained in the limit ηl → 0 to
predict the phase diagram at finite ηl, this keeps being a useful
procedure to reduce the complexity of the binary mixture prob-
lem,38 allowing one to get additional physical insight without
the need, for example, of performing computer simulations of
the full binary mixture.

IV. THE SAO MODEL

As shown in Sec. III, the ASHS model (σss/σs = 1) ad-
mits a PY analytical solution but only an approximate reduc-
tion to an effective one-component fluid. The SAO model
(σss/σs = 0) is, in some sense, complementary to it, as it does
not admit an analytical solution, not even in the PY approx-
imation, but it does admit an exact reduction to an effective
one-component fluid for q < q0 = 2/

√
3 − 1 ≃ 0.1547, when a

solvent particle can fit into the inner volume created by three
solutes at contact,39 so that a solvent particle cannot overlap
simultaneously with more than two (nonoverlapping) solute
particles. This corresponds to q < 1 in one spatial dimension.40

To proceed, it is convenient to change from the canon-
ical (Ns,Nl,V,T) ensemble to the semi-grand-canonical
(µs,Nl,V,T) ensemble,16,17 where µs is the chemical potential
of the solvent component. The corresponding thermodynamic
potential F (µs,Nl,V,T) is constructed via the Legendre
transform,

F (µs,Nl,V,T) = F (⟨Ns⟩,Nl,V,T) − µs⟨Ns⟩. (4.1)

Thus, the counterpart of canonical equation (2.4) is

e−βF =
∞

Ns=0

zNs
s

Ns!Nl!Λ
3Nl
l


drNs


drNle−β(Ull+Usl)

=
1

Nl!Λ
3Nl
l


drNle−βU

eff
ll , (4.2)

where

zs =
eβµs

Λ3
s

(4.3)

is the solvent fugacity and

e−βU
eff
ll = e−βUll

∞
Ns=0

zNs
s

Ns!


drNse−βUsl. (4.4)

Note that in Eq. (4.2) we have taken into account that Uss = 0
in the SAO model.

Inserting Eq. (2.3) into Eq. (4.4), it is easy to obtain17

βΩ = −zs


dr

Nl
i=1


1 + fsl(|r − r(l)i |) , (4.5)

where Ω = Ueff
ll −Ull represents the grand potential of an ideal

gas of solvent particles in the external field of a fixed configu-
ration of Nl solute particles with coordinates {r(l)i }. Expanding

in products of Mayer functions, Ω can be written as

Ω =

nmax(q)
n=0

Ωn. (4.6)

Here,Ωn is the contribution toΩ stemming from the product of
n Mayer functions fsl. The upper limit nmax(q) is the maximum
number of nonoverlapping solutes that can simultaneously
overlap with a single solvent particle. For n > nmax(q), at least
one of the factors fsl vanishes and so does Ωn. If q < q0, then
nmax(q) = 2, implying that the exact effective potential Ueff

ll
does not include three-body (or higher order) terms. In the
interval q0 < q ≤ 1, nmax(q) grows by steps as q increases,
reaching a maximum value nmax(q) = 11 (since a solvent parti-
cle can simultaneously overlap with 12 nonoverlapping solutes
only if q > 1). The first few terms in Eq. (4.6) are

βΩ0 = −zsV, (4.7)

βΩ1 = −zs
Nl
i=1


dr fsl(|r − r(l)i |), (4.8)

βΩ2 = −zs
Nl
i< j


dr fsl(|r − r(l)i |) fsl(|r − r(l)j |)

= β

Nl
i< j


vll(|r(l)i − r(l)j |) − ϕll(|r(l)i − r(l)j |)


. (4.9)

Equation (4.9) allows us to identify the exact effective pair
potential as

βvll(r) = βϕll(r) − zs


drs fsl(rs) fsl(|rs − r|). (4.10)

Now, making use of Eq. (2.10), one can obtain

βΩ1 = zsηlV (1 + q)3
(
1 − 1

4τsl

)
, (4.11)

βvll(r) = η(r )s




∞, r < σl,

ψ(r), σl < r < σl(1 + q),
0, r > σl(1 + q),

(4.12)

where η(r )s = zs(π/6)σ3
s is the (nominal) solvent packing frac-

tion of a reservoir made of noninteracting solvent particles and

ψ(r) = ψd(r) + ψp(r) + ψb(r), (4.13)

with

ψd(r) = − 6
πσ3

s


drsΘ(σsl − rs)Θ(σsl − |rs − r|)

= − (1 + q − r/σl)2(2 + 2q + r/σl)
2q3 , (4.14)

ψp(r) = σsl

πσ3
sτsl


drs δ(rs − σsl)Θ(σsl − |rs − r|)

=
(1 + q)2(1 + q − r/σl)

4q3τsl
, (4.15)

ψb(r) = −
σ2

sl

24πσ3
sτ

2
sl


drs δ(rs − σsl)δ(|rs − r| − σsl)

= − (1 + q)4
192q3τ2

slr/σl

. (4.16)
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The effective solute-solute force f ll(r) = −∂vll(r)/∂r (outside
the hard core, r > σl) is

β f ll(r)
η
(r )
s

= −

ψ ′d(r) + ψ ′p(r) + ψ ′b(r)


Θ(1 + q − r/σl)

− (1 + q)3
192q3τ2

sl

δ(r − σl(1 + q)), (4.17)

where the delta term reflects the discontinuity of vll(r) at r
= σl(1 + q) and

ψ ′d(r) =
3

2q3σl


(1 + q)2 − r2

σ2
l


, (4.18)

ψ ′p(r) = − (1 + q)2
4q3σlτsl

, ψ ′p(r) = (1 + q)4
192q3τ2

slr
2/σl

. (4.19)

If q < q0, the general relationship between the reservoir
packing fraction η(r )s (or, equivalently, the fugacity zs) and the
values ηs and ηl of the binary mixture is derived in Appendix C
with the result

ηs = η
(r )
s


1 − ηl(1 + q)3

(
1 − 1

4τsl

)
−

12η2
l
q3

σ3
l

×
 σl(1+q)

σl

dr r2ψ(r)geff(r |ηl, η(r )s )

, (4.20)

where geff(r |ηl, η(r )s ) is the radial distribution function of a
pure fluid of large particles interacting via the effective pair
potential vll(r) at a packing fraction ηl. Up to second order in
ηl, Eq. (4.20) becomes

ηs ≈ η(r )s


1 − ηl(1 + q)3

(
1 − 1

4τsl

)
−

12η2
l
q3

σ3
l

×
 σl(1+q)

σl

dr r2ψ(r)e−η(r )s ψ(r )

. (4.21)

Interestingly, exact effective pair-potential (4.12) can
be equivalently obtained from a density expansion of the
approximate PY effective potential of the ASHS model
described in Sec. III, upon neglecting terms of order higher
than linear in ηs and identifying ηs with η

(r )
s , that is correct

in the solute infinite dilution limit [see Eq. (4.20)]. This is not
a coincidence31 because the PY theory gives the exact radial
distribution function to first order in density (and therefore
it gives the exact effective potential to that order) and the
relevant Mayer diagram, containing only one solvent particle,
is the same whether the mixture is additive or not.

The three terms appearing in Eq. (4.13) bear a particularly
simple and instructive physical interpretation. The first term,
ψd(r) [see Eqs. (4.14) and (4.18)], is the conventional AO
effective potential.16 If r < σl(1 + q), no solvent particles fit
in the line joining the centers of the two solute particles.
This is the typical configuration of depletion when the solute-
solvent interactions are of HS type, giving rise to an effective
attraction between the solutes (with a force decreasing its
strength quadratically with increasing distance). Now imagine
we switch the stickiness on. Interestingly, this produces two
competing effects. First, the solvent particles attached to the
outer surfaces of each facing solute tend to pull the solutes
apart, producing an effective solute-solute repulsion with a
constant force strength. This is represented by the “pulling”
term ψp(r) [see Eqs. (4.15) and (4.19)]. Second, the solvent
particles attached to both facing solutes (the “bridges”) tend
to increase attraction (with a Coulomb-like force strength
decreasing with increasing distance), this bridging effect
being represented by the term ψb(r) [see Eqs. (4.16) and
(4.19)]. These three effects are schematically synthesized in
Fig. 6.

It is interesting to remark that the SAO model can be
easily extended by replacing the solute-solvent sticky surface
by a finite-width (∆sl) SW interaction. The resulting square-
well Asakura–Oosawa (SWAO) model is worked out in Ap-
pendix D. In this case, the condition for an exact reduction of
the effective solute interaction to pairwise terms is q(1 + ∆sl)
+ ∆sl < q0.

The interplay of the three contributions to ψ(r) gives
rise to interesting transitions in the shape of the depletion
potential, as illustrated in Fig. 7 for the SAO and SWAO
models. Let us comment the curves corresponding to the
SAO model. For relatively weak stickiness, τ−1

sl < τ−1
− ≡ 24(1

−


1 − q − q2/2)/(1 + q)2, the pulling effect dominates over

FIG. 6. Cartoon describing the three effects (depletion,
pulling, and bridging) contributing to the effective solute-
solute interaction in the SAO model. The grey large
spheres represent the solutes of diameterσl at a distance
r <σl+σs =σl(1+q). They are surrounded by a sea
of smaller spheres (the solvent) of diameter σs = qσl

(q = 0.2 in the cartoon) that can overlap among them-
selves and have a sticky surface (represented by a thick
perimeter). Some of the solvent particles (the yellow
ones) do not touch the solutes and so they contribute
to the (attractive) depletion effect, which is represented
by ψd(r ), a volumetric term independent of τsl. Other
solvent particles (the orange ones) are adhered to one
of the big spheres, thus contributing to the (repulsive)
pulling effect, represented by ψp(r ), which is a surface
term proportional to τ−1

sl . Finally, some other small par-
ticles (the red ones) are adhered to both solutes, giving
rise to the (attractive) bridging effect, represented by
ψb(r ), which is a line (intersection of two surfaces) term
proportional to τ−2

sl .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.122.21.14 On: Wed, 10 Jun 2015 13:25:01

Bridging and depletion mechanisms in colloid-colloid effective
interactions: A reentrant phase diagram? 660



224905-8 Fantoni, Giacometti, and Santos J. Chem. Phys. 142, 224905 (2015)

FIG. 7. Plot of ψ(r )≡ βvll(r )/η(r )
s for (a) τsl= 1, (b) τsl= 0.2, (c) τsl= 0.025, and (d) τsl= 0.02. The solid lines correspond to the SAO model at the threshold

value q = q0, while the dashed lines correspond to the SWAO model with q = q0−ξ, ∆sl= ξ/(1+q), ξ = 10−2. The insets in panels (c) and (d) show magnified
views of the curves for r/σl < 1+q0.

the bridging effect for all distances but is dominated by the
depletion effect, except for distances close to r = σl(1 + q).
Consequently, the effective potential is attractive near r = σl

and repulsive near r = σl(1 + q), as happens in Fig. 7(a).
Next, in the intermediate regime τ−1

− < τ−1
sl < τ−1

+ ≡ 24(1
+


1 − q − q2/2)/(1 + q)2, the pulling effect dominates for

all distances and the potential is purely repulsive, except for
the discontinuous jump at r = σl(1 + q). This is represented
by the case of Fig. 7(b). In the strong stickiness regime τ−1

+

< τ−1
sl < 48, the depletion effect is practically irrelevant and

the pulling effect is dominated by the bridging one, except
in the region r . σl(1 + q). As a consequence, the effective
potential is slightly attractive near r = σl and slightly repulsive
near r = σl(1 + q), as happens in Fig. 7(c). Finally, for very
strong stickiness (τ−1

sl > 48), the bridging dominates over the
pulling for all distances and the potential is purely attractive.
This is the case displayed in Fig. 7(d). Those features are
essentially preserved in the case of the SWAO model, except
that the jump at r = σl(1 + q) is replaced by a rapid (but
continuous) increase of the potential between r = σl(1 + q)
and r = σl(1 + q)(1 + ∆sl).

From Eqs. (4.14)–(4.19), it is easy to see that in the SAO
model the effective potential and force are positive if

6r̂ −


6r̂(5r̂ − 2)
24r̂(1 − r̂)(2 + r̂) ≤ τsl ≤

6r̂ +


6r̂(5r̂ − 2)
24r̂(1 − r̂)(2 + r̂) (4.22)

and

2r̂ −


2(3r̂2 − 1)
24r̂(1 − r̂2) ≤ τsl ≤

2r̂ +


2(3r̂2 − 1)
24r̂(1 − r̂2) , (4.23)

respectively, where r̂ ≡ r/[σl(1 + q)]. Figure 8 shows the re-
gion in the plane τsl vs r where ψ(r) > 0 for the threshold value
q = q0.

As can be seen from Figs. 7(c) and 7(d), the effective
potential in the regime of strong stickiness clearly resembles
that of a SW potential of width qσl and depth βϵ = η

(r )
s |ψ(σl

FIG. 8. Plane τsl vs r showing the region where the effective pair potential in
the SAO model for the threshold value q = q0 takes positive values. Outside
the shaded region the potential is negative.
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(1 + q))| = η(r )s (1 + q−1)3/192τ2
sl. In this case, the effective

phase behavior of an equivalent SW fluid would suggest that
for a given q < q0 and a sufficiently small τsl, we have the
appearance of just one lower critical point (η(r )cs , ηc

l
) and the

instability region does not close itself again at η(r )s > η
(r )c
s .

This is a scenario quite different from the one in the model
ASHS, where we found at least one closed island with a lower
and an upper critical point (see Sec. III A). It would then be
sufficient to switch on a hard-core repulsion (with σss = σs)
among the solvent particles to have a closed spinodal. Along
similar lines, it is also interesting to observe that the threshold
packing fraction η∗s defined in Sec. I clearly diverges in the
SAO model because the solvent particles can freely overlap.

V. THE NORO–FRENKEL CRITICALITY CRITERION

In 2000, NF25 argued that the reduced second virial coef-
ficient B2/BHS

2 , rather than the range and the strength of the
attractive interactions, could be the most convenient quantity
to estimate the location of the critical point for a wealth of
different colloidal suspensions. Their criticality criterion for
particles with variable range attractions,25 complemented by
the simulation value of the critical temperature obtained in
Ref. 37 for the SHS model, yields B2/BHS

2 ≃ −1.21.
In this section, we apply the NF criterion to the two

models discussed before: the ASHS model (see Sec. III) and
the SAO model (see Sec. IV). In both cases, if vll(r) is the effec-
tive solute-solute pair potential, the associated second virial

coefficient Beff
2 is given by

Beff
2

BHS
2

= 1 − 3
σ3
l

 ∞

σl

dr r2

e−βvll(r ) − 1


, (5.1)

where BHS
2 = 2πσ3

l
/3 is the virial coefficient for HSs of diam-

eter σl. Paradoxically, while the explicit PY expression of
βvll(r) in the ASHS model is rather cumbersome (see Ap-
pendix B), its associated second virial coefficient Beff

2 is much
easier to obtain thanks to properties of the Laplace representa-
tion. The result can be found in Eq. (B16). In contrast, in the
SAO model, the exact expression of βvll(r) is very simple [see
Eqs. (4.12)–(4.16)] but the computation of Beff

2 needs to be done
numerically.

It is particularly instructive to observe that the NF crite-
rion confirms the very different critical behavior between the
ASHS model (σss/σs = 1) and the SAO model (σss/σs = 0).
In Figs. 9(a) and 9(b), we compare the second effective virial
coefficients for the two models as functions of τsl for q = q0

and several values of η(r )s . Here, we have identified ηs → η
(r )
s

in the ASHS case, in consistency with the fact that the effective
potential is derived in the infinite solute dilution limit. The loci
of points in the plane η(r )s vs τsl where Beff

2 /BHS
2 = −1.21 are

displayed in Figs. 9(c) and 9(d). Inside the shaded regions one
has Beff

2 /BHS
2 < −1.21 and thus phase coexistence is possible,

according to the NF criterion.
As we already knew from the results of Sec. III A,

Figs. 9(a) and 9(c) show criticality in the ASHS model only for

FIG. 9. Second effective virial coefficient as a function of τsl for q = q0 and several values of η(r )
s for (a) ASHS and (b) SAO models. The thick horizontal

line corresponds to the NF criticality criterion Beff
2 /B

HS
2 =−1.21. Panels (c) and (d) show the dependence of the critical value η(r )

s =η
(r )c
s (according to the NF

criterion) as a function of τsl for the ASHS and SAO models, respectively. Note that a logarithmic scale is used on the abscissas.
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sufficiently small τsl and η(r )s . On the other hand, the scenario
present in the SAO model is completely different. It is easy to
check that a critical point in the pure AO model (τsl → ∞)
exists only, according to the NF criterion, if η(r )s & 0.318.
However, the presence of stickiness (finite τsl) dramatically
changes the picture. For any η(r )s , there exists a critical point if
τsl is small enough. Beyond a certain threshold value, criticality
abruptly disappears and then (only if η(r )s & 0.318) it re-enters
at a sufficiently large value of τsl. Thus, if η(r )s & 0.318, there
exists a window of values of τsl where no phase separation is
possible. Note that values of η(r )s > 1, as displayed in Fig. 9(d),
are not unphysical in the SAO model since the reservoir
consists in an ideal gas of noninteracting small particles.

It must be remarked that the bridging and pulling effects
are more important in the nonadditive SAO case than in the
ASHS one, since in the latter the mutual exclusion of solvent
particles interferes with their ability to attach to the solutes. As
illustrated in Fig. 9, this leads to paramount differences in the
critical behavior of the two extreme models. For intermediate
NASHS models with 0 < σss/σs < 1 (see Fig. 3), a transition
from Figs. 9(b) and 9(d) to Figs. 9(a) and 9(c), respectively, can
be expected as the excluded volume among the solvent spheres
is gradually increased.

Note also that in the ASHS model [Fig. 9(a)], the results
are approximate (PY) and the solute concentration is zero.
On the contrary, in the SAO model [Fig. 9(b)], the results are
exact and valid for any finite solute and solvent concentrations.
While both models coincide in the limit of vanishing solvent
concentration, in practice this equivalence requires extremely
small values of η(r )s . For instance, at η(r )s = 10−5, both values of
Beff

2 differ by nearly 2%.

VI. PERTURBATION THEORY FOR THE SAO MODEL

From Sec. V we conclude that the “hidden” fluid-fluid
phase separation observed by Dijkstra et al.16 in their study of
the AO model could be stabilized by adding adhesion, as in
our SAO model. This can be quantified more precisely using a
first-order thermodynamic perturbation theory.39

Assuming the HS fluid as reference system, we can write
the Helmholtz free energy per particle of the effective solute
system as

βFeff

Nl
=
βFHS

Nl
+ 12ηlη

(r )
s

 σl(1+q)

σl

dr r2ψ(r)gHS(r |ηl),
(6.1)

where βFHS/Nl = (4ηl − 3η2
l
)/(1 − ηl)2 + ln(ηl) + const is the

Carnahan–Starling41 HS expression, ψ(r) is given by
Eqs. (4.13)–(4.16), and gHS is the HS radial distribution
function in the PY approximation,42 which in the interval
σl < r < σl(1 + q) < 2 can be written as

gHS(r |ηl) =
3

n=1

lim
t→ tn(ηl)

[t − tn(ηl)]tL(t |ηl)
S(t |ηl)

et(r−1)

r
, (6.2)

where we are measuring lengths in units of σl,

S(t |ηl) = (1 − ηl)2t3 + 6ηl(1 − ηl)t2 + 18η2
l t

− 12ηl(1 + 2ηl), (6.3)

FIG. 10. Critical point for the fluid-fluid coexistence in the SAO model
for q = q0 as a function of τsl. The lines with symbols are obtained from
perturbation theory, while the solid line corresponds to the NF criterion [see
Fig. 9(d)]. A logarithmic scale is used on the abscissa. Equation (4.21) is used
for the conversion between the reservoir and the solvent densities.

L(t |ηl) = (1 + ηl/2)t + 1 + 2ηl, (6.4)

and tn(ηl) (n = 1,2,3) are the zeros of S(t |ηl). The first-order
Helmholtz free energy of Eq. (6.1) can thus be calculated
analytically.

The compressibility factor Z = βp/ρ and chemical poten-
tial µ are then found through

Zeff = ηl
∂(βFeff/Nl)

∂ηl

�����η(r )s

, (6.5)

βµeff = Zeff +
βFeff

Nl
. (6.6)

The critical point (η(r )cs , ηc
l
) is determined by numerically solv-

ing the following set of equations:

∂(ηlZeff)
∂ηl

�����η(r )cs ,ηc
l

= 0, (6.7)

∂2(ηlZeff)
∂η2

l

������η(r )cs ,ηc
l

= 0. (6.8)

In Fig. 10, we show the critical point (η(r )cs , ηc
l
) for the

fluid-fluid coexistence in the SAO model at the threshold value
q = q0 as a function of τsl. The figure confirms the scenario
predicted in Sec. V from the NF criterion. In fact, Fig. 10 shows
a relevant mutual consistency between the curves for η(r )cs as
obtained from both independent approaches. There is a range
of adhesion for which there is no criticality. For high adhesions
(small τsl), we have phase coexistence in the region of low η

(r )
s

region, while for low adhesions (large τsl), the criticality exists
in the region of high η(r )s . Of course, we expect a breakdown of
the perturbation theory treatment as soon as stickiness becomes
too strong. Also, as soon as q > q0, we are neglecting three-
body (and higher) terms.

VII. CONCLUSIONS

In this paper, we have studied two complementary models
of a binary mixture of (small) solvent and (large) solute parti-
cles, where in both cases unlike particles experience an
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attractive adhesion interaction of Baxter’s type.7 We studied
the derivation of an effective solute-solute pair-potential for
the two models in the regime of large size asymmetry (q
= σs/σl ≪ 1) and discussed analogies and differences of the
corresponding phase behaviors, as obtained from the resulting
effective one-component fluid.

In the first model, which we dubbed ASHS, both solute-
solute and solvent-solvent particles interact as HSs and the
reduction to an effective one-component fluid can be carried
out only approximately via a small solute density expansion.
By contrast, this model admits an exact analytical solution
within the PY approximation. In the limit of vanishing solute-
solvent adhesive attraction, this model reduces to the usual
AHS binary mixture, which is known not to display any phase
separation within the PY approximation. This might, however,
be ascribed to the limitations of the PY closure, as other more
sophisticated theories, as well as numerical simulations, sup-
port the existence of phase separation, albeit metastable with
respect to freezing, at sufficiently large concentrations and size
asymmetry (in this context, nevertheless, see Ref. 43). In this
case, our analysis of the ASHS model confirms previous find-
ings of a similar study by Chen et al.11 in predicting a closed
region in the (ηs, ηl) plane where phase separation occurs.

While the ASHS model has been around for some time,12

the second model (denoted as SAO) is, to the best of our knowl-
edge, new. In this case, solvent particles behave as an ideal gas
within each other—but still they experience a SHS interaction
with the solutes. In the limit of no adhesion between solute and
solvent, this model reduces to the well-known AO one, and we
have extended the analysis performed by Dijkstra et al.17 to
the present case. As in the AO case, even in the SAO case, the
solvent degrees of freedom can be traced out exactly above a
well defined size asymmetry (that is, below a critical value q0
of the size ratio q), so that the resulting effective one-component
pair potential is exact. By contrast, it is not possible in this case
to obtain an exact analytical solution of the binary problem
(not even within the PY approximation), so we resorted to
study a first-order thermodynamic perturbation theory of the
corresponding exact effective solute-solute pair potential.

In both models, effective potentials can be explained
in terms of “pulling” and “bridging” effects in addition to
the usual “depletion” mechanism. In the SAO case, the
analytical expressions of the effective potential derived in
Eqs. (4.12)–(4.16) allow for an interesting direct physical
interpretation. The pulling effect is represented by the term
proportional to τ−1

sl [see Eq. (4.15)], as the same (solvent)
particle must be in contact with one of the solutes and outside
the exclusion volume of the other solute. On the other hand, the
bridging effect is represented by the term proportional to τ−2

sl
[see Eq. (4.16)], as the same (solvent) particle must be in con-
tact with both solute particles. These effects are present in both
models, but they are more important in the SAO case than in the
ASHS case, since in the latter, the mutual exclusion of solvent
particles interferes with their ability to be attached to the
solutes. In fact, the situation sketched in Fig. 2(d) is inhibited
in the SAO model, as represented by Fig. 9(d), which shows
always phase coexistence at increasing η(r )s for any fixed τsl.

The derivation of the exact SAO effective potential has
allowed us to clearly assess the dramatic influence of

solute-solvent attraction on the conventional AO depletion
potential. This complements a recent study,44 where softness
in the solute-solvent repulsion was seen to strongly enhance
the depletion mechanism.

Leaving aside the issue of the metastability with respect
to the fluid-solid transition, the resulting picture confirms the
significant impact of nonadditivity on the fluid-fluid phase
diagram, as synthesized by Fig. 9. Within the NF criticality
criterion, the SAO model is expected to display a reentrant
phase transition in terms of τsl, whereas the ASHS model is
not. On the other hand, the results for the ASHS model are
compatible with a reentrant phase transition in terms of ηs not
observed in the SAO model. A first-order perturbation theory
on the SAO model confirms this picture.

Our findings nicely confirm and complement those by
Chen et al.11 but extend them to encompass a direct connection
with the AO original model, which was missing in the above
study, thus paving the way to a more direct interpretation of the
experimental results reported in Refs. 8 and 9.

While direct numerical simulations of binary mixtures
with large size asymmetries are notoriously difficult, it would
be interesting to study with numerical experiments whether
adhesion gives rise to the appearance of a metastable fluid-
fluid coexistence at large solvent densities for the ASHS model
with large q and for the SAO model with very small q. In
addition, they open a number of interesting perspectives for
future studies. Even without resorting to a direct numerical
simulation calculations, a number of different theoretical ap-
proaches can be exploited to make further progresses.

As the attraction between the unlike spheres vanishes
(τsl → ∞), the PY solution of the ASHS model reduces to the
well-known PY solution for a binary AHS mixture,45 which
does not show phase separation for any size ratio, in spite of
the possible depletion interactions. As said above, this seems
to be an artifact of the PY approximation, as shown by numer-
ical simulations of the (approximate) effective one-component
fluid16 and by numerical solutions of the Rogers and Young
(RY) closure.46 Thus, one possibility would be to use the RY
closure on a binary mixture with HS interactions between like
particles and a short-range SW attraction (in the regimes where
this can be considered sticky-like47,48) between unlike spheres.
Work along these lines is in progress and will be reported
elsewhere.

Another possibility would be to consider a binary ASHS
mixture with HS interactions between small spheres, weak
SHS interactions between the large spheres, and stronger
SHS interactions between small and big spheres. This two-
component model (which is known to be free from the thermo-
dynamic inconsistency affecting the one-component model49)
could be solved rather easily within the PY approximation, as
done for instance by Zaccarelli et al.50

Finally, it would be nice to extend the study reported here
for the ASHS and SAO models to a more general NASHS
model where one could tune the solvent-solvent diameter from
zero (SAO model) to the additive value (ASHS model), thus
encompassing both models into an unified framework. MC
simulations for a binary ASHS mixture have been performed
by Jamnik,51 but not for the determination of the phase dia-
gram, which has been studied for the one-component SHS fluid
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by Miller and Frenkel.37,52 To the best of our knowledge, no
numerical experiment has ever been tried on the NASHS binary
mixture.
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APPENDIX A: A SIMPLE GEOMETRICAL ARGUMENT
RELATED TO FIG. 2

We first estimate how many small spheres of diameter
σs are necessary to cover the surface of a large sphere of
diameter σl. Assuming q = σs/σl ≪ 1, the small spheres will
be distributed on the large sphere surface approximately with
a hexagonal packing corresponding to an area fraction ηhex
= π/2

√
3 ≈ 0.907. Thus, ηhex = φa/A, where φ is the number

of the adsorbed small spheres, a = (π/4)σ2
s is the area of the

projected disk associated with each solvent sphere, and A
= πσ2

l
is the surface area of the solute particle. Therefore,

φ = ηhex
A
a
=

2π
√

3
q−2. (A1)

The critical volume fraction η∗s at which all large colloidal
spheres, distributed with a volume fraction ηl = (π/6)ρlσ3

l
,

can be covered is

η∗s = ηlq
3φ (A2)

and this leads to the expression reported in Sec. I.

APPENDIX B: ANALYTICAL PY EXPRESSIONS
FOR THE ASHS MODEL IN THE LIMIT xl → 0

The Rational-Function Approximation (RFA) method-
ology15,31,53 is known to give access to analytical formulas of
the PY solution for the ASHS model.7,12,28 In this appendix,
we assume the infinite dilution limit for the solutes (xl → 0).

According to Eq. (36) of Ref. 31, the Laplace transform
Gll(s) =

 ∞
0 dr e−srrgll(r) of rgll(r) is, in the limit xl → 0,

Gll(s) = e−s

s2


Lll(s) + Lls(s) Asl(s)

1 − Ass(s)

, (B1)

where σl = 1 has been chosen as length unit and15

Lll(s) = L(0)
ll + L(1)

ll s, (B2)

Ll s(s) = L(0)
l s
+ L(1)

l s
s + L(2)

l s
s2, (B3)

Asl(s) = 12ηs


φ2(qs)L(0)

sl +
φ1(qs)

q
L(1)

sl +
φ0(qs)

q2 L(2)
sl


, (B4)

Ass(s) = 12ηs


φ2(qs)L(0)

ss +
φ1(qs)

q
L(1)

ss


. (B5)

Here, φn(x) ≡ −x−(n+1) e−x −n
j=0(−x) j/ j!


. The coeffi-

cients L(k)
αγ are given by15

L(0)
ll = L(0)

sl =
1 − (12ηs/q2)L(2)

sl

1 − ηs
+

3ηs
q(1 − ηs)2 , (B6)

L(0)
ls = L(0)

ss =
1

1 − ηs
+

3ηs
(1 − ηs)2 , (B7)

L(1)
ll =

1 − (6ηs/q2)L(2)
sl

1 − ηs
+

3ηs
2q(1 − ηs)2 , (B8)

L(1)
sl =

1 + q − (12ηs/q)L(2)
sl

2(1 − ηs) +
3ηs

2(1 − ηs)2 , (B9)

L(1)
l s
=

1 + q
2(1 − ηs) +

3ηs
2(1 − ηs)2 , (B10)

L(1)
ss = q

1 + η/2
(1 − η)2 , (B11)

L(2)
l s
= L(2)

sl =
1

12

1 + q + 3ηs
1−ηs

4τsl
1−ηs
1+q + ηs/q

. (B12)

This closes the determination of Gll(s) for given values
of ηs, q, and τsl. Then, by numerical inverse transform, one
can easily obtain gll(r). On the other hand, pure analytical
expressions are also possible for the different layers 1 < r < 1
+ q, 1 + q < r < 1 + 2q, 1 + 2q < r < 1 + 3q, . . . . The trick
consists in formally attaching a bookkeeping factor ε to any
exponential in Gll(s). Then, by expanding in powers of ε, we
can write

Gll(s) =
∞
n=0

e−(1+nq)sΓn(s), (B13)

where we have made ε = 1. From Eq. (B13), we get

gll(r) = 1
r

∞
n=0

Θ(r − 1 − nq)γn(r − 1 − nq), (B14)

where γn(r) is the inverse Laplace transform of Γn(s). The
functions γn(r) can then be expressed in terms of the three
roots of a cubic equation, analogously to the case of Eq. (6.2).
Therefore, if we are only interested in the interval 1 ≤ r ≤ 1
+ kq, we just need to keep the first k terms in the sum of
Eq. (B14).

FIG. 11. Loci in the plane τsl vs ηs where the PY approximation predicts
g ll(r )= 0 at r = (1+q)+ for q = 0.12 (upper curve) and q = q0 (lower curve).
The radial distribution function g ll(r ) is not positive definite below each
curve.
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From a practical point of view, it is sufficient to determine
gll(r) in the interval 1 ≤ r ≤ 1 + 3q, in which case only γ0(r),
γ1(r), and γ2(r) are needed. Their analytical expressions
are easily obtained with a computational software program
but are too lengthy to be reproduced here. In general,
γ1(0) , 0, what implies a jump discontinuity of gll(r) at
r = 1 + q,

δgll ≡ gll((1 + q)−) − gll((1 + q)+) = − γ1(0)
1 + q

=
(1 + q)ηs[1 + q + (2 − q)ηs]2

12q(1 − ηs)2 [(1 + q)ηs + 4qτsl(1 − ηs)]2
. (B15)

Note that r = 1 + q is the threshold distance beyond which
no bridges are possible (see Fig. 2). This is clearly reflected
by a strong decrease of gll(r) when going from r = (1 + q)−
(bridges are possible) to r = (1 + q)+ (no bridging effect). This
physical phenomenon can give rise, as an artifact of the PY
approximation, to a negative value of gll(r) at r = (1 + q)+ if ηs
is sufficiently large or τsl is sufficiently small. This is illustrated
in Fig. 11 for q = 0.12 and q = q0.

Once gll(r) is known, Eq. (3.2) gives the pair potential vll(r)
in the PY approximation, as depicted in Fig. 5. The effective
second virial coefficient can also be determined analytically as
follows:

Beff
2 = −2π

 ∞

0
dr r2 [gll(r) − 1] = 2π lim

s→0

∂

∂s
�
Gll(s) − s−2�

=
π

12(1 + 2ηs)2


8 + (20 − 15q − 6q2 − q3)ηs + 2(4 − 6q + 3q2 + q3)η2
s − q3η3

s

+
2(1 + q)ηs(1 + q + 2ηs − qηs) �6(1 + 2ηs) + q2(1 − ηs)2 + 2q(1 − ηs)(2 + ηs)�

(1 − ηs) [(1 + q)ηs + 4qτsl(1 − ηs)]
− (1 + q)2ηs(1 + q + 2ηs − qηs)2(2 + q + 4ηs − qηs)

(1 − ηs) [(1 + q)ηs + 4qτsl(1 − ηs)]2

. (B16)

APPENDIX C: DERIVATION OF THE RELATIONSHIP
BETWEEN ηs, ηl, AND η(r )

s IN THE SAO MODEL

In the semi-grand-canonical ensemble (zs,Nl,V,T), the
average number of small particles can be obtained from the
associated thermodynamic potential F as

⟨Ns⟩zs,Nl
= −zs

∂ βF
∂zs

. (C1)

Now, from Eq. (4.2) and the equality Ueff
ll = Ull +Ω, we can

write

e−βF =


e−βΩ

�
Nl


drNl e−βUll

Nl!Λ
3Nl
l

, (C2)

where

⟨· · · ⟩Nl
=


drNl · · · e−βUll

drNl e−βUll
(C3)

denotes a canonical average over the bare solutes. Then, taking
into account that Ω ∝ zs, Eq. (C1) reduces to

⟨Ns⟩zs,Nl
= −



e−βΩβΩ

�
Nl


e−βΩ
�
Nl

. (C4)

Next, if q < q0, Ω = Ω0 +Ω1 +Ω2, so that

⟨Ns⟩zs,Nl
= −βΩ0 − βΩ1 −



e−βΩ2βΩ2

�
Nl


e−βΩ2
�
Nl

. (C5)

Note that the last term on the right-hand side can be rewritten
as


e−βΩ2βΩ2

�
Nl


e−βΩ2
�
Nl

=
ρ2
l

2
V


dr βvll(r)geff(r |ηl, η(r )s ), (C6)

where

geff(r (l)12 |ηl, η(r )s ) =
V 2


dr(l)3 · · ·


dr(l)Nl

e−βU
eff
ll

drNle−βU
eff
ll

(C7)

and we have taken into account that Nl(Nl − 1) ≃ N2
l

in the
thermodynamic limit. Finally, applying Eqs. (4.7), (4.11), and
(C6) in Eq. (C5), it is easy to obtain Eq. (4.20).

The first two terms on the right-hand side of Eq. (4.20) can
also be obtained from the canonical ensemble (Ns,Nl,V,T). Up
to the level of the second virial coefficient, the free energy F is

βF
V
= ρs ln

�
ρsΛ

3
s

�
+ ρl ln

�
ρlΛ

3
l

�
− ρs − ρl +

2π
3
ρ2
l

+ 2Bslρsρl + O(ρ3), (C8)

where Bsl =
π
12σ

3
l
(1 + q)3 (

1 − 1
4τsl

)
. The solvent chemical po-

tential is µs = [∂(F/V )/∂ρs]ρl, so that

zs ≡
eβµs

Λ3
s

= ρs
�
1 + 2Bslρl + O(ρ2)� , (C9)

which is consistent with Eq. (4.20).

APPENDIX D: SWAO MODEL

In the SWAO model, Eq. (2.10) is replaced by

fsl(r) =



−1, r < σsl,

eβϵsl − 1, σsl < r < σsl(1 + ∆sl),
0, r > σsl(1 + ∆sl),

(D1)

where ϵ sl and σsl∆sl are the depth and width, respectively,
of the attractive well. One can define an effective stickiness
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parameter47 τ−1
sl = 12

�
eβϵsl − 1

�
∆sl, so that the SWAO model

reduces to the SAO one in the double limit ϵ sl → ∞, ∆sl → 0
at fixed τsl.

All the steps in Sec. IV up to Eq. (4.10) are still valid for
the SWAO model. However, the condition for having Ωn = 0
if n ≥ 3 is not σsl < σl(1 + q0)/2 (or q < q0) but σsl(1 + ∆sl)
< σl(1 + q0)/2, what is equivalent to q(1 + ∆sl) + ∆sl < q0.

To simplify the expressions, in this appendix we take again
σl = 1 as the length unit. Inserting Eq. (D1) into Eq. (4.10), one
obtains

βvll(r) = η(r )s




∞, r < 1,
ψ(r), 1 < r < (1 + q) (1 + ∆sl) ,
0, r > (1 + q) (1 + ∆sl) ,

(D2)

where the function ψ(r) can again be decomposed into three
terms (depletion + pulling + bridging), as given by Eq. (4.13),
except that now

ψp(r) = (τsl∆sl)−1

8πq3 [C(r−,1 + q) + C(r+, (1 + q)(1 + ∆sl))
− 2C(r,1 + q)] , (D3)

ψb(r) = − (τsl∆sl)−2

96πq3 [C(r,1 + q) + C(r, (1 + q)(1 + ∆sl))
−C(r−,1 + q) − C(r+, (1 + q)(1 + ∆sl))] , (D4)

where

C(r,a) = π

3
(a − r)2(2a + r)Θ(a − r) (D5)

is the volume of a spherical cap of height a − r in a sphere of
radius a and

r± ≡ r ± (1 + q)2
2r

∆sl

(
1 +
∆sl

2

)
. (D6)

The depletion term is still given by Eq. (4.14), i.e., ψd(r)
= −(3/2πq3)C(r,1 + q).

The ranges of the contributions ψd(r), ψp(r), and ψb(r)
are 1 + q, (1 + q)(1 + ∆sl/2), and (1 + q)(1 + ∆sl), respectively.
It can be easily verified that in the sticky limit ∆sl → 0, the
potential of Eq. (D2) reduces to the one of Eq. (4.12). One
can also verify that the jump discontinuity at r = 2σsl = 1 + q
of the SAO model disappears in the SWAO one, which is
everywhere continuous.
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Chapter 47

Two phase coexistence for the
hydrogen-helium mixture

Fantoni R., Phys. Rev. E 92, 012133 (2015)
Title: “Two phase coexistence for the hydrogen-helium mixture”
Abstract: We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to
perform computer experiments for the two phase coexistence of a hydrogen-helium mixture.
Our results are in quantitative agreement with the experimental results of C. M. Sneed, W.
B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and
the experimental ones is in all cases less than 15% relative to the experiment, reducing to
less than 5% in the low helium concentration phase. At the gravitational inversion between
the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects
become relevant. At extremely low temperature and pressure the first component to show
superfluidity is the helium in the vapor phase.
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We use our quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two-
phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental
results of Sneed, Streett, Sonntag, and Van Wylen. The difference between our results and the experimental ones
is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration
phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high
pressures, the quantum effects become relevant. At extremely low temperature and pressure, the first component
to show superfluidity is the helium in the vapor phase.
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I. INTRODUCTION

Hydrogen and helium are the most abundant elements in
the Universe. They are also the most simple. At ambient
conditions, helium is an inert gas with a large band gap.
Because of its low mass and weak interatomic interactions,
it has fascinating properties at low temperatures, one of which
is superfluidity. The molecular hydrogen and helium mixture
is therefore of special theoretical importance since it is made
by the two lightest elements in nature that have the lowest
critical temperatures. This mixture is found to make up the
atmosphere of giant planets such as Jupiter, and it is essential
in stars.

An important problem to study is the phase coexistence
of the fluid mixture and the determination of its coexistence
properties. Some early experimental studies [1–3] have shown
that at coexistence, at low temperature, the mixture shows
a strong asymmetry in species concentrations in the liquid
relative to the vapor phase, with an abundance of helium atoms
in the vapor. This phenomenon results in the liquid floating
above its vapor [3] since helium has approximately twice the
molecular weight of hydrogen. Such experimental coexistence
studies were later extended at higher temperature and pressure
[4,5], allowing us to determine a quite complete picture for the
coexistence phase diagram of this mixture in the temperature
range from 15.5 to 360 K and in the pressure range from
5 bars to 75 kbars. Another interesting issue is whether this
system exhibits fluid-fluid solubility at extremely high pressure
[6–12], a situation that is hard to achieve in the laboratory.

In this work, we perform a numerical experiment for
the two-phase coexistence problem of the hydrogen-helium
mixture at low temperatures and pressures using the quantum
Gibbs ensemble Monte Carlo (QGEMC) method recently
devised [13,14] to solve the coexistence of a generic quantum
boson fluid where the particles interact with a given effective
pair potential. We will be concerned with situations in which
the absolute temperature, T , and the number density, ρα ,
of each of the two components α = a,b of mass mα are
such that at least one of the two components is close to
its degeneracy temperature (TD)α = ρ

2/3
α �2/mαkB , with kB

the Boltzmann constant. For temperatures much higher than

*rfantoni@ts.infn.it

max{(TD)α}, quantum statistics is not very important. This
path-integral Monte Carlo simulation enables us to study
the quantum fluid mixture from first principles, leaving the
effective pair potentials between the two species, the hydrogen
molecules, and the helium atoms as the only source of
external information. There are studies on reproducing such
coexistence from an equation-of-state approach [15]. Our
QGEMC method is expected to break down at high densities
near the solid phase. Moreover, clearly our approach becomes
infeasible at extremely high pressures when the hydrogen is
ionized, and one is left with delocalized metallic electrons
[6–12].

Our binary mixture of particles of two species la-
beled by a Greek index, with coordinates R ≡ {riα |iα =
1,2, . . . ,Nα and α = a,b} and interacting with a central
effective pair-potential φαβ(r), has a Hamiltonian

Ĥ = −
2∑

α=1

Nα∑
iα=1

λα∇2
iα

+ 1

2

2∑
α,β=1

′∑
iα,jβ

φαβ(|riα − rjβ
|), (1)

where the prime on the summation indicates that we must
exclude the terms with iα = jβ when α = β and λα = �2/2mα .

The density matrix for the binary mixture at equilibrium at
an absolute temperature T is then ρ̂ = e−βĤ with β = 1/kBT .
Its coordinate representation ρ(R,R′,β) can be expressed
as a path [R(τ )] integral in imaginary time (τ ) extending
from R = R(0) to R′ = R(β) [16]. The many-particle path
is made of N = Na + Nb single-particle world lines, which
constitute the configuration space one needs to sample. Since
the Hamiltonian is symmetric under exchange of like particles,
we can project over the bosonic states by taking ρB(R,R′,β) =∑

P ρ(R,PR′,β)/(Na!Nb!), where P indicates a permutation
of particles of the same species.

If we call ρ the number density of the mixture, xα the molar
concentration of species α (xb = 1 − xa), P = P (T ,ρ,xa)
the mixture pressure, and μα = μα(T ,P,xa) the chemical
potential of species α, we want to solve the two-phase, I and
II, coexistence problem,

μa

(
T ,P,x(I)

a

) = μa

(
T ,P,x(II)

a

)
, (2)

μb

(
T ,P,x(I)

a

) = μb

(
T ,P,x(II)

a

)
(3)
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TABLE I. Pair-potential parameters: φpair.

Pair ε∗ r∗
m α β γ C6 C8 C10 D

He-He 10.8 2.9673 13.208 13.353 0 1.3732 0.425 38 0.17810 1.2413
H2-H2 315 778 3.41 1.713 10.098 0.412 34 1.6955×10−4 7.2379×10−5 3.8984×10−5 1.28
H2-He 14.76 3.375 13.035 13.22 0 1.8310 0 0 0.798 02

for the concentrations x(I)
a and x(II)

a (and the densities ρ(I) and
ρ(II)) in the two phases. Since our mixture is not symmetric
under exchange of the two species, a and b, we expect in
general x(II)

a �= 1 − x(I)
a .

Our QGEMC algorithm [14] uses two boxes maintained
in thermal equilibrium at a temperature T and containing the
two different phases. It employs a menu of seven different
Monte Carlo moves: the volume move (q = 1) allows changes
in the volumes of the two boxes assuring the equality of the
pressures between the two phases, the open-insert (q = 2),
close-remove (q = 3), and advance-recede (q = 4) allow the
swap of a single-particle world line between the two boxes
assuring the equality of the chemical potentials between the
two phases, the swap (q = 5) allows us to sample the particle
permutations, and the wiggle (q = 6) and displace (q = 7)
allow us to sample the configuration space. We thus have a
menu of seven, q = 1,2, . . . ,7, different Monte Carlo moves
with a single random attempt of any one of them occurring
with probability Gq = gq/

∑7
q=1 gq .

The paper is organized as follows: In Sec. II we describe
the particular binary mixture studied, in Sec. III we describe
the simulation method employed, in Sec. IV we present our
numerical results, and Sec. V contains our final remarks.

II. THE H2-He MIXTURE

We consider a binary fluid mixture of molecular hydrogen
(H2) and the isotope helium four ( 4He), which are two bosons.
We take 1 Å as the unit of length and kB K as the unit of energy.
An asterisk over a quantity indicates its reduced adimensional
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FIG. 1. (Color online) Schematic pressure-composition phase
diagram for six isotherms of the hydrogen-helium mixture at low
temperatures and low pressures as obtained in the experimental work
by Streett et al. [4]. The thick continuous black line is the mixture
critical line.

value. We have the following for the parameter λα = �2/2mα

of the two species α = H2,
4He:

λ∗
H2

= 12.032, (4)

λ∗
He = 6.0596. (5)

The pair-potential between two helium atoms is the Aziz et al.
[17] HFDHE2, the one between two hydrogen molecules is
that of Silvera et al. [18], and the one between a hydrogen
molecule and a helium atom is that of Roberts [19,20]. All can
be put in the following central form:

φ(r) = ε
(x), (6)


(x)= exp(α−βx−γ x2)−
(

C6

x6
+ C8

x8
+ C10

x10

)
F (x), (7)

F (x) =
{

exp[−(D/x − 1)2], x < D,

1, x � D,
(8)

where x = r/rm, with rm the position of the minimum, and the
various parameters are given in Table I. We have φ∗

HeHe(rm) =
−10.8, φ∗

H2H2
(rm) = −34.3, and φ∗

H2He(rm) = −14.8. More-
over, we have a slight positive nonadditivity: [r∗

m]H2He =
3.375 > ([r∗

m]HeHe + [r∗
m]H2H2 )/2 = 3.189.

The experimental coexistence data [1,3,4] are given in
Table I of the Supplemental Material [21] and represented
schematically in Fig. 1. For example, the mixture at T = 31 K

has a lower critical state at P = (0.207kB ) K Å
−3

,xHe = 0.214

and an upper critical state at P = (1.96kB) K Å
−3

,xHe = 0.49.
The set of all critical states constitutes the x line, T = Tx(P ),

14
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T 
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)

xHe

FIG. 2. (Color online) Reproduction of Fig. 3 of Sneed et al. [3]
for the x line and the g line [see Eq. (11)]. The inset shows the two
lines in the temperature-composition plane.
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such that for T > Tx , then x
(I)
He = x

(II)
He . The experimental x line

of Sneed et al. [3] is shown in Fig. 2 for the low-temperature
and low-pressure mixture. In the figure, we also show the
experimental line for the gravitational inversion described in
Sec. III A.

For temperatures higher than the hydrogen critical point

TH2 = 33.19 K [PH2 = (0.094kB ) K Å
−3

] there is only an
upper critical point [4]. At the temperature at which Tx(P )
reaches its minimum, there is no unanimous consensus among
the various experimental works.

III. SIMULATION METHOD

We use our QGEMC method, described in Ref. [14],
where we monitor the number densities of the two coexisting
phases, ρ(i) = N (i)/V (i) = (N (i)

He + N
(i)
H2

)/V (i) with i = I,II,

the concentrations of He in the two phases, x(i)
He = N

(i)
He/(N (i)

He +
N

(i)
H2

) < 1, and the pressure P . We shall conventionally order
ρ(I) < ρ(II) so that I will be the vapor phase and II the
liquid phase, unless ρ(I) = ρ(II), in which case we have
a fluid-fluid phase coexistence. In the simulation, we fix
N = N

(I)
He + N

(II)
He + N

(I)
H2

+ N
(II)
H2

with N
(I)
H2

+ N
(II)
H2

= χ [N (I)
He +

N
(II)
He ] and V = V (I) + V (II). Otherwise, N

(I)
He,N

(II)
He ,N

(I)
H2

,N
(II)
H2

and V (I),V (II) are allowed to fluctuate keeping V (I) + V (II) and
N

(I)
He + N

(II)
He ,N

(I)
H2

+ N
(II)
H2

constants. The Gibbs phase rule for
a two-phase coexistence of a binary mixture assures that one
has two independent thermodynamic quantities [22]. So our
control parameters will be the absolute temperature T and the
global number density ρ = N/V (instead of the pressure as
in the experimental case). As usual, a finite N sets the size
error for our calculation, whereas χ > 0 will regulate the size
asymmetry numerical effect, so that for

N
(I)
He = Nx

(I)
He

[
1 − x

(II)
He (1 + χ )

]
(1 + χ )

(
x

(I)
He − x

(II)
He

) > 0, (9)

N
(II)
He = N

1 + χ
− N

(I)
He > 0, (10)

if x
(II)
He < x

(I)
He, we must have 0 < x

(II)
He < 1/(1 + χ ) < x

(I)
He <

1, and if x
(I)
He < x

(II)
He , then 0 < x

(I)
He < 1/(1 + χ ) < x

(II)
He < 1.

Moreover, we must also always have ρ(I) < ρ < ρ(II). The
initial condition we chose for our simulations was always as
follows: ρ(I) = ρ(II) = ρ and x

(I)
He = x

(II)
He = 1/(1 + χ ).

Due to the short-range nature of the effective pair potentials
of Eq. (6), we will approximate, during the simulation,
φ(r) = 0 for r > rcut � [rm]H2H2 (this corresponds to the
truncated and not shifted choice in Ref. [23]). To comply
with the minimum image convention for the potential energy
calculation, we make sure that the conditions [V (i)]1/3 > 2rcut

for i = I,II are always satisfied during the simulation. This
approximation is the only other source of error apart from
the size error. The two are related because in the fluid-fluid
coexistence, for instance, when V (I) ≈ V (II) ≈ V/2 during
the simulation, we require rcut ≈ (N/2ρ)1/3/2 � [rm]H2H2 for
some given ρ.

The path-integral discretization imaginary time step δτ =
β/K , with K the number of time slices, is chosen so that

δτ ∗ = 0.002, which is considered sufficiently small to justify
the use of the primitive approximation of the interaction [16].
The parameters M̄ , defined in [14], will be called M̄q for each
relevant move q, and the parameter 
�, also defined in [14],
is always chosen equal to 0.01. To fulfill detailed balance,
we must choose M̄2 = M̄3. In particular, we always chose
M̄2 = 5, M̄3 = 5, M̄4 = 5, M̄5 = 5, and M̄6 = 5. Regarding
the frequency of each move attempt, we always chose g1 =
0.001, g2 = 1, g3 = 1, g4 = 1, g5 = 1, g6 = 1, and g7 = 0.1.
The parameter C defining the relative weight of the Z and G

sectors [14] is adjusted, through short test runs, so as to have a
Z-sector frequency as close as possible to 50%. We accumulate
averages over 105 blocks each made of 105 attempted moves
with quantities measured every 103 attempts. Since the volume
move is the most computationally expensive one, we chose its
frequency as the lowest. During the simulation, we monitored
the acceptance ratios of each move. The various simulations
took no more than ∼150 CPU hours on a 3 GHz processor.

A. Barotropic phenomenon and gravitational inversion

The condition for the gravitational inversion observed
experimentally [3] is

ρ(I)
(
mHex

(I)
He + mH2x

(I)
H2

)
> ρ(II)

(
mHex

(II)
He + mH2x

(II)
H2

)
, (11)

where mHe/mH2 = 1.985 53. When this condition on the
mass density inversion with respect to the number density is
satisfied, the liquid phase will float on top of the vapor phase.
The condition of Eq. (11) can also be rewritten as

ρ(I)
(
1 + kx

(I)
He

)
> ρ(II)

(
1 + kx

(II)
He

)
, (12)

where k = mHe/mH2 − 1 = 0.985 53. This condition may be
satisfied when the concentration of He in the vapor phase is
bigger than that in the liquid phase at low temperatures, and
the number density of the liquid is close to that of the vapor at
high pressure. We expect quantum effects to become important
in this regime before solidification, which is expected to occur
for T < Ts(P ). The gravitational inversion of Eq. (12) will be
satisfied for T < Tg(P ). The experimental s-line T = Ts(P )
and g-line T = Tg(P ) have been determined in Fig. 3 of Sneed
et al. [3] in the laboratory.

B. Pressure calculation

We will use the virial estimator for the pressure [see
Eq. (6.18) of Ref. [16]] with long-range corrections [24] that
can be quite big in the liquid phase. More details on the
pressure calculation are given in the Supplemental Material
[21].

IV. NUMERICAL RESULTS

Our results are summarized in Table II and compared in
Fig. 3 with the experimental data of Refs. [1,3,4] (summarized
in a table in the Supplemental Material [21]).

In all of the studied cases, we chose N = 128 and δτ ∗ =
0.002. We explored the vapor-liquid coexistence (in this work,
we will denote as “vapor-liquid” coexistence the one in which
ρ(I) �= ρ(II) at five temperatures, T = 2, 5, 15.5, 26, and 31 K),
and the fluid-fluid coexistence (we will denote as “fluid-fluid”
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FIG. 3. (Color online) Comparison between the results of our
numerical experiments (points from Table II) and of the laboratory
experiments (lines from Table I in the Supplemental Material [21]) for
the pressure-composition of three isotherms of the hydrogen-helium
mixture phase diagram. A logarithmic scale is conveniently used on
the ordinates. The double circled points at T = 15.5 K denote the case
in which we observed gravity inversion in the numerical experiment.

coexistence the one in which ρ(I) = ρ(II)) at T = 31 K. For
the first two lower temperatures studied, we could not find any
experimental data for comparison. In these two cases, when
we put a number with trailing dots in the table, it means that
after the initial equilibration period, the measured property did
not change anymore during the rest of the simulation.

For the temperature T = 15.5 K, as can be readily verified
using the relation of Eq. (12), we observe gravitational

inversion on the point at ρ = 0.02 Å
−3

when the component
with the highest degeneracy temperature is the hydrogen in the
liquid phase with TD ≈ 2 K. Clearly when choosing higher
pressures, quantum statistics will become more and more
important for the fluid mixture before reaching the solid state.

For the points at T = 26 K, T = 31 K, ρ = 0.006 Å
−3

, χ =
116/12, T = 31 K, ρ = 0.03 Å

−3
, and χ = 1 we observed

exchanges of identity between the two phases during the
simulation.
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FIG. 4. Fit of the histogram for the block averages of both x
(I)
He

and x
(II)
He with the sum of two Gaussians with six parameters. This

is the case T = 26 K, ρ = 0.01 Å
−3

, and χ = 90/38, where we had
box identity exchanges.

At a temperature T = 31 K and a pressure of P =
[0.07(2)kB] K Å

−3
, we found a vapor-liquid coexistence,

choosing χ = 116/12. This point should be subject to greater
size error than all other points simulated, and thus should
be less reliable, since we only have, in the two boxes, a
total of 12 helium atoms. Increasing the pressure to P =
[0.21(2)kB] K Å

−3
, in agreement with the experiment, we

did not find coexistence, and we observed ρ(I) ≈ ρ(II) ≈ ρ

and x
(I)
He ≈ x

(II)
He ≈ 1/(1 + χ ). Increasing the pressure to P =

[3.5(4)kB] K Å
−3

, we did not observe exactly ρ(I) = ρ(II), as
measured in the fluid-fluid transition observed in the laboratory
[4]. The same holds true for the point at the same temperature

but higher pressure, P = [6.3(6)kB] K Å
−3

.
For all measured points except the one at the lower

temperature, T = 2 K of Table II, the superfluid fraction [25]
of the two components in either phase was negligibly small. At
T = 2 K of Table II, below the helium lambda-temperature, we
observed a negligible superfluid fraction of both components
in the liquid phase and of the hydrogen in the vapor phase.

TABLE II. Numerical isothermal pressure composition at coexistence. We always used N = 128 and δτ ∗ = 0.002. All the pressures are in

units of kBK Å
−3

.

T (K) ρ (Å
−3

) χ P x
(II)
He x

(I)
He ρ(II) (Å

−3
) ρ(I) (Å

−3
)

2.0 0.015 1 −0.08(7) 0.214. . . 0.639. . . 0.024 56(1) 0.012 605(2)
5.0 0.010 1 0.014(2) 0.1787(1) 1.000. . . 0.025 910(6) 0.005 113(1)
15.5 0.010 1 0.093(7) 0.00457(9) 0.948(1) 0.024 10(1) 0.006 544(5)
15.5 0.015 1 0.16(4) 0.0125(3) 0.923(1) 0.023 04(2) 0.011 525(7)
15.5 0.020 1 0.30(9) 0.0142(4) 0.921(1) 0.023 73(2) 0.017 619(5)
26.0 0.010 90/38 0.14(2) 0.044(2) 0.546(4) 0.018 90(5) 0.006 69(1)
26.0 0.015 90/38 0.25(5) 0.118(3) 0.593(8) 0.018 88(7) 0.011 05(5)
26.0 0.020 90/38 0.6(1) 0.170(3) 0.69(3) 0.021 15(2) 0.017 59(8)
31.0 0.006 116/12 0.11(3) 0.091(1) 0.201(7) 0.014(2) 0.005 64(6)
31.0 0.008 1 0.21(2) 0.5025(6) 0.511(1) 0.008 016(7) 0.007 95(1)
31.0 0.030 1 3.5(4) 0.832(4) 0.113(3) 0.031 98(4) 0.028 05(1)
31.0 0.035 1 6.3(6) 0.932(2) 0.0243(9) 0.039 55(5) 0.031 11(1)
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TABLE III. Numerical isothermal pressure-composition coexis-

tence at T = 31 K, ρ = 0.03 Å
−3

, and χ = 1 as a function of the
number of particles N . We always used δτ ∗ = 0.002. All the pressures

are in units of kBK Å
−3

.

N rcut (Å) P x
(II)
He x

(I)
He ρ(II) (Å

−3
) ρ(I) (Å

−3
)

64 5 2.4(8) 0.83(3) 0.03144(7) 0.02782(3)
128 6 3.5(4) 0.832(4) 0.113(3) 0.03198(4) 0.02805(1)
256 8 3.4(2) 0.840(3) 0.098(3) 0.03180(3) 0.028170(9)

The helium in the vapor phase was found to have a superfluid
fraction of 0.012(3), indicating a tendency to superfluidity.

When we do not observe exchanges of identity between
the two phases during the simulation, we are able to find
accurate average values for the various measured quantities.
Otherwise a histogram analysis of the data is necessary with a
nonlinear fit using the superpositions of two shifted Gaussians.
For example, in Fig. 4 we show the procedure used to extract
the helium concentrations of the two coexisting phases for the

case T = 26 K, ρ = 0.01 Å
−3

, and χ = 90/38.
The measured property that is less accurate is the pressure

due to the size error and the long-range correction dependent
on the rcut choice. This problem could be overcome by using
the N,P,T version of the Gibbs ensemble algorithm instead
of its N,V,T one [26].

A. Finite-size effects

We studied the finite-size effects at T = 31 K, ρ =
0.03 Å

−3
, and χ = 1. In Table III, we show the results for

the isothermal pressure-composition coexistence at N = 64,
128, and 256. As the number of particles increases, we observe
a decrease in the ratio of the number of exchanges of identity
between the two phases and the total number of particles: For
N = 64, the exchanges occurred many times, for N = 128
only once, and for N = 256 never. For the case N = 64,
we found the peak of the first Gaussian for the histogram of
xHe with a negative value. The simulation with N = 64 took
1.0 × 105 s, the one with N = 128 took 1.6 × 105 s, and the
one with N = 256 took 4.0 × 106 s. From the comparison we
see that there is not much difference between N = 128 and
256. Apart from the smaller statistical errors in the latter case,
the concentrations differ slightly in the two cases.

B. Importance of the particle exchanges and
of the quantum effects

Setting to zero the frequency of the swap move attempts,
our algorithm reduces to a path-integral calculation for
distinguishable particles obeying the Boltzmann statistics. On
the other hand, choosing K = 2 (with M̄q = 1 for all q) and
λ∗

H2
= λ∗

He → 0, our algorithm reduces to the classical Gibbs
ensemble Monte Carlo (GEMC) algorithm of Panagiotopoulos
[27].

For the state point T = 15.5 K and ρ = 0.02 Å
−3

with
N = 128, we performed two simulations for each of the two
cases suggested above to estimate the importance of particle
exchanges, which underlie the Bose-Einstein statistics, and of
quantum effects, respectively. To reach the GEMC limit from
our QGEMC algorithm, we chose, in particular, λ∗

H2
= λ∗

He =
10−3. The results are shown in Table IV. The acceptance ratio
for the swap move was around 0.5 in the full quantum case
and imposed zero in the other two simulations.

As we can see from the table, for this state point, there is
a very small difference between the path-integral simulation
with the full Bose-Einstein statistics and the one with the
Boltzmann statistics. In particular, only the densities of the
vapor phase are different in the two cases. In both of these
simulations, we observe the gravitational inversion. We expect
that upon increasing the pressure and thereby the density or
reducing the temperature, the particle exchanges will become
increasingly important.

On the other hand, there is a large difference between these
two simulations and the classical GEMC one. In particular,
the gravitational inversion is not observed in the classical
limit simulation, even if after a short equilibration time the
simulation converged toward the condition x

(I)
He = 1, i.e., all

helium atoms, the heaviest species in the mixture, were found
in the less dense phase.

V. CONCLUSIONS

In conclusion, we performed path-integral Monte Carlo
simulations using our QGEMC method for the two-phase
coexistence of a hydrogen-helium mixture away from freezing.
At low temperature, this asymmetric mixture displays a
big concentration asymmetry in the two coexisting phases,
whereas the densities of the two phases tend to become equal at
high pressure. This is responsible for a gravitational inversion,
where the liquid, the more dense phase, with an abundance of

TABLE IV. Numerical isothermal pressure-composition coexistence at T = 15.5 K, ρ = 0.02 Å
−3

, and χ = 1 in a simulation with the full
QGEMC algorithm with the Bose-Einstein statistics (δτ ∗ = 0.002), with the QGEMC algorithm with Boltzmann statistics (δτ ∗ = 0.002), and

with the GEMC limit (see the main text) of the QGEMC algorithm. We always used N = 128. All the pressures are in units of kBK Å
−3

.

Statistics P x
(II)
He x

(I)
He ρ(II) (Å

−3
) ρ(I) (Å

−3
)

QGEMC: Bose-Einstein 0.30(9) 0.0142(4) 0.921(1) 0.02373(2) 0.017619(5)
QGEMC: Boltzmann 0.30(9) 0.0143(4) 0.919(1) 0.02373(2) 0.017638(5)
GEMC: classical limit 0.13(4) 0.000. . . 1.000. . . 0.035953(5) 0.0138552(7)
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hydrogen, floats above the vapor, the less dense phase, with
an abundance of helium. In this coexistence region of the
temperature-pressure diagram, quantum statistics is expected
to play an important role, and in our simulations we are
able to observe such gravitational inversion. Our numerical
experiments are also in good quantitative agreement with the
experimental results of Sneed, Streett, Sonntag, and Van Wylen
from the late 1960s and early 1970s. The difference between
our results on the helium concentration in the two phases and
the experimental ones is in all cases less than 15% in the high
helium concentration phase and less than 5% in the low helium
concentration phase, relative to the experiment.

These results for the hydrogen-helium mixture can be of
interest for the study of cold exoplanets with an atmosphere
composed predominantly of such a fluid mixture and with
the right temperature and pressure conditions for there to be
coexistence. In such cases, it could be possible to observe the

gravitational inversion phenomenon and consequent changes
in the planet moment of inertia, depending on the atmospheric
and climatic conditions. At extremely low temperature and
pressure, we find that the first component to show superfluidity
is the helium in the vapor phase.

Our QGEMC method [14] is extremely simple to use,
reduces to the Gibbs ensemble method of Panagiotopoulos
[27] in the classical regime, and gives an exact numerical
solution of the statistical physics phase coexistence problem
for boson fluids.

An open problem currently under examination is the
influence of the finite-size effects on the determination
of the binodal curves close to the lower strongly asym-
metric critical points, such as, for example, in our case

T = 31 K, ρ = 0.006 Å
−3

, and χ = 116/12. This requires
additional simulations at a higher and lower number of
particles.
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Abstract: We perform path integral Monte Carlo simulations to study the imaginary time
dynamics of metastable supercooled superfluid states and nearly superglassy states of a
one component fluid of spinless bosons square wells. Our study shows that the identity of
the particles and the exchange symmetry is crucial for the frustration necessary to obtain
metastable states in the quantum regime. Whereas the simulation time has to be chosen to
determine whether we are in a metastable state or not, the imaginary time dynamics tells
us if we are or not close to an arrested glassy state.
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Abstract. We perform path integral Monte Carlo simulations to study the imaginary time dynamics of
metastable supercooled superfluid states and nearly superglassy states of a one component fluid of spinless
bosons square wells. Our study shows that the identity of the particles and the exchange symmetry is
crucial for the frustration necessary to obtain metastable states in the quantum regime. Whereas the
simulation time has to be chosen to determine whether we are in a metastable state or not, the imaginary
time dynamics tells us if we are or not close to an arrested glassy state.

If a liquid can be cooled below its melting tempera-
ture Tm without the occurrence of crystallization, it is
called a good glass former, and when the temperature is
less than Tm the system is called supercooled. The static
and dynamical properties of such systems can be studied
over a large temperature range below Tm and it is found
that their relaxation times increase very quickly by many
decades if the temperature is lowered. At a certain tem-
perature the relaxation time exceeds the timescale of the
experiment and therefore the system will fall out of equi-
librium. It is this falling out of equilibrium that is called
the glass transition. At temperatures well below this glass
transition temperature no relaxation seems to take place
any longer, on any reasonable timescale, and it is custom-
ary to call this material a glass. This transition temper-
ature will in general depend on the type of experiment,
since its definition involves the timescale of the experi-
ment. Understanding the transition from a supercooled
liquid to a glass, or a disordered solid, is one of the major
open problems in condensed matter.

In a liquid of number density ρ, made of mass m par-
ticles, moving in a d-dimensional space, the quantum ef-
fects will become important when the temperature T is
comparable or smaller than the degeneracy temperature
TD = 2λρ2/d, where λ = �2/2m and � is the reduced
Planck constant. A liquid such that TD > Tm is therefore
likely to form a quantum glass.

At a temperature TMCT < Tm a kinetic glass transi-
tion towards an arrested state is predicted by the mode
coupling theory (MCT) [1,2]. Many of the qualitative pre-
dictions of this theory have been confirmed in experiments
and computer simulations, and thus MCT can currently
be regarded as the best available theory of the dynamics
of supercooled liquids.

Our aim in this letter is to use path integral Monte
Carlo (PIMC) simulations [3] to gain an understanding on

a e-mail: rfantoni@ts.infn.it

the very general question of the search for an arrested state
when the temperature approaches TMCT. Since we are in-
terested in a universal property of glassy systems, our sim-
ulations are carried out with a very simple and unrealistic
model liquid, namely the square-well bosons [4]. We will be
working at very low temperatures T ≈ Tm < TD. We will
find metastable supercooled superfluid states and evidence
for development towards a superglass state [5–7] which
should appear at even lower temperatures T ≈ TMCT.

Using the terminology of reference [3] we are then look-
ing for local minima of the action of the primitive ap-
proximation, up to thermal activation according to the
Metropolis algorithm [8]. These may differ from the ones
of the inter-action due to quantum tunneling. In particu-
lar we will be interested in how the identity of the particles
and their exchange permutation cycles which forms in a
PIMC simulation frustrates the development towards the
global minimum of the action favoring the formation of
the metastable supercooled states [9].

Consider a fluid (homogeneous and isotropic) of N
bosons in a volume V and density ρ = N/V at a given
absolute temperature T = 1/kBβ, with kB Boltzmann
constant, with a Hamiltonian

H = −λ
N∑

i=1

∇2
i +

∑

i<j≤N

φ(|ri − rj |)

symmetric under particle exchange, with λ = �2/2m, m
the mass of the particles, and φ(|ri−rj |) the pair-potential
of interaction between particle i at ri and particle j at rj .
The dynamic structure factor is defined as follows:

S(k, ω) =
1

2πN

∫ ∞

−∞
dt e−iωt〈ρ−k(0)ρk(t)〉

=

∫ ∞

−∞
dt e−iωtF (k, t),
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where

ρ(r) =
N∑

i=1

δ(r − ri)

with 〈ρ(r)〉 = ρ, ρ(r, t) = eiHt/�ρ(r)e−iHt/�, ρk(t) =∫
dr eik·rρ(r, t), and ρk(0) = ρk. Given an observable O

we define the statistical average as 〈O〉 = Tr
(
Oe−βH)

/Z

with Z = Tr(e−βH) the partition function.
We introduce the analytic continuation of F (k, t) =∫ ∞

−∞ dω e−�ωtS(k, ω) in imaginary time as follows

Fk(t) =
1

NZ
Tr

(
ρ−ke−tHρke−(β−t)H

)
. (1)

So that Fk(0) = 2πF (k, 0) =
∫ ∞

−∞ dω S(k, ω) = S(k) is

the static structure factor such that limk→∞ S(k) = 1.
Clearly we have that Fk(t) = 2πF (k, i�t) is defined

for t ∈ [0, β] being symmetric respect to t = β/2 since
S(k, −ω) = e−βωS(k, ω).

The calculation of Fk(t) of equation (1) becomes
straightforward in path integral Monte Carlo (PIMC) [3]
where it is sufficient to average the product of ρ−k on the
first time-slice with ρk at a time-slice a time t later.

The dynamic structure factor for the ideal Bose gas for
particles of spin s at a temperature T below the critical
temperature kBTc = 4πλ{ρ/[(2s + 1)ζ(3/2)]}2/3, where ζ
is the Riemann zeta function, is given by equation (18) in
reference [10]1, where their λ is our

√
4πλβ, the de Broglie

wavelength.
In particular one finds

dFk(t)

dt

∣∣∣∣
t=0

= −
∫ ∞

−∞
dω �ωS(k, ω) = −λk2.

In Figure 1 we show how Fk(t) is well-approximated by a

pure exponential decay S(k)e−λk2t for t ∈ [0, β/2].
We performed grand canonical PIMC with the “worm”

algorithm [11] for a system of spin zero square-well bosons
in three spatial dimensions. As usual the path R(t) is
discretized in imaginary time t extending from t = 0 to
t = β = nτ τ with a time-step τ . It is made of Nnτ beads
of coordinates R(t) = {(xi(t), yi(t), zi(t)) ∀i = 1, . . . , N}
at each time-slice t = tj = jτ . The particles pair-potential
is as follows

φ(r) =

⎧
⎨
⎩

+∞ r < σ
−ε σ ≤ r < σ(1 + Δ)
0 σ(1 + Δ) ≤ r.

(2)

We choose ε > 0 as the unit of energies and σ as the
unit of lengths. We then introduce a reduced temperature
T ∗ = kBT/ε (with β∗ = 1/T ∗), a reduced density ρ∗ =
ρσ3, and a reduced chemical potential μ∗ = μ/ε. When
the mass m of the bosons and/or the depth of their at-
tractive well ε are sufficiently large, i.e. λ∗ = λ/(εσ2) 
 1
we are in the classical limit. The classical fluid has been

1 There is a misprint in equation (18) where the denominator
of the term containing the Dirac delta functions should read
1 − e−ω/ωT .
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t

1.00053 exp(-9 t)

Fig. 1. Behavior of Fk(t), as a function of the imaginary time
t ∈ [0, β], for an ideal Bose gas below its critical temperature
at k = 3, λ = 1, kBT = 1, ρ = 0.4, and s = 0. The critical
temperature is kBTc = 3.597. The points are the numerical
results from equations (1) and equation (18) of reference [10].
On the ordinates axis we use a logarithmic scale.

studied originally by Vega et al. [12] who found that the
critical point of the gas-liquid coexistence moves at lower
temperatures and higher densities as Δ gets smaller. The
quantum mechanical effects on the thermodynamic prop-
erties of nearly classical liquids can be estimated by the
de Boer quantum delocalization parameter � =

√
2λ∗ [13].

The phase diagram of the system in the quantum regime,
T ∗ � T ∗

D = 2λ∗(ρ∗)2/3, has recently been studied by us [4]
with our quantum Gibbs ensemble MC algorithm [14].

Unlike the work of Biroli et al. [6] we will work far
away from the sticky limit [15] obtained by setting the
stickiness parameter T −1 = 12eβεΔ and taking the double
limit ε → ∞ and Δ → 0 at fixed T . We could reach
numerically such limit by taking Δ small enough [16–18].
Instead we will fix Δ = 0.5 in all cases as was done in the
previous analysis of reference [4].

In the present letter we want to study the relaxation
to zero of the Fk(t) in the quantum regime, so we must
choose λ∗ � 0 and T ∗ � T ∗

D. Choosing λ∗ = 1 we
must choose a sufficiently small temperature and a suf-
ficiently high density. For T ∗ = 1 we need a reduced den-
sity ρ∗ � (1/2)3/2 = 0.35. The maximum reduced density

allowed for our system is
√

2 = 1.41 for the close packed
configuration of the hard cores. The small attraction be-
tween the particles will be responsible for a shift at lower
packing fractions, η = πρσ3/6, of the melting value for
pure hard-sphere (which in the classical limit is approxi-
mately 0.54).

In our PIMC we had to choose a discretization time-
step, τ∗ = β∗/nτ , for the imaginary time extending from
tε = 0 to tε = β∗. We then chose nτ = 100 time-
slices [3]. The “worm” algorithm uses a menu of 9 different
moves: advance, recede, insert, remove, open, close, swap,
wiggle, and displace. Labeling each of these moves with
q = 1, 2, . . . , 9 respectively, a single random attempt of
any one of them with probability Gq = gq/

∑9
q=1 gq con-

stitutes a MC step. In our simulations we always chose
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Table 1. Reduced properties of the simulated system with Δ = 0.5 at λ∗ = 1, V = 100σ3 and different μ∗. For the simulation
at T ∗ = 0.5, μ∗ = 80 (stable) we considered the first 20 000 blocks as equilibration time and they were therefore discarded from
the averaging. In all the other cases the equilibration time was taken equal to 1000 blocks, i.e. the ones necessary to bring the
system from the empty box to the equilibrium number of particles.

T ∗ μ∗ etot/ε ekin/ε epot/ε pσ3/ε 〈N〉 ρσ3 ρs/ρ
1.0 50 (stable) 12.81(6) 17.70(7) –1.889(6) 3.33(2) 33.92(7) 0.3392(7) 1.05(8)
1.0 80 (stable) 19.20(7) 21.94(8) –2.734(8) 6.20(3) 42.41(8) 0.4241(8) 1.1(1)
1.0 100 (stable) 24.12(6) 27.46(7) –3.335(7) 8.75(3) 47.79(6) 0.4779(6) 0.03(1)
0.5 80 (stable) 17.029(8) 20.325(8) –3.297(3) 6.504(3) 48 0.48 0.013(4)
0.4 80 (metastable) 13.64(4) 17.09(5) –3.446(5) 5.72(2) 50.19(5) 0.5019(5) 1.2(1)
0.4 90 (metastable) 15.23(4) 18.98(5) –3.744(6) 6.73(2) 53.16(5) 0.5316(5) 1.05(8)

gq = 1 for q = 1, 2, . . . , 7, 9, and g8 = 10. For each move,
except the displace one, a maximum number of time-slices
involved, m, is also defined [11] to control their acceptance
ratios. We always chose mq = 5 for all q. For the displace
move we chose a displacement of the path of the order of
V 1/3/1000. We always chose the C parameter defined in
reference [11] equal to 0.1. This value ensured an accep-
tance ratio for the Z-sector [11] lower but close to 1/2 even
if in the simulations converging towards the solid state this
increased passed 1/2.

Our simulations were 5×104 blocks long with one block
made by 100 steps where we did not accumulate the av-
erages and by 100 steps where we did. This sets the sim-
ulation (experiment) time.

We studied the model with Δ = 0.5 and λ∗ = 1 at
T ∗ = 1, V = 100σ3, and μ∗ = 50, 80, 100. Starting from
the empty box we reached a stable superfluid for μ∗ =
50 (stable), 80 (stable) and a stable normal solid for μ∗ =
100 (stable). Then we lowered the temperature at T ∗ = 0.5
and we studied the model with μ∗ = 80. Now quenching
from the empty box we reached a metastable superfluid
at μ∗ = 80 (metastable) for the first 20 000 blocks which
later converged towards its stable normal solid state: μ∗ =
80 (stable). We then quenched from the empty box at a
slightly lower temperature T ∗ = 0.4 keeping the chemical
potential at μ∗ = 80 (metastable) (which resulted in a
slightly higher density respect to the case at the higher
temperature T ∗ = 0.5) and we observed that the system,
instead of entering the stable solid phase, stayed, for the
whole length of our numerical experiment, in a metastable
supercooled superfluid state.

In Table 1 we report some properties of the simulated
system such as: the total energy per particle etot, the ki-
netic energy per particle ekin, the potential energy per par-
ticle epot, the pressure p, the average number of particles
〈N〉, the density ρ = 〈N〉/V , and the superfluid fraction
ρs/ρ, as calculated according to reference [3]. All the pre-
sented simulation were well converged and the correlation
simulation time kO was never bigger than 500 blocks in
any simulation for any property O. The statistical error
was as usual calculated as

√
σ2(O)kO/Ns, where σ2(O) is

the estimator of the variance of the random walk and Ns

the number of MC steps.

In Figure 2 we show the static structure factor of
the first five systems. This clearly shows how the T ∗ =
0.5, μ∗ = 80 (stable) case is a solid state (the structure

0.1

1.0

10.0

0 2 4 6 8 10 12 14 16

S(
k)

kσ

T*=1,μ*=50[stable]
T*=1,μ*=80[stable]

T*=1μ*=100[stable]
T*=0.5,μ*=80[stable]

T*=0.4,μ*=80[metastable]

Fig. 2. Static structure factor Fk(0) = S(k) at λ∗ = 1 and
T ∗ = 1, μ∗ = 50 (stable), 80 (stable), 100 (stable) and T ∗ =
1/2, μ∗ = 80 (stable), 80 (metastable). On the ordinates axis
we use a logarithmic scale.

factor peak is between 6 and 7) whereas the T ∗ = 0.4, μ∗ =
80 (metastable) one is a fluid state (the structure factor
peak is here between 1.6 and 1.8). Note that in all cases
the simulation was 5×104 blocks long and the acceptance
ratio of the Z-sector comparable. The difference between
the two cases immediately also appears by looking at the
evolution of the superfluid fraction during the progress of
the simulations, as shown in Figure 4. We clearly see how
the T ∗ = 0.5, μ∗ = 80 (stable) case has a transition from
a superfluid state, before block 20 000, to a normal solid,
after. The behavior of Fk(t) as a function of the imaginary
time for some chosen reciprocal wave-numbers around the
first peak of the correspondent static structure factor for
the system with T ∗ = 0.4 and μ∗ = 80, which is a pre-
cursor of a superfluid glass, a superglass [5,6,19], is such
that we observe exponential decays going below 10−2 for
tε > 0.6. Whereas for the systems in the solid state at
T ∗ = 1, μ∗ = 100 (stable) and T ∗ = 0.5, μ∗ = 80 (stable)
we observe an almost constant value for Fk(t) at the
wave-number of the first peak of the correspondent static
structure factor and exponentially decaying the other
wave-numbers.

In Figure 3 we show the (xi(t), yi(t)) particles posi-
tions at all time-slices at the end of the simulation for
the cases T ∗ = 0.5, μ∗ = 80 (stable) and T ∗ = 0.4, μ∗ =
80 (metastable), respectively.
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Fig. 3. The (xi(t), yi(t)) particles positions at all time-
slices at the end of the simulation with: λ∗ = 1, T ∗ =
0.5, μ∗ = 80 (stable) (left panel) and λ∗ = 1, T ∗ = 0.4, μ∗ =
80 (metastable) (right panel).
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Fig. 4. Superfluid fraction at each PIMC block during the
simulation at λ∗ = 1 and T ∗ = 0.5, μ∗ = 80 (stable) and
T ∗ = 0.4, μ∗ = 80 (metastable).

Regarding the size effects we can say that the solid
state we observed has a triclinic lattice structure with a
unit cell with base vectors a = (0, 0, a), b = (a, 0, a/2), c =
(0, a, a/2) accommodating approximately 48 particles. At
T ∗ = 0.4, a chemical potential of μ∗ = 80 is sufficient to
reach approximately 50 particles which could be adjusted
in a different unit cell with the same crystal structure.
Thus we think that the size effects should not be consid-
ered as responsible for the observed metastability.

In order to get closer to an arrested metastable state
we restarted from the the equilibrated supercooled su-
perfluid configuration of T ∗ = 0.4, μ∗ = 80 (metastable)
and increased μ∗ by 10. This allowed us to reach another
metastable supercooled superfluid state closer to an ar-
rested state where the Fk(t), for the k around the first
peak of the static structure factor at 2, shows an initial
exponential decay followed by a plateau. This is clearly
shown in Figure 5 taken at the end of the simulation and
is in accord with the MCT predictions. In order to ob-
serve the plateau it is essential the restarting or aging
procedure.

In conclusion, we proved, for the idealized model of
spinless square well bosons, that superfluidity is able to
sustain metastability at low temperature and high density.
In order to define whether we are on a metastable state

10-2

10-1

100

101

0.0 0.2 0.4 0.6 0.8 1.0 1.2

F k
(t)

tε

kσ=4.49
kσ=4.69
kσ=4.88
kσ=5.06
kσ=5.41
kσ=5.58
kσ=5.74
kσ=5.90
kσ=6.05

kσ=14.70

Fig. 5. The behavior of Fk(t) as a function of the imagi-
nary time for various values of k around the first peak of
the structure factor. We used λ∗ = 1, T ∗ = 0.4, and μ∗ =
90 (metastable). The dashed lines are the approximate ideal
gas results. On the ordinates axis we use a logarithmic scale.
For kσ = 5.90 also the statistical errors are shown.

we need to fix a simulation time interval much longer than
the correlation simulation time. We were able to maintain
the system in a metastable supercooled superfluid state
for a rather long simulation time. The metastable state
may not be unique and there may be many of those for a
given set of thermodynamic conditions (e.g. μ, V, T in the
grand canonical ensemble) all different from one another
depending from the kind of quench. The real (diffusive)
dynamical (imaginary) time of the physical system can be
used to define the insurgence of an arrested glassy state
through the aging procedure, even if it is limited to the
interval [0, β/2].

We should mention here that the simulation time for
a classical molecular dynamic and for a MC numerical
experiment have profoundly different meanings. The first
one can be mapped into the real dynamical time of the
classical physical system whereas the second one has noth-
ing to do with it but is merely the number of stochas-
tic moves made to sample the configuration space of the
system within the Metropolis algorithm. In the quantum
regime one has at his disposal only simulations of the MC
type but, as we showed, the simulation time can give an
indication of metastability. Whereas the imaginary time
real dynamics of the system tells us if we are close to an
arrested glassy state.

We are presently implementing a better hard-core
propagator [20] to substitute to the primitive approxima-
tion which would allow us to use fewer time-slices.
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Chapter 49

Fourth moment sum rule for the
charge correlations of a
two-component classical plasma

Alastuey A. and Fantoni R., J. Stat. Phys. 163, 887 (2016)
Title: “Fourth moment sum rule for the charge correlations of a two-component classical
plasma”
Abstract: We consider an ionic fluid made with two species of mobile particles carrying either
a positive or a negative charge. We derive a sum rule for the fourth moment of equilibrium
charge correlations. Our method relies on the study of the system response to the potential
created by a weak external charge distribution with slow spatial variations. The induced
particle densities, and the resulting induced charge density, are then computed within den-
sity functional theory, where the free energy is expanded in powers of the density gradients.
The comparison with the predictions of linear response theory provides a thermodynami-
cal expression for the fourth moment of charge correlations, which involves the isothermal
compressibility as well as suitably defined partial compressibilities. The familiar Stillinger-
Lovett condition is also recovered as a by-product of our method, suggesting that the fourth
moment sum rule should hold in any conducting phase. This is explicitly checked in the low
density regime, within the Abe-Meeron diagrammatical expansions. Beyond its own interest,
the fourth-moment sum rule should be useful for both analyzing and understanding recently
observed behaviours near the ionic critical point.
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charge correlations. Our method relies on the study of the system response to the potential
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The comparison with the predictions of linear response theory provides a thermodynamical
expression for the fourth moment of charge correlations, which involves the isothermal
compressibility as well as suitably defined partial compressibilities. The familiar Stillinger–
Lovett condition is also recovered as a by-product of our method, suggesting that the fourth
moment sum rule should hold in any conducting phase. This is explicitly checked in the low
density regime, within the Abe–Meeron diagrammatical expansions. Beyond its own interest,
the fourth-moment sum rule should be useful for both analyzing and understanding recently
observed behaviours near the ionic critical point.
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1 Introduction

Sum rules have been playing an important role in the study of charged systems for many
years. In general, a sum rule provides a relation between microscopic correlations on the one
hand, and macroscopic or universal quantities on the other hand. For charged systems, sum
rules often express screening properties, so they shed light on the fundamental mechanisms
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at work. Furthermore, they also provide useful constraints for approximate theories. Sum
rules have been derived for a large variety of charged systems, including classical, quantum
and relativistic plasmas, while they concern both static and dynamic properties in the bulk or
near interfaces. For instance, let us mention the last work [1] by Bernard Jancovici, devoted
to the study of the time-displaced charge correlations of a relativistic one-component plasma
coupled to radiation. Other examples can be found in two reviews [2,3].

One of the most well-known sum rules for classical ionic fluids was derived long ago
by Stillinger and Lovett [4], who shown that the second moment of equilibrium charge
correlations is given by a simple universal expression, valid in any plasma phase and inde-
pendent of the microscopic details of the considered models. That second-moment sum rule
expresses the perfect screening of weak external charges. A few years later, Vieillefosse and
Hansen [5] derived another sum rule for the fourth moment of the charges correlations of the
one-component plasma (OCP), where identical positively charged particles move in a rigid
uniform neutralizing background. That fourthmoment is expressed in terms of the isothermal
compressibility. Soon after thatwork, therewas an attempt [6] to extend such a fourth-moment
sum rule to the two-component plasma (TCP) where both positive and negative charges are
mobile. The corresponding expression for the fourth moment involves ill-defined thermody-
namic quantities, so its validity remained quite doubtful. A more convincing approach for
that TCP was introduced by van Beijeren and Felderhof [7]. However, the thermodynamical
quantities involved in the expression of the fourthmoment are defined through the application
of suitable external potentials which are not explicited, while the derivation itself is rather
tough. In fact, a similar expression was obtained later by Suttorp and van Wonderen [8] for
a multicomponent ionic mixture (MIM), where all mobile charges have the same sign and
interact via the pure Coulomb potential, while a rigid uniform background of opposite charge
ensures overall neutrality. Then, all involved thermodynamic quantities become well defined
within the considered MIM.

The main goal of the present paper is to derive a fourth moment sum rule for a general
TCP, namely to express such moment in terms of suitably defined thermodynamical quan-
tities, similarly to the formulae derived for the OCP [5] or the MIM [8,9]. Our strategy,
inspired by Jancovici’s style, consists in studying the response of the TCP to a weak external
charge distribution with a plane wave structure. In the long wavelength limit, the induced
local particle densities vary on macroscopic scales. This allows us to compute the response
within some hydrostatic-like approach which involves local equilibrium states with arbitrary
densities. As a crucial point, a proper definition of equilibrium homogeneous non-neutral
states with arbitrary densities naturally emerges within the framework of density functional
theory (DFT). Then the induced charge density is expressed in terms of well-behaved ther-
modynamical quantities of an auxiliary system, which is nothing but a TCP immersed in a
rigid uniform neutralizing background. Comparing that expression with the general linear
response formula, we obtain the required fourth moment sum rule for the charge correlations
of the genuine unperturbed TCP.

According to the previous strategy, we first introduce in Sect. 2 the various systems
which intervene in our analysis. Of course, we start by defining the TCP, where a short-range
regularization of the pure Coulomb interactions is essential for avoiding the classical collapse
between oppositely charged particles. Two examples of such regularizations are provided,
associated with either soft or hard spheres. After recalling that the TCP is always neutral
and homogeneous in the absence of any external action on the particles, we show how the
application of a suitable external potential produces homogeneous non-neutral states. This
leads to the introduction of an auxiliary system, the TCP immersed in a charged background,
for which equilibrium states are well defined for any set of particle densities.
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The general framework of DFT is exposed in Sect. 3, where we provide the fundamental
DFT equation which relates particle densities to the applied external potentials. The central
object in that relation is the free energy, which is a functional of particle densities. For slow
spatial variations, that free energy functional can be expanded in powers of the gradients of
particle densities, where the local ingredients are equilibrium quantities of the above homo-
geneous auxiliary system. Let us mention that the idea of using density-gradient expansions
was introduced a long time ago by van der Waals [10] for studying capillarity.

In Sect. 4, within DFT, we compute the induced particle densities of the TCP submitted
to a weak external charge distribution with a plane wave structure and wavenumber k. The
resulting induced charge density exactly cancels the external charge distribution in the long
wawelength limit k → 0, as expected from perfect screening arguments. Furthermore, its
amplitude at the order k2 included only depends on thermodynamical quantities of the aux-
iliary system. In other words the square-gradient corrections in the free energy functional,
which intervene in the corresponding amplitudes of each induced particle density at this
order, do not contribute anymore when forming the charge density thanks to cancellations.
Then, by comparing this exact expression of the induced charge density obtained by DFT
with the linear response formula, we obtain the required sum rule for the fourth moment of
the charges correlations of the homogeneous neutral TCP. The corresponding thermodynam-
ical expression of that fourth moment involves not only the isothermal compressibility of the
TCP, but also partial compressibilities specific to the auxiliary system. We briefly discuss the
content of previous approaches [6,7], and we show how the known results for the OCP [5]
and the MIM [9] can be easily recovered within our general method.

It is worthy to check explicitly the fourth moment sum rule for specific models where
exact calculations can be carried out for both microscopic and thermodynamical quantities.
In Sect. 5, we consider a model of charged soft spheres in the low density limit at fixed
temperature. Within the Abe–Meeron resummations of the familiar Mayer diagrammatics
for particle correlations, we first compute the lowest order terms in the density expansion
of the fourth moment of charge correlations, namely the terms of order 1/ρ, 1/ρ1/2, ρ ln ρ

and ρ0 in the density ρ. Abe–Meeron resummed diagrammatics also provide the low density
expansion of the thermodynamical quantities involved in the fourth moment sum rule : the
corresponding expansion of the thermodynamical expression of the fourth moment exactly
coincides with the previous purely microscopic calculation up to order ρ0 included. That
remarkable agreement holds for any values of themicroscopic parameters defining themodel.

In Sect. 6, we provide some additional comments about the derivation itself and its under-
lying assumptions, as well as extensions to three and more component systems. Beyond its
own conceptual interest, we also discuss a possible use of the fourth moment sum rule for a
better understanding of the conductor or dielectric nature of the critical point of the liquid-
gas transition of an ionic fluid. It turns out that recent Monte Carlo simulations [11] strongly
suggest that the fourth moment of charge correlations diverge when approaching the critical
point, in a way close to that of the isothermal compressibility. That observation was one of
the motivations for the present work.

2 The Systems of Interest

2.1 Examples of Two-Component Plasmas

We consider a two-component classical plasma (TCP) made with two species α = 1, 2
of mobile particles carrying positive or negative charges, let us say q1 = Z1q > 0 and
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q2 = −Z2q < 0 with Z1 and Z2 positive integers. The corresponding Hamiltonian for a
total number of particles N = N1 + N2 reads

HN1,N2 =
N∑

i=1

p2i
2mαi

+ 1

2

∑

i �= j

uαiα j (ri , r j ) (1)

where αi = 1, 2 is the species of particle i. The two-body potential uαiα j (ri , r j ) only depends
on the relative distance r = |ri − r j |, and it includes some short-range regularization of the
Coulomb interaction, which is crucial for avoiding the classical collapse between oppositely
charged particles. A first soft regularization is embedded in the simple expression

uαγ (r) = qαqγ

r

[
1 − exp(−r/dαγ )

]
(2)

which remains finite at r = 0. The lengths dαγ control the exponential decay at large distances
of the short-range part of the two-body potential.

A second regularization amounts to introduce hard cores, namely

uαγ (r) = ∞ for r < σαγ and uαγ (r) = qαqγ

r
for r > σαγ . (3)

The corresponding TCP of charged hard spheres is suitable for describing many ionic mix-
tures, where the hard-core interaction mimics the effective repulsion between the electronic
clouds of two ions. If σ11 and σ22 can be viewed as the effective diameters of the ions, the
characteristic crossed lengths σ12 = σ21 differ in general from the average (σ11 + σ22)/2
which would arise if particles really were billiard balls. This so-called non-additivity can
be understood by noticing that the σαγ ’s are the typical ranges of the repulsions between
electronic clouds for which no pure geometrical considerations apply. The simplest version
of that general asymmetric TCP is the celebrated Restrictive Primitive Model, which is fully
symmetric with respect to the charges and the hard-core diameters, namely |q1| = |q2| = q
and σ11 = σ22 = σ12 = σ .

Other short-range regularizations of the Coulomb interaction can be introduced. The cor-
responding most general TCP will be denoted S. The following derivations are valid for any
S, beyond the above two examples.

2.2 The Homogeneous Neutral TCP

Let us first consider that S is enclosed in a box with volume �, while no external potential is
applied to the particles. At equilibrium, all statistical ensembles should become equivalent
in the thermodynamic limit which is also assumed to exist. Furthermore, in a fluid phase,
the bulk is overall neutral, that is the homogeneous particle densities ρ1 and ρ2 far from the
boundaries satisfy the local neutrality relation

q1ρ1 + q2ρ2 = 0 . (4)

Strictly speaking, these remarkable results have been only proved in the Debye regime,
namely at sufficiently high temperatures and sufficiently low densities, for rather general
regularized interactions and rational ratios q2/q1 [12]. Moreover, there exists a proof for
charge symmetric systems, i.e. q1 = −q2, for any values of the thermodynamic parame-
ters [13]. Let us also mention the beautiful proof for the quantum version with pure Coulomb
interactions by Lieb and Lebowitz [14]. According to all those rigorous results, it can be rea-
sonably expected that both the existence of the thermodynamic limit and the local neutrality
are valid for any classical TCP in the whole fluid phase.
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Important features of the various statistical ensembles are associated with the neutrality
relation (4). In the grand-canonical ensemble, the intensive thermodynamical parameters are
the inverse temperature β and the chemical potentials μα . It turns out that only the linear
combination μ = (Z2μ1 + Z1μ2)/(Z1 + Z2) is relevant and entirely determines the total
particle density ρ = ρ1 + ρ2. This can be readily understood within the following simple
heuristic arguments. Let us introduce, for any arbitrary configuration, the total number of
particles N = N1+N2 and the corresponding total charge Q = Mq withM = Z1N1−Z2N2.
According to the decomposition

μ1N1 + μ2N2 = μN + νM (5)

with ν = (μ1−μ2)/(Z1+Z2), we see thatμ controls the grand-canonical average< N >GC

of the total particle number, while ν determines the grand-canonical average< Q >GC= q <

M >GC of the net charge. In the thermodynamic limit (TL), � → ∞ with β and μα fixed,
the contributions of non-neutral configurations with Q proportional to the volume� become
negligible, because the corresponding Boltzmann factors involve a positive self-electrostatic
energy which diverges faster than � itself. Accordingly, the total charge density in the bulk

q1ρ1 + q2ρ2 = lim
TL

< Q >GC /� (6)

vanishes for any given ν, while the total particle density ρ = ρ1 + ρ2 is indeed entirely
determined by μ and β.

In the canonical ensemble, the TL is defined by letting � → ∞ and Nα → ∞, keeping
β and Nα/� fixed. All excess charges go to the the boundaries in the TL, and the remaining
bulk is always neutral. The bulk thermodynamic quantities and bulk distribution functions
computed within the canonical ensemble then become identical to their grand canonical
counterparts. In particular the free-energy density in thermal units of this homogeneous
neutral phase, which only depends on ρ and β = 1/(kBT ), can be computed through

f (ρ, β) = lim
TL

(
β

∑

α

μα < Nα >GC − ln	

)
/� , (7)

where	 is the grand-canonical partition function. This provides the familiar thermodynamic
identity

f (ρ, β) = β(ρμ − P) , (8)

with the pressure P = limTL kBT�−1 ln	. Since the pressure is also given by the thermo-
dynamic relation

βP = ρ
∂ f

∂ρ
− f (ρ, β) , (9)

we infer

βμ = ∂ f

∂ρ
, (10)

which is analogous to the standard thermodynamical identity expressing the chemical poten-
tial for a one-component system with short-range interactions.
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2.3 The Homogeneous Non-neutral TCP in an External Potential

In order to obtain a non-neutral homogeneous state of S with arbitrary uniform densities, one
must apply a non-vanishing external potential on the particles. Let us introduce the electrosta-
tic potential ϕB(r) created by an uniform charge density cB, and the corresponding external
potentialsUB

α (r) = qαϕB(r) seen by the particles. At equilibrium, the total electrostatic field
inside the bulk should identically vanish. According to that simple electrostatic argument,
the induced particle densities should be homogeneous, while the resulting charge density
q1ρ1 + q2ρ2 carried by the particles should cancel the external charge density cB.

Interestingly, the above quite plausible scenario has been exactly demonstrated within a
solvable model by Jancovici [15]. He considered identical point particles in two dimensions
with pure Coulomb interactions, which then take a logarithmic form. In addition the particles
are submitted to a confining parabolic potential, associated with a fixed external uniform
charge density. For a special value of the temperature, all equilibrium distribution functions
can be exactly computed. The resulting particle density is indeed uniform in the bulk and such
that the total charge density vanishes. Furthermore, all higher-order distribution functions in
the bulk become translationally invariant in the TL.

2.4 The Auxiliary System in a Neutralizing Rigid Background

As suggested by the previous considerations, and for further purposes, it is convenient to
introduce an auxiliary system S∗, where now the mobile positive and negative charges of the
TCP are immersed in an uniform rigid backgroundwith charge density cB. The corresponding
Hamiltonian of S∗ reads

H∗
N1,N2

=
N∑

i=1

p2i
2mαi

+ 1

2

∑

i �= j

uαiα j (ri , r j ) +
N∑

i=1

∫

�

dr
qαi cB

|ri − r| + 1

2

∫

�2
drdr′ c2B

|r′ − r| ,

(11)

when the system is enclosed in a box with volume�. That system can be viewed as an exten-
sion of the well-known One-Component Plasma (OCP) made of identical charged particles
immersed in a neutralizing rigid background. Now, there are two species which are immersed
in the background, similarly to the case of a Binary Ionic Mixture (BIM). However, notice
that here we do need a short-range regularization of the Coulomb interaction in order to avoid
the collapse between oppositely charged particles, while the BIM can be defined with pure
1/r Coulomb interactions because all mobile charges have the same sign.

Like theOCP or theBIM, the systemS∗ should have awell-behaved thermodynamic limit,
which is now takenwith a fixed background charge density cB. Now, in the bulk region, which
is again electrically neutral, the homogeneous particle densities satisfy the neutrality relation

q1ρ1 + q2ρ2 + cB = 0 . (12)

The corresponding free-energy density f ∗ of the homogeneous neutral system now depends
on β, cB and one particle density. Equivalently, f ∗ depends on β and on the two particle
densities ρ1 and ρ2. For any given set (ρ1, ρ2), the charge background density is adjusted in
order to satisfy the neutrality relation (12). This defines the function f ∗(ρ1, ρ2, β), where
now ρ1 and ρ2 are independent variables. That procedure is analogous to that which defines
the free-energy density fOCP(ρ, β) of the OCP for any value of the particle density ρ where
a suitable background charge density always ensure overall neutrality.
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The homogeneous neutral TCP can be viewed as a particular realization of S∗ for densities
(ρ1, ρ2) satisfying the neutrality relation (4) in the absence of any background. For such
neutral sets, each particle density can be expressed in terms of the total particle number
density as

ρ1 = Z2

Z1 + Z2
ρ and ρ2 = Z1

Z1 + Z2
ρ . (13)

The thermodynamic quantities of the homogeneous neutral TCP can then be inferred from
their counterparts of S∗ for the neutral set of densities (13). For instance, the free-energy
density of the homogeneous neutral TCP is given by

f (ρ, β) = f ∗(Z2ρ/(Z1 + Z2), Z1ρ/(Z1 + Z2), β) . (14)

For further purposes, it is useful to consider the isothermal compressibility defined by

χT = − lim
TL

�−1 ∂�

∂P
=

[
ρ

∂P

∂ρ

]−1

= β

[
ρ2 ∂2 f

∂ρ2

]−1

, (15)

where all partial derivatives are taken at fixed β. According to identity (14), χT can be recast
as

χT = β(Z1 + Z2)
2

ρ2

[
Z2
2
∂2 f ∗

∂ρ2
1

+ Z2
1
∂2 f ∗

∂ρ2
2

+ 2Z1Z2
∂2 f ∗

∂ρ1∂ρ2

]−1

, (16)

where the second order partial derivatives of f ∗ are evaluated at the neutral set (13). Even-
tually, all distribution functions of the homogeneous neutral TCP obviously reduce to those
of S∗ for that set of densities.

3 Density Functional Theory

3.1 Grand-Canonical Description

Now we consider a general inhomogeneous state of S, where each particle of species α is
submitted to an external potential Uα(r). We define the inhomogeneous fugacity of each
species by

zα(r) = exp [β(μα −Uα(r))]
(
2πλ2α

)3/2 . (17)

where λα = (βh̄2/mα)1/2 is the de Broglie thermal wavelength of species α. The classical
grand-canonical partition function of S enclosed in a box with volume � reads

	 =
∞∑

N1,N2=0

1

N1!N2!
∫ N∏

i=1

dri zαi (ri ) exp(−βVN1,N2) , (18)

where VN1,N2 is the potential part of theHamiltonian (1). The inhomogeneous particle density
ρα(r) can be expressed as a functional derivative of 	 with respect to zα(r), namely

ρα(r) = zα(r)
δ ln	

δzα(r)
(19)
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while parameters � and β are kept fixed. The free-energy F in thermal units of S is given
by the Legendre transformation

F =
∑

α

∫

�

dr ρα(r) β(μα −Uα(r)) − ln	 . (20)

The grand-partition function 	, as well as the free-energy F , can be considered as func-
tionals of either zα(r) or ρα(r). The functional derivative ofF with respect to ρα(r) is readily
computed as

δF
δρα(r)

= β(μα −Uα(r)) (21)

where we have used identity (19) as well as standard calculation rules for functional dif-
ferentiation. The relation (21) will play a key role in the following. The density profiles
ρα(r) for each given sets (μα − Uα(r)) can be determined from that relation if one knows
the functional dependence of F with respect to the inhomogeneous densities : this is the
strategy of density functional theories (DFT). However, the main difficulty of DFT is that
the free-energy functional is not exactly known, except for hard rods in one dimension [16].
In general, approximate forms are used. Here, we will use exact asymptotic expansions for
densities with infinitely slow spatial variations.

3.2 Homogeneous Systems

As argued in the previous Section, homogeneous states of S with arbitrary densities (ρ1, ρ2)

are obtained by applying the external potentials

UB
α (r) = qαϕB(r) = qα

∫

�

dr′ cB
|r′ − r| (22)

with the external charge density cB = −(q1ρ1 + q2ρ2). If we introduce the potential part
V ∗
N1,N2

of the Hamiltonian (11) for the auxiliary system S∗ with background charge density
cB, we can rewrite

VN1,N2 +
N∑

i=1

UB
αi

(ri ) = V ∗
N1,N2

− WB (23)

where

WB = 1

2

∫

�2
dr dr′ c2B

|r′ − r| (24)

is the self-electrostatic energy of the background charge density cB. Inserting relation (23)
into the general expression (18), we obtain for the grand-partition function of S submitted
to the external potentials UB

α (r),

	
{
μ1 −UB

1 (·), μ2 −UB
2 (·)} = 	∗{μ1, μ2} exp(βWB) , (25)

where 	∗ is the grand-partition function S∗ for the same chemical potentials μα and a
background charge density cB, without any applied external potentials, i.e.Uα(r) = 0. In the
derivation of identity (25), we have used that WB is a pure constant which does not depend
on the particle degrees of freedom. This also implies that all the grand-canonical averages
for S submitted to UB

α (r) are identical to those for S∗. In particular, both particle densities
are identical, so the particle densities of S submitted to UB

α (r) are indeed homogeneous and
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they are merely related to cB via the neutrality condition (12) valid for S∗. Moreover, all
particle correlations of both systems are identical.

If we insert expression (25) of 	 into definition (20) of the free energy of S submitted to
UB

α (r), we obtain in the TL

F{ρ1, ρ2} − β

2

∫

�2
drdr′ (q1ρ1 + q2ρ2)2

|r′ − r| ∼ F∗{ρ1, ρ2} (26)

while cB has also been replaced by −(q1ρ1 + q2ρ2) thanks to the neutrality condition (12).
Thus, if we define, in general, the reduced free energy Fred of S by subtracting to F the
self-electrostatic energy of the charge distribution (q1ρ1(r) + q2ρ2(r)), namely

Fred = F − β

2

∫

�2
drdr′ (q1ρ1(r) + q2ρ2(r))(q1ρ1(r′) + q2ρ2(r′))

|r′ − r| , (27)

we find the remarkable identity

Fred{ρ1, ρ2} ∼ F∗{ρ1, ρ2} , (28)

which can be rewritten for the corresponding free-energy densities as

fred(ρ1, ρ2, β) = f ∗(ρ1, ρ2, β) . (29)

Notice that this subtraction from the free-energy functional of the self-electrostatic energy
was first introduced by Hohenberg and Kohn [17] for studying the quantum electron gas.

3.3 Density Functional Expansions for Almost Homogeneous Systems

For states ofS with slow spatial variations of the particle densities, the corresponding reduced
free-energyFred{ρ1(·), ρ2(·)} can be expanded in powers of the gradients of ρ1(r) and ρ2(r).
The leading term in that systematic expansion is purely local and reduces to

∫
dr f ∗(ρ1(r), ρ2(r), β) , (30)

where we have used identity (29) for the reduced free-energy density of an homogeneous
system. The first correction, the so-called square-gradient term, reads [18,19]

1

12

∑

α,γ

∫
dr M∗

αγ (ρ1(r), ρ2(r), β)∇ρα(r) · ∇ργ (r) , (31)

whereM∗
αγ (ρ1, ρ2, β) is the secondmoment of the short-rangepart of the direct two-body cor-

relations, namely cSRαγ (r) = cαγ (r)+βqαqγ /r , for S∗ with homogeneous densities (ρ1, ρ2).
Similarly to the emergence of the free-energy density of S∗ in the purely local term (30), the
direct correlations of S∗ arise in the square-gradient term because all the respective distribu-
tion functions of S∗ and S with the same homogeneous densities are identical as established
above. Notice that for systems with short-range interactions, the square-gradient expansion
of the free energy F involves second moments of the direct correlations themselves. Here,
thanks to the subtraction (27) of the electrostatic self-energy, the square-gradient expansion of
the reduced free energy Fred involves second moments of the short-range part cSRαγ (r), which
do converge thanks to the large-distance behaviour cαγ (r) ∼ −βqαqγ /r when r → ∞.

The second correction to the purely local contribution (30) involves fourth-order spatial
derivatives of the densities, and it has been explicitly computed in Ref. [20]. The correspond-
ing local ingredients are fourth moments of two-, three- and four-body direct correlations of
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S∗ with homogeneous densities. Higher-order corrections would exhibit similar structures
with well-behaved local ingredients defined for the same system.

4 Linear Response to a Weak Slowly-Varying External Charge
Distribution

We start with S in the absence of any applied external potential, namely that realization
of S is nothing but the homogeneous neutral TCP. In a second step, let us introduce an
external charge distribution cext(r) = qext exp(ik · r), with an infinitesimal amplitude qext.
Our aim here is to determine the induced charge density in S by DFT and compare to its
linear response expression. This will provide the required fourth moment sum rule for the
charge correlations of the homogeneous neutral TCP. In a first step, within DFT, we compute
the density responses δρα(r) to the external potentials, Uα(r) = qαϕext(r) with ϕext(r) the
electrostatic potential created by cext(r), at leading order in qext and in the limit of small
wave-numbers k → 0.

4.1 Analysis Within Density Functional Theory

Since the applied external potential varies on an infinitely large scale length, the particle den-
sities should also display infinitely slow spatial variations. Then, the free-energy functional
can be replaced by its density-gradient expansion introduced above, namely

F{ρ1(·), ρ2(·)} = β

2

∫
drdr′ (q1ρ1(r) + q2ρ2(r))(q1ρ1(r′) + q2ρ2(r′))

|r′ − r|
+

∫
dr f ∗(ρ1(r), ρ2(r), β)

+ 1

12

∑

α,γ

∫
dr M∗

αγ (ρ1(r), ρ2(r), β)∇ρα(r) · ∇ργ (r) + ... , (32)

where the terms left over do not contribute to the deviations δρα(r) at the considered lowest
orders in k, as shown further on. The fundamental equation (21) of DFT then becomes for
each species,

∂ f ∗
∂ρ1

− 1

6

[
M∗
11�ρ1(r) + M∗

12�ρ2(r)
]

− 1

12

[
∂M∗

11
∂ρ1

(∇ρ1(r))
2 + 2

∂M∗
11

∂ρ2
∇ρ1(r) · ∇ρ2(r) +

(
2
∂M∗

12
∂ρ2

− ∂M∗
22

∂ρ1

)
(∇ρ2(r))

2
]

+ ...

= βμ1 − βq1ϕtot(r) (33)

and

∂ f ∗
∂ρ2

− 1

6

[
M∗
22�ρ2(r) + M∗

12�ρ1(r)
]

− 1

12

[
∂M∗

22
∂ρ2

(∇ρ2(r))
2 + 2

∂M∗
22

∂ρ1
∇ρ1(r) · ∇ρ2(r) +

(
2
∂M∗

12
∂ρ1

− ∂M∗
11

∂ρ2

)
(∇ρ1(r))

2
]

+ ...

= βμ2 − βq2ϕtot(r) , (34)

where ϕtot(r) is the total electrostatic potential created by the charge distribution (q1ρ1(r)+
q2ρ2(r)+cext(r)). In Eqs. (33,34) all involved quantities ofS∗ are evaluated for homogeneous
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densities identical to the local densities (ρ1(r), ρ2(r)) and inverse temperature β. Moreover,
all terms left over involve at least fourth-order spatial derivatives of ρ1(r) and ρ2(r).

In order to compute the induced densities at lowest order in qext, we can linearize
Eqs. (33,34) with respect to δρα(r). The third terms in the l.h.s. of those Eqs. do not contribute
anymore since they are at least of order q2ext. The resulting deviations take the form of plane
waves, like the forcing external charge cext(r), namely

δρ1(r) = A1(k) exp(ik · r) and δρ2(r) = A2(k) exp(ik · r) (35)

where the amplitudes Aα(k) are proportional to qext. The total electrostatic potential ϕtot(r)
satisfies Poisson equation

�ϕtot(r) = −4π [q1ρ1(r) + q2ρ2(r) + cext(r)] = −4π [q1δρ1(r) + q2δρ2(r) + cext(r)]

(36)

where the second equality follows from the overall neutrality of the unperturbed system S .
In order to eliminate ϕtot(r) in favor of the induced density deviations, it is then sufficient to
take the Laplacian of the linearized versions of Eqs. (33,34). This provides
[
4πβq21 +χ−1

11 k2+a11k
4+O

(
k6

)]
A1(k) +

[
4πβq1q2 + χ−1

12 k2 + a12k
4 + O

(
k6

)]
A2(k)

= −4πβq1δqext (37)

[
4πβq1q2+χ−1

21 k2+a21k
4+O

(
k6

)]
A1(k) +

[
4πβq22 +χ−1

22 k2+a22k
4 + O

(
k6

)]
A2(k)

= −4πβq2δqext (38)

with χ−1
αγ = ∂2 f ∗/∂ρα∂ργ and aαγ = M∗

αγ /6. Those reference quantities are evaluated for
the set (ρ1, ρ2) ensuring overall neutrality of the unperturbed system S. Notice that if the
thermodynamic function χ−1

αγ is specific to the enlarged auxiliary system S∗, the microscopic
second moments aαγ entirely depend on the direct correlations of the genuine system S of
interest.

The linear Eqs. (37,38) are straightforwardly solved in terms of the determinant of the
associated two by two matrix which reads

D(k) = 4πβ
(
q22χ

−1
11 + q21χ

−1
22 − 2q1q2χ

−1
12

)
k2

+
[
χ−1
11 χ−1

22 − χ−2
12 + 4πβ

(
q22a11 + q21a22 − 2q1q2a12

)]
k4 + O

(
k6

)
. (39)

The amplitudes Aα(k) are then found to be

A1(k) = 4πβ

D(k)

[(
q2χ

−1
12 − q1χ

−1
22

)
k2 + (q2a12 − q1a22)k

4 + O
(
k6

)]
δqext (40)

and

A2(k) = 4πβ

D(k)

[(
q1χ

−1
12 − q2χ

−1
11

)
k2 + (q1a12 − q2a11)k

4 + O
(
k6

)]
δqext . (41)

Therefore the proportionality coefficient between a given amplitude and δqext, behaves in the
limit k → 0 as a constant, which depends only on the thermodynamic quantities χ−1

αγ , plus a

term of order k2 which depends on both χ−1
αγ and aαγ . Now, if we form the induced charge

density

δc(r) = q1δρ1(r) + q2δρ2(r) = cind(k) exp(ik · r) (42)
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with the charge amplitude

cind(k) = q1A1(k) + q2A2(k) , (43)

we find

cind(k) = −δqext

⎡

⎣1 −
(
χ−1
11 χ−1

22 − χ−2
12

)

4πβ(q22χ
−1
11 + q21χ

−1
22 − 2q1q2χ

−1
12 )

k2 + O
(
k4

)
⎤

⎦ . (44)

Remarkably, the proportionality coefficient between the induced and external charges goes to
−1 when k → 0, in relation with perfect screening properties, as discussed further. Further-
more the term of order k2 in its small-k expansion now depends only on the thermodynamical
functions χ−1

αγ , and no longer on the microscopic quantities aαγ .

4.2 The Fourth Moment Sum Rule

The resulting induced charge density, can be also determined within linear response theory,
which provides

δc(r) = −4πβ

k2
S̃(k)δqext exp(ik · r) (45)

In the linear response formula (45), S̃(k) is the Fourier transform of the charge correlations
of the unperturbed system S, i.e. the homogeneous neutral TCP,

S̃(k) =
∫

dr exp(ik · r)
⎡

⎣
∑

α,γ

qαqγ ραγ (r) +
∑

α

q2αραδ(r)

⎤

⎦ (46)

with ραγ (r) the two-body probability density for the spatial configuration where one particle
of species α is fixed at the origin, while another particle of species γ is fixed at r.

The small-k expansion of the amplitude cind(k) can be inferred from the linear response
formula (45) by inserting the corresponding expansion of S̃(k),

S̃(k) = I0 + I2k
2 + I4k

4 + ... , (47)

which only involves powers of k2 thanks to the expected exponential decay of charge correla-
tions in real space. If we compare the resulting expansion of cind(k)with the DFT result (44),
we readily find

I0 = 0 and I2 = 1

4πβ
(48)

which follow from respectively the absence of a 1/k2-term, and the identification of the
constant terms. The vanishing of I0 accounts for the perfect screening of internal charges.
The universal value of I2, first demonstrated a long ago by Stillinger and Lovett [4], ensures
the perfect screening of weak external charges. Beyond those well-known results for the
zeroth and second moments of S(r), the DFT expression (44) also provides a new sum rule
for the fourth moment, namely

I4 = − ρ2

(4π(q1 − q2))2β3

(
χ−1
11 χ−1

22 − χ−2
12

)
χT , (49)
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which follows from the identification of the k2-terms. The compressibility χT emerges in
that sum rule, thanks to the identity (16) rewritten in terms of the charges q1 = Z1q and
q2 = −Z2q .

4.3 Related Sum Rules for Other Models

Let us first consider the case of the OCP. A fourth moment sum rule for the corresponding
charge correlations SOCP(r) was derived by Vieillefosse and Hansen [5] through a macro-
scopic analysis of fluctuations. In their textbook [21], Hansen and Mac Donald propose a
simple derivation which is similar to ours. They compute the charge density induced by a
weak external plane wave charge distribution within an hydrostatic approach, where the force
associated with the local pressure gradient is balanced by the total electrostatic force created
by both the external and induced charges. Notice that the corresponding equation can be
merely obtained by taking the gradient of the fundamental DFT equation (33) restricted to
a single species and where all non-local contributions, including that involving the second
moment of the direct correlations, are omitted. Moreover, the corresponding f ∗ can then be
obviously replaced by fOCP. The fourth moment of SOCP(r) then reduces to [5,21],

IOCP4 = − 1

(4πqρ)2βχOCP
T

. (50)

Notice that this expression has been recovered through manipulations of the BGY hierarchy,
for pure Coulomb interactions [22] and also including short-range interactions [23].

TheOCP result has been extended to amulticomponent ionicmixture (MIM) of all positive
point charges immersed in a rigid neutralizing background [8,9]. Interestingly, the derivation
is intrinsic and does not rely on the response of the system to a weak external charge distri-
bution. Like the analysis [22] carried out for the OCP, it is based on suitable manipulations
of the BGY hierarchy equations for the distribution functions of the infinite homogeneous
neutral system. A priori the derivation is only valid for pure Coulomb interactions, with-
out any short range regularization which is unnecessary here since all mobile charges repel
together. It makes an explicit use of the remarkable homogeneity property of the resulting
pair interactions. The fourth moment of charge correlations in real space is then given by
formula (7.3) in Ref. [9], which reduces in three dimensions (d = 3) to

∫
dr r4 SMIM(r) = − 120

β
∑

α,γ qαqγ ∂ργ /∂μα

(51)

where we have used that qv = ∑
α qαρα , while μα = β−1∂ fMIM/ρα . Each partial derivative

∂ργ /∂μα is computed by fixing the inverse temperature β as well as all μδ’s with δ �= α.
Straightforward manipulations of the multi-variable functions ργ (β, {μα}) and μα(β, {ργ })
allow us to express all partial derivatives ∂ργ /∂μα in terms of partial derivatives ∂μα/∂ργ .
In the binary case, we find

∂ρ1

∂μ1
= ∂μ2

∂ρ2

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

; ∂ρ2

∂μ2
= ∂μ1

∂ρ1

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

∂ρ1

∂μ2
= −∂μ1

∂ρ2

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

; ∂ρ2

∂μ1
= −∂μ2

∂ρ1

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

.

(52)
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Using the identity

I4 = 1

120

∫
dr r4 S(r) (53)

and inserting relations (52) into formula (51), we find that the corresponding IBIM4 exactly
coincideswith our general expression (49) specified to theBIM,where the free-energy density
f ∗ merely reduces to fBIM. Indeed, our derivation also applies to the BIM where q1 and q2
now have the same sign, while the auxiliary system S∗ becomes identical to the genuine BIM
of interest with the background charge density cB = −qv = −∑

α qαρα .

4.4 About Other Approaches

To our knowledge, in the literature, there exist two attempts to derive a sum rule for the fourth
moment of the charge correlations of the TCP. First, the hydrodynamic approach carried out
in Ref. [6] provides an expression for the fourth moment, different from formula (49), which
involves ill-defined thermodynamic quantities as well as particle masses. Its validity is then
quite doubtful, in particular because classical equilibrium charge correlations do not depend
on particle masses.

Second, van Beijeren and Felderhof [7] proceed to an intrinsic analysis of charge cor-
relations within the grand-canonical ensemble, where they combine the Ornstein-Zernicke
equations with DFTmanipulations. In agreement with results previously derived byMitchell
et al. [24], who shown that the fourthmoment cannot be expressed in terms of thermodynamic
quantities of the sole TCP, they find that it is necessary to introduce non-neutral states of
the TCP which can be realized through the application of a suitable external potential. How-
ever, they did not provide any scheme which determines that external potential. Thus their
free-energy density f 0, from which the thermodynamical chemical potentials are inferred
through the usual identity written in formula (3.12) of Ref. [7], remains a formal quantity,
with no prescriptions for explicit calculations. This ambiguity might explain why their work
is not always cited. According to our analysis, it can be easily clarified as follows. In fact,
as shown in Sect. 2, the external potential mentioned in Ref. [7] is nothing but our potential
UB

α (r) = qαϕB(r) where ϕB(r) is the electrostatic potential created by an homogeneous
background density. Therefore, f 0 is identical to our free-energy density f ∗ of the TCP
immersed in an uniform rigid background. Then, the relation between partial derivatives (52)
allows us to exactly recast formula (6.26) of Ref. [7] as our expression (49), similarly to what
occurs for the corresponding formula obtained for the BIM by Suttorp [9].

5 Asymptotic Expansions at Low Densities

It is instructive to check the fourth moment sum rule for specific models and various ranges
of thermodynamical parameters. Here, we consider the model of charged soft spheres with
the pair interaction uαγ (r) given by formula (2). First, we briefly describe how the pair
correlations of S∗ can be represented by an infinite series of resummed Mayer graphs. Such
resummed diagrammatics constitute a quite suitable framework for deriving low-density
expansions of the quantities of interest. From the diagrammatic representation of charge
correlations, we infer the low-density expansion of I4 defined as the coefficient of the k4-
term in the small-k expansion (47) of S̃(k). The diagrammatics for the pair correlations
also give access to the free energy density f ∗ through thermodynamical identities. The low-
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density expansion of the thermodynamical expression (49) is then computed, and it is shown
to exactly match that of I4, as expected.

5.1 Exploiting the Principle of Topological Reduction

Let ρ∗
αγ,T(r) = ρ∗

αγ (r)−ραργ be the truncated pair distribution functions of S∗, also called
pair correlations, for an arbitrary set of densities (ρ1, ρ2). As argued above, the distributions
function of S∗, which includes a background with charge density cB = −(q1ρ1 + q2ρ2),
are identical to that of of a purely two-component system where the mobile particles are
submitted to the external potential (22) UB

α (r) created by the background. Therefore, pair
correlations ρ∗

αγ,T(r) are represented by series of Mayer diagrams [25] made with two root
(white) points respectively fixed at the origin 0 and at r, and an arbitrary number of black
points whose positions are integrated over. Each point carries a statistical weight

zα = exp
[
β(μα −UB

α )
]

(
2πλ2α

)3/2 , (54)

while two points are connected by at most one Mayer bond

bM = exp(−βuαγ ) − 1 . (55)

Each diagram is simply connected, namely there exists at least one path connecting two
arbitrary points.

The previous Mayer diagrams are difficult to handle because the fugacity weights (54)
are inhomogeneous and depend on the positions of the points. A great simplification can
be achieved by virtue of the principle of topological reduction, nicely exposed in Ref. [21],
which consists in removing all articulation points. An articulation point is such that there
exists at least one subdiagram attached to it and not connected to the rest of the diagram. In
other words, the suppression of the articulation point leaves that subdiagram disconnected
from the two root points. If one sums all those subdiagrams attached to a given articulation
point, all articulation points are removed, while simultaneously all fugacity weights (54) are
replaced by density weights ρα [21]. Furthermore, the topological structure of the diagrams is
conserved through that reduction. Accordingly, the pair correlations ρ∗

αγ,T(r) are represented
by Mayer diagrams made with the two root points fixed at 0 and r, and an arbitrary number
of black points, where the point statistical weights are now the densities ρα . Two point are
still connected at most by one Mayer bond (55). Each diagram is again simply connected but
is now free of any articulation point.

Thanks to the translational invariance of both density weights andMayer bonds, theMayer
density diagrams reveal quite useful for explicit calculations as described further. Notice that,
remarkably, the background does not show in such diagrams, its effects being implicitly and
entirely taken into account by the introduction of the homogeneous densities ρα .

5.2 Abe–Meeron Resummations

Because of the long-range non-integrable decay of two-body interactions uαγ , every Mayer
diagram diverges. All those divergencies can be removed via chain resummations, as first
noticed by Mayer [26] and Salpeter [27], and then performed in a systematic way for the
whole diagrammatical series by Abe [28] and Meeron [29]. A simplified presentation of that
method can be found in Refs. [30] and [31]. It starts with the decomposition of each Mayer
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bond (55) as

bM = bTM − βqαqγ vC (56)

with the truncated bond

bTM = exp(−βuαγ ) − 1 + βqαqγ vC (57)

and the Coulomb potential vC(r) = 1/r . After inserting the decomposition (56) into every
Mayer diagram, one proceeds to systematic resummations of convolution chains of Coulomb
bonds −βqαqγ vC. Thanks to remarkable combinatorial properties [31], all those resumma-
tions can be performed in terms of a single effective potential, which is nothing but the
well-known Debye potential

φD(r) = exp(−κDr)

r
(58)

with the Debye inverse length κD = (
∑

α 4πβq2αρα)1/2. The chain resummations give raise
to two bonds [30], the Debye bond

bD = −βqαqγ φD (59)

and the short-range dressed bond

bR = exp
(
−β

(
uSRαγ + qαqγ φD

))
− 1 + βqαqγ φD , (60)

with the short-range part of pair interactions uSRαγ = uαγ −qαqγ vC. The topological structure
of the genuine Mayer diagrams remain unchanged, with bonds which can be either bD or
bR, and with the additional rule excluding convolutions bD ∗ bD in order to avoid double
counting.

Within the Abe–Meeron resummations, the genuine whole set of Mayer diagrams repre-
senting ρ∗

αγ,T(r) is then exactly transformed into

ρ∗
αγ,T(r) = ραργ

∑

G

1

SG

∫ [
n∏

i=1

∑

αi

driραi

] [∏
bD

∏
bR

]

G
. (61)

The so-called prototype graphs G aremadewith the two root points respectively fixed at 0 and
r, and an arbitrary number of n black points with density weights. Two point are connected at
most by one bond (59) or (60). Each diagram is simply connected, with no articulation points,
while convolutions bD ∗ bD are forbidden. The symmetry factor SG is defined as the number
of permutations of labelled black points which leave the product of bonds

[∏
bD

∏
bR

]
G

unchanged. The summation is carried out over all topologically different graphs G, including
the two graphs with no black points.

In the diagrammatic representation (61), the contribution of every graphG is finite. Indeed,
at large distances, integrability is ensured by the fast decays of both the Debye potential
and the short-range part of pair interactions. At short distances, the Debye bond remains
integrable despite its 1/r singularity, while the short-range dressed bond includes the short-
range regularization which also guarantees its integrability. We stress that representation (61)
holds for any set (ρ1, ρ2) of densities, and then appears to be quite useful for computing
equilibrium quantities of S∗. Moreover it is valid for any short-range regularization uSRαγ ,
including of course that describing soft or hard spheres.
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Fig. 1 The Debye diagram in the resummed diagrammatic representation (61) of particle correlations. The
two root (white points) are fixed at 0 and r respectively. The straight line represents a Debye bond bD (59)

Gd Gd Gd

Fig. 2 The three dressed Debye diagrams associated with a given diagram Gd in the resummed diagrammatic
representation (61) of particle correlations

5.3 Charge Correlations

The Fourier transform (46) of the charge correlations of the homogeneous TCP can be recast
as

S̃(k) =
∑

α,γ

qαqγ ρ̃αγ (k) +
∑

α

q2αρα (62)

where the Fourier transform ρ̃αγ (k) of pair correlations is given by the sum of the Fourier
transforms of the contributions of all graphs G in the representation (61). Let us first consider
the contribution of the simplest graph GD shown in Fig. 1, where the two root points are
connected by a Debye bond. Its contribution to S̃(k) added to the constant term

∑
α q

2
αρα in

the formula (62) provides the well-known Debye charge correlations

S̃D(k) = κ2
D

4πβ

k2

k2 + κ2
D

, (63)

which can be derivedwithin amean-field treatment of correlations, without any diagrammatic
considerations. Now we stress that S̃D(k) saturates the first two moments sum rules for I0
and I2, since S̃D(k) ∼ k2/(4πβ) when k → 0. Therefore all the remaining graphs in the
representation (61) give no contributions to I0 and I2. That remarkable property is related to
the following reorganization of the series of graphs, which turns out to be also quite useful
for computing the fourth moment I4.

Let Gd be a graph in the representation (61) such that the root points 0 and r are not
connected to rest of the diagram by a single Debye bond bD, or in other words each root
point is connected to the rest of the diagram by either a bond bR or at least two bonds. Such
a graph can be dressed by Debye bonds in the sense that the three graphs shown in Fig. 2
also intervene in the representation (61). In GDd (GdD), the black point r1 is connected to
the root point 0 ( r) by a Debye bond bD, while the subdiagram connecting that black point
to the other root point r ( 0 ) is identical to Gd itself. In GDdD, the two black points r1 and
r2 are respectively connected to the root points 0 and r by Debye bonds bD, while they are
connected together by a subdiagram identical to Gd. Clearly, all possible graphs Gd together
with their dressed Debye family generate all graphs in the representation (61) beyond the
Debye graph GD.

Now, let us consider the total contribution to representation (61) of a given graph Gd and
of its dressed Debye diagrams. After defining

Kαγ,Gd (r) =
∫ [

n∏

i=1

∑

αi

driραi

] [∏
bD

∏
bR

]

Gd
(64)
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and noticing that all four graphs Gd, GDd, GdD and GDdD have the same symmetry factor SGd ,
we can rewrite that total contribution as ραργ /SGd times

Kαγ,Gd (r) −
∑

α1

ρα1

∫
dr1

[
βqαqα1φD(r1)Kα1γ,Gd (|r − r1|)

+Kαα1,Gd (r1)βqα1qγ φD(|r − r1|)
]

+
∑

α1,α2

ρα1ρα2

∫
dr1dr2βqαqα1φD(r1)Kα1α2,Gd (|r2 − r1|)βqα2qγ φD(|r − r2|) (65)

The corresponding contribution to S̃(k) in formula (62) can be readily computed by using
the convolution theorem and φ̃D(k) = 4π/(k2 + κ2

D), with the result

k4
(
k2 + κ2

D

)2
∑

α,γ

ραργ qαqγ K̃αγ,Gd (k) (66)

divided by the symmetry factor SGd . Since that expression is at least of order k
4 when k → 0

for any Gd, all the graphs beyond the Debye graph GD do not contribute neither to I0, nor
to I2. Moreover, because of the prefactor of order k4, the resulting contribution to I4 makes
K̃αγ,Gd (0) appear. After adding the simple contribution of GD computed from the Debye
formula (63), we eventually obtain the diagrammatic representation of I4,

I4 = − 1

4πβκ2
D

+ 1

κ4
D

∑

Gd

1

SGd

∑

α,γ

ραργ qαqγ K̃αγ,Gd (0) . (67)

Representation (67) is well-suited for computing the low-density expansion of I4. Indeed,
and as usual, because of the densityweights carried by the black points, only a finite number of
graphs contribute up to a given order. However, herewe have to take care of the dependence on
the density of the bonds bD and bR through the Debyewavenumber κD = (

∑
α 4πβq2αρα)1/2.

Consequently, the order of a contribution is not merely given by counting the number of black
points on the one hand, while half-integer powers and logarithmic terms arise in the expansion
on the other hand. We have computed the first three terms of that expansion, up to constant
terms of order ρ0 included. In the Appendix, we provide some technical details, as well as
the complete list of graphs Gd which contribute up to the considered order. The resulting
expansion reads

I4 = − 1

4πβκ2
D

+ πβ2

κ5
D

∑

α,γ

q3αq
3
γ ραργ + 2πβ3

3κ4
D

∑

α,γ

q4αq
4
γ ραργ ln(8κDdαγ )

+4πβ

κ4
D

∑

α,γ

q2αq
2
γ ραργ d

2
αγ − 3πβ2

κ4
D

∑

α,γ

q3αq
3
γ ραργ dαγ

+ 1

κ4
D

∑

α,γ

qαqγ ραργ

∫
dr

[
exp(−βuαγ ) − 1 + βuαγ − β2u2αγ /2 + β3u3αγ /6

]

+11π2β4

3κ6
D

∑

α,γ,δ

q3αq
3
γ q

4
δ ραργ ρδ − 52π3β5

9κ8
D

∑

α,γ,δ,η

q3αq
3
γ q

3
δ q

3
ηραργ ρδρη + o(ρ0) .

(68)

Not surprisingly, the leading term in the expansion (68) is the purely Debye contribution,
and it behaves as 1/ρ. The next correction is of order 1/ρ1/2 and is independent of the short-
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range part of the interactions. Those short-range parts arise in further corrections of order
ln ρ and ρ0. The last two terms of order ρ0 are purely Coulomb contributions. The expansion
is valid for any set of densities (ρ1, ρ2), including of course the neutral sets defining the
neutral TCP. For other short-range interactions, like hard cores for instance, the structure of
the low-density expansion of I4 is identical to that (68) explicitly computed for charged soft
spheres.

5.4 Free Energy Density

The excess free energy of S∗ for any set of homogeneous densities, can be obtained through
the usual integration over the inverse temperature of the equilibrium average of the potential
part of Hamiltonian (11). The resulting free energy density in thermal units f ∗(ρ1, ρ2, β)

reduces to

f ∗(ρ1, ρ2, β) = fid(ρ1, ρ2, β) + 1

2

∑

α,γ

∫ β

0
dτ

∫
drρ∗

αγ,T(r)uαγ (r)

+β

2

∑

α,γ

ραργ

∫
druSRαγ (r) . (69)

In that formula, the first term takes the familiar form

fid(ρ1, ρ2, β) = ρ1

[
ln

(
ρ1

(
2πλ21

)3/2) − 1
]

+ ρ2

[
ln

(
ρ2

(
2πλ22

)3/2) − 1
]

(70)

which describes a mixture of ideal gases. The next two terms account for interactions. The
second term involving pair correlations ρ∗

αγ,T(r) is obtained by adding and substracting uSRαγ

to the purely Coulomb interactions in the particle-backround and background-background
parts of the potential energy of Hamiltonian (11). This also provides the third term which
merely reduces to

β

2

∑

α,γ

ραργ

∫
druSRαγ (r) = −2πβ

∑

α,γ

qαqγ ραργ d
2
αγ . (71)

It is implicitly understood that pair correlations ρ∗
αγ,T(r) in formula (69) are evaluated at

inverse temperature τ .
The contribution of pair correlations ρ∗

αγ,T(r) to f ∗ follows by inserting its resummed
diagrammatic representation (61) into the second term of formula (69). The contribution of
a given diagram G reads

1

2SG

∑

α,γ

ραργ

∫ β

0
dτ

∫
dr uαγ (r)K (τ )

αγ,G(r) (72)

where K (τ )
αγ,G(r) is the integral (64) over black pointswithG in place ofGd and bonds evaluated

at inverse temperature τ . In the low-density limit, up to a given order in the density, only a
finite number of contributions (72) needs to be retained. In the Appendix, we provide a few
technical details of the calculations, as well as the list of graphs G which contribute to f ∗ up
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to order ρ2 included. Adding the simple ideal (70) and background (71) contributions, we
eventually obtain the low-density expansion of f ∗,

f ∗ = ρ1

[
ln

(
ρ1

(
2πλ21

)3/2) − 1

]
+ ρ2

[
ln

(
ρ2

(
2πλ22

)3/2) − 1

]
− κ3D

12π

−2πβ
∑

α,γ

qαqγ ραργ d
2
αγ + 3πβ2

2

∑

α,γ

q2αq
2
γ ραργ dαγ − πβ3

3

∑

α,γ

q3αq
3
γ ραργ ln(8κDdαγ )

−1

2

∑

α,γ

ραργ

∫
dr

[
exp(−βuαγ ) − 1 + βuαγ − β2u2αγ /2 + β3u3αγ /6

]
+ o(ρ2) . (73)

The leading terms of order ρ ln ρ in the expansion (73) are ideal contributions. The next
correction of order ρ3/2 arises from pure Coulomb interactions, and is nothing but the well-
known Debye term. Contributions from the short range part of the interactions appear in the
terms of order ρ2 ln ρ and ρ2. The terms left over are least of order ρ5/2 ln ρ. Expansion (73)
is valid for any set of densities (ρ1, ρ2), and it gives access to all the other thermodynamical
functions ofS∗ through suitable partial derivativeswith respect to the independent parameters
β, ρ1 or ρ2 defining an homogeneous equilibrium state of S∗.

For other short-range regularizations, the low-density expansion of f ∗ has the same
structure as (73). However, notice that for hard core potentials, the ideal term in the decom-
position (69) of the corresponding f ∗ must be replaced by the free energy density of hard
spheres, fHS(ρ1, ρ2, β). In the low-density limit, fHS(ρ1, ρ2, β) can be expanded in entire
powers of ρ around the ideal term (70). In the resulting full expansion of f ∗, there are terms
which depend only on the hard core diameters σαγ and not on the particles charges.

5.5 Checking the Sum Rule at Lowest Orders

In order to check the sum rule (49), we first have to compute the low-density expansion of
the partial compressibilities χ−1

αγ = ∂2 f ∗/∂ρα∂ργ . Using expansion (73) of f ∗, we find

χ−1
11 = 1

ρ1
− πβ2q41

κD
+ 3πβ2q41d11 − 4πβq21d

2
11 − 2πβ3q61

3
ln(8κDd11)

−8π2β4q51
3κ2

D

∑

α

q3αρα + 8π3β5q41
3κ4

D

∑

αγ

q3αq
3
γ ραργ

−
∫

dr
[
exp(−βu11) − 1 + βu11 − β2u211/2 + β3u311/6

] + o(ρ0) , (74)

χ−1
22 = 1

ρ2
− πβ2q42

κD
+ 3πβ2q42d22 − 4πβq22d

2
22 − 2πβ3q62

3
ln(8κDd22)

−8π2β4q52
3κ2

D

∑

α

q3αρα + 8π3β5q42
3κ4

D

∑

αγ

q3αq
3
γ ραργ

−
∫

dr
[
exp(−βu22) − 1 + βu22 − β2u222/2 + β3u322/6

] + o(ρ0) , (75)

123

Fourth moment sum rule for the charge correlations of a two-
component classical plasma 705



Fourth Moment Sum Rule for the Charge Correlations...

and

χ−1
12 = χ−1

21 = −πβ2q21q
2
2

κD
+ 3πβ2q21q

2
2d12 − 4πβq1q2d

2
12 − 2πβ3q31q

3
2

3
ln(8κDd12)

−πβ3q31q
3
2

3
− 4π2β4q21q

2
2

3κ2
D

∑

α

q4αρα + 8π3β5q21q
2
2

3κ4
D

∑

αγ

q3αq
3
γ ραργ

−
∫

dr
[
exp(−βu12) − 1 + βu12 − β2u212/2 + β3u312/6

] + o(ρ0) . (76)

Notice that the leading contributions of order 1/ρ in both χ−1
11 and χ−1

22 arise from the
ideal terms in f ∗, while the next correction of order 1/ρ1/2 comes from the Debye term in
expansion (73). The leading contribution of order 1/ρ1/2 in χ−1

12 is also provided by that
Debye correction. All terms which are left over in expansions (74), (75) and (76) are at least
of order ρ1/2 ln ρ.

According to the expression (16) of the isothermal compressibility, the thermodynamical
quantity in the right hand side of sum rule (49) can be rewritten as

− ρ2

(4π(q1 − q2))2β3

(
χ−1
11 χ−1

22 − χ−2
12

)
χT= −

(
χ−1
11 χ−1

22 − χ−2
12

)

(4πβ)2
(
q22χ

−1
11 +q21χ

−1
22 − 2q1q2χ

−1
12

) .

(77)

The low-density expansion of that thermodynamical expression is straightforwardly com-
puted by using the expansions (74), (75) and (76) of the χ−1

αγ ’s. Its leading behaviour is

immediately obtained by noticing that both χ−1
11 and χ−1

22 diverge faster than χ−1
12 in the zero-

density limit, and the corresponding purely ideal behaviours χ−1
11 ∼ 1/ρ1 and χ−1

22 ∼ 1/ρ2
provide

−
(
χ−1
11 χ−1

22 − χ−2
12

)

(4πβ)2
(
q22χ

−1
11 +q21χ

−1
22 − 2q1q2χ

−1
12

) ∼ − ρ−1
1 ρ−1

2

(4πβ)2
(
q22ρ

−1
1 + q11ρ

−1
2

)=− 1

4πβκ2
D

,

(78)

which coincides with the leading term in expansion (68) of I4. The calculation of the next
correction of order 1/ρ1/2 remains simple, since it requires to retain only the first Debye
corrections of order 1/ρ1/2 to the ideal terms in bothχ−1

11 andχ−1
22 , whileχ−1

12 can be replaced
by its leading Debye behaviour. The determination of the terms of order ρ0 and ρ0 ln ρ is
still straightforward but more cumbersome. Eventually, we find that all those corrections to
the ideal behaviour (78) of the thermodynamical quantity (77) exactly match the low-density
expansion (68) of I4 inferred from its microscopic definition. Thus, the fourth moment sum
rule perfectly works, at least up to the considered order in the density.

6 Concluding Comments and Perspectives

In this paper, we have derived a new sum rule for the fourthmoment of charge correlations of a
TCP. Since the Stillinger–Lovett second moment sum rule naturally emerges as a by-product
of our analysis, we believe that this new sum rule holds in any conducting phase, although
all the steps of its derivation are not under a complete mathematical control at the moment.
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In particular, we expect that the free energy functional can be safely expanded around homo-
geneous states inside the conducting phase. We stress that all the partial compressibilities of
the auxiliary system, namely second partial derivatives with respect to particle densities of
the free energy density, have then to be well defined. Thus critical points must be dealt with
some care, since singularities in the thermodynamical quantities arise on the one hand, while
perfect screening properties can be lost on the other hand, as mentioned below.

Our derivation also involves implicit assumptions about the existence of the thermody-
namic limit, and of intrinsic bulk properties with bulk densities which become homogeneous
far from the boundaries. Strictly speaking, to our knowledge, this has been only proved for
the general three-dimensional TCP in the Debye regime [12] and for its charge-symmetric
version [13]. In two dimensions, where the Coulomb potential takes a logarithmic form, both
the neutrality and homogeneity of a TCP of point charges have been proved [32]. Extensions
of such results to all the systems introduced here would be quite valuable of course, and
might constitute the first steps towards a complete proof of our sum rule. Meanwhile, physi-
cal arguments, in particular related to the beautiful proof for quantum Coulomb matter [14],
strongly suggest that the classical TCP, as well as its version immersed in a charged uniform
background, do sustain a well-behaved TL. Furthermore, there are strong evidences, arising
either from specific models or mean-field approaches, that screening properties in the bulk
can be disentangled from the reorganization of charges at the surface, so any boundary effects
can be indeed a priori ignored.

In the absence of a complete mathematical proof, checking the sum rule within exact
calculations for specific models or thermodynamical regimes is particularly valuable. Here,
such checking has been carried out for charged soft spheres in the low density regime, through
the explicit calculation of the lowest order terms in density expansions of the quantities of
interest. This illustrates the subtle interplay between short-range and screened Coulomb
contributions which ultimately ensure the validity of the fourth moment sum rule at the
considered orders. If there exists a simple reorganization of the Abe–Meeron diagrams which
shows the validity of the secondmoment Stillinger Lovett sum rule at any order in the density
expansion, a similar trick for the fourth moment sum rule, certainly more cumbersome,
remains to be discovered.

If our derivation of the fourth moment sum rule is based on the response to external pertur-
bations, more intrinsic derivations would be of great interest, both for enforcing its expected
validity on the one hand, and for sheding light on the internalmechanisms at work on the other
hand. For instance, the second moment Stillinger Lovett sum rule can be retrieved within
suitable manipulations of the BGY hierarchy equations for the equilibrium distribution func-
tions of the unperturbed homogeneous TCP, as shown by Gruber and Martin [33]. Moreover,
the BGY hierarchy equations have been also used for deriving the fourth moment sum rule
for the OCP [23] and for the BIM with pure Coulomb interactions [9]. We are looking for
extending such derivations to the TCP case, where the presence of short-range interactions
requires further manipulations. Notice, that a full reorganization of Abe–Meeron diagram-
matics as described above could be also seen as an intrinsic derivation. In the same spirit, let
us mention that a sixth moment sum rule for the charge correlations of the two-dimensional
OCPwith logarithmic interactions was established through a full term by term analysis of the
Abe–Meeron diagrammatics for the short-range part of the direct correlation function [34].
It turns out that, as a consequence of specific properties of the pure logarithmic interaction,
only the simplest graph built with the screened two-dimensional Debye potential contributes
to the small-k expansion up to order k2 included in the Fourier transform of that quantity.
The sixth moment of particle correlations, which then coincide with charge correlations,
straightforwardly follows by applying the Ornstein-Zernicke equation.
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The fourth moment sum rule obviously extends to the TCP immersed in a charged
background, namely the thermodynamical expression (49) of the fourth moment of charge
correlations is not restricted to densities satisfying overall neutrality, but it is valid for any
set of densities (ρ1, ρ2). This is well illustrated by the low density calculations for charged
soft spheres. Moreover, a similar DFT analysis combined with linear response theory can be
carried out for an arbitrary number n of components. This would lead to formulae analogous
to the thermodynamical expression (49), but with a more complicated structure arising from
the inversion of a n × n matrix. In the case of the MIM, they should be equivalent to those
derived by Suttorp [9]. Eventually, within our formalism, one can obtain sum rules for the
zeroth and second moment of particle-charge correlations, by comparing the DFT calcula-
tion of a given particle density to its linear response expression. Such sum rules are again
equivalent to those obtained for the MIM [9].

Among the various possible applications of our new sum rule, we would like to emphasize
its usefulness for a better understanding of the plausible lack of screening properties at the
ionic critical point. The liquid-gas transition of a TCP has been widely studied the last twenty
years. Let us mention for instance two recent works [35,36]. Numerical simulations have
convincingly shown that both liquid and gas phases display perfect screening properties,
namely the second moment Stillinger–Lovett sum rule is satisfied. However, a first suspicion
about the violation of that sum rule at the critical point was pointed out by Caillol [37]. Mean-
while, such violation was also observed for a solvable asymmetric mean-spherical model by
Aqua and Fisher [38], which is expected to share common properties with an asymmetric
TCP. More recently, and contrarily to various theoretical expectations, the violation of the
Stillinger Lovett sum rule at the critical point was also observed for the fully symmetric RPM
by Das, Kim and Fisher [11] : they provide strong numerical evidences by combining refined
Monte Carlo simulations in the grand-canonical ensemble with finite-size scaling methods.
Furthermore, they also show that the fourth moment of charge correlations diverges when
approaching the critical point, in a way analogous to the isothermal compressibility. Clearly,
our thermodynamical expression (49) of that fourth moment constitutes a promising tool for
analyzing its behaviour near the critical point, as well as the underlying coupling between
charge and mass fluctuations. In a similar spirit, let us quote a recent work by Piasecki et
al. [39] where the Kirkwood superposition approximation is shown to be inconsistent with
the divergency of the compressibility at the critical point for a system with short-range inter-
actions.

Eventually, let us conclude by a few comments regarding the two dimensional (2D) case.
The sum rule for the fourth moment of charge-charge correlations derived here explicitly
in three dimensions (3D), can be straightforwardly extended to the 2D case : this leads to
the simple replacement of the factor 4π in formula (49) by the factor 2π , a direct con-
sequence of the modification of Poisson equation when changing from 3D to 2D. In 2D,
the Coulomb potential takes the well-known logarithmic form. Since the corresponding
singularity at the origin is relatively weak, the TCP of point charges is well behaved for
coupling constants � < 2, namely at sufficiently high temperatures [40]. Then, thanks to
scaling properties of the logarithmic interaction, the corresponding equation of state can be
exactly computed, providing a simple explicit expression for the compressibility, i.e. the
zeroth moment of density-density correlations. The sum rules for particle-charge correla-
tions analogous to that derived in Ref.[9] also take simple explicit forms [41]. Moreover,
the diagrammatic analysis of the direct correlation function for the 2D OCP introduced in
Ref. [34], can be extended to the sum of the two direct correlation functions for the 2D
fully symmetric TCP of point charges [42]. After use of the Ornstein-Zernicke equation, this
provides an exact explicit expression for the second moment of the density-density corre-
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lations. Checking our new sum rule in that case requires further calculations, in particular
because this involves the difference of the two direct correlation functions instead of their
sum.

The 2D TCP of point charges collapses at � = 2, so short-range interactions need to
be introduced for � ≥ 2. At � = 2, Cornu and Jancovici [43] exploited a mapping with
a field theory model valid for pure Coulomb interactions, which allowed them to derive
analytical expressions for particle correlations of the 2D TCP immersed in a background.
Those results obtained in a planar geometry were retrieved by Forrester and Jancovici [44]
by working on a sphere and using a more general formalism. Such expressions are expected
to become exact in the zero density limit for the well-behaved TCP including short-range
interactions. Thus, they constitute a reliable starting point for further checking of the fourth
moment sum rule at � = 2, which nevertheless requires an additional detailed analysis of
short-range contributions at low densities. Similarly to its application to the study of ionic
criticality in 3D, the fourthmoment sum rule should also bring new insights for the celebrated
Kosterlitz-Thouless transition [45,46] : in the temperature-density plane, there appears a line
of critical points separating a high-temperature conducting phase from a low-temperature
dielectric phase [47]. The implications of the fourth moment sum rule should complete the
results of a previous work [48], where a plausible scenario for the large-distance decay of
particle correlations in the dielectric phase was constructed in a way consistent with various
sum rules.
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Appendix

In Fig. 3, we list the seven diagrams Gd which contribute to the diagrammatic series (67) for
the fourth moment I4 up to order ρ0 included.

When computing the Fourier transform K̃αγ,Gd (0) for each of those diagrams, we can
apply the convolution theorem at various places, namely with intermediate points which
reduce either to the black points for graphs G(2)

d and G(3)
d , or to the root white points for

graphs G(4−7)
d by exploiting translational invariance. Two key quantities turn then to be the

inverse Fourier transform of [φ̃D(k)]2 and [φ̃D(k)]3 which reduce respectively to

G(1)
d

G(2)
d

G(3)
d

G(4)
d G(5)

d G(6)
d G(7)

d

Fig. 3 The seven diagrams Gd which contribute to I4 up to order ρ0 included in the diagrammatic series (67).
The bubbles represent short-range dressed bonds bR (60)
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1

(2π)3

∫
dk exp(−ik · r) 16π2

(
k2 + κ2

D

)2 = 2π

κD
exp(−κDr) (79)

and

1

(2π)3

∫
dk exp(−ik · r) 64π3

(
k2 + κ2

D

)3 = 2π2

κ3
D

(1 + κDr) exp(−κDr) , (80)

after a straightforward application of the theorem of residues. Another useful trick relies on
the decomposition

bR = b(T)
R − βuSRαγ + β2

2

(
uSRαγ + qαqγ φD

)2 − β3

6

(
uSRαγ + qαqγ φD

)3
(81)

with the truncated bond

b(T)
R = exp

(
−β

(
uSRαγ + qαqγ φD

))
− 1 + β

(
uSRαγ + qαqγ φD

)
− β2

2

(
uSRαγ + qαqγ φD

)2

+β3

6

(
uSRαγ + qαqγ φD

)3
. (82)

Indeed, the corresponding contribution of the truncated bond b(T)
R in graphs G(1−5)

d can be
computed at lowest order in the density by merely replacing uSRαγ + qαqγ φD by the bare

pair potential uαγ since (exp(−βuαγ ) − 1 + βuαγ − β2u2αγ /2 + β3u3αγ /6) is integrable in
the whole space. The next density-dependent corrections to that leading contribution behave
as ρ1/2 and can thus be neglected in the considered calculation of I4 up to order ρ0. The
contributions of the other terms in the decomposition (81) are easily computed thanks to the
simple analytic expressions of uSRαγ and φD. Eventually, combining the above convolution
and decomposition tricks, we obtain formula (68) for I4.

The five graphs in the series (61) for particle correlations which provide contributions (72)
to the free-energy density f ∗ are listed in Fig. 4. Each contribution follows from formula (72),
so the value K (τ )

αγ,G(r) of each graph is first computed with bonds bD and bR evaluated at

temperature τ . After multiplication of K (τ )
αγ,G(r) by the pair potential uαγ (r), the further

integrals over r in the whole space are readily computed by using decomposition (81) with τ

in place of β, as well as the inverse Fourier transforms of [φ̃D(k)]2 given by expression (79),
and of φ̃D(k)4π/k2 which reduces to

1

(2π)3

∫
dk exp(−ik · r) 16π2

k2
(
k2 + κ2

D

) = 4π

κ2
Dr

(1 − exp(−κDr)) . (83)

The final integrals over τ from 0 to β are then easily and explicitly performed for all
terms which reduce to combinations of powers laws and logarithmic terms. It remains a term
involving

GD G(1)
d

G(1)
Dd G(1)

dD
G(1)
DdD

Fig. 4 The five diagrams G which contribute to f ∗ up to order ρ2 included
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∫
dr uαγ

[
exp(−τuαγ ) − 1 + τuαγ − τ 2

2
u2αγ

]
, (84)

whose integration over τ leads to the last correction of order ρ2 in the formula (73) for f ∗.
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The Square-Shoulder-Asakura-Oosawa
model
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Title: “The Square-Shoulder-Asakura-Oosawa model”
Abstract: A new model for a colloidal size-asymmetric binary mixture is proposed: The
Square-Shoulder-Asakura-Oosawa. This belongs to the larger class of non-additive hard-
spheres models and has the property that its effective pair formulation is exact whenever the
solvent particle fits inside the interstitial region of three touching solute particles. Therefore
one can study its properties from the equivalent one-component effective problem. Some
remarks on the phase diagram of this new model are also addressed.
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a b s t r a c t

A new model for a colloidal size-asymmetric binary mixture is proposed: The Square-
Shoulder-Asakura–Oosawa. This belongs to the larger class of non-additive hard-spheres
models and has the property that its effective pair formulation is exact whenever
the solvent particle fits inside the interstitial region of three touching solute particles.
Therefore one can study its properties from the equivalent one-component effective
problem. Some remarks on the phase diagram of this new model are also addressed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Hard-spheremixtures, additive or non-additive, sticky or not, etc., have very rich phase diagrams showing all three phases
of matter: gas, liquid, and solid as well as mixed or demixed and percolating or glass. In some soft-matter laboratories
[1–3], experimentalist are engineering always new kinds of (Boltzmann) particles and materials which sometimes show
phase diagrams akin to the ones of hard-spheres. It is then very important to be able to predict with great accuracy the
theoretical critical phenomena of hard-spheres. Whereas the properties of additive (sticky–)hard-spheres, non-additive
(sticky–)hard-spheres have been carefully studied in the past. The same attention has not been given to non-additive square-
shoulder-spheres. The one-component Square-Shoulder (SS) fluid model has been used for the first time by Hemmer and
Stell [4,5]. It may lead to an isostructural solid–solid transition [6], to a fluid–solid coexisting line with a maximummelting
temperature [7], to unusual phase behaviors [8–10] as the reentrance of a hexatic phase in two dimensions [11,12], and to
a rich variety of (self-organized) ordered structures [13–16]. It has been used to describe the behavior of metallic glasses
[17,7],micellar [18] or granular [19] systems, colloidal suspensions [20,21], primitivemodels of silica [22], aqueous solutions
of electrolytes [23], and water [24,25]. The SS model is the simplest of the class of core-softened potentials models for
fluids [26] that can be used.

E-mail address: rfantoni@ts.infn.it.
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Recently it has been shown that augmenting the purely steric repulsion of the Asakura–Oosawa [27] model with a soft
repulsion shell gives rise to temperature dependent interactionswhich in turn give rise tomore realistic effective attractions
for cosolute-macromolecule and specifically protective osmolytes systems [28,29].

In the present work, following closely the theoretical framework of Ref. [30], we will study a highly size asymmetric
binary mixture of Asakura–Oosawa where the unlike species pair-interaction has a square-shoulder character.

2. Discussion

An important problem in chemical physics is that of understanding how the behavior of the solute is influenced by
the presence of the solvent. When there is a clear distinction between which are the solvent particles it is possible to
describe the mixture as a binary one. Imagine for example that the solvent particles are the small ‘‘s’’ ones and the solute
particles are the large ‘‘l’’ ones, then for a statistical physics description of the mixture we need to know the potential
energy of interaction between the various particles,U(r(s)1 , r(s)2 , . . . , r(l)1 , r(l)2 , . . .)where {r(s)i } are the coordinates of the small
particles and {r(l)i } the ones of the large particles. It is always possible to write U = Uss(r

(s)
1 , r(s)2 , . . .) + Ull(r

(l)
1 , r(l)2 , . . .) +

Usl(r
(s)
1 , r(s)2 , . . . , r(l)1 , r(l)2 , . . .), and, neglecting three bodies interactions (i.e. assuming the particles are non-deformable,

non-polarizable, . . .), we can say that Uss contains all pair interactions between two small particles, Ull contains all pair
interactions between two large particles, and Usl contains all pair interactions between a small and a large particle. Then,
the influence of the solvent on the behavior of the solute has to be due toUsl andUss. Clearly the problem simplifies whenwe
can assumeUss = 0 and under certain conditions [31] it can even be rewritten exactly in terms of an effective one-component
one for only the large particle with a potential energy Ueff

ll (r(l)1 , r(l)2 , . . .) with only pairwise interactions.
In a fluid binarymixture of small and large nonoverlappinghard bodies the small particlesmay induce a depletion entropic

attraction between the big particles [27,32,33] when two of these are closer than the dimensions of the small bodies since
in this case no small particle fits in the space between the two large particles but there will still be an osmotic pressure due
to the small particles surrounding the two big particles pushing them together.

This depletion force serves an important stabilizing role in many biological and technological processes. Specifically,
many osmolytes and polymeric crowders that are excluded from protein surfaces stabilize the more compact folded state
[28,29].

Following the framework of Ref. [30], in order to understand theoretically this phenomenon we will introduce the
following model size-asymmetric binary mixtures: A non-additive hard-sphere binary mixture [34–36,30] with the solvent
particles non interacting among themselves, σss = 0, the solute particles interacting as hard-spheres of diameter σll = σl,
and a square-shoulder interaction between the solvent particles and the solute particles where σs = qσl is the diameter of
the small spheres as seen by the large ones. The square-shoulder interaction occurs in a spherical shell of diameter between
σsl = σl(1 + q)/2 and σsl(1 + λsl), the small and large particles are otherwise interacting as hard-spheres at distances
smaller than σsl. Our size parameter q here plays the role of the usual non-additivity parameter ∆ = σsl/σ

add
sl − 1 = qwith

σ add
sl = (σss + σll)/2.
This model being non-additive (with positive non-additivity) does not admit an analytical solution for the Percus–Yevick

(PY) closure of the Ornstein–Zernike equations but under certain geometrical condition it admits an exact effective pair
formulation [30].

We called this model the Square-Shoulder-Asakura–Oosawa (SSAO) model [27,32,33]. Of course, the more general
formulation of themodel is when one has σss/σs different from 0, but in this more complicated case of an interacting solvent
we would not be able to solve exactly and analytically for the effective one-component problem [30].

Usually when talking about the AO model one refers to a colloid–polymer mixture where the depletants are linear
homopolymers in a good solvent of radius of gyration σs/2, which, after tracing out the monomers degrees of freedom
and replacing each chain with a particle coinciding with its center of mass [37], can be considered, for ηs . 1, to a first level
of approximation, as non interacting among themselves but unable to penetrate a sphere of diameter σs + σl around each
colloidal particle. The colloidal particles are treated as hard spheres of diameter σl. In this work we will rather talk always
about a solvent–solute mixture.

It is interesting to observe that when the temperature is set to infinity the SSAOmodel reduces to the usual AO one with
a depletion range between σl and 2σsl, whereas when it is set to zero it reduces to an AOmodel with a larger depletion range
extending from σl to 2σsl(1 + λsl).

To the best of our knowledge no numerical experiment has ever been tried on the full SSAO binary mixture.
We will now first discuss the derivation of the effective one-component problem of the SSAO model.

3. The SSAO model

Our SSAO binary mixture model is defined as follows

Uss =


i<j

ϕss(|r
(s)
i − r(s)j |), (3.1)
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Ull =


i<j

ϕll(|r
(l)
i − r(l)j |), (3.2)

Usl =


i,j

ϕsl(|r
(s)
i − r(l)j |), (3.3)

fss(r) = e−βϕss(r) − 1 = 0, (3.4)

fll(r) = e−βϕll(r) − 1 = −θ(σll − r), (3.5)

fsl(r) = e−βϕsl(r) − 1 = −θ(σsl − r) + f0(r), (3.6)

where β = 1/kBT with T the absolute temperature, ϕss, ϕll, ϕsl are the bare solvent–solvent, solute–solute, and
solvent–solute pair-potentials respectively, fss, fll, fsl the correspondingMayer functions, σsl = σl(1+q)/2, θ is theHeaviside
step function, and the square-shoulder is

f0(r) =

0 r < σsl

e−βϵsl − 1 σsl < r < σsl(1 + λsl)
0 r > σsl(1 + λsl)

, (3.7)

where ϵsl > 0 is a positive constant. We can then introduce a reduced temperature as T ∗
= 1/βϵsl.

Model SSAO does not admit a PY analytic solution but admits an exact effective one-component description for q < q0 =

2/
√
3 − 1 = 0.15470 . . . , when a solvent can fit into the inner volume created by three solutes at contact (or q < 1 in

one spatial dimension [38]), so that a solvent particle cannot overlap simultaneously with more than two (nonoverlapping)
solutes at contact. Following the derivation of Dijkstra et al. [31], we describe the mixture in a mixed canonical (for the
solutes) and grand canonical (for the solvent) ensemble, which they call semi-grand-canonical (zs,Nl, V , T ) ensemble. It is
then easy to show [30] that in this case, after integrating out the degrees of freedom of the solvent, the effective potential
βvll(r) is

βvll(r) = βϕll(r) − zs


drs fsl(rs)fsl(|rs − r|), (3.8)

which upon using Eq. (3.6) gives

βvll(r) =


+∞ r < σl
v0(r) σl < r < 2σsl(1 + λsl)
0 r > 2σsl(1 + λsl),

(3.9)

with

− v0(r)/zs = 2C(r/2, σsl) − 2

e−βϵsl − 1


[C(r<, σsl) + C(r>, σsl(1 + λsl)) − 2C(r/2, σsl)]

+ 2

e−βϵsl − 1

2
{C(r/2, σsl(1 + λsl)) − [C(r<, σsl) + C(r>, σsl(1 + λsl)) − C(r/2, σsl)]}, (3.10)

where we denoted with C(R, σ ) the volume of a spherical cap of height σ − R in a sphere of radius σ , i.e.

C(R, σ ) =
2πσ 3

3


1 −

3
2
R
σ

+
1
2


R
σ

3


θ(σ − R), (3.11)

and r< + r> = r with

r< =
r2 + σ 2

sl − σ 2
sl (1 + λsl)

2

2r
, (3.12)

r> =
r2 + σ 2

sl (1 + λsl)
2
− σ 2

sl

2r
. (3.13)

In this case, from Dijkstra et al. [31] derivation, one finds that the exact cancellation of all Meyer diagrams higher than the
two body one, occurs when [30]

σsl(1 + λsl) − σl/2
σl/2

= q + λsl + qλsl < q0

=
2

√
3

− 1. (3.14)

It is easy to show [30] that in the range σl < r < 2σsl(1 + λsl) one finds the result of Eq. (3.9) for the effective potential.
This is formally the same effective potential found in model SWAO of Ref. [30] where we change ϵsl → −ϵsl. In the

present case the sticky limit procedure would give the same AO model.
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Fig. 1. (Color online) Effective potential for the SSAO mixture at various reduced temperatures and q = 0.1, λsl = (q0 − q)/(1 + q), η(r)
s = 1/2.

In Fig. 1we show the effective potential for the SSAO binarymixture at various temperatures. From the figurewe see how
at infinite temperature the SSAO reduces to the usual AO model with a range 2σsl whereas at zero temperature it reduces
to an AO model with a wider range extending to 2σsl(1 + λsl). At intermediate temperatures the effective potential lies
continuously between the two extreme cases. Thus, the soft shoulder repulsion enhances the depletion mechanism and the
solute stabilization.

Here zs is the solvent fugacity. We can introduce a solvent reservoir packing fraction η
(r)
s = πzsσ 3

s /6 = ηseβµex
s , withµex

s
the excess (over the ideal gas) solvent chemical potential. The solvent reservoir is at the same temperature of the solute.
η

(r)
s is the packing fraction of the reservoir made of non interacting solvent particles. The relationship between η

(r)
s and ηs

can be found calculating the average number of small solvent particles (see Appendix C in Ref. [30]). Up to second order in
ηl one finds

ηs ≈ η(r)
s


1 + ηl(1 + q)3(λsl(3 + λsl(3 + λsl))e−

1
T∗ − (1 + λsl)

3) −
12η2

l q
3

σ 3
l

×

 σl(1+q)(1+λsl)

σl

dr r2(v0/η
(r)
s )e−v0(r)


. (3.15)

4. The Noro and Frenkel criterion

Noro and Frenkel [39] argued that the reduced second virial coefficient B2/BHS
2 , rather than the range and the strength of

the attractive interactions, could be themost convenient quantity to estimate the location of the gas–liquid critical point for
many different colloidal suspensions. Their criticality criterion for particles with variable range attractions, complemented
by the simulation value of the critical temperature obtained in Ref. [40] for the SHS model, yields B2/BHS

2 ≈ −1.21.
Applying Noro and Frenkel criticality criterion for particles with variable range attractions [39], complemented by the

simulation value of the critical temperature obtained in Ref. [40] for the Sticky–Hard-Sphere model, to our effective one-
component problem, we are led to conclude that criticality requires Beff

2 /BHS
2 = −1.21 where Beff

2 is the second virial
coefficient of our effective solute–solute problem

Beff
2 =

2π
3


σ 3
l − 3


∞

σl

dr r2

e−βvll(r) − 1


, (4.1)

and BHS
2 = 2πσ 3

l /3 is the virial coefficient for HS of diameter σl. Note that Beff
2 can only be calculated numerically.

In Fig. 2 we show the coexistence curves for the phase diagram stemming from the Noro–Frenkel empirical criterion in
the (T ∗, η

(r)
s ) plane, for the SSAO model with q = 0.1 for four values of λsl = 0.001, 0.01, (q0 − q)/(1 + q), 0.1. For the

last λsl = 0.1 case the effective potential of Eq. (3.9) is only an approximation. From the figure we see how even a small
shoulder produces dramatic effects in the phase diagram, widening the fluid–fluid coexistence region.

5. Perturbation theory for the SSAO model

From the previous sectionwe understood that the hidden ormetastable fluid–fluid phase separation observed by Dijkstra
et al. [31] in their study of the AO model could be enlarged by adding a soft unlike repulsion as in our SSAO model. Now we
want to quantify this more precisely through first order perturbation theory [41]. Taking the HS as reference systemwe can
write the Helmholtz free energy per particle, a = A/N , as follows

βall = βaHS + 12ηl

 σl(1+q)(1+λsl)

σl

βvll(r)gHS(r)r2 dr, (5.1)
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Fig. 2. (Color online) Phase diagram stemming from the Noro and Frenkel empirical criterion in the (T ∗, η
(r)
s ) plane, for a highly asymmetric, q = 0.1,

SSAO for four values of λsl .

where βaHS = (4ηl − 3η2
l )/(1− ηl)

2
+ ln(ηl)+ constants is the Carnahan–Starling [42] expression for HS, βvll the effective

pair-potential of the SSAO model of Eq. (3.9), and gHS is the HS radial distribution function in the PY approximation [43],
which in the interval 1 < r < (1 + q)(1 + λsl) < 2 can be written as follows

rgHS(r) =

2
i=0

lim
t→ti

(t − ti)t
L(t)
S(t)

et(r−1), (5.2)

where we are measuring lengths in units of σl,

S(t) = (1 − ηl)
2t3 + 6ηl(1 − ηl)t2 + 18η2

l t − 12ηl(1 + 2ηl), (5.3)

L(t) = (1 + ηl/2)t + 1 + 2ηl, (5.4)

and ti(i = 0, 1, 2) are the zeros of S(t). The first order Helmholtz free energy of Eq. (5.1) can thus be calculated analytically.
The compressibility factor Z = βp/ρ and chemical potential µ are then found through

Zl = ηl
∂βall
∂ηl


η
(r)
s

, (5.5)

βµl = Zl + βall. (5.6)

The critical point (η
(r)c
s , ηc

l ) is determined by numerically solving the following system of equations

∂Zlηl

∂ηl


η
(r)c
s ,ηcl

= 0, (5.7)

∂2Zlηl

∂η2
l


η
(r)c
s ,ηcl

= 0. (5.8)

In Fig. 3we show the critical point (η(r)c
s , ηc

l ) for the fluid–fluid coexistence of the SSAOmodel for q = 0.1 andλsl = 0.001,
near to the AO, and λsl = (q0−q)/(1+q), the full SSAO, as a function of the reduced temperature, T ∗. The figure confirms the
scenario predicted in the previous section from the Noro–Frenkel criterion but gives additional information on the critical
solvent and solute packing fractions, ηc

s and ηc
l respectively. Of course we expect a breakdown of the perturbation theory

treatment as soon as the depletion mechanism becomes too strong. Also as soon as q > q0 we are neglecting three-body
(and higher) terms.

6. Conclusions

We studied a new colloidal strongly asymmetric binary mixture of (small) solvent and (large) solute particles, where
unlike particles interact through the repulsive Square-Shoulder (SS) pair-potential, that we called the Square-Shoulder-
Asakura–Oosawa (SSAO) model. Whenever the solvent particle fits inside the interstitial region of three touching solute
particles we were able to derive exactly and analytically an effective solute–solute pair-potential and discussed the
corresponding phase behaviors, as obtained from the resulting effective one-component system.

We found that the mere presence of the soft repulsion in the spherical shell of the SS unlike pair-interaction augments
the depletion mechanism typical of the underlying Asakura–Oosawa (AO) mixture. Applying the Noro and Frenkel criterion

The Square-Shoulder-Asakura-Oosawa model 718
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Fig. 3. (Color online) Critical point for the fluid–fluid coexistence in SSAO for q = 0.1 and λsl = 0.001 (top panel) and λsl = (q0 − q)/(1 + q) (bottom
panel) as a function of T ∗

c . The lines with symbols are obtained from thermodynamic perturbation theory, whereas the solid line corresponds to the Noro
and Frenkel criterion of Fig. 2. Eq. (3.15) is used for the conversion between the reservoir density and the solvent density.

we saw that this, in turn, enlarges (and may stabilize) the metastable fluid–fluid phase coexistence region typical of the
strongly asymmetric AOmodel at large reservoir packing fractions. A first order thermodynamic perturbation theory nicely
confirms the scenario depicted by such criterion.

This phenomenon can be relevant in the experimental study of colloidal suspensions undergoing a fluid–fluid phase
transition in the laboratory.Whenever themathematicalmixture just described represents a goodmodel for a realmixture it
should be expected that themain effect of the presence of the additional repulsive shell in the unlike species pair-interaction
is to increase the depletion mechanism and in turn to enlarge the phase coexistence region of the phase diagram.
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in one dimension. We make some further developments and remarks concerning fluids with
penetrable particles. We then apply our developments to the study of the Gaussian core
model for which we are unable to find a well defined thermodynamics.
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1 Introduction

The physics of one dimensional systems is simpler than that one of higher dimensional ones.
Specifically the free energy of an interacting gas, a fluid, has had an exact solution only in
one dimension. The apparent simplicity of restricting motion to one spatial dimension is well
known and has had much appeal. But what is the relation between the exactly soluble models
of the one dimensional world and the richer and puzzling problems of the three dimensional
one? A one dimensional gas was once thought to be incapable even of condensation. Later
with the introduction of infinite range forces it has been made to condense, but even so this
liquid can never freeze. What one finds is that these models are useful tests of approximate
mathematicalmethods, the solutions of thesemodels are surprisingly complex and interesting,
physical applications are often and unexpectedly discovered, and more importantly they
educate us to the need of rigorous and exact analysis with which one can have a better
definition of reality. The fact that particles can get around each other is responsible for much
of the structure of the ordinary world, and is also responsible for the difficulties which the

B Riccardo Fantoni
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1 Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, Grignano, 34151 Trieste, Italy
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mathematical physicist encounter in studying it. In one dimension we renounce to some of
the structure in favor of the possibility of obtaining an exact solution.

The importance of one dimensional physics also lies in the fact that a number ofmany-body
problems in higher dimensions can be accurately mapped into one dimensional problems.

One dimensional models with short range two particles forces do not have a phase tran-
sition at a non zero temperature [6].

In this work I will describe a way of simplifying the calculation of the grand canonical
partition function of an ensemble of classical particles living in a one dimensional world and
interacting with a given pair-potential v, originally described by Edwards and Lenard in their
paper [3] which I will call EL from now on. Using the notion of a general Gaussian random
process andKac’s theorem, they showhow it is possible to express the grand partition function
as a one dimensional integral of the fundamental solution of a given partial differential
equation. The kind of partial differential equation will be fixed by the kind of diffusion
equation satisfied by the Gaussian random process. In Sects. 2, 3, and 4 I will present EL’s
functional integration technique. In Sect. 5.2 I will show how, in EL, the properties of the
Wiener process are used to solve “Edwards’ model” or “Lenard’s model”. I will then show,
in Sect. 5.1, how one can use the properties of the Ornstein–Uhlenbeck process to solve
the “Kac-Baker’s model”, and, in Sect. 8, how the generalized Ornstein–Uhlenbeck process
can be used to solve models with a more general penetrable pair interaction potential. Even
though in EL is mentioned the generality of their technique they just apply it to the “Edwards’
model”. In Sect. 6 I show how EL propose to extract thermodynamical informations from
their treatment and in Sect. 7 I show, following EL, how it is possible to reduce the search of
the grand partition function, to a characteristic value problem, when the diffusion equation
is independent of time. In Sect. 8 I show how one has to renounce to this reduction since
the original partial differential equation is not separable anymore. In Sect. 8.1 I then apply
the theoretical framework of such section to the Gaussian core model. In particular I will
prove that this model is thermodynamically unstable in its attractive version (which is also
not H-stable) and I will find an approximate expression for the grand partition function of
the repulsive version (which clearly is H-stable) in terms of a triple series one of which is
alternating.

More recently [2] the functional integral technique of Edwards andLenard has been used to
solve the statistical mechanics of a one dimensional Coulomb gas with boundary interactions
as a one dimensional model for a colloidal and soap film.

I think that the success of the functional integration method described in this work to find
exact solutions of the equilibrium classical (non-quantum) statistical mechanics problem of
one dimensional fluids has certainly been one of themotivations for the popularity acquired by
functional integration after the pioneering developments of Marc Kac and Richard Feynman.
The link with the theory of stochastic processes is just a beautiful example of how many
different theoretical frameworks come together in the few exact solutions of classical many-
body problems.

2 The Problem

The problem is to simplify the calculation of the grand canonical partition function of a system
of particles in the segment [0, L] whose positions are labeled by xi with i = 1, 2, . . . , N , in
thermal equilibrium at a reduced temperature θ , namely,
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� =
∞∑

N=0

zN

N !
∫ L

0
dxN · · ·

∫ L

0
dx1 e

− VN (x1,...,xN )

θ . (1)

EL consider the total potential energy of the system to be,

VN (x1, . . . , xN ) =
N∑

i=1

N∑

j=1

w(xi , x j ), (2)

where w(xi , x j ) is a function of two variables depending on the pair-potential v(|xi − x j |)
and the kind of reservoir exchanging particles with the system.

The main idea of EL, is to rewrite the grand partition function as a functional average,

� =
〈
e
∫ L
0 dx ′ F(φ(x ′))

〉
(3)

=
〈 ∞∑

N=0

1

N !
∫ L

0
dxN · · ·

∫ L

0
dx1

N∏

i=1

F(φ(xi ))

〉
.

And then choose F(φ) = z exp(iσφ), to get,

� =
∞∑

N=0

zN

N !
∫ L

0
dxN · · ·

∫ L

0
dx1

〈
eiσ

∑N
i=1 φ(xi )

〉
, (4)

where in interchanging the average with the sum and the integrals they use the linearity of
the average. we haven’ t defined the average yet so we will do it next.

3 Averaging Over a General Gaussian Random Process

Ageneral Gaussian randomprocessφ(x) is defined by the postulate that for any finite number
of points x1, . . . , xN the joint probability density for φ(xk) in dφk (we will often make use
of the abbreviation φi ≡ φ(xi )) is of the form,

P(φ1, . . . , φN ) =
√
det B

(2π)N/2 e
− 1

2

∑N
k=1

∑N
l=1 Bklφkφl , (5)

where Bi j = Bi j (x1, . . . , xN ) are the elements of the positive definite matrix B.
Let αk be N arbitrary real numbers. Then,

〈
ei

∑N
i=1 αiφi

〉
= e− 1

2

∑N
k=1

∑N
l=1 Cklαkαl , (6)

where C = B−1.

Differentiating with respect to αk and αl (not excluding k = l) and then setting all α to zero,
one obtains,

〈φ(xk)φ(xl)〉 = Ckl = C(xk, xl), (7)

where C is a function of two variables only, called the covariance function. From equations
(6) and (7) follows that also Bi j = B(xi , x j ) is a function of just two variables. The covariance
completely characterizes the statistical nature of φ(x)
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Replacing all the α’s in Eq. (6) with σ and comparing (6) and (4) with (1) and (2) one
recognizes that,

C(x1, x2) = 2

θσ 2 w(x1, x2). (8)

This imposes a restriction to the systems that one can treat. Namely we need w to be positive
definite.

Why is all this useful is explained in the next section.

4 Kac’s Theorem

Consider a Markoffian process φ(x), i.e. one for which, given any increasing sequence of
“times” x0, x1, . . . , xn , with x0 ≤ x1 ≤ · · · ≤ xn , the probability density that φ(xk) is in dφk

(with k = 0, 1, . . . , n) is the product,

P
(
φ1, . . . , φn

) =
∫ ∞

−∞

n∏

k=1

P
(
φk, xk |φk−1, xk−1

)
R(φ0, x0)dφ0, (9)

where P
(
φ1, x1|φ0, x0

)
is the conditional probability that φ(x1) is in an element dφ1 around

φ1 given that φ(x0) = φ0 and R(φ, x) is the initial probability distribution for the process.1

Both the conditional probabilities and the initial distribution are assumed to be normalized
to unity over the interval φ ∈ [−∞,+∞],

∫ ∞

−∞
dφ1 P

(
φ1, x1|φ0, x0

) =
∫ ∞

−∞
dφ R(φ, x) = 1. (10)

Any quantity which is an expression involving φ(x) is a random variable whose average
value may be determined using the probability (9).

One is interested in averages of the form,

W (x, x0) =
〈
e
∫ x
x0

dx ′F(φ(x ′),x ′)〉 (11)

= 1 +
∞∑

n=1

1

n!
∫ x

x0
dxn

∫ x

x0
dxn−1 · · ·

∫ x

x0
dx1 〈F(φn, xn) · · · F(φ1, x1)〉

= 1 +
∞∑

n=1

∫ x

x0
dxn

∫ xn

x0
dxn−1 · · ·

∫ x2

x0
dx1 〈F(φn, xn) · · · F(φ1, x1)〉 .

Kac’s theorem takes advantage of the Markoffian property (9) to relate to each other the
successive terms of this series by an integral-recursion formula. It can be seen by inspection
that,

1 Equation (9) defines what is often called a Wiener measure in the space of continuous functions φ(x).
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W (x, x0) =
∫ ∞

−∞
dφ Q

(
φ, x|φ0, x0

)
, (12)

Q =
∞∑

n=0

Qn,

Q0
(
φ, x|φ0, x0

) =
∫ ∞

−∞
dφ0 P

(
φ, x|φ0, x0

)
R(φ0, x0)

Qn
(
φ, x|φ0, x0

) =
∫ x

x0
dx ′

∫ ∞

−∞
dφ′ P

(
φ, x |φ′, x ′)F

(
φ′, x ′)Qn−1

(
φ′, x ′|φ0, x0

)

Then one can write the following integral equation for Q,

Q
(
φ, x|φ0, x0

) = Q0 +
∞∑

n=1

Qn =
∫

dφ0 PR +
∞∑

n=1

∫
dx ′

∫
dφ′ PFQn−1

=
∫ ∞

−∞
dφ0 P

(
φ, x|φ0, x0

)
R(φ0, x0) (13)

+
∫ x

x0
dx ′

∫ ∞

−∞
dφ′ P

(
φ, x |φ′, x ′)F

(
φ′, x ′)Q

(
φ′, x ′|φ0, x0

)
.

This is the main result of Kac’s theorem.
Now assuming that the stochastic process φ(x) satisfies a forward Fokker–Planck equa-

tion,

∂

∂x
P

(
φ, x|φ0, x0

) = L(φ, x)P
(
φ, x|φ0, x0

)
(14)

P(φ, x0|φ0, x0) = δ(φ − φ0) initial condition

it immediately follows from the integral formula (13), that Q satisfies,

∂

∂x
Q

(
φ, x|φ0, x0

) = [L(φ, x) + F(φ, x)
]
Q

(
φ, x|φ0, x0

)
(15)

Q
(
φ, x0|φ0, x0

) = R(φ, x0) initial condition

If we now further assume φ(x) to be a Gaussian process (so that Eq. (9) is of the form
(5)) then we can put together the result of the previous section (8) and Kac’s theorem, to say
that,

� = W (L , 0) =
∫ ∞

−∞
dφ Q

(
φ, L|0, 0) , (16)

where Q = Q
(
φ, x|φ0, x0

)
is the solution of the partial differential equation (15) with

F(φ, x) = F(φ) = z exp(iσφ). This is the simplification found by EL.
Note the following points:

– This certainly is a simplification from a computational point of view and establishes
a bridge between non-equilibrium statistical mechanics and the theory of stochastic
processes and equilibrium statistical mechanics in one dimension.

– When the operator L is independent of “time” (we keep calling x time because it
comes natural from the notion of random process. In the present context though x is
the position of a particle along his one dimensional world) then both P

(
φ, x|φ0, x0

)
and

Q
(
φ, x|φ0, x0

)
depend only on |x − x0| since F does not depend explicitly on x .
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– For a non-stationary random process φ(x) it is often possible to choose a delta function
as initial distribution, i.e. R(φ, x0) = δ(φ − φ0), where φ0 = φ(x0). In this case Q is
the fundamental solution of the partial differential Eq. (15).

– For a non-stationary random process the covariance function C(x1, x2) = 〈φ(x1)φ(x2)〉
is not a function of |x2 − x1| alone. The identification of the covariance with the pair-
potential v demands that the process be stationary because the pair-potential is a function
of the difference of the two position variables. But in some cases (due for example to the
presence of the reservoir) w may differ from v (see Sect. 5.2).

As a final remark, in EL is stressed the importance of the Markoffian nature of the process.
They observe that the concept of a Markoffian process involves the idea of a succession in
“time” and this is meaningless when there is more then one independent variable. So it seems
to be hard to extend the technique just described even to a two dimensional system.

In the following section we will apply the functional integration technique just described
to some concrete example.

5 Examples

Note that due to the Markoffian nature of the stochastic process the following two properties
should be required for x0 ≤ x1 ≤ x2,

R(φ1, x1) =
∫ ∞

−∞
dφ0 P

(
φ1, x1|φ0, x0

)
R(φ0, x0), (17)

P
(
φ2, x2|φ0, x0

) =
∫ ∞

−∞
dφ1 P

(
φ2, x2|φ1, x1

)
P

(
φ1, x1|φ0, x0

)
. (18)

Let us see now how all this works for two well known Markoffian, Gaussian stochastic
processes.

5.1 The Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process is a stationary process defined as follows,

R(φ0, x0) = e− φ20
2√

2π
, (19)

P
(
φ, x|φ0, x0

) = e− (φ−φ0e
−γ�x)

2

2S(�x)√
2π S(�x)

, (20)

with �x = |x − x0|,
S(�x) = 1 − e−2γ�x ,

where γ is the inverse of the characteristic time constant of the process, i.e. a positive real
number.

The covariance for this process is,

C(x1, x2) = e−γ |x1−x2|. (21)
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The Fokker–Planck equation satisfied by the process is the Smoluchowski diffusion equa-
tion for an harmonic oscillator,

L(φ) = γ

(
∂2

∂φ2 + ∂

∂φ
φ

)
. (22)

So this process can be used to describe a system of particles whose potential energy is,

w(x1, x2) = θσ 2

2
e−γ |x1−x2|. (23)

Adding a hard-core part to this long range potential and making it attractive by choosing
σ pure imaginary, gives the so called “Kac-Baker model”. Yang and Lee showed that the
presence of the hard core part is sufficient to ensure the existence of the thermodynamic
potential for the infinite system (L → ∞). This was calculated exactly by Kac who also
proved that the model has no phase transitions (because of the infinite range of the potential,
L. Van Hove’s proof is not applicable here). Later Baker showed that if one sets,

σ = i

√
α0γ

θ
, (24)

(so that the integral of the potential is independent of γ ) and then takes the limit γ → 0 after
the limit L → ∞, then a phase transition of the classical Van der Waals type is obtained. A
model with exponential repulsive pair-potential (exactly like the one in (23)) was studied by
D. S. Newman, who concluded that it did not show phase transitions in the long range limit
γ → 0 [8].

5.2 The Wiener Process

We follow EL and introduce theWiener process. It is a non-stationary process defined by (if
x ≥ x0 > 0),

R(φ0, x0) = e
− φ20

4Dx0√
4πDx0

(25)

P
(
φ, x|φ0, x0

) = e− �φ2

4D�x√
4πD�x

, (26)

with �x = x − x0,

�φ = φ − φ0,

where D is the diffusion constant of the Brownian process, i.e. a positive real number.
The covariance for this process is,

C(x1, x2) = 2Dmin(x1, x2). (27)

Although this process cannot be differentiated it can be seen as the integral, φ(x) =∫ x
0 ds ξ(s), of the Gaussian white noise process, ξ(x), defined by 〈ξ(x)〉 = 0 and

〈ξ(x1)ξ(x0)〉 = ζ 2δ(x1 − x0) and the attribute Gaussian implies that all cumulants higher
than of second order vanish. One just needs to set 2D = ζ 2.

The Fokker–Planck equation satisfied by the process is the Einstein diffusion equation,

L(φ) = D
∂2

∂φ2 . (28)
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So this process can be used to describe a system of particles whose potential energy is,

w(x1, x2) = Dθσ 2 min(x1, x2). (29)

It was S. F. Edwards, see EL, who first realized that this is a Coulomb system: electrons of
charge q living in the segment [0, L] are in contact with an infinite reservoir (in the region
x < 0, say). The reservoir exchanges particles with the system of electrons giving rise to the
statistical fluctuations in particle number. Take the system plus reservoir electrically neutral
as a whole and imagine the system containing N electrons. Then there is a total charge −Nq
in the reservoir. Gauss theorem then tells that in the region x ≥ 0 there is a constant electric
field of magnitude 2πNq , due to the presence of the reservoir. Now choosing,

D = 2π

θ
, (30)

σ = q, (31)

one can rewrite the total potential energy of the system as,

VN = 2πq2
N∑

k=1

N∑

l=1

min(xk, xl)

= 2πq2
N∑

k=1

N∑

l=1

[
−|xk − xl |

2
+ xk + xl

2

]

= −2πq2
∑

k<l

|xk − xl | + 2πq2
N∑

k=1

N∑

l=1

xl

= −2πq2
∑

k<l

|xk − xl | + 2πNq2
N∑

l=1

xl . (32)

Which is readily recognized as the expected result for the “Edwards’model”.We are assuming
that the line is the realworld inwhich each charge lives. So that also its field lines cannot escape
from the line. Then the electric potential of each charge is the solution of d2ψ(x)/dx2 =
−4πδ(x), i.e. ψ(x) = −2π |x |.

Note that due to the presence of the neutralizing reservoir, w is not just a function of
|xi − x j | and consequently the random process is not just a stationary one as in the Kac-
Baker example.

In this case Edwards has not been able to answer in a definite way to the problem of
continuity of the thermodynamic functions.

6 Thermodynamics

Following EL, we want now comment briefly on the relevance of all this from the point of
view of the thermodynamics of the system of particles. Given the grand canonical partition
function � = �(z, L , θ) the equation of state follows from eliminating z between the two
following equations,

P

θ
= 1

L
ln�(z, L , θ), (33)

n = z
∂

∂z

1

L
ln�(z, L , θ). (34)

123

Exact results for one dimensional fluids through functional inte-
gration 729



Exact Results for One Dimensional Fluids Through Functional...

where P is the pressure and n the number density of particles. Sometimes one talks about
chemical potential μ (of the one-component system), instead of z. The two are related by,

z =
(

mθ

2π h̄2

)1/2

eμ/θ > 0, (35)

where m is the mass of the particles. All the other thermodynamic functions can be obtained
from the internal energy,

U (N , L , S) = − ∂

∂(1/θ)
ln�(z, L , θ) + 1

2
Nθ, (36)

where S is the entropy of the system. Or alternatively from the Helmholtz free energy,

A(N , L , θ) = μN − θ ln�(z, L , θ). (37)

It is often useful to simplify the problem by studying just the asymptotic behavior of �

in the infinite system limit L → ∞. This usually allows the recognition of eventual phase
transitions (as in the Yang and Lee theory and L. Van Hove theorem) as singularities in the
equation of state. The equation of state for the infinite system becomes then,

⎧
⎪⎪⎨

⎪⎪⎩

P

θ
= �(z, v, θ) = lim

L→∞

[
1

L
ln�(z, L , θ)

]
,

n = 1

v
= lim

L→∞

[
z

∂

∂z

1

L
ln�(z, L , θ)

]
,

(38)

where the limit may not be freely interchanged with the differentiation.

7 Characteristic Value Problem

Both the examples described have the common feature thatL is independent of time x . Under
this circumstance the problem of calculating the grand canonical partition function � may
be simplified even further, as shown in EL.

Letting φ → φ/σ , the coefficient function F(φ) in Eq. (15) is periodic with period 2π . It
is then possible to reduce the problem (15) to the characteristic value problem of an ordinary
differential operator on a finite interval of the independent variable φ. Let,

Q̃
(
φ, x

) =
∞∑

n=−∞
Q

(
φ + 2πn, x |0, 0). (39)

This function is the periodic solution of the partial differential Eq. (15) and for x = 0 it
reduces to,

Q̃
(
φ, 0

) =
∞∑

n=−∞
R
(
φ + 2πn, 0

)
. (40)

For the “Kac-Baker model” one finds for example

Q̃
(
φ, 0

) = θ3

(
iπφ/σ 2, e−2π2/σ 2

)
e−φ2/2σ 2

/
√
2πσ 2, (41)

where θ3 is an elliptical theta function [1], and for the “Edwards’ model” Q̃
(
φ, 0

) =∑∞
n=−∞ δ(φ + 2πn). So, for this latter case, Q̃ is the periodic fundamental solution of

(15). It then follows that,
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� =
∫ π

−π

dφ Q̃(φ, L). (42)

Since F and L do not depend on x , in solving (15) for Q̃, one may use the method of
separation of variables. This leads to the characteristic value problem,

[L(φ) + F(φ)] y(φ) = λy(φ), (43)

y(φ + 2π) = y(φ).

Then one looks for a complete orthonormal set of eigenfunctions ym with relative eigenvalues
λm (m = 0, 1, 2, . . .),

∫ π

−π

dφ ym(φ)ym′(φ) = δm,m′ . (44)

The expansion of Q̃ in terms of these functions is,

Q̃(φ, x) =
∞∑

m=0

eλmx Bm ym(φ), (45)

Bm =
∫ π

−π

dφ Q̃(φ, 0)ym(φ). (46)

For example Bm = ym(0) for the “Edwards’ model”. The grand partition function becomes,

�(L) =
∞∑

m=0

Ame
λm L , (47)

Am = Bm

∫ π

−π

dφ ym(φ). (48)

The λm and the ym depends parametrically on z which enters into the definition of F(φ).
Moreover since F(φ) = F∗(−φ) the λm are either real or occur in complex conjugate pairs.

Now assume that among the sequence of eigenvalue λm there is one λ0 that is real and is
bigger than the real part of all the others then the following simplification holds,

�(L → ∞) ∼ A0eλ0L . (49)

The equation of state for the infinite system then becomes,

P = θλ0(z), (50)

n = lim
L→∞

[
z

∂

∂z

(
ln A0(z)

L
+ λ0(z)

)]

= z
∂

∂z
λ0(z). (51)

For example for the ideal gas, σ → 0 and λ0(z) = az, with a a constant.
Let us summarize the characteristic value problem for the examples described. Denoting

with a dash a first derivative respect to φ (. . .′ ≡ d . . . /dφ) we have:

(i) “Kac-Baker model” repulsive [8],

γ
[
σ 2y′′ + (φy)′

] + zeiφ y = λy, (52)
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(ii) “Edwards’ model” [3],

2πq2

θ
y′′ + zeiφ y = λy, (53)

this is a one component plasma.
(iii) “Lenard’s model” [7],

2πq2

θ
y′′ + 2z cos(φ)y = λy, (54)

this is a two component plasma system of two kinds of particles with charges ±q and
the corresponding values of z that by symmetry may be assumed equal without loss of
generality.

In all cases y(φ) is a function of period 2π (for the attractive Kac-Baker model the
periodicity is lost but the characteristic value problem is still valid).

Unfortunately there is no simple way to solve explicitly Eq. (52) for the Kac-Baker model.
Nonetheless it is apparent the existence of the thermodynamic limit for the repulsive model,
as was proved by Newman [9].

In the Edwards’ model the presence of the neutralizing reservoir is responsible (the poten-
tial energy of interaction between the particles and the reservoir being proportional to +x)
for the charges all of the same sign to accumulate at the origin resulting in a system with zero
density and pressure in accordwith the fact that Eq. (53) admits solutions in terms ofmodified
Bessel functions of the first kind I±i

√
2θλ/πq2

(
√
2θ zeiφ/πq2)which form a complete set for

λ = −m2 with m = 0, 1, 2, . . ., so that λ0 = 0.
In the Lenard’s model the solutions of Eq. (54) is in terms of even and odd Mathieu func-

tions with characteristic value a = −2λθ/πq2, parameter q = −2θ z/πq2, and argument
φ/2. According to Floquet’s theorem, any Mathieu function of argument φ can be written in
the form eirφ f (φ), where f has period 2π and r is theMathieu characteristic exponent. For
nonzero q theMathieu functions are only periodic for certain values of a. SuchMathieu char-
acteristic values are given by ar = A(r, q) with r integer or rational and A(0, q) ≤ A(r, q)

for all r, q . Then we will have λ0 = −(πq2/2θ)A(0,−2θ z/πq2). In Fig. 1 we show the
equation of state of the Lenard model at various temperatures θ for q = 1.

We are then led to conclude that this system does not admit any phase transition, conden-
sation (gas–liquid) or freezing (liquid–solid).

8 General Penetrable Pair-Potential

In the examples described we started from known stochastic processes to find which physical
model they may be able to describe. Actually one wants to do the reverse: given a physical
model, i.e. given w (a positive definite function (8)), determine the stochastic process that
allows the desired simplification for the grand canonical partition function. It turns out that
this is quite easily accomplished when w is a function of the inter particles distance alone.
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Fig. 1 The equation of state for the Lenard’s model at various temperatures θ for q = 1

For this purpose it is useful to reconsider the Ornstein–Uhlenbeck process in a more
general way. Consider the following stationary stochastic process,

R(φ0, x0) = e− φ20
2√

2π
, (55)

P
(
φ, x|φ0, x0

) = e− (φ−φ0 A(�x))2

2S(�x)√
2π S(�x)

, (56)

with �x = |x − x0|,
S(�x) = 1 − A2(�x),

where the last definition assures the validity of theMarkoffian property (17). Clearly, in order
to satisfy the Markoffian property (18) we need to require A(x)A(y) = A(x + y) which is
only satisfied by choosing A as an exponential as in the Ornstein–Uhlenbeck process. Here
we willingly violate this second property and choose A as an arbitrary function. In order to
have P

(
φ, x0|φ0, x0

) = δ
(
φ − φ0

)
we must also require that limx→0 A(x) = 1.

The covariance for this process is,

C(x1, x2) = 2

θσ 2 w(x1, x2) = A(|x1 − x2|). (57)

It can be readily verified that the transition density of this process satisfies the following
forward Fokker–Planck equation,

L(φ, x) = − Ȧ

A

(
∂2

∂φ2 + ∂

∂φ
φ

)
, (58)

where the dot denotes differentiation with respect to time ( ˙. . . ≡ d . . . /dx). All the properties
of Sect. 4 continue to hold. All this allows for example to simplify the thermodynamics of a
system of particles interacting with a pair-potential,

v = θσ 2

4
A, (59)
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with v(0) = v0 = θσ 2/4, i.e. penetrable particles.
Unfortunately in this case we cannot use the method of separation of variables described

in Sect. 7 since L is time dependent.
In the more general case one has to deal with w’s which are not functions of the pair-

potential alone, as happened in the case of Edwards’ model. For example one may be
interested in modifying Edwards’ model for the case of a Coulomb system moving but
not living in [0, L] with field lines allowed to exit the segment and interacting with the full
three dimensional pair-potential v(x) = 1/

√
x2 + ε2, with ε a small positive quantity so

that v0 = 1/ε or σ = 2/
√

εθ . A neutralizing uniform background in this case gives rise
to quadratic terms making even the one-component system stable. To obtain the purely one
dimensional case it is necessary to take the ε → 0 limit at the end of the analysis of the
quasi one dimensional case. This problem has been solved by Baxter [8] who developed a
method for finding the partition function when the pair-potential satisfies a linear differential
equation with constant coefficients. His method still leads to an eigenvalue problem but does
not employ functional averaging.

Introducing the function B2(x) = −2d ln A(x)/dx one can then say that according to
Ito or Stratonovich calculus [5] the process defined by Eqs. (55), (56) satisfies the following
stochastic differential equation,

φ̇(x) = − B2(x)

2
φ(x) + B(x)ξ(x), (60)

where ξ(x) is Gaussian white noise with ζ = 1. The ξ(x) can be generated on a computer
as pseudo random numbers on a large interval ξ ∈ [−a, a] with a big enough.

8.1 Example: The Gaussian Core Model

For example we want to simplify the model fluid with v(x) = v0e−γ x2 , γ > 0, the so
called Gaussian core model. In this case we have A(x) = e−γ x2 and B2(x) = 4γ x . For this
model we expect that the attractive, σ 2 = 4v0/θ < 0, case is thermodynamically unstable in
agreement with the fact that the particles will tend to collapse at a same point since the system
is not H-stable in the sense of Ruelle [13]. On the other hand we do not know anything yet
about the repulsive, σ 2 > 0, case, which is H-stable and therefore we must have P/θ < z.
For example, we know that there cannot be any condensation but an interesting question is
whether there can be freezing [4].

The problem (15) becomes

∂

∂x
Q̃(φ, x) =

[
2γ x

(
σ 2 ∂2

∂φ2 + ∂

∂φ
φ

)
+ zeiφ

]
× Q̃(φ, x), (61)

Q̃(φ, 0) = θ3

(
iπφ/σ 2, e−2π2/σ 2

) e− φ2

2σ2√
2πσ 2

, (62)

with Q̃(φ + 2π, x) = Q̃(φ, x). This is a non-separable partial differential equation. Again
the grand canonical partition function is given by Eq. (42),

� =
∫ π

−π

dφ Q̃(φ, L).

Clearly, approximating F(φ) ≈ z or, equivalently, setting σ → 0, we get the ideal gas
behavior. In fact the solution to Eq. (61) is, in this simple case,
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Q(φ, x |0, 0) = P(φ, x |0, 0)ezx , since ∂P/∂x = LP . So that from Eqs. (16) and (10)
immediately follows � = ezL .

In order to make some progress towards the solution of the full Eq. (61) we defineL ≡ xR
andH(x) = xR+F . SinceH at different times do not commute we use the following Dyson
series

Q
(
φ, x |0, 0) = U(x, 0)R(φ, 0), (63)

U(x, x0) = 1 +
∞∑

n=1

∫ x

x0
dxn

∫ xn

x0
dxn−1 · · ·

∫ x2

x0
dx1 H(xn) · · ·H(x1),

Where R is given by Eq. (55). So that we find � = 1 + ∑∞
n=1 cn with

cn =
∫ L

0
dxn

∫ xn

0
dxn−1 · · ·

∫ x2

0
dx1

∫ ∞

−∞
dφ H(xn) · · ·H(x1)R(φ, 0). (64)

Solving for cn we easily find cn = ∑n
k=1 an,k with

an,k = e−k2σ 2/2 fn,k(σ
2)γ n−k L2n−k zk

k! , (65)

with fn,n = 1, fn,1 = 0 for n > 1 and fn,k(ψ) a polynomial of degree n − k in ψ beginning
with the monomial of degree one and the others of alternating signs. So

� = 1 +
∞∑

n=1

n∑

k=1

an,k = 1 +
∞∑

k=1

∞∑

n=k

an,k

= 1 +
∞∑

k=1

e−k2σ 2/2(zL)k

k!
∞∑

n=k

fn,k(σ
2)(γ L2)n−k

= 1 +
∞∑

k=1

(zL)k

k! hk(σ
2, γ L2) = �(zL , σ 2, γ L2), (66)

where we defined

hk(ψ, η) ≡ e−k2ψ/2gk(ψ, η), (67)

gk(ψ, η) ≡
∞∑

m=0

fk+m,k(ψ)ηm . (68)

First of all notice that, if the thermodynamic limit exists, we must have P =
O(z2/γ, σ 2)zθ with O a given function of two variables such that limσ→0 O(a, σ 2) = 1.
Note that when there is no interaction between the particles v0 → 0 and/or at very high
temperature θ → ∞, then σ → 0 and we end up with an ideal gas.

Then, if it was hk = 1 we would immediately find the ideal gas behavior. On the other
hand if it was gk = 1 we would find an unstable system for v0 < 0 and a stable system with
P = 0 = n for v0 > 0 since

1

L
ln

[ ∞∑

k=0

e−k2σ 2/2(zL)k

k!

]
→

{
0 σ 2 > 0 for L → ∞
∞ σ 2 < 0 for any L

. (69)

We then need to find the true hk or gk . We already know that g1 = 1. What can we say
about gk(ψ, η) for k > 1? By inspection of the first few terms of the Dyson series we find
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that gk(ψ, η) = 1+ ∑∞
m=1 fk+m,k(ψ)ηm with fk+m,k(ψ) = ∑m

i=1(−1)m+i dk+m,k,i ψ
i and

dk+m,k,i some positive coefficients. So that of course hk(0, η) = 1 for all k, as it should.
Now we can write

gk(ψ, η) = 1 +
∞∑

m=1

m∑

i=1

dk+m,k,i (−ψ)i (−η)m

= 1 +
∞∑

i=1

(−ψ)i
∞∑

m=i

dk+m,k,i (−η)m

= 1 +
∞∑

i=1

lk,i (η)(−ψ)i , (70)

where we defined

lk,i (η) ≡
∞∑

m=i

dk+m,k,i (−η)m . (71)

We start looking for the coefficients for i = 1. By inspection of the first seven n we find, for
2 ≤ k ≤ n − 1,

dn,k,1 = 2n
k!
n!bn,k, (72)

bn,k

bn,k+1
= (k − 1)Rn−k+2, (73)

bn,n−1 =
(

n

n − 3

)
1

2n
. (74)

So that

bn,k = bn,n−1
(n − 3)!
(k − 2)!

n−2∏

q=k

Rn−q+2, (75)

and

dn,k,1 = k(k − 1)

3! rn−k, (76)

with, for 2 ≤ k ≤ n − 2,

rn−k =
n−k+2∏

p=4

Rp, (77)

r2 = 4/(2 · 2 + 1)!!,
r3 = 8 · 3/4(2 · 3 + 1)!!,
r4 = 16 · 3/5(2 · 4 + 1)!!,
r5 = 32 · 3/6(2 · 5 + 1)!!,

and so on. We can then guess that

rm = 2m3

(2m + 1)!!(m + 1)
. (78)
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Then we can easily re-sum the series of Eq. (71) to say that

lk,1(η) = k(k − 1) × 2F2
(
{1, 1}, {3/2, 2},−x

)
− 1

2
, (79)

with 2F2 a hyper-geometric function. We also find limη→∞ lk,1(η) = −k(k − 1)/2. What
about lk,i (η) for i > 1?

Their determination is quite laborious but let us suppose first that we had found for lk,i ,

lk,i (η) = 1

i !
(
k2

2

)i ( −η

1 + η

)i

. (80)

Then it would follow

hk(ψ, η) = e− k2
2 ψe

k2
2

ψη
1+η = e− k2

2
ψ

1+η , (81)

and for the partition function we would find

�L(z) =
∞∑

k=0

(zL)k

k! e
− k2

2
σ2

1+γ L2 . (82)

We could then immediately say that the attractive, σ 2 < 0, case would be thermodynamically
unstable since the series in Eq. (82) would be not summable, whereas the repulsive, σ 2 > 0,
case would be stable. In this latter case O = limL→∞ ln�L/L would be finite and the system
would admit a well defined thermodynamic limit without phase transitions. The equation of
state would be

P

θ
= lim

L→∞
ln�L(z)

L
= O(z/

√
γ , σ 2)

√
γ , (83)

n = lim
L→∞ z

�L

(
ze

− σ2

1+γ L2

)

�L(z)
e
− σ2

2(1+γ L2) = z, (84)

so that P = O(n2/γ, v0/θ)nθ and for small n one would have P ≈ nθ .
In order to make some progress towards the exact solution we can then write dn,k,i =

dn,k,1En,k,i andnote that En,k,1 = 1 andby inspection E2+i,2,i = 1.Now ifwehad En,k,i = 1
for all n, k, i then we would get

lk,i (η) = k(k − 1)2i−1(−η)i

(i + 1)(2i + 1)!! × 2F2
({1, 1 + i}, {3/2 + i, 2 + i},−η

)
. (85)

We can then use the following limit

lim
η→∞2F2

({1, 1 + i}, {3/2 + i, 2 + i},−η
)
η = (i + 1)(2i + 1)

2i
, (86)

to say that

lim
η→∞

lk,i (η)

(−η)i−1 = −k(k − 1)2i−2

i(2i − 1)!! . (87)

Since, according to Eqs. (87) and (70), in the large η limit,

gk(ψ, η) → 1 + k(k − 1)ψ × 2F2
({1, 1}, {3/2, 2}, ψη

)
/2, (88)
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for the repulsive, σ 2 > 0, system we would find

P

θ
= lim

L→∞
ln

[
2F2

({1, 1}, {3/2, 2}, σ 2γ L2
)]

L

=
⎧
⎨

⎩

∞ σ 2γ independent of L
α σ 2γ L = α independent of L
0 σ 2γ L2 independent of L

(89)

and n = 0. So that in the first two cases we would violate the H-stability condition according
to which P/θ < z. This is a signal that our approximation is too brute.

In the appendix we report the first few exact En,k,i . Even if we found it too hard to guess
the full analytic expression from the first few of them, the results of the appendix can be used
to refine our analysis.

Our final expression for the partition function is

� =
∞∑

k=0

e−σ 2k2/2(zL)k

k!

(
1 + k(k − 1)

∞∑

i=1

(σ 2γ L2)i×
∞∑

l=0

(−γ L2)l
Ek+l+i,k,i2l+i

2(l + i + 1)(2(l + i) + 1)!!
)

(90)

{
< ezL σ 2 > 0,
= ∞ σ 2 < 0,

(91)

Note that the dependence of Ek+m,k,i on k is crucial because otherwise we could immediately
conclude that the pressurewould be independent from z. And this fact, added to theH-stability
condition P/θ < z, would be enough to say that the repulsive Gaussian core model only
admits a zero pressure zero density state. Note also that the dependence of En,k,i on i is also
crucial because otherwise for σ = 1 the argument of the first two series would be symmetric
under exchange of i and l which would mean that the two models with γ > 0 and with γ < 0
would have the same thermodynamics which is clearly absurd [14].

The first alternating series has very slow numerical convergence as L grows. We then
found it difficult to extract even a numerical equation of state. Nonetheless we found that the
triple series is convergent at least in the high temperature regime, 0 < σ 2 � 1.

From the H-stability condition (90) we find that for any L and k > 1 we must have

−1

k(k − 1)

≤
∞∑

i=1

(σ 2γ L2)i
∞∑

l=0

(−γ L2)l
Ek+l+i,k,i2l+i

2(l + i + 1)(2(l + i) + 1)!!

=
∞∑

m=1

(−γ L2)m
2m

∑m
i=1(−σ 2)i Ek+m,k,i

2(m + 1)(2m + 1)!! = Gk(σ
2, γ L2)

<
eσ 2k2/2 − 1

k(k − 1)
. (92)
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Then, we find
∑m

i=1(−σ 2)i Ek+m,k,i = −σ 2 + Fm,k(σ
2) for m ≥ 2 with

Fm,k(σ
2) = ∑m

i=2(−σ 2)i Ek+m,k,i . In the large L limit we then have, for γ > 0,

Gk(σ
2, γ L2) → σ 2/2 + lim

L→∞ Hk(σ
2, γ L2), (93)

Hk(σ
2, γ L2) =

∞∑

m=2

(−γ L2)m
2m−1Fm,k(σ

2)

(m + 1)(2m + 1)!!
= (γ L2)2Mk(σ

2, γ L2), (94)

Mk(σ
2, γ L2) =

∞∑

m=0

(−γ L2)m
2m+1Fm+2,k(σ

2)

(m + 3)(2m + 5)!! .

In view of the H-stability upper bound of Eq. (92), Mk should be decaying as 1/L4 or faster,
at large L . If it decays faster, then Gk is independent of k and the only possible state is a
zero pressure one. If it decays as 1/L4, from the results of the appendix we can say that it
does not increase with k and again the zero pressure state is the only one possible in the
thermodynamic limit. So, in the end, we were unable to find a regular thermodynamics even
for the repulsive stable case with positive γ . Everything is pointing towards a zero pressure
state in the thermodynamic limit. This would be in agreement with the observation that as
θ → 0 the only configurations contributing to the integral in Eq. (1) are the ones with
minimum VN − μN which are those where the particles are infinitely spaced one another
with n → 0. Moreover the result of Penrose and Ruelle [10,12] on the convergence radius
of the Mayer series for stable and tempered pair-potentials would not be violated since for
any finite L our triple series is convergent in the high temperature regime 0 < σ 2 � 1.

8.2 Observation

Now, we can observe that the same conclusion would be expected for the easier Kac-Baker
model, v(x) = v0e−γ |x |, γ > 0, for which the structure of the solution for the partition
function reads

� = 1 +
∞∑

k=1

e−k2σ 2/2(zL)k

k!
∞∑

n=k

fn,k(σ
2)(γ L)n−k

= �(zL , σ 2, γ L), (95)

with some given polynomials fn,k . Again we can definitely say that the attractive model is
thermodynamically unstable and that the repulsive one is thermodynamically stable but only
admits the P = 0 = n state for γ ∝ L−1. For the rest, also for this case we expect a situation
similar to the one of the Gaussian core model. Should this behavior be generally expected
for any positive, purely repulsive, penetrable pair-potential with non-compact2support? This
will be studied in a forthcoming work.

2 It is in fact clear that for a positive repulsive pair-potential with compact support we would have a partition
function bounded below by the partition function of the hard-rods fluid which being a nearest neighbor fluid
has a well defined thermodynamics with an exact analytical solution [11].
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9 Conclusions

We reviewed, under the unified setting of functional integration in one dimension, some of the
exactly solvable one dimensional continuum fluid models of equilibrium classical statistical
mechanics. Following the original idea of Marc Kac we write the partition function of each
model as a path integral over particularMarkoffian, Gaussian stochastic processes. Following
the idea of Sam Edwards we further reduce the thermodynamic problem for such fluids to the
solution of a second order ordinary differential equation, the characteristic value problem.

In the work of Edwards and Lenard [3] it is also given a detailed analysis of how one can
extend this method to get solutions for the pair- and higher orders static correlation functions.

We propose a generalization of themethodwhich allows to treat other models with a rather
generic pair-potential of interaction between the constituent penetrable particles of the fluid.
The characteristic value problem of Edwards cannot be used anymore but the simplification
of Kac remains valid. We apply this further developments to the simple case of the Gaussian
core fluidmodel for whichwe prove that the attractive system is thermodynamically unstable,
in agreement with the fact that it is not H-stable in the sense of Ruelle [13], and find an
approximate expression for the exact partition function in terms of a triple series one of
which is alternating. We were unable to find a well defined thermodynamics even for the
repulsive system. Everything suggest that the only admitted state in the thermodynamic limit
is the zero pressure one. If this conclusion was confirmed it would mean that a Monte Carlo
simulation carried on the Gaussian core model would just observe finite size effects.

Acknowledgments I would like to thank Prof. Klaus Shulten whose course in non-equilibrium statistical
mechanics held at Urbana in 1999 in the Loomis laboratory, stimulated the study of the EL paper as a
final individual project. I would also like to thank Prof. Giorgio Pastore and Andres Santos for many useful
discussions.

Appendix: The Coefficients En,k,i

In Table 1 we list the first exact En,k,i coefficients for i = 2, 3, 4 and the first seven n.

Table 1 Exact En,k,i for
i = 2, 3, 4.

En,k,2 n = 7 n = 6 n = 5 n = 4

k = 2 15 7 3 1

k = 3 5105/352 79/12 33/14

k = 4 211/18 243/56

k = 5 389/56

En,k,3 n = 7 n = 6 n = 5

k = 2 25 6 1

k = 3 4923/176 31/6

k = 4 17

En,k,4 n = 7 n = 6

k = 2 10 1

k = 3 965/88
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Table 1 continued En,k,2 n = 7 n = 6 n = 5 n = 4

k = 2 15 7 3 1

k = 3 14.5 6.6 2.4

k = 4 11.7 4.3

k = 5 6.9

En,k,3 n = 7 n = 6 n = 5

k = 2 25 6 1

k = 3 28.0 5.2

k = 4 17

En,k,4 n = 7 n = 6

k = 2 10 1

k = 3 11.0

From the table we can see how there is a very weak dependence on k. So we can on a
first ground assume that En,k,i ≈ En,2,i = en−i,i for all k. Moreover the entries of the table
satisfy the following recurrence relation

e2,i = 1, (96)

e j,2 = 2 j−1 − 1, (97)

e j,i = ie j−1,i + e j,i−1, (98)

with j = n− i . So that introducing the generating function ϕ(x, i) = ∑∞
j=2 e j,i x

j we easily
find

ϕ(x, 2) = x2/(x − 1)(2x − 1), (99)

ϕ(x, i)/x = iϕ(x, i) + ϕ(x, i − 1)/x, (100)

with solution

ϕ(x, i) = x3

(x − 1)(−x)i (2 − 1/x)i−1
, (101)

with (a)i = a(a+1) · · · (a+ i −1) = �(a+ i)/�(a) the Pochhammer symbol. The desired
coefficient e j,i is the j th coefficient in the series expansion of ϕ(x, i) around x = 0.

More precisely we can then write En,k,i = hn,k,i en−i,i with hn,2,i = 1 and E2+i,2,i = 1.
We can also observe that En,k,i tends to decrease with k at fixed n and i .
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1 Introduction

Recently we found evidence that a non pairwise-additive interaction fluid model for penetra-
ble classical particles living in one-dimension does not admit a well defined thermodynamics
[1], but can only exist in a zero pressure state.

We know that physical pairwise-additive models could also have the same thermodynamic
singularity. Whereas the Ruelle stability principle [2] tells us only that a fluid of N particles
with a total potential energy, VN , bounded from below, VN > NB with B a constant, cannot
have a divergent pressure, it does not tell us whether it can only have a zero pressure in
the thermodynamic limit. This happens for example for models with penetrable particles
interacting with a positive, purely repulsive, long-range pair-potential v.

We will consider some lower bounds to the total potential energy VN which will allow
us to prove some important results regarding the thermodynamic limit of the underlying
one-dimensional fluid model.

B Riccardo Fantoni
rfantoni@ts.infn.it

1 Dipartimento di Fisica, Università di Trieste, strada Costiera 11, 34151 Grignano, Trieste, Italy
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2 The Problem

The grand canonical partition function of a system of particles in the segment [0, L] whose
positions are labeled by xi with i = 1, 2, . . . , N , in thermal equilibrium at a reduced tem-
perature θ , is given by

� =
∞∑

N=0

zN

N !
∫ L

0
dxN · · ·

∫ L

0
dx1 e

− VN (x1,...,xN )

θ , (2.1)

where z > 0 is the activity. The total potential energy of the system is

VN (x1, . . . , xN ) =
∑

i< j

v(|xi − x j |) (2.2)

=
N−1∑

i=1

N∑

j=i+1

v(|xi − x j |),

where v(x) is the pair-potential. We will assume that v(x) ≤ v(0) = v0 < ∞ for all x , i.e.
penetrable particles. For v = 0 we have the ideal gas (id).

Since � > 1 we must have for the fluid pressure P

P

θ
= lim

L→∞
ln �

L
> 0, (2.3)

so the pressure cannot be negative. In addition we will assume that v(x) is a positive function,
v(x) > 0 for all x , then

P

θ
= lim

L→∞
ln �

L

< lim
L→∞

ln
[∑∞

N=0
(zL)N

N !
]

L
= z. (2.4)

So 0 < P < θ z.
Let us furthermore assume that v(x) has tails decaying to zero at large x and such that,

for all x in [0, L],

v(x) > v(L), (2.5)

with

lim
L→∞ v(L) = 0. (2.6)

Then we find

� <

∞∑

N=0

(zL)N

N ! e− v(L)N (N−1)
2θ , (2.7)
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and for the pressure,

P

θ
= lim

L→∞
ln �

L

< lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e− v(L)N (N−1)
2θ

]

L
(2.8)

= lim
L→∞

ln

[∫ ∞
0 dy (zL)y/

√
v(L)

[y/√v(L)]! e
− y(y−√

v(L))
2θ

]
− ln[√v(L)]

L
,

where we introduced the new continuous variable y = N
√

v(L) to transform the series into
an integral over y. Clearly if we had limL→∞ v(L) = v∞ with v∞ > 0 a constant, we could
immediately conclude that the limit in Eq. (2.8) is zero (see Eq. (5.5)) and the fluid has a
singular thermodynamic limit. Since the pair-potential is defined always up to an additive
constant, in this case, in order to find a reasonable result, one needs to properly scale the
chemical potential as follows: ln(z) → ln(z) + v∞(N − 1)/2θ .

Let us now introduce the Inverse Power Law Model (IPLM-α), v(x) = v0/[(|x |/σ)α +1],
with v0, σ , and α three positive constants, and the Generalized Exponential Model (GEM-α),
v(x) = v0e−γ (|x |/σ)α , with γ a fourth positive constant. For the IPLM-α with α < 1 the limit
on the right hand side of Eq. (2.8) is equal to zero (see Eq. (5.15)) and the fluid can only exist
in its zero pressure state. For 1 ≤ α < 2 it is non-zero smaller than z. For α ≥ 2 it is equal to
z (see Eq. (5.14)), i.e. it has the ideal gas behavior. For the GEM-α the limit is also always
equal to z.

On the other hand we can obtain a more stringent upper bound to the pressure observing
that for models with a pair-potential with monotonically decaying tails, i.e. with v′(x) < 0
for all x or purely repulsive, like the ones we just introduced, the configuration of minimum
potential energy is approximately the one with all particles equally spaced on the segment,
so

min(VN ) = [1 + a(α, N , L)]
∑

i< j

v

[
( j − i)L

N − 1

]
(2.9)

= [1 + a(α, N , L)](N − 1)

N∑

k=1

v

[
kL

N − 1

]

> [1 + a(α, N , L)](N − 1)v

(
L

N − 1

)
.

For example we find, in Eq. (2.9), a(α, 3, L) = 0 and for N > 3 we generally have a < 0.
Moreover,

lim
α→∞ a = lim

L→∞ a = 0, (2.10)

lim
α→0

a = lim
L→0

a = 0. (2.11)

Clearly limN→0 a = 0 and we must also have

0 < lim
N→∞[1 + a(α, N , L)] ≤ 1. (2.12)

So a(α, N , L) remains finite for all α, L , and N since it must be a continuous function.
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Then we will have

P

θ
< lim

L→∞

ln

[
∑∞

N=0
(zL)N

N ! e− [1+a] ∑
i< j v

[
( j−i)L
N−1

]

θ

]

L
. (2.13)

We want to study the limit on the right hand side

L = lim
L→∞

ln

[
∑∞

N=0
(zL)N

N ! e− [1+a] ∑
i< j v

[
( j−i)L
N−1

]

θ

]

L
. (2.14)

Now we observe that for finite L ,

lim
N→∞

L

N 2

∑

i< j

v

[
( j − i)L

(N − 1)

]
=

∫ L

0
dx v(x)

= b(α, L), (2.15)

where b(α, L) diverges at large L for the IPLM-α with α ≤ 1. Then the limit of Eq. (2.14)
can be easily found for the IPLM-α with α ≤ 1, as

L = lim
L→∞

ln

[∑∞
N=0

(zL)N

N ! e− [1+a]bL−1N2
θ

]

L
= 0. (2.16)

So we conclude that also the IPLM-α with α = 1 does not have a well defined thermodynamic
limit. A pair-potential such that limL→∞ b is a finite constant, is said to be short range.

Note that the GEM-α for α = 1 reduces to the Exponential Model (EM), for α = 2 to
the Gaussian Core Model (GCM), and taking the α → ∞ limit of either the GEM-α or the
IPLM-α,

lim
α→∞ v(x) =

{
v0 |x | < σ

0 |x | > σ
(2.17)

we find the Penetrable Rods Model (PRM). For the PRM the thermodynamics is well defined
as follows from the analytic solution of the Tonks gas [3] for the Hard Rods Model (HRM).
In fact we must have

�HRM < �PRM < �id = ezL . (2.18)

According to our analysis, the IPLM-α and the GEM-α are non-singular for α → ∞ and the
IPLM-α is singular for α ≤ 1.

Moreover as already noticed in Ref. [1] the GEM-α with γ ∝ L−α are singular as
immediately follows from Eq. (2.8) and Eq. (5.5).

3 External Potential

In order to regularize the models introduced in the previous section, the IPLM-α for α ≤ 1,
which have a long-range pair-potential, it is necessary to introduce a confining negative
external potential which will prevent the particles to “escape” to infinity on the line.
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Then we will have

VN (x1, . . . , xN ) =
∑

i< j

v(|xi − x j |) + N
∑

i

φ(xi ) (3.1)

with φ the external potential such that φ(x) < −v0/2 for all x in [0, L]. So that we must
now have P/θ > ze−v0/2θ .

4 Thermodynamic Regularity

In this section we want to discuss about the thermodynamic regularity of the IPLM-α for
α > 1, which are short-range. We know that P < θ z. So we should look for a non-zero lower
bound to the pressure. We also know that the IPLM-∞ is equivalent to the PRM which is
regular. So we can assume the IPLM-α to remain regular in a neighborhood of α → ∞. The
property that v(x) ≤ v0 implies VN ≤ N (N − 1)v0/2 which in turn implies P ≥ 0 which is
not enough to say that P must be non-zero.

Even if it looks plausible to assume that short-range models should admit a regular thermo-
dynamic limit we are unable to find a general principle rigorously proving such an assumption.

5 A Particular Non Pairwise-Additive Model

In Ref. [1] we studied the fluid model with

VN =
∑

i< j

w(xi , x j ), (5.1)

w(xi , x j ) = v0

j−1∏

k=i

A(|xk − xk+1|), (5.2)

A(x) = v(x)/v0, (5.3)

where x1 ≤ x2 ≤ . . . ≤ xN . Proceeding as in Sect. 2 we may assume that for equally spaced
particles

VN � constant (N − 1)

N∑

k=1

[
A

(
L

N − 1

)]k
,

so that from the properties of the geometric series in the large N limit

N∑

k=1

[
A

(
L

N − 1

)]k
∼ 1 − [A(L/N )]N

1 − A(L/N )
, (5.4)

and choosing for v the GEM-α, this behaves as N for α > 1 as (1 − e−L)N/L for α = 1,
and as (N/L)α for α < 1. So from the limit in Eq. (5.5) we conclude immediately that the
model is thermodynamically singular for α > 1 with a zero pressure, in agreement with the
results of Ref. [1]. Nothing can be said for α ≤ 1. The case α = 1 reduces to the physical
pairwise additive model.
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6 Ensemble Equivalence

In this section we discuss the equivalence of the three thermodynamic ensembles of statistical
physics, i.e. the grand canonical, the canonical, and the microcanonical. The argument for
the equivalence can be found in any textbook on statistical physics, as for example in the
Course of Theoretical Physics of Landau and Lifshitz [4]. We briefly retrace the argument
below and in the next two subsections.

We divide a closed system, after a period of time long enough respect to its relaxation time,
in many microscopic parts and consider one in particular. We call ρ(q, p) = w(E(q, p))
the distribution function for such part, where q = (x1, x2, . . .) are the particles coordi-
nates and p = (p1, p2, . . .) their momenta. In order to obtain the probability W (E)dE
that the subsystem has an energy between E and E + dE we must multiply w(E) by
the number of states with energies in this interval. We call 	(E) the number of states
with energies less or equal to E . Then the required number of states between E and
E + dE can be written (d	(E)/dE)dE ∝ dqdp and the energy probability distribu-
tion is W (E) = (d	(E)/dE)w(E). With the normalization condition

∫
W (E)dE = 1.

The function W (E) has a well defined maximum in E = Ē and a typical width 
E
such that W (Ē)
E = 1 or w(Ē)
	 = 1, where 
	 = (d	(Ē)/dE)
E is the num-
ber of states corresponding to the energy interval 
E . This is also called the statistical
weight of the macroscopic state of the subsystem, and its logarithm S = ln 
	, is called
entropy of the subsystem. The microcanonical distribution function for the closed system
is dw ∝ δ(E − E0)

∏
i (d	i/dEi )dEi ∝ δ(E − E0)eS

∏
i dEi , where E0 is the constant

energy of the closed system and we used the fact that the various subsystems are statistically
independent so that 
	 = ∏

i 
	i and S = ∑
i Si . We know that the most probable values

of the energies Ei are the mean values Ēi . This means that S(E1, E2, . . .) must have its max-
imum when Ei = Ēi . But the Ēi are the energy values of the subsystems which corresponds
to the complete statistical equilibrium of the system. So we reach the important conclusion
that the entropy of the closed system, in a state of complete statistical equilibrium, has its
maximum value, for a given energy E0 of the closed system.

6.1 Canonical vs Microcanonical

Let us now come back to the problem of finding the distribution function of the subsystem,
i.e. of any small macroscopic part of the big closed system. We then apply the microcanonical
distribution to the whole system, dw ∝ δ(E + E ′ − E0)d	d	′, where E, d	 and E ′, d	′
refer to the subsystem and to the rest respectively, and E0 = E + E ′. Our aim is to find the
probability w(q, p) of a state of the system in such way for the subsystem be in a well defined
state (with energy E(q, p)), i.e. in a well defined macroscopic state. We then choose d	 = 1,
pose E = E(q, p) and integrate respect to 	′, w(q, p) ∝ ∫

δ(E(q, p) + E ′ − E0)d	′ ∝
(eS

′
)E ′=E0−E(q,p). We use the fact that since the subsystem is small then its energy E(q, p)

will be small respect to E0, S′(E0 − E(q, p)) ≈ S′(E0) − E(q, p)dS′(E0)/dE0. The
derivative of the entropy respect to the energy is just β = 1/θ where θ is the reduced
temperature of the closed system which corresponds with that of the subsystem in equilibrium.
Then we find w(q, p) ∝ e−βE(q,p) which is the well known canonical distribution.

6.2 Grand Canonical vs Canonical

We want now generalize the canonical distribution to a subsystem with a variable num-
ber of particles. Now the distribution function will depend both on the energy and on
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the number of particles N . The energies E(q, p, N ) will be different for different val-
ues of N . The probability that the subsystem contains N particles and be in the state
(q, p) will be w(q, p, N ) ∝ eS

′(E0−E(q,p,N ),N0−N ). Let then expand S′ in powers of
E(q, p, N ) and N keeping just the linear terms, so that S′(E0 − E(q, p, N ), N0 − N ) ≈
S′(E0, N0) − βE(q, p, N ) + βμN , where the chemical potential μ and the temperature of
the subsystem and the rest are the same, since we require equilibrium. So we obtain for the
distribution function w(q, p, N ) ∝ eβ(μN−E(q,p,N )). We can define the activity as z = eβμ.
This is the grand canonical distribution we chose to use throughout our discussion.

6.3 On the Ensemble Equivalence in our Models

The ensemble equivalence may fail when approaching a phase transition when the fluctuations
become so large that the linear approximation used above fails [5,6]. This is not the case
for the models studied in the present work which do not admit a gas-liquid phase transition
since the pair-potential is lacking a negative part (even if we cannot exclude a liquid-solid
transition). All three distribution described above, the microcanonical, the canonical, and the
grand canonical are in principle suitable for determining the thermodynamic properties of
our models. The only difference from this point of view lies in the degree of mathematical
convenience. In proactive the microcanonical distribution is the least convenient and is never
used for this purpose. The grand canonical distribution is usually the most convenient. For
example the Ruelle stability principle [2] holds only in this ensemble. This justifies our choice
throughout the work.

7 Conclusions

For a one-dimensional fluid model we consider some lower bounds to the total potential
energy VN which allow us to prove some results regarding its thermodynamic limit. In
particular we study fluids of penetrable particles interacting with a positive purely repulsive
pair-potential with tails decaying to zero at infinite separations. We study two kinds of models:
The IPLM-α and the GEM-α. For the long-range models, i.e. the IPLM-α for α ≤ 1, the
fluid can only exist in its zero pressure state. For the short-range models we are not able to
draw any conclusion.

We find good evidence that a particular non pairwise-additive model already introduced
in a recent previous work [1] is thermodynamically singular.

Our results could give some insights to prove the thermodynamic limit of more complex
fluids such as the ones described in [7–11].

Appendix 1: Some Limits

We have

lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−N1+ε
]

L
=

⎧
⎪⎪⎨

⎪⎪⎩

z ε ≤ −1
l −1 < ε < 0
z/e ε = 0
0 ε > 0

(5.5)
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with z/e < l < z. For example to prove the last case ε > 0 we can observe that

(zL)N

N ! e−N1+ε = (zL/ed)N

N ! e−N (N ε−d) (5.6)

<
(zL/ed)N

N ! , for N > d1/ε. (5.7)

Then for any finite d > 0 we will find

0 < lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−N1+ε
]

L
<

z

ed
. (5.8)

Since d can be chosen very large but finite, then the limit of Eq. (5.5) must be zero.
Also

lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−N/L
]

L
= lim

L→∞ ze−1/L = z. (5.9)

And

∞∑

N=0

(zL)N

N ! e−(N/L)2
(5.10)

=
∞∑

N=0

(zL)N

N !
∞∑

k=0

(−)k
(N/L)2k

k! (5.11)

=
∞∑

k=0

(−)k
(z2)k

k!
∞∑

N=0

(zL)N−2k

N !/N 2k
L�σ−→ (5.12)

∞∑

k=0

(−)k
(z2)k

k!
∞∑

N=2k

(zL)N−2k

N !/N 2k = e−z2
ezL , (5.13)

so

lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−(N/L)2
]

L
= lim

L→∞ z − z2/L = z. (5.14)

Proceeding as above we can also prove that for the IPLM-α with α > 2 and all the GEM-α
we must have P < θ z.

Moreover we have

0 <
ln

[∑∞
N=0

(zL)N

N ! e−v(L)N2
]

L

<
ln

[∑∞
N=0(zL)Ne−v(L)N2

]

L

=
ln

[
e[ln(zL)]2/4v(L)

∑∞
N=0 < e−v(L)[N−ln(zL)/2v(L)]2

]

L
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<
ln

[
e[ln(zL)]2/4v(L)

∑∞
N=0 e

−v(L)N2
]

L

= [ln(zL)]2

4v(L)L
+

ln
[∫ ∞

0 dy e−y2
]

L
− ln[v(L)]

2L
. (5.15)

Then, since for the IPLM-α with α < 1 the limit of the last expression is zero, its pressure
must be zero as mentioned in the main text.
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We discuss the first three well known moment charge–charge sum-rules for a general
ionic liquid. For the special symmetric case of the Restricted Primitive Model, Das, Kim,
and Fisher (2011) has recently discovered, through Monte Carlo simulations, that the
Stillinger–Lovett or second-moment sum-rule fails at criticality. We critically discuss a
possible explanation for this unexpected behavior. On the other hand the fourth-moment
sum-rule turns out to be able to account for the results of the simulations at criticality.
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1. Introduction

It is well known that among all possible long-range pair-potentials, it is only in the Coulomb case that the decay law
of the correlations faster then any inverse power is compatible with the structure of equilibrium equations (such as the
Born–Green–Yvon). Under the exponential clustering hypothesis for charged fluids, a number of exact sum-rules on the
correlation functions can be obtained [1]. Of particular relevance is the Stillinger–Lovett second-moment charge–charge
sum-rulewhich is equivalent to the property that the inverse dielectric function vanishes in the limit of small wavenumbers.
When this condition holds the fluid completely shields any external charge inhomogeneity and behaves as a conducting
medium.

In a recent work Das, Kim, and Fisher [2,3] found out, through finely discretized grand canonical Monte Carlo simulations,
that in the Restricted Primitive Model (RPM) of an electrolyte, the second- and fourth-moment charge–charge sum-rules,
typical for ionic fluids, are violated at criticality. For a 1:1 equisized charge-symmetric hard-sphere electrolyte their grand
canonical simulations, with a new finite-size scaling device, confirm the Stillinger–Lovett second-moment sum-rule except,
contrary to current theory [4], for its failure at the critical point (Tc, ρc). Furthermore, the k4 term in the charge–charge
correlation or structure factor SZZ (k) expansion is found to diverge like the compressibilitywhen T → Tc at ρc . These findings
are in evident disagreement with available theory for charge-symmetric models and, although their results are qualitatively
similar to behavior expected for charge-asymmetric systems [4], even a semiquantitative understanding has eluded them.

Starting from the Ornstein–Zernike equation and extending at all densities the small density diagrammatic [5] property
for the partial direct correlation functions of behaving as 1/r in the r → ∞ limit, it is possible to arrive quickly to the
second- and fourth-moment sum rules even if the fourth-moment onewill not be expressed in terms of just thermodynamic
functions.

The second- and fourth-moment sum-rules are rigorously derived starting from the Born–Green–Yvon equations and
the exponential clustering hypothesis by Suttorp and van Wonderen [6–8] for a thermodynamically stable ionic mixture
made of pointwise particles of charges all of the same sign immersed in a neutralizing background, the ‘‘Jellium’’. The same

E-mail address: rfantoni@ts.infn.it.
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sum-rules must hold also when we allow in the ionic mixture the presence of mobile charges of both signs, which requires
to consider a pair-potential regularization in order to prevent opposite charges collapse.

In this work we critically discuss the numerical findings of Das, Kim, and Fisher [2] at the light of the above mentioned
analytical work of Suttorp and van Wonderen [6–8] and of a recent result of Santos and Piasecki [9] proving the long range
behavior of the n-body correlation functions of a general fluid at his gas–liquid critical point.

2. The ionic fluids model

Amulti-component ionicmixture of an electrolyte ismade ofmobile chargeswhoseµ component (the particles of species
µ) has molar fraction xµ and charge zµe, here e is the unit of charge and zµ are integer numbers. So we may, in general, have
charges of both signs. One is generally interested in studying a neutral state (sincematter aroundus is neutrally charged). This
can be obtained in the event that

∑
µxµzµ = 0. Otherwise is necessary the addition of a neutralizing uniform background of

charge density−ρe
∑

µxµzµ, with ρ the number density of the system of charges. A particularly simple case id the Restricted
PrimitiveModel (RPM)wherewe have only two componentswith x1 = x2 = 1/2 and z1 = −z2 = 1 (without a background).

The Hamiltonian of amulti-component ionic mixture consisting of s components, confined in a regionΩ ⊂ R
3 of volume

V , is

H =

N∑
i=1

p2i
2mαi

+ U(r1, . . . , rN ), (2.1)

U =
1
2

′∑
i,j

zαizαjvαiαj (|ri − rj|), (2.2)

with p = |p| and the pair-potential

vµν(r) = vc(r) + vsr
µν(r), (2.3)

where r = |r|, vc is the bare Coulomb potential

vc(r) =
e2

V

∑
k(̸=0)

4π
k2

eik·r, (2.4)

and vsr is a short-range regularization assumed integrable onR3 which includes the local repulsion effect needed to enforce
thermodynamic stability [10] when we allow for the presence of particles of opposite charge in the mixture. A first soft
regularization can be chosen as

vsr
µν(r) = −

e2

r
e−r/dµν , (2.5)

where the lengths dµν control the exponential decay at large distances. A second regularization amounts to introduce hard-
cores, namely

vsr
µν(r) =

{
∞ r < σµν

0 r > σµν,
(2.6)

where σµν = (σµ + σν)/2 and σµ is the diameter of the hard-sphere particles of species µ. In Eq. (2.4) we used periodic
boundary conditions just to stress the fact that we are interpreting the Monte Carlo simulations of Das, Kim, and Fisher [2],
but of course our theoretical arguments apply to the continuous system as well.

The system contains Nµ particles of species µ. We will denote by q = (α, r) the species α and the position r of a particle
of this species. The particle i of species µ has mass mµi , charge zµie with e the unit of charge and zµi = 0, ±1, ±2, . . . ,
position ri, and momentum pi. The symbol

∑
′ means that one should sum over all particles under the restriction i ̸= j

when αi = αj. Periodic boundary conditions have been assumed in the definition of the pair-potential. Each charge in the
region Ω is neutralized by a uniform background of opposite charge density. On account of the presence of the neutralizing
background the term k = 0 is excluded in Eq. (2.4). The potential energy of Eq. (2.2) is defined up to an additive constant, the
Madelung constant

∑
iz

2
αi
limr→0[v

c(r)− e2/r]/2, which takes into account the interaction of a particle with its own images,
and which becomes important in a grand-canonical calculation. We will generally use a Greek index to denote the species
label and a Roman index to denote the particle label.

Moreover we impose the constraint

Q = Ne
s∑

µ=1

xµzµ = constant, (2.7)

where N =
∑

µNµ is the total number of particles and xµ = Nµ/N are the molar fractions of particles of species µ. We also
have that ρ = N/V is the particles density and ρµ = ρxµ are the partial densities of the ionic mixture. The neutralizing
background has an uniform charge density −eρZ with ρZ = ρ

∑
µxµzµ.
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Table 1
Critical point estimates for the RPMmodel from several computer simulation
studies. The reduced temperature is T ∗

= kBTσ/e2 , with kB Boltzmann con-
stant, and the reduced density is ρ∗

= ρσ 3 .

Reference Year T ∗
c ρ∗

c

Valleau [12] 1991 0.070 0.07
Panagiotopoulos [13] 1992 0.056 0.04
Orkoulas [14] 1994 0.053 0.025
Caillol [15,16] 1997 0.0488(2) 0.080(5)
Orkoulas [17] 1999 0.0490(3) 0.070(5)
Yan [18] 1999 0.0492(3) 0.062(5)
Caillol [19] 2002 0.04917(2) 0.080(5)

The 1:1 equisized charge-symmetric hard sphere electrolyte, the RPMmodel, is obtained as the particular casewith s = 2,
x1 = x2 = 1/2, σ1 = σ2 = σ , z1 = −z2 = 1. So that Q = 0 and the neutralizing background vanishes.

The RPM has been carefully studied through several computer simulations and the critical point of the gas–liquid
coexistence has been given various estimates during the years as summarized in Table 1. On the coexistence spinodal line
the isothermal compressibility χT = (∂ρ/∂p){Nµ},T/ρ → ∞, with p the pressure of the mixture. On approaching the
critical point, the amplitude of density fluctuations increases and local fluctuations become correlated over increasingly
long distances. Anomalies in the intensity of light scattered from a fluid near its critical point, particularly the phenomenon
known as critical opalescence, were first studied theoretically by Ornstein and Zernike as far back as 1914 [11].

3. The moment sum-rules

While the thermodynamic stability of the fluid model ensures the existence of the correlation functions in the thermo-
dynamic limit,

ρ(n)(q1, . . . , qn) = ρ1 · · · ρn g (n)
α1...αn

(r1, . . . , rn)

=

⟨
′∑

i1,...,in

δ(r1 − ri1 )δα1,αi1
· · · δ(rn − rin )δαn,αin

⟩
, n = 1, 2, . . . , (3.1)

where ⟨. . .⟩ is a thermal average defined for an infinitely extended system, sum-rules are exact relationships that the
correlation functions must obey and can be derived from the microscopic constituent equations like for example the Born–
Green–Yvon (BGY) hierarchy [5] under appropriate plausible assumptions.

Sometimes it proves convenient to introduce another set of correlation functions, namely the Ursell’s functions h(n),

g (2)
α1α2

(r1, r2) = h(2)
α1α2

(r1, r2) + 1, (3.2)

g (3)
α1α2α3

(r1, r2, r3) = h(3)
α1α2α3

(r1, r2, r3) + h(2)
α1α2

(r1, r2) + h(2)
α1α3

(r1, r3) + h(2)
α2α3

(r2, r3) + 1, (3.3)

g (4)
α1α2α3α4

(r1, r2, r3, r4) = h(4)
α1α2α3α4

(r1, r2, r3, r4) + h(3)
α1α2α3

(r1, r2, r3) + h(3)
α1α2α4

(r1, r2, r4)

+ h(3)
α1α3α4

(r1, r3, r4) + h(3)
α2α3α4

(r2, r3, r4)

+ h(2)
α1α2

(r1, r2)h(2)
α3α4

(r3, r4) + h(2)
α1α3

(r1, r3)h(2)
α2α4

(r2, r4)

+ h(2)
α1α4

(r1, r4)h(2)
α2α3

(r2, r3) + h(2)
α1α2

(r1, r2)

+ h(2)
α1α3

(r1, r3) + h(2)
α1α4

(r1, r4)

+ h(2)
α2α3

(r2, r3) + h(2)
α2α4

(r2, r4) + h(2)
α3α4

(r3, r4) + 1, (3.4)
. . .

It has been shown by Alastuey and Martin [20] that among all possible long-range potentials, it is only the Coulomb case
that a decay law of the Ursell correlations faster than any inverse power is compatible with the structure of equilibrium BGY
equations. We may then assume, at least far away from a critical point, that these Ursell functions tend to zero faster than
any power r−m

ij with integer m, if the separation rij between the positions ri and rj goes to infinity. This assumption is the
usual exponential clustering hypothesis for charged systems.

Introducing the notation
∫
dq . . . =

∫
dr

∑s
α=1 . . . we must have the following normalization properties for the two

sets,

lim
N→∞

1
Nn

∫
dq1 . . . dqn ρ(n)(q1, . . ., qn) = 1, (3.5)

lim
N→∞

1
Nn

∫
dq1 . . . dqn ρ1 · · · ρnh(n)

α1 ... αn
(r1, . . ., rn) = 0. (3.6)
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In the following we will drop the superscript on the correlation functions when not leading to confusion. Note also that
ρ(q) =

⟨∑
iδ(r − ri)δα,αi

⟩
= ρα in a homogeneous mixture whereas h(2)

α1α2
(r1, r2) = hα1α2 (|r1 − r2|) in a homogeneous and

isotropic mixture.

3.1. The Ornstein–Zernike approach

The Ornstein–Zernike (OZ) equation in reciprocal-space for a fluid mixture is given by

ĥµν(k) = ĉµν(k) + ρ
∑

λ

xλĉµλ(k)ĥλν(k), (3.7)

where k = |k|, ĥµν(k) is the Fourier transform of the partial total correlation functions hµν(r) = gµν(r) − 1 with gµν the
partial radial distribution functions

gµν(r) =
1

Nρxµxν

⟨
′∑
i,j

δµ,αiδν,αjδ(r − ri − rj)

⟩
, (3.8)

and ĉµν(k) are the Fourier transform of the partial direct correlation functions [5].
The partial structure factors are defined as

Sµν(k) = xµδµν + ρxµxν ĥµν(k). (3.9)

Given a partial function fµν we can now introduce the following number–number, number–charge, and charge–charge
functions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fNN =

∑
µ,ν

fµν

fNZ =

∑
µ,ν

zµfµν

fZZ =

∑
µ,ν

zµzν fµν

(3.10)

where in the RPM case fNZ = 0.
We can moreover introduce the following definitions⎧⎪⎨⎪⎩

h̃µν =
√
xµxν ĥµν

c̃µν =
√
xµxν ĉµν

S̃µν = Sµν/
√
xµxν = δµν + ρh̃µν

(3.11)

with which the OZ equation can be written in a simple matrix form

S̃ − I = ρS̃c̃, (3.12)

where I is the identity matrix. Eq. (3.12) can also be rewritten as follows

S̃ = (I − ρc̃)−1. (3.13)

It is natural [5] to separate the direct correlation functions into a short-range and a Coulombic part

ĉµν(k) = ĉsrµν(k) −
4πβzµzνe2

k2
, (3.14)

where ĉsrµν(k) is a regular function in the k → 0 limit. We then see, after some algebra, that in the small k limit, it must be
SNN ∼ k0, SNZ ∼ k2, and SZZ ∼ k2. Moreover, It is a simple algebraic task, starting from the matrix form S̃ = k2(k2I−ρk2c̃)−1,
to show that for the RPM case

SZZ (k) =
k2

(kD/z̄2)2
+

(ρ

4
ĉsrZZ (0) − 1

) k4

(kD/z̄2)4
+ O(k6), (3.15)

where kD =

√
4πβρ z̄22e2 is the Debye wave-number with z̄22 =

∑
µxµz2µ. In the RPM z̄22 = 1. Since we have SZZ (k) =∑

µxµz2µ + ρ
∑

µ,νxµxνzµzν ĥµν(k), using spherical symmetry, from Eq. (3.15) follow the following first three charge–charge
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moment sum-rules

ρ
∑
µ,ν

xµxνzµzν

∫
dr hµν(r) = −z̄22 (3.16)

ρ
∑
µ,ν

xµxνzµzν

∫
dr r2hµν(r) = −

6
(kD/z̄2)2

(3.17)

ρ
∑
µ,ν

xµxνzµzν

∫
dr r4hµν(r) = −

120
(kD/z̄2)4

(
1 −

ρ

4
ĉsrZZ (0)

)
. (3.18)

The first identity, the zeroth-moment sum-rule, is a consequence of the normalization conditions of the correlation functions
(3.8)

ρ
∑

µ

xµzµ

∫
dr hµν(r) =

∑
µ

zµ
⟨NµNν⟩ − ⟨Nµ⟩⟨Nν⟩ − δµν⟨Nµ⟩

⟨Nν⟩
= −zν (3.19)

and reflects internal screening (or bulk elecroneutrality). The second, the second-moment sum-rule, is commonly known as
the Stillinger–Lovett (SL) condition [21] and reflects external screening. The third is the fourth-moment sum-rule.

In view of the exponential clustering expected to hold in ionic fluids away from criticality (see next section) we may
assume the following small k expansions

SNN (k)/SNN (0) = 1 +

∑
p≥1

(−)pξ 2p
N,p(T , ρ)k2p, (3.20)

SZZ (k)/z̄22 = 0 + ξ 2
Z,1k

2
−

∑
p≥2

(−)pξ 2p
Z,p(T , ρ)k2p, (3.21)

where working in the grand-canonical ensemble [5] SNN (0) = χT/χ
0
T with χ0

T = β/ρ the isothermal compressibility of the
ideal gas.

Das, Kim, and Fisher [2] has calculated through grand-canonical Monte Carlo simulations the second S2 and fourth S4
moments: SZZ (k)/z̄22 = 0+S2k2−S4k4+· · · for the RPM, and found a deviation of about 16% on the SL condition, S2 = 1/k2D, at
criticality. Moreover S4 appears to diverge to+∞ upon approaching the RPM critical point. At criticality, density correlations
are long ranged and [11] SNN (k) ∼ 1/k2−η for k → 0with 0 < η < 1 the anomalous critical-point decay exponent [22] (equal
to zero in the Ornstein–Zernike theory) [23]. Equivalently, in real-space, in three dimensions,

∑
µ,νxµxνhµν(r) ∼ 1/r1+η for

r → ∞. Then according to Proposition 1 of Ref. [24] we cannot say anything about the SL sum-rule; the fact that the SL sum
rule is found to failmeans that the density correlationsmust decay as 1/r5 or slower. Evidently the development of clustering
or association amongst the particles of the mixture upon approaching the critical point inhibits the external screening. Or in
other words, the diverging density fluctuations that characterize criticality destroy perfect screening at (Tc, ρc).

3.2. The Born–Green–Yvon approach [6–8]

Suttorp and van Wonderen [6] study a thermodynamically stable ionic mixture with pointwise mobile charges all of
the same sign (zµ ≤ 0 for all µ) with the pair-potential of Eq. (2.3) without the short-range term vsr . Starting from the
Born–Green–Yvon hierarchy [5] and using the hypothesis of exponential clustering of the Ursell’s functions they are able
to show that independently of the statistical ensemble used to describe the ionic liquid the internal screening and SL
conditions (3.16)–(3.17) hold. In order to make progress for subsequent relationships one has to specify the ensemble. In a
grand-canonical ensemble with the constraint (2.7) the independent variables are β , V , the s − 1 chemical potentials, and
q = Q/V . They are able to prove the following additional sum-rules for the partial pair Ursell’s functions

ρ
∑
µ,ν

xµxν

∫
dr hµν(r) =

2
3

β

ρ

∂ρ

∂β
− 2

q
ρ

∂ρ

∂q
+ 1, (3.22)

ρ
∑
µ,ν

xµxνzµ

∫
dr r2hµν(r) = −

6
(kD/z̄2)2

e
∂ρ

∂q
, (3.23)

ρ
∑
µ,ν

xµxνzµzν

∫
dr r4hµν(r) = −

120
(kD/z̄2)4

e2βρ

q
∂p
∂q

, (3.24)

where p is the pressure and in the partial derivatives all others independent variables are kept constant. For example, we
see that from Eq. (3.22) follows

SNN (0) =
χT

χ0
T

=
2
3

β

ρ

∂ρ

∂β
+ 2

(
1 −

q
ρ

∂ρ

∂q

)
. (3.25)
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Fig. 1. Sketch of p̃(q) near q = 0 upon approaching criticality.

For an ionic mixture with positive and negative mobile charges, made thermodynamically stable by the addition of the
short-range pair-potential vsr , the zeroth-moment of Eqs. (3.22) and (3.16) clearly continue to hold as well as the second-
moment SL sum-rule of Eqs. (3.18)–(3.23) as it is shown in Ref. [24]. Note that in order to derive the SL sum-rule a weaker
condition than the exponential clustering hypothesis is actually needed as shown in Ref. [24]. That is, one just needs to
require a certain short-range behavior of the Ursell functions. For the fourth-moment condition of Eq. (3.24) we also expect
there to be no effect due to the short-range regularization as shown in Refs. [25–27] and in Appendix. So we can say that the
Suttorp and vanWonderen sum-rules hold generally for the more general ionic liquid model of a mixture with positive and
negative mobile charges opportunely regularized.

On the other hand from the work of Santos and Piasecki [9] follows that the Ursell functions of any order have a long-
range behavior on a critical point, thus violating the exponential clustering hypothesis necessary to prove the Suttorp and
van Wonderen sum rules. In this sense the numerical result found by Fisher et al. of the violation of the second and fourth
moment of the charge–charge structure factor of the Restricted Primitive Model at criticality, is not in contradiction with
the result of Suttorp and van Wonderen. But is instead telling us something that goes beyond the analysis of the sum-rules
based on the exponential clustering hypothesis.

Note that we can write the partial derivative on the right hand side of Eq. (3.23) as follows

∂ρ

∂q
=

∂(ρ, µ1, T , V )
∂(q, µ1, T , V )

=
∂(ρ, µ1, T , V )
∂(N1,N2, T , V )

∂(N1,N2, T , V )
∂(q, µ1, T , V )

=
1
V

[(
∂µ1

∂N2

)
N1

−

(
∂µ1

∂N1

)
N2

]
T ,V

[(
∂N1

∂q

)
µ1

(
∂N2

∂µ1

)
q
−

(
∂N1

∂µ1

)
q

(
∂N2

∂q

)
µ1

]
T ,V

. (3.26)

So that for the symmetric RPM where µ1 = µ2, using the 1 ↔ 2 symmetry, we find ∂ρ/∂q = 0, since the first Jacobian
vanishes. Whereas, for a one component system, where q = eρ, we find ∂ρ/∂q = 1/e.

From the analysis of Suttorp and van Wonderen we also deduce that

z̄22S4 =

(
z̄2
kD

)4 e2βρ

q
∂p
∂q

= −

(
z̄2
kD

)4

e2βρ
∂2p̃
∂q2

, (3.27)

where p̃ = p − qµ̃q with µ̃q = −∂ p̃/∂q the Lagrange multiplier which takes into account of the constraint (2.7). The RPM
results of Das, Kim, and Fisher [2] show how (kD/z̄2)4z̄22S4 → 0 for ρ → 0 (their Fig. 3). This is easily explained observing
that as ρ → 0 we must have βp → ρ so that from Eq. (3.27) follows

(kD/z̄2)4z̄22S4 → e2
∂ρ2

∂q2
= 0. (3.28)

This result also implies that, in view of Eq. (3.18), ρ ĉsrZZ (0) → 4.
Moreover from Das, Kim, and Fisher [2] Fig. 4, follows that in the RPM we must have

lim
q→0

∂2p̃
∂q2

= −∞ (3.29)

when one approaches the critical point. Notice that by charge symmetry we must have that both p and p̃ are even functions
of q. So a sketch of p̃(q) near q = 0 must look as in Fig. 1. The figure aims to give a very qualitative sketch of p̃(q) only
in a very narrow neighborhood of q = 0. Away from criticality we must have ∂p/∂q|q=0 = 0 and S4 is finite. But near

The moment sum-rules for ionic liquids at criticality 761



R. Fantoni / Physica A 477 (2017) 187–194 193

criticality ∂p/∂q|q=0 > 0 and S4 diverges. This means that near criticality there is a non negligible variation of the pressure
of the fluid upon switching on a charge asymmetry (q ̸= 0) keeping overall neutrality with the neutralizing background.
So notwithstanding the fact that the exponential clustering hypothesis breaks down near criticality the results of Das, Kim,
and Fisher [2] do not tell us anything about the failure of the fourth-moment sum-rule. On the other hand their Figs. 1 and
2 indicate the failure of the SL condition upon approaching the critical point, as already observed in the previous section.

4. Conclusions

We studied a general ionic mixture with particles of different mass, diameter, and charge immersed in a neutralizing
background so that the mixture is globally neutral. When we allow for the presence of mobile charges of opposite sign we
need to add either a soft- or a hard-core regularization to the pair-potential in order tomake themixture thermodynamically
stable.

We derived a series of sum-rules on the first three moments of the charge–charge correlation functions starting from
the Ornstein–Zernike theory [5]. Then we showed that the sum-rules derived by Suttorp and van Wonderen [6] for an ionic
mixturemade of particles all of the same sign immersed in a neutralizing background remain valid if one allows the particles
to carry charges of opposite sign and adds a soft or a hard-core repulsion in order to ensure thermodynamic stability.
In particular they remain valid for the symmetric RPM case when the neutralizing background vanishes. Suttorp and van
Wonderen derivation relies on the assumption of the exponential clustering in the mixture [1].

We interpreted recent results of Das, Kim, and Fisher [2] reporting the failure of the charge–charge second-moment
sum-rules for the RPM of a ionic liquid at criticality and the divergence of the charge–charge fourth-moment at criticality.
In particular the divergence of the fourth moment S4 at the critical point of the RPM seems to still be in agreement with
the fourth-moment sum-rule (even if the exponential clustering of the Ursell’s function breaks down there as shown in
Ref. [9]) if one assumes that at criticality there is a non negligible variation of the pressure of the fluid upon switching on
a charge asymmetry (q ̸= 0) keeping overall neutrality with the neutralizing background. The observed violation of the
second-moment sum-rule on the other hand seems to indicate that at criticality the clustering phenomenon occurring in
the ionic mixture is responsible for the break down of the external screening and the system behaves as an insulator [1].
At criticality we do not have anymore an exponential or short-range clustering but a long-range clustering as shown by the
results of Ref. [9].

Our results could be helpful to a better understanding of Refs. [28,29] and Refs. [30–32]. Moreover our results could give
some insights to study the critical behavior of more complex fluids such as the ones described in Refs. [33–45].
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Appendix. Invariance in form of the moment sum-rules under the addition of a hard-core

Let us call PWE the point-wise particle electrolyte considered by Suttorp and vanWonderen [6] and HSE the hard-sphere
electrolyte obtained by our model of Eqs. (2.1)–(2.6). The configurations space of PWE is ΩN whereas the one of HSE is
ON = {R ≡ (r1, . . . , rN ) ∈ ΩN

| ∀i, j ̸= i |ri − rj| > σαiαj} ⊂ ΩN . In particular it is well known from electrostatics that
HSE is equivalent to the PWE restricted to the configuration space ON . We then conclude that the sum-rules of Eqs. (3.23)
and (3.24) must hold also for the HSE. In any case the thermodynamic quantities on both sides of the sum-rule will remain
unchanged after the restriction. Infact, calling the complementary set Oc

N = ΩN
− ON = {R ≡ (r1, . . . , rN ) ∈ ΩN

| ∃i, j ̸=

i |ri − rj| ≤ σαiαj} we have for a generic thermal average of an everywhere finite physical observable

⟨. . .⟩PWE =

∫
ΩN . . . e−βUdR∫

ΩN e−βUdR
=

∫
ON

. . . e−βUdR +
∫
Oc

N
. . . e−βUdR∫

ON
e−βUdR +

∫
Oc

N
e−βUdR

=

∫
ON

. . . e−βUdR
(
1 +

∫
Oc

N
. . . e−βUdR/

∫
ON

. . . e−βUdR
)

∫
ON

e−βUdR
(
1 +

∫
Oc

N
e−βUdR/

∫
ON

e−βUdR
)

→

∫
ON

. . . e−βUdR∫
ON

e−βUdR
= ⟨. . .⟩HSE, (A.1)

in the thermodynamic limit Ω → R
3 and N = ρV . Since the measure of ON is an infinite of higher order than the measure

of Oc
N . This does not mean of course that the Ursell functions themselves will be equal for the PWE and the HSE and in fact

they will be different generally.
This argument suggests that Suttorp and van Wonderen analysis [6] continues to hold also for an ionic mixture with

mobile charges of opposite sign opportunely regularized. This has recently been proved semi-heuristically by Alastuey and
Fantoni [27] for the fourth moment of the charge–charge structure factor of such an ionic mixture.
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Chapter 54

Andersen-Weeks-Chandler
perturbation theory and
one-component sticky-hard-sphere

Fantoni R., J. Stat. Phys. 168, 652 (2017)
Title: “Andersen-Weeks-Chandler perturbation theory and one-component sticky-hard-sphere”
Abstract: We apply second order Andersen-Weeks-Chandler perturbation theory to the
one-component sticky-hard-spheres fluid. We compare the results with the mean spherical
approximation, the Percus-Yevick approximation, two generalized Percus-Yevick approxima-
tions, and the Monte Carlo simulations.
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Abstract We apply second order Andersen–Weeks–Chandler perturbation theory to the
one-component sticky-hard-spheres fluid. We compare the results with the mean spherical
approximation, the Percus–Yevick approximation, two generalized Percus–Yevick approxi-
mations, and the Monte Carlo simulations.
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1 Introduction

The sticky-hard-sphere (SHS) model introduced by Baxter in [1] plays an important role in
soft matter offering a description of a sterically stabilized colloidal suspension [2–8].

In this work we apply Andersen–Weeks–Chandler (AWC) thermodynamic-perturbation-
theory (TPT) [9] to treat the SHS three-dimensional fluid and we compare the results for
the equation of state of our calculation with the ones for the mean-spherical-approximation
(MSA) [9], for the Percus–Yevick (PY) approximation [9], for two generalized-Percus–
Yevick (GPY) approximations (C0 and C1 in Ref. [10]), and for the Monte Carlo simulations
of Miller and Frenkel [11].

We are then able to show how the TPT breaks down at low reduced temperature and high
density. Our analysis gives a reference benchmark for the behavior of the SHS system when
treated with the AWC TPT scheme.
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contains supplementary material, which is available to authorized users.
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Our analysis also clarifies the role played by the reducible Mayer diagrams in the second
order AWC TPT.

The work is organized as follows. In Sect. 2 we introduce the AWC TPT scheme, in Sect. 3
we define the SHS fluid model, in Sect. 4 we outline our calculation of the AWC TPT for the
SHS fluid, in Sect. 5 we clarify the role played by the reducible integrals, in Sect. 6 we discuss
some technical details regarding our Monte Carlo calculation of the various order terms of
the TPT, in Sect. 7 we present our results, and Sect. 8 is for our conclusive discussion.

2 The Andersen–Weeks–Chandler Thermodynamic Perturbation Scheme

Following AWC perturbation theory [12] we consider the Helmholtz free energy A as a func-
tional of the Boltzmann factor e(1, 2) = exp[−βφ(1, 2)] (φ(1, 2) being the pair interaction
potential of the fluid under exam) and expand it in a Taylor series around the Boltzmann
factor, e0(1, 2), of a given reference system. Working in the grand-canonical ensemble we
obtain the following perturbative expansion in �e = e − e0

β(A[e] − A[e0]) = β[�A](1) + β[�A](2) + · · · , (1)

β[�A](1) = −1

2

∫
d1d2

ρ0(1, 2)

e0(1, 2)
�e(1, 2) , (2)

β[�A](2) = −1

2

[∫
d1d2d3

ρ0(1, 2, 3)

e0(1, 2)e0(1, 3)
�e(1, 2)�e(1, 3)

+ 1

4

∫
d1d2d3d4

ρ0(1, 2, 3, 4)−ρ0(1, 2)ρ0(3, 4)

e0(1, 2)e0(3, 4)
�e(1, 2)�e(3, 4)

]

+ 1

2N̄

(
ρ2 χ0

T

χ id
T

) {
∂

∂ρ
β[�A](1)

}2

. (3)

where β = 1/(kBT ) (with kB Boltzmann constant and T absolute temperature), N̄ average
number of particles, ρ = N̄/V (with V volume of the system), χ id

T = β/ρ isothermal
compressibility of the ideal gas, χ0

T isothermal compressibility of the reference system,
ρ0(1, . . . , n) the grand-canonical ensemble n−body correlation function of the reference
system, and in the last term of Eq. (3) the density derivative is taken at constant temperature,
volume, and chemical potential. In order to derive these expressions one can adapt the details
found in Appendix D of Hansen and McDonald book [9] where their expression (6.2.14)
is found. It is then an easy task to pass from their expansion in terms of the pair-potential
variation to our expansion in terms of the Boltzmann factor variation.

3 One-Component Sticky-Hard-Spheres

For the Baxter [1] one-component sticky-hard-spheres (SHS) model one has

e(r) = θ(r − σ) + σ

12τ
δ(r − σ) , (4)

where σ is the spheres diameter, τ the reduced temperature, θ is the Heaviside step function,
and δ the Dirac delta function.

Choosing as reference system the hard-spheres (HS) model one has

e0(r) = θ(r − σ) , (5)
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so that

�e(r) = σ

12τ
δ(r − σ) . (6)

So one sees that AWC expansion (1) reduces to an expansion in powers of 1/τ .

4 Calculation

Before expression (3) can be used some approximation must be introduced for the three-
and four-body distribution functions. The most widely used approximation is Kirkwood
superposition approximation [13]. This has previously successfully applied to the second
order thermodynamic perturbation study of the square well potential by Henderson and
Barker [14].

Using the Kirkwood superposition approximation (KSA) [13] one can express the n−body
correlation functions ρ0(1, . . . , n) = ρng0(1, . . . , n) in terms of pair distribution functions
according to

g0(1, . . . , n) ≈
n∏

i< j

g0(i, j) . (7)

The idea is to use for the pair distribution function of the reference HS system the analytic
solution of the Ornstein-Zernike equation with the Percus–Yevick closure.

The first two terms in the perturbative expansion (1) reduce to

β
[�A](1)

N̄
= − I2

ρ
, (8)

β
[�A](2)

N̄
= −1

2

(
I3
ρ

+ I4
ρ

)
+ 1

2

(
χ0
T

χ id
T

) (
∂ I2
∂ρ

)2

, (9)

where

I2
ρ

= 1

2ρ

1

V

∫
d1d2

ρ0(1, 2)

e0(1, 2)
�e(1, 2) = 1

τ
(η ȳ0) , (10)

where η = π
6 ρσ 3 is the hard sphere packing fraction, y0(1, 2) = g0(1, 2)/e0(1, 2) is the

cavity function of the reference system and ȳ0 = y0(|r1 − r2| = σ). Upon using KSA one
finds,

I3
ρ

= 1

ρ

1

V

∫
d1d2d3

ρ0(1, 2, 3)

e0(1, 2)e0(1, 3)
�e(1, 2)�e(1, 3) (11)

≈ ρ2

V

∫
d1d2d3 y0(1, 2)y0(1, 3)J3(1, 2, 3)�e(1, 2)�e(1, 3) ,

I4
ρ

= 1

4ρ

1

V

∫
d1d2d3d4

ρ0(1, 2, 3, 4) − ρ0(1, 2)ρ0(3, 4)

e0(1, 2)e0(3, 4)
�e(1, 2)�e(3, 4) (12)

≈ ρ3

4V

∫
d1d2d3d4 y0(1, 2)y0(3, 4)J4(1, 2, 3, 4)�e(1, 2)�e(3, 4) ,
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where we have introduced

J3(1, 2, 3) = 1 + h0(2, 3) , (13)

J4(1, 2, 3, 4) = 4h0(1, 3)

+ 4h0(1, 3)h0(1, 4)

+ 2h0(1, 4)h0(2, 3)

+ 4h0(1, 3)h0(1, 4)h0(2, 3)

+ h0(1, 3)h0(1, 4)h0(2, 3)h0(2, 4) , (14)

where h0(1, 2) = g0(1, 2) − 1 is the total correlation function of the reference system. Note
that the first term in J3 and the first and second terms in J4 give rise to reducible integrals
(i.e. integrals that can be reduced into products of simpler integrals).

It is convenient to perform the calculation of I3 and I4 in reciprocal space, to get,

I3
ρ

≈ 1

τ 2 (2η ȳ0)
2
(

1 + 1

12π

1

η
g1

)
, (15)

I4
ρ

≈ 1

τ 2 (2η ȳ0)
2 1

4

[
4

(
1

a2 − 1

)
+ 1

3π

1

η
ha2 + 1

6π

1

η
hb2 + 1

72π2

1

η2 h3 + 1

6326π4

1

η3 h4

]
,

(16)

and

g1 =
∫ ∞

0
dz z2 j2

0 (z)H(z) , (17)

ha2 =
∫ ∞

0
dz z2 j0(z)H

2(z) , (18)

hb2 =
∫ ∞

0
dz z2 j2

0 (z)H2(z) , (19)

h3 =
∫ ∞

0
dz1 z

2
1

∫ ∞

0
dz2 z

2
2

∫ 1

−1
dx j0(z1) j0(z2)H(z1)H(z2)H

(√
z2

1 + z2
2 − 2z1z2x

)
,

(20)

h4 =
∫ ∞

0
dz1 z

2
1

∫ ∞

0
dz2 z

2
2

∫ ∞

0
dz3 z

2
3

∫ π

0
dθ1 sin θ1

∫ π

0
dθ2 sin θ2

∫ 2π

0
dφ

j0(z1) j0

(√
z2

2 + z2
3 − 2z2z3 cos θ2

)
H(z2)H(z3)H

(√
z2

1 + z2
2 − 2z1z2 cos δ

)

H

(√
z2

1 + z2
3 − 2z1z3 cos θ1

)
, (21)

where in the integrand of h4

cos δ = cos θ1 cos θ2 + sin θ1 sin θ2 cos φ . (22)
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Fig. 1 We show β�A/N̄ = β(ASHS − AHS)/N̄ as a function of the packing fraction at τ = 5 for various
approximations: (in the MSA �A = 0) C0 (dotted line) [10], C1 (short dashed line) [10], PY (long dashed
line) [9], β[�A](1)/N̄ (dotted dashed line and filled circles), β([�A](1) + [�A](2))/N̄ (empty circles),
β([�A](1) + [�A]′

(2)
)/N̄ (empty squares), and β([�A](1) + [�A]′′

(2)
)/N̄ (empty triangles).

In all these expressions we have introduced the following notation

a2 = χ id
T

χ0
T

= 1 − ρc̃0(0) , (23)

ȳ0 = y0(σ ) = g0(σ )/e0(σ ) , (24)

H(z) = ρh̃0(z/σ) = ρc̃0(z/σ)

1 − ρc̃0(z/σ)
, (25)

j0(z) = sin z

z
, (26)

where g0(r), y0(r), h̃0(k), c̃0(k) are respectively the hard spheres radial distribution function,
cavity function, the Fourier transform of the total correlation function and the Fourier trans-
form of the direct correlation function, and j0 is the zeroth order spherical Bessel function
of the first kind.

Finally the Fourier transform of the HS direct correlation function calculated through the
Percus–Yevick closure is given by [15]

ρc̃0(z/σ) ≈ −24η

∫ 1

0
ds s2 j0(sz)(α + βs + γ s3) , (27)
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Fig. 2 Same as Fig. 1 at τ = 1.5.

where

α =
[

1 + 2η

(1 − η)2

]2

, (28)

β = −6η

[
1 + η/2

(1 − η)2

]2

, (29)

γ = η

2

[
1 + 2η

(1 − η)2

]2

. (30)

and it is easily verified that under such approximation one has

a ≈ 1 + 2η

(1 − η)2 , (31)

ȳ0 ≈ 1 + η/2

(1 − η)2 . (32)

5 Neglecting Reducible Integrals

It has been observed by Henderson and Barker [14] that the role of the last term in Eq. (3)
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Fig. 3 Same as Fig. 1 at τ = 0.5.

C N̄ = 1

2N̄

(
ρ2 χ0

T

χ id
T

) {
∂

∂ρ
β[�A](1)

}2

, (33)

is to cancel in the second order term of the perturbative expansion, [�A](2), all reducible
integrals appearing in I3 and I4. So that the final expression for the second order term of
expansion (1) would be (exactly the expression found in [12])

β
[�A]′(2)

N̄
= −1

2

(
I ′
3

ρ
+ I ′

4

ρ

)
, (34)

where

I ′
3

ρ
= I3

ρ
− 1

τ 2 (2η ȳ0)
2 , (35)

I ′
4

ρ
= I4

ρ
− 1

τ 2 (2η ȳ0)
2 1

4

[
4

(
1

a2 − 1

)
+ 1

3π

1

η
ha2

]
. (36)

Alternatively one may use the sum rule

∂ρ0(1, 2)

∂ρ
= 1

ρ

χ id
T

χ0
T

{
2ρ0(1, 2) +

∫
d3[ρ0(1, 2, 3) − ρρ0(1, 2)]

}
, (37)
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Fig. 4 Same as Fig. 1 at τ = 0.15.

to rewrite C (Eq. 33) in terms of two and three body correlation functions and upon using the
superposition approximation one finds

β
[�A]′′(2)

N̄
= −1

2

(
I ′
3

ρ
+ I ′

4

ρ

)
+ 1

τ 2

a2

8
(2η ȳ0)

2
(

1

12π

1

η
ha2

)2

, (38)

6 Technical Details

The five integrals (17–21) where all calculated using Monte Carlo technique [16] averaging
the various integrands on 106 randomly sampled points. Since all of those integrals are
improper (extending up to infinity in the z variables) it was necessary to split each integration
on the z variables into an integral over [0, 1] plus an integral over [1,∞]. This latter integral
was then reduced through a change of variable z → 1/z into an integral over [0, 1].

The errors on the estimate of a given integral was calculated so that the true value of the
integral would lie 99.7% of the time within the estimate plus or minus the error.

7 Results

Figures 1, 2, 3, and 4 show the results for β�A/N as a function of η. Amongst the three
expressions used: (8), (34), and (38), the more accurate is [�A]′(2), the one suggested in [12]
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Fig. 5 We show βPσ 3 as a function of the packing fraction at τ = 1 for various approximations: MSA
(continuous line), C0 (dotted line) [10], C1 (short dashed line) [10], PY (long dashed line) [9], AWC 1st order
(dotted dashed line), AWC 2nd order (empty squares), and Monte Carlo results of Miller and Frenkel (empty
triangles) [11].

and it falls on the PY approximation for big τ and small η. At high η the error bars become
more relevant.

Figures 5, 6, 7, and 8 show the results for

βPσ 3 = βPHSσ
3 + 6

π
η2 ∂β�A/N

∂η
, (39)

as a function of η, where for the pressure of the HS reference system we chose the PY result
from the compressibility route, i.e.

βPHSσ
3 = 6

π
η

[
1 + η + η2

(1 − η)3

]
. (40)

The second order AWC TPT is taken from the (34) calculation.

8 Discussion

Our first calculation, the one using [�A](2) (see Eq. (8)) is certainly not correct because we
are using the KSA only on the integrands of the first two integrals of Eq. (3) calculating the
last term exactly; this certainly leads to an inconsistency in the use of KSA.

123

Author's personal copy

Andersen-Weeks-Chandler perturbation theory and one-
component sticky-hard-sphere 774



R. Fantoni

Fig. 6 Same as Fig. 5 at τ = 0.5.

Our third calculation, the one using [�A]′′(2) (see Eq. (38)) is also not correct. This can
be understood as follows. It is well known that KSA fails to satisfy the sum rule (37). Using
KSA in the left hand side of Eq. (37) one finds

1

ρ

χ id
T

χ0
T

{
2ρ0(1, 2) +

∫
d3 [ρ0(1, 2, 3) − ρρ0(1, 2)]

}
≈ γ1 + γ2 , (41)

where

γ1 = g0(1, 2)2ρ , (42)

γ2 = g0(1, 2)
χ id
T

χ0
T

∫
d3 [ρh0(1, 3)][ρh0(2, 3)] , (43)

and we used the compressibility sum rule,

χ0
T

χ id
T

= 1 + ρ

∫
h0(1, 2) d1 . (44)

Eq. (41) can be also rewritten as,

∂ ln g0(1, 2)

∂ρ
≈ χ id

T

χ0
T

∫
d3 h0(1, 3)h0(2, 3) . (45)

This approximation is certainly valid in the limit of small densities when χ0
T → χ id

T and
h0 → e0 − 1 = f0 ( f0 being the Mayer function of the reference system), after all the
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Fig. 7 Same as Fig. 5 at τ = 0.2.

KSA becomes exact in such limit (as the potential of mean force tends to the pair interaction
potential). Otherwise the correction term γ3/(ρ

2g0) would be of order ρ as ρ → 0 (see
the “Appendix A”). So that the exact expression for the density derivative of the two body
correlation function would be

∂ρ0(1, 2)

∂ρ
= γ1(1, 2) + γ2(1, 2) + γ3(1, 2) , (46)

where γi = O(ρi ) as ρ → 0. It is then clear that in calculating the square
[

∂

∂ρ

1

2

∫
d1d2

ρ0(1, 2)

e0(1, 2)
�e(1, 2)

]2

, (47)

in the C term, the term stemming from
[

1

2

∫
d1d2

γ2(1, 2)

e0(1, 2)
�e(1, 2)

]2

, (48)

which gives rise to the last term in Eq. (38), will be of the same leading order (ρ4) as the one
coming from[

1

2

∫
d1d2

γ1(1, 2)

e0(1, 2)
�e(1, 2)

] [
1

2

∫
d1d2

γ3(1, 2)

e0(1, 2)
�e(1, 2)

]
, (49)

in the small density limit. But since in KSA this last term is neglected, in order to be con-
sistent (up to orders ρ3 in the small density limit) one needs to neglect also the term of
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Fig. 8 Same as Fig. 5 at τ = 0.15.

Eq. (48). Moreover it can be easily verified that the two terms coming from γ1 times γ1

cancel the first reducible integral in I3 and the first reducible integral in I4 whereas the
term coming from γ1 times γ2 cancels the second reducible integral in I4. So that Eq. (34)
(the original AWC expression) for the second order perturbative term in the AWC theory, is
recovered.

The correct second order AWC calculation, [�A]′(2) (see Eq. (34)) shows that the
TPT breaks down at small reduced temperatures τ and large packing fractions η, as
expected.

While the superposition approximation has long been used for lack of anything bet-
ter it is known to introduce significant errors in certain applications like that leading to
the Yvon–Born–Green integral equation. With that in mind, it could be interesting to use
the MC method to directly evaluate the terms in the basic expression (3) for the second
order term in the AWC expansion. This would require the simulation of the three and
four-body distribution functions of the reference HS system. That would provide a direct
test of the accuracy of the second order AWC perturbation expression (1). One may in
fact suspect that errors from superposition in Eq. (3) are probably larger than the intrinsic
errors resulting from truncating the expansion that leads to Eq. (3). We plan to address this
point in a forthcoming work and we leave this question as an open problem for the time
being.

The results of the present work could be used to complement the studies in the following
Refs. [17–23].
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Appendix A: Correction to Approximation (45)

One can understand that Eq. (45) is not an exact relation by comparing the small density
expansion of the left and right hand side. For the left hand side we have [9]

∂ ln g0(1, 2)

∂ρ
=

1 2

+
⎛
⎝

1 2

+
1 2

+
1 2

+
1 2

⎞
⎠ 2ρ + O

(
ρ2) ,

(A1)

where in the Mayer graphs the filled circles are field points of weight 1 and connecting bonds
are Mayer functions of the reference system f0. And using

h0(1, 2) =
1 2

+
⎛
⎝

1 2

+
1 2

⎞
⎠ ρ + O

(
ρ2) , (A2)

in the right hand side one finds,

χ id
T

χ0
T

∫
d3 h0(1, 3)h0(2, 3) =

∫
d3 h0(1, 3)h0(2, 3)

1 + ρ

V

∫
d1d2 h0(1, 2)

(A3)

= 1 2

+
⎛
⎝

1 2

+
1 2

+
1 2

⎞
⎠ 2ρ + O

(
ρ2

)

1 +
(

V

)
2ρ + O

(
ρ2)

=
1 2

+
⎡
⎣

1 2

+
1 2

+
1 2

−
⎛
⎝

1 2

⎞
⎠ ·

(
V

)⎤
⎦ 2ρ + O

(
ρ2)

= α0(1, 2) + α1(1, 2) + O
(
ρ2) ,

So that the correction term is of order ρ, namely,

α′
1(1, 2) =

⎡
⎣

1 2

+
⎛
⎝

1 2

⎞
⎠ ·

(
V

)⎤
⎦ 2ρ . (A4)

The correct small density expansion for the density derivative of the two body correlation
function is

∂ρ0(1, 2)

∂ρ
= g0(1, 2)

[
2ρ + ρ2α0(1, 2) + ρ2α1(1, 2) + ρ2α′

1(1, 2) + O
(
ρ4)] , (A5)

where the first term neglected in KSA is ρ2α′
1 = O(ρ3).
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Chapter 55

One-Dimensional Fluids with Second
Nearest-Neighbor Interactions

Fantoni R. and Santos A., J. Stat. Phys. 169, 1171 (2017)
Title: “One-Dimensional Fluids with Second Nearest-Neighbor Interactions”
Abstract: As is well known, one-dimensional systems with interactions restricted to first
nearest neighbors admit a full analytically exact statistical-mechanical solution. This is
essentially due to the fact that the knowledge of the first nearest-neighbor probability distri-
bution function, p1(r), is enough to determine the structural and thermodynamic properties
of the system. On the other hand, if the interaction between second nearest-neighbor parti-
cles is turned on, the analytically exact solution is lost. Not only the knowledge of p1(r) is not
sufficient anymore, but even its determination becomes a complex many-body problem. In
this work we systematically explore different approximate solutions for one-dimensional sec-
ond nearest-neighbor fluid models. We apply those approximations to the square-well and
the attractive two-step pair potentials and compare them with Monte Carlo simulations,
finding an excellent agreement.
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Abstract As is well known, one-dimensional systems with interactions restricted to first
nearest neighbors admit a full analytically exact statistical-mechanical solution. This is essen-
tially due to the fact that the knowledge of the first nearest–neighbor probability distribution
function, p1(r), is enough to determine the structural and thermodynamic properties of the
system. On the other hand, if the interaction between second nearest–neighbor particles is
turned on, the analytically exact solution is lost. Not only the knowledge of p1(r) is not suf-
ficient anymore, but even its determination becomes a complex many-body problem. In this
work we systematically explore different approximate solutions for one-dimensional second
nearest–neighbor fluid models. We apply those approximations to the square-well and the
attractive two-step pair potentials and compare them with Monte Carlo simulations, finding
an excellent agreement.

Keywords One-dimensional fluids · Nearest–neighbors · Square-well model · Two-step
model · Radial distribution function · Fisher–Widom line

1 Introduction

It is well known that equilibrium systems confined in one-dimensional geometries with inter-
actions restricted to first nearest neighbors (1st nn) admit a full exact statistical-mechanical
solution [5,15,26,27,29–37,39,42,43,52,53]. Apart from its undoubtful pedagogical and
illustrative values [6,8,11,12,25,44–47], this exact solution can also be exploited as a bench-
mark for approximations [2,3,7,10,13,14,16,43,51] or simulation methods [9].
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Exact solutions are also possible for a few one-dimensional systems with interactions
extending beyond 1st nn, as happens, for example, in the one- and two-component plasma,
the Kac–Backer model, or isolated self-gravitating system [19,20,41]. However, most
one-dimensional non-1st nn fluids do not admit an analytical exact solution but only an
approximate one, as happens, for example, to the penetrable-square-well model [18,22,48].

While a fair amount of simplification of relevant questions occurs in a lattice gas or
Ising model context [15], here we will be concerned with spatially continuous fluid systems.
The two main ingredients allowing for an exact statistical-mechanical treatment of one-
dimensional fluids (in the isothermal-isobaric ensemble) are [47]: (i) the pair interaction
potential diverges as the two particles approach each other, so that the ordering of the particles
cannot change, and (ii) each particle interacts onlywith its two1st nn. In that case, it is possible
to obtain the exact 1st nn probability distribution function, p1(r), whose knowledge is in turn
enough to determine all the structural and thermodynamic properties of the system.

On the other hand, even if the ordering property (i) is maintained, as soon as the interaction
extends to second nearest neighbors (2nd nn) the exact solution is generally lost. First, the
determination of p1(r) becomes a complex many-body problem. Second, even if p1(r) were
known, the convolution property relating p1(r) to the more general correlation functions is
no longer valid and one is again faced with a many-body correlation coupling. Nonetheless,
the problem is in general more tractable than the one of a generic non-1st nn fluid since
the potential energy now contains only the interactions between 1st and 2nd nn pairs. It is
therefore interesting to find reasonable approximate solutions in this particular case. This is
the objective of the present work.

After revising the exact expressions for the �th-order nn distribution functions in the
isothermal-isobaric ensemble and their structure, we devise a sequence of approximations
(by means of a diagrammatic description) at various increasing orders of accuracy. Our
sequence gives the exact solution only at infinite order, but we will discover that already at
second order it does a very good job. As illustrations, we will apply our approach to two
particular cases: the square-well (SW) and the attractive two-step (TS) models.

As for the thermodynamic properties, the equation of state is determined from three alter-
native roots: the virial and compressibility routes, and the consistency condition that the
radial distribution function (RDF) must tend to 1 at large distances. This gives us useful
thermodynamic consistency tests on our approximations. Of course, the van Hove theorem
[28,40,54] states that in our case there cannot be a phase transition for the fluid and, in partic-
ular, the isothermal susceptibility cannot diverge. We check this by computing the isothermal
susceptibility through two different thermodynamic routes. Another relevant thermodynamic
consistency test refers to the internal energy per particle.

Wecarry on a detailed analysis of theRDFand compare the behavior of our approximations
with the results from canonical Monte Carlo (MC) simulations for both the SW and TS
models. Also, within our approximate theory, we compute the Fisher–Widom (FW) line [23]
for the SW model at various ranges.

The work is organized as follows. In Sect. 2 the problem of the 2nd nn fluid is presented
and the exact solution in the 1st nn case is recalled. In Sect. 3 we introduce the sequence
of approximations used to solve the 2nd nn problem. This is followed by Sects. 4 and 5,
where the approximations are particularized to the SW and TS fluids, and compared with our
own MC simulations. In Sect. 6 we calculate the FW line for the SW model. Finally, Sect. 7
presents our concluding remarks.
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Fig. 1 Illustration of the one-dimensional fluid and of the distances used in the main text. For simplicity,
particle i = 1 defines the origin of coordinates (i.e., x1 = 0)

2 The Problem

Let us consider a one-dimensional system of N particles in a box of length L (so that the
number density is n = N/L) subject to a pair interaction potential φ(r) such that:

i. limr→0 φ(r) = ∞. This implies that the order of the particles in the line does not change,
i.e., the particles are assumed to be impenetrable.

ii. φ(r) = 0 for r > D. Thus, the interaction has a finite range D.
iii. Each particle interacts only with its 1st and 2nd nn, i.e., with the four particles closer to

it.

The total potential energy is then

ΦN (rN ) =
N∑

i=1

[
φ(xi+1 − xi ) + γφ(xi+2 − xi )

]
, (2.1)

where rN = {x1, x2, . . . , xN } are the coordinates of the N particles ordered in such way
that x1 < x2 < · · · < xN , and periodic boundary conditions (pbc) are assumed, so that
xN+1 = x1 + L and xN+2 = x2 + L . A sketch of the system is shown in Fig. 1. In Eq. (2.1)
we have introduced the bookkeeping factor γ simply to keep track of the 2nd nn contribution
to the total potential energy. At the end of the calculations γ = 1 will be taken.

2.1 General Relations

2.1.1 Nearest–Neighbor and Pair Correlation Functions

Given a reference particle at a certain position, let p1(r)dr be the conditional probability of
finding its 1st nn at a distance between r and r+dr to its right. More in general, we can define
p�(r)dr as the conditional probability of finding its (right) �th neighbor (1 ≤ � ≤ N − 1) at
a distance between r and r + dr [47]. Since the �th neighbor of the reference particle must
be somewhere, the normalization condition, in the thermodynamic limit (N → ∞, L → ∞,
n = const), is

∫ ∞

0
dr p�(r) = 1. (2.2)

The physical meaning of the RDF [4,24,28,47] implies that ng(r)dr is the total number of
particles at a distance between r and r +dr , regardless of whether those particles correspond
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to the 1st nn, the 2nd nn, . . . of the reference particle. Thus, again in the thermodynamic
limit,

ng(r) =
∞∑

�=1

p�(r). (2.3)

2.1.2 Thermodynamic Quantities

Apart from characterizing the equilibrium spatial correlations, the RDF allows one to obtain
the thermodynamic quantities by means of well-known statistical-mechanical formulas [47].
For instance, the excess internal energy per particle is given by

βu = βn
∫ ∞

0
dr φ(r)g(r) = β

∫ ∞

0
dr φ(r) [p1(r) + p2(r)] , (2.4)

where β ≡ 1/kBT is the (reduced) inverse temperature (kB and T being the Boltzmann
constant and the absolute temperature, respectively) and we have taken into account that
φ(r) vanishes beyond 2nd nn.

Moreover, from the virial theorem we find

βp

n
= 1 − βn

∫ ∞

0
dr rφ′(r)g(r) = 1 + n

∫ ∞

0
dr r f ′(r)y(r), (2.5)

where p is the pressure, · · ·′ ≡ d · · · /dr , f (r) = e−βφ(r) − 1 is the Mayer factor, and
y(r) = g(r)eβφ(r) is the cavity function. A thermodynamic consistency test comes from the
following Maxwell relation

(
∂βu

∂βp

)

β

= β

(
∂n−1

∂β

)

βp
. (2.6)

Of course, for an exact solution this is an identity.
The isothermal susceptibility is defined as

χT =
(

∂n

∂βp

)

β

. (2.7)

Alternatively, it can also be obtained via the compressibility route as [47]

χT = 1 + 2n
∫ ∞

0
dr [g(r) − 1] = 1 + 2n lim

s→0

[
Ĝ(s) − 1

s

]
, (2.8)

where

Ĝ(s) ≡
∫ ∞

0
dr e−rs g(r) (2.9)

is the Laplace transform of the RDF. Again, the two routes (2.7) and (2.8) give identical
results if the exact RDF is used. Note that the physical condition limr→∞ g(r) = 1 and Eq.
(2.8) imply the small-s behavior

Ĝ(s) = 1

s
+ χT − 1

2n
+ O(s). (2.10)
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2.1.3 Isothermal-Isobaric Ensemble

We will see that retaining in the potential energy of the fluid up to the 2nd nn interactions
involves an N -body coupling in any of the �th nn distribution functions. This renders the one-
dimensional problem extremely more complicated than the 1st nn fluid, for which a general
analytical solution can be found [47] due to the decoupling of each pair of nn (see Sect. 2.2).

In the isothermal-isobaric (or NpT ) ensemble, the N -body configurational probability
density function is [47]

ρ(rN ) ∝ e−βpL−βΦN (rN ). (2.11)

As a consequence, we find for p1(r) (see Fig. 1)

p1(r) ∝
∫ ∞

r
dL e−βpL

∫ L

x2
dx3

∫ L

x3
dx4 · · ·

∫ L

xN−1

dxN e−βΦN (rN ), (2.12)

where we have taken particles i = 1 (at x1 = 0) and i = 2 (at x2 = r ) as the representative
1st nn pair. The proportionality constant in Eq. (2.12) is obtained from the normalization
condition (2.2).

Using Eq. (2.1) and the pbc we find (see Fig. 1 for notation)

ΦN (rN ) = φ(r) + γφ(R) + φ(r3) + γφ(R3) + φ(r4)

+γφ(R4) + · · · + φ(rN+1) + γφ(RN+1), (2.13)

with R = x3 = r + r3 and ri = xi − xi−1, Ri = xi+1 − xi−1 = ri + ri+1 for i =
3, 4, . . . , N + 1. It is proved in Appendix A that, after an adequate change of variables, Eq.
(2.12) becomes

p1(r) ∝ e−β[pr+φ(r)]
∫ ∞

0
dr3 e

−β[pr3+φ(r3)]e−γβφ(r+r3)

×
∫ ∞

0
dr4 e

−β[pr4+φ(r4)]e−γβφ(r3+r4) · · ·

×
∫ ∞

0
drN e−β[prN+φ(rN )]e−γβφ(rN−1+rN )

×
∫ ∞

0
drN+1e

−β[prN+1+φ(rN+1)]e−γβφ(rN+rN+1)e−γβφ(rN+1+r). (2.14)

We clearly see that all the N − 1 spatial integrals are coupled, so that we cannot proceed any
further without introducing approximations. This many-body coupling can be conveniently
visualized by means of a diagrammatic representation, as shown in the first row of Table 1.

For the 2nd nn distribution we have

p2(R) ∝
∫ ∞

R
dL e−βpL

∫ R

0
dx2

∫ L

R
dx4

∫ L

x4
dx5 · · ·

∫ L

xN−1

dxN e−βΦN (rN ). (2.15)

As proved in Appendix A, this becomes

p2(R) ∝ e−β[pR+γφ(R)]
∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2)

×
∫ ∞

0
dr4 e

−β[pr4+φ(r4)]e−γβφ(R−r2+r4)
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Table 1 Diagrammatic representation

Label Function Diagram

exact p1(1,2) ∝
N−1 N 1 2 3 4

exact p2(1,3) ∝
N−1 N 1 2 3 4

exact p3(1,4) ∝
N−1 N 1 2 3 4

1(00) p(00)
1 (1,2) ∝ 1 2

1(01) p(01)
1 (1,2) ∝

1 2 3
=

1 2 × 1 2 3

1(11) p(11)
1 (1,2) ∝

N 1 2 3
=

1 2 × 1 2 3
2

2(00) p(00)
2 (1,3) ∝

1 2 3
=

1 3 × 1 2 ∗ 2 3

2(01) p(01)
2 (1,3) ∝

1 2 3 4
=

1 3 × 1 2 ∗ 2 3 4

2(11) p(11)
2 (1,3) ∝

N 1 2 3 4
=

1 3 × N 1 2 ∗ 2 3 4

3(00) p(00)
3 (1,4) ∝

1 2 3 4

3(01) p(01)
3 (1,4) ∝ 1 2 3 4 5

3(11) p(11)
3 (1,4) ∝

N 1 2 3 4 5

We indicate with (i, j) the distance ri j = |xi − x j |. The open circles denote the root points (not integrated
out) i and j , while the filled circles (enclosed by open ones) denote field points (integrated out). The thick
straight lines represent a link exp{−β[pr +φ(r)]} between 1st nn, while the thin curved lines represent a link
exp[−γβφ(r)] between 2nd nn. In this representation, the dashed lines link two root points, while the solid
lines link two field points or one root and one field point

×
∫ ∞

0
dr5 e

−β[pr5+φ(r5)]e−γβφ(r4+r5) · · ·
∫ ∞

0
drN e−β[prN+φ(rN )]e−βφ(rN−1+rN )

×
∫ ∞

0
drN+1 e

−β[prN+1+φ(rN+1)]e−γβφ(rN+rN+1)e−γβφ(rN+1+r2). (2.16)
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Once again, the expression above depends on all the N -body terms. It is represented by the
second row in Table 1.

In the case of the 3rd nn distribution, its formal expression is

p3(R̄) ∝
∫ ∞

R̄
dL e−βpL

∫ R̄

0
dx2

∫ R̄

x2
dx3

∫ L

R̄
dx5 · · ·

∫ L

xN−1

dxN e−βΦN (rN ), (2.17)

where we have denoted by R̄ the distance between the reference particles 1 and 4. Equation
(2.17) is equivalent to (see Appendix A)

p3(R̄) ∝ e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)e−γβφ(R̄−r2)
∫ R̄−r2

0
dr3 e

−βφ(r3)e−γβφ(r2+r3)e−βφ(R̄−r2−r3)

×
∫ ∞

0
dr5 e

−β[pr5+φ(r5)]e−γβφ(R̄−r2−r3+r5)
∫ ∞

0
dr6 e

−β[pr6+φ(r6)]e−γβφ(r5+r6) · · ·

×
∫ ∞

0
drN e−β[prN+φ(rN )]e−γβφ(rN−1+rN )

×
∫ ∞

0
drN+1 e

−β[prN+1+φ(rN+1)]e−γβφ(rN+rN+1)e−γβφ(rN+1+r2). (2.18)

The diagram representing Eq. (2.18) is displayed as the third row of Table 1.
The process can be continued in a similar way to get p�(R̄) with � = 4, . . . , N − 1 and

R̄ = x�+1 − x1. In particular,

pN−1(R̄) ∝ e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)
∫ R̄−r2

0
dr3 e

−βφ(r3)e−γβφ(r2+r3)

×
∫ R̄−r2−r3

0
dr4 e

−βφ(r4)e−γβφ(r3+r4) · · ·

×
∫ R̄−r2−r3−···−rN−2

0
drN−1e

−βφ(rN−1)e−γβφ(rN−2+rN−1)e−βφ(R̄−r2−r3−···−rN−1)e−γβφ(R̄−r2−r3−···−rN−2)

×
∫ ∞

0
drN+1 e

−β[prN+1+φ(rN+1)]e−γβφ(R̄−r2−r3−···−rN−1+rN+1)e−γβφ(rN+1+r2). (2.19)

2.2 First Nearest–Neighbor Fluids: Exact Solution

Let us suppose now that the 2nd nn interactions are switched off. This is equivalent to setting
γ = 0 in Eqs. (2.1) and (2.13). In that case, the curved lines in the three first rows of Table 1
disappear and most of the integrals in Eqs. (2.14), (2.16), and (2.18) can be absorbed into the
proportionality constants:

p1(r) = K1e
−β[pr+φ(r)], (2.20a)

p2(R) ∝ e−βpR
∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2), (2.20b)

p3(R̄) ∝ e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)
∫ R̄−r2

0
dr3 e

−βφ(r3)e−βφ(R̄−r2−r3), (2.20c)

where in Eq. (2.20a) K1 is the normalization constant. In the case of Eq. (2.19), even though
only the integral over rN+1 can be absorbed into the proportionality constant so that N − 2
integrals still remain, they acquire a simple convolution structure:
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pN−1(R̄) ∝ e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)
∫ R̄−r2

0
dr3 e

−βφ(r3)
∫ R̄−r2−r3

0
dr4 e

−βφ(r4) · · ·

×
∫ R̄−r2−r3−···−rN−2

0
drN−1e

−βφ(rN−1)e−βφ(R̄−r2−r3−···−rN−1). (2.21)

Thus, in the case of a pure 1st nn fluid, the following recurrence relation holds

p�(r) =
∫ r

0
dr ′ p1(r ′)p�−1(r − r ′) ≡ (p1 ∗ p�−1)(r). (2.22)

It is straightforward to check that Eqs. (2.20) and (2.21) are consistent with Eq. (2.22). The
convolution structure of the integral in Eq. (2.22) suggests the introduction of the Laplace
transform

p̂�(s) ≡
∫ ∞

0
dr e−rs p�(r), (2.23)

so that Eq. (2.22) becomes

p̂�(s) = p̂1(s) p̂�−1(s) = [ p̂1(s)]
� . (2.24)

The normalization condition (2.2) is equivalent to

p̂�(0) = 1. (2.25)

Note that this condition is automatically satisfied by Eq. (2.24) provided that p̂1(0) = 1. In
fact, the Laplace transform of Eq. (2.20a) is

p̂1(s) = K1Ω̂(s + βp), K1 = 1

Ω̂(βp)
, (2.26)

where

Ω̂(s) ≡
∫ ∞

0
dr e−sre−βφ(r) (2.27)

is the Laplace transform of the pair Boltzmann factor e−βφ(r).
In this case of a 1st nn fluid, the RDF in Laplace space is exactly given by [see Eqs. (2.3)

and (2.9)]

Ĝ(s) = 1

n

∞∑

�=1

[ p̂1(s)]
� = 1

n

p̂1(s)

1 − p̂1(s)
. (2.28)

Finally, the number density n is obtained as a function of pressure and temperature by
enforcing the condition lims→0 sG(s) = 1 [see Eq. (2.10)]. The result is [47]

n = − Ω̂(βp)

Ω̂ ′(βp)
, (2.29)

where

Ω̂ ′(s) ≡ ∂Ω̂(s)

∂s
= −

∫ ∞

0
dr e−rsre−βφ(r). (2.30)

Obviously, Eqs. (2.20)–(2.22), (2.24), (2.26), (2.28), and (2.29) cease to be exactly valid
as soon as the interactions extend to 2nd nn (i.e., γ = 1).
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3 Our Approximations

3.1 First Nearest–Neighbor Distribution

As discussed above, the exact expression (2.14) for p1 is not amenable for an analytical
treatment of the problem. We will then introduce a hierarchy of successive approximations.

In Eq. (2.14) we observe that, apart from the prefactor exp{−β[pr + φ(r)]}, the distance
r appears explicitly in the first integral (over r3) and, because of the pbc, in the last integral
(over rN+1). The dependence on r propagates as well to the remaining integrals (over r4,
…, rN ) due to the nested structure of the integrals induced by the 2nd nn terms of the form
exp[−γβφ(ri + ri+1)], as diagrammatically illustrated in the first row of Table 1. On the
other hand, the r -dependence becomesmore andmore indirect and attenuated as the integrals
involve particles farther and farther from the pair (1, 2), either to its right or (because of the
pbc) to its left. Thus, by truncating the integrals at a certain order and incorporating their
values into the normalization constant, one can construct a hierarchy of approximations to
p1(r) involving only a finite number of particles in the environment of the pair (1, 2).

The crudest approximation would consist in just neglecting the r -dependence in all the
integrals of Eq. (2.14), i.e.,

p(00)
1 (r) = K (00)

1 e−β[pr+φ(r)], (3.1)

where K (00)
1 is the normalization constant. Henceforth, a factor of the form K (k1k2)

� will
denote a normalization constant. In the zeroth-order approximation (3.1), represented by the
diagram with the label 1(00) in Table 1, p1(r) is assumed to be given by the exact solution
(2.20a) for the 1st nn fluid. It can reasonably be expected that this is a very poor approximation
for the 2nd nn fluid.

A less trivial approximation is obtained by including the integral over r3 but not the other
ones, i.e.,

p(01)
1 (r) = K (01)

1 e−β[pr+φ(r)]
∫ ∞

0
dr3 e

−β[pr3+φ(r3)]e−βφ(r+r3), (3.2)

where henceforth γ = 1 is already set. This first-order approximation to the exact p1(r) is
represented by the diagram with the label 1(01) in Table 1. If, instead of including the integral
over r3 (i.e., the distance between the root particle 2 and the particle to its right) we include
the integral over rN+1 (i.e., the distance between the root particle 1 and the particle to its left,
according to the pbc) we have

p(10)
1 (r) = K (10)

1 e−β[pr+φ(r)]
∫ ∞

0
drN+1 e

−β[prN+1+φ(rN+1]e−βφ(rN+1+r). (3.3)

Since r3 and rN+1 are dummy integration variables, it is obvious that p(10)
1 (r) = p(01)

1 (r),
as expected by symmetry arguments.

The first-order approximation p(01)
1 (r), while more reliable than p(00)

1 (r), is asymmetric
as it treats one side of the pair (1, 2) differently from the other side. This is remedied by the
second-order approximation

p(11)
1 (r) = K (11)

1 e−β[pr+φ(r)]
[∫ ∞

0
dr3 e

−β[pr3+φ(r3)]e−βφ(r+r3)
]2

, (3.4)

where we have exploited the fact that the integrals over r3 and over rN+1 are identical. A
diagram for this approximation is shown with the label 1(11) in Table 1.
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Obviously, the same scheme could be followed by introducing the approximations p(12)
1 ,

p(22)
1 , p(33)

1 , and so on. They become increasingly more accurate at the expense of becoming
increasingly more involved. In fact, the exact 1st nn distribution is recovered, in the thermo-
dynamic limit, as p1 = limk→∞ p(kk)

1 . As a compromise between accuracy and simplicity

we stop at the second-order approximation p(11)
1 .

3.2 Second Nearest–Neighbor Distribution

A similar process can be followed for the 2nd nn distribution p2(R). Here, particles 1 and
3 are fixed and one needs to integrate over all the positions of the intermediate particle 2. If
one ignores in Eq. (2.16) the R-dependence of the integrals over those field particles to the
right of 3 or to the left of 1, one finds

p(00)
2 (R) = K (00)

2 e−β[pR+φ(R)]
∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2)

= K (00)
2[

K (00)
1

]2 e
−βφ(R)

∫ R

0
dr2 p

(00)
1 (r2)p

(00)
1 (R − r2). (3.5)

A diagram for this zeroth-order approximation is shown with the label 2(00) in Table 1, where
we have used the fact that the point 2 is an articulation point to simplify the diagram as the
convolution of two sub-diagrams.

The asymmetric first-order approximation for p2 is

p(01)
2 (R) = K (01)

2 e−β[pR+φ(R)]
∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2)

×
∫ ∞

0
dr4 e

−β[pr4+φ(r4)]e−βφ(R−r2+r4)

= K (01)
2

K (00)
1 K (01)

1

e−βφ(R)

∫ R

0
dr2 p

(00)
1 (r2)p

(01)
1 (R − r2). (3.6)

This approximation is described by the diagram with the label 2(01) in Table 1, where again
the convolution property is used.

The symmetrization of p(01)
2 gives rise to the second-order approximation

p(11)
2 (R) = K (11)

2 e−β[pR+φ(R)]
∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2)

×
∫ ∞

0
dr4 e

−β[pr4+φ(r4)]e−βφ(R−r2+r4)

×
∫ ∞

0
drN+1 e

−β[prN+1+φ(rN+1)]e−βφ(rN+1+r2).

= K (11)
2[

K (01)
1

]2 e
−βφ(R)

∫ R

0
dr2 p

(01)
1 (r2)p

(01)
1 (R − r2). (3.7)

A diagram for this approximation is shown with label 2(11) in Table 1. Again, the point 2 is
an articulation point so that the diagram simplifies as the convolution of two sub-diagrams.
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As in the case of p1, one could define p(22)
2 , p(33)

2 , …, but for simplicity we stop at the
level of the 2(11) approximation (3.7).

3.3 Third Nearest–Neighbor Distribution

Regarding the 3rd nn probability distribution, we can proceed by starting from Eq. (2.18)
and introducing the zeroth-, first-, and second-order approximations. They are given by

p(00)
3 (R̄) = K (00)

3 e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)e−βφ(R̄−r2)

×
∫ R̄−r2

0
dr3 e

−βφ(r3)e−βφ(r2+r3)e−βφ(R̄−r2−r3), (3.8)

p(01)
3 (R̄) = K (01)

3 e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)e−βφ(R̄−r2)

×
∫ R̄−r2

0
dr3 e

−βφ(r3)e−βφ(r2+r3)e−βφ(R̄−r2−r3)

×
∫ ∞

0
dr5 e

−β[pr5+φ(r5)]e−βφ(R̄−r2−r3+r5), (3.9)

p(11)
3 (R̄) = K (11)

3 e−βpR̄
∫ R̄

0
dr2 e

−βφ(r2)e−βφ(R̄−r2)

×
∫ R̄−r2

0
dr3 e

−βφ(r3)e−βφ(r2+r3)e−βφ(R̄−r2−r3)

×
∫ ∞

0
dr5 e

−β[pr5+φ(r5)]e−βφ(R̄−r2−r3+r5)

×
∫ ∞

0
drN+1 e

−β[prN+1+φ(rN+1)]e−βφ(rN+1+r2). (3.10)

These approximations are represented by the diagrams labeled 3(00), 3(01), and 3(11), respec-
tively, in Table 1. Since there are no articulation points, the diagrams cannot be simplified
any further.

By following the same process one could construct similar approximations for p4, p5,
…, but they become increasingly more intricate as they would involve at least three, four, …
nested integrals.

3.4 Radial Distribution Function

As clearly seen from Eq. (2.3), the knowledge (even if it were exact) of p1(r), p2(r), and
p3(r) is not enough to get the RDF g(r), as we need p�(r) for � ≥ 4 as well. Thus, additional
approximations are required.

Assume first that we want to construct an approximate function Ĝ(s) based on p̂1(s) and
p̂2(s) only (since it is essential to keep at least those two quantities in a 2nd nn fluid). How
can we estimate p̂�(s) with � ≥ 3 from p̂1(s) and p̂2(s)? A simple possibility consists in
extending the exact convolution property (2.24) of 1st nn fluids as an approximation to 2nd
nn fluids. Two main possibilities arise:

p̂2�+1(s) = p̂1(s) [ p̂2(s)]
� , p̂2�+2(s) = [ p̂2(s)]

�+1 , � ≥ 1, (3.11a)

p̂�(s) = [ p̂1(s)]
� , � ≥ 3. (3.11b)
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Then, application of Eq. (2.3) yields, respectively,

Ĝ(s) = 1

n

p̂1(s) + p̂2(s)

1 − p̂2(s)
, n = 2

p̃2
, (3.12a)

Ĝ(s) = 1

n

{
p̂1(s)

1 − p̂1(s)
+ p̂2(s) − [ p̂1(s)]

2
}

, n = 1

p̃1
. (3.12b)

Here, we have used the condition lims→0 sĜ(s) = 1 [see Eq. (2.10)] to determine the number
density n in terms of

p̃� ≡ − ∂ p̂�(s)

∂s

∣∣∣∣
s=0

=
∫ ∞

0
dr rp�(r). (3.13)

Regardless of whether Eqs. (3.12a) or (3.12b) is used, a different approximation for Ĝ(s)
is made depending on which approximation is chosen for p1 (see Sect. 3.1) and p2 (see
Sect. 3.2). We introduce the notation [1(α1)2(α2)]a and [1(α1)2(α2)]b to refer to Eqs. (3.12a)
and (3.12b), respectively, complemented with the approximations 1(α1) for p1 and 2(α2) for
p2, where (α1), (α2) = (00), (01), or (11).

In Eq. (3.12) p̂3(s) is expressed in terms of p̂1(s) and p̂2(s). On the other hand, if the 3rd
nn probability distribution is described, with independence of p̂1(s) and p̂2(s), by any of the
approximation of Sect. 3.3 we can construct p̂�(s) with � ≥ 4 as any of the following three
possibilities:

p̂3�+1(s) = p̂1(s) [ p̂3(s)]
� , p̂3�+2(s) = p̂2(s) [ p̂3(s)]

� ,

p̂3�+3(s) = [ p̂3(s)]
�+1 , � ≥ 1, (3.14a)

p̂2�(s) = [ p̂2(s)]
� , p̂2�+1(s) = p̂1(s) [ p̂2(s)]

� , � ≥ 2, (3.14b)

p̂�(s) = [ p̂1(s)]
� , � ≥ 4. (3.14c)

This gives rise, respectively, to

Ĝ(s) = 1

n

p̂1(s) + p̂2(s) + p̂3(s)

1 − p̂3(s)
, n = 3

p̃3
, (3.15a)

Ĝ(s) = 1

n

{
p̂1(s) + p̂2(s)

1 − p̂2(s)
+ p̂3(s) − p̂1(s) p̂2(s)

}
, n = 2

p̃2
, (3.15b)

Ĝ(s) = 1

n

{
p̂1(s)

1 − p̂1(s)
+ p̂2(s) + p̂3(s) − [ p̂1(s)]

2 − [ p̂1(s)]
3
}

, n = 1

p̃1
. (3.15c)

As before, we will denote as [1(α1)2(α2)3(α3)]a , [1(α1)2(α2)3(α3)]b, and [1(α1)2(α2)3(α3)]c the
approximations (3.15a), (3.15b), and (3.15c), respectively, complemented with the approxi-
mations 1(α1) for p1, 2(α2) for p2, and 3(α3) for p3.

Note that Eqs. (3.12) and (3.15) are fully equivalent in the case of a 1st nn fluid, as a
consequence of Eq. (2.24). This is not so, however, for 2nd nn fluids. On physical grounds,
the approximations of the form [1(α1)2(α2)]a , where p̂3(s) ≈ p̂1(s) p̂2(s), are expected to be
more accurate than those of the form [1(α1)2(α2)]b, where p̂3(s) ≈ [ p̂1(s)]3. Likewise, the
approximations of the form [1(α1)2(α2)3(α3)]a are expected to be better than those of the form
[1(α1)2(α2)3(α3)]b or, even more, of the form [1(α1)2(α2)3(α3)]c.

We will now apply our approximations to two specific 2nd nn fluid models and assess the
results by MC simulations.
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4 The Square-Well Potential

As a simple prototype potential to test our approach, let us consider the SW potential,

φ(r) =
⎧
⎨

⎩

∞, r < σ,

−ε, σ ≤ r < λσ,

0, λσ ≤ r.
(4.1)

The physical properties of the fluid will depend on the dimensionless range λ, the reduced
temperature T ∗ ≡ kBT/ε, and either the reduced density n∗ ≡ nσ or the reduced pressure
p∗ ≡ pσ/ε. Of course, for λ ≤ 2 the fluid is a 1st nn one so it admits an exact solution
[29,45,47]. Our results for the 2nd nn fluid will allow us to extend such an exact solution, in
an approximate way, to the range 2 < λ ≤ 3.

4.1 Structural Properties

Clearly, due to the hard core at r = σ , one has p�(r) = 0 for r < �σ . Therefore,

ng(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1(r), σ < r < 2σ,

p1(r) + p2(r), 2σ < r < 3σ,

p1(r) + p2(r) + p3(r), 3σ < r < 4σ,
...

...

(4.2)

All the approximations for the 1st nn, 2nd nn, and 3rd nn distributions described in
Sects. 3.1–3.3 have fully analytical (albeit too long to be displayed here) expressions in the
case of the SW potential, both in real space and in Laplace space. This allows one to obtain
analytical expressions for the Laplace transform Ĝ(s) in any of the approximations described
in Sect. 3.4. The RDF in real space, g(r), can then be found up to r = 4σ by application
of Eq. (4.2) and, for longer distances, by a numerical inverse Laplace transform using the
algorithm described in Ref. [1].

Henceforth, unless stated otherwise, we take σ = 1 as the length unit and particularize to
λ = 3, which is the largest range consistent with 2nd nn interactions.

Before comparing withMC simulations, let us analyze the convergence of the approxima-
tions presented in Sects. 3.1–3.3. Figure 2a shows p(00)

1 (r), p(01)
1 (r), p(11)

1 (r), and p(12)
1 (r)

(the latter quantity not explicitly defined in Sect. 3.1) at the state T ∗ = 1, p∗ = 1. We
observe that the second-order approximation p(11)

1 (r) is almost indistinguishable from the

third-order one p(12)
1 (r). We have also checked that the fourth order approximation p(22)

1 (r)
differs from the third-order one by about 0.1%. Therefore, we can conclude that convergence
has been practically reached already at second order.

The 2nd nn functions p(00)
2 (r), p(01)

2 (r), p(11)
2 (r), and p(12)

2 (r) at the same thermodynamic
state are plotted in Fig. 2b. Again we find that a good convergence has been reached with the
second-order approximation p(11)

2 (r).
Figure 3a is equivalent to Fig. 2 but for the 3rd nn distribution. Once more, we observe

that the second-order approximation p(11)
3 (r) is hardly distinguishable from the third-order

approximation p(12)
3 (r). The convolution approximations (p(11)

1 ∗p(11)
1 ∗p(11)

1 )(r) and (p(11)
1 ∗

p(11)
2 )(r) are compared with p(11)

3 (r) in Fig. 3b. As expected, the convolution functions
p1 ∗ p1 ∗ p1 and p1 ∗ p2 are only qualitatively correct in describing the 3rd nn distribution.
In fact, p1 ∗ p1 ∗ p1 fails in capturing the kink of p3 at r = 4. All of this confirms that, in
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(b)

Fig. 2 a Plot of p(00)
1 (r) (—), p(01)

1 (r) (– –), p(11)
1 (r) (- - -), and p(12)

1 (r) (· · · ) at T ∗ = 1 and p∗ = 1. b

Plot of p(00)
2 (r) (—), p(01)

2 (r) (– –), p(11)
2 (r) (- - -), and p(12)

2 (r) (· · · ) for the SW fluid (λ = 3) at T ∗ = 1
and p∗ = 1

0.0
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p 3α (r
)

r/σ

(a)

α=(00)
α=(01)
α=(11)
α=(12)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3.0 3.5 4.0 4.5 5.0

p 3α (r
)

r/σ

(b)

α=(11)*(11)*(11)
α=(11)*(11)

α=(11)

Fig. 3 a Plot of p(00)
3 (r) (—), p(01)

3 (r) (– –), p(11)
3 (r) (- - -), and p(12)

3 (r) (· · · ) at T ∗ = 1 and p∗ = 1. b

Plot of (p(11)
1 ∗ p(11)

1 ∗ p(11)
1 )(r) (—), (p(11)

1 ∗ p(11)
2 )(r) (– –), and p(11)

3 (r) (- - -) for the SW fluid (λ = 3)
at T ∗ = 1 and p∗ = 1

principle, Eq. (3.12a) is a better approximation than Eq. (3.12b) but it is worse than any of
Eqs. (3.15), at least in the range 1 < r < 4.

Once we have seen that the second-order approximations for p1(r), p2(r), and p3(r)
represent a good balance between simplicity and accuracy, we consider now the RDF and
compare the theoretical approximations of Sect. 3.4 with our own canonical MC simulations
(with N = 1024 particles).

In Fig. 4 we show the RDF calculated from the approximation [1(11)2(11)]a [see Eq.
(3.12a)] compared with our MC simulations, at several values of the reduced temperature
and density. It is apparent that the approximation [1(11)2(11)]a works very well in the region
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(a)

[1(11)2(11)]a T*=1
MC T*=1

[1(11)2(11)]a T*=5
MC T*=5
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g(

r)
r/σ

(b)

[1(11)2(11)]a n*=0.7
MC n*=0.7

[1(11)2(11)]a n*=0.1
MC n*=0.1

Fig. 4 Plot of g(r) as obtained from MC simulations (— and – –) and from the approximation [1(11)2(11)]a
[see Eq. (3.12a)] (◦ and�) for the SW fluid (λ = 3) at a n∗ = 0.7 and two temperatures (T ∗ = 1 and T ∗ = 5,
respectively) and b T ∗ = 1 and two densities (n∗ = 0.7 and n∗ = 0.1, respectively)

1 < r < 3, where ng(r) = p1(r) + p2(r), and keeps being generally good for larger
distances, even though p3 is approximated by p1 ∗ p2.

In view of Fig. 3b, the quality of the approximations in the region r > 3 is expected
to improve if p3 is approximated with independence of p1 and p2, as done in Eqs. (3.15).
This is confirmed by Fig. 5, where the approximation [1(11)2(11)3(11)]a [see Eq. (3.15a)] is
compared with MC data for the same three states as in Fig. 4 plus the more stringent state
T ∗ = 0.5 and n∗ = 0.7. A very good agreement is observed, although, not surprisingly, the
quality of the approximation worsens as the temperature decreases and the density increases
[see Fig. 5d].

4.2 Thermodynamic Properties

The approximations for the 1st, 2nd, and 3rd nn probability distribution functions and for
the RDF worked out in Sect. 3 can also be used to obtain the thermodynamic properties,
as presented in Sect. 2.1.2. We focus on the equation of state (i.e., the relationship between
pressure, density, and temperature), the isothermal susceptibility, and the excess internal
energy per particle. Given the approximate character of our proposals, the results will in
general depend on the route followed to obtain those thermodynamic quantities. In fact, the
degree of thermodynamic inconsistency will be used as a test of our approach.

The most direct way of determining the equation of state is as n = �/ p̃�, with � = 1, 2, 3,
in accordance with Eqs. (3.12) and (3.15). This gives the number density as an explicit
function of pressure and temperature, i.e., n(β, βp). If we prefer to express the pressure as
a function of density and temperature, p(n, T ), we need to solve numerically the equation
n = n(β, βp). In either choice of independent variables, the compressibility factor is obtained
as Z ≡ βp/n. We will use the superscript (A), i.e., n(A) and Z (A), to denote this “direct”
route to the equation of state. From it, the excess internal energy per particle (u) and the
isothermal susceptibility (χT ) can be obtained via the thermodynamic properties (2.6) and
(2.7), respectively, namely
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Fig. 5 Plot of g(r) as obtained from MC simulations (—) and from the approximation [1(11)2(11)3(11)]a
[see Eq. (3.15a)] (�) for the SW fluid (λ = 3) at a T ∗ = 1 and n∗ = 0.7, b T ∗ = 5 and n∗ = 0.7, c T ∗ = 1
and n∗ = 0.1, and d T ∗ = 0.5 and n∗ = 0.7

u(A)(β, βp) = βp
∫ 1

0
dt

(
∂1/n(A)(β, tβp)

∂β

)

βp

, (4.3a)

χ
(A)
T =

(
∂n(A)

∂βp

)

β

= 1(
∂nZ (A)/∂n

)
T

. (4.3b)

Alternatively, u, Z , and χT can be obtained from the energy (e), virial (v), and compress-
ibility (c) routes, respectively, as given by Eqs. (2.4), (2.5), and (2.8). In particular, for the
SW potential (4.1) one has

u(e)

ε
= −

∫ λ

1
dr p1(r) −

∫ λ

2
dr p2(r), (4.4)
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Z (v) = 1 + n
[
g(1+) − λ

(
eβε − 1

)
g(λ+)

]

= 1 + p1(1
+) − λ

(
eβε − 1

) [
p1(λ

+) + p2(λ
+)

]
. (4.5)

As for the isothermal susceptibility, application of the approximations (3.12) and (3.15) into
Eq. (2.8) yields

χ
(c)
T = 3˜̃p3

p̃23
− 2( p̃1 + p̃2)

p̃3
− 1, (4.6a)

χ
(c)
T = 2˜̃p2

p̃22
− 2 p̃1

p̃2
− 1, (4.6b)

χ
(c)
T = ˜̃p1

p̃21
− 1, (4.6c)

where

˜̃p� ≡ ∂2 p̂�(s)

∂s2

∣∣∣∣
s=0

=
∫ ∞

0
dr r2 p�(r). (4.7)

Equation (4.6a) applies to Eq. (3.15a), while Eq. (4.6b) applies to Eqs. (3.12a) and (3.15b),
andEq. (4.6c) applies to Eqs. (3.12b) and (3.15c). FromEq. (2.7) andχ

(c)
T , the compressibility

factor can be obtained as

Z (c)(β, βp) = 1
∫ 1
0 dt χ(c)

T (β, tβp)
. (4.8)

The thermodynamic quantities Z (A), u(A), χ
(A)
T , Z (v), u(e), χ

(c)
T , and Z (c) are common

to those approximations (3.12) and (3.15) having the same denominator of the form 1 −
p̂�(s). In our notation, this means that [1(α1)2(α2)]a = [1(α1)2(α2)3(α2)]b and [1(α1)2(α2)]b =
[1(α1)2(α2)3(α3)]c in what concerns the thermodynamic properties. Thus, here we will refer to
the thermodynamic properties associated with the three approximations [1(11)2(11)3(11)]a,b,c.

Figure 6 presents thermodynamic consistency tests for the different routes within the
approximations [1(11)2(11)3(11)]a,b,c. As expected, [1(11)2(11)3(11)]a is the most consistent
approximation, the thermodynamic quantities deviating typically less than 10% at the rela-
tively low temperature T ∗ = 1.

The theoretical values are compared withMC simulation results for a few thermodynamic
states in Table 2. We can observe that the best agreement in the case of the compressibility
factor is generally reachedwith the direct route, Z (A), in the [1(11)2(11)3(11)]a approximation.
The compressibility route, however, tends to overestimate the value of Z . In what refers to
the excess internal energy, the energy route is generally better than the direct route. By a
fortuitous cancellation of errors, the approximations [1(11)2(11)3(11)]b,c can in some cases
outperform the approximation [1(11)2(11)3(11)]a in estimating u.

In Fig. 7 we show the behavior of the compressibility factor and of the excess internal
energy per particle as functions of density at temperatures T ∗ = 1 and T ∗ = 5. At the latter
temperature the three approximations [1(11)2(11)3(11)]a,b,c provide practically indistinguish-
able results. As can be observed, the agreement with our MC results is very satisfactory.
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Fig. 6 Plot of the relative differences a Z (A)/Z (v)−1, b Z (A)/Z (c)−1, c χ
(A)
T /χ

(c)
T −1, and d u(A)/u(e)−1

as functions of density for the SW fluid (λ = 3) at T ∗ = 1. The curves correspond to the approximations
[1(11)2(11)3(11)]a (—), [1(11)2(11)3(11)]b (– –), and [1(11)2(11)3(11)]c (- - -)

5 The Two-Step Potential

Let us now consider the following TS fluid defined by the potential

φ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

∞, r < σ,

−ε, σ ≤ r < λ1σ,

−ε2, λ1σ ≤ r < λσ,

0, λσ ≤ r.

(5.1)

Clearly, for ε2 = ε, or λ1 = 1, or λ1 = λwe recover the SW fluid of Sect. 4. More in general,
playing with the signs and the magnitudes of the two energy scales, ε and ε2, several classes
of piece-wise constant potentials can be described [49,50]. Here, we will restrict ourselves
just to the case of full attraction with ε > ε2 > 0. Analogously to the SW case, we define
the reduced density and temperature as n∗ ≡ nσ and T ∗ ≡ kBT/ε, respectively.

Obviously, if λ ≤ 2 the TS interaction cannot extend beyond 1st nn and therefore the
exact solution described in Sect. 2.2 applies. On the other hand, if 2 < λ ≤ 3, the interaction
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Table 2 Some thermodynamic quantities for the SW fluid (λ = 3) at several values of T ∗ and n∗

Method Z (A) Z (v) Z (c) χ
(A)
T χ

(c)
T u(A)/ε u(e)/ε

T ∗ = 1, n∗ = 0.1

MC 0.8402 (6) – −0.434 (1)

[1(11)2(11)3(11)]a 0.8427 0.8271 0.8494 1.3381 1.3117 −0.4273 −0.4252

[1(11)2(11)3(11)]b 0.8441 0.8269 0.8529 1.3309 1.2978 −0.4241 −0.4259

[1(11)2(11)3(11)]c 0.8474 0.8263 0.8614 1.3151 1.2667 −0.4169 −0.4274

T ∗ = 1, n∗ = 0.4

MC 0.785 (1) – −1.168 (1)

[1(11)2(11)3(11)]a 0.8087 0.7246 0.8461 0.9596 0.8713 −1.1213 −1.1299

[1(11)2(11)3(11)]b 0.8200 0.7269 0.8643 0.9347 0.8389 −1.1014 −1.1381

[1(11)2(11)3(11)]c 0.8450 0.7322 0.9073 0.8822 0.7672 −1.0618 −1.1559

T ∗ = 1, n∗ = 0.7

MC 1.575 (3) – −1.752 (1)

[1(11)2(11)3(11)]a 1.6263 1.6680 1.7725 0.1268 0.1083 −1.6772 −1.7442

[1(11)2(11)3(11)]b 1.6480 1.6875 1.8103 0.1278 0.1092 −1.6440 −1.7487

[1(11)2(11)3(11)]c 1.6980 1.7324 1.9102 0.1304 0.1098 −1.5774 −1.7587

T ∗ = 5, n∗ = 0.1

MC 1.0669 (1) – −0.2373 (4)

[1(11)2(11)3(11)]a 1.0671 1.0670 1.0674 0.8724 0.8715 −0.2368 −0.2368

[1(11)2(11)3(11)]b 1.0671 1.0670 1.0676 0.8723 0.8711 −0.2367 −0.2368

[1(11)2(11)3(11)]c 1.0671 1.0670 1.0681 0.8723 0.8698 −0.2366 −0.2368

T ∗ = 5, n∗ = 0.4

MC 1.4733 (5) – −0.9230 (8)

[1(11)2(11)3(11)]a 1.4769 1.4738 1.4840 0.4230 0.4172 −0.9188 −0.9217

[1(11)2(11)3(11)]b 1.4775 1.4740 1.4875 0.4226 0.4147 −0.9169 −0.9220

[1(11)2(11)3(11)]c 1.4789 1.4746 1.4973 0.4216 0.4075 −0.9116 −0.9225

T ∗ = 5, n∗ = 0.7

MC 2.940 (2) – −1.683 (1)

[1(11)2(11)3(11)]a 2.9592 2.9613 2.9915 0.09464 0.09345 −1.6697 −1.6843

[1(11)2(11)3(11)]b 2.9602 2.9620 3.0040 0.09470 0.09317 −1.6623 −1.6845

[1(11)2(11)3(11)]c 2.9627 2.9638 3.0397 0.09486 0.09237 −1.6423 −1.6849

involves both 1st and 2nd nn, so that only approximate treatments are possible. The aim
of this section is to test the performance of the approximations of Sect. 3 against our MC
simulations (again with N = 1024 particles) in the case of the TS potential. To that end,
we will fix λ1 = 1.5, λ = 3, and ε2 = ε/2. This means that the strength of the 2nd nn
interactions is weaker in this TS potential than in the SW potential considered in Sect. 4.
Therefore, at common values of T ∗ and n∗, our approximations may be expected to be more
accurate for the TS fluid than for the SW fluid.
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Fig. 7 Plot of the compressibility factor Z [panels a and b] and of the excess internal energy per particle u
[panels c and d] as functions of density for the SW fluid (λ = 3) at T ∗ = 1 [panels a and c] and T ∗ = 5
[panels b and d]. The curves are theoretical results Z (A) and u(e), as obtained from the approximations
[1(11)2(11)3(11)]a (—), [1(11)2(11)3(11)]b (– –), and [1(11)2(11)3(11)]c (- - -), while the circles represent MC
data. Note that in panels c–d the three approximations [1(11)2(11)3(11)]a,b,c yield practically indistinguishable
results

5.1 Structural Properties

As happened in the case of the SW potential, the approximations described in Sects. 3.1–3.3
lend themselves to analytical implementations in the case of the TS potential. Moreover, due
to the hard core at r = σ , Eq. (4.2) still applies.

Figure 8 shows the RDF obtained from our approximation [1(11)2(11)]a at several val-
ues of n∗ and T ∗ and tests it with the result of our MC simulations. From comparison
with Fig. 4, we see that, as expected, the agreement between the theoretical approximation
[1(11)2(11)]a and the MC simulations improves with respect to the SW case treated in Sect. 4.
The more sophisticated approximation [1(11)2(11)3(11)]a does an even better job (not shown).
The improvement of the theoretical approximation [1(11)2(11)3(11)]a when applied to the TS
fluid rather than to the SW fluid is confirmed by Fig. 9 at a low temperature (T ∗ = 0.5) and
high density (n∗ = 0.7) [compare with Fig. 5d].
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Fig. 8 Plot of g(r) as obtained from MC simulations (— and – –) and from the approximation [1(11)2(11)]a
[see Eq. (3.12a)] (◦ and �) for the TS fluid

(
2λ1 = λ = 3, ε2/ε = 1

2
)
at a n∗ = 0.7 and two temperatures

(T ∗ = 1 and T ∗ = 5, respectively) and b T ∗ = 1 and two densities (n∗ = 0.7 and n∗ = 0.1, respectively)

Fig. 9 Plot of g(r) as obtained
from MC simulations (—) and
from the approximation
[1(11)2(11)3(11)]a [see Eq.
(3.15a)] (�) for the TS fluid(
2λ1 = λ = 3, ε2/ε = 1

2
)
at

T ∗ = 0.5 and n∗ = 0.7
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5.2 Thermodynamic Properties

As discussed in Sect. 4.2, the “direct” route n = �/ p̃� allows one to obtain Z (A), u(A), and
χ

(A)
T . The compressibility route yields χ

(c)
T and Z (c) again from Eqs. (4.6) and (4.8). As for

u(e) and Z (v), the counterparts of Eqs. (4.4) and (4.5) are

u(e)

ε
= −

∫ λ1

1
dr [p1(r) + p2(r)] − ε2

ε

∫ λ

λ1

dr [p1(r) + p2(r)] , (5.2)

Z (v) = 1 + n
[
g(1+) − λ1

(
eβ(ε−ε2) − 1

)
g(λ+

1 ) − λ
(
eβε2 − 1

)
g(λ+)

]

= 1 + p1(1
+) − λ1

(
eβ(ε−ε2) − 1

) [
p1(λ

+
1 ) + p2(λ

+
1 )

]

−λ
(
eβε2 − 1

) [
p1(λ

+) + p2(λ
+)

]
. (5.3)
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Fig. 10 Plot of the relative differences a Z (A)/Z (v)−1,b Z (A)/Z (c)−1, c χ
(A)
T /χ

(c)
T −1, and d u(A)/u(e)−1

as functions of density for the TS fluid (2λ1 = λ = 3, ε2/ε = 1
2 ) at T

∗ = 1. The curves correspond to the

approximations [1(11)2(11)3(11)]a (—), [1(11)2(11)3(11)]b (– –), and [1(11)2(11)3(11)]c (- - -)

Of course, since p2(r) = 0 for r < 2, the term p2(r) in the first integral of Eq. (5.2) and the
term p2(λ

+
1 ) in Eq. (5.3) can be removed if λ1 < 2, as happens in our specific case (λ1 = 1.5,

λ = 3).
From Fig. 10 we see again that the approximation [1(11)2(11)3(11)]a is thermodynamically

more consistent than [1(11)2(11)3(11)]b, and the latter ismore consistent than [1(11)2(11)3(11)]c.
Also comparison between Figs. 6 and 10 shows that, as expected, our approximations are
much more consistent for the TS fluid than for the SW fluid at common values of T ∗ and
n∗.

Table 3 and Fig. 11 show a comparison with our MC simulation data. The conclusions
are similar to those drawn from Table 2 and Fig. 7 in the SW case, except that now the
performance of the approximations are even better. In fact, from Fig. 11 one can notice
that the three approximations [1(11)2(11)3(11)]a,b,c are practically indistinguishable, even at
T ∗ = 1.
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Table 3 Some thermodynamic quantities for the TS fluid
(
2λ1 = λ = 3, ε2/ε = 1

2
)
at several values of T ∗

and n∗

Method Z (A) Z (v) Z (c) χ
(A)
T χ

(c)
T u(A)/ε u(e)/ε

T ∗ = 1, n∗ = 0.1

MC 0.9425 (5) – −0.2341 (6)

[1(11)2(11)3(11)]a 0.9440 0.9421 0.9467 1.0964 1.0882 −0.2324 −0.2320

[1(11)2(11)3(11)]b 0.9443 0.9421 0.9481 1.0954 1.0841 −0.2319 −0.2321

[1(11)2(11)3(11)]c 0.9445 0.9420 0.9518 1.0927 1.0730 −0.2306 −0.2322

T ∗ = 1, n∗ = 0.4

MC 1.0075 (8) – −0.750 (1)

[1(11)2(11)3(11)]a 1.0193 1.0019 1.0401 0.7279 0.6958 −0.7391 −0.7404

[1(11)2(11)3(11)]b 1.0228 1.0028 1.0501 0.7231 0.6832 −0.7338 −0.7420

[1(11)2(11)3(11)]c 1.0317 1.0051 1.0761 0.7111 0.6515 −0.7214 −0.7459

T ∗ = 1, n∗ = 0.7

MC 1.905 (3) – −1.2302 (8)

[1(11)2(11)3(11)]a 1.9182 1.9304 1.9895 0.1269 0.1204 −1.2105 −1.2290

[1(11)2(11)3(11)]b 1.9240 1.9349 2.0126 0.1272 0.1197 −1.2003 −1.2300

[1(11)2(11)3(11)]c 1.9392 1.9468 2.0761 0.1280 0.1177 −1.1763 −1.2325

T ∗ = 5, n∗ = 0.1

MC 1.0831 (1) – −0.1441 (2)

[1(11)2(11)3(11)]a 1.0832 1.0832 1.0833 0.8493 0.8489 −0.1445 −0.1445

[1(11)2(11)3(11)]b 1.0832 1.0832 1.0834 0.8493 0.8487 −0.1445 −0.1445

[1(11)2(11)3(11)]c 1.0832 1.0832 1.0837 0.8493 0.8481 −0.1444 −0.1445

T ∗ = 5, n∗ = 0.4

MC 1.5287 (4) – −0.6090 (5)

[1(11)2(11)3(11)]a 1.5311 1.5304 1.5347 0.4064 0.4038 −0.6076 −0.6083

[1(11)2(11)3(11)]b 1.5312 1.5304 1.5364 0.4063 0.4025 −0.6072 −0.6084

[1(11)2(11)3(11)]c 1.5316 1.5306 1.5415 0.4061 0.3989 −0.6057 −0.6085

T ∗ = 5, n∗ = 0.7

MC 3.003 (2) – −1.188 (1)

[1(11)2(11)3(11)]a 3.0270 3.0275 3.0421 0.09520 0.09470 −1.1845 −1.1882

[1(11)2(11)3(11)]b 3.0272 3.0277 3.0487 0.09522 0.09453 −1.1826 −1.1882

[1(11)2(11)3(11)]c 3.0279 3.0282 3.0680 0.09526 0.09403 −1.1771 −1.1883

6 The Fisher–Widom Line of the Square-Well Model

Rather general arguments [17,23] suggest a behavior of the one-dimensional g(r) at large r
of the following form,

g (r) − 1 =
∑

i

Aie
si r � A1e

s1r + A2e
s2r + A3e

s3r + · · · , (6.1)

where the sum runs over the discrete set of nonzero poles si of the Laplace transform Ĝ(s),
the amplitudes Ai = Res

[
Ĝ(s)

]
si
being the associated (in general complex) residues, and the
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Fig. 11 Plot of the compressibility factor Z [panels a and b] and of the excess internal energy per particle u
[panels c and d] as functions of density for theTSfluid (2λ1 = λ = 3, ε2/ε = 1

2 ) at T
∗ = 1 [panelsa and c] and

T ∗ = 5 [panels b and d]. The curves are theoretical results Z (A) and u(e), as obtained from the approximations
[1(11)2(11)3(11)]a (—), [1(11)2(11)3(11)]b (– –), and [1(11)2(11)3(11)]c (- - -), while the circles represent MC
data. Note that the three approximations [1(11)2(11)3(11)]a,b,c yield practically indistinguishable results

ordering 0 > Re(s1) ≥ Re(s2) ≥ Re(s3) ≥ · · · is adopted. Note that in Eq. (6.1) the poles
are assumed to be single. In case of si being a multiple pole, the corresponding term Aiesi r

must be replaced by Res
[
esr Ĝ(s)

]
si
. For the discussion below it is sufficient to assume that

the pole with the largest real part is single.
Equation (6.1) shows that the asymptotic decay of the total correlation function h(r) =

g(r) − 1 is determined by the nature of the pole(s) with the largest real part of the Laplace
transform Ĝ(s) of the RDF. If s1 = −κ + iω and s2 = −κ − iω make a pair of complex
conjugates, then the asymptotic decay of h(r) is oscillatory:

h(r) ≈ 2|A1|e−κr cos(ωr + δ), (6.2)
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where δ is the argument of A1, i.e., A1,2 = |A1|e±iδ . On the other hand, if s1 = −κ ′ is a real
pole, the decay is monotonic, namely

h(r) ≈ A1e
−κ ′r . (6.3)

In general, the oscillatory decay (6.2) reflects the correlating effects of the repulsive part
of the interaction potential, while the correlating effects of the attractive part are reflected
by the monotonic decay (6.3). At a given temperature, the first type of decay takes place
at sufficiently high values of pressure (or density), whereas the monotonic decay occurs at
sufficiently low values of pressure (or density). Following Fisher and Widom [23], the locus
of transition points from one type to the other one (κ ′ = κ) defines a line (the so-called FW
line) in the pressure (or density) versus temperature plane , with a maximum defining a sort
of pseudocritical point.

If the interactions are restricted to the 1st nn, the exact solution is given by Eq. (2.28), so
that the poles of Ĝ(s) are the roots of p̂1(s) − 1 [21,23]. Due to the property (2.24), those
are also roots of p̂�(s)−1 with � = 2, 3, . . .. On the other hand, this equivalence is broken if
the interactions involve 2nd nn and we use our approximations (3.12) and (3.15). Thus, the
poles of Ĝ(s) are determined by the roots of p̂1(s) − 1 in the approximations (3.12b) and
(3.15c), the roots of p̂2(s) − 1 in the approximations (3.12a) and (3.15b), and the roots of
p̂3(s) − 1 in the approximation (3.15a). In each case, the FW line is obtained by solving the
set of coupled equations

p̂�(s = −κ) − 1 = 0, (6.4a)

Re [ p̂�(s = −κ ± iω)] − 1 = 0, (6.4b)

Im [ p̂�(s = −κ ± iω)] = 0, (6.4c)

where in Eq. (6.4a) we have taken into account that κ ′ = κ on the FW line. At given T ,
the solution to Eqs. (6.4) (with � = 1, 2, or 3) gives p, κ , and ω on the FW line. We see
that, as happened with the thermodynamic quantities, [1(α1)2(α2)]a = [1(α1)2(α2)3(α2)]b and
[1(α1)2(α2)]b = [1(α1)2(α2)3(α3)]c in what concerns the FW line. Again, we can focus on the
three approximations [1(11)2(11)3(11)]a,b,c.

Now we apply the above general description to the SW potential (4.1) with varying range
λ. In Fig. 12a we show a comparison between the three approximations [1(11)2(11)3(11)]a,b,c

at λ = 2.1. They agree well up to approximately the location of the pseudocritical point,
i.e., for T ∗ � 1. At lower temperatures, however, the two approximations [1(11)2(11)3(11)]b,c
[i.e., the solutions to Eq. (6.4) with � = 1, 2] exhibit an unphysical increase of the pressure as
temperature decreases. Thismay be regarded as an artifact of the approximations,which break
down at small temperatures when the particles of the fluid are highly coupled. Nevertheless,
the approximation [1(11)2(11)3(11)]a is qualitatively correct.

The influence of λ on the FW line is analyzed in Fig. 12b, where the exact results for
λ = 1.5 and 2 are contrasted with those resulting from our approximation [1(11)2(11)3(11)]a
for λ = 2.1, 2.2, and 2.3. We can see that the most relevant trends observed when increasing
λ in the “safe” exact domain (λ ≤ 2) are extended to the domain λ > 2. In particular, the
location of the pseudocritical point moves to larger values of temperature and, especially, of
pressure as the range λ increases. Also, at a given T ∗ (larger than the pseudocritical value),
the oscillatory–monotonic transition takes place at noticeably higher values of p∗, even if λ

is increased very little. Nonetheless, the approximation [1(11)2(11)3(11)]a predicts too sharp a
decay of the FW line below the pseudocritical temperature, even crossing the lines of smaller
λ. We believe this to be an artifact of the approximation, which becomes less reliable as
temperature decreases.

123

Author's personal copy

One-Dimensional Fluids with Second Nearest-Neighbor Interac-
tions 806



R. Fantoni, A. Santos

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

pσ
/ε

kBT/ε

oscillatory

monotonic

(a)

[1(11)2(11)3(11)]a
[1(11)2(11)3(11)]b
[1(11)2(11)3(11)]c 0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6
pσ

/ε
kBT/ε

oscillatory

(b)

λ=1.5
λ=2.0
λ=2.1
λ=2.2
λ=2.3

Fig. 12 a FW line for the SW fluid with λ = 2.1, as calculated from the approximations [1(11)2(11)3(11)]a
(—), [1(11)2(11)3(11)]b (– –), and [1(11)2(11)3(11)]c (- - -). b FW lines for the SW fluid with λ = 1.5 (—),
2 (– –), 2.1 (- - -), 2.2 (· · · ), and 2.3 (– · –); the lines corresponding to λ = 1.5 and 2 are exact, while those
corresponding to λ > 2 were calculated from the approximation [1(11)2(11)3(11)]a

7 Conclusions

In this work we have proposed a detailed analysis of approximate analytical extensions to 2nd
nn fluids of the exact analytical solution of 1st nn fluids confined in one spatial dimension.
The inclusion of the 2nd nn interactions renders the calculation of the partition function and
the various correlation functions extremely more cumbersome than in the 1st nn case. In
particular, the exact solution is not tractable anymore. A detailed diagrammatic analysis of
the exact structure of the correlation functions and of their various approximations has also
been carried out in the spirit of the Mayer cluster diagrams.

Two stages have been followed to determine the RDF g(r). In the first stage, attention is
focused on the �th nn probability distribution function p�(r). The exact p�(r), which involves
a many-body problem, is approximated by p(k1k2)

� (r), where only integrals involving the
k1 particles to the left of particle 1 and the k2 particles to the right of particle � + 1 are
incorporated. In the second stage, a finite number of functions p̂1(s), p̂2(s), …, p̂�(s) (in
Laplace space) are used to approximate the Laplace transform of the RDF, Ĝ(s). This double
sequence of approximations becomes the exact solution only in the infinite order limit, i.e.,
if � → ∞ in the construction of Ĝ(s) and k1, k2 → ∞ in the construction of p(k1k2)

� (r).

Here we have restricted ourselves to k1, k2 ≤ 1 in the construction of p(k1k2)
� (r) and to

� = 3 in the construction of Ĝ(s). Out of this, our recommended approximation is given by
Eq. (3.15a) complemented by Eqs. (3.4), (3.7), and (3.10). We have denoted this combined
approximation as [1(11)2(11)3(11)]a .

Our theoretical approach has been assessed by comparison with our own MC simulations
for the SW and TS fluids, in both cases with the largest potential range compatible with
2nd nn interactions. The comparison has been made both at the level of the most common
thermodynamic quantities, such as the equation of state and the internal energy per particle,
and at the level of the RDF. Also some internal thermodynamic consistency tests (three
different routes to the equation of state, two to the isothermal susceptibility, and two to

123

Author's personal copy

One-Dimensional Fluids with Second Nearest-Neighbor Interac-
tions 807



One-Dimensional Fluids with Second Nearest–Neighbor Interactions

the internal energy) have been carefully addressed. We have found that [1(11)2(11)3(11)]a
is a sufficiently good approximation for the SW fluid, while the simpler approximation
[1(11)2(11)]a is already good enough for the TS potential (at least when the depth of the
second step, affecting also the 2nd nn, is one half the depth of the first step, affecting only
the 1st nn).

Finally, we have calculated the FW line (separating states where the correlation function
decays monotonically from those where it decays in an oscillatory way) of the SWmodel for
various ranges. Although the reliability of the approximation [1(11)2(11)3(11)]a is expected
to worsen at temperatures lower than the pseudocritical one, the results clearly show that the
FW line is rather sensitive to changes in the potential range, the pseudocritical point moving
to higher temperatures and, especially, pressures as the range increases

The analysis presented here can become a useful tool, as an approximate extension to the
2nd nn fluid of the exact 1st nn fluid analytical solution, whenever one wants to find an easy,
albeit approximate, solution for the fluid properties, both structural and thermodynamic. It
can avoid having to resort to simulations or serve as a guide to them, with the necessary
caution of keeping in mind that the reliability of the approach is expected to worsen at very
low temperatures.

Our general scheme can be easily generalized to the inclusion of any number of nn inter-
actions, but one must treat each case independently. This is an alternative procedure to the
eigenvalue route used, for example, in Ref. [19] towards the analytical solution of a generic
(non-quantum) one-dimensional fluid of impenetrable particles interacting through pair inter-
actions which reflect the fact that the particles are “living” on the line or simply moving on
the line but embedded in a higher dimensional space. It is also worth mentioning that the
isothermal-isobaric ensemble results can be regarded as evaluation of a generating function;
embedding in an overcomplete density functional formalism [38] makes extension to non-1st
nn interactions possible.

On the other hand, themethod cannot be easily generalized tomore than one spatial dimen-
sion since a crucial ingredient is the ordering of the particles on the line,which is lost in dimen-
sions higher than one. Of course, following a bottom-up strategy, one is free to blindly adapt
our approximation scheme, for example, to the more realistic three-dimensional case (where
even the SW potential with λ < 2 cannot be solved exactly), but the result remains uncertain.
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P and the Junta de Extremadura (Spain) through Grant No. GR15104, both partially financed by “Fondo
Europeo de Desarrollo Regional” funds.

A Derivation of Eqs. (2.14), (2.16), and (2.18)

A.1 Equation (2.14)

By a change of variables from absolute coordinates ({xi }) to relative coordinates ({ri }), we
find that Eq. (2.12) can be rewritten as

p1(r) ∝ e−βφ(r)
∫ ∞

r
dL e−βpL

∫ L−r

0
dr3 e

−βφ(r3)e−γβφ(r+r3)

×
∫ L−r−r3

0
dr4 e

−βφ(r4)e−γβφ(r3+r4) · · ·

123

Author's personal copy

One-Dimensional Fluids with Second Nearest-Neighbor Interac-
tions 808



R. Fantoni, A. Santos

×
∫ L−r−r3−···−rN−1

0
drN e−βφ(rN )e−γβφ(rN−1+rN )

× e−βφ(rN+1)e−γβφ(rN+rN+1)e−γβφ(rN+1+r), (A.1)

where rN+1 = L − r − r3 − . . . − rN and we have taken into account that rN+2 = r . The
change of variables L → L ′ = L − r implies that a factor e−βpr comes out of the integrals.
Exchanging the integral over L ′ and the integral over r3 we get

p1(r) ∝ e−β[pr+φ(r)]
∫ ∞

0
dr3 e

−βφ(r3)e−γβφ(r+r3)
∫ ∞

r3
dL ′ e−βpL ′

×
∫ L ′−r3

0
dr4 e

−βφ(r4)e−γβφ(r3+r4) · · ·

×
∫ L ′−r3−···−rN−1

0
drN e−βφ(rN )e−γβφ(rN−1+rN )e−βφ(rN+1)

× e−γβφ(rN+rN+1)e−γβφ(rN+1+r). (A.2)

Next, changing variables L ′ → L ′′ = L ′ − r3 and exchanging the integral over L ′′ and the
integral over r4 we find

p1(r) ∝ e−β[pr+φ(r)]
∫ ∞

0
dr3 e

−β[pr3+φ(r3)]e−γβφ(r+r3)

×
∫ ∞

0
dr4 e

−βφ(r4)e−γβφ(r3+r4)
∫ ∞

r4
dL ′′ e−βpL ′′ · · ·

×
∫ L ′′−r4−···−rN−1

0
drN e−βφ(rN )e−γβφ(rN−1+rN )e−βφ(rN+1)

× e−γβφ(rN+rN+1)e−γβφ(rN+1+r). (A.3)

This process can be continued with L ′′ → L ′′′ = L ′′ − r4, L ′′′ → L IV = L ′′′ − r5, …, until
arriving to L(N−1) = L − r − r3 − · · · − rN = rN+1 (see Fig. 1). After performing all these
changes it is easy to see that Eq. (2.14) is finally obtained.

A.2 Equation (2.16)

Using Eq. (2.1) and the pbc, Eq. (2.15) can be rewritten as

p2(R) ∝ e−γβφ(R)

∫ ∞

R
dL e−βpL

∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2)

×
∫ L−R

0
dr4 e

−βφ(r4)e−γβφ(R−r2+r4)
∫ L−R−r4

0
dr5 e

−βφ(r5)e−γβφ(r4+r5) · · ·

×
∫ L−R−r4−···−rN−1

0
drN e−βφ(rN )e−γβφ(rN−1+rN )e−βφ(rN+1)

× e−γβφ(rN+rN+1)e−γβφ(rN+1+r2). (A.4)

Analogously to the case of p1(r), the change of variables L → L ′ = L − R implies that
a factor e−βpR comes out of the integrals. Exchanging the integral over L ′ and the integral
over r4 we get

123

Author's personal copy

One-Dimensional Fluids with Second Nearest-Neighbor Interac-
tions 809



One-Dimensional Fluids with Second Nearest–Neighbor Interactions

p2(R) ∝ e−β[pR+γφ(R)]
∫ R

0
dr2 e

−βφ(r2)e−βφ(R−r2)

×
∫ ∞

0
dr4 e

−βφ(r4)e−γβφ(R−r2+r4)
∫ ∞

r4
dL ′ e−βpL ′

×
∫ L ′−r4

0
dr5 e

−βφ(r5)e−γβφ(r4+r5) · · ·

×
∫ L ′−r4−···−rN−1

0
drN e−βφ(rN )e−γβφ(rN−1+rN )e−βφ(rN+1)

× e−γβφ(rN+rN+1)e−γβφ(rN+1+r2). (A.5)

Successive changes of variables L ′ → L ′′ = L ′ − r4, L ′′ → L ′′′ = L ′′ − r5, L ′′′ → L IV =
L ′′′ − r6, …, until L(N−2) = L − R − r4 − · · ·− rN = rN+1 allows one to derive Eq. (2.16).

A.3 Equation (2.18)

As before, use of Eq. (2.1) and of the pbc yields

p3(R̄) ∝
∫ ∞

R̄
dL e−βpL

∫ R̄

0
dr2 e

−βφ(r2)e−γβφ(R̄−r2)
∫ R̄−r2

0
dr3

× e−βφ(r3)e−γβφ(r2+r3)e−βφ(R̄−r2−r3)

×
∫ L−R̄

0
dr5 e

−βφ(r5)e−γβφ(R̄−r2−r3+r5)

×
∫ L−R̄−r5

0
dr6 e

−βφ(r6)e−γβφ(r5+r6) · · ·

×
∫ L−R̄−r5−···−rN−1

0
drN e−βφ(rN )e−γβφ(rN−1+rN )

× e−βφ(rN+1)e−γβφ(rN+rN+1)e−γβφ(rN+1+r2). (A.6)

Again, the change of variables L → L ′ = L − R̄ implies that a factor e−βpR̄ comes out of
the integrals. Exchanging the integral over L ′ and the integral over r5, changing variables to
L ′ → L ′′ = L ′ − r5, and continuing this process we finally reach Eq. (2.18).
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Chapter 56

White-dwarf equation of state and
structure: the effect of temperature

Fantoni R., J. Stat. Mech. 113101 (2017)
Title: “White-dwarf equation of state and structure: the effect of temperature”
Abstract: We study the effect of having a finite temperature on the equation of state and
structure of a white dwarf. In order to keep the treatment as general as possible we carry out
our discussion for ideal quantum gases obeying both the Fermi-Dirac and the Bose-Einstein
statistics even though we only use the results for the free electron gas inside a white dwarf.
We discuss the effect of temperature on the stability of the star and on the Fermi hole.
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1.  Introduction

A white dwarf  below the regime of neutron drip, at mass densities less than 
4 × 1011 g cm−3, are stars that emit light of a white color due to their relatively high 
surface temperature of about 104 K. Because of their small radii R, luminous white 
dwarfs, radiating away their residual thermal energy, are characterized by much higher 
eective temperatures, T, than normal stars even though they have lower luminosities 
(which vary as R2T 4). In other words, white dwarfs are much ‘whiter’ than normal 
stars, hence their name [1–3].

The life of white dwarfs begins when a star dies, they are, therefore, compact objects 
[4]. Star death begins when most of the nuclear fuel has been consumed. A white 
dwarfs has about one solar mass M� with characteristic radii of about 5000 km and 
mean densities of around 106 g cm−3. They are no longer burning nuclear fuel and are 
slowly cooling down as they radiate away their residual thermal energy.

They support themselves against gravity by the pressure of cold electrons, near their 
degenerate, zero temperature state. In 1932 Landau [5] presented an elementary explanation 
of the equilibrium of a white dwarf that had been previously discovered by Chandrasekhar 
in 1931 [6–8], building, on the formulation of the Fermi–Dirac statistics in August 1926 
[9] and the work of Fowler in December 1926 [10], on the role of the electron degeneracy 
pressure to keep the white dwarf from gravitational collapse. Landau’s explanation can be 
found in section 3.4 of the book of Shapiro and Teukolsky [4], and fixes the equilibrium 
maximum mass of the white dwarf at Mmax ∼ 1.5M�, whereas Chandrasekhar’s result 
was MCh = 1.456M� for completely ionized matter made of elements with a ratio between 
mass number and atomic number equal to 2. Strictly speaking, one would have a matter 
made of a fluid of electrons and a fluids of nuclei. In the work of Chandrasekhar the fluid 
of electrons is treated as an ideal gas where the electrons are not interacting among them-
selves and the nuclei, thousands times heavier, are neglected.
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Despite their high surface temperature, these stars are still considered cold, how-
ever, because on a first approximation temperature does not aect the equation of state 
of its matter. White dwarfs are described as faint stars below the main sequence in 
the Hertzsprung–Russell diagram. In other words, white dwarfs are less luminous than 
main-sequence stars of corresponding colors. While slowly cooling, the white dwarfs 
change in color from white to red and finally to black. White dwarfs can be considered 
as one possibility for the final stage of stellar evolution since they are considered static 
over the lifetime of the Universe.

White dwarfs were established in the early 20th century and have been studied 
and observed ever since. They comprise an estimated 3% of all the stars of our galaxy. 
Because of their low luminosity, white dwarfs (except the very nearest ones) have been 
very dicult to detect at any reasonable distance and that is why there was very little 
observational data supporting the theory at the time of them being discovered. The 
companion of Sirius, discovered in 1915 by Adams [11, 12], was among the earliest to 
become known. The cooling of white dwarfs is not only a fascinating phenomenon but 
in addition oers information of many body physics in a new setting since the circum-
stances of an original star cannot be built up in a laboratory. Moreover, the evolution 
and the equation of state for white dwarfs can be useful on Earth, providing us with 
more understanding of matter and physics describing the Universe.

In this work, we discuss how the Chandrasekhar analysis at zero temperature should 
be changed in order to take into account the eect of having a quantum ideal gas at 
finite (non-zero) temperature. For the sake of generality we will treat in parallel the 
case of the Fermi and the Bose ideal gases. Only the Fermi case is appropriate for the 
description of the white dwarf interior made of ionized matter characterized by a sea 
of free cold electrons (as Chandrasekhar did, we will neglect the Coulomb interaction 
between the electrons and disregard the nuclei in order to keep the treatment analyti-
cally solvable. We will also use Newtonian gravity to study the star stability disre-
garding general relativistic eects). At the typical surface temperature and density of 
a white dwarf the momentum thermal average fraction of particles having momentum 
�k and a full relativistic dispersion relation (Ck/C0 where Ck is given by equation (2.25) 
below) varies appreciably over a k range that is a fraction of 0.9331 of the k range where 
it is dierent from zero. So we generally expect the eect of temperature to play a role 
in the behavior of the ideal quantum gas. We will pursue our analysis for both the ther-
modynamic properties: as the validity of the various polytropic adiabatic equation of 
state as a function of density, and for the structural properties, such as the Fermi hole.

The paper is organized as follows: in section  2 we review the thermodynamic 
properties of the ideal quantum gases at finite temperatures. This section contains 
three subsections, in the first one, section 2.1, we discuss the importance of a full 
relativistic treatment at high densities, in the second one, section 2.2, we discuss the 
onset of quantum statistics as the star collapses, and in the third one, section 2.3, 
we present the revised Chandrasekhar analysis. In section 3 we present our study of 
the structure of the ideal quantum gases at finite temperature and in the full rela-
tivistic regime.

1 This value will get smaller as the star cools down in view of equation (2.20) and will eventually become close to 
zero as the momentum thermal average fraction approaches a step function.
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2. The thermodynamics of the ideal quantum gas

We want to find the thermodynamic grand potential of a system of many free fermions 
or bosons with a rest mass m in thermodynamic equilibrium at an inverse temperature 
β = 1/kBT .

The Hamiltonian of the system is

H =
∑

i

(−�2c2∆i + m2c4)1/2,
� (2.1)

with Δ the Laplacian and c the speed of light.
Assuming the many particles are distinguishable (Boltzmannons) the density matrix 

operator, ρ̂D, satisfies the Bloch equation

∂ρ̂D(β)

∂β
= −Hρ̂D(β),� (2.2)

ρ̂D(0) = I,� (2.3)
where I is the identity operator. The solution of equation (2.2) in coordinate repre-
sentation R = (r1, . . . , rN), where ri is the position of the ith spinless particle in three-
dimensional space, has the following solution

ρD(R0, R1; β) = 〈R0|e−βH|R1〉 =

∫
dK

(2π)3N
e−iK·(R0−R1)e−β

∑
i(�2c2k2

i +m2c4)1/2

,

�

(2.4)

where K = (k1, . . . ,kN) and Rn = (rn
1 , . . . , r

n
N). A very simple calculation yields the 

propagator ρD in closed form. The result can be cast in the following form

ρD =
∏

i

R(ri
1, ri

0),
� (2.5)

where R in one dimension is

R1d(r
1, r0) =

mc2β

πΨ1/2
K1

(mc

�
Ψ1/2

)
,� (2.6)

where Ψ = (r1 − r0)2 + (�cβ)2 and Kν is the familiar modified Bessel functions of order 
ν. In three dimensions we thus find

R(r1, r0) = − 1

2π|r1 − r0|
dR1d(r

1, r0)

d|r1 − r0|

=
mc2β

4π2Ψ3/2

[mc

�
Ψ1/2K0

(mc

�
Ψ1/2

)
+ 2K1

(mc

�
Ψ1/2

)
+

mc

�
Ψ1/2K2

(mc

�
Ψ1/2

)]
.

� (2.7)
Note that for the non-relativistic gas, when H = −λ

∑
i ∆i, ρD would have been the 

usual Gaussian Λ−3Ne−(R1−R0)2/4λβ, with λ = �2/2m and Λ =
√

4πβλ, the de Broglie 
thermal wavelength.

Taking care of the indistinguishability of the particles we can describe a system of 
bosons and fermions with spin s = (g − 1)/2 through density matrices, ρ̂B,F, which are 
obtained from the distinguishable one opportunely symmetrized or antisymmetrized, 
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respectively. The corresponding grand canonical partition functions can then be 

found through a standard procedure [13] from ΘB,F = e−βΩB,F =
∑∞

N=0 ZN
B,FeNµβ where 

ZN
B,F = e−βF N

B,F is the trace of ρ̂B,F . Here µ = (ln z)/β is the chemical potential, F is the 

Helmholtz free energy, and Ω is the grand thermodynamic potential.
If V is the volume occupied by the system of particles, the pressure is given by 

P = −Ω/V , and the average number of particles, N = nV = −z∂βΩ/∂z, where n is the 
number density. We find for bosons

βP =
gm2c

2π2β�3

∞∑

ν=1

zν

ν2
K2(βmc2ν),� (2.8)

n =
gm2c

2π2β�3

∞∑

ν=1

zν

ν
K2(βmc2ν),� (2.9)

and for fermions

βP =
gm2c

2π2β�3

∞∑

ν=1

(−1)ν−1zν

ν2
K2(βmc2ν),� (2.10)

n =
gm2c

2π2β�3

∞∑

ν=1

(−1)ν−1zν

ν
K2(βmc2ν).� (2.11)

Clearly in the zero temperature limit (β → ∞) these reduce to (see section 2.3 of [4] 
and our appendix)

P =
g

2

mc2

/λ
3 φ(x),� (2.12)

n =
g

2

x3

3π2/λ
3 ,� (2.13)

φ(x) =
1

8π2

[
x
√

1 + x2

(
2

3
x2 − 1

)
+ ln

(
x +

√
1 + x2

)]
,� (2.14)

where /λ = �/mc, with m the electron mass, is the electron Compton wavelength.
We can then introduce the polylogarithm, bµ, of order μ and the companion fµ 

function,

bµ(z) =
∞∑

ν=1

zν

νµ
,� (2.15)

fµ(z) =
∞∑

ν=1

(−1)ν−1zν

νµ
= −bµ(−z) =

(
1 − 21−x

)
bµ(z).� (2.16)
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At finite temperatures, in the extreme relativistic case, we find for bosons

βP =
g

π2(β�c)3
b4(z),� (2.17)

n =
g

π2(β�c)3
b3(z),� (2.18)

where we used the property zdbµ(z)/dz = bµ−1(z), and for fermions

βP =
g

π2(β�c)3
f4(z),� (2.19)

n =
g

π2(β�c)3
f3(z).� (2.20)

In agreement with section 61 of Landau [14]. And in the non-relativistic case, we find 
for bosons

βP =
g

Λ3
b5/2(z),

� (2.21)

n =
g

Λ3
b3/2(z),� (2.22)

and for fermions

βP =
g

Λ3
f5/2(z),� (2.23)

n =
g

Λ3
f3/2(z),� (2.24)

in agreement with section 56 of Landau [14]. Recalling that the internal energy of the 
system is given by E = −∂ ln Θ/∂β, we find in the extreme relativistic case E = 3PV  
and in the non-relativistic case E = 3PV/2. At very low density n, and high temper
ature T, when n/T 3/2 is very small, b3/2(z) ≈ f3/2(z) is very small and z is also very 
small. In this case b3/2(z) ≈ b5/2(z) ≈ f3/2(z) ≈ f5/2(z) ≈ z and we find for the quantum 
gas E/V ≈ (3/2)KBTn. That is, the non-relativistic classical limit. For the bosons, 
as the temperature gets small at fixed density, b3/2(z) increases (see equation (2.22)) 
and z gets close to 1. bµ(z) is a monotonically increasing function of z, which is only 
defined in 0 � z � 1, so the boson ideal gas must have a chemical potential less than 
zero. b3/2(1) = ζ(3/2) ≈ 2.612 and b5/2(1) = ζ(5/2) ≈ 1.341, where ζ is the Riemann 

zeta function. The temperature Tc = 2π�2

mkB

(
n/g

ζ(3/2)

)
2/3 at which z = 1 is called the critical 

temperature for the Bose–Einstein condensation in the non-relativistic case. For T < Tc 
the number of bosons with energy greater than zero will then be N> = N(T/Tc)

3/2. 
The rest N0 = N [1 − (T/Tc)

3/2] bosons are in the lowest energy state, i.e. have zero 
energy. For the fermions the activity is allowed to vary in 0 � z < ∞ and the func-
tions fµ(z) can be extended at z > 1 by using the following integral representation 

fx(z) = [
∫ ∞

0
dy yx−1/(ey/z + 1)]/Γ(x), where Γ is the usual gamma function.

White-dwarf equation of state and structure: the effect of tem-
perature 819



White-dwarf equation of state and structure: the eect of temperature

7https://doi.org/10.1088/1742-5468/aa9339

J. S
tat. M

ech. (2017) 113101

Given the entropy S = −∂Ω/∂T  we immediately see that, in both the extreme rela-
tivistic and the non-relativistic cases, S/N must be a homogeneous function of order 
zero in z, and that along an adiabatic process (S/N constant) we must have z constant. 
Then, on an adiabatic, in the extreme relativistic case, P ∝ n1+1/3, a polytrope of index 
3, and in the non-relativistic case, P ∝ n1+2/3, a polytrope of index 3/2. This conclusion 
clearly continues to hold at zero temperature when z → ∞ and the entropy is zero.

2.1. Relativistic eects at high density in a gas of fermions

The thermal average fraction of particles having momentum p = �k is given by

Ck =
g

N

1

eβ[ε(k)−µ] − ξ
=

g

Nξ
b0

(
ξze−βεk

)
, V

∫
dk

(2π)3
Ck = 1,� (2.25)

where ξ = +1, − 1 and 0 refer to the Bose, Fermi and Boltzmann gases, respectively.
In a degenerate (T = 0) Fermi gas we can define the Fermi energy as 

εF = µ =
√

p2
Fc2 + m2c4 , in terms of the Fermi momentum pF. From equa-

tion  (2.25) it follows that the thermal average fraction of particles having momen-
tum p = �k is Ck = (g/N)Θ[µ − ε(k)], where Θ is the Heaviside unit step function and 
ε(k) =

√
�2k2c2 + m2c4 is the full relativistic dispersion relation. We will then have for 

the density

n =
g

h3

∫ pF

0

4πp2 dp =
4πg

3h3
p3

F.� (2.26)

We then see immediately that at high density the Fermi momentum is also large, and 
as a consequence the Fermi gas becomes relativistic. By contrast, the degenerate Bose 
gas will undergo Bose–Einstein condensation and have all the particles in the zero 
energy state.

At finite temperature, from the results of the previous section, we find that since 
fµ(z) is a monotonously increasing function of z then at large density n, z is also large 
and at fixed temperature this implies that the chemical potential μ is also large. In 
view of equation (2.25) this means that in the gas there are fermions of ever increasing 
momentum so that a relativistic treatment becomes necessary.

From equations (2.10) and (2.11) it is possible (see appendix) to extract the full 
relativistic adiabatic equation of state as a function of temperature and observe the 
transition from the low density regime to the high density extreme relativistic one. 
In figure 1 we show the exponent Γ = d ln P/d ln n for the adiabatic full relativistic 
equation of state as a function of density. For the sake of the calculation it may be 
convenient to use natural units � = c = kB = 1. From the figure we see how at high 
density (which implies high activity) Γ → 4/3. This figure should be compared with 
figure 2.3 of [4] for the degenerate Fermi gas. In particular we see how at a temper
ature of T = 20 000 K the Fermi gas can already be considered extremely relativistic 
at an electron number density n � 1025 cm−3. While we know (see [4] and equa-
tions (2.12)–(2.14)) that the completely degenerate gas becomes extremely relativistic 
for n � 1031 cm−3.
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2.2. The onset of quantum statistics

For a spherically symmetric distribution of matter, the mass interior to a radius r is 
given by

m(r) =

∫ r

0

ρ4πr′2 dr′, or
dm(r)

dr
= 4πr2ρ.� (2.27)

Here, since we are considering non-relativistic matter made of completely ionized ele-
ments of atomic number Z and mass number A, ρ = ρ0 = µemun is the rest mass den-
sity with µe = A/Z the mean molecular weight per electron and mu = 1.66 × 10−24 g 
the atomic mass unit. If the star is in a steady state, the gravitational force balances 
the pressure force at every point. To derive the hydrostatic equilibrium equation, con-
sider an infinitesimal fluid element lying between r and r + dr and having an area dA 
perpendicular to the radial direction. The gravitational attraction between m(r) and 
the mass dm = ρdAdr is the same as if m(r) were concentrated at a point at the center, 
while the mass outside exerts no force on dm. The net outward pressure force on dm is 
−[P (r + dr) − P (r)]dA, where P is the pressure. So, in equilibrium,

dP

dr
= −Gm(r)ρ

r2
,� (2.28)

where G is the universal gravitational constant2.
A consequence of the hydrostatic equilibrium is the virial theorem. The gravita-

tional potential energy of the star of radius R is

Figure 1.  The exponent Γ = d ln P/d ln n for the adiabatic full relativistic 
equation of state as a function of density. We chose a temperature T = 20 000 K 
and zero entropy, g = 2, and m is the mass of an electron. n is in cm−3.

2 Here we are assuming Newtonian theory of gravity. For the general relativistic stability analysis see for example 
section 6.9 of [4].
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W = −
∫ R

0

Gm(r)

r
ρ4πr2 dr

=

∫ R

0

dP

dr
4πr3 dr

= −3

∫ R

0

P4πr2 dr,

�

(2.29)

where we have integrated by parts.
Now we assume that the gas of fermions is characterized by an adiabatic equa-

tion of state

P = KρΓ
0 , K, Γ = 1 +

1

n
constants,� (2.30)

which is also called a polytrope of polytropic index n. For example, for fermions in the 
extreme relativistic limit we find

K =
P

ρ4/3
=

π2/3�c

g1/3(µemu)4/3

f4(z)

f
4/3
3 (z)

,� (2.31)

where z depends on the temperature and density and goes to infinity in the degenerate 

limit (limz→∞ f4(z)/f
4/3
3 (z) = 31/3/25/3). At the temperature and density typical of a 

white dwarf z is very large so the equation of state is practically indistinguishable from 
the one in the degenerate limit.

Calling u′ the energy density of the gas, excluding the rest mass energy, we must 
have from the first law of thermodynamics, assuming adiabatic changes,

d(u/ρ0) = −Pd(1/ρ0),� (2.32)
and integration leads to

u = ρ0c
2 +

P

Γ − 1
,� (2.33)

which gives u′ = P/(Γ − 1). Now equation (2.29) can be rewritten as

W = −3(Γ − 1)U,� (2.34)

where U =
∫ R

0
u′4πr2 dr is the total internal energy of the star. The total energy of the 

star, E = W + U , is then

E = − 3Γ − 4

3(Γ − 1)
|W |.� (2.35)

If equation (2.30) holds everywhere inside the star of total mass M and constant den-
sity, then the gravitational potential energy is given by

W = −3

∫ M

0

P

ρ
dm(r) = −3(Γ − 1)

5Γ

GM2

R
,� (2.36)
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where we used d(P/ρ) = [(Γ − 1)/Γ]Gm(r)d(1/r) and integrated by parts using 
Γ > 1.

Without nuclear fuel, E decreases due to radiation. According to equa-
tions  (2.35) and (2.36), ∆E < 0 implies ∆R < 0 whenever Γ > 4/3. That is, the 
star contracts and the gas will soon become quantum (see [4] section 3.2). Can the 
star contract forever, extracting energy from the infinite supply of gravitational 
potential energy until R goes to zero or until the star undergoes total collapse? 
The answer is no for stars with M ∼ M�, as is demonstrated by Chandrasekhar 
[15] or in the book of Shapiro and Teukolsky [4]. We will reproduce their treat-
ments in the next section.

2.3. The Chandrasekhar limit

The hydrostatic equilibrium equations (2.27) and (2.28) can be combined to give

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ.� (2.37)

Substituting the equation of state (2.30) and reducing the result to dimensionless form 
with

ρ = ρcθ
n,� (2.38)

r = aη,� (2.39)

a =

√
(n + 1)Kρ

1/n−1
c

4πG
,� (2.40)

where ρc = ρ(r = 0) is the central density, we find

1

η2

d

dη
η2 dθ

dη
= −θn.� (2.41)

This is the Lane–Emden equation for the structure of a polytrope of index n. The 
boundary conditions at the center of a polytropic star are

θ(0) = 1,� (2.42)

θ′(0) = 0.� (2.43)
The condition (2.42) follows directly from equation (2.38). Equation (2.43) follows from 
the fact that near the center m(r) ≈ 4πρcr

3/3, so that, using equation (2.27), dρ/dr = 0.
Equation (2.41) can be easily integrated numerically, starting at η = 0 with the 

boundary conditions (2.42) and (2.43). One finds that for n < 5 (Γ > 6/5), the solutions 
decreases monotonically and have a zero at a finite value η = ηn: θ(ηn) = 0. This point 
corresponds to the surface of the star, where P = ρ = 0. Thus the radius of the star is

R = aηn,� (2.44)
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while the mass is

M =

∫ R

0

4πr2ρ dr

= 4πa3ρc

∫ ηn

0

η2θn dη

= −4πa3ρc

∫ ηn

0

d

dη

(
η2 dθ

dη

)
dη

= 4πa3ρcηn|θ′(ηn)|.

�

(2.45)

Eliminating ρc between equations (2.44) and (2.45) gives the mass–radius relation for 
polytropes

M = 4πR(3−n)/(1−n)

[
(n + 1)K

4πG

]n/(n−1)

η(3−n)/(1−n)
n η2

n|θ′(ηn)|.� (2.46)

The solutions we are particularly interested in are

Γ =
5

3
, n =

3

2
, η3/2 = 3.653 75, η2

3/2|θ′(η3/2)| = ω3/2 = 2.714 06,� (2.47)

Γ =
4

3
, n = 3, η3 = 6.896 85, η2

3|θ′(η3)| = ω3 = 2.018 24,� (2.48)

which, as explained in section 2.1, corresponds to the low density non-relativistic case 
and to the high density relativistic case, respectively. Note that for Γ = 4/3, M is inde-
pendent of ρc and hence R. We conclude that as ρc → ∞, the electrons become more 
and more relativistic throughout the star, and the mass asymptotically approaches the 
value

MCh = 4πω3

(
K

πG

)3/2

,� (2.49)

as R → 0. The mass limit (2.49) is called the Chandrasekhar limit (see equation (36) in 
[6], equation (58) in [16], or equation (43) in [17]) and represents the maximum possible 
mass of a white dwarf.

In figure  2 we show the temperature dependence of the Chandrasekar limit at 
µe = 2.

For the dependence of the star mass on the central density as it develops through 
the various polytropes, as shown in figure 1, see for example figure 3.2 of [4]. Clearly in 
the high ρc → ∞ limit we will have in the degenerate limit z → ∞, from equation (2.31),

M → MCh = 1.456 39

(
2

µe

)2

M�,� (2.50)

where µe can be taken approximately equal to 2 or to 56/26, assuming that all the ele-
ments have been subject to nuclear fusion in the stable iron 5626Fe.

The star will not become a black hole if R > rs (see figure  1.1 of [4]), with 
rs = 2GMCh/c

2 the Schwarzschild radius in the Chandrasekhar limit, i.e.
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K <
η3c

2

23ω3ρ
1/3
c

,� (2.51)

where K is given by (2.31). This suggests that at high enough central densities the 
star’s fate is to become a black hole. The critical central density is given in the degen-
erate z → ∞ limit by ρ̄c = g(µe/2)4(2.3542 × 1017 g cm−3) which is well above the one 
required for the neutron drip.

If the star has a mass lower than MCh it will not reach the Chandrasekhar limit 
but will remain on a polytrope with n < 3. If the star has a mass higher than MCh it 
will eventually evolve through a supernovae explosion into a more compact object as a 
neutron star (when electrons are captured by protons to form neutrons by β+ decay), 
a quark star, or a black hole.

3. The structure of the ideal quantum gas

The radial distribution function g(r) is related to the structure factor S(k) by the fol-
lowing Fourier transform

n[g(r) − 1] =
1

V

∑

k

eik·r[S(k) − 1].� (3.1)

Taking into account that the operator of the particle number N0 is a con-
stant of motion, the fluctuation–dissipation theorem (see appendix of [18]) 
χ′′(k, ω) = (nπ/�)(1 − e−β�ω)S(k, ω), can be solved for the van Hove function

S(k, ω) =
�
nπ

[1 − δk]
χ′′(k, ω)

1 − e−β�ω
+

〈
(δN)2

N

〉
δkδ(ω),� (3.2)

Figure 2.  Temperature dependence of the Chandrasekar limit at µe = 2. We recall 
that z = eβµ.
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where 〈. . .〉 represents averaging in the grand canonical ensemble. The static structure 

factor S(k) =
∫ ∞

−∞ dω S(k, ω) is then

S(k) =
�
nπ

[1 − δk]

∫ ∞

0

dω χ′′(k, ω) coth

(
β�ω

2

)
+

〈
(δN)2

N

〉
δkδ(ω),� (3.3)

where the last term does not contribute in the thermodynamic limit [19]. We substitute 
(see appendix of [18])

χ′′(k, ω) = Nπ

∫
dk′

(2π)3
Ck′{δ[�ω − ∆k′(k)] − δ[�ω + ∆k′(k)]},� (3.4)

with ∆k′(k) = ε(|k′ + k|) − ε(k′), and obtain for k �= 0

S(k) = V

∫
dk′

(2π)3
Ck′ coth

{
1

2
β[ε(|k′ + k|) − ε(k′)]

}
, k > 0,� (3.5)

where Ck denotes the thermal average fraction of particles having momentum �k defined 
in equation (2.25).

For further analytical manipulation we rewrite

β

2
[ε(k) − µ] = ln

√
g

NCk

+ ξ.� (3.6)

One rewrites equation  (3.5) changing variables first k + k′ → k and subsequently 
k → −k to find

S(k) = V

∫
dk′

(2π)3
C|k+k′| coth

{
1

2
β[ε(k) − ε(|k + k′|)]

}
.� (3.7)

Adding equations (3.5) and (3.7) and making use of the fact that the hyperbolic cotan-
gent is an odd function, one finds

2S(k) = V

∫
dk′

(2π)3
(Ck′ − C|k+k′|) coth

{
1

2
β[ε(|k′ + k|) − ε(k′)]

}
.� (3.8)

Now using equation (3.6) we find

S(k) =
V

2

∫
dk′

(2π)3
(Ck′ − C|k+k′|) coth

[
ln

√
g

NC|k+k′|
+ ξ − ln

√
g

NCk′
+ ξ

]

=
V

2

∫
dk′

(2π)3

(
Ck′ + C|k+k′| +

2Nξ

g
Ck′C|k+k′|

)

= 1 +
V Nξ

g

∫
dk′

(2π)3
Ck′C|k+k′|, k > 0,

�

(3.9)

where coth[ln
√

x] = (x + 1)/(x − 1) was used in the middle step. From this follows

1

V

∑

k �=0

eik·r[S(k) − 1] =
nξ

g



2C0

∑

k �=0

Cke
ik·r +

∣∣∣∣∣
∑

k �=0

Cke
ik·r

∣∣∣∣∣

2


 ,� (3.10)
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where C0 = δξ,1Θ(Tc − T )N0/N , with Θ the Heaviside step function, denotes the frac-
tion of particles that occupy the zero momentum state. We then introduce the function 

F (r) =
∑

k Cke
ik·r. This assume the following forms

Fr(r) = C0(T ) +
g

2π2n(β�c)2ξ

∫ ∞

0

κdκ b0

(
ξze−

√
κ2+β2m2c4

)
sin

(
1

β�c
κr

)
/r,

� (3.11)

Fer(r) = C0(T ) +
g

2π2n(β�c)2ξ

∫ ∞

0

κdκ b0

(
ξze−κ

)
sin

(
1

β�c
κr

)
/r,� (3.12)

Fnr(r) = C0(T ) +
2g

πnΛ2ξ

∫ ∞

0

κdκ b0

(
ξze−κ2

)
sin

(
2
√

π

Λ
κr

)
/r.� (3.13)

in the relativistic ε(k) =
√

�2k2c2 + m2c4, extreme relativistic ε(k) = c�k, and non-rela-
tivistic ε(k) = λk2 cases, respectively. Inserting equations (3.9) into (3.1) we find

g(r) = 1 +
ξ

g

[
F 2(r) − C2

0(T )
]
.� (3.14)

which generalizes equation (117.8) of Landau [14]. In figure 3 we show the redial distri-
bution function for fermions in the relativistic and the non-relativistic cases. From the 
figure we see how the Fermi hole becomes larger in the non relativistic case at smaller 
number densities. Increasing the temperature by one order of magnitude (see figure 3.3 
of [4]), keeping the density fixed produces a change in the radial distribution function 
of the order of 10−2, with the Fermi hole getting smaller.

For the electron gas we should include the Coulomb interaction between the par-
ticles: the jellium. The radial distribution function of the jellium cannot of course be 
calculated exactly analytically; for a Monte Carlo simulation of the degenerate (T = 0) 

Figure 3.  The radial distribution function for ideal electrons (ξ = −1, g = 2) in 
the relativistic and the non-relativistic cases. Here we chose T = 20 000 K and 
n = 1.04 × 1022 cm−3 in the non-relativistic case and n = 5.93 × 1024 cm−3 in the 
relativistic case. r is in angstroms.
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jellium see, for example, [20] and for the jellium at finite temperature see, for example, 
[21].

Actually a more accurate result could be found by treating the white dwarf mat-
ter as a binary mixture of electrons and nuclei, which can today be done exactly with 
Monte Carlo simulation techniques such as the one devised in [22].

From these numerical studies one could extract a more accurate value for the 
constant K in the adiabatic equation  of state and thus the critical central density 
ρ̄c = (η3c

2/23ω3K)3.

4. Conclusions

In this work we studied the importance of temperature dependence on ideal quantum 
gases relevant for white dwarf interiors. Even if the temperature of the star is six 
orders of magnitude smaller than the Fermi energy of the electron gas inside the star, 
we find that the temperature eects are quite relevant at white dwarf densities and 
temperatures. In particular we show that the adiabatic equation  of state becomes 
extremely relativistic, with Γ = 4/3, at densities six orders of magnitude lower than the 
ones required for the completely degenerate, T = 0, case. Even if the polytropic form 
of the adiabatic equation of state remains the same as that at zero temperature, the 
proportionality constant K changing by just a 10−10 relative factor between the finite 
temperature case and the zero temperature case, we think that an accurate analysis of 
the star evolution, at least at the level of the ideal electron gas approximation in the 
absence of nuclei, should properly take into account the temperature eects. This gives 
us a complete exactly solvable analytic approximation for the compact star interior at 
a finite temperature. We could comment that the temperature eects are smaller than 
the corrections necessary to take into account the Coulomb interactions between the 
electrons and of the presence of the nuclei, but from a calculation point of view it is still 
desirable to keep under control the magnitude of the temperature corrections alone. 
Since this can be done analytically we think that their analysis is relevant by itself.

We gave the generalization to finite temperature of all the zero temperature results 
used by Chandrasekhar and, in order to keep the treatment as general as possible, we 
studied in parallel the Fermi and the Bose gases. Clearly, only the Fermi gas results 
were used for the description of the ideal electron gas in the star interior.

We then studied the structure of the ideal quantum gas as a function of temper
ature. We found the Fermi hole for the cold electron gas in a white dwarf, which turned 
out to be of the order of 1 Å in the full relativistic regime at a number density of the 
order of n ∼ 1026 cm−3 and bigger in the non-relativistic regime at smaller densities and 
fixed temperature. The radial distribution function was also aected by the temper
ature and the Fermi hole gets smaller as the temperature increases at fixed density.

We also pointed out that in order to correct our result for the Coulomb interac-
tion among the electrons and for the presence of the nuclei, it is necessary to abandon 
the analytic treatment in favor of a numerical simulation. We gave some relevant 
references for Monte Carlo methods that are important to adopt to solve this fasci-
nating subject. These corrections to the Chandrasekhar result or to our temperature 
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dependent treatment are important more from a philosophical point of view rather 
than an experimental or observational point of view. They would lead us to the exact 
knowledge of the properties of a mixture of electrons and nuclei at astrophysical condi-
tions such as the ones found in white dwarfs.

Moreover, let us observe that only a general relativistic statistical physics theory 
would give us fully correct results for the stability of a white dwarf. But since this 
theory has not yet been formulated [23] we will have to wait until the theory becomes 
available.

Appendix. The adiabatic equation of state for a relativistic ideal electron  
gas at finite temperature

Using the dispersion relation ε(k) =
√

�2k2c2 + m2c4, with m the rest mass of an elec-
tron, we find the pressure and the density from,

βP = g

∫
dk

(2π)3
ln

(
1 + ze−βε(k)

)
,� (A.1)

n = g

∫
dk

(2π)3

1

eβε(k)/z + 1
.� (A.2)

Integrating by parts the pressure equation and changing variable κ = β�ck we find

βP =
g

(β�c)3

1

2π2

1

3

∫
dκ

κ3/
√

κ2 + (βmc2)2

e
√

κ2+(βmc2)2/z + 1
,� (A.3)

n =
g

(β�c)3

1

2π2

∫
dκ

κ2

e
√

κ2+(βmc2)2/z + 1
.� (A.4)

These equations are equivalent to equations (2.10) and (2.11) in the main text. Then 
the entropy is given by

S/V kB = g

∫
dk

(2π)3
ln

(
1 + ze−βε(k)

)
− g

∫
dk

(2π)3

ln z − βε(k)

eβε(k)/z + 1
.� (A.5)

On an adiabatic the entropy per particle s = S/NkB is constant, and from equa-
tion (A.1) it follows that

βP = g

∫
dk

(2π)3

ln z − βε(k)

eβε(k)/z + 1
+ sn.� (A.6)
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It is well known that a one-component classical sticky-hard-sphere (SHS) liquid [1] is 
thermodynamically unstable [2].

Nonetheless, when studied with a Monte Carlo computer simulation the fluid is 
stable [3]. This is due to the fact that a computer can only work with numbers with 
a finite number of decimal figures. The computer arithmetics in fact diers from the 
arithmetics of real number because the standard representation of numbers must use a 
finite and fixed number of bits. So that the fluid studied through the computer simula-
tion will necessarily be polydisperse (in size). And it has been proven that the polydis-
perse SHS fluid is indeed thermodynamically stable [2].

It is then legitimate to pose the following questions: what would the outcome 
for the radial distribution function of a quantum SHS fluid, obeying to Boltzmann 
statistics (for the sake of simplicity), calculated through the path integral Monte 
Carlo simulation, be? Can one find a reasonable approximation for it, through other 
means? The relevant parameters of the problem will be the inverse temperature 
β = 1/KBT , the density ρ, the spheres mass m and diameter σ, and α the adhesion 
coecient.

The aim of the note is to show how one may try to answer these questions using an 
approach devised by Chandler and Wolynes [4] which relies on an isomorphism between 
the quantum statistical mechanics of a many body system and the classical statisti-
cal mechanics of a particular polyatomic fluid. Using the path integral formulation 
of quantum statistical mechanics it can be shown (see appendix) that the canonical 
partition function of a system of N quantum identical particles of mass m obeying to 
Boltzmann statistics and interacting through a pair potential v(r), at absolute temper
ature T, is approached in the P → ∞ limit by the classical partition function of N 
indistinguishable ring molecules made up of P distinguishable atoms, at temperature 
TP, with a total potential energy

V (R0, . . . , RP−1) =
P−1∑

t=0

{
|Rt − Rt+1|2

4λε2
+

N∑

i<j

v(|r(t)
i − r

(t)
j |)

}
,

� (1)

where Rt ≡ (r
(t)
1 , . . . , r

(t)
N ) are the positions of the atoms at site (imaginary thermal time 

slice) t of the N molecules, with Rp = R0, and

λ =
�2

2m
,� (2)

ε =
β

P
.� (3)
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This is known as the primitive action as explained in the appendix.
Note that for the SHS Baxter model [1] one has

e−βv(r) − 1
sticky limit−→ −θ(σ − r) + σαδ(r − σ),� (4)

where the adhesion coecient α = ε/ε0 = 1/12τ , with ε0 a characteristic energy scale, 
is a monotonous function of β. We can say that τ = τ(β) is a monotonously increasing 
function of the absolute temperature T representing a reduced temperature. The prob-
lem is then well set only upon assigning the function τ(β).

The radial distribution function of the quantum system is then given by

g(r; β) = lim
P→∞

1

P

P−1∑

t=0

g0t(r; β/P ),� (5)

where gtt′ is the intermolecular site-site radial distribution function of the isomorphic 
classical system.

The idea of Chandler and Wolynes is to use the reference interaction site model 
(RISM) theory [5] to determine the g0t for t = 0, . . . , P − 1 for a given P (P  =  2 being 
the simplest but less accurate approximation). That is, one needs to solve the following 
integral equation subject to a given closure

ĥ(k; ε) =

ω̂ωω(k; ε)ĉ(k; ε)[1 − ρω̂ωω(k; ε)ĉ(k; ε)]−1ω̂ωω(k; ε),
� (6)

where ĥ(k; ε) and ĉ(k; ε) are the matrices whose elements are the Fourier transform of 
the intermolecular site-site total correlation function htt′(r; ε) = gtt′(r; ε) − 1 and direct 
correlation function ctt′(r; ε) respectively and the elements of ω̂ωω(k; ε) are the Fourier 
transform of

ωtt′(r; ε) = δtt′δ(r) + (1 − δtt′)stt′(r; ε),

=

{
δ(r) t = t′

stt′(r; ε) t �= t′
�

(7)

where stt′(r; ε) are the intramolecular site-site radial distribution functions of the iso-
morphic classical system, for which a reasonable approximation is

stt′(r; ε) ≈ γtt′ e
− r2

4λ|t−t′|ε ySHS(r; τ(|t − t′|ε)),� (8)

where the normalization constant γtt′ should be determined from the condition
∫

stt′(r; ε) dr = 1,� (9)

and ySHS(r; τ) is the cavity radial distribution function of a system of classical SHS of 
diameter σ, with reduced temperature τ at a packing fraction η = πρσ3/6, ρ = N/V  
being the density. That is ySHS(r; τ) = gSHS(r; τ) exp[τv(r)] which is a continuous func-
tion of r even when the radial distribution function of the SHS model, gSHS, and/or v 
are discontinuous.

In equation (8) the exponential factor stems from the kinetic part of the action and 
again we used the functional dependence of the adhesion coecient τ on the inverse 
temperature |t − t′|ε.
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Clearly we will have ySHS(r; τ) = gSHS(r; τ) for r > σ. The Laplace transform of 
rgSHS(r; τ) in the Percus–Yevick approximation for the SHS system is given by [6]

ĜSHS(s) =

∫ ∞

0

dr e−srrgSHS(r; τ)

=
e−s

s2

Λ0 + Λ1s + Λ2s
2

1 − 12η[ϕ2(s)Λ0 + ϕ1(s)Λ1 + ϕ0(s)Λ2]
,

�
(10)

where,

ϕk(x) = x−(k+1)

(
k∑

l=0

(−x)l

l!
− e−x

)
,� (11)

and

Λ0 =
1 + 2η

(1 − η)2
− 12η

1 − η
Λ2,� (12)

Λ1 =
1 + η/2

(1 − η)2
− 6η

1 − η
Λ2.� (13)

Λ2 =
1 − (1 − τ−1)η − w

2τ−1(1 − η)η
,

w =

√
(1 − η)

[
1 − η

(
1 − 2τ−1 +

τ−2

3

)]
+

τ−2

2
η2.

�

(14)

In figure 1 we show the intramolecular site-site radial distribution functions of the isomor-
phic classical system assuming an adhesion coecient independent from temperature.

For the closure one may use the modified mean spherical approximation (mMSA) 
[7]

ctt′(r) = ftt′(r) = e−βvtt′ (r) − 1, r > dtt′ ,� (15)

where

vtt′(r) =

{
v(r) t = t′

0 t �= t′
,� (16)

and

dtt′ =

{
σ t = t′

0 t �= t′
.� (17)

Here we are neglecting the fact that the size of a path (or polymer), its thermal wave-

length, is Λβ =
√

β�2/m1. Combined with the exact relation valid for r � dtt′

1 One may take into account of the size of the path by taking for example dtt′ = {σ for t = t′, {0 for σ <  
Λβ, σ − Λβ for σ > Λβ} for t = t′ ± 1, 0 otherwise}

.
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htt′(r) =

{
σ

12τ
ytt(dtt)δ(r − dtt) − 1 t = t′

−1 t �= t′
,� (18)

where ytt(dtt) are the intermolecular site-site cavity functions at contact which in the 
mMSA are [7]

ytt(dtt) = 1, t = 0, . . . , P − 1.� (19)
Then, for the closure, we will have

ctt′(r) = 0, r > dtt′ ,� (20)

htt′(r) =

{
σ

12τ
δ(r − σ) − 1 t = t′

−1 t �= t′
, r � dtt′ .� (21)

The RISM integral equation (6) can be rewritten as the following Ornstein–Zernike-
like relation,

ĥ(k; ε) = ω̂ωω(k; ε)ĉ(k; ε)ω̂ωω(k; ε) + ρω̂ωω(k; ε)ĉ(k; ε)ĥ(k; ε).
�

(22)

The main obstacle in solving this integral equation  reside in the fact that the 
intramolecular site-site radial distribution function of the isomorphic classical system, 
stt′(r; ε), is known only numerically through Laplace inversion of equation (10) obtained 
for example using the algorithm of Abate and Whitt [8].

The uncontrolled approximations in this treatment reside in: (i) equation (8), where 
we have approximated the full equilibrium distribution function for P cavities form-
ing a molecule with the cavity pair distribution function of the SHS classical fluid 
(this approximation becomes worse and worse as P decreases). Since the primitive 

Figure 1.  The intramolecular site-site radial distribution functions of the 
isomorphic classical system stt′(r; 1) for λ = 1, η = 0.32, and τ = 0.2.

Effect of quantum dispersion on the radial distribution function
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approximation error goes like λε2 [9] it is reasonable to expect that a good enough 
approximation would require λβ2/P 2 ∼ 0.01. Of course one reasonably expects that 
solving RISM equations numerically becomes rapidly a dicult task (including non-
convergence problems) as P increases; (ii) equation (17), where we are neglecting the 
thermal wavelength of a polymer.

To our knowledge the quantum slightly polydisperse Baxter sticky hard spheres 
liquid has never been studied before either through computer simulations of the one-
component system or through other means. To assess the existence of thermodynamic 
and structural properties of such a physical model from a rigorous mathematical point 
of view seems to be a quite formidable task. In this respect the theory of path integrals 
should probably be the place to start to look at. It is infact out of doubt that at any 
finite P the classical isomorphic system is thermodynamically (N → ∞ at constant ρ) 
well defined, but understanding the eect of the slightly polydisperse adhesion (the 
last term in equation (4)) in the P → ∞ (Feynman–Kac-)limit does not seem so easy. 
There are three dierent limits we have to deal with: (i) the sticky limit, (ii) the path 
integral limit, and (iii) the thermodynamic limit. While it is quite customary to take 
the thermodynamic limit in the end, the order of the first two limits should be immat
erial. Moreover we expect the path integral solution to depend crucially on the choice 
of the function τ(T ).

We plan to adopt the present scheme to obtain semi-analytical quantitative results 
for the radial distribution function of the extension to the quantum regime of some of 
the classical fluids studied in [10–24], in the near future.
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Appendix. The primitive action

In this appendix we give a brief review of the derivation of the primitive approximation 
given in [9]. Suppose the Hamiltonian is split into two pieces H = T + V , where T  
and V  are the kinetic and potential operators. Recall the exact Baker–Campbell–
Hausdor formula to expand exp(−εH) into the product exp(−εT ) exp(−εV). As 
ε → 0 the commutator terms which are of order higher than ε2 become smaller 
than the other terms and thus can be neglected. This is known as the primitive 
approximation

e−ε(T +V) ≈ e−εT e−εV� (A.1)
hence we can approximate the exact density matrix by product of the density matrices 
for T  and V  alone. One might worry that this would lead to an error as P → ∞, with 
small errors building up to a finite error. According to the Trotter [25] formula, one 
does not have to worry

e−β(T +V) = lim
P→∞

[
e−εT e−εV]P

.� (A.2)

Effect of quantum dispersion on the radial distribution function
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The Trotter formula holds if the three operators T , V , and T + V  are self-adjoint and 
make sense separately, for example, if their spectrum is bounded below. [26] This is the 
case for the Hamiltonian describing SHS.

Let us now write the primitive approximation in position space R = (r1, r2, . . . , rN) 
with ri the coordinate of the ith particle,

ρ(R0, R2; ε) ≈
∫

dR1〈R0|e−εT |R1〉〈R1|e−εV |R2〉,� (A.3)

and evaluate the kinetic and potential density matrices. Since the potential operator is 
diagonal in the position representation, its matrix elements are trivial

〈R1|e−εV |R2〉 = e−εV (R1)δ(R2 − R1).� (A.4)

The kinetic matrix can be evaluated using the eigenfunction expansion of T . 
Consider, for example, the case of distinguishable particles in a cube of side L with 
periodic boundary conditions. Then the exact eigenfunctions and eigenvalues of T  are 
L−3N/2eiKnR and λK2

n, with Kn = 2πn/L and n a 3N-dimensional integer vector. We 
are using here dimensional units. Then

〈R0|e−εT |R1〉 =
∑

n

L−3Ne−ελK2
ne−iKn(R0−R1)

� (A.5)

= (4πλε)−3N/2 exp

[
−(R0 − R1)

2

4λε

]
,� (A.6)

where λ = �2/2m. Equation (A.6) is obtained by approximating the sum by an integral. 
This is appropriate only if the thermal wavelength of one step is much less than the 
size of the box, λε � L2. In some special situations this condition could be violated, in 
which case one should use equation (A.5) or add periodic ‘images’ to equation (A.6). 
The exact kinetic density matrix in periodic boundary conditions is a theta function, ∏3N

i=1 θ3(zi, q), where zi = π(Ri
0 − Ri

1)/L, Ri is the ith component of the 3N dimensional 
vector R, and q = e−λε(2π/L)2 (see chapter 16 of [27]). Errors from ignoring the boundary 
conditions are O(q), exponentially small at large P.

A link m is a pair of time slices (Rm−1, Rm) separated by a time step ε = β/P . The 
action Sm of a link is defined as minus the logarithm of the exact density matrix. Then 
the exact path-integral expression becomes

ρ(R0, RP ; β) =

∫
dR1 . . . dRP−1 exp

[
−

P∑

m=1

Sm

]
.� (A.7)

It is convenient to separate out the kinetic action from the rest of the action. The exact 
kinetic action for link m will be denoted Km

Km =
3N

2
ln(4πλε) +

(Rm−1 − Rm)2

4λε
.� (A.8)

The inter-action is then defined as what is left

Um = U(Rm−1, Rm; ε) = Sm − Km.� (A.9)

Effect of quantum dispersion on the radial distribution function
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In the primitive approximation the inter-action is

Um
1 =

ε

2
[V (Rm−1) + V (Rm)],� (A.10)

where we have symmetrized Um
1  with respect to Rm−1 and Rm, since one knows that the 

exact density matrix is symmetric and thus the symmetrized form is more accurate.
A capital letter U refers to the total link inter-action. One should not think of the 

exact U as being strictly the potential action. That is true for the primitive action but, 
in general, is only correct in the small-ε limit. The exact U also contains kinetic contrib
utions of higher order in ε. If a subscript is present on the inter-action, it indicates 
the order of approximation; the primitive approximation is only correct to order ε. No 
subscript implies the exact inter-action.

The residual energy of an approximate density matrix is defined as

EA(R, R′; t) =
1

ρA(R, R′; t)

[
H +

∂

∂t

]
ρA(R, R′; t).� (A.11)

The residual energy for an exact density matrix vanishes; it is a local measure of the 
error of an approximate density matrix. The Hamiltonian H is a function of R; thus the 
residual energy is not symmetric in R and R′.

It is useful to write the residual energy as a function of the inter-action. We find

EA(R, R′; t) = V (R) − ∂UA

∂t
− (R − R′) · ∇UA

t
+ λ∇2UA − λ (∇UA)2 .

�
(A.12)

The terms on the right hand side are ordered in powers of ε, keeping in mind that U(R) 
is of order ε, and |R − R′| is of order ε1/2. One obtains the primitive action by setting 
the residual energy to zero and dropping the last three terms on the right hand side.

The residual energy of the primitive approximation is

E1(R, R′; t) =
1

2
[V (R) − V (R′)] − 1

2
(R − R′) · ∇V

+
λt

2
∇2V − λt2

4
(∇V )2 .

�
(A.13)

With a leading error of  ∼λε2.
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Chapter 58

Two component boson-fermion
plasma at finite temperature

Fantoni R., Int. J. Mod. Phys. C 29, 1850028 (2018)
Title: “Two component boson-fermion plasma at finite temperature”
Abstract: We discuss thermodynamic stability of neutral real (quantum) matter from the
point of view of a computer experiment at finite, nonzero, temperature. We perform (re-
stricted) path integral Monte Carlo simulations of the two component plasma where the two
species are both bosons, both fermions, and one boson and one fermion. We calculate the
structure of the plasma and discuss about the formation of binded couples of oppositely
charged particles. The purely bosonic case is thermodynamically unstable. In this case we
find an undetermined size-dependent contact value unlike partial radial distribution func-
tion. For the purely fermionic case, we find a demixing transition with binding also of like
species.
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We discuss thermodynamic stability of neutral real (quantum) matter from the point of view of
a computer experiment at ¯nite, nonzero, temperature. We perform (restricted) path integral

Monte Carlo simulations of the two component plasma where the two species are both bosons,

both fermions, and one boson and one fermion. We calculate the structure of the plasma and

discuss about the formation of binded couples of oppositely charged particles. The purely
bosonic case is thermodynamically unstable. In this case we ¯nd an undetermined size-dependent

contact value unlike partial radial distribution function. For the purely fermionic case, we ¯nd a

demixing transition with binding also of like species.

Keywords: Two component plasma; Monte Carlo simulation; ¯nite temperature; restricted path

integral; worm algorithm; fermions sign problem; structure; thermodynamic stability.
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1. Introduction

For matter to be stable it must be globally neutral. It is well known that in order for a

system of an equal number N of oppositely charged point particles to be stable

against collapse, quantum mechanics is required, and furthermore at least one of the

species of particles must be a fermion. Without the exclusion principle, the ground

state energy per particle of the system diverges as N7=5 and the thermodynamic limit

is not well de¯ned.1 As a matter of fact, in the classical limit one is forced to introduce

a short-range regularization (like an hard core or others)2 of the pair-potential be-

tween the particles in order to prevent the collapse of the negative charges on

the positive ones.3,4 All this is at the heart of the fundamental question of whether

the matter we live in is stable or not.

In this work, we want to explore the structure of a two-component mixture of

particles with two opposite charge species. We will consider particles of charge �e

with e the charge of an electron. Furthermore, we will assume that the two species

both have the mass of an electron m. We will consider explicitly the cases where
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both species have spin 1=2 (purely fermionic), when they both have spin 1

(purely bosonic) and when one species has spin 1=2 and one species has spin 1

(fermions–bosons mixture). In all cases, we assume that each species has polariza-

tion equal to 1. Doing so, we will be able to determine the thermodynamic insta-

bility of the purely bosonic case as opposed to the other two cases. We will work at

high temperatures and intermediate densities, when the quantum e®ects are not

very important. The path integral Monte Carlo computer experiment is only exact

in the purely bosonic case apart from the usual ¯nite size and imaginary time

discretization errors. For the other two cases, it is necessary to resort to an ap-

proximation due to the fermions sign problem.5,6 We will choose the restricted path

integral approximation with a restriction based on the nodes of the ideal density

matrix, which is known to perform reasonably well for the one component (Jellium)

case from the pioneering work of Brown et al.7,8 Other methods have been imple-

mented recently in order to reach high densities: Bonitz et al.9,10 combine con¯gu-

ration path integral Monte Carlo and permutation blocking path integral Monte

Carlo. Malone et al.11 agrees well with the one of Bonitz at high densities and the

direct path integral Monte Carlo one of Filinov et al.12 that agrees well with Brown

at low density and moderate temperature. Our method is alternative to all previ-

ously employed ones.

In our simulations, we use the worm algorithm13,14 which is able to sample

the necessary permutations of the indistinguishable particles without the need of

explicitly sampling the permutations' space treating the paths as \worms" with a tail

(Masha) and a head (Ira) in the �-periodic imaginary time, which can be attached

one with the other in di®erent ways or swap some of their portions. We explicitly and

e±ciently applied the restriction to the worms and this allowed us to treat the

fermionic or mixed case explicitly, albeit only approximately. The approximation is

expected to become better at low density and high temperature, i.e. when correlation

e®ects are weak.

Possible physical realizations of interest to our work for the case of both

species of spin 1=2 are a nonrelativistic electron–positron plasmas created in the

laboratory15 or an electron–hole plasma which is important in the realm of low-

temperature semiconductor physics. Conduction electrons and holes in semi-

conductors interact with Coulomb force and can have very similar e®ective

masses.16,17

The work is organized as follows: In Sec. 2, we describe the physical model

we want to study, in Sec. 3, we describe the computer experiment method and

techniques, in Sec. 4, we describe our numerical results, and Sec. 5 is for ¯nal

remarks.

2. The Model

Setting lengths in units of the Bohr radius a0 ¼ }2=me2 and energies in Rydberg's

units, Ry ¼ }2=2ma2
0, where m is the electron mass, the Hamiltonian of the two

R. Fantoni
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component nonrelativistic electron–positron mixture is

H ¼ T þ V ¼ ��
XNþ

i¼1

r 2
rþ
i
� �

XN�

i¼1

r 2
r�
i
þ V ðRÞ; ð2:1Þ

V ¼ 2
XNþ

i<j

1

jrþ
i � rþ

j j
þ
XN�

i<j

1

jr�
i � r�

j j
�
XNþ

i¼1

XN�

j¼1

1

jrþ
i � r�

j j

 !
; ð2:2Þ

where � ¼ }2=2ma2
0 ¼ Ry, R ¼ ðrþ

1 ; . . . ; r
þ
Nþ ; r

�
1 ; . . . ; r

�
N�Þ with rþ

i the coordinates

of the ith positron and r�
i the ones of the ith electron. We will chooseNþ ¼ N� ¼ N ,

since the system must be neutrally charged in order to be thermodynamically stable.

We will not introduce any short-range regularization of the Coulomb potential. And

we will treat the Coulomb long-range potential using the Ewald sums technique18 in

order to treat it in the periodic box of side L of the simulation.

We will treat explicitly the electron–positron case where the two particles are

both fermions, the case where both species are bosons, and the case where only one

species is a fermion. Of course, there is no charged boson in nature with the mass and

the charge of the electron, so this will remain a speculative analysis, to explore the

thermodynamic stability and statistical properties of the mixture.

We will carry on a grand canonical simulation at ¯xed chemical potentials of

the two species �þ; ��, volume � ¼ L3, and absolute temperature T ¼ 1=kB�, with

kB the Boltzmann constant.

3. Simulation Method

We carry on a (restricted) path integral Monte Carlo computer experiment19 using

the worm algorithm13,14 to simulate the behavior of the quantum mixture at

¯nite temperature.

The density matrix of a system of many distinguishable bodies at temperature

kBT ¼ ��1 can be written as an integral over all paths fRtg

�ðR�;R0;�Þ ¼
I
R0!R�

dRt exp ð�S½Rt�Þ: ð3:1Þ

The path Rt begins at R0 and ends at R�. For nonrelativistic particles interacting

with a potential V ðRÞ, the action of the path, S½Rt�, is given by the Feynman–Kac

formula

S½Rt� ¼
Z �

0

dt
1

4�

dRt

dt

����
����2 þ V ðRtÞ

� �
: ð3:2Þ

Thermodynamic properties, such as the radial distribution function (RDF), are

related to the diagonal part of the density matrix, so that the path returns to its

starting place after a time �.

To perform Monte Carlo calculations of the integrand, one makes imaginary

thermal time discrete with a time step � , so that one has a ¯nite (and hopefully small)

Two component boson–fermion plasma at ¯nite temperature
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number of time slices and thus a classical system of N particles in M ¼ �=� time

slices; an equivalent NM particle classical system of \polymers".19

Thermodynamic properties are averages over the thermal 2N–body density

matrix which is de¯ned as a thermal occupation of the exact eigenstates �iðRÞ
�ðR;R0;�Þ ¼

X
i

��
i ðRÞe��Ei�iðR0Þ: ð3:3Þ

The partition function is the trace of the density matrix

Zð�Þ ¼ e��F ¼
Z

dR�ðR;R;�Þ ¼
X
i

e��Ei ; ð3:4Þ

with F Helmholtz's free energy. Other thermodynamic averages are obtained as

hOi ¼ Zð�Þ�1

Z
dRdR0hRjOjR0i�ðR0;R;�Þ: ð3:5Þ

Path integrals are constructed using the product property of density matrices

�ðR2;R0;�1 þ �2Þ ¼
Z

dR1�ðR2;R1;�2Þ�ðR1;R0;�1Þ; ð3:6Þ

which holds for any sort of density matrix. If the product property is used M times,

we can relate the density matrix at a temperature ��1 to the density matrix at a

temperature M��1. The sequence of intermediate points fR1;R2; . . . ;RM�1g is the

path, and the time step is � ¼ �=M . As the time step gets su±ciently small, the

Trotter theorem tells us that we can assume that the kinetic T and potential V

operator commute so that: e��H ¼ e��T e��V (strictly speaking this is only possible

when V is bounded from below20 but this is always satis¯ed by our simulation since

we use a radial discretization of the pair Coulomb potential) and the primitive

approximation for the Boltzmannon density matrix is found19

�ðR0;RM ;�Þ ¼
Z

dR1 . . . dRM�1exp �
XM
m¼1

Sm

" #
; ð3:7Þ

Km ¼ 3N

2
lnð4���Þ þ ðRm�1 �RmÞ2

4��
; ð3:8Þ

Sm �Km � U m
primitive ¼

�

2
½V ðRm�1Þ þ V ðRmÞ�: ð3:9Þ

The Feynman–Kac formula for the Boltzmannon density matrix results from taking

the limit M ! 1. The price we have to pay for having an explicit expression for the

density matrix is additional integrations; all together 3NðM � 1Þ. Without techni-

ques for multidimensional integration, nothing would have been gained by expanding

the density matrix into a path. Fortunately, simulation methods can accurately treat

such integrands. It is feasible to make M rather large, say in the hundreds or

thousands, and thereby systematically reduce the time-step error. The leading error

of the primitive approximation goes like � ��2.19
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In addition to sampling the path, one also needs to sample all the various

necessary permutations of the indistinguishable particles (bosons or fermions) and

this is accomplished on the °y through the use of the worm algorithm.13,14

When we are dealing with bosons or fermions �B;F ðR�;R0;�Þ ¼ AP�ðR�;PR0;�Þ
is the density matrix corresponding to some set of quantum numbers which are

obtained by using the projection operator AP ¼ 1
N !

P
Pð�ÞP, where P is a per-

mutation of particle labels and the permutation sign is a plus for bosons (B) and a

minus for fermions (F), on the distinguishable particle density matrix. Then, for

bosons we can carry on the Monte Carlo calculation without further approximations,

but for fermions the following Restricted Path Integral approximation is also

necessary in order to overcome the ubiquitous sign problem5,6

�F ðR�;R0;�Þ ¼
Z

dR0�F ðR0;R0; 0Þ
I
R0!R�2�T ðR0Þ

dRte
�S½Rt�; ð3:10Þ

where the subscript means that we restrict the path integration to paths starting atR0,
ending at R� and avoiding the nodes (the zeroes) of a known trial density matrix, �T ,

assumed to have nodes, @�T , close to the true ones. The weight of the walk is

�F ðR0;R0; 0Þ ¼ ðN !Þ�1
P

Pð�ÞP	ðR0 �PR0Þ. It is clear that the contribution of all

the paths for a single element of the density matrix will be of the same sign, thus

avoiding the sign problem. On the diagonal, the density matrix is positive and on the

path restriction �F ðR;R0;�Þ > 0, then, only even permutations are allowed since

�F ðR;PR;�Þ ¼ ð�ÞP�F ðR;R;�Þ. It is then possible to use a bosonic calculation to

get the approximate fermionic case.

The restriction is implemented choosing as the trial density matrix the ideal

density matrix: we just reject the move (remove, close, wiggle and displace in the

Z-sector, and advance and swap in the G-sector),13,14 whenever the proposed path is

such that the ideal fermionic or fermionic-bosonic density matrix calculated between

the reference point and any of the time slices subject to newly generated particles

positions has a negative value.

The ideal fermionic or fermionic–bosonic density matrix is given by

�0ðR;R0; tÞ / A
e�

ðrþ
i
�rþ0

j
Þ2

4�t e�
ðrþ

i
�r�0

k
Þ2

4�t

e�
ðr�

l
�rþ0

j
Þ2

4�t e�
ðr�

l
�r�0

k
Þ2

4�t

0
B@

1
CA; ð3:11Þ

where � ¼ }2=2m and A is the (anti)symmetrization operator for the positive

and negative species (purely fermionic mixture) or for the positive species only

(fermionic–bosonic mixture). We expect this approximation to be best at high

temperatures and low densities when the correlation (the particles coupling and their

quantum nature) e®ects are weak. Clearly in a simulation of the ideal gas (V ¼ 0),

this restriction returns the exact result for fermions, otherwise, it is just an

approximation.

The restriction or the ¯xed nodes path integral may have an in°uence on the

thermodynamic stability of the °uid under study, especially at low temperatures
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when quantum e®ects become more relevant. On the other hand, if this were the case,

it would have an in°uence on the stability of the °uid under all thermodynamic

states which we can clearly exclude since as soon as we include at least one fermionic

species in the binary mixture, the system becomes thermodynamically stable even at

moderately low temperatures when the restriction is not very e®ective.

4. Results

In our simulations, we chose kBT ¼ 10Ry and L ¼ 5a0. Going to lower tempera-

tures, the contact value for the unlike partial RDF tends to increase since the

Fig. 1. (Color online) We show the partial RDF on a log–log scale. For the mixture of bosons and

the °uid with one bosonic species and one fermionic species, we show gþ�ðriÞ in the upper panel and

gþþðriÞ; g��ðriÞ in the bottom panel. In all cases, we have L=2 ¼ rcuta0 ¼ 2:5a0 and the RDF are calculated

on 200 radial points ri ¼ idr with dr ¼ rcut=200. The simulation was carried on at � ¼ 0:1Ry�1 with
M ¼ 10 time slices and an average of approximately 36 particles for the fermions case and 39 for the bosons

case. The simulation was 15 000 blocks of 500 steps taking averages every 100 moves. But gþ�ð0Þ for the
purely bosonic case continued to grow afterwards.
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binding between a positive and a negative charge increases. This is because the

coupling constant of the mixture is � ¼ �e2=a0. For the purely bosonic case, the

contact value never reaches an equilibrium during the simulation evolution unlike for

the purely fermionic case or the fermions–bosons mixture where a positive charge

binds with a negative charge in a stable way at low densities.21

It is also useful to introduce a degeneracy temperature � ¼ T=TF , where TF ¼
TD2�

2=

2=3
3 is the Fermi temperature, here 
3 ¼ 4�=3, and

TD ¼ 2n2=3

kB
Ry; ð4:1Þ

with n ¼ Na3
0=V , the density is the degeneracy temperature. For temperatures

higher than TD, as in our simulations, quantum e®ects are less relevant. For this

reason, we chose M ¼ 10 in all cases giving a � ¼ 0:01Ry�1. So the primitive

approximation is a good one.

Another relevant parameter is the Wigner–Seitz radius rs ¼ ð3=4�nÞ1=3 which in

the degenerate regime � � 1 regulates whether the system of particles is dominated

by the potential energy or by the kinetic energy. At high rs, the potential energy

dominates and the system tends to crystallize.17

From Fig. 1, we see how the binary mixture is stable when the particles are

fermions and unstable when they are bosons. This is manifested by a contact value of

the unlike partial RDF, for the purely bosonic case, which is one order of magnitude

higher than the one for the purely fermionic case. It varies wildly during the simu-

lation evolution, with variations of one or more orders of magnitudes upon

Fig. 2. (Color online) We show the unlike partial RDF on a log–log scale for the purely bosonic case at

three di®erent values of L=2 ¼ rcuta0 and approximately same density and at two times during the

simulation, after Nb ¼ 15 000 blocks (of 50 000 worm moves) and after Nb ¼ 50 000 blocks. The RDF are
calculated on 200 radial points ri ¼ idr with dr ¼ rcut=200. The simulation was carried on at � ¼ 0:1Ry�1

with M ¼ 10 time slices. The simulation was 15 000 blocks of 500 steps taking averages every 100 moves.

But gþ�ð0Þ continued to grow afterwards.
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inspections of the simulation at di®erent time intervals of 10 000 blocks of 50 000

worm moves each. The like partial RDF for the purely fermionic case shows a

spontaneous symmetry braking, where the positive–positive RDF di®ers from the

negative–negative one and presents a broad shoulder near the origin which suggests

the formation of like positive pairs. The contact value in the bosonic case has huge

variations upon changes of the size of the system as shown by Fig. 2. This also

means that there is no well-de¯ned thermodynamic limit of the RDF which in turn is

a manifestation of the system instability.1 This does not occur when at least one of

the two species is a fermion. In this case, a slight shoulder near the origin in the

Fig. 3. (Color online) We show the partial RDF on a log–log scale. For the mixture of bosons and

the °uid with one bosonic species and one fermionic species, we show gþ�ðriÞ in the upper panel and

gþþðriÞ; g��ðriÞ in the bottom panel. In all cases, we have L=2 ¼ rcuta0 ¼ 2:5a0 and the RDF are calcu-

lated on 200 radial points ri ¼ idr with dr ¼ rcut=200. The simulation was carried on at � ¼ 0:1Ry�1 with
M ¼ 10 time slices and an average of approximately 38 particles for the mixed fermionic–bosonic case and

39 for the purely bosonic case. The simulation was 15 000 blocks of 500 steps taking averages every 100

moves. But gþ�ð0Þ for the purely bosonic case continued to grow afterwards.
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unlike partial RDF indicates the stable pairing between a positive and a negative

charge. The shoulder grows at lower temperature and lower density.

In order to have stability, it is su±cient to have at least one of the two particle

species to be a fermion as is shown in Fig. 3. In this case, the like partial RDF for the

bosonic species is comparable with the one of the purely bosonic case and the one for

the fermionic component is lower. No like pair formation is visible from the structure

analysis. The unlike partial RDF is superposed to the one of the purely fermionic case

but presents an on top value two orders of magnitudes smaller.

The di®erence between the purely fermionic mixture and the fermions–bosons had

to be expected also from the point of view of the fact that our spin polarized fermions,

unlike the bosons, do not have a state with zero total angular momentum.

5. Conclusions

In conclusion, we carried on some computer experiments for the binary mixture of

oppositely charged pointwise particle species when both species are bosons, both

fermions, and one boson and one fermion. We chose the charge and the mass equal to

the ones of the electron and only considered fully polarized species. We used the

worm algorithm to perform (restricted) path integral Monte Carlo simulations,

at ¯nite temperatures.

We simulated the mixture with a weak degree of degeneracy � � 1:4 and a weak

coupling � ¼ 0:2. The Wigner–Seitz radius for each species was rs � 1.

During the simulations, we measured the radial distribution function of the three

mixtures and found that the purely bosonic one is thermodynamically unstable to-

ward the collapse of oppositely charged particles upon the others. Whereas, in the

other two mixtures, the Pauli exclusion principle restores the stability producing

stable bindings: like pairs form for the purely fermionic case as a result of a spon-

taneous symmetry breaking in a demixing transition and unlike pairs form in both

cases. The instability manifests itself through a pronounced peak in the contact value

of the unlike partial RDF which is strongly size-dependent in the experiment and

keeps growing as the simulation evolves without ever reaching convergence towards a

stable value. This observation tells us that the fermionic character of the simplest

constituent of matter is essential in nature to be able to have a stable matter. On the

other hand, if one uses nonquantum statistical mechanics, one must regularize

the Coulomb potential at short range, for example through the addition of a hard

core to the otherwise pointwise particles.3,4 Even if in the relativistic regime it is

plausible to talk about an electron radius, attempts to model the electron as a

nonpoint particle are considered ill-conceived and counter-pedagogic.22

In order to have a stable matter, it is necessary that it is globally neutral and that

it is made up of at least one fermionic species. Physical realizations of our model are

nonrelativistic electron–positron plasma produced in the laboratory15 and electron–

hole plasma in semiconductors.16 Of course, in the numerical experiment we do not

have the physical limitations that occur in a laboratory. This allowed us to inquire
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into also the mixture with one bosonic or even both bosonic components. Another

interesting issue where our study could become relevant is atom and molecule for-

mation. In its simplest setting it involves the study of an electron–proton mixture.

Since the mass of an electron is three orders of magnitude smaller than the mass of a

proton, the degeneracy temperature of the electron species is three orders of mag-

nitude smaller than the one of the nuclei, at a given density. Therefore, it is very

unlikely that an electron, with a world-line with many particle exchanges will bind to

a nucleus which has a world-line with many less particle exchanges. In order for this

to occur we have to go down to temperatures kBTI � e2=2a0 ¼ 1Ry and electron

densities such that TF � TI , i.e. n � 0:048 or rs � 1:7.21 Molecules may form at even

lower temperatures. Nonetheless in our stable purely fermionic mixture with an equal

species mass, we see already at the chosen thermodynamic state, the unlike species

binding and a spontaneous symmetry breaking for like species bindings in a demixing

transition.23–25

We intend to adopt this method to simulate the two-component plasma in a

curved surface26–29 in the near future. For example, it could be interesting to study

the two-component plasma on the surface of a sphere with a magnetic monopole at

the center.30
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Chapter 59

One-component fermion plasma on a
sphere at finite temperature

Fantoni R., Int. J. Mod. Phys. C 29, 1850064 (2018)
Title: “One-component fermion plasma on a sphere at finite temperature”
Abstract: We study through a computer experiment, using the restricted path integral Monte
Carlo method, a one-component fermion plasma on a sphere at finite, non-zero, temperature.
We extract thermodynamic properties like the kinetic and internal energy per particle and
structural properties like the radial distribution function. This study could be relevant for
the characterization and better understanding of the electronic properties of hollow graphene
spheres.
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We study through a computer experiment, using the restricted path integral Monte Carlo

method, a one-component fermion plasma on a sphere at ¯nite, nonzero, temperature. We extract

thermodynamic properties like the kinetic and internal energy per particle and structural prop-
erties like the radial distribution function. This study could be relevant for the characterization
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1. Introduction

We want to study the one-component fermion plasma on the surface of a sphere of

radius a at ¯nite, nonzero, temperature, as an evolution of the Thomson problem. The

plasma is an ensemble of point-wise electrons which interact through the Coulomb

potential assuming that the electric ¯eld lines can permeate the tridimensional space

where the sphere is embedded. The system of particles is thermodynamically stable

even if the pair-potential is purely repulsive because the particles are con¯ned to the

compact surface of the sphere, and we do not need to add a uniform neutralizing

background as in the Wigner Jellium model. Therefore, our spherical plasma made of

N spinless indistinguishable electrons of charge �e and mass m will carry a total

negative charge �Ne, a total mass Nm, and will have a radius a.

Note that in the limit a ! 1 with a ¯xed surface density � ¼ N=4�a2 our system

becomes thermodynamically unstable since all the particles tend to escape to in¯nity.

In order to prevent this pathological scenario one would have to add a uniform

neutralizing background on the spherical surface of positive surface charge density

þ�e. This amounts to replacing the Coulomb potential e2=r with the corrected one
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e2=r�B with B ¼
R
sphere

ðe2=rÞdA=ð4�a2Þ ¼ e2, where the integral is over the sur-

face of the sphere dA ¼ a2 sin � d�d’ and r ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos �

p
is the Euclidean distance

between the north pole and another point on the sphere, with polar angle �. The

constant D is chosen to make sure that the average value of the interaction is zero

and must be subtracted from the self-energy which would otherwise be zero. We

would then obtain the Wigner Jellium system on the sphere which has received much

attention from the point of view of path integral Monte Carlo recently in the Eu-

clidean tridimensional space.1–8

We want to study the structural and thermodynamic properties at ¯nite, nonzero,

temperature of the spherical fermion plasma through restricted path integral Monte

Carlo. In particular, we will calculate the radial distribution function of the particles

on the surface of the sphere and their kinetic and internal energy per particle.

Even if impenetrable identical particles on the surface of a sphere admit a frac-

tional anyonic statistics,9 we will just study their fermionic nature, leaving the im-

plementation of the anyonic statistics to a subsequent work. This amounts to

distinguishing only among even and odd permutations rather than among the larger

elements of the braid group. We will then consider the union of all the topologically

disjoint portions of the particles con¯guration space belonging just to each of the two

fermionic sections. This simpli¯es the problem considerably since the braid group is

much larger and complex than the permutation group.9

A quantum °uid on a Riemannian surface has been studied before in relation to the

quantum Hall e®ect.10–12 A generalized stochastic method has also been implemented

for the many-body ground state.13,14 We are not aware of any path integral Monte

Carlo attempt in the spirit of our work. We expect our work to be relevant for the

characterization of the electronic properties of hollow graphene spheres15,16 con-

structed in the laboratory and for their implementation as electrodes for super-

capacitors and batteries, as superparamagnetic materials, as electrocatalysts for

oxygen reduction, as drug deliverers, and as a conductive catalyst for photovoltaic

applications.17–25 Our numerical experiments, albeit idealized, are capable of exploring

the properties of these systems under the most various thermodynamic conditions,

even extreme conditions otherwise not accessible in the laboratory. Therefore we are

able to explore and characterize the phenomenology of these systems with cost-free

computer experiments that can later be used as guides for the laboratory set up.

The paper is organized as follows: in Sec. 2, we describe the problem we want to

solve and the method used for its resolution, in Sec. 3, we present our numerical

results, and Sec. 4 is for the concluding discussion.

2. The Problem

A point q on the sphere of radius a, the surface of constant positive curvature, is

given by

r=a ¼ sin � cos’x̂ þ sin � sin’ŷ þ cos �ẑ; ð1Þ
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with � the polar angle and ’ the azimuthal angle. The N particles positions are at

R ¼ ðr1; r2; . . . ; rNÞ. The surface density of the plasma will then be � ¼ N=4�a2. On

the sphere we have the following metric:

ds2 ¼ g��dq
�dq� ¼ a2 d�2 þ sin2 �d’2

� �
; ð2Þ

where Einstein summation convention on repeated indices is assumed, we will use

Greek indices for either the surface components or the surface components of each

particle coordinate and roman indices for either the particle index or the time-slice

index, q1 ¼ � 2 ½0; �Þ, q2 ¼ ’ 2 ½��; �Þ, and the positive de¯nite and symmetric

metric tensor is given by

g�� ¼
a2 0

0 a2sin2�

� �
: ð3Þ

We have periodic boundary conditions in �þ � ¼ � and in ’þ 2� ¼ ’. We will not

need to implement explicitly the periodic boundary conditions as all that is needed in

the simulation is the geodesic and the Euclidean distance which are expressed in

terms of trigonometric functions which are periodic in the coordinates � and ’. We

will also de¯ne Q ¼ ðq1;q2; . . . ;qNÞ which will be the coordinates used in the code.

The geodesic distance between two in¯nitesimally close points Q and Q0 is

ds2ðQ;Q0Þ ¼
PN

i¼1 ds
2ðqi;q

0
iÞ, where the geodesic distance between the points q and

q0 on the sphere is

sðq;q0Þ ¼ a arccos½cosðq1Þ cosðq10Þ ð4Þ
þ sinðq1Þ sinðq10Þ cosðq2 � q20Þ�: ð5Þ

On a computer the haversine formula is numerically better conditioned for small

distances. Moreover, to avoid rounding errors for the special case of antipodal points

the Vincenty formula for an ellipsoid with equal major and minor axes may be used.

The Hamiltonian of the N nonrelativistic indistinguishable particles of the one-

component spinless fermion plasma is given by

H ¼ T þ V ¼ ��
XN
i¼1

�i þ
X
i<j

vij; ð6Þ

with � ¼ }2=2m, where m is the electron mass, and �i ¼ g
�1=2
i @ðg1=2

i g��
i @=@q�i Þ=@q�i

the Laplace–Beltrami operator for the ith particle on the sphere of radius a in local

coordinates, where g��g
�� ¼ � �� and gi ¼ det jjg��ðqiÞjj. We have assumed that H in

curved space has the same form as in °at space. For the pair-potential, v, we will

choose

vij ¼ e2=rij; ð7Þ

where e is the electron charge and rij is the Euclidean distance between two particles

at qi and qj, which is given by

rij ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2r̂i � r̂j

q
¼ 2a sin½arccosðr̂i � r̂jÞ=2�; ð8Þ
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where r̂i ¼ ri=a is the versor that from the center of the sphere points towards the

center of the ith particle.

Given the antisymmetrization operator A, and the inverse temperature 	 ¼
1=kBT , with kB Boltzmann's constant, the one-component fermion plasma density

matrix, 
F ¼ Ae�	H, in the coordinate representation, on a generic Riemannian

manifold of metric g,26,27 is


F ðQ0;Q;	Þ ¼
Z


F ðQ0;QððM � 1Þ�Þ; �Þ � � � 
F ðQð�Þ;Q; �Þ

�
YM�1

j¼1

ffiffiffiffiffiffiffi
~gðjÞ

q YN
i¼1

dq1iðj�Þ ^ dq2i ðj�Þ; ð9Þ

where as usual we discretize the imaginary thermal time in bits � ¼ }	=M . We will

often use the following shorthand notation for the path integral measure:
QM�1

j¼1ffiffiffiffiffiffiffi
~gðjÞ

p QN
i¼1 dq1i ðj�Þ ^ dq2i ðj�Þ ! DQ as M ! 1. The path of the ith particle is

given by fqiðtÞjt 2 ½0; }	�g with t the imaginary thermal time. Each qiðj�Þ with

i ¼ 1; . . . ;N and j ¼ 1; . . . ;M represents the various beads forming the discretized

path. The N particle path is given by fQðtÞjt 2 ½0; }	�g. Moreover,

~gðjÞ ¼ det jj~g��ðQðj�ÞÞjj; j ¼ 1; 2; . . . ;M � 1; ð10Þ

~g��ðQÞ ¼ g�1	1
ðq1Þ � . . .� g�N	N

ðqNÞ: ð11Þ

In the small � limit we have


F ðQð2�Þ;Qð�Þ; �Þ ¼ ð2�}Þ�NA½~g�1=4
ð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðQð2�Þ;Qð�Þ; �Þ

p
~g
�1=4
ð1Þ

� e��RðQð�ÞÞ=6}e�
1
}
SðQð2�Þ;Qð�Þ;�Þ�; ð12Þ

where A can act on the ¯rst, or on the second, or on both time slices, RðQÞ the scalar
curvature of the curved manifold, S the action and D the van Vleck's determinant

D�� ¼ � @2SðQð2�Þ;Qð�Þ; �Þ
@Q�ð2�Þ@Q�ð�Þ ; ð13Þ

det jjD�� jj ¼ DðQð2�Þ;Qð�Þ; �Þ; ð14Þ

where the Greek index denotes the two components of each particle coordinate.

For the action and the kinetic-action we have

SðQ0;QÞ ¼ KðQ0;QÞ þ UðQ0;QÞ; ð15Þ

KðQ0;QÞ ¼ 3N}

2
lnð4���=}Þ þ }2s2ðQ0;QÞ

4��
; ð16Þ

where in the primitive approximation28 we ¯nd the following expression for the inter-

action,

UðQ0;QÞ ¼ �

2
½V ðQ0Þ þ V ðQÞ�; ð17Þ

R. Fantoni

1850064-4

One-component fermion plasma on a sphere at finite tempera-
ture 859



V ðQÞ ¼
X
i<j

vij: ð18Þ

In particular, the kinetic-action is responsible for a di®usion of the random walk with

a variance of 2��g��=}.

On the sphere we have R ¼ NR with R ¼ 2=a2, the scalar curvature of the

sphere of radius a, and in the M ! 1 limit sðQ0;QÞ ! dsðQ0;QÞ and ~g
�1=4
ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðQð2�Þ;Qð�Þ; �Þ
p

~g
�1=4
ð1Þ ! ð}2=2��ÞN . We recover the Feynman–Kac path inte-

gral formula on the sphere in the � ! 0 limit. In a computer experiment calculation it

is enough to take M su±ciently large, of the order of 100 or 1000,28 so to keep

� � 0:01, recalling the primitive approximation error scales as � ��2. We will then

have to deal with 2NM multidimensional integrals for which Monte Carlo is a

suitable computational method. For example to measure an observable O we need to

calculate the following quantity:

hOi ¼
R
OðQ;Q0Þ
F ðQ0;Q;	ÞdQdQ0R


F ðQ;Q;	ÞdQ ; ð19Þ

where
ffiffiffi
~g

p QN
i¼1 dq

1
i ^ dq 2i � dQ. Note that most of the properties that we will

measure are diagonal in coordinate representation, requiring then just the diagonal

density matrix, 
F ðQ;Q;	Þ. For example, for the radial distribution function,

gðrÞ ¼ hOi with r the Euclidean distance between points q and q0, r ¼
2a sin½arccosðq̂ �q̂0Þ=2�, we have the following histogram estimator:

OðQ; rÞ ¼
X
i6¼j

1½r��=2;rþ�=2½ðqijÞ
NnidðrÞ

; ð20Þ

where � is the histogram bin, 1½a;b½ðxÞ ¼ 1 if x 2 ½a; b½ and 0 otherwise, and

nidðrÞ ¼ N
rþ�=2

2a

� �
2

� r��=2

2a

� �
2

� �
; ð21Þ

is the average number of particles on the spherical crown ½r��=2; rþ�=2½ for the
ideal gas of density �. We have that �2gðrÞ gives the probability that sitting on a

particle at q one has to ¯nd another particle at q0.

Fermions' properties cannot be calculated exactly with path integral Monte Carlo

because of the fermions sign problem.29,30 We then have to resort to an approximated

calculation. The one we chose was the restricted path integral approximation29,30

with a \free fermions restriction". The trial density matrix used in the restriction is

chosen as the one reducing to the ideal density matrix in the limit of t � 1 and is

given by


0ðQ0;Q; tÞ / A e�
}s2ðq 0

i
;qjÞ

4�t

����
����

����
����: ð22Þ
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The restricted path integral identity that we will use states29,30


F ðQ0;Q;	Þ /
Z ffiffiffiffiffi

~g00
p

dQ00
F ðQ00;Q; 0Þ ð23Þ

�
I
Q00!Q02�0ðQÞ

DQ000e�S½Q000 �=};

where S is the Feynman–Kac action.

S½Q� ¼
Z

}	

0

dt
}2

4�
Q
:

�Q
: � þ V ðQÞ

� �
: ð24Þ

Here, the dot indicates a total derivative with respect to the imaginary thermal time,

and the subscript in the path integral of Eq. (2) means that we restrict the path

integration to paths starting atQ00, ending atQ0 and avoiding the nodes of 
0, that is

the reach of Q. The nodes are on the reach boundary @�0. The weight of the walk is


F ðQ00;Q; 0Þ ¼ A�ðQ00 �QÞ ¼ ðN !Þ�1
P

Pð�ÞP�ðQ00 � PQÞ, where the sum is over

all the permutations P of the N fermions, ð�ÞP is the permutation sign, positive for

an even permutation and negative for an odd permutation, and the Dirac's delta

function is on the sphere. It is clear that the contribution of all the paths for a single

element of the density matrix will be of the same sign, thus solving the sign problem;

positive if 
F ðQ00;Q; 0Þ > 0, negative otherwise. On the diagonal the density matrix

is positive and on the path restriction 
F ðQ0;Q;	Þ > 0, then only even permutations

are allowed since 
F ðQ;PQ;	Þ ¼ ð�ÞP
F ðQ;Q;	Þ. It is then possible to use a bosons

calculation to get the fermions case. Clearly the restricted path integral identity with

the free fermions restriction becomes exact if we simulate free fermions, but otherwise

is just an approximation. The approximation is expected to become better at low

density and high temperature, i.e. when correlation e®ects are weak. The imple-

mentation of the restricted, ¯xed nodes, path integral identity within the worm

algorithm has been the subject of a recent study on the tridimensional Euclidean

Jellium.

We will use the worm algorithm31,32 to generate spontaneously the needed

permutations for the antisymmetrization operator A. The permutations on the

sphere will generate paths with di®erent braiding properties. Identical impene-

trable (scalar) particles on a sphere are, in general, anyons with fractional statis-

tics.9 Here we will just project out the fermionic component of the broader braid

group by just looking at the sign of the trial free fermions density matrix. The

object of study is still the realization of the simulation of the anyonic system. The

worm algorithm is able to sample the necessary permutations of the indistin-

guishable particles without the need of explicitly sampling the permutations

space treating the paths as \worms" with a tail (Masha) and a head (Ira) in the

	-periodic imaginary time, which can be attached one with the other in di®erent

ways or swap some of their portions.

We will work in the grand canonical ensemble with ¯xed chemical potential �,

surface area A ¼ 4�a2, and absolute temperature T . At a higher value of the
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chemical potential we will have a higher number of particles on the surface and a

higher density. On the other hand, increasing the radius of the sphere at constant

chemical potential will produce a plasma with lower surface density. The Coulomb

coupling constant is � ¼ 	e2=a0rs with a0 ¼ }2=me2 the Bohr radius and

rs ¼ ð4��Þ�1=2=a0. At weak coupling, � � 1, the plasma becomes weakly correlated

and approaches the ideal gas limit. This will occur at high temperature and/or low

density. The electron degeneracy parameter is � ¼ T=TD; where the degeneracy

temperature TD ¼ �}2=mkB. For temperatures higher than TD, � 	 1, quantum

e®ects are less relevant.

3. Results

Choosing length in Wigner–Seitz's radius, a0rs, units and energies in Rydberg's,

Ry ¼ }2=2ma2
0, units we have � ¼ Ry=r2s, � ¼ 	ð2=rsÞ, and � ¼ ð2�r2sÞ=	. We then

see immediately that when quantum e®ects are relevant, at �. 1, and at low density

or high rs the potential energy dominates in the Hamiltonian (6) and the electron

plasma tends to crystallize in a Wigner's crystal. On the other hand at � 	 1, in the

classical regime, the system tends to crystallize at high density. In our grand ca-

nonical simulation it is rather convenient to choose the length unit to be just the

Bohr radius since rs is not an input parameter.

We use a free fermion trial density matrix restriction for the ¯xed nodes path

integral calculation from the worm algorithm32,33 to the reach of the reference point

in moves ending in the Z sector: remove, close, wiggle, and displace. We will use the

primitive approximation of Eq. (17). Our algorithm has been recently described in

Ref. 34. Here we do not randomize the reference point time slice and we do not

restrict the G sector. We choose the probability of being in the G sector (/ C0 in

Ref. 32) so as to have Z sector's acceptance ratio close to 8/10. The restriction

implementation is rather simple: we just reject the move whenever the proposed path

is such that the ideal fermion density matrix (22) calculated between the reference

point and any of the time slices subject to newly generated particles positions has a

negative value. The algorithm will spontaneously choose the optimal needed � , in the

sense that for bigger � it will not be able to come back and forth between the Z and

the G sector remaining stuck in the G sector.

The restricted worm algorithm simulations length was n� 103 blocks, with n 2
½0; 10� an integer. Each block was made of 500 steps during which 100 moves were

made and measures and averages taken. The moves were of nine kinds: advance,

recede, insert, open and swap ending in the G sector; remove, close, wiggle and

displace ending in the Z sector.35 Each move involved no more than 20 time

slices. And they were chosen from a menu with equal probabilities. The integration

measures factors
ffiffiffi
~g

p
were only used in the acceptance probabilities of the self-com-

plementary moves: wiggle, swap and displace.

In Table 1 we show the cases studied in our simulations. The ¯rst case A is at a

temperature of about 3946K below the graphene melting temperature.36 From the
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table we see how the potential energy per particle diminishes as the density of the

system decreases.

In Fig. 1 we show a snapshot of the macroscopic path during an equilibrated

simulation of cases B and C of Table 1. We see how the particles tend to cover the

sphere surface isotropically. As it should be since there is nothing able to break the

symmetry. Regarding the paths con¯guration we see immediately that the ones in

case B, at lower temperature, are more extended than the ones in case C, at higher

temperature, in agreement with the fact that the de Broglie thermal wavelength, the

size of a path in absence of interactions, is bigger in case B. We can distinguish

between several kinds of conformations. There are the localized paths and the un-

localized path covering a large portion of the sphere surface. Paths tend to avoid the

poles at low temperature. They tend to wind around the sphere running along the

parallels in proximity of the poles and to run along the meridians in proximity of

the equator. This is because these are the paths favored by the kinetic-action which is

expressed in terms of the square of the geodesic distance of Eq. (4) which, unlike the

Euclidean distance, is homogeneous only in the azimuthal angle, the q2 local coor-

dinate, but not in the polar angle, the q1 local coordinate. At lower temperature,

when the path size increases, the worm di®uses more and we can have paths covering

a larger part of the sphere with longer links between two beads. If we rotate the

sphere moving its ẑ axis, the paths con¯guration will also rotate.

In Fig. 2 we show the radial distribution function for the cases shown in Table 1.

Note that here we are plotting against the Euclidean distance instead of the geodesic

one so the value of gðrÞ on the diameter is at r ¼ a
ffiffiffi
2

p
, the top value is at r ¼ 0, and

the antipodal value is at r ¼ 2a. We then see the e®ect of curvature on the Coulomb

and Fermi hole near contact as they evolve by increasing the temperature. The

extent of the Coulomb and Fermi hole at the lowest temperature amounts to roughly

2.5 Bohr's radii. In the limit of very high temperature, the radial distribution

Table 1. Thermodynamic states treated in our simulations: � ðRyÞ chemical potential, 	 ðRy�1Þ inverse
temperature, N average number of particles, rs average value of rs, eK ðRyÞ kinetic energy per particle

from the thermodynamic estimator as explained in Ref. 28, and eV ðRyÞ potential energy per particle. The
other quantities were introduced in the main text. We chose length in Bohr radius' units and energy in

Rydberg's units. We chose M such as to have � ¼ 0:01 or less in all cases except case A where we have

� ¼ 0:02.

Case M � a=a0 	 N rs � � eK eV

A 2000 4 5 40 15.03(3) 1.29 62.0 0.261 24.9(3) 2.67(3)
B 500 8 5 5 20.80(8) 1.10 9.12 1.51 48.97(4) 3.857(6)

C 100 10 5 1 29.2(2) 0.925 2.16 5.38 48.5(2) 6.08(5)

D 50 8 5 1/2 31.0(1) 0.898 1.11 10.1 47.84(6) 6.43(3)
E 10 �13 5 1/10 61.8(3) 0.636 0.314 25.4 51(1) 12.83(6)

F 2 �300 5 2/100 58.9(1) 0.651 6.14� 10�2 133 61(4) 11.86(2)

G 2 �250 5 0.015 48.00(3) 0.722 4.16� 10�2 218 �9(4) 9.412(5)

H 100 4 10 1 35.3(2) 1.68 1.19 17.8 �38(36) 3.90(2)
I 100 0 20 1 50.5(4) 2.81 0.711 49.8 42(3) 3.02(3)

L 100 �8 200 1 17.7(2) 47.5 4.21� 10�2 1.42� 104 45(3) 0.118(1)
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(a)

(b)

Fig. 1. (Color online) Snapshot of the macroscopic path during the simulation of case C in Table 1 in the

top panel and case B in Table 1 in the bottom panel. The di®erent worms have di®erent colors. Some paths

penetrate through the surface of the sphere and appear as broken links.
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function tends to the constant function everywhere equal to unity (see case G of

Table 1). Another feature of the radial distribution function is the ¯rst peak which is

produced due to the Pauli exclusion principle, responsible for the Fermi hole, for the

Coulomb repulsion, responsible for the Coulomb hole, and for the temperature e®ect

which tends to make particles bump one on the other. From Fig. 2 we clearly see how

at small �, when the Pauli exclusion becomes strong, the peak tends to shift at larger

distances. At very high �, the Pauli exclusion becomes very weak and the Fermi hole

tends to disappear. Curiously enough the height of the ¯rst peak, the probability that

sitting on a particle we ¯nd one in its neighborhood, is lower than the antipodal

value, probability of ¯nding a particle to the particle antipodes. The ¯rst peak height

and the antipodal value have a nonmonotonic behavior with temperature. Since

there are no attractions in the pair-potential, we only observe oscillations in the

radial distribution function at very low temperature.

In Fig. 3 we show the radial distribution function of the plasma at the inverse

temperature 	 ¼ 1 Ry�1 on spheres of di®erent diameters and with roughly equal

average number of particles, as shown in Table 1 for cases C, H, I and L. Case L

corresponds to a sphere of the diameter of 20 nanometers and still presents the

Coulomb and Fermi hole. We can see that, as the diameter increases and the density

decreases, the ¯rst peak height increases. This had to be expected in view of the fact

that the system in the semi-quantal regime will tend to crystallize as the density

decreases. The peak height tends to become bigger than the antipodal value.

We always worked with no more than 65 electrons which could correspond to the

� conduction electrons of the carbon atoms in the graphene sphere. So, the spheres

should be made by 10–100 C atoms. The same order of magnitude as in fullerenes

where the smallest buckyball cluster is C20 and the most common is the buckmin-

sterfullerene C60. Here we are not taking care of the fact that, in graphene, at the

Dirac point, electrons have zero e®ective mass. These graphinos should have a rel-

ativistic Hamiltonian rather than the nonrelativistic one we used in Eq. (6).
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Fig. 2. (Color online) The radial distribution function for the spinless fermion plasma on the sphere
of radius a ¼ 5a0 at an inverse temperature 	 and a chemical potential � for the cases A-G shown in

Table 1.
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4. Conclusions

We simulated a one-component spinless fermion plasma at ¯nite, nonzero, temper-

ature on the surface of a sphere. The Coulomb interaction is e2=r with r the Eu-

clidean distance between the two electrons of elementary charge e. Here we could as

well have chosen instead of r the geodesic distance, s, within the sphere. We used a

new implementation of the restricted ¯xed nodes path integral identity within the

worm Monte Carlo algorithm. This gives us an approximated numerical solution of

the many-body problem. The exact solution cannot be accessed due to the fermion

sign catastrophe. Impenetrable indistinguishable particles on the surface of a sphere

admit, in general, anyonic statistics. Here we just project the larger bride group onto

the permutation group and choose the fermion sector for our study.

The path integral Monte Carlo method chosen uses the primitive approximation

for the action which could be improved for example by the use of the pair-product

action.28 The restriction is carried on choosing as the trial density matrix the one of

ideal free fermion. This choice would return an exact solution for the simulation of

ideal fermions but it furnishes just an approximation for the interacting coulombic

plasma.

Our results extend to the quantum regime the previous nonquantum results

obtained for the analytically exactly solvable plasma on curved surfaces37–42 and for

its numerical Monte Carlo experiment.43 Here we just study the geometry of the

sphere leaving the more complex surfaces with a nonconstant curvature to a further

study. As is shown by the snapshot of the macroscopic path, the con¯guration space

appears much more complicated than in the classical case (see Figs. 5 and 6 of

Ref. 43). A ¯rst notable phenomena is that whereas the particles distribution is

certainly isotropic the paths conformation is not, with beads distributed in such way

to avoid the poles at low temperature. Some paths tend to wind around the sphere
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Fig. 3. (Color online) The radial distribution function for the spinless fermion plasma on the sphere of

di®erent radii at an inverse temperature 	 ¼ 1 Ry�1 and a chemical potential � for the cases shown in

Table 1.
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running along the parallels in proximity of the poles, others to run along the mer-

idians in proximity of the equator. This is a direct consequence of the coordinate

dependence of the variance of the di®usion. If we rotate the sphere the path con-

¯guration will also rotate with the sphere. We have several kinds of worms con-

formations. At high and low temperature: the localized ones, those winding around

the sphere along parallels, and those penetrating through the surface of the sphere, at

low temperature, the unlocalized ones distributed over a larger part of the surface

with long links between the beads of the path.

The structure of the plasma on the sphere reveals how the curvature in°uences

the Coulomb and Fermi holes as they evolve in temperature and density. In par-

ticular we observe a monotonic increase of the extent of the Fermi hole as the

temperature diminishes. Our analysis shows how the probability of ¯nding a particle

nearby another particle is lower than the probability of ¯nding a particle at the

antipodes unless for spheres of large diameter. At a higher degeneracy parameter the

Pauli exclusion e®ect becomes less important and the Fermi hole tends to disappear.

In the high temperature limit the particles will tend to cover the sphere more uni-

formly. Decreasing the surface density at ¯xed low temperature the ¯rst peak of the

radial distribution function grows monotonically in height, tends to become bigger

than its antipodal value, and shifts at smaller distances.

Our computer experiment could be used to predict the properties of a metallic

spherical shell, as for example a spherical shell of graphene. Today we assisted the

rapid development of the laboratory realization of graphene hollow spheres with

many technological interests like the employment as electrodes for supercapacitors

and batteries, as superparamagnetic materials, as electrocatalysts for oxygen re-

duction, as drug deliverers, as a conductive catalyst for photovoltaic applications. Of

course, with simulation we can access the more various and extreme conditions

otherwise not accessible in a laboratory.

A possible further study would be the simulation of the neutral sphere where we

model the plasma of electrons as embedded in a spherical shell that is uniformly

positively charged in such a way that the system is globally neutrally charged. This

can easily be done by changing the Coulomb pair-potential into e2=r ! e2

ð1=r� 1Þ. In the a ! 1 limit, this would reduce to the Wigner Jellium model

which has been receiving much attention lately, from the point of view of a path

integral Monte Carlo simulation.1–8 Alternatively, we could study the two-com-

ponent plasma on the sphere as has recently been done in the tridimensional Eu-

clidean space.44 Another possible extension of our work is the realization of the

simulation of the full anyonic plasma on the sphere taking care appropriately of the

fractional statistics and the phase factors to append to each disconnected region of

the path integral expression for the partition function. This could become impor-

tant in a study of the quantum Hall e®ect by placing a magnetic Dirac monopole at

the center of the sphere.13,14 Also the adaptation of our study to a fully relativistic

Hamiltonian could be of some interest for the treatment of the Dirac points

graphinos.
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Chapter 60

From the Liouville to the
Smoluchowski equation for a colloidal
solute particle in a solvent

Fantoni R., Physica A 5, 682 (2018)
Title: “From the Liouville to the Smoluchowski equation for a colloidal solute particle in a
solvent”
Abstract: We show how the Smoluchowski dynamics of a colloidal Brownian particle sus-
pended in a molecular solvent can be reached starting from the microscopic Liouvillian
evolution of the full classical model in the high friction limit. The integration of the solvent
degrees of freedom goes through a multiple time scale perturbation expansion which removes
the secular divergences. A simple dynamical Monte Carlo scheme is then proposed to solve
the resulting evolution equation for the colloid solute particle. In particular we study the
approach to the equilibrium Boltzmann distribution at late times and its resilience behavior
at shorter times as influenced by the steepness of the external potential and the friction
coefficient around their respective minima. This is very important to understand the fate of
the Brownian particle’s random walk and its evolution history.
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a b s t r a c t
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a molecular solvent can be reached starting from the microscopic Liouvillian evolution of
the full classical model in the high friction limit. The integration of the solvent degrees of
freedom goes through a multiple time scale perturbation expansion which removes the
secular divergences. A simple dynamical Monte Carlo scheme is then proposed to solve
the resulting evolution equation for the colloid solute particle. In particular we study the
approach to the equilibriumBoltzmanndistribution at late times and its resilience behavior
at shorter times as influenced by the steepness of the external potential and the friction
coefficient around their respective minima. This is very important to understand the fate
of the Brownian particle’s random walk and its evolution history.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of a many-body system can be given in terms of the time evolution of the probability phase space density
of the chosen ensemble of particles.Wemust require that the total time derivative of the probability density vanishes so that
the probability density as seen by an observer moving with a phase point along its phase space trajectory, is independent of
time. Phase points of the statistical ensemble are neither created nor destroyed as time evolves.

The Liouvillian dynamics gives rise to the famous kinetic equation discovered by Boltzmann in 1872 (where the
assumption of two body collisions only and of uncorrelated successive collisions are only valid at sufficiently low density)
or to the exact Born–Bogoliubov–Green–Kirkwood–Yvon (BBGKY) hierarchical equations.

According to BBGKY the dynamics of a single particle requires the knowledge of the two-body probability density. But if
we additionally require that the particle we are looking upon has mass much larger than that of all the other particles it is
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possible to expand perturbatively such dynamics so to find a closed equation for just the single massive particle probability
phase space density.

A colloidal suspension is made of colloidal particles immersed in a solvent. The solvent (which may be water or other
liquids) is in general a molecular liquid which can be described at a microscopic level by particles much smaller and lighter
than the macromolecular colloidal particle. The problem of the dynamics of the big colloidal solute particle subject to its
interaction with the smaller solvent molecules in statistical equilibrium at a given absolute temperature T is an interesting
one. Starting from the observation in 1827 by Robert Brown of the motion of pollen grains in water and the interpretation
of Albert Einstein in 1905 which was later verified experimentally by Jean Baptiste Perrin in 1908, the Brownian motion
began to occupy an important role in non-equilibrium statistical physics. Even if the initial description of the colloid solute
particle dynamics was an empirical one it soon became clear the microscopic origin of the Brownian motion. A complete
microscopic description has to take into account the solvent in a proper way. The challenge is to be able to ‘‘remove’’ the
degrees of freedom of the solvent in favor of the ones of the solute particle. So as to have a mesoscopic description of the
dynamics of the colloid solute particle dressed by the solvent.

In the second half of last century it had been discovered [1] that it is indeed possible to derive the Brownian motion
equations starting from the Liouvillian evolution, L ≡ i{H, . . .}, with {. . .} the Poisson brackets and H the model classical
Hamiltonian, of the probability density in the phase space of a model of N solvent particles and the colloidal particle,
f [N+1](t) = exp(−iLt)f [N+1](0), to the Fokker–Planck equation [2,3] for the dynamics of the dressed solute particle alone
subject to friction. The friction coefficient ξ is expressed in terms of an equilibrium average over the phase space of the
solvent in the external field of the solute particle of a particular term containing themicroscopic force exerted by the solvent
on the colloidal particle. At the end of last century it was shown furthermore that a high friction expansion, in turn, brings [4]
to the Smoluchowski equation for the colloid solute particle or its equivalent stochastic Langevin equation. Some related
literature to the present framework can be found in the following references [5–8].

It this work we outline a simpleMonte Carlo scheme that may be used to solve the resulting Smoluchowski equation that
we call Dynamical Monte Carlo (DynMC). The realistic case of a colloidal suspension of poly(methyl methacrylate) (PMMA)
particles inwater [9] is taken as an example. In particularwe study the approach to the equilibriumBoltzmanndistribution at
late times and its resilience behavior at shorter times as influenced by the steepness of the external potential and the friction
coefficient around their respective minima. This is very important to understand the fate of the Brownian particle’s random
walk and its evolution history. We test our new algorithm on the case of a harmonic one dimensional external potential for
which the analytic exact solution of the Smoluchowski equation is known.

Of course a more realistic treatment of the molecular solvent would be through a quantum statistical mechanics
description where L ≡ i[Ĥ, . . .]/h̄, with [. . .] the commutator and Ĥ the model Hamiltonian operator. Then we would
have amixed evolution where the solvent is treated quantummechanically and themassive colloid solute particle is treated
classically (see for example Ref. [10] or Ref. [11] where the full quantummechanical treatment is considered). We leave this
as an open future problem.

The paper is organized as follows: In Section 2we present the reduction from the Liouville equation to the Fokker–Planck
equation, in Section 3 we present the reduction from the Fokker–Planck equation to the Smoluchowski equation, in Section
4 we present the Dynamical Monte Carlo algorithm (DynMC), in Section 5 we carry on a computer experiment with the
newly developed algorithm to solve for the time dependence of the mean Brownian particle position under the influence of
an external harmonic potential in one spatial solution, Section 6 is for final remarks.

2. From the Liouville to the Fokker–Planck equation

In this section wewill reproduce and discuss themultiple time scale perturbation expansion presented in Ref. [12] which
brings from the microscopic Liouville equation for a solute particle in a solvent to its mesoscopic Fokker–Planck equation.

We consider a colloidal solute particle of diameter Σ and mass M immersed in a colloidal suspension of small solvent
particles of diameter σ and massm ≪ M . The Hamiltonian of the system of N + 1 particles can thus be written as

H =
P2

2M
+

N∑
i=1

p2i
2m

+ VN (rN ) + Vb(R, rN ), (1)

where VN is the total interaction energy of the N solvent particles of coordinates rN = (r1, r2, . . . , rN ) and momenta
pN

= (p1, p2, . . . , pN ), and Vb is the potential energy of the solvent particles in the field of a Brownian solute particle placed
at R with momentum P. The Liouville operator splits naturally into a solvent and a Brownian terms: L = Ls + Lb, with

Ls = −i
N∑
i=1

(
pi

m
·

∂

∂ri
+ fi ·

∂

∂pi

)
, (2)

Lb = −i
(

P
M

·
∂

∂R
+ F ·

∂

∂P

)
, (3)
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where fi = −∂(VN + Vb)/∂ri is the force acting on the solvent particle i and F = −∂Vb/∂R is the force exerted on the solute
particle by the solvent particles. The Liouville equation for the phase space probability density of the systemofN+1 particles
is therefore

∂

∂t
f [N+1](B, bN

; t) = −i(Ls + Lb)f [N+1](B, bN
; t), (4)

where we use the following notation: B ≡ {R, P} and bN
≡ {rN , pN

}.
We now introduce a perturbation parameter ϵ =

√
m/M ≪ 1 and rescale the solute particle momenta accordingly as

follows: P′
= ϵP, so that

Lb = −iϵ
(
P′

m
·

∂

∂R
+ F ·

∂

∂P′

)
≡ ϵL′

b. (5)

We want to find now the Liouville equation for the one-particle distribution function

fb(B, t) ≡ f [1](R, P′
; t) =

∫
f [N+1](B, bN

; t) dbN . (6)

Integrating then Eq. (4) over the coordinates and momenta of the solvent we find
∂

∂t
fb(B, t) = −ϵ

P′

m
·

∂

∂R
fb(B, t) − ϵ

∫
F ·

∂

∂P′
f [N+1](B, bN

; t) dbN , (7)

where the term containing Ls vanishes because we assume zero net flow of probability at infinity in phase space.
The perturbation expansion in ϵ over amultiple time scale is necessary in order to extract the mesoscopic time evolution

from the microscopic one due to secular divergences of the solution at sufficiently long times, irrespective of how small ϵ
may be. We then introduce an auxiliary distribution function

f [N+1]
ϵ (B, bN

; t0, t1, t2, . . .) = f [N+1]
ϵ0 + ϵf [N+1]

ϵ1 + ϵ2f [N+1]
ϵ2 + · · · , (8)

which is a function of multiple time variables

t0 = t, t1 = ϵt, t2 = ϵ2t, . . . , tn = ϵnt. (9)

Eq. (8) indicates that the dependence of the distribution function on tn characterizes the evolution on the time scale t ∼ ϵn

for n = 0, 1, 2, . . .. So, the original Liouville Eq. (4) is replaced by(
∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2 ∂

∂t2
+ · · ·

)
f [N+1]
ϵ = −i(Ls + ϵL′

b)f
[N+1]
ϵ , (10)

and the Liouville equation for the Brownian motion by(
∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2 ∂

∂t2
+ · · ·

)
fbϵ = −ϵ

P′

m
·

∂

∂R
fbϵ − ϵ

∫
F ·

∂

∂P′
f [N+1]
ϵ dbN . (11)

Term by term integration of this equation shows that also fbϵ can be expanded in the form: fbϵ = fb0 + ϵfb1 + ϵ2fb2 + · · ·.
The crucial difference between Eq. (8) and a conventional perturbation expansion is the fact that the auxiliary function has a
physical meaning only along the so-called physical line defined by (9). We are therefore free to impose whatever boundary
conditions are needed to ensure that the expansion is free of secular divergences at successive powers of ϵ at large times.
The same is true of the expansion for fbϵ .

We will work up to order ϵ2, retaining only the three time variables t0, t1, and t2. Substituting the perturbation expansion
for f [N+1]

ϵ and fbϵ in Eq. (11) and equating coefficients of equal powers of ϵ, we arrive at the following results.

[0. ] To zeroth order in ϵ:
From Eq. (11) we find immediately

∂

∂t0
fb0 = 0, (12)

so that fb0 = fb0(R, P′
; t1, t2, . . .). From Eq. (10) we find

∂

∂t0
f [N+1]
ϵ0 = −iLsf

[N+1]
ϵ0 . (13)

Since the equilibrium phase space probability density of the solvent in the presence of the Brownian solute particle at
R satisfies the relation Lsf

[N]

0 (bN
|R) = 0, the solution to Eq. (13) is simply

f [N+1]
ϵ0 = fb0(R, P′

; t1, t2)f
[N]

0 (bN
|R), (14)

where∫
f [N]

0 (bN
|R) dbN

= 1, f [N]

0 (bN
|R) ∝ e−βH,

∂

∂R
f [N]

0 = βFf [N]

0 , (15)
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here β = 1/kBT with T the absolute temperature. We now employ the freedom of choice of boundary condition on the
auxiliary function fbϵ imposing the following initial condition: fbϵ(R, P′

; t0 = 0, t1, t2) = fb0(R, P′
; t1, t2), which in turn

implies that fbn(R, P′
; t0 = 0, t1, t2) = 0 for n = 1, 2.

[1. ] To first order in ϵ:
From Eqs. (10) and (11) we find

∂

∂t0
f [N+1]
ϵ1 +

∂

∂t1
f [N+1]
ϵ0 = −iLsf

[N+1]
ϵ1 − iL′

bf
[N+1]
ϵ0 (16)

and
∂

∂t0
fb1 +

∂

∂t1
fb0 =

∫
(−iL′

b)f
[N+1]
ϵ0 dbN , (17)

respectively. Eqs. (12) and (14) show that fb0 and f [N+1]
ϵ0 are both independent of t0. To avoid secular growth of fb1 in (17)

it is necessary to impose ∂ fb1/∂t0 = 0, which combinedwith the initial condition for fb1 implies that fb1 = 0 identically,
and

∂

∂t1
fb0 =

∫
(−iL′

b)f
[N+1]
ϵ0 dbN

= −iL′

bfb0, (18)

where in the last equality we used Eq. (14). We therefore focus on the time evolution of fb0. Eq. (18) shows that on the
time scale t1 the evolution of the distribution function of the Brownian particle is the same as that of a single particle
in the field of the solvent. Eq. (16) can now be rearranged as follows(

∂

∂t0
+ iLs

)
f [N+1]
ϵ1 = −

(
∂

∂t1
+ iL′

b

)
f [N+1]
ϵ0

= −F ·

(
βP′

m
+

∂

∂P′

)
fb0f

[N]

0 , (19)

which, upon choosing the boundary condition f [N+1]
ϵ1 (R, P′, bN

; t0 = 0, t1, t2) = 0, has the formal solution

f [N+1]
ϵ1 (R, P′, bN

; t0, t1, t2) =

−

∫ t0

0
ds e−iLssF ·

(
βP′

m
+

∂

∂P′

)
fb0(R, P′

; t1, t2)f
[N]

0 (bN
|R), (20)

as can be checked by direct substitution in (20).
[2. ] To second order in ϵ:

From Eq. (11) and the fact that fb1 = 0 we find

∂

∂t0
fb2 +

∂

∂t2
fb0 =

∫
(−iL′

b)f
[N+1]
ϵ1 dbN . (21)

Since fb0 is independent of t0, secular growth is again suppressed by setting ∂ fb2/∂t0 = 0. Substituting the solution (20)
into Eq. (21) we obtain a closed equation for the evolution of fb0(R, P′

; t1, t2):

∂

∂t2
fb0 = lim

t0→∞

∫
dbN f [N]

0 (bN
|R)iL′

b

×

∫ t0

0
ds e−iLssF ·

(
βP′

m
+

∂

∂P′

)
fb0, (22)

where the limit t0 → ∞ can be easily taken because fb0 is independent of t0. Recognizing that e−iLssF is the time
evolution F(−s) we then find

∂

∂t2
fb0 = lim

t0→∞

∫ t0

0
ds ⟨L′

bF(−s)⟩b ·

(
βP′

m
+

∂

∂P′

)
fb0

=
1
3

∫
∞

0
ds ⟨F · F(−s)⟩b

∂

∂P′
·

(
βP′

m
+

∂

∂P′

)
fb0, (23)

where ⟨. . .⟩b =
∫

. . . f [N]

0 (bN
|R) dbN denotes an equilibrium average over the phase space variables of the solvent

particles in the external field of the solute particle.
Putting together the results obtained so far and going back to physical time and to the original momentum variable P,
we arrive finally to the Fokker–Planck (or Klein [2] and Kramers [3]) equation for fb(R, P; t):

∂

∂t
fb(R, P; t) =

(
ϵ

∂

∂t1
+ ϵ2 ∂

∂t2

)⏐⏐⏐⏐
t1=ϵt,t2=ϵ2t

fb0(R, P; t1, t2)
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=

[
−

P
M

·
∂

∂R
+ ξ

∂

∂P
·

(
P +

M
β

∂

∂P

)]
fb(R, P; t), (24)

where the friction coefficient

ξ =
β

3M

∫
⟨F · F(−s)⟩b ds. (25)

3. From the Fokker–Planck to the Smoluchowski equation

We now introduce a dimensionless friction ξd = ξτT with τT = Σ/vT a thermal time and vT =
√
1/βM the

thermal velocity. In the high friction limit one can carry on a multiple time scale perturbation expansion in the small
ϵb ≡ 1/ξd ≪ 1 parameter [4], which multiplies the time derivative in the Fokker–Planck equation (24), to finally reach
the Smoluchowski [13] equation, governing the time evolution of the probability density in configuration space:

ρb(R, t) =

∫
fb(R, P; t) dP. (26)

We then repeat the same multiple time scale perturbation analysis performed in the previous section replacing now ϵ with
ϵb. If we use the following notation

LFP ≡
∂

∂P
·

(
P +

M
β

∂

∂P

)
, (27)

the identification of different powers of ϵb in the Fokker–Planck equation gives the following relations:

LFPfb0 = 0, (28)

LFPfb1 = τT

[
∂

∂t0
+

P
M

·
∂

∂R

]
fb0, (29)

LFPfb2 = τT

[
∂

∂t0
+

P
M

·
∂

∂R

]
fb1 + τT

∂

∂t1
fb0. (30)

The zeroth order equation imposes a Maxwellian distribution

fb0(R, P; t0, t1, . . .) = Φ(R; t0, t1, . . .)e−βP2/2M . (31)

The first order equation imposes then

LFPfb1 = τT
∂Φ

∂t0
e−βP2/2M

+ τT
P
M

·
∂Φ

∂R
e−βP2/2M . (32)

In order to eliminate secular divergences we must require ∂Φ/∂t0 = 0, and the first correction for the distribution function
is now given by

fb1(R, P; t0, t1, . . .) = −τT
P
M

·
∂Φ

∂R
e−βP2/2M

+ Ψ (R; t0, t1, . . .)e−βP2/2M . (33)

The second order equation becomes

LFPfb2 =

[
τT

∂Ψ

∂t0
+ τT

∂Φ

∂t1
− (vT τT )2

∂

∂R
·
∂Φ

∂R

]
e−βP2/2M

+ τT
P
M

·
∂Ψ

∂R
e−βP2/2M

+[
τ 2
T

(
v2
T

∂

∂R
·

∂

∂R
−

P
M

·
∂

∂R
P
M

·
∂

∂R

)
Φ

]
e−βP2/2M . (34)

In order to remove the secular divergences as t0 grows to infinity, we must impose ∂Ψ /∂t0 = 0. Moreover it is easy to
show that the eigenfunctions of LFP are the functions Hn exp(−βP2/2M) where Hn is the nth Hermite polynomial. Since the
Maxwellian is associated with a null eigenvalue, in order to require that the integral of the right hand side of Eq. (34) in dP
vanishes, we must impose that all terms multiplying the Maxwellian vanish, due to the orthogonality condition between
the eigenfunctions. We must then have

∂Φ

∂t1
= v2

T τT
∂

∂R
·
∂Φ

∂R
. (35)

We now can collect the results obtained so far to obtain the distribution function to order ϵ2
b as follows

fb(R, P; t) =

[
Φ − ϵbτT

P
M

·
∂Φ

∂R
+ ϵbΨ + O(ϵ2

b )
]
e−βP2/2M , (36)
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and from Eq. (26) it follows immediately

ρb(R, t) =

(
2Mπ

β

)3N/2 [
Φ + ϵbΨ + O(ϵ2

b )
]
. (37)

Then the time evolution for ρb is obtained restricting the different variables ti to the physical line as follows
∂

∂t
ρb(R, t)

=

(
∂

∂t0
+ ϵb

∂

∂t1

)(
2Mπ

β

)3N/2

[Φ(R; t1, . . .) + ϵbΨ (R; t1, . . .) + O(ϵ2
b )]t0=t,t1=ϵbt,...

= ϵb
∂

∂t1

(
2Mπ

β

)3N/2

Φ(R; t1, . . .)|t0=t,t1=ϵbt,... + O(ϵ2
b ). (38)

Then using Eq. (35) we finally find the diffusion equation

∂ρb(R, t)
∂t

=
v2
T

ξ

∂

∂R
·
∂ρb(R, t)

∂R
+ O(1/ξ 2

d ). (39)

If we had an external field Fe(R) = −∂Ve(R)/∂R acting on the Brownian solute particle then the initial Hamiltonianwould
have been

H =
P2

2M
+

N∑
i=1

p2i
2m

+ VN (rN ) + Vb(R, rN ) + Ve(R), (40)

and the Smoluchowski equation [13] becomes

∂ρb(R, t)
∂t

=
v2
T

ξ

∂

∂R
·

(
∂

∂R
− βFe(R)

)
ρb(R, t), (41)

which can also be written as
∂ρb(R, t)

∂t
=

v2
T

ξ

∂

∂R
e−βVe(R) ∂

∂R
eβVe(R)ρb(R, t), (42)

which shows immediately that ρb ∝ exp[−βVe(R)] is a stationary solution. So that calling

βv2
T/ξ = 1/γ , (43)

where γ is usually known as themobility, we can rewrite the Smoluchowski Eq. (41) as

∂ρb(R, t)
∂t

=
∂

∂R
·

(
∂

∂R
v2
T

ξ
−

Fe(R)
γ

)
ρb(R, t), (44)

which through Ito’s calculus [14] can be proved to be equivalent to the following stochastic differential equation, the
Langevin equation

γ Ṙ = Fe(R) +

√
2(γ vT )2/ξ ζ (t), (45)

where we denote with the dot a time derivative and ζ is a white noise. In this respect Eq. (43) is considered as a case of
fluctuation and dissipation theorem. It is then straightforward to show that for Fe = 0 we find ⟨[R(t) − R(0)]2⟩ = 6Dt with
D = v2

T/ξ the diffusion constant. Eq. (43) is known as the Einstein relation. The fluctuations of the particle as it undergoes
its random walk are related to the drag force (or dissipation of momentum) that the particle feels as it moves through the
solvent.

The Einstein relation gives an excellentway to determine Boltzmann’s constant experimentally.Watch a particle perform
a Brownian jitter. After time t , the distance traveled by the particle should be ⟨R2

⟩ = 2kBTt/πηΣ , where we have used the
Stokes formula γ = 3πηΣ to relate themobility to the viscosity η. This experimentwas done in 1908 by the French physicist
Jean Baptiste Perrin and won him the 1926 Nobel prize.

The full form of the Langevin equation is the one with the acceleration term. Then using the relation P/M = V = Ṙ
we should have in a less viscous fluid the equation MV̇ = −γV + Fe + γ

√
2Dζ for which we still find for F = 0,

⟨[R(t) − R(0)]2⟩ = 6Dt and ⟨V(t) · V(t)⟩ = 3Dγ /M at late times. This stochastic differential equation leads through Ito’s
calculus to the Fokker–Planck equation for fb(R, P; t). This Eq. (24) is sometimes also called the Klein and Kramers equation
and sometimes the Chandrasekhar equation.

4. The dynamical Monte Carlo method

We now want to show how the Smoluchowski evolution equation can be solved by stochastic means. In nature,
equilibrium distributions are generated by an evolution process. The Smoluchowski equation

∂ρb(R, t)
∂t

= ∇∇∇ · D(R) · [∇∇∇ − βFe(R)]ρb(R, t), (46)
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is the unique ‘‘master’’ equation which is:

• local in space
• goes to the Boltzmann distribution
• is Markovian

Here D(R) is, in general, a many-body tensor. In the previous section we saw that for the one-body problem it is sufficient to
take it as a constant diagonal tensor Dij = δijD and Fe = −∇∇∇Ve is the external force.

The asymptotic solution of ρb(R, t) will be ρ0(R) ∝ exp[−βVe(R)]. It is easy to see that this distribution satisfies
dρ0/dt = 0. If we assume the process is ergodic, since it is Markovian, this must be the only solution.

Let us define Green’s function: G(R,R0; t) = G(R0 → R; t) is the solution to Eq. (46) with the boundary condition at zero
time: G(R,R0; 0) = δ(R − R0). We can prove that the Green’s function satisfies detailed balance:

ρ0(R)G(R → R′
; t) = ρ0(R′)G(R′

→ R; t), (47)

for any value of t . To do that one writes the evolution equation for the symmetrized Green’s function: [ρ0(R)/ρ0(R′)]1/2
G(R → R′

; t), and sees that the right hand side of themaster equation is a Hermitian operator (see Appendix) which implies
that the symmetrized Green’s function is symmetric in R and R′. Then the random walk must eventually have ρ0 as its
equilibrium distribution [15]. G can be used for a transition probability and it will always give an acceptance probability of
unity [16]. Also it gives the interesting dynamics of a viscous particles always in contact with a heat bath.

The Smoluchowski equation leads to an interesting process but we can only calculate G in the short time limit. In the
following we explain a general procedure for devising an algorithm of sampling G. Let us calculate the moments of G,

In(R0, t) =

∫
dR (R − R0)nG(R0 → R; t). (48)

Take the time derivative of this equation, use the master equation on the right hand side, and integration by parts to get
a simple integral over G on the right hand side. We interpret this as an average ⟨. . .⟩. We assume there are no absorbing
surfaces of the random walks. Then,

dI0/dt = 0. (49)

This implies the normalization of G is always one, so the evolution describes a process which neither creates nor destroys
walks. The next moment is:

d[I1]k/dt = ⟨∇∇∇ jDkj + Dkj[Fe]jβ⟩, (50)

where we use the Einstein summation convention over the repeated indexes. Let us assume that Fe and ∇∇∇D are slowly
varying. Then we can replace them by the values at the initial point and integrate in time:

[Rt ]k = ⟨Rk⟩ = [R0]k + t⟨∇∇∇ jDkj(R) + Dkj(R)[Fe]j(R)β⟩g |R=R0+O(t2), (51)

where ⟨. . .⟩g is an average respect to the small time Green’s function Gg of Eq. (54). The equation for the second moment is:

dI2/dt = 2⟨Dii + (R − R0)i(∇∇∇ jDij + Dij[Fe]jβ)⟩, (52)

Integrating in time we then find

⟨(R − R0)2⟩ = 2⟨Dii(R)⟩g |R=R0 t + O(t2). (53)

The solution at small time is a Gaussian distribution with the above mean and covariance, namely

Gg (R,R0; t) =
e−(R−Rt )(4⟨Dii(R)⟩g |R=R0 t)

−1(R−Rt )√
4π⟨Dii(R)⟩g |R=R0 t

3N . (54)

According to the central limit theorem, Eqs. (51) and (53) are all that is needed to simulate the randomwalk if the time step
t is sufficiently small. The effect of the external field is to push the mean position of the Brownian particle away from its
current position. An outward push in directions where the external force is positive. The cage of the surrounding solvent is
also present whenever the diffusion tensor is R dependent.

5. A simple Monte Carlo simulation

For some simple forms of the external potential Ve the Smoluchowski equation admits an analytical solution. For example
the one-dimensional Smoluchowski equation in empty space (which requires the probability density to vanish at spatial
infinity faster than any inverse power of R) can be solved analytically for

• A linear potential Ve(x) = cx [17],

G(x, x0; t) =
e−

(x−x0+Dβct)2

4Dt
√
4πDt

. (55)
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• A harmonic potential Ve(x) = cx2/2 [18],

G(x, x0; t) =
e−

(
x−x0e

−2t/t̃
)2

2S(t)/βc

√
2πS(t)/βc

, (56)

S(t) = 1 − e−4t/t̃ ,

t̃ = 2/βcD.

In each one of these cases a proper change of time dependent coordinates is used to reduce the Smoluchowski equation to
the free diffusion equation.

Except for these simple cases in order to extract the evolution of the Green’s function wemust resort to a simulation. We
can then use the Markovian property as follows

G(R,R0; t − t0) =∫
Gg (R,Rn; t − tn)Gg (Rn,Rn−1; tn − tn−1) · · ·Gg (R1,R0; t1 − t0) dR1dR2 · · · dRn, (57)

where tn − tn−1 = τ is a small time step. At fixed R,R0, and t − t0 = (n + 1)τ we can then easily compute the Green’s
function G(R,R0; t) through a Monte Carlo integration sampling the successive Gg of Eq. (54) with the Box–Müller method
(see Ref. [15] section 3.1). For small enough τ we sampleGg (R1,R0; τ ) at fixedR0 generatingR1 thenwe sampleGg (R2,R1; τ )
generating R2 and so on for the remaining n − 2 factors ending with the generated Rn. We can then evaluate Gg (R,Rn; τ ) at
fixed R on Rn with a Monte Carlo integration to find G(R,R0; (n + 1)τ ). Clearly we will have to control the convergence of
the algorithm as τ gets smaller and smaller.

Eq. (57) suggests a path integral representation of the Green’s function solution of the Smoluchowski equation, namely

G(R,R0; t − t0) ∝

∫∫ R

R0

e−S DR(t), (58)

with an action

S =

∫ t

t0

dt ′
∑
k

[
Ṙk(t ′) − ⟨∇jDkj + Dkj[Fe]jβ⟩|R=R(t ′)

]2
/4⟨Dii⟩|R=R(t ′), (59)

where the dot denotes a total derivative with respect to time.
If the colloidal particle is initially localized around R̄0 =

∫
Rρb0(R) dR where we assume to be given ρb0(R) = ρb(R, t0)

we may want to find its average position at a later time

R̄(t) =

∫
RG(R,R0; t − t0)ρb0(R0) dRdR0. (60)

Relevant mesoscopic time scales are the time τb = 1/ξ over which the velocity of a Brownian particle relaxes. At room
temperature, for typical values of ξ , we find τb ≈ 10−9 s. Taking Σ ≈ 1 µm and M ≈ 10−21 kg [9,19] at room temperature
1/β ≈ 10−21 J we have vT ≈ 1 m/s and τT ≈ 10−6 s. Another relevant time scale is the time required for an isolated
Brownian particle to diffuse over a distance equal to its diameter τc = Σ2/D = ξβMΣ2

≈ 10−3 s > τT > τb. On the
microscopic level the shortest time scale is the Enskog mean collision time τE = 1/ΓE =

√
βm/π/4ρsσ

2g(σ ) where g(r)
(see Ref. [12] section 2.5) is the radial distribution function of the solvent. For a solvent such as water σ = Σ/104, and
τE ≈ 10−12 s. We already know that for t ≫ τE the Smoluchowski solution tends to the equilibrium Boltzmann distribution
which remains then stable on a large subsequent time scale. For example, for the one dimensional harmonic potential with
an initial Gaussian distribution centered on x0 we find

x̄(t) =

√
2x0e−βcDt√

(1 − e−2βcDt )[1 + coth(βcDt)]
, (61)

showing that the relaxation time is proportional to 1/βcD. In Fig. 1 we show a DynMC simulation of this case for βcD =

1 s−1, x0 = 2 m, and fixed τ = 0.001 s. Clearly at long enough times the solute particle will reach the equilibrium average
position

R̄e =

∫
Re−βVe(R) dR∫
e−βVe(R) dR

. (62)

The natural time scale over which the Smoluchowski evolution approach equilibrium is τb. What may be interesting to
observe is whether a proper control of the external fields allows the approach to equilibrium to happens more rapidly, thus
indicating a ‘‘persistence’’ of the Boltzmann distribution since early times. Clearly if Ve(R) = Ve(R) onemust end up in R̄e = 0,
by symmetry. For a single Brownian particle Eq. (51) becomes

Rτ ≃ R0 + τDβ⟨Fe⟩g |R=R0 , (63)
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Fig. 1. DynMC simulation for the one dimensional harmonic potential with an initial Gaussian distribution centered on x0 = 2 m with βcD = 1 s−1 and
τ = 0.001 s. In this case ⟨Fe(x)⟩g = −cx/(1 + βcDτ ). The continuous line is the exact analytical solution of Eq. (61) and the symbols are the results of the
simulation.

so that, if ⟨Fe⟩g = 0 we will have Rt = R0 at all time slices and

R̄(t) =

∫
RGg (R,R0; t − t0)ρb0(R0) dRdR0. (64)

We also immediately see that the persistence will be the more important the steeper the external potential approaches
its minimum. On an unstable equilibrium point of the potential (a maximum) the Green’s function will be swallowed and
eventually vanish in time.

Another interesting question is to determine the influence on the evolution of a spatially dependent diffusion coefficient
D(R) = v2

T/ξ (R) rather than a constant. From Eq. (51) we see that around an equilibrium point for the external potential we
will still have

Rτ ≃ R0 + τ ⟨∇∇∇D⟩g |R=R0 . (65)

We will call this the ‘‘cage effect’’ of the solvent on the evolution of the solute particle.
In addition to the empty space boundary conditions other kinds are possible. Calling I ≡ D(∇∇∇ − βFe) the flux operator

and ∂Ω the boundary of the space Ω where the solute particle is confined, the most general case are the radiation boundary
conditions, namely

n̂(R) · I(R)G(R,R0; t − t0) = ωG(R,R0; t − t0), R ∈ ∂Ω, (66)

where n̂(R) denotes a unit vector normal to the surface ∂Ω . The reactivity is measured by the ω parameter. For ω = 0 we
have a non-reactive or reflective boundary condition and for ω → ∞ we have a reaction boundary condition. So for a confined
case we have to choose the required boundary condition and then determine the proper small time step Green’s function
Gg . For example for the solution in half space X ≥ 0with a reaction boundary condition at X = 0, G((0, Y , Z),R0; t − t0) = 0,
we may use the image technique as follow

Gg (R,R0; τ ) =
e−[(X−Xt )2+(Y−Yt )2+(Z−Zt )2]/4⟨Dii(R)⟩g |R=R0 τ√

4π⟨Dii(R)⟩g |R=R0 t
3N −

e−[(X+Xt )2+(Y−Yt )2+(Z−Zt )2]/4⟨Dii(R)⟩g |R=R0 τ√
4π⟨Dii(R)⟩g |R=R0τ

3N . (67)

6. Conclusions

In conclusion, for a colloidal suspension made up of one solute big and heavy particle and N solvent small and light
particles we show how it is possible to reduce the Liouville dynamics to the Fokker–Planck dynamics by integrating over the
coordinates and momenta of the solvent particles. And how integrating furthermore on the momenta of the solute particle
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it is possible to reduce the Fokker–Planck equation to the Smoluchowski equation in the high friction regime. The two
successive reductions are based on a multiple time scale perturbation expansions. The first reduction was discovered in
the second half of last century and the second reduction at the end of last century a simple Dynamical Monte Carlo (DynMC)
algorithm is presented to solve the Smoluchowski equation for the Brownian motion of the solute particle in empty space
and a thought computer experiment illustrated.

We discuss how a steep external potential around its minimum will drive the approach to equilibrium more rapidly
than the natural time scale τb and the cage effect due to the solvent. In particular we present a DynMC simulation on the
harmonic case with a constant diffusion which well reproduces the exact analytical solution of the Smoluchowski equation.
The simplicity of the simulation makes it very useful for the treatment of problems which do not have an analytic solution.
Wepresented results for the average position of the solute particle as a function of time, but other quantities can be computed
as for example the full Green’s function starting from Eq. (57).

Wediscuss the proper boundary conditions to be imposed on the Smoluchowski second order partial differential equation
in order to have a radiation, reflective, or reaction boundary andwe give the small time expression for the Green’s function in
half space with a reaction boundary condition on the plane of separation using the image technique. An interesting progress
that could be made at the level of the Fokker-Planck description is to derive the expression for the friction coefficient for a
colloidal patchy sticky hard sphere in a solvent of isotropic sticky hard spheres, in the spirit of Refs. [20–36]. Or in a solvent
of penetrable square well particles, in the spirit of Refs. [37–42]. Or fluid mixtures adsorbed in porous disordered materials
with random confinement, as in Refs. [43,44].

We leave as an open problem the generalization of the present treatment to the case of a classical Brownian solute
macromolecule in a quantum solvent.

Appendix. Hermiticity of the Smoluchowski operator

We will work in empty space. Then we introduce the Smoluchowski operator LS(R) = ∇∇∇Dρ0(R)∇∇∇ρ−1
0 (R). For any two

functions g(R) and h(R) decaying to zero at spatial infinity faster than any inverse power we can write, using two times an
integration by parts,∫

dR
1

√
ρ0(R)

g(R)LS(R)
√

ρ0(R)h(R) =

−

∫
dR ρ0(R)∇∇∇

(
1

√
ρ0(R)

g(R)
)
D∇∇∇

1
√

ρ0(R)
h(R) =∫

dR
1

√
ρ0(R)

h(R)LS(R)
√

ρ0(R)g(R), (A.1)

which proves the Hermiticity, [
√

ρ0
−1LS

√
ρ0]

†
=

√
ρ0

−1LS
√

ρ0, of the Smoluchowski operator. So that, from the Chapman–
Kolmogorov relation

G(R0 → R; t) =

∫
dR1 G(R1 → R; τ )G(R0 → R1; t − τ ), (A.2)

follows
∂

∂t
G(R0 → R; t) = LS(R)G(R0 → R; t)

=

∫
dR1G(R1 → R; τ )LS(R1)G(R0 → R1; t − τ )

=

∫
dR1

G(R0 → R1; t − τ )
ρ0(R1)

LS(R1)ρ0(R1)G(R1 → R; τ )

τ→t
−→

1
ρ0(R0)

LS(R0)ρ0(R0)G(R0 → R; t), (A.3)

where in the last limit we used the initial condition G(R0 → R1; 0) = δ(R0 − R1). And, using the symmetry of the left
hand side of Eq. (A.3) respect to exchange of R0 ↔ R, we finally find the detailed balance relation ρ0(R0)G(R0 → R; t) =

ρ0(R)G(R → R0; t).
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Abstract: The simplest statistical mechanics model of a Coulomb plasma in two spatial
dimensions admits an exact analytic solution at some special temperature in several (curved)
surfaces. We present in a unifying perspective these solutions for the (non-quantum) plasma,
made of point particles carrying an absolute charge , in thermal equilibrium at a temperature
T = e2/2kB, with kB Boltzmann’s constant, discussing the importance of having an exact
solution, the role of the curvature of the surface, and the densities of the plasma.
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Part I

Introduction

The physics of fluids of particles living in (curved) surfaces is a well known chapter of surface physics. It arises in
situations in which particles are adsorbed or confined on a substrate with nonzero curvature, be it the wall of a porous
material, or a membrane, a vesicle, a micelle for example made of amphiphilic surfactant molecules such as lipids, or a
biological membrane, or the surface of a large solid particle, or an interface in an oil–water emulsion [1]. On the other
hand it often occurs that by lowering the number of spatial dimensions, the statistical mechanics problem of a given
fluid in the whole space, greatly simplifies, to the point of becoming, in certain cases, exactly solvable analytically in the
continuum. A relevant feature of such low dimensional exactly solvable fluids is that they often play an important role
as exact standards and guides to test approximate solutions and numerical experiments for (higher dimensional) fluid’s
models. In a more general context, the few exact analytical results have helped form new qualitative insights given by
sum rules and in clarifying the nature of the long distance asymptotic decay of the truncated two (or more) particle
distribution functions [2,3].

In the statistical physics of continuous fluids, those where the particles are allowed to move in a continuous space,
one finds examples of exactly solvable ones especially among the non-quantum in lower dimensions (one and two).

Coulomb systems [4,5] such as plasmas, electrolytes, or generally ionic materials are made of charged particles
interacting through the long-range Coulomb law. They are an important chapter of ionic condensed matter (in systems
like molten salts, transition metal ions in solution, molten alkali halides, . . .) or ionic soft matter (in systems like natural or
synthetic saline environments like aqueous and non aqueous electrolyte solutions, polyelectrolytes, colloidal suspensions,
. . .). The simplest model of a Coulomb system is the one-component plasma (OCP), also called jellium: an assembly of
identical point charges of charge e, embedded in a neutralizing uniform background of the opposite sign. Here we consider
the classical (i.e. non-quantum) equilibrium statistical mechanics of the OCP. According to the proof of Sari and Merlini [6]
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which goes through ‘‘H-stability’’ and the ‘‘cheese theorem’’, the OCP must have a well behaved thermodynamic limit.
Though this model might seem, at first sight, oversimplified as to bear little resemblance to molten salts or liquid metals,
it is nevertheless of great value in clarifying general effects which emerge as a direct consequence of long-range Coulomb’s
interaction. This model constitutes the basic link between the microscopic description and the phenomenology of ionic
condensed and soft matter.

The two-dimensional version (2D OCP) of the OCP has been much studied. Provided that the Coulomb potential due
to a point-charge is defined as the solution of the Poisson equation ‘‘in’’ a two-dimensional world, i.e., is a logarithmic
function − ln r of the distance r to that point-charge, the 2D OCP mimics many generic properties of the three-dimensional
Coulomb systems. In this case the electric field lines are not allowed to leave the surface as it happens in the satirical
novella of Edwin Abbott Abbott [7]. Of course, this toy logarithmic model does not describe real charged particles, such
as electrons, confined on a surface, which nevertheless interact through the three dimensional Coulomb potential 1/r .
One motivation for studying the 2D OCP is that its equilibrium statistical mechanics is analytically exactly solvable at one
special temperature: both the thermodynamical quantities and the correlation functions are available.

The OCP is exactly solvable in one dimension [8,9]. In two dimensions, Jancovici and Alastuey [10–13] proved that the
OCP is exactly solvable analytically at a special value of the coupling constant, Γ = βe2 = 2 where β = 1/kBT with
kB Boltzmann’s constant and T the absolute temperature, on a plane. Since then, a growing interest in two-dimensional
plasmas has lead to study this system on various flat geometries [14–16] and two-dimensional curved surfaces like the
cylinder [17,18], the sphere [19–22], the pseudosphere [23–25], and Flamm paraboloid [26]. Among these surfaces only
the last one is of non-constant curvature.

How the properties of a system are affected by the curvature of the space in which the system lives is a question which
arises in general relativity. This is an incentive for studying simple models.

The two-component plasma (TCP) is a neutral mixture of point-wise particles of charge ±e. The equation of state of
the TCP living in a plane is known since the work of Salzberg and Prager [27]. In the plasma the attraction between
oppositely charged particles competes with the thermal motion and makes the partition function of the finite system
diverge when Γ = βe2 ≥ 2, where β = 1/kBT with kB Boltzmann constant. The system becomes unstable against the
collapse of pairs of oppositely charged particles, and as a consequence all thermodynamic quantities diverge, so that the
point particle model is well behaved only for Γ < 2 [28] when the Boltzmann factor for unlike particles is integrable at
small separations of the charges. In this case rescaling the particles coordinates so as to stay in the unit disk one easily
proves that the grand canonical partition function is a function of

√
ζ−ζ+V (1−Γ /4), where V is the volume occupied by the

plasma and ζ± the fugacities of the two charge species, and as a consequence the equation of state is βp = n(1 − Γ /4)
where n = ρ+ +ρ− is the total particle number density. However, if the collapse is avoided by some short range repulsion
(hard cores for instance), the model remains well defined for lower temperatures. Then, for Γ > 4 the long range Coulomb
attraction binds positive and negative particles in pairs of finite polarizability. Thus, at some critical value Γc ∼ 4 the
system undergoes the Kosterlitz–Thouless transition [29] between a high temperature (Γ < 4) conductive phase and a
low temperature (Γ > 4) dielectric phase. For Γ ≥ 2 it is necessary to regularize the system of point charges allowing
for a short-range strong repulsion between unlike charge which may be modeled as hard (impenetrable) disks, i.e. giving
a physical dimension to the particles to prevent the collapse. The same behavior also occurs in the TCP living in one
dimension [9,30].

The structure of the TCP living in a plane at the special value Γ = 2 of the coupling constant is also exactly solvable
analytically [31,32]. Through the use of an external potential it has also been studied in various confined geometries
[33–36] and in a gravitational field [37,38]. It has been studied in surfaces of constant curvature as the sphere [39,40] and
the pseudosphere [23] and on the Flamm paraboloid of non-constant curvature [41]. Unlike the OCP where the properties
of the Vandermonde determinant allowed the analytical solution a Cauchy identity is used for the solution of the TCP.
Unlike in the one-component case where the solution was possible for the plasma confined in a region of the surface now
this is not possible, anymore, without the use of an external potential. In these cases the external potential is rather given
by −(Γ /e2) ln

√
g where g is the determinant of the metric tensor of the Riemannian surface [42]. On a curved surface,

even though the finite system partition function will still be finite for Γ < 2 since the surface is locally flat, the structure
will change respect to the flat case.

Purpose of this review is to describe the state of the art for the studies on the exactly solvable statistical physics
models of a plasma on a (curved) surface. In Section 2 we will treat the OCP in the various surfaces and in Section 3 the
TCP in the various surfaces. Except for the OCP on the plane we will stop at the solution for the partition function and
the densities of the finite OCP. If the reader wishes he can refer to the original papers for the resulting expressions in the
thermodynamic limit. The solutions for the TCP do not give the results for the finite system but only its thermodynamic
limit. For the OCP we use the canonical ensemble for the plane, the cylinder and the sphere, and the grand canonical
ensemble for the pseudosphere and the Flamm paraboloid on half surface with grounded horizon. For the TCP we only
use the grand canonical ensemble. When appropriate we point out the ensemble inequivalence which arise for the finite
system.

1. The surface

We will generally consider Riemannian surfaces S with a coordinate frame q = (x1, x2) and with a metric

ds2 = gµν(q) dxµdxν, (1.1)

Plasma living in a curved surface at some special temperature 888



180 R. Fantoni / Physica A 524 (2019) 177–220

with gµν the metric tensor and Einstein’s summation convention on repeated index has been adopted. We will denote
with g(q) the Jacobian of the transformation to an orthonormal coordinate reference frame, i.e. the determinant of the
metric tensor gµν . The surface may be embeddable in the three dimensional space or not. It is important to introduce a disk
ΩR of radius R and its boundary ∂ΩR. The torsion-less connection coefficients compatible with the metric, the Christoffel
symbols, in a coordinate frame are

Γµβγ =
1
2
(gµβ,γ + gµγ ,β − gβγ ,µ), (1.2)

where the comma denotes a partial derivative as usual. The Riemann tensor in a coordinate frame reads

Rαβγ δ = Γ α
βδ,γ − Γ α

βγ ,δ + Γ α
µγΓ

µ
βδ − Γ α

µδΓ
µ
βγ , (1.3)

in a two-dimensional space has only 22(22
− 1/12) = 1 independent component. The scalar curvature is then given by

the following indexes contractions (the trace of the Ricci curvature tensor),

R = Rµµ = Rµνµν, (1.4)

and the (intrinsic) Gaussian curvature is K = R/2. In an embeddable surface we may define also a (extrinsic) mean
curvature H = (k1 + k2)/2, where the principal curvatures ki, i = 1, 2 are the eigenvalues of the shape operator
or equivalently the second fundamental form of the surface and 1/ki are the principal radii of curvature. The Euler
characteristic of the disk ΩR is given by

χ =
1
2π

(∫
ΩR

K dS +

∫
∂ΩR

k dl
)
, (1.5)

where k is the geodesic curvature of the boundary ∂ΩR.

2. The Coulomb potential

The Coulomb potential G(q, q0) created at q by a unit charge at q0 is given by the Green function of the Laplacian

∆G(q, q0) = −2πδ(2)(q; q0), (2.1)

with appropriate boundary conditions. Here ∆ is the Laplace–Beltrami operator. This equation can often be solved by
using the decomposition of G as a Fourier series.

3. The background

The Coulomb potential generated by the background, with a constant surface charge density ρb = −enb satisfies the
Poisson equation

∆vb = −2πρb. (3.1)

The Coulomb potential of the background can be obtained by solving Poisson equation with the appropriate boundary
conditions. Also, it can be obtained from the Green function computed in the previous section

vb(q) =

∫
G(q, q′)ρb(q′) dS ′. (3.2)

This integral can be performed easily by using the Fourier series decomposition of Green’s function G.

4. The total potential energy

The total potential energy of the plasma is then

VN = V pp
N + V pb

N + V 0
N =

e2

2

∑
i̸=j

G(|qi − qj|) + e
∑

i

∫
ΩR

vb(|q − qi|) dq +

1
2

∫∫
ΩR

ρbvb(|q − q′
|) dqdq′, (4.1)

where the last term V 0
N is the self energy of the background and the first two terms V pp

N and V pb
N are the interaction

potential energy between the charges at qi, i = 1, . . . ,N and between the charges and the background, respectively.
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5. The densities and distribution functions

Given either the canonical partition function in a fixed region Ω ∈ S of a Riemannian surface S , ZN (Γ ) with Γ = βe2
the coupling constant, or the grand canonical one Ξ [{λp(q)},Γ ], with λp some position dependent fugacities, we can
define the n-body density functions. Denoting with p = (p, q) the species p and the position q of a particle of this species,
we have,

ρ(n)(p1, . . . , pn;N,Γ ) = ρ(p1;N,Γ ) · · · ρ(pn;N,Γ )gp1...pn (q1, . . . , qn;N,Γ )

=

⟨ ∑
i1,...,in

DP
δ(2)(q1; qi1 )δp1,pi1 · · · δ(2)(qn; qin )δpn,pin

⟩
N,Γ

, (5.1)

where δp,q is the Kronecker delta, δ(2) is the Dirac delta function on the curved surface such that
∫
δ(2)(q; q′) dS = 1 with

dS =
√
g(q) dq the elementary surface area on S , ⟨. . .⟩N,Γ =

∑
p1,...,pN

∫
Ω
. . . e−βVN dS1 · · · dSN/ZN is the thermal average in

the canonical ensemble,
∑DP denotes the inclusion in the sum only of addends containing the product of delta functions

relative to different particles, and we omitted the superscript (1) in the one-body densities. The gp1,...,pn are known as the
n-body distribution functions. It is convenient to introduce another set of correlation functions which decay to zero as two
groups of particles are largely separated [2], namely the truncated (Ursell) correlation functions,

ρ(n)T (p1, . . . , pn;N,Γ ) = ρ(n)(p1, . . . , pn;N,Γ ) −

∑∏
m<n

ρ(m)T (pi1 , . . . , pim;N,Γ ), (5.2)

where the sum of products is carried out over all possible partitions of the set (1, . . . , n) into subsets of cardinal number
m < n.

In terms of the grand canonical partition function we will have,

ρ(n)(p1, . . . , pn; {λp},Γ ) =

n∏
i=1

λpi (qi)
1

Ξ [{λp},Γ ]

δ(n)Ξ [{λp},Γ ]

δλp1 (q1) . . . δλpn (qn)
, (5.3)

and

ρ(n)T (p1, . . . , pn; {λp},Γ ) =

n∏
i=1

λpi (qi)
δ(n) lnΞ [{λp},Γ ]

δλp1 (q1) . . . δλpn (qn)
. (5.4)

We may also use the notation ρ(n)(p1, . . . , pn; {λp},Γ ) = ρ
(n)
p1...pn (q1, . . . , qn; {λp},Γ ) where for example in the two-

component mixture each p = ± denotes either a positive or a negative charge. And sometimes we may omit the
dependence from the number of particles, the fugacities, and the coupling constant. From the structure it is possible
to derive the thermodynamic properties of the plasma (but not the contrary).

Part II

The one-component plasma

An one-component plasma is a system of N identical particles of charge e embedded in a uniform neutralizing
background of opposite charge.

6. The plane

The metric tensor in the Cartesian coordinates q = (x, y) of the plane is,

g =

(
1 0
0 1

)
, (6.1)

and the curvature is clearly zero. We will use polar coordinates q = (r, ϕ) with r =

√
x2 + y2 and ϕ = arctan(y/x).

6.1. The Coulomb potential

The Coulomb interaction potential between a particle at q and a particle at q0 a distance r = |q − q0| from one another
is

G(q, q0) = − ln(|q − q0|/L), (6.2)

where L is a length scale.
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6.2. The background

If one assumes the particles to be confined in a disk ΩR = {q ∈ S| 0 ≤ ϕ ≤ 2π, 0 ≤ r ≤ R} of area AR = πR2 the
background potential is

vb(r) = enb
π

2

(
r2 − R2

+ 2R2 ln
R
L

)
, (6.3)

where r = |q|.

6.3. The total potential energy

The total potential energy of the system is then given by Eq. (4.1). Developing all the terms and using nb = n = N/AR
(this is not a necessary condition since we can imagine a situation where nb ̸= n. In this case the system would not be
electrically neutral) we then find

VN/e2 = −

∑
i<j

ln
( rij
L

)
+

nbπ

2

∑
i

r2i + n2
bπ

2R4
(

−
3
8

+
1
2
ln

R
L

)
, (6.4)

where rij = |qi − qj| and ri = |qi|. This can be rewritten as follows

VN/e2 = −

∑
i<j

ln
( rij
R

)
+

N
2

∑
i

( ri
R

)2
+

N2
(

−
3
8

+
1
2
ln

R
L

)
−

N(N − 1)
2

ln
(
R
L

)
. (6.5)

We can then introduce the new variables [12] zi =
√
Nqi/R to find

VN/e2 = f ({zi}) + fc (6.6)

f = −

∑
i<j

ln zij +
1
2

∑
i

z2i , (6.7)

fc =
N(N − 1)

4
ln(nπL2) + N2

(
−

3
8

+
1
2
ln

R
L

)
. (6.8)

We can always choose L = R so that in the thermodynamic limit limN→∞ fc/N = − ln(nπL2)/4 and the excess Helmholtz
free energy per particle

aexc = Fexc/N → −
e2

4
ln(πnL2) + a0(T ), (6.9)

with a0 some function of the temperature T alone. Therefore, the equation of state has the simple form

p = (1/β − e2/4)n, (6.10)

where β = 1/kBT with kB Boltzmann’s constant.

6.4. Partition function and densities at a special temperature

At the special temperature T0 = e2/2kB the partition function can be found exactly analytically using the properties of
the Vandermonde determinant [12,13]. Using polar coordinates zi = (zi, θi), one obtains at T0 a Boltzmann factor

e−βVN = ANe−
∑

i z
2
i

⏐⏐⏐⏐⏐⏐
∏
i<j

(Zi − Zj)

⏐⏐⏐⏐⏐⏐
2

, (6.11)

where AN is a constant and Zi = zi exp(iθi). This expression can be integrated upon variables zi (0 ≤ zi ≤
√
N) by

expanding the Vandermonde determinant
∏

(Zi − Zj). One obtains the partition function

ZN (2) =

∫
e−βVN dz1 · · · dzN = ANπ

NN!

N∏
j=1

γ (j,N), (6.12)

where

γ (j,N) =

∫ √
N

0
e−z2z2(j−1)2z dz =

∫ N

0
e−t t j−1 dt, (6.13)
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is the incomplete gamma function. Taking the thermodynamic limit of −[ln(ZN (2)/AN
R )]/N → βaexc(2) we obtain the

Helmholtz free energy per particle

aexc(2) = −
e2

4
ln(πnL2) +

e2

2

[
1 −

1
2
ln(2π )

]
. (6.14)

One can also obtain the n-body distribution functions from the truncated densities [2] as follows

g(1, . . . , n;N) = e−
∑n

i=1 z2i det
[
KN (ZiZ̄j)

]
i,j=1,...,n , (6.15)

where Z̄ is the complex conjugate of Z and

KN (x) =

N∑
i=1

xi−1

γ (i,N)
. (6.16)

In the thermodynamic limit N → ∞, γ (i,N) → (i − 1)!, and KN (x) → ex. In this limit, one obtains from Eq. (6.15) the
following explicit distribution functions [12]

g(1) = 1, (6.17)

g(1, 2) = 1 − e−πnr212 , (6.18)
g(1, 2, 3) = . . . . (6.19)

This Gaussian falloff is in agreement with the general result according to which, among all possible long-range pair
potentials, it is only in the Coulomb case that a decay of correlations faster than any inverse power is compatible with
the structure of equilibrium equations like the Born–Green–Yvon hierarchic set (see Ref. [2] section II.B.3). A somewhat
surprising result is that the correlations does not have the typical exponential falloff typical of the high-temperature
Debye–Hückel approximation [43]. One easily checks that the distribution functions obey the perfect screening and other
sum rules.

Expansions around Γ = 2 suggests that the pair correlation function changes from the exponential form to an
oscillating one for a region with Γ > 2. This behavior of the pair correlation function as the coupling is stronger has
been observed in Monte Carlo simulations [44]. For sufficient high values of Γ (low temperatures) the 2D OCP begins to
crystallize and there are several works where the freezing transition is found. For the case of the sphere Caillol et al. [44]
localized the coupling parameter for melting at Γ ≈ 140. In the limit Γ → ∞ the 2D OCP becomes a Wigner crystal. In
particular, the spatial configuration of the charges which minimizes the energy at zero temperature for the 2D OCP on a
plane is the usual hexagonal lattice. Nowadays, the corresponding Wigner crystal of the 2D OCP on sphere or Thomson
problem may be solved numerically [1].

7. The cylinder

The cylinder may be useful to compare an exactly soluble fluid with the results from its Monte Carlo simulation for
example, where one needs to use periodic boundary conditions. The two dimensional system studied in the simulation
would actually live on a torus but the cylinder is already a relevant step forward in this direction.

The metric tensor in the cartesian coordinates q = (x, y) is,

g =

(
1 0
0 1

)
, (7.1)

and again the curvature is zero.

7.1. The Coulomb potential

We now consider [17,18] a rectangular disk ΩL,W = {q ∈ S| −L/2 ≤ x ≤ L/2,−W/2 ≤ y ≤ W/2}. We then solve
Eq. (2.1) imposing periodicity in y with period W expanding G in a Fourier series in y where the coefficients are functions
of x and written as inverse Fourier transforms. The solution is

G(q1, q2) = −
π

W
|x1 − x2|+

sgn(x1 − x2)
2

ln
{
1 − 2e−

2π
W |x1−x2| cos

2π
W

(y1 − y2) + e−
4π
W |x1−x2|

}
, (7.2)

where sgn(x) = |x|/x is the sign of x. The term proportional to |x1 − x2| comes from the constant term in the Fourier
series solution, while the other terms sum to give the logarithmic part.
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7.2. The background

The potential of the background (3.1) is then

vb(x) = enb
π

4
(L2 + 4x2), (7.3)

since the second term on the right hand side of Eq. (7.2) is an odd function of x1 − x2.

7.3. The total potential energy

The total potential energy (4.1) for nb = n = N/WL can then be written as

VN/e2 =

∑
i<j

G(qi, qj) + πn
∑

i

x2i + BN , (7.4)

where BN is a constant irrelevant to the distribution function.

7.4. Partition function and densities at a special temperature

The energy of Eq. (7.4) can be inserted into the formula for the canonical partition function ZN (Γ ) at Γ = βe2 = 2 to
obtain

ZN (2) = AN

∫ L/2

−L/2
dxN

∫ xN

−L/2
dxN−1 · · ·

∫ x2

−L/2
dx1e−2πn

∑
i x

2
i ×∫ W/2

−W/2
dy1 · · ·

∫ W/2

−W/2
dy1

∏
i<j

(
e

2π
W (xi+xj)

⏐⏐⏐e−
2π
W (xi−iyi) − e−

2π
W (xj−iyj)

⏐⏐⏐2) , (7.5)

where AN is a constant. Now we notice that the y-dependent part of the integrand is contained in the square modulus of a
Vandermonde determinant. We use the permutation notation to write the expansion of the determinant and its conjugate
as follows∫ W/2

−W/2
dy1 · · ·

∫ W/2

−W/2
dyN

∏
i<j

⏐⏐⏐e−
2π
W (xi−iyi) − e−

2π
W (xj−iyj)

⏐⏐⏐2 =

∑
P,Q

ϵ(P)ϵ(Q )
N∏
i=1

(
e−

2πxi
W [P(i)+Q (i)−2]

∫ W/2

−W/2
dyi e−

2π iyi
W [P(i)−Q (i)]

)
, (7.6)

where the sums are over the N! permutations, ϵ(P) denotes the sign of permutation P . Only permutations for which
P(i) = Q (i), 1 ≤ i ≤ N contribute. Recalling that n = N/WL we obtain

ZN (2) = ANWN
∑
P

∫ L/2

−L/2
dxN

∫ xN

−L/2
dxN−1 · · ·

∫ x2

−L/2
dx1 ×

N∏
i=1

e−2πn
{
x2i −2xi

L
2

[
1−2 P(i)−1

N

]}
. (7.7)

For permutation P , make the substitution xi = zP(i), 1 ≤ i ≤ N . We then have a sum over ordered integrals over the zi. The
integrand is the same for each permutation and each possible ordering of the zi occurs exactly once. Hence, the sum over
ordered integrals may be written as an unrestricted multiple integral over [−L/2, L/2]N . Renaming zi = xi for 1 ≤ i ≤ N
and using the appropriately defined BN , we obtain

ZN (2) = BNWN
N∏
i=1

∫ L/2

−L/2
dxie

−2πn
[
xi−

L
2

(
1−2 i−1

N

)]2
(7.8)

This equation describes the canonical partition function for an assembly of N independent harmonic oscillators with
mean position evenly spaced on [−L/2, L/2]. Using the correct form of BN we may now take the thermodynamic limit
of −[ln(ZN (2)/AN

R )]/N to obtain for the excess free energy per particle βaexc(2) = βaexc,plane(2) + M where aexc,plane(2)
is expression (6.14) with the choice L = W/2π and M = π/6nW 2 is a Madelung constant for the potential in the
semiperiodic boundary conditions used.

To calculate the one-particle distribution function in the finite system we simply leave out the integrations over x1
and y1. Define x0 = −L/2, xN+1 = L/2, and the ordering of the x variables with x0 ≤ x2 ≤ x3 ≤ · · · ≤ xp ≤ x1 < xp+1 ≤

· · · ≤ xN ≤ xN+1. There are (N − 1)! orderings, each giving the same contribution to g(1;N). We use the Vandermonde
determinant representation of the integrand and carry out the integrations over y2, . . . , yN giving P(i) = Q (i), 2 ≤ i ≤ N ,
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and so P(1) = Q (1) by default. Collect all the integrals with P(1) = q and change variables with xi = zP(i), 2 ≤ i ≤ N;
P(i) ̸= q and x1 = zq. This generates ordered integrals with respect to (N − l) of the zi, all possible orderings occurring
exactly once. An unrestricted integral over

{z1, . . . , zq−1, zq+1, . . . , zN} ∈ [−L/2, L/2]N−1, (7.9)

results. The final form for the one-particle distribution function is then

g(1;N) =
1
Wn

N∑
q=1

e−2πn
[
x1−

L
2

(
1−2 q−1

N

)]2
/I(q, L,N), (7.10)

I(i, L,N) =

∫ L/2

−L/2
dx e−2πn

[
x1−

L
2

(
1−2 i−1

N

)]2
. (7.11)

The higher orders distribution functions are determined in Ref. [18].

8. The sphere

The metric tensor in the polar coordinates q = (θ, ϕ) is now,

g =

(
a2 0
0 a2 sin2 θ

)
, (8.1)

where a is the radius of the sphere. The sphere is embeddable in the three dimensional Euclidean space. The intrinsic
Gaussian curvature of the sphere is a constant K = 1/a2 and the surface area of the sphere is AS = 4πa2. So the sphere
is the surface of constant positive curvature by Liebmann’s theorem. Also by Minding’s theorem we know that surfaces
with the same constant curvature are locally isometric.

8.1. The Coulomb potential

The Coulomb interaction between a particle at ri and a particle at rj is

G(ri, rj) = − ln(rij/L), (8.2)

rij = 2a sin(θij/2), (8.3)

ϕij = arccos(ri · rj/a2), (8.4)

where rk is the three-dimensional vector from the center of the sphere to particle k on the sphere surface and rij is the
length of the chord joining ri and rj.

8.2. The background

The background potential is then a constant

vb = enb2πa2
(

−1 + ln
4a2

L2

)
. (8.5)

8.3. The total potential energy

The total potential energy of the system (4.1) is then

VN/e2 = −
1
2

∑
i<j

ln
[
2a2

L2
(1 − cos θij)

]
−

N2

4

(
1 − ln

4a2

L2

)
. (8.6)

8.4. Partition function and densities at a special temperature

At Γ = βe2 = 2 the excess canonical partition function is

ZN (2) = eN
2/2
(

L
2a

)N ∫ N∏
i=1

dqi

∏
j<k

(
1 − cos θjk

2

)
, (8.7)

where denoting with g = det[gµν] we have dq = dS =
√
g dq1 dq2 = a2 sin θ dθ dϕ. Introducing the Cayley–Klein

parameters defined by

αi = cos
θi

2
eiϕi/2, (8.8)
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βi = −i sin
θi

2
e−iϕi/2, (8.9)

we can write

1 − cos θij = 2|αiβj − αjβi|
2. (8.10)

The integrand of Eq. (8.7) takes the form

∏
i<j

(
1 − cos θjk

2

)
=

⏐⏐⏐⏐⏐⏐
N∏

k=1

βN−1
k

∏
i<j

(
αi

βi
−
αj

βj

)⏐⏐⏐⏐⏐⏐
2

. (8.11)

The second product in the right hand side of this equation is a van der Monde determinant. Expanding it and inserting
in Eq. (8.7) we find

ZN (2) = eN
2/2(2πL)NaNN!

N∏
k=1

(k − 1)!(N − k)!
N!

. (8.12)

This result is similar to the result (6.12) on the plane apart from the fact that now only complete gamma functions are
involved. The excess free energy per particle is identical to the result (6.14) for the plane.

For the distribution functions we find [19]

g(1, 2, . . . , n;N) = det[(αiᾱj + βiβ̄j)N−1
], (8.13)

where ᾱ is the complex conjugate of α. In particular

g(1;N) = 1, (8.14)

g(1, 2;N) = 1 −

(
1 + cos θ12

2

)N−1

. (8.15)

The system appears to be homogeneous for all N and the distribution functions are invariant under a rotation of the
sphere.

The thermodynamic limit is obtained defining ρi = Rθi and taking the limit N → ∞ and R → ∞ at n constant,
keeping ρi and ϕi constant for each particle i. For an infinitely large sphere the particles will be situated in the tangent
plane at the North pole and there positions will be characterized by the polar coordinates (ρi, ϕi). The solution for the
planar geometry of Section 6 is thereby recovered.

9. The pseudosphere

The pseudosphere is non-embeddable in the three dimensional Euclidean space and it is a non-compact Riemannian
surface of constant negative curvature. Unlike the sphere it has an infinite area and this fact makes it interesting from
the point of view of statistical physics because one can take the thermodynamic limit on it.

Riemannian surfaces of negative curvature play a special role in the theory of dynamical systems [45]. Hadamard study
of the geodesic flow of a point particle on a such surface [46] has been of great importance for the future development
of ergodic theory and of modern chaos theory. In 1924 the mathematician Emil Artin [47] studied the dynamics of a
free point particle of mass m on a pseudosphere closed at infinity by a reflective boundary (a billiard). Artin’ s billiard
belongs to the class of the so called Anosov systems. All Anosov systems are ergodic and possess the mixing property
[48]. Sinai [49] translated the problem of the Boltzmann–Gibbs gas into a study of the by now famous ‘‘Sinai’ s billiard’’,
which in turn could relate to Hadamard’ s model of 1898. Recently, smooth experimental versions of Sinai’ s billiard have
been fabricated at semiconductor interfaces as arrays of nanometer potential wells and have opened the new field of
mesoscopic physics [50].

The following important theorem holds for Anosov systems [51,52]:

Theorem 9.1. Let M be a connected, compact, orientable analytic surface which serves as the configurational manifold of a
dynamical system whose Hamiltonian is H = K + U. Let the dynamical system be closed and its total energy be h. Consider
the manifold M defined by the Maupertuis Riemannian metric ds2 = 2(h − U)K dt2 on M, where t is time. If the curvature of
M is negative everywhere then the dynamical system is an Anosov system and in particular is ergodic on Mh = {h = H}.

If the dynamical system is composed of N particles, the same conclusions hold, we need only require that the curvature be
negative when we keep the coordinates of all the particles but anyone constant.

The metric tensor of the pseudosphere in the coordinates q = (θ, ϕ) with θ ∈ [0,∞[ is,

g =

(
a2 0
0 a2 sinh2 θ

)
, (9.1)

where a is the ‘‘radius’’ of the pseudosphere.
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Introducing the alternative coordinates q = (r, ϕ) with r/2a = tanh(θ/2) we find

g =

(
[1 − (r/2a)2]−2 0

0 r2[1 − (r/2a)2]−2

)
. (9.2)

These are the polar coordinates ω = (r/2a, ϕ) of a disk of the unitary disk, D = {ω ∈ C | |ω| < 1}, which with such a
metric is called the Poincaré disk.

A third set of coordinates used is q = (x, y) obtained from (r/2a, ϕ) through the Cayley transformation,

z = x + iy =
ω + i
1 + iω

. (9.3)

which establishes a bijective transformation between the unitary disk and the complex half plane,

H = {z = x + iy | x ∈ R, y > 0}. (9.4)

The center of the unitary disk corresponds to the point zo = i, ‘‘the center of the plane’’. The metric becomes,

g =

(
a2/y2 0
0 a2/y2

)
. (9.5)

The complex half plane with such a metric is called the hyperbolic plane, and the metric the Poincaré’ s metric.
Cayley transformation is a particular Möbius transformation. Poincaré metric is invariant under Möbius transforma-

tions. And any transformation that preserves Poincaré metric is a Möbius transformation.
The geodesic distance d01 between any two points q0 = (τ0, ϕ0) and q1 = (τ1, ϕ1) on the pseudosphere S is given by,

cosh(d01/a) = cosh τ1 cosh τ0 − sinh τ1 sinh τ0 cos(ϕ1 − ϕ0). (9.6)

Given the set of points Ωd at a geodesic distance from the origin less or equal to d,

Ωd = {(τ , ϕ) ∈ S | τa ≤ d, ϕ ∈ [0, 2π )}, (9.7)

that we shall call a disk of radius d, we can determine its circumference,

C = L(∂Ωd) = a
∫
τ=d/a

√
τ̇ 2 + sinh2 τ ϕ̇2 dt

= 2π a sinh
(
d
a

)
∼
d → ∞

π a ed/a, (9.8)

and its area,

A = V(Ωd) =

∫ 2π

0
dϕ
∫ d/a

0
dτ a2 sinh τ

= 4π a2 sinh2
(

d
2a

)
∼
d → ∞

π a2 ed/a. (9.9)

The Laplace–Beltrami operator on S is,

∆ =
1

√
g
∂

∂qµ

(
√
g gµν

∂

∂qν

)
=

1
a2

(
1

sinh τ
∂

∂τ
sinh τ

∂

∂τ
+

1
sinh2 τ

∂2

∂ϕ2

)
, (9.10)

where g is the determinant of the metric tensor g = det[gµν].
The characteristic component of the Riemann tensor is,

Rτϕτϕ = − sinh2 τ . (9.11)

The Gaussian curvature is given by

Rτϕτϕ = gϕϕRτ ϕτϕ = −
1
a2
, (9.12)

except at its singular cusp, in agreement with Hilbert’s theorem. Contraction gives the components of the Ricci tensor,

Rτ τ = Rϕϕ = −
1
a2

, Rτ ϕ = 0, (9.13)

and further contraction gives the scalar curvature,

R = −
2
a2
. (9.14)
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The ensemble of N identical point-wise particles of charge e are constrained to move in a connected and compact
domain Ω ⊂ S by an infinite potential barrier on the boundary of the domain ∂Ω with a number density n = N/V(Ω).

9.1. The Coulomb potential

The pair Coulomb potential between two unit charges a geodesic distance d apart, satisfies Poisson equation on S ,

∆G(d) = −2πδ(2)(d), (9.15)

where δ(2)(d01) = δ(q0 − q1)/
√
g is the Dirac delta function on the curved manifold. Poisson equation admits a solution

vanishing at infinity,

G(dij) = − ln
[
tanh

(
dij
2a

)]
. (9.16)

9.2. The background

If we choose Ω = Ωaτ0 , the electrostatic potential of the background inside Ω can be chosen (see Appendix A) to be
just a function of τ ,

vb(τ ) = enb2πa2
{
ln
[
1 − tanh2(τ0/2)
1 − tanh2(τ/2)

]
+ sinh2(τ0/2) ln[tanh2(τ0/2)]

}
. (9.17)

9.3. Ergodicity

Consider a closed one component Coulomb plasma of N charges and total energy h, confined in the domain Ωaτ0 ⊂ S.
Let the coordinates of particle i be qi = q(i)α e⃗α = (q(i)1, q(i)2) ∈ Ωaτ0 , where e⃗α = ∂/∂qα (α = 1, 2) is a coordinate basis
for S. The trajectory of the dynamical system,

Tt0 = {qN (t) ≡ (q1, . . . , qN ) | t ∈ [0, t0]}, (9.18)

is a geodesic on the 2N dimensional manifold M defined by the metric,

Gαβ = (h − VN )gµν(qi) ⊗ · · · ⊗ gµν(qN ), (9.19)

on SN . We now assume nb = n and rewrite V pb
N = v1 + vpb where

v1 = N 2πa2 e2n {ln[1 − tanh2(τ0/2)] + sinh2(τ0/2) ln[tanh2(τ0/2)]}, (9.20)

is a constant. Since the interaction between the particles is repulsive we conclude that, up to an additive constant (V 0
N+v1),

the potential VN is a positive function of the coordinates of the particles. Since vpb and V pp
N are positive on Ωaτ0 we have,

Gαβ < G′

αβ = (h − V 0
N − v1)gµν(qi) ⊗ · · · ⊗ gµν(qN ), (9.21)

where G′ has a negative curvature along the coordinates of any given particle. In the next subsection we will calculate the
curvature of G along the coordinates of one particle. According to the theorem stated in the introduction we will require
the curvature to be negative everywhere on SN . This will determine a condition on the kinetic and potential energy of
the system, sufficient for its ergodicity to hold on Mh.

Let p̃i = p(i)αω̃
α be the momentum of charge i, where ω̃α = d̃qα are the 1-forms of the dual coordinate basis, and

define pN (t) ≡ (p̃1, . . . , p̃N ), qN (t) ≡ (q1, . . . , qN ). The ergodicity of the system tells us that given any dynamical quantity
A(qN , pN ), its time average,

⟨A⟩t = lim
T→∞

1
T

∫ T

0
A(qN , pN ) dt, (9.22)

coincides with its microcanonical phase space average,

⟨A⟩h =

∫
Mps

A(qN , pN ) δ(h − H) d4Nµps∫
Mps
δ(h − H) d4Nµps

, (9.23)

where the phase space of the system is,

Mps = {(qN , pN ) | qi ∈ S i = 1, . . . ,N;

p(i)α ∈ [−∞,∞] i = 1, . . . ,N, α = 1, 2}, (9.24)
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the phase space measure is,

d4Nµps =

2∏
α=1

dq(1)α · · · dq(N)
αdp(1)α · · · dp(N)α, (9.25)

and δ is the Dirac delta function.

9.4. Calculation of the curvature of M

We calculate the curvature of M along particle 1 using Cartan structure equations. Let K = h− U(τ , ϕ) be the kinetic
energy of the N particle system of total energy h, as a function of the coordinates of particle 1 (all the other particles
having fixed coordinates). We choose an orthonormal basis,{

ω̃τ̂ = a
√
Kd̃τ

ω̃ϕ̂ = a sinh(τ )
√
Kd̃ϕ

(9.26)

By Cartan second theorem we know that the connection 1-form satisfies ω̃α̂β̂ + ω̃β̂α̂ = 0. Then we must have,{
ω̃τ̂ τ̂ = ω̃ϕ̂ ϕ̂ = 0
ω̃τ̂ ϕ̂ = −ω̃ϕ̂

τ̂
= −ω̃ϕ̂ τ̂

(9.27)

We use Cartan first theorem to calculate ω̃τ̂ ϕ̂ ,

d̃ω̃τ̂ = −ω̃τ̂ ϕ̂ ∧ ω̃ϕ̂ (9.28)

= d̃(a
√
Kd̃τ )

= a K
1
2 ,ϕ d̃ϕ ∧ d̃τ = 0,

where in the last equality we used the fact that the pair interaction is a function of ϕi − ϕj and that the interaction with
the background is a function of τ only (being the system confined in a domain which is symmetric under translations of
ϕ). We must then conclude that ω̃τ̂ ϕ̂ is either zero or proportional to ω̃ϕ̂ . We proceed then calculating,

d̃ω̃ϕ̂ = −ω̃ϕ̂ τ̂ ∧ ω̃τ̂ (9.29)
= d̃(a sinh(τ )

√
T d̃ϕ)

= a(sinh(τ )K
1
2 ),τ d̃τ ∧ d̃ϕ,

which tells us that indeed,

ω̃ϕ̂ τ̂ =
(sinh(τ )K

1
2 ),τ

a sinh(τ )K
ω̃ϕ̂ . (9.30)

Next we calculate the characteristic component of the curvature 2-form Rα̂
β̂ = d̃ω̃α̂ β̂ + ω̃α̂ γ̂ ∧ ω̃γ̂ β̂ ,

Rτ̂
ϕ̂ = d̃ω̃τ̂ ϕ̂

= d̃[−(sinh(τ )K
1
2 ),τK−

1
2 d̃ϕ]

= −
[(sinh(τ )K

1
2 ),τK−

1
2 ],τ

a2 sinh(τ )K
ω̃τ̂ ∧ ω̃ϕ̂ . (9.31)

and use Cartan third theorem to read off the characteristic component of the Riemann tensor,

Rτ̂ ϕ̂τ̂ ϕ̂ = −
[(sinh(τ )K

1
2 ),τK−

1
2 ],τ

a2 sinh(τ )K
. (9.32)

We find then for the scalar curvature,

R = Rα̂β̂ α̂β̂ = 2Rτ̂ ϕ̂ τ̂ ϕ̂

= −
2
a2

{
[(sinh(τ ) K

1
2 ),τK−

1
2 ],τ

sinh(τ ) K

}
, (9.33)

which can be rewritten in terms of the Laplacian as follows,

R = −
2

a2K

{
1 +

1
2K

[
−a2∆U +

U,ϕϕ
sinh2 τ

−
(U,τ )2

K

]}
. (9.34)
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For finite values of h, the condition for R to be negative on all the accessible region of SN is then,

2πa2 q2n −
U,ϕϕ

sinh2 τ
+

(U,τ )2

K
< 2K . (9.35)

9.5. Ergodicity of the semi-ideal Coulomb plasma

Consider a one component Coulomb plasma where we switch off the mutual interactions between the particles, leaving
unchanged the interaction between the particles and the neutralizing background (U = V 0

N + V pb
N ). We will call it the

‘‘semi-ideal’’ system. Define,

Ω(h, τ0) = {qN |qi ∈ Ωaτ0 ∀i, h − U(qN ) ≥ 0}, (9.36)

and call h′
= h − V 0

N − v1 and

f (N) = −N ln[1 − tanh2(τ0/2)] = N ln[1 + sinh2(τ0/2)]

= N ln
(
1 +

N
4πa2n

)
. (9.37)

We will have (α = 2πa2ne2)

r = inf
qN∈Ω(h,τ0)

2K 2
=

{
2[h′

− αf (N)]2 h′ > αf (N)
0 h′

≤ αf (N) , (9.38)

Notice that for large N , at constant n, we have (see Appendix A),

−V 0
N/α =

α

e2

[
−2

N
4πa2n

+ ln
(
1 +

N
4πa2n

)
+

1
2

]
+ O(1/N), (9.39)

−v1/α = f (N) + N −
α

e2
+ O(1/N). (9.40)

Using the extensive property of the energy we may assume that h = Nh0, where h0 is the total energy per particle. Then
for large N we will have

h′
= Nh0 + αf (N) +

(α
e

)2 [
ln
(
1 +

N
4πa2n

)
−

1
2

]
+ O(1/N) > αf (N), (9.41)

if h0 ≥ 0.
On the other hand for h′ > αf (N) we have

l = sup
qN∈Ω(h,τ0)

[αK + (U,τ )2] ≤ sup
qN∈Ω(h,τ0)

[αK ] + sup
qN∈Ω(h,τ0)

[(U,τ )2]

= l+ = αh′
+ α2 tanh2(τ0/2), (9.42)

Condition (9.35) is always satisfied if l < r . Then the semi-ideal system is ergodic if,

h′ > h′

+
= αf (N) +

α

4

[
1 +

√
1 + 8f (N) + 8 tanh2(τ0/2)

]
, (9.43)

where h′
+

is the largest root of the equation l+ = r . Recalling that tanh2(τ0/2) → 1 at lare N , one can verify that, given
Eqs. (9.41), (9.43) must be satisfied at large N if h0 > 0.

We conclude that the semi ideal system is certainly ergodic if the total energy is extensive and the total energy per
particle is positive.

9.6. Partition function and densities at a special temperature

Working with the set of coordinates (r, ϕ) on the pseudosphere (the Poincaré disk representation), the particle
i-particle j interaction term in the Hamiltonian can be written as [23]

G(dij) = − ln tanh(dij/2a) = − ln
⏐⏐⏐⏐ (zi − zj)/2a
1 − (ziz̄j/4a2)

⏐⏐⏐⏐ , (9.44)

where zj = rjeiϕj and z̄j is the complex conjugate of zj. This interaction (9.44) happens to be the Coulomb interaction
in a flat disc of radius 2a with ideal conductor walls. Therefore, it is possible to use the techniques which have been
developed [16,34] for dealing with ideal conductor walls, in the grand canonical ensemble.
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The grand canonical partition function of the OCP at fugacity ζ with a fixed background density nb, when Γ = βe2 = 2,
is

Ξ (2) = C0

⎡⎣1 +

∞∑
N=1

1
N!

∫ N∏
i=1

ridridϕi
[1 − (r2i /4a2)]

∏
i<j

⏐⏐⏐⏐ (zi − zj)/2a
1 − (ziz̄j/4a2)

⏐⏐⏐⏐2 N∏
i=1

ζ (ri)

⎤⎦ (9.45)

where for N = 1 the product
∏

i<j must be replaced by 1. We have defined a position-dependent fugacity ζ (r) =

ζ [1 − r2/4a2]4πnba
2
−1eC which includes the particle–background interaction (9.17) and only one factor [1 − r2/4a2]−1

from the integration measure dS = [1 − r2/4a2]−2 dr. This should prove to be convenient later. The eC factor is

eC = exp
[
4πnba2

(
ln cosh2 τ0

2
− sinh2 τ0

2
ln tanh2 τ0

2

)]
(9.46)

which is a constant term coming from the particle–background interaction term (9.17) and

ln C0 =
(4πnba2)2

2

[
ln cosh2 τ0

2
+ sinh2 τ0

2

(
sinh2 τ0

2
ln tanh2 τ0

2
− 1

)]
(9.47)

which comes from the background–background interaction. Notice that for large domains, when τ0 → ∞, we have

eC ∼

[
eτ0+1

4

]4πnba2
(9.48)

and

ln C0 ∼ −
(4πnba2)2eτ0

4
(9.49)

Let us define a set of reduced complex coordinates ui = (zi/2a) inside the Poincaré disk and its corresponding images
u∗

i = (2a/z̄i) outside the disk. By using the following Cauchy identity [53]

det

(
1

ui − u∗

j

)
(i,j)∈{1,...,N}2

= (−1)N(N−1)/2

∏
i<j(ui − uj)(u∗

i − u∗

j )∏
i,j(ui − u∗

j )
(9.50)

the particle–particle interaction term together with the [1− (r2i /4a
2)]−1 other term from the integration measure can be

cast into the form∏
i<j

⏐⏐⏐⏐ (zi − zj)/2a
1 − (ziz̄j/4a2)

⏐⏐⏐⏐2 N∏
i=1

[1 − (r2i /4a
2)]−1

= det
(

1
1 − uiūj

)
(i,j)∈{1,...,N}2

(9.51)

The grand canonical partition function then is

Ξ (2) =

[
1 +

∞∑
N=1

1
N!

∫ N∏
i=1

d2ri
N∏
i=1

ζ (ri)det
(

1
1 − uiūj

)]
C0 (9.52)

We shall now show that this expression can be reduced to an infinite continuous determinant, by using a functional
integral representation similar to the one which has been developed for the two-component Coulomb gas [54]. Let us
consider the Gaussian partition function

Z0 =

∫
DψDψ̄ exp

[∫
ψ̄(r)M−1(z, z̄ ′)ψ(r′) d2r d2r′

]
(9.53)

The fields ψ and ψ̄ are anticommuting Grassmann variables. The Gaussian measure in (9.53) is chosen such that its
covariance is equal to1⟨

ψ̄(ri)ψ(rj)
⟩
= M(zi, z̄j) =

1
1 − uiūj

(9.54)

where ⟨. . .⟩ denotes an average taken with the Gaussian weight of (9.53). By construction we have

Z0 = det(M−1) (9.55)

Let us now consider the following partition function

Z =

∫
DψDψ̄ exp

[∫
ψ̄(r)M−1(z, z̄ ′)ψ(r′)d2rd2r′ +

∫
ζ (r)ψ̄(r)ψ(r) d2r

]
(9.56)

1 Actually the operator M should be restricted to act only on analytical functions for its inverse M−1 to exist.
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which is equal to

Z = det(M−1
+ ζ ) (9.57)

and then
Z
Z0

= det[M(M−1
+ ζ )] = det[1 + K ] (9.58)

where

K (r, r′) = M(z, z̄ ′) ζ (r ′) =
ζ (r ′)

1 − uū′
(9.59)

The results which follow can also be obtained by exchanging the order of the factors M and M−1
+ ζ in (9.58), i.e. by

replacing ζ (r ′) by ζ (r) in (9.59), however using the definition (9.59) of K is more convenient. Expanding the ratio Z/Z0 in
powers of ζ we have

Z
Z0

= 1 +

∞∑
N=1

1
N!

∫ N∏
i=1

d2ri
N∏
i=1

ζ (ri)
⟨
ψ̄(r1)ψ(r1) · · · ψ̄(rN )ψ(rN )

⟩
(9.60)

Now, using Wick theorem for anticommuting variables [54], we find that⟨
ψ̄(r1)ψ(r1) · · · ψ̄(rN )ψ(rN )

⟩
= detM(zi, z̄j) = det

(
1

1 − uiūj

)
(9.61)

Comparing Eqs. (9.60) and (9.52) with the help of Eq. (9.61) we conclude that

Ξ (2) = C0
Z
Z0

= C0det(1 + K ) (9.62)

The problem of computing the grand canonical partition function has been reduced to finding the eigenvalues of the
operator K . The eigenvalue problem for K reads

∫
ζ eC

(
1 −

r ′2

4a2

)4πnba2−1

1 −
zz̄′
4a2

Φ(r′) r ′ dr ′dϕ′
= λΦ(r) (9.63)

For λ ̸= 0 we notice from Eq. (9.63) that Φ(r) = Φ(z) is an analytical function of z. Because of the circular symmetry it
is natural to try Φ(z) = Φℓ(z) = zℓ = rℓeiℓϕ with ℓ a positive integer. Expanding

1

1 −
zz̄′
4a2

=

∞∑
n=0

(
zz̄ ′

4a2

)n

(9.64)

and replacing Φℓ(z) = zℓ in Eq. (9.63) one can show that Φℓ is actually an eigenfunction of K with eigenvalue

λℓ = 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2) (9.65)

with t0 = r20/4a
2

= tanh2(τ0/2) and

Bt0 (ℓ+ 1, 4πnba2) =

∫ t0

0
(1 − t)4πnba

2
−1tℓ dt (9.66)

the incomplete beta function. So we finally arrive to the result for the grand potential

βΩ = − lnΞ (2) = − ln C0 −

∞∑
ℓ=0

ln
(
1 + 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2)

)
(9.67)

with eC and ln C0 given by Eqs. (9.46) and (9.47). This result is valid for any disk domain of radius aτ0. A more explicit
expression of the grand potential for large domains τ0 → ∞ can also be obtained [24].

As usual one can compute the density by doing a functional derivative of the grand potential with respect to the
position-dependent fugacity:

n(1)(r) =

(
1 −

r2

4a2

)2

ζ (r)
δ lnΞ (2)
δζ (r)

(9.68)

The factor [1 − (r2/4a2)]2 is due to the curvature [23], so that n(1)(r) dS is the average number of particles in the surface
element dS = [1 − (r2/4a2)]−2 dr. Using a Dirac-like notation, one can formally write

lnΞ (2) = tr ln(1 + K ) + ln C0 =

∫
⟨r |ln(1 + ζ (r)M)| r⟩ dr + ln C0 (9.69)
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Then, doing the functional derivative (9.68), one obtains

n(1)(r) =

(
1 −

r2

4a2

)2

ζ (r)
⟨
r
⏐⏐(1 + K )−1M

⏐⏐ r⟩ = 4πa
(
1 −

r2

4a2

)2

ζ (r)G̃(r, r) (9.70)

where we have defined G̃(r, r′) by2 G̃ = (1+K )−1M/4πa. More explicitly, G̃ is the solution of (1+K )G̃ = M/4πa, that is

G̃(r, r′) + ζ eC
∫

G̃(r′′, r′)

(
1 −

r ′′2

4a2

)4πnba2−1

1 −
zz̄′′
4a2

dr′′ =
1

4πa
[
1 −

zz̄′
4a2

] (9.71)

and the density is given by

n(1)(r) = 4πaζ eC
(
1 −

r2

4a2

)4πnba2+1

G̃(r, r) (9.72)

From the integral equation (9.71) one can see that G̃(r, r′) is an analytical function of z. Trying a solution of the form

G̃(r, r′) =

∞∑
ℓ=0

aℓ(r′)zℓ (9.73)

into Eq. (9.71) yields

G̃(r, r′) =
1

4πa

∞∑
ℓ=0

(
zz̄ ′

4a2

)ℓ 1
1 + 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2)

(9.74)

Then the density is given by

n(1)(r) = ζ eC
(
1 −

r2

4a2

)4πnba2+1 ∞∑
ℓ=0

(
r2

4a2

)ℓ 1
1 + 4πa2ζ eCBt0 (ℓ+ 1, 4πnba2)

(9.75)

After some calculation (see Appendix B), it can be shown that, in the limit a → ∞, the result for the flat disk in the
canonical ensemble [55]

n(1)(r)
nb

= exp(−πnbr2)
Nb−1∑
ℓ=0

(πnbr2)ℓ

γ (ℓ+ 1, Nb)
(9.76)

is recovered. up to a correction due to the non-equivalence of ensembles in finite systems. In (9.76), γ is the incomplete
gamma function

γ (ℓ+ 1, x) =

∫ x

0
tℓe−tdt (9.77)

In that flat-disk case, in the thermodynamic limit (half-space), n(1)(r0) = ncontact → nb ln 2.
In a flat space, the neighborhood of the boundary of a large domain has a volume which is a negligible fraction of the

whole volume. This is why, for the statistical mechanics of ordinary fluids, usually there is a thermodynamic limit: when
the volume becomes infinite, quantities such as the free energy per unit volume or the pressure have a unique limit,
independent of the domain shape and of the boundary conditions. However, even in a flat space, the one-component
plasma is special. For the OCP, it is possible to define several non-equivalent pressures, some of which, for instance the
kinetic pressure [24], obviously are surface-dependent even in the infinite-system limit.

Even for ordinary fluids, statistical mechanics on a pseudosphere is expected to have special features, which are
essentially related to the property that, for a large domain, the area of the neighborhood of the boundary is of the same
order of magnitude as the whole area. Although some bulk properties, such as correlation functions far away from the
boundary, will exist, extensive quantities such as the free energy or the grand potential are strongly dependent on the
boundary neighborhood and surface effects. For instance, in the large-domain limit, no unique limit is expected for the
free energy per unit area F/A or the pressure −(∂F/∂A)β,N .

In the present section, we have studied the 2D OCP on a pseudosphere, for which surface effects are expected to
be important for both reasons: because we are dealing with a one-component plasma and because the space is a
pseudosphere. Therefore, although the correlation functions far away from the boundary have unique thermodynamic
limits [23], many other properties are expected to depend on the domain shape and on the boundary conditions. This is
why we have considered a special well-defined geometry: the domain is a disk bounded by a plain hard wall, and we
have studied the corresponding large-disk limit. Our results have been derived only for that geometry.

2 The factor 4πa is there just to keep the same notations as in Ref. [23].
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Fig. 1. The Riemannian surface S of Eq. (10.2).

10. The Flamm paraboloid

The metric tensor of Flamm’s paraboloid in the coordinates q = (r, ϕ) is now,

g =

(
(1 − 2M/r)−1 0

0 r2

)
, (10.1)

where M is a constant. This is an embeddable surface in the three-dimensional Euclidean space with cylindrical
coordinates (r, ϕ, Z) with ds2 = dZ2

+ dr2 + r2dϕ2, whose equation is

Z(r) = ±2
√
2M(r − 2M). (10.2)

This surface is illustrated in Fig. 1. It has a hole of radius 2M . As the hole shrinks to a point (limit M → 0) the surface
becomes flat. We will from now on call the r = 2M region of the surface its ‘‘horizon’’. The Schwarzschild geometry
in general relativity is a vacuum solution to the Einstein field equation which is spherically symmetric and in a two
dimensional world its spatial part is a Flamm paraboloid S. In general relativity, M (in appropriate units) is the mass of
the source of the gravitational field.

The ‘‘Schwarzschild wormhole’’ provides a path from the upper ‘‘universe’’ S+ (Z > 0) to the lower one S− (Z < 0).
These are both multiply connected surfaces. We will study the OCP on a single universe, on the whole surface, and on a
single universe with the ‘‘horizon’’ (the region r = 2M) grounded.

Since the curvature of the surface is not a constant but varies from point to point, the plasma will not be uniform even
in the thermodynamic limit.

The system of coordinates (r, ϕ) with the metric (10.1) has the disadvantage that it requires two charts to cover the
whole surface S. It can be more convenient to use the variable

u =
Z
4M

= ±

√
r

2M
− 1 (10.3)

instead of r . Replacing r as a function of Z using Eq. (10.2) gives the following metric when using the system of coordinates
q = (u, ϕ),

g =

(
(4M)2(1 + u2) 0

0 4M2(1 + u2)2

)
, (10.4)

The region u > 0 corresponds to S+ and the region u < 0 to S−.
Let us consider that the OCP is confined in a disk defined as

Ω+

R = {q = (r, ϕ) ∈ S+|0 ≤ ϕ ≤ 2π, 2M ≤ r ≤ R} . (10.5)

The area of this disk is given by

AR =

∫
ΩR

dS = π

[√
R(R − 2M)(3M + R) + 6M2 ln

(√
R +

√
R − 2M

√
2M

)]
, (10.6)
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where dS =
√
g dr dϕ and g = det[gµν]. The perimeter is CR = 2πR.

The Riemann tensor characteristic component is

Rr
ϕrϕ = −

M
r
. (10.7)

The scalar curvature is then given by the following indexes contractions

R = Rµµ = Rµνµν = 2Rrϕ
rϕ = 2gϕϕRr

ϕrϕ = −
2M
r3

, (10.8)

and the (intrinsic) Gaussian curvature is K = R/2 = −M/r3. The (extrinsic) mean curvature of the manifold turns out to
be H = −

√
M/8r3.

The Euler characteristic (1.5) of the disk Ω+

R turns out to be χ = 0, in agreement with the Gauss–Bonnet theorem
χ = 2 − 2h − b where h = 0 is the number of handles and b = 2 the number of boundaries.

We can also consider the case where the system is confined in a ‘‘double’’ disk

ΩR = Ω+

R ∪Ω−

R , (10.9)

with Ω−

R = {q = (r, ϕ) ∈ S−|0 ≤ ϕ ≤ 2π, 2M ≤ r ≤ R}, the disk image of Ω+

R on the lower universe S− portion of S.
The Euler characteristic of ΩR is also χ = 0.

The fact that the Euler characteristic is zero implies that the asymptotic expansion in the thermodynamic limit of the
free energy does not exhibit the logarithmic corrections predicted by Ref. [15].

The Laplacian for a function f is

∆f =
1

√
g
∂

∂qµ

(
√
g gµν

∂

∂qν

)
f

=

[(
1 −

2M
r

)
∂2

∂r2
+

1
r2
∂2

∂ϕ2 +

(
1
r

−
M
r2

)
∂

∂r

]
f , (10.10)

where q ≡ (r, ϕ). In Appendix C, we show how, finding the Green function of the Laplacian, naturally leads to consider
the system of coordinates (x, ϕ), with

x = (
√
u2 + 1 + u)2 . (10.11)

The range for the variable x is ]0,+∞[. The lower paraboloid S− corresponds to the region 0 < x < 1 and the upper one
S+ to the region x > 1. A point in the upper paraboloid with coordinate (x, ϕ) has a mirror image by reflection (u → −u)
in the lower paraboloid, with coordinates (1/x, ϕ), since if

x = (
√
u2 + 1 + u)2 (10.12)

then
1
x

= (
√
u2 + 1 − u)2 . (10.13)

In the upper paraboloid S+, the new coordinate x can be expressed in terms of the original one, r , as

x =
(
√
r +

√
r − 2M)2

2M
. (10.14)

Using this system of coordinates, the metric takes the form of a flat metric multiplied by a conformal factor

g =

(
(M/2)2(1 + 1/x)4 0

0 (M/2)2(1 + 1/x)4x2

)
, (10.15)

The Laplacian also takes a simple form

∆f =
4

M2
(
1 +

1
x

)4 ∆flatf (10.16)

where

∆flatf =
∂2f
∂x2

+
1
x
∂ f
∂x

+
1
x2
∂2f
∂ϕ2 (10.17)

is the Laplacian of the flat Euclidean space R2. The determinant of the metric is now given by g = [M2x(1 + x−1)4/4]2.
With this system of coordinates (x, ϕ), the area of a disk Ω+

R of radius R, in the original system (r, ϕ), is given by

AR =
πM2

4
p(xm) (10.18)
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with

p(x) = x2 + 8x −
8
x

−
1
x2

+ 12 ln x (10.19)

and xm = (
√
R +

√
R − 2M)2/(2M).

The Coulomb potential G(x, ϕ; x0, ϕ0) created at (x, ϕ) by a unit charge at (x0, ϕ0) is given by the Green function of the
Laplacian

∆G(x, ϕ; x0, ϕ0) = −2πδ(2)(x, ϕ; x0, ϕ0) (10.20)

with appropriate boundary conditions. The Dirac distribution on S is given by

δ(2)(x, ϕ; x0, ϕ0) =
4

M2x(1 + x−1)4
δ(x − x0)δ(ϕ − ϕ0) (10.21)

Notice that using the system of coordinates (x, ϕ) the Laplacian Green function equation takes the simple form

∆flatG(x, ϕ; x0, ϕ0) = −2π
1
x
δ(x − x0)δ(ϕ − ϕ0) (10.22)

which is formally the same Laplacian Green function equation for flat space.
We shall consider three different situations: when the particles can be in the whole surface S , or when the particles

are confined to the upper paraboloid universe S+, confined by a hard wall or by a grounded perfect conductor.
The geodesic distance on the Flamm paraboloid is determined in Appendix D.

10.1. Coulomb potential in the whole surface (ws)

To complement the Laplacian Green function equation (10.20), we impose the usual boundary condition that the
electric field −∇G vanishes at infinity (x → ∞ or x → 0). Also, we require the usual interchange symmetry
G(x, ϕ; x0, ϕ0) = G(x0, ϕ0; x, ϕ) to be satisfied. Additionally, due to the symmetry between each universe S+ and S−,
we require that the Green function satisfies the symmetry relation

Gws(x, ϕ; x0, ϕ0) = Gws(1/x, ϕ; 1/x0, ϕ0) (10.23)

The Laplacian Green function equation (10.20) can be solved, as usual, by using the decomposition as a Fourier series,
as shown in Appendix C. Since Eq. (10.20) reduces to the flat Laplacian Green function equation (10.22), the solution is
the standard one

G(x, ϕ; x0, ϕ0) =

∞∑
n=1

1
n

(
x<
x>

)n

cos [n(ϕ − ϕ0)] + g0(x, x0) (10.24)

where x> = max(x, x0) and x< = min(x, x0). The Fourier coefficient for n = 0, has the form

g0(x, x0) =

{
a+

0 ln x + b+

0 , x > x0
a−

0 ln x + b−

0 , x < x0 .
(10.25)

The coefficients a±

0 , b
±

0 are determined by the boundary conditions that g0 should be continuous at x = x0, its derivative
discontinuous ∂xg0|x=x+0

−∂xg0|x=x−0
= −1/x0, and the boundary condition at infinity ∇g0|x→∞= 0 and ∇g0|x→0= 0.

Unfortunately, the boundary condition at infinity is trivially satisfied for g0, therefore g0 cannot be determined only with
this condition. In flat space, this is the reason why the Coulomb potential can have an arbitrary additive constant added
to it. However, in our present case, we have the additional symmetry relation (10.23) which should be satisfied. This fixes
the Coulomb potential up to an additive constant b0. We find

g0(x, x0) = −
1
2
ln

x>
x<

+ b0 , (10.26)

and summing explicitly the Fourier series (10.24), we obtain

Gws(x, ϕ; x0, ϕ0) = − ln
|z − z0|
√

|zz0|
+ b0 , (10.27)

where we defined z = xeiϕ and z0 = x0eiϕ0 . Notice that this potential does not reduce exactly to the flat one when M = 0.
This is due to the fact that the whole surface S in the limit M → 0 is not exactly a flat plane R2, but rather it is two flat
planes connected by a hole at the origin, this hole modifies the Coulomb potential.
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10.2. Coulomb potential in the half surface (hs) confined by hard walls

We consider now the case when the particles are restricted to live in the half surface S+, x > 1, and they are confined
by a hard wall located at the ‘‘horizon’’ x = 1. The region x < 1 (S−) is empty and has the same dielectric constant as
the upper region occupied by the particles. Since there are no image charges, the Coulomb potential is the same Gws as
above. However, we would like to consider here a new model with a slightly different interaction potential between the
particles. Since we are dealing only with half surface, we can relax the symmetry condition (10.23). Instead, we would like
to consider a model where the interaction potential reduces to the flat Coulomb potential in the limit M → 0. The solution
of the Laplacian Green function equation is given in Fourier series by Eq. (10.24). The zeroth order Fourier component g0
can be determined by the requirement that, in the limit M → 0, the solution reduces to the flat Coulomb potential

Gflat(r, r′) = − ln
|r − r′|

L
(10.28)

where L is an arbitrary constant length. Recalling that x ∼ 2r/M , when M → 0, we find

g0(x, x0) = − ln x> − ln
M
2L

(10.29)

and

Ghs(x, ϕ; x0, ϕ0) = − ln |z − z0| − ln
M
2L
. (10.30)

10.3. Coulomb potential on half surface with a grounded horizon (gh)

Let us consider now that the particles are confined to S+ by a grounded perfect conductor at x = 1 which imposes
Dirichlet boundary condition to the electric potential. The Coulomb potential can easily (see Appendix C) be found from
the Coulomb potential Gws (10.27) using the method of images

Ggh(x, ϕ; x0, ϕ0) = − ln
|z − z0|
√

|zz0|
+ ln

|z − z̄−1
0 |√

|zz̄−1
0 |

= − ln
⏐⏐⏐⏐ z − z0
1 − zz̄0

⏐⏐⏐⏐ (10.31)

where the bar over a complex number indicates its complex conjugate. We will call this the grounded horizon Green
function. Notice how its shape is the same of the Coulomb potential on the pseudosphere [24] or in a flat disk confined
by perfect conductor boundaries [16].

This potential can also be found using the Fourier decomposition. Since it will be useful in the following, we note that
the zeroth order Fourier component of Ggh is

g0(x, x0) = ln x< . (10.32)

10.4. The background

The Coulomb potential generated by the background, with a constant surface charge density ρb satisfies the Poisson
equation, for r > 2M ,

∆vb = −2πρb , (10.33)

Assuming that the system occupies an area AR, the background density can be written as ρb = −qNb/AR = −qnb, where
we have defined here nb = Nb/AR the number density associated to the background. For a neutral system Nb = N .
The Coulomb potential of the background can be obtained by solving Poisson equation with the appropriate boundary
conditions for each case. Also, it can be obtained from the Green function computed in the previous section

vb(x, ϕ) =

∫
G(x, ϕ; x′, ϕ′)ρb dS ′ (10.34)

This integral can be performed easily by using the Fourier series decomposition (10.24) of the Green function G. Recalling
that dS =

1
4M

2x(1 + x−1)4 dx dϕ, after the angular integration is done, only the zeroth order term in the Fourier series
survives

vb(x, ϕ) =
πρbM2

2

∫ xm

1
g0(x, x′) x′

(
1 +

1
x′

)4

dx′ . (10.35)

The previous expression is for the half surface case and the grounded horizon case. For the whole surface case, the lower
limit of integration should be replaced by 1/xm, or, equivalently, the integral multiplied by a factor two.

Using the explicit expressions for g0, (10.26), (10.29), and (10.32) for each case, we find, for the whole surface,

vws
b (x, ϕ) = −

πρbM2

8
[h(x) − h(xm) + 2p(xm) ln xm − 4b0p(xm)] (10.36)
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where p(x) was defined in Eq. (10.19), and

h(x) = x2 + 16x +
16
x

+
1
x2

+ 12(ln x)2 − 34 . (10.37)

Notice the following properties satisfied by the functions p and h

p(x) = −p(1/x) , h(x) = h(1/x) (10.38)

and

p(x) = xh′(x)/2 , p′(x) = 2x
(
1 +

1
x

)4

(10.39)

where the prime stands for the derivative.
The background potential for the half surface case, with the pair potential − ln(|z − z ′

|M/2L) is

vhsb (x, ϕ) = −
πρbM2

8

[
h(x) − h(xm) + 2p(xm) ln

xmM
2L

]
. (10.40)

Also, the background potential in the half surface case, but with the pair potential − ln(|z − z ′
|/

√
|zz ′|) + b0 is

vhsb (x, ϕ) = −
πρbM2

8

[
h(x) −

h(xm)
2

+ p(xm)
(
ln

xm
x

− 2b0
)]

. (10.41)

Finally, for the grounded horizon case,

v
gh
b (x, ϕ) = −

πρbM2

8
[h(x) − 2p(xm) ln x] . (10.42)

10.5. Partition function and densities at a special temperature

We will now show how at the special value of the coupling constant Γ = βe2 = 2 the partition function and n-body
correlation functions can be calculated exactly.

10.5.1. The 2D OCP on half surface with potential − ln |z − z ′
| − lnM/(2L)

For this case, we work in the canonical ensemble with N particles and the background neutralizes the charges: Nb = N ,
and n = N/AR = nb. The potential energy of the system takes the explicit form

V hs
= −e2

∑
1≤i<j≤N

ln |zi − zj| +
e2

2
α

N∑
i=1

h(xi) +
e2

2
N ln

M
2L

−
e2

4
Nαh(xm)

+
e2

2
N2 ln xm −

e2

4
α2
∫ xm

1
h(x)p′(x) dx (10.43)

where we have used the fact that dS = πM2x(1 + x−1)4 dx/2 = πM2p′(x) dx/4, and we have defined

α =
πnbM2

4
. (10.44)

Integrating by parts the last term of (10.43) and using (10.39), we find

V hs
= −e2

∑
1≤i<j≤N

ln |zi − zj| +
e2

2
α

N∑
i=1

h(xi) +
e2

2
N ln

M
2L

+
e2

2
N2 ln xm

+
e2

2
α2
∫ xm

1

[p(x)]2

x
dx −

e2

2
Nαh(xm) . (10.45)

When βe2 = 2, the canonical partition function can be written as

Zhs
=

1
Λ2N Zhs

0 exp(−βFhs
0 ) (10.46)

with

− βFhs
0 = −N ln

M
2L

− N2 ln xm − α2
∫ xm

1

[p(x)]2

x
dx + Nαh(xm) (10.47)

and

Zhs
0 (2) =

1
N!

∫ N∏
i=1

dSi e−αh(xi)
∏

1≤i<j≤N

|zi − zj|2 . (10.48)

Plasma living in a curved surface at some special temperature 907



R. Fantoni / Physica A 524 (2019) 177–220 199

Fig. 2. The one body density nhs(r)/n of Eq. (10.56), for the 2D OCP on just one universe of the surface S, obtained with N = 300. On the left at
fixed M = 1 and on the right at fixed n = 1.

where Λ =

√
2πβh̄2/m is the de Broglie thermal wavelength. Z0(2) can be computed using the original method for the

OCP in flat space [12,13], which was originally introduced in the context of random matrices [10,56], and which was
presented in Section 6. By expanding the Vandermonde determinant

∏
i<j(zi − zj) and performing the integration over the

angles, the partition function can be written as

Zhs
0 (2) =

N−1∏
k=0

BN (k) , (10.49)

where

BN (k) =

∫
x2ke−αh(x) dS (10.50)

=
α

nb

∫ xm

1
x2ke−αh(x)p′(x) dx . (10.51)

In the flat limit M → 0, we have x ∼ 2r/M , with r the radial coordinate of flat space R2, and h(x) ∼ p(x) ∼ x2. Then,
BN reduces to

BN (k) ∼
1

nbαk γ (k + 1,N) (10.52)

where γ (k + 1,N) =
∫ N
0 tke−t dt is the incomplete Gamma function. Replacing into (10.49), we recover the partition

function (6.14) for the OCP in a flat disk of radius R [13]

ln Zhs(2) =
N
2

ln
πL2

nbΛ
4 +

3N2

4
−

N2

2
lnN +

N∑
k=1

ln γ (k,N) . (10.53)

Following [12], we can also find the k-body distribution functions

n(k)hs(q1, . . . , qk) = det[Khs
N (qi, qj)](i,j)∈{1,...,k}2 , (10.54)

where qi = (xi, ϕi) is the position of the particle i, and

Khs
N (qi, qj) =

N−1∑
k=0

zki z̄
k
j e

−α[h(|zi|)+h(|zj|)]/2

BN (k)
. (10.55)

where zk = xkeiϕk . In particular, the one-body density is given by

nhs(x) = KN (q, q) =

N−1∑
k=0

x2ke−αh(x)

BN (k)
. (10.56)

The density shows a peak in the neighborhoods of each boundary, tends to a finite value at the boundary and to the
background density far from it, in the bulk. This is shown in Fig. 2
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10.5.2. Internal screening
Internal screening means that at equilibrium, a particle of the system is surrounded by a polarization cloud of opposite

charge. It is usually expressed in terms of the simplest of the multipolar sum rules [2]: the charge or electroneutrality
sum rule, which for the OCP reduces to the relation∫

n(2)hs(q1, q2) dS2 = (N − 1)n(1)hs(q1) , (10.57)

This relation is trivially satisfied because of the particular structure (10.54) of the correlation function expressed as a
determinant of the kernel Khs

N , and the fact that Khs
N is a projector∫

dS3 Khs
N (q1, q3)Khs

N (q3, q2) = Khs
N (q1, q2) . (10.58)

Indeed,∫
n(2)hs(q1, q2) dS2 =

∫
[Khs

N (q1, q1)Khs
N (q2, q2) − Khs

N (q1, q2)Khs
N (q2, q1)] dS2

=

∫
n(1)hs(q1)n(1)hs(q2) dS2 − Khs

N (q1, q1)

= (N − 1)n(1)hs(q1) . (10.59)

10.5.3. External screening
External screening means that, at equilibrium, an external charge introduced into the system is surrounded by a

polarization cloud of opposite charge. When an external infinitesimal point charge Q is added to the system, it induces a
charge density ρQ (q). External screening means that∫

ρQ (q) dS = −Q . (10.60)

Using linear response theory we can calculate ρQ to first order in Q as follows. Imagine that the charge Q is at q. Its
interaction energy with the system is Ĥint = Q φ̂(q) where φ̂(q) is the microscopic electric potential created at q by the
system. Then, the induced charge density at q′ is

ρQ (q′) = −β⟨ρ̂(q′)Ĥint⟩T = −βQ ⟨ρ̂(q′)φ̂(q)⟩T , (10.61)

where ρ̂(q′) is the microscopic charge density at q′, ⟨AB⟩T = ⟨AB⟩ − ⟨A⟩⟨B⟩, and ⟨. . .⟩ is the thermal average. Assuming
external screening (10.60) is satisfied, one obtains the Carnie–Chan sum rule [2]

β

∫
⟨ρ̂(q′)φ̂(q)⟩T dS ′

= 1 . (10.62)

Now in a uniform system starting from this sum rule one can derive the second moment Stillinger–Lovett sum rule [2].
This is not possible here because our system is not homogeneous since the curvature is not constant throughout the
surface but varies from point to point. If we apply the Laplacian respect to q to this expression and use Poisson equation

∆q⟨ρ̂(q′)φ̂(q)⟩T = −2π⟨ρ̂(q′)ρ̂(q)⟩T , (10.63)

we find∫
ρ(2)
e (q′, q) dS ′

= 0 , (10.64)

where ρ(2)
e (q′, q) = ⟨ρ̂(q′)ρ̂(q)⟩T is the excess pair charge density function. Eq. (10.64) is another way of writing the charge

sum rule Eq. (10.57) in the thermodynamic limit.

10.5.4. The 2D OCP on the whole surface with potential − ln(|z − z ′
|/

√
|zz ′|)

Until now we studied the 2D OCP on just one universe. Let us find the thermodynamic properties of the 2D OCP on
the whole surface S. In this case, we also work in the canonical ensemble with a global neutral system. The position
zk = xkeiϕk of each particle can be in the range 1/xm < xk < xm. The total number particles N is now expressed in terms
of the function p as N = 2αp(xm). Similar calculations to the ones of the previous section lead to the following expression
for the partition function, when βe2 = 2,

Zws
=

1
Λ2N Zws

0 exp(−βFws
0 ) (10.65)

now, with

−βFws
0 = Nb0 + Nαh(xm) −

N2

2
ln xm − α2

∫ xm

1/xm

[p(x)]2

x
dx (10.66)
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Fig. 3. The one body density n(1)(s)/n, where s = 2Mx, for the 2D OCP on the whole manifold, obtained using Eq. (10.70) with N = 300. On the left
at fixed M = 1 and on the right at fixed n = 1.

and

Zws
0 (2) =

1
N!

∫ N∏
i=1

dSi e−αh(xi)x−N+1
i

∏
1≤i<j≤N

|zi − zj|2 . (10.67)

Expanding the Vandermonde determinant and performing the angular integrals we find

Zws
0 (2) =

N−1∏
k=0

B̃N (k) (10.68)

with

B̃N (k) =

∫
x2k−N+1e−αh(x) dS (10.69)

=
α

n

∫ xm

1/xm
x2k−N+1e−αh(x)p′(x) dx . (10.70)

The function B̃N (k) is very similar to BN , and its asymptotic behavior for large values of N can be obtained by Laplace
method as explained in Ref. [26].

The one body density for the 2D OCP on the whole manifold is drawn in Fig. 3. From the figure we can see how the
peaks in the neighborhood of the horizon are now disappeared. The density approaches the horizon with zero slope.

10.5.5. The 2D OCP on the half surface with potential − ln(|z − z ′
|/

√
|zz ′|)

In this case, we have N = αp(xm). In this case the partition function at βe2 = 2 is

Zhs
= Zhs

0 e−βFhs0 (10.71)

with

−βFhs
0 = α2p(xm)h(xm) − p(xm)2 ln xm +

∫ xm

1

[p(x)]2

x
dx − Nb0 (10.72)

and

Zhs
0 (2) =

N−1∏
k=0

B̂N (k) (10.73)

with

B̂N (k) =
α

nb

∫ xm

1
x2k+1e−αh(x) dx (10.74)

In Fig. 4 we compare the one body density obtained in this case with the one of the previous section.

Plasma living in a curved surface at some special temperature 910



202 R. Fantoni / Physica A 524 (2019) 177–220

Fig. 4. The one body density n(1)(r)/n, for the 2D OCP on just one universe of the surface S, obtained using both the pair potential − ln |z − z ′
| and

− ln(|z − z ′
|/

√
|zz ′|) at fixed M = n = 1.

10.5.6. The grounded horizon case
In order to find the partition function for the system in the half space, with a metallic grounded boundary at x = 1,

when the charges interact through the pair potential of Eq. (10.31) it is convenient to work in the grand canonical
ensemble instead, and use the techniques developed in Refs. [16,57]. We consider a system with a fixed background
density ρb. The fugacity ζ = eβµ/Λ2, where µ is the chemical potential, controls the average number of particles ⟨N⟩,
and in general the system is non-neutral ⟨N⟩ ̸= Nb, where Nb = αp(xm). The excess charge is expected to be found near
the boundaries at x = 1 and x = xm, while in the bulk the system is expected to be locally neutral. In order to avoid the
collapse of a particle into the metallic boundary, due to its attraction to the image charges, we confine the particles to be
in a disk domain Ω̃R, where x ∈ [1+w, xm]. We introduced a small gap w between the metallic boundary and the domain
containing the particles, the geodesic width of this gap is W =

√
αp′(1)/(2πnb)w. On the other hand, for simplicity, we

consider that the fixed background extends up to the metallic boundary.
In the potential energy of the system (4.1) we should add the self energy of each particle, that is due to the fact that each

particle polarizes the metallic boundary, creating an induced surface charge density. This self energy is e2
2 ln[|x2 − 1|M/2L],

where the constant ln(M/2L) has been added to recover, in the limit M → 0, the self energy of a charged particle near a
plane grounded wall in flat space.

The grand partition function, when βe2 = 2, is

Ξ (2) = e−βFgh0

⎡⎣1 +

∞∑
N=1

ζN

N!

∫ N∏
i=1

dSi
∏
i<j

⏐⏐⏐⏐ zi − zj
1 − ziz̄j

⏐⏐⏐⏐2 N∏
i=1

⏐⏐|zi|2 − 1
⏐⏐−1

N∏
i=1

e−α[h(xi)−2Nb ln xi]

⎤⎦ (10.75)

where for N = 1 the product
∏

i<j must be replaced by 1. The domain of integration for each particle is Ω̃R. We have
defined a rescaled fugacity ζ = 2Lζ/M and

−βF gh
0 = αNbh(xm) − N2

b ln xm − α2
∫ xm

1

[p(x)]2

x
dx (10.76)

which is very similar to Fhs
0 , except that here Nb = αp(xm) is not equal to N the number of particles.

Let us define a set of reduced complex coordinates ui = zi and its corresponding images u∗

i = 1/z̄i. By using Cauchy
identity (9.50),

det

(
1

ui − u∗

j

)
(i,j)∈{1,...,N}2

= (−1)N(N−1)/2

∏
i<j(ui − uj)(u∗

i − u∗

j )∏
i,j(ui − u∗

j )
, (10.77)

the particle–particle interaction and self energy terms can be cast into the form

∏
i<j

⏐⏐⏐⏐ zi − zj
1 − ziz̄j

⏐⏐⏐⏐2 N∏
i=1

(
|zi|2 − 1

)−1
= (−1)Ndet

(
1

1 − ziz̄j

)
(i,j)∈{1,...,N}2

. (10.78)
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The grand canonical partition function is then

Ξ (2) = e−βFgh0

[
1 +

∞∑
N=1

1
N!

∫ N∏
i=1

dSi
N∏
i=1

[−ζ (xi)] det
(

1
1 − ziz̄j

)]
, (10.79)

with ζ (x) = ζ e−α[h(x)−2Nb ln x]. We now notice that we already found an analogous expression (9.52) when studying the
pseudosphere. We therefore proceed as we did for that case. For ease of reading we repeat here the relevant steps reducing
this expression to a Fredholm determinant [57]. Then let us consider the Gaussian partition function

Z0 =

∫
DψDψ̄ exp

[∫
ψ̄(q)A−1(z, z̄ ′)ψ(q′) dS dS ′

]
(10.80)

The fields ψ and ψ̄ are anticommuting Grassmann variables. The Gaussian measure in (10.80) is chosen such that its
covariance is equal to⟨

ψ̄(qi)ψ(qj)
⟩
= A(zi, z̄j) =

1
1 − ziz̄j

(10.81)

where ⟨. . .⟩ denotes an average taken with the Gaussian weight of (10.80). By construction we have

Z0 = det(A−1) (10.82)

Let us now consider the following partition function

Z =

∫
DψDψ̄ exp

[∫
ψ̄(q)A−1(z, z̄ ′)ψ(q′)dSdS ′

−

∫
ζ (x)ψ̄(q)ψ(q) dS

]
(10.83)

which is equal to

Z = det(A−1
− ζ ) (10.84)

and then
Z
Z0

= det[A(A−1
− ζ )] = det(1 + K ) (10.85)

where K is an integral operator (with integration measure dS) with kernel

K (q, q′) = −ζ (x′) A(z, z̄ ′) = −
ζ (x′)

1 − zz̄ ′
. (10.86)

Expanding the ratio Z/Z0 in powers of ζ we have

Z
Z0

= 1 +

∞∑
N=1

1
N!

∫ N∏
i=1

dSi(−1)N
N∏
i=1

ζ (xi)
⟨
ψ̄(q1)ψ(q1) · · · ψ̄(qN )ψ(qN )

⟩
(10.87)

Now, using Wick theorem for anticommuting variables [54], we find that⟨
ψ̄(q1)ψ(q1) · · · ψ̄(qN )ψ(qN )

⟩
= detA(zi, z̄j) = det

(
1

1 − ziz̄j

)
(10.88)

Comparing Eqs. (10.87) and (10.79) with the help of Eq. (10.88) we conclude that

Ξ (2) = e−βFgh0
Z(2)
Z0(2)

= e−βFgh0 det(1 + K ) (10.89)

The problem of computing the grand canonical partition function has been reduced to finding the eigenvalues λ of the
operator K . The eigenvalue problem for K reads

−

∫
Ω̃R

ζ (x′)
1 − zz̄ ′

Φ(x′, ϕ′)dS ′
= λΦ(x, ϕ) (10.90)

For λ ̸= 0 we notice from Eq. (10.90) that Φ(x, ϕ) = Φ(z) is an analytical function of z = xeiϕ in the region |z| > 1.
Because of the circular symmetry, it is natural to try Φ(z) = Φℓ(z) = z−ℓ with ℓ ≥ 1 a positive integer. Expanding

1
1 − zz̄ ′

= −

∞∑
n=1

(
zz̄ ′
)−n (10.91)

and replacing Φℓ(z) = z−ℓ in Eq. (10.90) we show that Φℓ is indeed an eigenfunction of K with eigenvalue

λℓ = ζBgh
Nb
(Nb − ℓ) (10.92)
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where

Bgh
Nb
(k) =

α

nb

∫ xm

1+w
x2ke−αh(x) p′(x) dx (10.93)

which is very similar to BN defined in Eq. (10.51), except for the small gap w in the lower limit of integration. So, we
arrive to the result for the grand potential

βΩ = − lnΞ (2) = βF0 −

∞∑
ℓ=1

ln
[
1 + ζBgh

Nb
(Nb − ℓ)

]
. (10.94)

As usual one can compute the density by doing a functional derivative of the grand potential with respect to a
position-dependent fugacity ζ (q)

ngh(q) = ζ (q)
δ lnΞ (2)
δζ (q)

. (10.95)

For the present case of a curved space, we shall understand the functional derivative with the rule δζ (q′)/δζ (q) =

δ(2)(q; q′) where δ(2)(q; q′) = δ(x − x′)δ(ϕ − ϕ′)/
√
g is the Dirac distribution on the curved surface.

Using a Dirac-like notation, one can formally write

lnΞ (2) = tr ln(1 + K ) − βF gh
0 =

∫
⟨q |ln(1 − ζ (q)A)| q⟩ dS − βF gh

0 (10.96)

Then, doing the functional derivative (10.95), one obtains

ngh(q) = ζ
⟨
q
⏐⏐(1 + K )−1(−A)

⏐⏐ q⟩ = ζ G̃(q, q) (10.97)

where we have defined G̃(q, q′) by G̃ = (1 + K )−1(−A). More explicitly, G is the solution of (1 + K )G̃ = −A, that is

G̃(q, q′) −

∫
Ω̃R

ζ (x′′)
G̃(q′′, q′)
1 − zz̄ ′′

dS ′′
= −

1
1 − zz̄ ′

. (10.98)

From this integral equation, one can see that G̃(q, q′) is an analytical function of z in the region |z| > 1. Then, we look
for a solution in the form of a Laurent series

G̃(q, q′) =

∞∑
ℓ=1

aℓ(r′)z−ℓ (10.99)

into Eq. (10.98) yields

G̃(q, q′) =

∞∑
ℓ=1

(
zz̄ ′
)−ℓ

1 + λℓ
. (10.100)

Recalling that λℓ = ζBgh
N (Nb − ℓ), the density is given by

ngh(x) = ζ

Nb−1∑
k=−∞

x2ke−αh(x)

1 + ζBgh
N (k)

(10.101)

The density reaches the background density far from the boundaries. In this case, the fugacity and the background density
control the density profile close to the metallic boundary (horizon). In the bulk and close to the outer hard wall boundary,
the density profile is independent of the fugacity. In Fig. 5 we show the density for various choices of the parameters M, n,
and ζ . The figure shows how the density tends to the background density far from the horizon. The value of the density
at the horizon depends on n and ζ .

Part III

The two-component plasma

A two-component plasma is a neutral mixture of two species of 2N point charges of opposite charge ±e.

11. The plane

We represent the Cartesian components of the position q = (x, y) of a particle by the complex number z = x + iy.
For a system of N positive charges with complex coordinates ui and N negative charges with complex coordinates vi the
Boltzmann factor at Γ = βe2 = 2 is,

e
2
∑

i<j

[
ln

|ui−uj |
L +ln

|vi−vj |
L

]
−2

∑
i,j ln

|ui−vj |
L

= L2N
⏐⏐⏐⏐⏐
∏

i<j(ui − uj)(vi − vj)∏
i,j(ui − vj)

⏐⏐⏐⏐⏐
2
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Fig. 5. The one body density ngh(r)/n obtained truncating the sum of Eq. (10.101) after the first 300 terms and choosing (
√
R+

√
R − 2M)2/2M = 10.

On top on the left at fixed M = ζ = 1 and on the right at fixed n = ζ = 1. On the bottom at fixed M = n = 1.

= L2N
⏐⏐⏐⏐⏐det

(
1

ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (11.1)

where the last equality stems from the Cauchy identity (9.50). Following Ref. [32], it is convenient to start with a
discretized model for which there are no divergencies. Two interwoven sublattices U and V are introduced. The positive
(negative) particles sit on the sublattice U(V ). Each lattice site is occupied no or one particle. A possible external potential
is described by position dependent fugacities ζ+(ui) and ζ−(vi). The grand partition function reorganized as a sum including
only neutral systems is

Ξ (2) = 1 +

∞∑
N=1

L2N
N∏
i=1

ζ+(ui)ζ−(vi)
∑

u1,...,uN∈U
v1,...,vN∈V

⏐⏐⏐⏐⏐det
(

1
ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (11.2)

where the sums are defined with the prescription that configurations which differ only by a permutation of identical
particles are counted only once. This grand partition function is the determinant of an anti-Hermitian matrix M explicitly
shown in Ref. [33].

When passing to the continuum limit in the element Mij one should replace ui or vi by z and uj or vj by z ′, i.e. i → z

and j → z ′. Each lattice site is characterized by its complex coordinate z and an isospinor which is
(
1
0

)
if the site belongs

to the positive sublattice U and
(
0
1

)
if it belongs to the negative sublattice V . We then define a matrix M by

⟨z|M|z ′
⟩ =

σx + iσy

2
L

z − z ′
+

σx − iσy

2
L

z − z ′
, (11.3)

where the σ are the 2 × 2 Pauli matrices operating in the isospinor space.
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The matrix M can be expressed in terms of a simple Dirac operator /∂ = σx∂x + σy∂y as follows,

⟨z|M|z ′
⟩ = L(σx∂x + σy∂y) ln|z − z ′

| , (11.4)

and the grand partition function can be rewritten as

Ξ (2) = det
{
1δ(2)(z; z ′) +

[
ζ+(z)

1 + σz

2
+ ζ−(z)

1 − σz

2

]
⟨z|M|z ′

⟩

}
= det[1 + K−1

] , (11.5)

where 1 is the 2 × 2 identity matrix and

λ = ζ+
1 + σz

2
+ ζ−

1 − σz

2
, (11.6)

K−1
= λM . (11.7)

Then, since ∆ ln |z| = 2πδ(r)δ(ϕ)/r = 2πδ(z), where (r = |z|, ϕ = arg z) are the polar coordinates in the plane, the
inverse operator is K = Om−1, where

m(z) = m+(z)
1 + σz

2
+ m−(z)

1 − σz

2
, (11.8)

O = σx∂x + σy∂y = /∂ . (11.9)

Here m±(z) = 2πLζ±(z)/S are rescaled position dependent fugacities and S is the area per lattice site which appears when
the discrete sums are replaced by integrals.

We then find

lnΞ (2) = tr
{
ln
[
1 + K−1]} ,

which expresses the well known equivalence between the 2D OCP at Γ = 2 and a free Fermi field [58].
The one-body densities and n-body truncated densities [2] can be obtained in the usual way by taking functional

derivatives of the logarithm of the grand partition function with respect to the fugacities ζ±. Marking the sign of the
particle charge at zi by an index pi = ±, and defining the matrix

Rp1p2 (z1, z2) = ⟨z1p1|K−1(1 + K−1)−1
|z2p2⟩ , (11.10)

it can then be shown [32,33] that they are given by

ρ(1)
p1 (z1) = Rp1p1 (z1, z1) , (11.11)

ρ(2)T
p1p2 (z1, z2) = −Rp1p2 (z1, z2)Rp2p1 (z2, z1) , (11.12)

ρ(n)T
p1p2,...,pn (z1, z2, . . . , zn) = (−)n+1

∑
(i1,i2,...,in)

Rpi1 pi2
(zi1 , zi2 ) · · · Rpin pi1

(zin , zi1 ) , (11.13)

where the summation runs over all cycles (i1, i2, . . . , in) built with {1, 2, . . . , n}.

11.1. Symmetries of Green’s function R

Since m†
= m and O†

= −O we find

Rp1p2 (z1, z2) = ⟨z2p2|m(z)(m(z) − O)−1
|z1p1⟩ . (11.14)

Expanding in O and comparing with the definition Rp1p2 (z1, z2) = ⟨z1p1|m(z)(m(z) + O)−1
|z2p2⟩ we find

Rpp(z1, z2) = Rpp(z2, z1) , (11.15)

Rp−p(z1, z2) = −R−pp(z2, z1) . (11.16)

From which also follows that Rpp(z1, z1) has to be real. If ζ+ = ζ− then we additionally must have

Rpp(z1, z2) = R−p−p(z1, z2) . (11.17)

11.2. Two-body truncated correlation functions and perfect screening sum rule

For the two-body truncated correlation functions of Eq. (11.12) we then find

ρ
(2)T
++ (z1, z2) = −|R++(z1, z2)|2 , (11.18)

ρ
(2)T
+− (z1, z2) = |R+−(z1, z2)|2 . (11.19)
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Notice that the total correlation function for the like particles h++(z1, z2) = ρ(2)T
++ (z1, z2) /ρ

(1)
+ (z1)ρ

(1)
+ (z2) goes to −1

when the particles coincide z1 → z2 as follows from the structure of Eqs. (11.11) and (11.12). Moreover the truncated
densities of any order has to decay to zero as two groups of particles are infinitely separated. In particular |R++(z1, z2)| =

|R++(r1, r2, ϕ2 − ϕ1)| has to decay to zero as |q1 − q2| → ∞.
The perfect screening sum rule has to be satisfied for the symmetric mixture∫

[ρ
(2)T
+− (z1, z2) − ρ

(2)T
++ (z1, z2)]

√
g1dr1dϕ1 = ρ±(z2) , (11.20)

where g1 is g calculated on particle 1.

11.3. Determination of Green’s function R

The Green function matrix R is the solution of a system of four coupled partial differential equations, namely

(1 + K−1)KR(z1, z2) = (1 + K)R(z1, z2) = 1δ(2)(z1; z2) (11.21)

where δ(2)(z1; z2) = (
√
g)−1δ(r − r0)δ(ϕ − ϕ0), with

√
g = r is the Dirac delta function on the plane which we will call

δ(z1 − z2) the flat Dirac delta and 1 is the 2 × 2 identity matrix. These coupled equations can be rewritten as follows

[O + m(z1)]R(z1, z2) = m(z1)δ(2)(z1; z2) .

If instead of R one uses R = Gm, G satisfies the equation

[O + m(z1)]G(z1, z2) = 1δ(2)(z1; z2) . (11.22)

By combining the components of this equation one obtains decoupled equations for G++ and G−− as follows{
m+(z1) + A†

[m−(z1)]−1A
}
G++(z1, z2) = δ(2)(r1, ϕ1; r2, ϕ2) , (11.23){

m−(z1) + A[m+(z1)]−1A†}G−−(z1, z2) = δ(2)(r1, ϕ1; r2, ϕ2) , (11.24)

where A = ∂x + i∂y, while

G−+(z1, z2) = − [m−(z1)]−1 AG++(z1, z2) , (11.25)
G+−(z1, z2) = + [m+(z1)]−1 A†G−−(z1, z2) , (11.26)

Then Eq. (14.6) can be rewritten in Cartesian coordinates as[
m+m− −

1
r1
∂r1 (r1∂r1 ) −

1
r21
∂2ϕ1

]
G++(z1, z2) =

m−

r1
δ(r1 − r2)δ(ϕ1 − ϕ2) . (11.27)

which, when m+(z) = m−(z) = m, has the following solution [32,33]

G++(z1, z2) =
m
2π

K0(m|q1 − q2|) , (11.28)

G−+(z1, z2) =
m
2π

(x1 − x2) + i(y1 − y2)
|q1 − q2|

K1(m|q1 − q2|) , (11.29)

where K0 and K1 are modified Bessel functions. These functions decay at large distances on a characteristic length scale
m−1. The n-body truncated densities (11.13) are well defined quantities for the point particle system. The two-body
truncated densities, for example, have the simple forms

ρ
(2)T
++ (r) = −

(
m2

2π

)2

K 2
0 (mr), (11.30)

ρ
(2)T
+− (r) = −

(
m2

2π

)2

K 2
1 (mr). (11.31)

The one-body densities, however, as given by Eq. (11.11), are infinite since K0(mr) diverges logarithmically as r → 0. This
divergence can be suppressed by a short distance cutoff R. We replace the point particles by small hard discs of diameter
R and use a regularized form of Eq. (11.11),

ρ± =
m2

2π
K0(mR) ∼

m2

2π

[
ln

2
mR

− γ

]
, (11.32)

where γ = 0.5772 is Euler’s constant. Keeping the point charge expression for the correlation functions for separations
larger than R the perfect screening rule (11.20) is satisfied.

Integrating ρ+ + ρ− = m∂(βp)/∂m, from Eq. (11.32) one obtains for the pressure p,

βp =
1
2
(ρ+ + ρ−) +

m2

4π
. (11.33)
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The same result can be obtained by using the regularized form of Eq. (11.5). In the limit mR → 0 one finds the expected
result for an ideal gas of collapsed neutral pairs.

12. The sphere

We consider the stereographic projection [39] of the sphere of radius a on the plane tangent to its south pole. The
coordinates of the point p = (x, y) stereographic projection of a point q = (θ, ϕ) of the sphere from the north pole is
given in terms of the complex coordinate z = x+ iy by z = 2aeiϕcotan(θ/2). This projection is a conformal transformation.
The conformal metric in the new coordinates (x, y) is then

g =

(
eω 0
0 eω

)
, (12.1)

with the conformal factor given by

eω = sin2 θ

2
=

1
1 + (|z|/2a)2

. (12.2)

The length rij (8.3) of the chord joining two particles i and j has a simple relation with its projection |zi − zj|,

rij = eωi/2|zi − zj|eωj/2 = sin
θi

2
|zi − zj|sin

θj

2
. (12.3)

We can then follow the same steps as in Section 11 with z − z ′ replaced by eω/2(z − z ′)eω
′/2. In particular the matrix

M will now become,

⟨z|M|z ′
⟩ =

σx + iσy

2
L

eω/2(z − z ′)eω′/2
+

σx − iσy

2
L

eω/2(z − z ′)eω′/2
, (12.4)

In the inverse operator K we now have

O = e−3ω/2 /∂eω/2 = /D, (12.5)

since the Dirac delta function on the sphere δ(2)(z; z ′) = e−2ωδ(z − z ′) where δ is the flat Dirac delta function.
Thus, the Dirac operator /∂ in the plane has to be replaced by /D defined by (12.5). It turns out that /D is the Dirac

operator on the sphere. The Dirac operators in curved spaces have been investigated by many authors.

12.1. Thermodynamic properties

If we define m = 2πLζ/S in terms of the fugacity ζ and the area per lattice site S (a local property of the surface), we
have

lnΞ (2) = tr ln[1 + m/D−1
]. (12.6)

The eigenvalues of /D are [59] ±in/a where n is any positive integer, with multiplicity 2n. Thus the pressure is given by

βp =
lnΞ (2)
4πa2

=
1

8πa2
tr ln[1 − m2 /D−2

] =
1

2πa2

∞∑
n=1

n ln
[
1 +

m2a2

n2

]
, (12.7)

and the densities are

ρ+ + ρ− = m
∂

∂m
(βp) =

m2

4πa2
tr

1

m2 − /D2 =
m2

π

∞∑
n=1

n
m2a2 + n2 . (12.8)

These pressure and densities are divergent quantities, unless they are regularized by a short distance cutoff, as in the
planar case. In the limit a → ∞, setting k = n/a, one retrieves the non-regularized planar results.

12.2. Determination of Green’s function G

Eq. (11.22) now becomes

(/D + m)G(p, p′) = e−2ω1δ(p − p′), (12.9)

which in terms of

G̃(p, p′) = eω/2G(p, p′)eω
′/2, (12.10)

can be rewritten as

(/∂ + meω )̃G(p, p′) = 1δ(p − p′). (12.11)

This equation has a remarkably simple interpretation. G̃(p, p′) is the Green function of the planar problem with a position
dependent fugacity meω = m/[1 + (r/2a)2]. This equation correctly reduces to the flat analogue (11.22) in the a → ∞

limit. Moreover, it admits solutions in term of some hypergeometric functions [39].
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13. The pseudosphere

The pseudosphere has already been discussed in Section 9.
We then observe that the curved system can be mapped onto a flat system in the Poincaré disk. The Boltzmann factor

gain a multiplicative contribution [1− (ri/2a)2] for each particle and in the computation of the partition function the area
element dSi = [1 − (ri/2a)2]−2 dri. Thus, the original system with a constant fugacity ζ maps onto a flat system with a
position dependent fugacity ζ [1 − (ri/2a)2]−1.

The Dirac operator on the pseudosphere is then,

/D =

(
1 −

r2

4a2

)3/2

/∂

(
1 −

r2

4a2

)−1/2

. (13.1)

13.1. Determination of Green’s function G

Eq. (12.10) now becomes,

G̃(z1, z2) =

(
1 −

r21
4a2

)−1/2

G(z1, z2)
(
1 −

r22
4a2

)−1/2

, (13.2)

and Eq. (12.11) becomes,[
/∂ +

m
1 − (r/2a)2

]
G̃(z, z ′) = 1δ(z − z ′). (13.3)

where δ is the flat Dirac delta.
Thus G is the Green function of /D+m on the pseudosphere. The solution of these coupled partial differential equations

can be found in terms of hypergeometric functions [38]. Again the flat limit results by taking a → ∞ at a fixed value of
m.

13.2. Thermodynamic properties

If we define m = 4πaζ/S in terms of the fugacity ζ and the area per lattice site S (a local property of the surface), we
have,

Ξ (2) = det[1 + m/D−1
]. (13.4)

Then the equation of state can be obtained integrating n = m∂(βp)/∂m where n = 2ρ+. The one-body density ρ+ can
be obtained from Eq. (11.11) where R = Gm. However, the integration cannot be performed in terms of known functions
for arbitrary m.

14. The Flamm paraboloid

Flamm’s paraboloid has already been discussed in Section 10.

14.1. Half surface with an insulating horizon

When the TCP lives in the half surface with an insulating horizon the Coulomb potential is given by Eq. (10.30). We
will use ui = sieiϕi and vj = sjeiϕj to denote the complex coordinates of the positively and negatively charged particles
respectively, where, according to (10.14), we set s = (

√
r+

√
r − 2M)2/2M > 1. Note that the following small M behaviors

holds: s = 2r/M − 2 − M/2r + O(M2) and
√
g = rM/2 + O(M2).

The Boltzmann factor at Γ = βe2 = 2 now becomes(
2L
M

)2N
⏐⏐⏐⏐⏐det

(
1

ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (14.1)

where L is a length scale.
We can then repeat the analysis of Eqs. (11.1)–(11.20) noticing that now δ(2)(z1; z2) = (

√
g)−1δ(s − s0)δ(ϕ − ϕ0) is the

Dirac delta function on the curved surface and δ(s − s0)δ(ϕ − ϕ0)/s = δ(z − z0) is the flat Dirac delta. Which gives the
following,

m±(z) = (2πLζ±
√
g/sS)(2/M)2, (14.2)

rescaled position dependent fugacities which tends to m̃± = 2πLζ±/S, the ones of the flat system, in the M → 0 limit.
Here S is a local property of the surface independent of its curvature. Moreover Eqs. (11.4) and (11.9) read

⟨z|Mhs|z ′
⟩ =

2L
M

(σx∂x + σy∂y) ln|z − z ′
| , (14.3)
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Ohs =
2
M

(σx∂x + σy∂y) =
2
M
/∂ . (14.4)

14.2. Determination of Green’s function R

Upon defining R = Gm̃, G satisfies the equation

[O + m(z1)]G(z1, z2) = 1(4/M2)δ(z1; z2) . (14.5)

which in the flat limit M → 0 reduces to Eq. (11.22). Unfortunately this equation does not admit an analytical solution
for G. By combining the components of this equation one obtains decoupled equations for G++ and G−− as follows{

m+(z1) + A†
[m−(z1)]−1A

}
G++(z1, z2) =

4
M2 δ(s1, ϕ1; s2, ϕ2) , (14.6){

m−(z1) + A[m+(z1)]−1A†}G−−(z1, z2) =
4
M2 δ(s1, ϕ1; s2, ϕ2) , (14.7)

while

G−+(z1, z2) = − [m−(z1)]−1 AG++(z1, z2) , (14.8)
G+−(z1, z2) = + [m+(z1)]−1 A†G−−(z1, z2) , (14.9)

Then Eq. (14.6) can be rewritten in Cartesian coordinates as{
m+(z1)m−(z1) −

(
2
M

)2 [
(∂2x1 + ∂2y1 ) −

4(−x1 + iy1)
s21(1 + s1)

(∂x1 + i∂y1 )
]}

G++(z1, z2) =(
2
M

)4 m̃−

√
g1

s21
δ(s1 − s2)δ(ϕ1 − ϕ2) =(

2
M

)4 m̃−

√
g1√

x21 + y21
δ(x1 − x2)δ(y1 − y2) , (14.10)

where s =

√
x2 + y2. From the expression of the gradient in polar coordinates follows⎧⎪⎪⎨⎪⎪⎩

∂x = cosϕ∂s −
sinϕ
s
∂ϕ ,

∂y = sinϕ∂s +
cosϕ
s
∂ϕ .

(14.11)

Which allows us to rewrite Eq. (14.10) in polar coordinates as[
m̃+m̃−

(
1 +

1
s1

)8

−

(
2
M

)2 ( 1
s1
∂s1 (s1∂s1 ) +

1
s21
∂2ϕ1+

4
s1(1 + s1)

∂s1 +
4i

s21(1 + s1)
∂ϕ1

)]
G++(z1, z2) =(

2
M

)4 m̃−

√
g1

s21
δ(s1 − s2)δ(ϕ1 − ϕ2) . (14.12)

From this equation we immediately see that G++(z1, z2) cannot be real. Notice that in the flat limit M → 0 we have
s ∼ 2r/M and Eq. (14.12) reduces to[

m̃+m̃− −
1
r1
∂r1 (r1∂r1 ) −

1
r21
∂2ϕ1

]
G++(z1, z2) =

m̃−

r1
δ(r1 − r2)δ(ϕ1 − ϕ2) . (14.13)

which, when m̃+ = m̃− = m̃, has the following well known solution [32,33]

G++(z1, z2) =
m̃
2π

K0(m̃|r1 − r2|) , (14.14)
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where K0 is a modified Bessel function.
Let us from now on restrict to the case of equal fugacities of the two species. Then ζ− = ζ+ = ζ with

m̃ =
2πL
S
ζ =

2πLeβµ

Λ2 =

(
2πL

me2

4π h̄2

)
e2µ/e

2
, (14.15)

where h̄ is Planck’s constant, m is the mass of the particles, and µ the chemical potential. So m̃ has the dimensions of an
inverse length. From the symmetry of the problem we can say that G++ = G++(s1, s2;ϕ1 − ϕ2). We can then express the
Green function as the following Fourier series expansion

G++(s1, s2;ϕ) =
1
2π

∞∑
k=−∞

g++(s1, s2; k)eikϕ . (14.16)

Then, using the expansion of the Dirac delta function,
∑

k e
ikϕ

= 2πδ(ϕ), we find that g++, a continuous real function
symmetric under exchange of s1 and s2, has to satisfy the following equation[

Q0 (k, s1)+ Q1 (s1) ∂s1 + Q2 (s1) ∂2s1
]
g++ (s1, s2; k) =(

2
M

)2

m̃s31(1 + s1)5δ (s1 − s2) , (14.17)

where

Q0 (k, s) = m̃2 (1 + s)9 +

(
2
M

)2

ks6 (4 + k (1 + s)) ,

Q1 (s) = −

(
2
M

)2

s7 (5 + s) ,

Q2 (s) = −

(
2
M

)2

s8 (1 + s) .

And the coefficients Qi are polynomials of up to degree 9.

14.3. Method of solution

We start from the homogeneous form of Eq. (14.17). We note that, for a given k, the two linearly independent
solutions fα(s; k) and fβ (s; k) of this linear homogeneous second order ordinary differential equation are not available
in the mathematical literature to the best of our knowledge. Assuming we knew those solutions we would then find the
Green function, g++(s1, s2; k), writing [60]

f (t1, t2; k) = ckfα(s<; k)fβ (s>; k) , (14.18)

where s< = min(s1, s2), s> = max(s1, s2), and fβ has the correct behavior at large s. Then we determine ck by imposing
the kink in f due to the Dirac delta function at s1 = s2 as follows

∂s1 f (s1, s2; k)|s1=s2+ϵ−∂s1 f (s1, s2; k)|s1=s2−ϵ= −m̃
(1 + s2)4

s52
, (14.19)

where ϵ is small and positive.
The Green function, symmetric under exchange of s1 and s2, is reconstructed as follows

G++(z1, z2) = G++(s1, s2;ϕ) =
1
2π

∞∑
k=−∞

ckfα(s<; k)fβ (s>; k)eikϕ (14.20)

14.4. Whole surface

On the whole surface, using Eq. (10.27) with b0 = − ln(L0/L), we can now write the Boltzmann factor at a coupling
constant Γ = βe2 = 2 as follows,⏐⏐⏐⏐⏐det

(
L
L0

√
|ujvj|

ui − vj

)
(i,j)∈{1,...,N}2

⏐⏐⏐⏐⏐
2

, (14.21)

where L0 is another length scale.
The grand partition function will then be,

Ξ (2) = det
[
1 + K−1

ws

]
, (14.22)
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where now Eqs. (11.4) and the ones following read,

⟨z|Mws|z ′
⟩ =

L
L0

(σx∂x + σy∂y) ln|z − z ′
| , (14.23)

K−1
ws = λwsMws , (14.24)

λws = ζ+|z|
1 + σz

2
+ ζ−|z|

1 − σz

2
, (14.25)

Kws = M−1
wsλ

−1
ws , (14.26)

λ−1
ws =

1
ζ+|z|

1 + σz

2
+

1
ζ−|z|

1 − σz

2
. (14.27)

Introducing position dependent fugacities

m±(z) =
2π (L/L0)ζ±

√
g

Ss
= m̃±

√
g
s
, (14.28)

where now m̃±/L0 → m̃±, we can rewrite

Kws =
σx + iσy

2
a− +

σx − iσy

2
a+ , (14.29)

with the operators

a− = −
z

m−(z)|z|3
+

1
m−(z)|z|

(∂x − i∂y) , (14.30)

a+ = −
z

m+(z)|z|3
+

1
m+(z)|z|

(∂x + i∂y) . (14.31)

Then the equation for the Green functions are

(1 − a−a+)R++(z1, z2) = δ(2)(z1; z2) , (14.32)
(1 − a+a−)R−−(z1, z2) = δ(2)(z1; z2) , (14.33)
R+− = −a−R−− , (14.34)
R−+ = −a+R++ . (14.35)

The equation for R++ in the symmetric mixture case is[
m2(z1) −

2
s41

+
2∂s1
s31

−
∂2s1

s21
−

−i∂ϕ1 + ∂2ϕ1

s41

]
R++(z1, z2) =

m2(z1)
√
g1

δ(s1 − s2)δ(ϕ1 − ϕ2) =
m̃2√g1

s21
δ(s1 − s2)δ(ϕ1 − ϕ2) , (14.36)

From this equation we see that R++(z1, z2) will now be real.
By expanding Eq. (14.36) in a Fourier series in the azimuthal angle we now find[

Q0 (k, s1)+ Q1(s1)∂s1 + Q2 (s1) ∂2s1
]
g++ (s1, s2; k) =(

M
2

)2

m̃s31(1 + s1)4δ (s1 − s2) , (14.37)

where

Q0 (k, s) =

(
M
2

)4

m̃2 (1 + s)8 + s4(k2 − k − 2) ,

Q1(s) = 2s5 ,
Q2 (s) = −s6 .

And the coefficients Qi are now polynomials of up to degree 8.
In the flat limit we find, for G++ = R++/m̃, the following equation[

m̃2
−

2
r41

+
2∂r1
r31

−
∂2r1

r21
−

−i∂ϕ1 + ∂2ϕ1

r41

]
G++(z1, z2) =

m̃
r1
δ(r1 − r2)δ(ϕ1 − ϕ2) . (14.38)
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We then see that we now do not recover the TCP in the plane [32,33]. This has to be expected because in the flat limit,
Flamm’s paraboloid reduces to two planes connected by the origin.

After the Fourier expansion of Eq. (14.16) we now get

[P0(k, r1) + P1(r1)∂r1 + P2(r1)∂2r1 ]g++(r1, r2; k) = m̃δ(r1 − r2) , (14.39)

where

P0(k, r) = m̃2r +
k2 − k − 2

r3
,

P1(r) =
2
r2
,

P2(r) = −
1
r
.

The homogeneous form of this equation admits the following two linearly independent solutions

f1(r; −1) = [D−1/2(i
√
2m̃r) + D−1/2(i

√
2m̃r)]/2

f2(r; −1) = D−1/2(
√
2m̃r)

}
k = −1 ,

f1(r; 2) = [D−1/2((−2)1/4
√
m̃r)+

D−1/2((−2)1/4
√
m̃r)]/2

f2(r; 2) = [D−1/2(i(−2)1/4
√
m̃r)+

D−1/2(i(−2)1/4
√
m̃r)]/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ k = 2 ,

f1(t; k) =
√
rI

−

√
7−4k+4k2/4

(m̃r2/2)

f2(t; k) =
√
rI√

7−4k+4k2/4
(m̃r2/2)

}
else ,

where Dν(x) are parabolic cylinder functions and Iµ(x) are the modified Bessel functions of the first kind which diverge
as ex/

√
2πx for large x ≫ |µ2

− 1/4|.
Again we write g++(r1, r2; k) = ckfα(r<; k)fβ (r>; k) and impose the kink condition,

∂r1g++(r1, r2; k)|r1=r2+ϵ−∂r1g++(r1, r2; k)|r1=r2−ϵ= −m̃r2 , (14.40)

to find the ck. The Green function is then reconstructed using Eq. (14.20). But we immediately see that curiously |G++|

diverges. Even the structure of the plasma is not well defined in this situation. The collapse of opposite charges at the
horizon shrinking to the origin makes the structure of the plasma physically meaningless.

Part IV

Conclusions

We presented a review of the analytical exact solutions of the one-component and two-component plasma at the
special value of the coupling constant Γ = 2 in various Riemannian surfaces. Starting from the pioneering work [12] of
Bernard Jancovici in 1981 showing the analytic exact solution for the Jellium on the plane, many other curved surfaces with
a conformal metric has been considered. Namely: the cylinder, the sphere, the pseudosphere, and the Flamm paraboloid.
From a physical point of view we can see the curvature of the surface as an additional external field acting on the system
of charges moving in the corresponding flat space [42]. Even if this point of view does not take into account the fact
that the Coulomb pair potential always reflect its harmonicity inside the given surface. For this reason we did not try a
unifying treatment but rather a detailed presentation of each case individually as characteristic of the diverse scenarios
which stem out of the various surfaces so far studied in the literature.

In our review we put light on the description of the surface, of the Coulomb potential (and the background potential
for the OCP) in the surface, and of the exact solution for the partition function and for the correlation functions. The
surfaces considered exhaust to the best of our knowledge all the cases considered in the literature until now. We hope
that the review could be a valuable instrument for the reader who needs to have a broad overview on this fascinating
exactly solvable fluid model giving the opportunity of finding in one place a self contained summary of various results
appeared in the literature at different times and in different journals. We did our best to fill in all the conceptual gaps
between the lines so that the reader can follow the various derivations without needing to refer to the original papers
which would require an interruption of the reading. This choice required a certain degree of detail which we thought
necessary in place of a more conversational presentation.

We decided to leave out the results of taking the thermodynamic limit of the various finite OCP expressions. If the
reader desires he can always go back to the original references to find this lacking piece of information. It is well known
that Coulomb systems have to exhibit critical finite-size effects [15]. The last surface considered, Flamm’s paraboloid,
is the only surface of non-constant curvature considered. Nonetheless the one-body density of the plasma is a constant
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even in this surface in the thermodynamic limit [42]. On the Flamm paraboloid two different thermodynamic limits can be
considered [26]: the one where the radius R of the disk confining the plasma is allowed to become very big while keeping
the surface hole radius M constant, and the one where both R → ∞ and M → ∞ with the ratio R/M kept constant (fixed
shape limit). When the horizon shrinks to a point the upper half surface reduces to a plane and one recovers the well
known result valid for the one-component plasma on the plane. In the same limit the whole surface reduces to two flat
planes connected by a hole at the origin. When only one-half of the surface is occupied by the plasma the density shows
a peak in the neighborhoods of each boundary, tends to a finite value at the boundary and to the background density far
from it, in the bulk. In the thermodynamic limit at fixed shape, we find that the density profile is the same as in flat space
near a hard wall. In the grounded horizon case the density reaches the background density far from the boundaries. In this
case, the fugacity and the background density control the density profile close to the metallic boundary (horizon). In the
bulk and close to the outer hard wall boundary, the density profile is independent of the fugacity. In the thermodynamic
limit at fixed shape, the density profile is the same as for a flat space.

The importance of having an exactly soluble many-body systems at least at one special temperature relies in the
fact that it can serve as a guide for numerical experiments or for approximate solutions of the same system at other
temperatures or for different more realistic systems. For example the 2D OCP thermodynamics and structure can now be
efficiently expanded in Jack polynomials for even values of the coupling constant Γ [20,61,62]. And the TCP can be solved
in the whole stability range of temperatures [63].

The original 1981 work of Jancovici [12] has been important for the understanding of the fractional quantum Hall
effect in the Laughlin development [64] of a Jastrow correlation factor of the variational wave function of the Landau
problem [65] for an Hall system in its ground state. We expect the results on the curved surface to be relevant in the
developments towards a general relativistic statistical mechanics [66] which is still missing. The main difficulty being the
lack of a canonical Hamiltonian in a generally covariant theory where the dynamics is only given relationally rather than
in terms of evolution in physical time. And without a Hamiltonian it is difficult to even start doing statistical physics [67].

The quantum 2D OCP does not admit an analytic exact solution but it has been studied through a computer experiment
either in its ground state [68,69] or at finite temperature [70–73].

Appendix A. Electrostatic potential of the background for the OCP in the pseudosphere

In this appendix we give the expression for the electrostatic potential of the background,

vb(q1) =

∫
ρb G(d10) dS0 = −nbe

∫
Ω

G(d10) dS0. (A.1)

The electric potential of the background satisfies Eq. (3.1). Using the coordinates (r, ϕ) we have,

v′′

b (r) +
1
r
v′

b(r) = αb
4a2

(1 − r2)2
, (A.2)

where αb = −2πρb and we denote with a prime a derivative with respect to r . This differential equation admits the
following solution for v′

b,

v′

b(r) = e−
∫ r
r0

1
r′

dr ′
[
v′

b(r0) + 4a2
∫ r

r0

αb

(1 − r ′2)2
e
∫ r′
r0

1
s ds dr ′

]
=

r0v′

b(r0)
r

+
4a2

r

∫ r

r0

αb
r ′

(1 − r ′2)2
dr ′. (A.3)

Since the potential has to be chosen continuous at r0 we set v′

b(r0) = 2a2αbr0/(1 − r20 ) to find,

v′

b(r) = 2a2αb

⎧⎪⎪⎨⎪⎪⎩
r

1 − r2
r ≤ r0

r20
1 − r20

1
r

r > r0
,

where r0 = tanh(τ0/2). For the potential inside Ωaτ0 we then have,

vb(r) = −αba2 ln(1 − r2) + constant, (A.4)

or using the coordinates (τ , ϕ),

vb(τ ) = −αba2 ln[1 − tanh2(τ/2)] + constant. (A.5)

We need to adjust the additive constant in such a way that this potential at τ = τ0 has the correct value corresponding
to the total background charge. We then have,

constant = vb(0) = −en
∫
Ωaτ0

G(τa) dS
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= 2πa2qn
∫ τ0

0
ln[tanh(τ/2)] sinh τ dτ

= αba2[ln[1 − tanh2(τ0/2)] + sinh2(τ0/2) ln[tanh2(τ0/2)]]. (A.6)

We reach then the following expression for the potential inside Ωaτ0 ,

vb(τ ) = αba2
{
ln
[
1 − tanh2(τ0/2)
1 − tanh2(τ/2)

]
+ sinh2(τ0/2) ln[tanh2(τ0/2)]

}
. (A.7)

The self energy of the background is,

V 0
N =

1
2

∫
S
ρbvb dS (A.8)

=
1
2
ρbαba22πa2

{∫ τ0

0
ln
[
1 − tanh2(τ0/2)
1 − tanh2(τ/2)

]
sinh τ dτ+

sinh2(τ0/2) ln[tanh2(τ0/2)]
∫ τ0

0
sinh τ dτ

}
= −2a4(πρb)2{1 − cosh τ0 + 4 ln[cosh(τ0/2)] + 2 sinh4(τ0/2) ln[tanh2(τ0/2)]}.

Notice that if we drop the last term on the right hand side of this equation, i.e. if we adjust the additive constant so that
the potential of the background vanishes on the boundary ∂Ωaτ0 , then in the limit a → ∞ we recover the self energy of
the flat system N2e2/8.

Appendix B. The flat limit for the OCP in the pseudosphere

In this Appendix we study the flat limit a → ∞ of the expressions found for the density in Section 9.6. We shall
study the limit a → ∞ for a finite system and then take the thermodynamic limit. Since for a large system on the
pseudosphere boundary effects are of the same order as bulk effects it is not clear a priori whether computing these two
limits in different order would give the same results. In Ref. [24] we show that it does.

For a finite disk of radius d = aτ0, we have in the flat limit a → ∞, d ∼ r0. In Eq. (10.101), in the limit a → ∞, the
term eC given by (9.46) becomes

eC ∼

(
r20
4a2

)−Nb

eNb (B.1)

where Nb = πnbr20 is the number of particles in the background in the flat limit. Since for large a, t0 = r20/4a
2 is small,

the incomplete beta function in Eq. (10.101) is

Bt0 (ℓ+ 1, α) =

∫ t0

0
e(α−1) ln(1−t) tℓ dt ∼

∫ t0

0
e−(α−1)t tℓ dt ∼

γ (ℓ+ 1,Nb)
αℓ+1 (B.2)

Expanding (1 − (r2/4a2))4πnba
2

∼ exp(−πnbr2) in Eq. (10.101) we finally find the density as a function of the distance r
from the center

n(1)(r) = nbe−πnbr2
∞∑
ℓ=0

(πnbr2)ℓ

αℓ−NbNNb
b e−Nb (nb/ζ ) + γ (ℓ+ 1,Nb)

(B.3)

When α → ∞ the terms for ℓ > Nb in the sum vanish because αℓ−Nb → ∞. Then

n(1)(r) = nbe−πnbr2
E(Nb)−1∑
ℓ=0

(πnbr2)ℓ

γ (ℓ+ 1,Nb)
+∆n(1)(r) (B.4)

The first term is the density for a flat OCP in the canonical ensemble with a background with E(Nb) elementary charges
(E(Nb) is the integer part of Nb). The second term is a correction due to the inequivalence of the ensembles for finite
systems and it depends on whether Nb is an integer or not. If Nb is not an integer

∆n(1)(r) = nb
(πnbr2)E(Nb)e−πnbr2

γ (E(Nb) + 1,Nb)
(B.5)

and if Nb is an integer

∆n(1)(r) = nb
(πnbr2)Nbe−πnbr2

NNb
b e−Nb (nb/ζ ) + γ (Nb + 1,Nb)

(B.6)
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In any case in the thermodynamic limit r0 → ∞, Nb → ∞, this term ∆n(1)(r) vanishes giving the known results for the
OCP in a flat space in the canonical ensemble [12,55]. Integrating the profile density (B.4) one finds the average number
of particles. For a finite system it is interesting to notice that the average total number of particles N is

N = E(Nb) + 1 (B.7)

for Nb not an integer and

N = Nb +
1

1 +
N
Nb
b e−Nbnb

ζγ (Nb+1,Nb)

(B.8)

for Nb an integer. In both cases the departure from the neutral case N = Nb is at most of one elementary charge as it was
noticed before [74,75].

Appendix C. Green’s function of Laplace equation in Flamm’s paraboloid

In this appendix, we illustrate the calculation of the Green function, for the various situations considered, using the
original system of coordinates (r, ϕ).

C.1. Laplace equation

We first find a solution v(q), not circularly symmetric, to Laplace equation

∆v = 0 , (C.1)

through the separation of variables technique. We then write

v(r, ϕ) = R(r)φ(ϕ) , (C.2)

so that Laplace equation splits into the two ordinary differential equations

φ′′
= −k2φ , (C.3)

(r2 − 2Mr)R′′
+ (r − M)R′

= k2R . (C.4)

Taking care of the boundary condition φ(ϕ + 2π ) = φ(ϕ) we find that the first equation admits solution only when k is
an integer. The solutions being

φn = C+einϕ + C−e−inϕ n = 0, 1, 2, 3, . . . (C.5)

The solutions of the second equation are

Rn =

{
C1 cosh(na) + C2 sinh(na) r > 2M
C1 cos(na) + C2 sin(na) r < 2M

(C.6)

where

a =

⎧⎪⎪⎨⎪⎪⎩
2 arctan

√
r

2M − r
r < 2M

2 ln
√
r +

√
r − 2M

√
2M

r > 2M
(C.7)

Here C−, C+, C1, and C2 are the integration constants.
Then the general solution is real for C+ = C− = C0

v(r, ϕ) =

∞∑
n=0

Rn(r)φn(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
C0

(
C1 + C2

sin a
cosϕ − cos a

)
r < 2M

C0

(
C1 + C2

sinh a
cosϕ − cosh a

)
r > 2M

(C.8)

If we require the Coulomb potential to go to zero at r = ∞ we must choose C1 − C2 = 0 so that (for C0 = 1)

v(r, ϕ) =

⎧⎪⎪⎨⎪⎪⎩
1 +

sin a
cosϕ − cos a

r < 2M

1 +
sinh a

cosϕ − cosh a
r > 2M

(C.9)

Moreover v(2M, ϕ) = 1.
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C.2. Green’s function of Laplace equation

We now want to find the Coulomb potential generated at q = (r, ϕ) by a charge at q0 = (r0, ϕ0) with r0 > 2M . We
then have to solve the Poisson equation

∆G(r, ϕ; r0, ϕ0) = −2πδ(r − r0)δ(ϕ − ϕ0)/
√
g , (C.10)

where g = det(gµν) = r2/(1 − 2M/r). To this end we expand the Green function G and the second delta function in a
Fourier series as follows

G(r, ϕ; r0, ϕ0) =

∞∑
n=−∞

ein(ϕ−ϕ0)gn(r, r0) , (C.11)

δ(ϕ − ϕ0) =
1
2π

∞∑
n=−∞

ein(ϕ−ϕ0) , (C.12)

to get an ordinary differential equation for gn[(
1 −

2M
r

)
∂2

∂r2
+

(
1
r

−
M
r2

)
∂

∂r
−

n2

r2

]
gn(r, r0) = −δ(r − r0)/

√
g . (C.13)

To solve this equation we first solve the homogeneous one for r < r0: gn,−(r, r0) and r > r0: gn,+(r, r0). This equation was
already solved in (C.6) for n ̸= 0

gn,± = An,±(
√
r +

√
r − 2M)2n + Bn,±(

√
r +

√
r − 2M)−2n (C.14)

and for n = 0 one finds

g0,± = A0,± + B0,± ln(
√
r +

√
r − 2M) . (C.15)

The form of the solution immediately suggest that it is more convenient to work with the variable x = (
√
r +√

r − 2M)2/(2M). For this reason, we introduced this new system of coordinates (x, ϕ) which is used in the main text.
We then impose the following boundary conditions: (i) the solution at r = r0 should be continuous, (ii) the first

derivative at r = r0 should have a jump due to the delta function, (iii) at r = 2M the solution should tend to the solution
of the flat system (M → 0), and (iv) the solution should vanish at r = ∞, namely,

gn,−(r0, r0) = gn,+(r0, r0) , (C.16)

g ′

n,−(r0, r0) = g ′

n,+(r0, r0) +
1

√
r0(r0 − 2M)

, (C.17)

Bn,− = 0 for n > 0 , An,− = 0 for n < 0 , (C.18)

An,+ = 0 for n > 0 , Bn,+ = 0 for n < 0 . (C.19)

Performing the Fourier series of Eq. (C.11) then leads to the following result,

Ghs(r, ϕ; r0, ϕ0) = − ln |z − z0| , (C.20)

where the complex coordinates z = (
√
r +

√
r − 2M)2eiϕ and z0 = (

√
r0 +

√
r0 − 2M)2eiϕ0 have been introduced. This

solution reduces to the correct Coulomb green function on a plane as M → 0 and it is the Coulomb potential on one
universe of the surface S.

In order to find the Coulomb potential on the whole surface we can then start from the definition (10.3) and go back
to the s = (

√
r +

√
r − 2M)2 variable. If we do this we find as solutions,

s± = 2M(
√
u2 + 1 ± u)2 , (C.21)

So that for the Coulomb potential one can choose one of the two definitions depending on which charge is in the upper
or lower universe. Neglecting an additive constant we could then set

Gws(u, ϕ; u0, ϕ0) = − ln|z − z0| , (C.22)

where z = (
√
u2 + 1 + u)2eiϕ and z0 = (

√
u2
0 + 1 + u0)2eiϕ0 . Actually this potential as it stands does not have the correct

symmetry properties under the exchange of the charges from one universe to the other. It can easily be shown that if
z is a point in the upper universe then 1/z is its symmetric in the lower universe. Then we should expect that if we
take z0 = 1 (in the horizon) the potential created at z should be the same as the one created at 1/z, by symmetry. More
generally, one should have Gws(z, z0) = Gws(1/z, 1/z0).

We then need to revise the calculations of the Coulomb potential. We define the Coulomb potential as the solution
of Poisson equation with the boundary condition that the electric field vanishes at infinity (this also happens for a flat
space). However it turns out that with this boundary condition one still have several different solutions, and contrary to
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the flat case, there are some that differ in more than a constant term. One can see this by solving Poisson equation using
the Fourier transform, the constants of integration for the term which does not depend on the angular variable cannot be
determined.

However one can impose some additional conditions. For instance we expect the Coulomb potential to be symmetric
in the exchange of z and z0. The previous solution − ln |z − z0| does satisfy this, but it is not the unique solution with this
property. Additionally, we can impose the symmetry relation Gws(z, z0) = Gws(1/z, 1/z0). Then one finds the solution

Gws(z, z0) = − ln(|z − z0|/
√

|zz0|) . (C.23)

We have not verified if this is the only solution (up to a constant) satisfying this symmetry, but we think so. For the
whole surface we think that we should use this Coulomb potential instead of the original one , which does not treat on
the same foot the upper and lower parts of the surface. However we have noticed that this potential does not reduce to
the flat one when M = 0, but this is normal: if we work with the whole surface the limit M = 0 is not exactly the flat
one, it is two flat planes connected by a hole at the origin, this hole modifies the Coulomb potential.

C.3. The grounded horizon case

Imagine now that the horizon at r = 2M is a perfect conductor. We then start from

gn,± = An,± cosh
[
2n ln(

√
r +

√
r − 2M)

]
+ Bn,± sinh

[
2n ln(

√
r +

√
r − 2M)

]
. (C.24)

We fix the four integration constants, for each n, requiring that: (i) the solution at r = r0 should be continuous, (ii) the
first derivative at r = r0 should have a jump due to the delta function, (iii) at r = 2M the solution should vanish, and (iv)
the solution has the correct behavior at r = ∞, namely,

gn,−(r0, r0) = gn,+(r0, r0) , (C.25)

g ′

n,−(r0, r0) = g ′

n,+(r0, r0) +
1

√
r0(r0 − 2M)

, (C.26)

gn,−(2M, r0) = 0 , (C.27)

An,+ = Bn,+ for n ≥ 0 , An,+ = −Bn,+ for n < 0 . (C.28)

Performing the Fourier series of Eq. (C.11) then leads to the following result for r > r0

G(r, ϕ; r0, ϕ0) = − ln

√
1 + c2 − 2c cos(ϕ − ϕ0)
1 + b2 − 2b cos(ϕ − ϕ0)

+ 2 ln
√
r0 +

√
r0 − 2M

√
2M

, (C.29)

b =

( √
r +

√
r − 2M

√
r0 +

√
r0 − 2M

)2

, (C.30)

c =

(
(
√
r +

√
r − 2M)(

√
r0 +

√
r0 − 2M)

2M

)2

, (C.31)

and the solution for r < r0 is obtained by merely exchanging r with r0.
In terms of the complex numbers z and z0 this can be rewritten as follows

Ggh(r, ϕ; r0, ϕ0) = − ln
⏐⏐⏐⏐ (z − z0)/2M
1 − zz̄0/4M2

⏐⏐⏐⏐ (C.32)

where the bar over a complex number indicates its complex conjugate. We will call this the grounded horizon green
function. Notice how its shape is the same of the Coulomb potential on the pseudosphere [24] M playing the role of the
complex radius. This green function could have been found from the Coulomb one (C.20) by using the images method
from electrostatics.

Appendix D. The geodesic distance on the Flamm paraboloid

The geodesics are determined by the following equation

r̈ + (Γrrr ṙ2 + Γrϕϕ ϕ̇
2)/grr = 0 , (D.1)

ϕ̈ + 2Γϕϕr ϕ̇ṙ/gϕϕ = 0 , (D.2)

where the dot stands for a total differentiation with respect to time and the Christoffel symbols are as follows

Γrrr = grr,r/2 , (D.3)

Γϕϕr = −Γrϕϕ = gϕϕ,r/2 . (D.4)
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Here the comma means partial differentiation as usual.
The geodesics equation (D.1)–(D.2) is then

r̈ −

[
M

(r − 2M)2
ṙ2 + rϕ̇2

](
1 −

2M
r

)
= 0 , (D.5)

ϕ̈ +
2
r
ϕ̇ṙ = 0 , (D.6)

The geodesic distance between two points on the surface is

d(q1, q2) =

∫ t2

t1

ds
dt

dt =

∫ r2

r1

y dr =

∫ r2

r1

√
1

1 −
2M
r

+ r2x2 dr

where x(r) = dϕ/dr and y(r) = ds/dr .
Using ϕ̇ = xṙ in Eqs. (D.5) and (D.6) we find

x′
=

(
2
r

+
M

r2 − 2Mr

)
x + r

(
1 −

2M
r

)
x3 , (D.7)

where the prime stands for differentiation with respect to r .
The solution for x(r) and y(r) are as follows

x(r) = ±

√
15r3(2M − r)

r4(30M2 − 24Mr + 5r2) − C
, (D.8)

y(r) =

√
r2x2 +

r
r − 2M

, (D.9)

with C the integration constant, so that,

d(q, q0) =

∫ r

r0

y(r ′) dr ′ , (D.10)

ϕ − ϕ0 =

∫ r

r0

x(r ′) dr ′ . (D.11)
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we show that they are all form invariant respect to the addition of the short-range term. We
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of ionic-liquids at criticality.

933



ORIGINAL PAPER

Form invariance of the moment sum-rules for jellium with the addition
of short-range terms in the pair-potential

R Fantoni*
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1. Introduction

A prototypical model of solid state physics describing free

electrons in metallic elements is the one-component Jel-

lium: a statistical mechanics one-component fluid of point-

wise charged particles made thermodynamically stable by

the addition of a uniform inert neutralizing background.

This fluid has been studied in great details in history both in

its classical and in its quantum versions. Here we will only

deal with the classical version of the model. In particular

several plausible exact relationships between the n-point

correlations functions, the so called sum-rules, has been

determined over the years [1]. Of particular interest, due to

the direct link with scattering experiments on the fluid, are

the even moments of the structure factor, the so called

moment sum-rules, which give the coefficients of the even

powers of the wavenumber in a large wavelength expan-

sion of the structure factor. The zeroth-moment sum-rule,

or charge sum-rule, is commonly known as a consequence

of the internal screening properties of the Coulomb system

and has been known since the work of Debye and Hückel

[2]. The second-moment or Stillinger-Lovett [3] sum-rule

is due to the external screening and has been proved

rigorously for the first time by Martin et al. [4]. The fourth-

moment sum-rule has been proved rigorously for the first

time by Vieillefosse [5] after it had been established earlier

with various heuristic arguments [6–8].

A mixture of charged particles can have species with

opposite charges. In these cases in addition to the electrical

neutrality of the system with the introduction of a neu-

tralizing background it is necessary to introduce a hard-

core on the particles, in order to assure thermodynamical

stability. It is then important to understand how the addi-

tion of a short-range regularizing term (with compact

support or decaying exponentially fast [9]) to the pure

Coulomb pair-potential influences the various sum-rules.

In this work we perform this study on the one-compo-

nent Jellium extending Vieillefosse [5] work to a pair-po-

tential where we add to the Coulomb term a generic short-

range term with either a finite support or exponentially

decaying at large distances. We work in three spatial

dimensions leaving the extension to other dimensions, to a

mixture, and to more general short-range potential regu-

larizations to future works. We start from the constituent

Born-Green-Yvon hierarchic equations [10] for the n-point

correlation functions and with certain assumptions on the

decay of the n-particle Ursell functions as subgroups of

particles are infinitely separated (the exponential clustering

hypothesis) we use a series of multipolar sum-rules [1] to

determine the first three even structure factor moments.*Corresponding author, E-mail: riccardo.fantoni@istruzione.it
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We already know that the forms of the first two even

moments are not influenced by the presence of the regu-

larizing short-range term in the pair-potential [1, 4]. We

will find that also the fourth-moment is form invariant.

This work is a step forward in the understanding of the

failure of the second and fourth moment sum-rules recently

observed in the restricted primitive model (RPM) at criti-

cality [11, 12]. In fact, it was only until recently that the

previously unknown form of the fourth moment sum-rule

for the RPM was established using a semi-heuristic argu-

ment [13, 14] claiming form invariance respect to the pure

coulombic case. Our present result gives a rigorous first

principle proof of the form invariance at least in the weak

coupling regime and for the one-component Jellium. This

fact, if confirmed for the two-component plasma, relegates

the failure of the sum-rules at criticality to the disruption,

upon approaching a phase transition, of the exponential

clustering, i.e. the decay to zero of the truncated correla-

tions faster than any inverse power of distance as groups of

particles are separated by an infinite distance. In fact, it has

to be expected that at criticality the correlation functions

develops long-range tails with monotonous or oscillating

inverse power law decay [15].

The work is organized as follows: In Sect. 2 we find

again the zeroth moment sum-rule following the original

derivation of Martin et al. [1], in Sect. 3 we find again the

second moment sum-rule following the original derivation

of Martin et al. [1, 4], in Sect. 4 we derive the fourth

moment sum-rule with a route alternative to the one of

Vieillefosse [5] which explains clearly from the point of

view of the BGY why also this moment is form invariant

upon the addition of a short-range term to the Coulomb

pair-potential, in Sect. 5 we determine the isothermal

compressibility of the system, and Sect. 6 is for the con-

cluding remarks.

2. Derivation of the zeroth moment sum-rule

The second order Born-Green-Yvon (BGY) hierarchy [1]

$r1u2ð1; 2Þ
¼ bF21½u2ð1; 2Þ þ 1�

þ q
Z

dr3 ½1þ u2ð1; 2Þ þ u2ð1; 3Þ þ u2ð2; 3Þ

þ u3ð1; 2; 3Þ�bF31

� q
Z

dr3 ½u2ð1; 2Þ þ 1�bF31

¼ bF21½u2ð1; 2Þ þ 1� þ q
Z

dr3 ½u2ð2; 3Þ

þ u3ð1; 2; 3Þ�bF31

ð1Þ

where b ¼ 1=kBT with kB Boltzmann’s constant and T the

absolute temperature, q is the density of the fluid,

F21 ¼ �$r1vð1; 2Þ, with v(1, 2) the pair-potential that is the
sum of a Coulomb term vcð1; 2Þ ¼ e2=jr2 � r1j and a short-
range term vsrð1; 2Þ with compact support or decaying

exponentially fast [9]. We will also call Fc
21 ¼ �$r1v

cð1; 2Þ
and Fsr

21 ¼ �$r1v
srð1; 2Þ. According to Ref. [9] the Ursell

functions unð1; 2; . . .; nÞ must satisfy exponential clustering

[1], i.e. they should tend to zero (monotonously or oscil-

lating) faster than any inverse power of the distance as the

distance between any group of particles at ðr1; r2; . . .; rnÞ
tends to infinity. The Ursell functions are assumed to

depend only on the shape of the figure formed by the

various points (and not on its space orientation) and they

are symmetrical in any permutation of the particles. The

first assumption is a consequence of the homogeneity and

isotropy of the fluid, the second is a consequence of dis-

tinguishability of the particles. Of course the exponential

clustering assumption is valid for the high temperature

(low density) infinite homogeneous phase of the fluid when

the correlation functions are believed to obey to the BGY

hierarchy. We will generally indicate vectors with a bold-

face letter and absolute values of vectors with a normal

(Roman) version of the same font r ¼ jrj. We use a hat to

denote the unit vector r̂ ¼ r=r.

In the second equality of Eq. (1) we used the fact thatR
dr3 u2ð1; 3ÞF13 ¼ 0 by symmetry. Now we observe that

the left hand side of Eq. (1) tends to zero faster than any

inverse power of x ¼ jxj ¼ jr2 � r1j as x tends to infinity

and the same is true for the first and fourth terms on the

right hand side. So the sum of the second and third terms

on the right hand side must vanish in the same way, in this

limit. Then we require thatZ
dr3sð2; 3ÞF31 ð2Þ

where sð2; 3Þ ¼ qu2ð2; 3Þ þ dð2; 3Þ and d is the Dirac delta

function, tends to zero faster than any power of the distance

x when the latter tends to infinity. Expanding Eq. (2) in

powers of 1 / x in this limit, we deduceZ
dr3 sðyÞylPlðx̂ � ŷÞ ¼ 0; l� 1 ð3Þ

I0 ¼
Z

dr3 sðyÞ ¼ 0 ð4Þ

where y ¼ r3 � r2 and Pl are the Legendre polynomials.

Eq. (4) is the zeroth moment sum-rule also known as the

charge or electroneutrality sum-rule [1]. It is the simpler of

the multipolar sum-rules (3). We immediately see that in

our derivation we did not use the fact that v is purely

Coulombic. It is sufficient that it contains the Coulomb

potential.
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3. Derivation of the second moment sum-rule

Following Ref. [4] we may write the second order BGY

hierarchy as follows

$r2u2ð1; 2Þ
¼ bF12½u2ð1; 2Þ þ 1�þ

q
Z

dr3½1þ u2ð1; 2Þ þ u2ð1; 3Þ þ u2ð2; 3Þ

þ u3ð1; 2; 3Þ�bF32�

q
Z

dr3½u2ð1; 2Þ þ 1�bF32

ð5Þ

where F12 ¼ �$r2vð1; 2Þ, with v(1, 2) the pair-potential,

and the last line in Eq. (6) is for the neutralizing uniform

background. We immediately observe thatR
dr3 u2ð2; 3ÞF23 ¼ 0 by symmetry.

Multiplying by r12 ¼ r1 � r2 and integrating over r1 we

findZ
dr1 r12 � $r2u2ð1; 2Þ

¼
Z

dr1 r12

�
bF12

þ q
Z

dr3fu2ð1; 3Þ þ ½dð1; 3Þ þ dð1; 2Þ�u2ð2; 3Þ=q

þu3ð1; 2; 3ÞgbF32g

¼
Z

dr1 r12

Z
dr3½qu2ð1; 3Þ þ dð1; 3Þ�bF32

�

þ q
Z

dr3 c3ð1j2; 3ÞbF32

�
;

ð6Þ

where sð1; 3Þ ¼ qu2ð1; 3Þ þ dð1; 3Þ and c3ð1j2; 3Þ ¼
u3ð1; 2; 3Þ þ ½dð1; 2Þ þ dð1; 3Þ�u2ð2; 3Þ=q the excess

charge density which does not carry multipoles of any

order (See Proposition 2.2 in Ref. [1]). ThenZ
dr1 r12 � $r2u2ð1; 2Þ

¼
Z

dr1r12

Z
dr3sð1; 3ÞbF32

þ q
Z

dr3bF32

Z
dr1r12c3ð1j2; 3Þ:

ð7Þ

Now we observe that due to the dipole sum-rule [1] the last

line in Eq. (7) must vanish, F ¼ Fsr þ Fc can be split into a

short-range term, Fsr , and a coulombic term, Fc, whereZ
dr1 r12

Z
dr3 sð1; 3ÞbFsr

32

¼
Z

dr23 bF
sr
32

Z
dr13 ðr13 þ r32Þsð1; 3Þ ¼ 0;

ð8Þ

where we used the charge sum-rule and isotropy of the

system. This tells us that the result we will find for the

second moment is form invariant under the addition to the

pair-potential of a generic short-range term. Also, using

$r1 ¼ �$r2 and
R
dr1. . . ¼ �

R
dr2. . ., we findZ

dr1 r12 � $r2u2ð1; 2Þ ¼3

Z
dr1u2ð1; 2Þ ¼ �3=q; ð9Þ

where we also used the charge sum-rule. Putting all

together, we find

� 3

q
¼ 1

2

Z
dr1$r1ðr212Þ

Z
dr3sð1; 3ÞbFc

32

¼� 1

2

Z
dr1$r2ðr212Þ

Z
dr3sð1; 3ÞbFc

32

¼ 1

2

Z
dr1r

2
12

Z
dr3sð1; 3Þb$r2F

c
32

¼ 1

2

Z
dr1r

2
12sð1; 2Þ4pe2b;

ð10Þ

where we used the property that $r2F
c
32 ¼ 4pe2dð3; 2Þ. And

finally we find for the second moment sum-rule

I2 ¼
Z

dr2r
2
12sð1; 2Þ ¼

3

2pqbe2
¼ 6

k2D
; ð11Þ

where kD ¼ k�1
D ¼ ð4pqbe2Þ�1=2

is the Debye-Hückel

screening length.

4. Derivation of the fourth moment sum-rule

Starting from Eq. (6) we multiply by r212r12 and integrate

over r1 to getZ
dr1 r

2
12r12 � $r2u2ð1; 2Þ

¼
Z

dr1 r
2
12r12

�
bF12

þ q
Z

dr3fu2ð1; 3Þ þ ½dð1; 3Þ þ dð1; 2Þ�u2ð2; 3Þ=q

þu3ð1; 2; 3ÞgbF32g

¼
Z

dr1 r
2
12r12

Z
dr3½qu2ð1; 3Þ þ dð1; 3Þ�bF32

�

þq
Z

dr3 c3ð1j2; 3ÞbF32

�

¼
Z

dr1 r
2
12r12

Z
dr3 sð1; 3ÞbF32

þ q
Z

dr3 bF32

Z
dr1 r

2
12r12c3ð1j2; 3Þ:

ð12Þ

Note that splitting again into a short-range term and the

Coulomb one we find for the first term on the right hand

side of Eq. (12)
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Z
dr3 bF

sr
32

Z
dr1 r

2
12r12sð1; 3Þ

¼ �
Z

dr32 bv
srð3; 2Þ

Z
dr12 $r12 ½r212r12sð1; 3Þ�;

¼
Z

dr32 bv
srð3; 2Þ

Z
dS12 r

2
12r12sð1; 3Þ ¼ 0:

ð13Þ

Since sð1; 3Þ ¼ sðjr32 þ r21jÞ decays exponentially fast as

r12 tends to infinity and the surface integral is over a sphere

centered on r12 ¼ 0 and with an infinite radius. The same

holds for the second term on the right hand side of Eq. (12).

This proves that the result we will find is independent

from the addition of a short-range part to the Coulomb pair-

potential.

Now we observe thatZ
dr1 r

2
12r12

Z
dr3 sð1; 3ÞbFc

32

¼ 1

4

Z
dr1 $r1ðr412Þ

Z
dr3 sð1; 3ÞbFc

32

ð14Þ

¼ � 1

4

Z
dr1 $r2ðr412Þ

Z
dr3 sð1; 3ÞbFc

32 ð15Þ

¼ 1

4

Z
dr1 r

4
12

Z
dr3 sð1; 3Þb$r2F

c
32 ð16Þ

¼ 1

4

Z
dr1 r

4
12sð1; 2Þ4pe2b: ð17Þ

And also using integration by partsZ
dr1 r

2
12r12 � $r2u2ð1; 2Þ

¼
Z

dr1 $r12ðr212r12Þu2ð1; 2Þ
ð18Þ

¼ 5

Z
dr1 r

2
12u2ð1; 2Þ ð19Þ

¼ � 15

2pq2be2
; ð20Þ

where in the last equation we used the main result of

previous section for the second moment condition (11).

In this case
R
dr1dr3 bF32r

2
12r12c3ð1j2; 3Þ 6¼ 0 and we

may recognize in such a term the one giving rise to the

isothermal compressibility in Eq. (21).

Putting together Eqs. (12), (13), (14), (18), and (22) we

should reach the following fourth moment result

I4 ¼
Z

dr2 r
4
12s2ð1; 2Þ ¼

15

2p2q2b2e4
v0T
vT

¼ 120

k4D

v0T
vT

; ð21Þ

where 1
vTq

¼ oP
oq

���
T

is the isothermal compressibility and

v0T ¼ b=q the one of the ideal gas. As already stressed this

result is independent from the addition of a short-range

term to the Coulomb pair-potential.

Then we should be able to prove that

1� v0T
vT

¼ q
R
dr3 bFc

32

R
dr1 r

2
12r12c3ð1j2; 3ÞR

dr1 r212r12 � $r2u2ð1; 2Þ

¼ q
5

R
dr3 bFc

32

R
dr1 r

2
12r12c3ð1j2; 3ÞR

dr1 r212u2ð1; 2Þ

¼ � 2pq3b2e2

15

Z
dr32dr12 c3ð1j2; 3Þr212r12 � $r32v

cð3; 2Þ

¼ � 2pq3b2e2

9

Z
dr32dr12 c3ð1j2; 3Þr212r32 � $r32v

cð3; 2Þ;

ð22Þ

where in the last equality we used r12 ¼ r13 þ r32,

$rðr2rÞ ¼ 5r2, r2$rðrÞ ¼ 3r2, and integration by parts.

This will be done in the next section.

5. Compressibility sum-rule

From the virial theorem follows that the pressure estimator

can be written as follows [10],

bP ¼ q� bq2

6

Z
dr u2ðrÞr � $rv

cðrÞ: ð23Þ

So that

1� v0T
vT

¼ 1� b
oP

oq

����
T

¼ b
6

Z
dr

oq2u2ðrÞ
oq

r � $rv
cðrÞ; ð24Þ

We then see that Eq. (22) can be obtained using an analysis

similar to the one of Vieillefosse et al. [16], thus finding

oq2u2ðr32Þ
oq

¼� 4pq3be2

3

Z
dr12 r

2
12c3ð1j2; 3Þ: ð25Þ

We then see how vT is the isothermal compressibility of a

plasma with a Coulomb interaction pair-potential among

the particles.

6. Conclusions

We determined the first three (even) structure factor

moment sum-rules (4), (11), (21) for a three-dimensional

Jellium with the particles interacting with a pair-potential

that is the sum of the Coulomb potential e2=r and a short-

range term with either a finite range or decaying expo-

nentially fast at large r. We found that they are all invariant

in form respect to the addition of the short-range term.

Moreover our derivations of the sum-rules are different and

simpler than the ones already found in the literature (as

described in the review of Ph. Martin [1]). This strategy

carry us to the determination of an compressibility sum-

rule (24) and (25) in agreement with the one of Vieillefosse

[16].
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When studying common matter, whose constituents are

made of charged particles, the Coulomb interaction plays a

special role, ruling the fundamental correlation sum-rules.

What really matter is the long-range nature of the Coulomb

interaction and the short-range details do not have an

influence on the statistical behaviors of the many-body

correlations. This allows to use different models for the

charges behavior at short-range where we may have some

sort of indeterminacy in the description of the point-wise

constituents particles microscopic character. All these

models will have the same macroscopic behavior.

We could for example apply our general setting to the

particular case of charged hard-spheres, when the short-

range term is just a hard-core repulsion of a certain

diameter. This is just one of the commonly used short-

range regularization employed in a two-component-plasma

(TCP) with particles of opposite charges [13, 17, 18] that

would otherwise collapse one over the other. Moreover the

hard-core model has been historically the favorite play-

ground in statistical mechanics as it represents the simplest

model of many-body systems of interacting particles.

In a recent work Das, Kim, and Fisher [11, 12] found

out, through finely discretized grand canonical Monte

Carlo simulations, that in the Restricted Primitive Model

(RPM) of an electrolyte [17, 18], the second- and fourth-

moment charge-charge sum-rules, typical for ionic fluids,

are violated at criticality. For a 1:1 equisized charge-

symmetric hard-sphere electrolyte their grand canonical

simulations, with a new finite-size scaling device, confirm

the Stillinger-Lovett second-moment sum-rule except,

contrary to current theory [19], for its failure at the critical

point ðTc; qcÞ. Furthermore, the k4 term in the charge-

charge correlation or structure factor SZZðkÞ expansion is

found to diverge like the compressibility when T ! Tc at

qc. These findings are in evident disagreement with avail-

able theory for charge-symmetric models and, although

their results are qualitatively similar to behavior expected

for charge-asymmetric systems [19], even a semi-quanti-

tative understanding has eluded them. Our present study

could be a first step towards an explanation of such puz-

zling behavior. Even if, as pointed out in Ref. [14], from

the work of Santos and Piasecki [15] follows that the Ursell

functions of any order are likely to have a long-range

behavior on a critical point, thus violating our exponential

clustering working-hypothesis.

The zeroth-, second-, and fourth-moment sum-rules are

rigorously derived starting from the Born-Green-Yvon

equations and the exponential clustering hypothesis by

Suttorp and van Wonderen [20–22] for a thermodynami-

cally stable ionic mixture made of point-wise particles of

charges all of the same sign immersed in a neutralizing

background, the Jellium-mixture. Our results show that the

addition of a hard-core, or more generally any finite-range

or exponentially decaying contribution to the pair-poten-

tial, to the particles, which would be necessary in order to

make thermodynamically stable the system of Suttorp and

van Wonderen for mixtures with particles of opposite

charges, does not change the form of the first two three

moments of the structure factor of the one-component

Jellium.

It is still an open problem the extension of our study to

the more general case of a mixture. A semi-heuristic

derivation has recently been carried out [13, 14] showing

that the addition of the short-range term should not play

any role at the level of the first three (even) structure factor

moments for a neutral TCP without the background.

Strictly speaking, in these derivations we had to use results

that are only rigorously valid in the Debye regime, like the

local neutrality of the homogeneous system. Our present

rigorous result confirms this scenario, at least in the weak

coupling limit. Another interesting project is to generalize

these sum-rule results to the case of Jellium living in

curved surfaces [23–26]. In these cases the system can be

mapped in an equivalent flat Jellium interacting with an

external potential generated by the curvature of the surface

in which the particles live. Another interesting extension of

our work consists in studying the case in which the short-

range pair-potential decays at large distances as an inverse

power s of the distance, in which case the decay of cor-

relations is also always algebraic, with the only exception

of s ¼ m� 2 with m the space dimension [9]. In this case we

must drop the exponential clustering hypothesis and our

present derivation is not valid anymore.

References

[1] P. A. Martin Rev. Mod. Phys.60, 1075 (1988).

[2] P. Debye and E. Hückel Phys. Z.9, 185 (1923).

[3] F. H. S. Jr. and R. Lovett J. Chem. Phys.49, 1991 (1968)

[4] P. A. Martin and C. Gruber J. Stat. Phys.31, 691 (1983)

[5] P. Vieillefosse J. Stat. Phys.41, 1015 (1985)

[6] D. Pines and P. Nozières, The Theory of Quantum Liquids

(Benjamin, New York, 1966) p. 219

[7] P. Vieillefosse and J. P. Hansen Phys. Rev. A12, 1106 (1975)

[8] M. Baus J. Phys. A11, 2451 (1978)

[9] A. Alastuey and P. A. Martin J. Stat. Phys.39, 405 (1985)

[10] J. -P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd

ed. (Academic Press, London, 1986)

[11] [S. K. Das, Y. C. Kim, and M. E. Fisher Phys. Rev. Lett. 107 ,

215701 (2011)

[12] [S. K. Das, Y. C. Kim, and M. E. Fisher J. Chem. Phys. 137 ,

074902 (2012)

[13] A. Alastuey and R. Fantoni, J. Stat. Phys.163, 887 (2016)

[14] R. Fantoni Physica A477C, 187 (2017)

[15] A. Santos and J. Piasecki Mol. Phys.113, 2855 (2015)

[16] P. Vieillefosse and M. Brajon J. Stat. Phys.55, 1169 (1989)

Form invariance of the moment sum-rules\ldots

Author's personal copy

Form invariance of the moment sum-rules for jellium with the
addition of short-range terms in the pair-potential 938



[17] R. Fantoni and G. Pastore Europhys. Lett.101, 46003 (2013a)

https://doi.org/10.1209/0295-5075/101/46003

[18] R. Fantoni and G. Pastore Phys. Rev. E87, 052303 (2013b)

https://doi.org/10.1103/PhysRevE.87.052303

[19] G. Stell J. Stat. Phys.78, 197 (1995)

[20] L. G. Suttorp and A. J. van Wonderen Physica A145, 533 (1987)

[21] A. J. van Wonderen and L. G. Suttorp Physica A145 557 (1987)

[22] L. G. Suttorp J. Phys. A: Math. Theor.41, 495001 (2008)

[23] R. Fantoni, B. Jancovici and G. Téllez J. Stat. Phys.112, 27
(2003) https://doi.org/10.1023/A:1023671419021

[24] R. Fantoni and G. Téllez J. Stat. Phys.133, 449 (2008)

https://doi.org/10.1007/s10955-008-9616-x

[25] R. Fantoni J. Stat. Mech., P04015 (2012a) https://doi.org/

10.1088/1742-5468/2012/04/P04015

[26] R. Fantoni J. Stat. Mech., P10024 (2012b) https://doi.org/10.

1088/1742-5468/2012/10/P10024

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

R Fantoni

Author's personal copy

Form invariance of the moment sum-rules for jellium with the
addition of short-range terms in the pair-potential 939



Form invariance of the moment sum-rules for jellium with the
addition of short-range terms in the pair-potential 940



Chapter 63

How should we choose the boundary
conditions in a simulation which could
detect anyons in one and two
dimensions?

Fantoni R., J. Low Temp. Phys. 202, 247 (2021)
Title: “How should we choose the boundary conditions in a simulation which could detect
anyons in one and two dimensions?” Abstract: We discuss the problem of anyonic statistics in
one and two spatial dimensions from the point of view of statistical physics. In particular we
want to understand how the choice of the Born-von Karman or the twisted periodic boundary
conditions necessary in a Monte Carlo simulation to mimic the thermodynamic limit of the
many body system influences the statistical nature of the particles. The particles can either
be just bosons, when the configuration space is simply connected as for example for particles
on a line. They can be bosons and fermions, when the configuration space is doubly connected
as for example for particles in the tridimensional space or in a Riemannian surface of genus
greater or equal to one (on the torus, etc . . . ). They can be scalar anyons with arbitrary
statistics, when the configuration space is infinitely connected as for particles on the plane
or in the circle. They can be scalar anyons with fractional statistics, when the configuration
space is the one of particles on a sphere. One can further have multi components anyons
with fractional statistics when the configuration space is doubly connected as for particles on
a Riemannian surface of genus greater or equal to one. We determine an expression for the
canonical partition function of hard core particles (including anyons) on various geometries.
We then show how the choice of boundary condition (periodic or open) in one and two
dimensions determines which particles can exist on the considered surface.
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Abstract
We discuss the problem of anyonic statistics in one and two spatial dimensions from 
the point of view of statistical physics. In particular, we want to understand how the 
choice of the Born–von Karman or the twisted periodic boundary conditions neces-
sary in a Monte Carlo simulation to mimic the thermodynamic limit of the many 
body system influences the statistical nature of the particles. The particles can either 
be just bosons, when the configuration space is simply connected as for example for 
particles on a line. They can be bosons and fermions, when the configuration space 
is doubly connected as for example for particles in the tridimensional space or in a 
Riemannian surface of genus greater or equal to one (on the torus, etc.). They can be 
scalar anyons with arbitrary statistics, when the configuration space is infinitely con-
nected as for particles on the plane or in the circle. They can be scalar anyons with 
fractional statistics, when the configuration space is the one of particles on a sphere. 
One can further have multi-components anyons with fractional statistics when the 
configuration space is doubly connected as for particles on a Riemannian surface of 
genus greater or equal to one. We determine an expression for the canonical parti-
tion function of hard core particles (including anyons) on various geometries. We 
then show how the choice of boundary condition (periodic or open) in one and two 
dimensions determines which particles can exist on the considered surface.
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1  Introduction

For the statistical mechanics of a systems of many anyons, very partial results can 
be obtained, because the exact solution of a gas of anyons is not known. In fact, 
in contrast to the bosonic or fermionic case where the statistics is implemented 
by hand on the many body Hilbert space by constructing completely symmetric 
or antisymmetric products of single particle wave functions, for anyons the com-
plicated boundary conditions for the interchange of any two particles require the 
knowledge of the complete many-body configurations. Only the two-body prob-
lem is exactly soluble for anyons, and hence only the two-body partition function 
can be computed exactly. Since the thermodynamic limit cannot be performed, 
one has to resort to approximate or alternative methods to study the statistical 
mechanics of anyons [1, 2]. For example, if the thermodynamic functions are 
analytic in the particle density, it is well-known that the low density, or equiva-
lently the high temperature limit, of a (free) gas can be investigated using the 
virial expansion.

Anyons have had important physical applications, and it would be wrong to 
convey the idea that they are just mathematical fantasies. For example, physical 
objects which can be described as anyons are the quasi-particle and quasi-hole 
excitations of planar systems of electrons exhibiting the fractional quantum Hall 
effect (QHE) (for a review see for instance [3]). Most of the great interest that 
anyonic theories have attracted in the past few years derives precisely from their 
relevance to a better understanding of the fractional QHE [4], in conjunction with 
several claims that anyons can provide also a non-standard explanation of the 
mechanism of high temperature superconductivity [5]. Even if recent experiments 
have cast some shadow on the relevance of fractional statistics to the observed 
high temperature superconductivity [6–8].

In this work, we focus on the important problem of how the boundary condi-
tions on the simulation box influence the statistics of the anyonic (see chapter 2 
of Ref. [9]) particles. We will consider various cases: the infinite line, the circle, 
the infinite plane, the torus, and the sphere. In each case, we will determine the 
nature of the statistics of the many anyons system. This is important because in a 
simulation of a real material one usually chooses periodic boundary conditions in 
order to approach the thermodynamic limit.

Another interesting problem is the determination of a spinor for an anyon with 
a given rational or even irrational (either algebraic or even transcendental) sta-
tistics. If the spin-statistics theorem [10] which states that, as a consequence of 
Lorentz invariance and of locality, half integer spin particles must obey to Fermi 
statistics and integer spin particles must obey to Bose statistics, there is nothing 
similar for anyonic statistics [11]. Citing Wilczek [12] we can say that “The basic 
difficulty, which makes this problem much more difficult for generic anyons than 
for bosons or fermions, is that for generic anyons the many-body Hilbert space 
is in no sense the tensor product of the one-particle Hilbert space. This circum-
stance can be understood in various ways. Its root is that in the general case the 
weighting supplied by anyon statistics depends not only on the initial and final 
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states, but also on a (topological) property of the trajectory connecting them. This 
means that in the general case it is impossible to summarize the effect of quan-
tum statistics by projection on the appropriate weighted states, as we do for bos-
ons and fermions—where, of course, we project, respectively, on symmetric and 
antisymmetric states.” We will consider this problem in a future work.

The work is organized as follows: in Sect.  2, we describe the statistical physics 
anyons problem in two dimensions; in Sect. 3, we prove for a two particle case that the 
periodic boundary conditions of the Born–von-Karman type needed in a simulation of 
a real material play a relevant role in the anyons problem and we review, accordingly, 
various cases: For scalar, many body wave functions on the segment or the infinite 
line one can have only bosons, on the circle one can only have anyons with arbitrary 
statistics, on the square or the infinite plane one can also have only anyons with arbi-
trary statistics, and on the torus which has two periodicities only bosons and fermions 
are allowed as on the infinite three-dimensional Euclidean space. We gave an original 
proof of these different behaviors for just a system of two, body with scalar wave func-
tions; Sect. 4 is for our final remarks and conclusions.

2 � The Statistical Physics Anyon Problem in Two Dimensions

The statistical mechanical properties of a quantum system of N hard core particles in a 
volume V in d spatial dimensions occupying positions q ∈ (IRd)N and described by an 
Hamiltonian Ĥ in thermal equilibrium at the inverse temperature � = 1∕kBT , with kB 
the Boltzmann constant and T the absolute temperature, are obtainable from the ther-
mal density matrix operator [13],

In the configurations space representation, the thermal density matrix can be written 
using the following path integral notation,

where H(q, q̇) is the classical Hamiltonian of the N hard core, identical particles. 
The meaning of �1(Md

N
) and of the phases � will be shown in the next two sections.

The canonical partition function can then be found from the trace of the density 
matrix,

(1)𝜌̂ = exp(−𝛽Ĥ).

ρ(q , q; β) =

α∈π1(Md
N )

χ(α)
–

–

qα( β)=q

qα(0)=q

e− 1 β
0 dτ H(qα(τ),q̇α(τ)) Dqα, (2)

(3)Z(N,V , T) = ∫ �(q, q;�) dq.
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2.1 � Md

N
 and Its Fundamental Group

Consider a system of N identical hard core particles moving in the Euclidean 
d-dimensional space, IRd . A configuration of such a system is clearly specified by the 
N coordinates of the particles, i.e., by an element of (IRd)N . However, because of the 
hard core assumption, any two particles cannot occupy the same position. So from 
(IRd)N we have to remove the diagonal,

Furthermore, our particles are identical and indistinguishable, so we should iden-
tify configurations which differ only in the ordering of the particles. In other words, 
we should divide by the permutation group SN . Therefore, we conclude that the con-
figuration space for our system is

To find the fundamental group of such space is a standard problem in algebraic 
topology, which was solved in the early 60’s [14–16]. It turns out that the fundamen-
tal group of Md

N
 is given by

where BN is Artin’ s braid group of N objects which has the permutation group SN as 
a homomorphic image [17, 18].

Even from this formal point of view, we see that there is a crucial difference 
between two and three or more dimensions. To have a more explicit understanding 
of (6), let us consider a two particle example in light of what we have just observed. 
Let us start with the case of two dimensions. Instead of assigning the position vec-
tors �1 and �2 for the two particles, is more convenient to introduce the center of 
mass coordinate,

and the relative coordinate,

We have removed the origin because of the hard core requirement. Since � is invari-
ant under the permutations of S2 , we can write,

where r2
2
 is some space describing the two degrees of freedom of the relative motion. 

We now argue that r2
2
 has the topology of a cone. Since two configurations which 

differ only in the ordering of the particle indexes are indistinguishable, � and −� 

(4)Δ = {(�1,… , �N) ∈ (IRd)N ∶ �i = �j for some i ≠ j}.

(5)Md
N
=

(IRd)N − Δ

SN
.

(6)�1(M
d
N
) =

{
SN if d ≥ 3

BN if d = 2

(7)� =
1

2
(�1 + �2) ∈ IR2,

(8)� = �1 − �2 ∈ IR2 − {0}.

(9)M2
2
= r2

2
× IR2,
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must be identified. The space r2
2
 is then the upper half plane without the origin and 

with the positive x-axis identified with the negative one, i.e., is a cone without the 
tip (see Fig. 1).

According to the decomposition (9), any loop in M2
2
 can be classified by the number 

of times it winds around the cone r2
2
 . Two loops q and q′ with different winding num-

bers are homotopically inequivalent: it is not possible to deform one into the other since 
the vertex of the cone has been removed. Thus, the space r2

2
 and r2

2
× IR2 are infinitely 

connected, and,

It is important to realize that if the vertex of the cone was included (i.e., allowing 
particles to occupy the same position in space), the configuration space would be 
simply connected. Any loop, even when winding around the cone, would be con-
tracted to a point by deforming and unwinding it through the tip. Thus, if we do 
not impose the hard core constraint on the particles, we can describe only bosonic 
statistics.

Let us now turn to the case of two particles in three dimensions. After introduc-
ing the center of mass coordinate � ∈ IR3 , we can decompose the configurations 
space as,

where the space r3
2
 describes the three degrees of freedom of the relative motion. 

These are the length and the two angles of the relative coordinate � . As before, � and 
−� are identified. It is easy to realize that r3

2
 is just the product of the semi-infinite 

(10)�1(M
2
2
) = �1(r

2
2
× IR2) = �� = B2.

(11)M3
2
= r3

2
× IR3,

Fig. 1   Schematic representation 
of r2

2
 with the topology of a cone 

without the tip. It is an infinitely 
connected space (Color figure 
online)

Fig. 2   Schematic representation 
of P2 as the northern hemi-
sphere with opposite points on 
the equator being identified. It is 
a doubly connected space (Color 
figure online)

x

x
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line describing |�| and the projective space P2 describing the orientation of ±�∕|�| . 
In turn, P2 can be described as the northern hemisphere with opposite points on the 
equator being identified (see Fig. 2).

The space P2 is doubly connected and admits two classes of loops: those which 
can be shrunk to a point by a continuous transformation and those which cannot. In 
Fig. 3, we exhibit a typical contractible loop q1 and a typical non-contractible loop q2.

Therefore, from the decomposition (11) and the topology of r3
2
 , we deduce that,

Thus, only bosons and fermions can exist, the former corresponding to contract-
ible loops and the latter to non-contractible loops.

We have seen that at the heart of the anyonic statistics, there is the braid group 
BN in place of the permutation group SN which is responsible for ordinary statistics. 
There are only two one-dimensional unitary representations of SN , namely the iden-
tical one, �( even and odd permutations) = +1 (bosonic statistics) and the alter-
nating one, �( even permutations) = +1 , �( odd permutations) = −1 (fermionic 
statistics). Whereas the braid group admits a whole variety of one-dimensional1 uni-
tary representations whose labeling parameter will be identified with the parameter � 
also called the statistics.

2.2 � Statistical Mechanics Problem

One is usually interested in calculating the partition function of the system which 
is given by the trace of the density matrix. So we choose q = q� , or loops in Md

N
 . 

Two loops are considered equivalent (or homotopic) if one can be obtained from the 
other by a continuous deformation. All homotopic loops are grouped into one class 
and the set of all such classes is called the fundamental group and is denoted by �1.2 

(12)�1(M
3
2
) = �1(r

3
2
× IR3) = ��2 = S2.

Fig. 3   Schematic representation 
of a typical contractible loop q1 
and a typical non-contractible 
loop q2 on M3

2
 which is a doubly 

connected space. The two points 
marked with an X are the same 
point. The path q1 cannot be 
deformed continuously into the 
path q2 (Color figure online)

q
q1

2

x

x

1  When dealing with non-scalar quantum mechanics, i.e., when the wave functions are multiplets instead 
of one component objects as assumed in the discussion, appropriate higher-dimensional representations 
of �1(Md

N
) would be necessary.

2  In the set �1 one can define a product ⋅ in a very simple and natural way: if �1 and �2 are two classes 
with representatives path q1 and q2 , then �1 ⋅ �2 is the class whose representative is the path q1q2 (that is 
the path q1 followed by the path q2 ). It can be shown that this product furnishes �1 with a group structure.
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Thus, an element of �1(Md
N
) is simply the set of all loops in Md

N
 which can be contin-

uously deformed into each other. On the other hand, loops belonging to two different 
elements of �1(Md

N
) cannot be connected by a continuous transformation. Naturally, 

�(q�, q;�) has to be a real positive probability function.
In order for (2) to make sense as a probability amplitude, the complex weights 

�(�) cannot be arbitrary. In fact, since we want to maintain the usual rule for com-
bining probabilities,

the weights �(�) must satisfy,

for any �1 and �2 . Equation (14) can also be read as the statement that �(�) must be a 
one-dimensional unitary ( |�|2 = 1 ) representation of the fundamental group �1(Md

N
) 

[19]. To see which representations are possible, we have to specify better what is Md
N

 
and its fundamental group.

This means that we have to look for one-dimensional unitary representations �(�) 
of the fundamental group, i.e.,

or in the notation used by Wilczek [12], n = 4� and � = �∕2� where � is the wind-
ing number and � the relative angular momentum in units of ℏ quantized in units of 
� + integer in each sector �.

In d ≥ 3 , there are only 2 possible representations of the permutation group: the 
one corresponding to the bosonic statistics ( � = 0 mod 2) and the one corresponding 
to the fermionic statistics ( � = 1 mod 2). In d = 2 , one has to choose representa-
tions of the braid group (see chapter 2 of Ref. [9]) and the statistical parameter � can 
be arbitrary at least in principle.3 Particles with this property are called anyons. In 
d = 2 , it is not enough to specify the initial and final configurations to completely 
characterize the system; it is also necessary to specify how the different trajectories 
wind or braid around each other. In other words, the time evolution of the particles 
is important and cannot be neglected in d = 2 . This fact implies that in order to clas-
sify and characterize anyons, and the representations of the permutation group must 
be replaced by those of the more complicated braid group.

The following is always true (here t and t′ are two different imaginary times at 
which particles are found at the same spatial positions),

(13)�(q�, q;�) = ∫Md
N

dqo �(q
�, qo;to∕ℏ)�(qo, q;� − to∕ℏ),

(14)𝜒(𝛼1)𝜒
⋆(𝛼2) = 𝜒(𝛼1 ⋅ 𝛼2),

(15)�(�) = e−i�n�� , n� integer ,

3  There are restrictions on � coming from the topology of the two-dimensional space. For example for 
particles moving on a torus (or a 2D box with periodic boundary conditions), � can only be a rational 
number (see Sect. 3.4).
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where the symbol �ij denotes the azimuthal angle of particle j with respect to particle 
i and n is an integer. This can be interpreted by saying that to complete a loop in 
configuration space an integer number of exchanges is always necessary. And one 
can write (see chapter 2 of Ref. [9])

(x1
i
− x2

i
) being the Cartesian coordinates of the ith particle.

So, we can formally express

Notice that the functions �(�)
ij
(�) , where � represents an arbitrary braiding (see chap-

ter 2 of Ref. [9]) are in general very complicated and can be specified only when the 
dynamics of the particles is fully taken into account. However, the formal definition 
(18) may come useful when inserted into the density matrix expression (19). So that 
the expression for the diagonal of the density matrix gets the suggestive form,

Expression (2) tells us that instead of dealing with anyons governed with the Hamil-
tonian H , we can work with bosons whose dynamics is dictated by the new Hamilto-
nian H� = H + iℏ�

∑
i,j

d�
(�)

ij
(�)∕d� . In particular, we could treat fermions governed 

by an Hamiltonian H as bosons with a “fictitious” Hamiltonian 
H� = H + iℏ

∑
i,j

d�
(�)

ij
(�)∕d� . Notice that this statistical interaction is very peculiar 

and intrinsically topological in nature (it is actually a total derivative). Its addition to 
the Hamiltonian H does not change the equations of motion, which are a reflection 
of the local structure of the configuration space, but does change the statistical prop-
erties of the particles, which are instead related to the global topological structure of 
the configuration space (it can be locally realized as a gauge theory with a 
Chern–Simons kinetic term).

Now, since �(q, q;�) has to be a real positive function as well as all the ��(q, q;�) 
one has to add the constraints

(16)
∑

i<j

[𝜃ij(t
�) − 𝜃ij(t)] = n𝜋,

(17)�ij = tan−1

(
x2
j
− x2

i

x1
j
− x1

i

)
,

(18)�(�) = exp

[
−i�

∑

i,j
∫

ℏ�

0

d�
d

d�
�
(�)

ij
(�)

]
.

ρ(q, q; β) =

α∈π1(M2
N )

χ(α)ρα(q, q; β)

=

α∈π1(M2
N )

–

–

qα( β)=q

qα(0)=q

e
− 1 β

0 dτ H(qα(τ), ˙qα(τ))+i ν i,j

dθ
(α)
ij (τ)

dτ Dqα .
(19)
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3 � Periodic Boundary Conditions

The configuration space M of identical hard core two-dimensional particles has a 
non-trivial topology.

•	 If the particles are free to move in IR2 or in a finite L × L box, then the con-
figuration space is infinitely connected (see Fig. 1). Its fundamental group is 
the braid group whose representations are labeled by an arbitrary parameter � . 
This unusual statistics can be implemented on ordinary particles (for instance 
bosons) by the addition of a topological statistical interaction as we saw in Eq. 
(19).

•	 If the particles are free to move in a finite box with periodic boundary conditions, 
a torus, a compact Riemannian surface of genus 1, then only bosons and fermi-
ons are possible [9] if the multi-particle wavefunctions carry a one-dimensional 
(appropriate for scalar wave functions) unitary representation of the braid group. 
However, anyons are possible even on a torus provided that wave functions with 
many components are considered, as for example for spin one-half electrons. 
In this case, one has to look at higher-dimensional representations of the braid 
group which lead to the concepts of generalized fractional statistics and general-
ized anyons [20–23]. Now, only fractional statistics are possible and � = p∕q can 
only be a rational number, with p and q coprime integers and N = qn where n is 
a nonnegative integer. This is essentially due to the requirement to have nonzero 
winding numbers along the two periods (the two handles) of the torus: one peri-
odicity winding acts on a wave function with k components by multiplying all 
components by the same phase factor, while the other periodicity winding mix 
among themselves the components of the wave function (at the end of chapter 2 
of Ref. [9] the general case of a Riemannian surface of a generic genus is also 
made).

In order to avoid periodic boundary conditions, one could work on the surface of a 
sphere, in this case scalar anyons with fractional statistics will emerge [9].

So, this poses the following conceptual problem. If one is to simulate, for exam-
ple through the Monte Carlo technique, a system of identical hard core particles 
living in two dimensions, he should use, for the many body wave function of the 
system contained in a two-dimensional box of sides L1 and L2 , either the Born–von 
Karman periodic boundary conditions

(20)
∑

�∈�1(M
2
N
)

sin(�n��)��(q, q;�) = 0 ,

(21)
∑

𝛼∈𝜋1(M
2
N
)

cos(𝜈n𝛼𝜋)𝜌𝛼(q, q;𝛽) > 0.
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with Θ = 0 and � = (L1, L2) or the twisted boundary conditions [24], with Θ ≠ 0 , to 
mimic the thermodynamic limit. Then, the fractional statistics or the anyonic nature 
of the particles is necessarily changed by the topological change of the configura-
tional space. Moreover, as we will discuss in the conclusions the twisted boundary 
conditions, even if they do not alter the qualitative picture respect to the Born–von 
Karman boundary conditions, regarding the topological properties of the underly-
ing configurational space, they become essential in the description of anyons or the 
fractional QHE (see [9] chapter 4). We can in fact say that in the interchange of two 
particles each one of the two changes identity when winding across the boundary 
(22) as follows,

Since the discovery of the twisted boundary conditions by Chang Lin et al. in 2001 
to optimize the approach to the thermodynamic limit of a generic Monte Carlo sim-
ulation of a many-body system, we are unaware of their use in computer experiment 
for anyons as in Eq. (23).

Let us now reduce ourselves to the N = 2 case. We have seen that when the parti-
cles are free to move on all IRd , then the center of mass coordinate splits off in a triv-
ial way. Let us see what we can easily say about the configuration spaces of particles 
confined in a box (B) or in a periodic box (PB). We start with a one-dimensional 
space and then, study the two-dimensional one.

3.1 � For a Box in d = 1 [1d‑B]

Call x1 ∈ [0, L] and x2 ∈ [0, L] the particles coordinates. In this case (see Fig. 4),

(22)�(�1,… , �j + �,…) = eiΘ∕2�(�1,… , �j,…), ∀ j = 1,… ,N

(23)�(�1,… , �j,… , �k,…) = eiΘ�(�1,… , �k,… , �j,…).

Fig. 4   In the plane (x1, x2) , the 
uniformly shaded region M1

2
 of 

Eq. (24) is simply connected. 
The slashed shaded region is 
the forbidden one (Color figure 
online)

1

x2

M1
2

L

L x0
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which is simply connected. So, only boson statistics is allowed.
We could, as well, have introduced the center of mass coordinate 

R = (x1 + x2)∕2 ∈]0, L[ and the relative coordinate r = x1 − x2 . Using this coordi-
nates, M1

2
= r1

2
×]0, L[ (see Fig. 5).

As expected again, M1
2
 is simply connected.

3.2 � For a Box with Periodic Boundary Conditions in d = 1 [1d‑PB]

We now consider the case of particles on a circle of length L. Using the center of 
mass coordinate R = (x1 + x2)∕2 and the relative coordinate r = x1 − x2 , one sees by 
inspection that,

which is infinitely connected (as shown in Fig. 6 two loops with different winding 
around the missing point (−L, 0) = (L, L∕2) are homotopically inequivalent). So, 
anyons with arbitrary statistics � is allowed.

The same thing can be seen introducing the center of mass angle � and the rela-
tive angle � (see Fig. 7). The rectangle in the (�, �) plane defined by 0 ≤ � ≤ � and 
0 ≤ � ≤ 2� includes all possible configurations, except for the left and right edges 
where (0, �) and (�, 2� − �) both represent the same configuration. Because of this 
identification, the rectangle becomes a Möbious band which is still infinitely con-
nected. In this case, though even with a multi-component wave function the statistics 

(24)M1
2
= {(x1, x2) ∶ x2 ∈ [0, L], x2 < x1 ≤ L},

(25)
M1

2
= {(r,R) ∶ R ∈ [0, L∕2], 2R − L ≤ r ≤ 2R,

(2R,R) = (2R − L,R), (−r, 0) = (r, L∕2)}

− {(0,R) ∀R, (−L, 0), (0, L∕2)},

Fig. 5   Another view of M1

2
 

of Eq. (24), now in the plane 
(r, R) with R the center of mass 
coordinate and r the relative 
coordinate r. Again, the slashed 
region is the forbidden one 
(Color figure online)

1
2

L

L0 r

M

R
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must remain arbitrary and not fractionary as in the two-dimensional one since we 
have only one periodicity.

3.3 � For a Box in d = 2 [2d‑B]

Using the same argument used for the [1d-B], we can say that M2
2
= r2

2
× [0, L]2 

where r2
2
 is a space with the same topology as the cone without the tip introduced 

in the case of particles without boundaries. The only difference being that the cone 
now does not extend to infinity but is finite and its height depends on L. So once 
again, since r2

2
 is infinitely connected, also M2

2
 is. And anyon statistics is allowed 

with arbitrary �.

M1
2

XX

X

X

R

r

L/2

−L L0

XX
q1

q2

Fig. 6   In the plane (r, R) with R the center of mass coordinate and r the relative coordinate r, we show 
the uniformly shaded region M1

2
 of Eq. (25) which is infinitely connected. The points labeled X are the 

same point. The points labeled XX are the same point. The slashed shaded regions are the forbidden ones. 
The path q1 cannot be deformed continuously into the path q2 (Color figure online)

θ

1
2

1

2
φ

θ

φ

2π

π

X

X
q

q

1

2 M

Fig. 7   On the right, we show the meaning of the angles � , between the two particles 1 and 2 on the 
circle, and � , the polar angle to the line joining the center of the circle to the center of mass of the two 
particles. The uniformly shaded region M1

2
 of Eq. (25) is infinitely connected. The points labeled X are 

coincident. The slashed shaded regions are the forbidden ones. The path q1 cannot be deformed continu-
ously into the path q2 (Color figure online)
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3.4 � For a Box with Periodic Boundary Conditions in d = 2 [2d‑PB]

In this case, we can say that something similar was happening from going from 
the 2d plane (M infinitely connected) to the 3d space (M doubly connected). Now, 
in [1d-PB] M is infinitely connected and in [2d-PB] M is doubly connected. We 
split again M2

2
 into the product of the center of mass configuration space and of 

the two impenetrable particles relative coordinates one, r2
2
 . It turns out that now, 

due to the periodic boundary conditions, r2
2
 is a cone without the tip, of finite 

height, as in Fig. 1, and with the end points of a diameter of the base identified. 
This is a doubly connected space. All this is only true if we consider scalar wave 
functions, i.e., one-dimensional representations of the fundamental group of the 
configuration space. For wave functions with many components, the generators of 
the representations of the fundamental group of the configuration space are such 
that [9] � = p∕q a rational number, with p and q coprime numbers and a restric-
tion on the total number of particles, N = qn , where n is a nonnegative integer. 
For an extensive discussion of anyons on compact surfaces and on the torus in 
particular, we refer the reader to the review by Lengo and Lechner [25].

4 � Conclusions

Twisted boundary conditions play a relevant role in the anyons problem where 
the topology of the underlying configuration space determines the statistics of 
the particles. We review various cases. For scalar, many body wave functions on 
the segment or the infinite line one can have only bosons, on the circle one can 
only have anyons with arbitrary statistics, on the square or the infinite plane one 
can also have only anyons with arbitrary statistics, and on the torus which has 
two periodicities only bosons and fermions are allowed as on the infinite three-
dimensional Euclidean space. In Sect. 3, we gave an original proof of these differ-
ent behaviors for just a two-body system. This is enough to determine the anyonic 
symmetry of the many-body wave function as we discussed in Sect. 2.2, but one 
cannot exclude other kinds of three and higher body symmetries where it is nec-
essary to substitute �ij of Eq. (17) with a different �ijk… . We gave proofs of these 
circumstances based on the geometrical topological properties of the configura-
tional space in each case, which we regard as the simplest way to proceed.

If we allow for a many components wave function on the torus, we may have 
anyons but with only fractional statistics which proved to give an interpretation 
for the fractional QHE. In this case, a series of new states of matter emerge as 
incompressible quantum liquids [26, 27] around which the low-energy excita-
tions are localized quasi-particles with unusual fractional quantum numbers, i.e., 
anyons. The Laughlin variational ground-state wave functions requires the statis-
tics, � , to be an odd integer m, whereas the excited states require it to be rational. 
Laughlin chooses the trial ground-state wave function of the Bijl–Dingle–Jastrow 
product form
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where �0 =
√
ℏc∕eB is the magnetic length, B the magnetic field orthogonal to the 

metallic plate, zi is the complex coordinate of the i-th electron and Nm is a nor-
malization factor. Since m is an odd integer, � is totally antisymmetric, and so it 
describes ordinary fermions. The prefactor (zi − zj)

m is also of the Jastrow type: it 
has a zero of order m at coincident points (zi = zj) , showing that electrons tend very 
strongly to repel each other in a way that is appropriate to minimize the Coulomb 
interaction. If zi goes around zj by an angle Δ� , the wave function acquires a phase 
eimΔ� , as if each particle carried m units of flux. This allows Laughlin to use the fact 
that the |�m|2 can be interpreted as the Boltzmann factor e−�� of a One Compo-
nent Plasma of classical particles of charge Q = m living in two dimensions where 
the neutralizing background has a surface charge density � = m∕2��2

0
 at an inverse 

temperature � = 2∕m . The coupling constant of the plasma is Γ = �Q2 = 2m2 , and 
its properties are available exactly analytically at the special value of the coupling 
constant Γ = 2 [28–30] when the two-dimensional electron gas corresponds to a full 
Landau level m = 1 (see Ref. [9] chapter 8).

A word of caution when thinking at the physical implications of all this is 
nonetheless necessary. From a purely conceptual point of view, the fact that in 
order to have a fractional statistics one has to impose twisted periodic bound-
ary conditions that are an artificial means to approach the thermodynamic limit 
and have no physical meaning sheds some doubts on the relevance of the anyonic 
theory on the interpretation of the fractional QHE. From the point of view of the 
numerical experiment, the presence of a magnetic field implies that the ground 
state wave function will, in general, be complex valued and in order to deal with 
the symmetry given by the anyonic statistics one should use methods similar to 
the ones used in Ref. [31, 32]. Also, we proposed to combine these methods with 
the twisted boundary conditions first employed in 2001 by Chang Lin et al. [24] 
for a generic many-body system. It would be desirable to perform the simulation 
on a sphere with a Dirac magnetic monopole at the center [33] in order to be 
able to simulate scalar anyons with fractional statistics, without the necessity of 
implementing any sort of boundary conditions.

Another issue in disfavor of the description of the physically observed QHE 
is the fact that in a laboratory the electrons will surely not be exactly living in a 
two-dimensional world, but one deals rather with a quasi-two-dimensional, very 
very thin, metallic layer [34] at the interface between two different semiconduc-
tors or between a semiconductor and an insulator even if the low temperature and/
or the strong magnetic field freezes the motion along the direction perpendicular 
to the layer (something similar as explained in the satirical novella by the English 
schoolmaster Edwin Abbott: “Flatland: A Romance of Many Dimensions” first 
published in 1884 by Seeley & Co. of London). This of course would modify also 
the Coulomb potential of interaction between the electrons from one ∝ − log(r∕L) 
to one ∝ 1∕r , with r the separation between electrons, which are in any case 

(26)𝜓m = Nm

�

i<j

(zi − zj)
me

−
1

4�2
0

∑
i �zi�2

,
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both divergent at r = 0 . Naturally, the Coulomb repulsion is essential to give the 
incompressibility condition avoiding two particles to overlap.

The real experiment is too complicated to describe in its completeness so one 
has to resort to approximations and the approximation of considering the electrons 
as “living” in a two-dimensional world with periodic twisted boundary conditions 
seems to be an effective one. There are many experiments in the field. A mostly 
interesting one is described in Ref. [35] where it is shown that the sign of the Hall 
effect in the transport properties of doped lanthanum manganites films for small 
polaron [36, 37] hopping can be “anomalous.” A small polaron based on an electron 
can be deflected in a magnetic field as if it was positively charged and, conversely, 
a hole-based polaron can be deflected in the sense of a free electron. Measurements 
of the high-temperature Hall coefficient of manganite samples reveal that it exhib-
its Arrhenius behavior and a sign anomaly relative to both the nominal doping and 
the thermoelectric power. The results are discussed in terms of an extension of the 
Emin–Holstein theory of the Hall mobility in the adiabatic limit.

There are now several proposed experiments aimed at identifying the existence 
of non-Abelian statistics in nature. Non-Abelian phases are gapped phases of matter 
in which the adiabatic transport of one excitation around another implies a unitary 
transformation within a subspace of degenerate wavefunctions which differ from 
each other only globally [38].

Another more recent experimental interest in anyons is for topological quantum 
computation [39, 40]: Systems exhibiting non-Abelian statistics can store topologi-
cally protected qubits [41].
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Title: “Jellium at finite temperature using the restricted worm algorithm”
Abstract: We study the Jellium model of Wigner at finite, non zero, temperature through a
computer simulation using the canonical path integral worm algorithm where we successfully
implemented the fixed node free particles restriction necessary to circumvent the fermion sign
problem. Our results show good agreement with the recent simulation data of Brown et al.
and of other similar computer experiments on the Jellium model at high density and low
temperature. Our algorithm can be used to treat any quantum fluid model of fermions at
finite, non zero, temperature and has never been used before in literature.
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Abstract. We study the Jellium model of Wigner at finite, non-zero, temperature through a computer
simulation using the canonical path integral worm algorithm where we successfully implemented the fixed-
node free particle restriction necessary to circumvent the fermion sign problem. Our results show good
agreement with the recent simulation data of Brown et al. and of other similar computer experiments on
the Jellium model at high density and low temperature. Our algorithm can be used to treat any quantum
fluid model of fermions at finite, non-zero, temperature and has never been used before in the literature.

1 Introduction

The free electron gas or the Jellium model of Wigner
[1] is the simplest physical model for the valence elec-
trons in a metal [2] (more generally it is an essential
ingredient for the study of ionic liquids (see Ref. [3]
Chapters 10 and 11): molten-salts, liquid-metals, and
ionic-solutions) or the plasma in the interior of a white
dwarf [4]. It can be imagined as a system of pointwise
electrons of charge e made thermodynamically stable
by the presence of a uniform, inert, neutralizing back-
ground of opposite charge density inside which they
move. In this work, we will only be interested in Jel-
lium in three-dimensional Euclidean space even if some
progress has been made to study this system in curved
surfaces, too [5–9].

The zero-temperature, ground-state, properties of
the statistical mechanical Jellium model thus depend
just on the electronic density n, or the Wigner–Seitz
radius rs = (3/4πn)1/3/a0 where a0 is Bohr radius,
or the Coulomb coupling parameter Γ = e2/(a0rs).
Free electrons in metallic elements [2] has 2 � rs � 4,
whereas in the interior of a white dwarf [4] rs � 0.01.
This model has been intensively studied in the second
half of last century.

The finite, non-zero, temperature model depends
additionally on a parameter Θ = T/TF where T is the
absolute temperature and TF the Fermi temperature.
This model has received much attention more recently.

The past 2 decades have witnessed an impressive
progress in experiments and also in quantum Monte
Carlo simulations, which have provided the field with
the most accurate thermodynamic data available. The

a e-mail: riccardo.fantoni@posta.istruzione.it (corre-
sponding author)

simulations started with the pioneering work by Ceper-
ley and co-workers later developed by Filinov and co-
workers. These have been carried on for the pure Jel-
lium model [10–19], for hydrogen, hydrogen–helium
mixtures, and electron–hole plasmas. Also, we recently
applied our newly developed simulation methods to the
one-component system of charged bosons and fermions,
both in the three-dimensional Euclidean space and on
the surface of a sphere, and to the binary fermion–
boson plasma mixture at finite temperature [9,20]. In
the latter study, we discussed the thermodynamic sta-
bility, from the simulation point of view, of the two-
component mixture where the two species are both
bosons, both fermions, and one boson and one fermion.
Shortly after our results were published, other groups
reported [21] about computer experiments using meth-
ods partly similar to ours.

Today we are able to simulate on a computer the
structural and thermodynamic properties of Jellium at
finite, non-zero, temperature. This allows us to predict
thermodynamic states that would be rather difficult to
obtain in nature or in the laboratory, such as Jellium
under extreme conditions, partially polarized Jellium.
In this work, we will carry on some of these path integral
simulations which make use of the Monte Carlo tech-
nique. Monte Carlo is the best known method to com-
pute a path integral [22]. The computer experiment is
alternative to theoretical analytic approximations like
the Random-Phase-Approximation [23–30].

As will be made clear in Sect. 3, until recently, we
were unable to obtain exact numerical results even
through computer experiments since one had to face
the so called fermions sign problem which had not
been solved before the advent of recent simulation tech-
niques [15,16]. When it was demonstrated that the
fermions sign problem can be partly avoided and nearly
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exact results for the thermodynamic functions can be
obtained with an error below 1%. In other words, we
were not able to extract exact results not even numer-
ically from a simulation for fermions, unlike for bosons
or boltzmannons. Therefore, to circumvent the fermion
sign problem, we will here resort to the most widely
used approximation in quantum Monte Carlo that is
the restricted path integral fixed-node method [31,32].
But unlike previous studies, we will implement this
method upon the worm algorithm [33,34] in the canoni-
cal ensemble. Recently, we carried on [35] simulations in
the grand canonical ensemble; in the present study, we
will instead worry about a precise comparison with the
data of Brown et al. [10] who worked in the canonical
ensemble. The worm algorithm is preferable over the
usual path integral Monte Carlo methods [22] since it
is able to build the sum over the permutation through
a menu of moves on open paths—the worms—instead
of sampling the permutation sum explicitly.

The work is organized as follows: in Sect. 2, we
describe the Jellium model from a statistical physics
point of view; in Sect. 3, we describe the simulation
method; in Sect. 4, we outline the problem we want to
solve on the computer; in Sect. 5, we present our new
algorithm in detail; Sect. 6 is for our numerical results;
in Sect. 7, we summarize our concluding remarks.

2 The model

The Jellium model of Wigner [36–39] is an assembly
of N+ spin up pointwise electrons and N− spin down
pointwise electrons of charge e moving in a positive,
inert background that ensures charge neutrality. The
total number of electrons is N = N+ + N− and the
average particle number density is n = N/Ω, where
Ω is the volume of the electron fluid. In the volume
Ω = L3, there is a uniform, neutralizing background
with a charge density ρb = −en. So that the total charge
of the system is zero. The fluid polarization is then ξ =
|N+ −N−|/N : ξ = 0 in the unpolarized (paramagnetic)
case and ξ = 1 in the fully polarized (ferromagnetic)
case.

Setting lengths in units of a = (4πn/3)−1/3 and ener-
gies in Rydberg’s units, Ry = �2/2ma2

0, where m is the
electron mass and a0 = �2/me2 is the Bohr radius, the
Hamiltonian of Jellium is

H = − 1

r2
s

N∑

i=1

∇∇∇2
ri

+ V (R), (2.1)

V =
1

rs

⎛
⎝2

∑

i<j

1

|ri − rj |
+

N∑

i=1

r2
i + v0

⎞
⎠ , (2.2)

where R = {r1, r2, . . . , rN} with ri the coordinate of the
ith electron, rs = a/a0, and v0 a constant containing the
self energy of the background. Note that the presence

of the neutralizing background produces the harmonic
confinement shown in Eq. (2.1).

The kinetic energy scales as 1/r2
s and the poten-

tial energy (particle–particle, particle–background, and
background–background interaction) scales as 1/rs, so
for small rs (high electronic densities), the kinetic
energy dominates and the electrons behave like an ideal
gas. In the limit of large rs, the potential energy dom-
inates and the electrons crystallize into a Wigner crys-
tal [40]. No liquid phase is realizable within this model
since the pair-potential has no attractive parts, even
though a superconducting state [41] may still be possi-
ble (see chapter 8.9 of Refs. [42] and [43]).

The Jellium in its ground state has been solved either
by integral equation theories [27] or by computer exper-
iments [44] in the second half of last century but more
recently it has been studied at finite, non-zero, temper-
atures by several research groups [10–12,14–18].

Following Brown et al. [10], it is convenient to intro-
duce the electron degeneracy parameter Θ = T/TF for
the Jellium at finite temperature, where TF is the Fermi
temperature of either the unpolarized (ξ = 0) or polar-
ized (ξ = 1) system

TF = TD
(2π)2

2[(2 − ξ)α3]2/3
, (2.3)

ξ is the polarization of the fluid, α3 = 4π/3 is the vol-
ume of the unit sphere, and

TD =
n2/3�2

mkB
=

�2

mkBα
2/3
3 (a0rs)

2
(2.4)

is the degeneracy temperature [22], i.e. the temperature
at which the de Broglie thermal wavelength becomes
comparable to the mean separation between the parti-
cles (∝ n−1/3). For temperatures higher than TD quan-
tum effects are less relevant.

The state of the fluid will also depend upon the
Coulomb coupling parameter, Γ = e2/(a0rs)kBT [10],
so that

Θ =
rs

Γ

[
2(2 − ξ)2/3α

4/3
3

(2π)2

]
. (2.5)

The behavior of the internal energy of Jellium in its
ground state (Θ = 0) has been determined through
Diffusion Monte Carlo (DMC) by Ceperley and Alder
[44]. Three phases of the fluid appeared: for rs < 75,
the stable phase is the one of the unpolarized Jellium,
for 75 < rs < 100, the one of the polarized fluid, and
for rs > 100, the one of the Wigner crystal. They used
systems from N = 38 to N = 246 electrons.

It was shown in Ref. [13] that the data of Brown
et al. [10,11], for the finite, non-zero temperature
case, are inaccurate at high densities, rs � 1. This
appears to be a systematic error, of up to 10%, of
the restricted path integral fixed node method. Thus,
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it would be interesting to know whether this prob-
lem may be solved with our present method, which
seems a promising route to access higher densities.
They provide results for the thermodynamic proper-
ties of Jellium with 33 fully polarized, ξ = 1 elec-
trons and 66 unpolarized, ξ = 0 electrons, in the
warm-dense regime: rs = 1, 2, 4, 6, 8, 10, 40 and Θ =
0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8.

3 The simulation

The density matrix of a system of many fermions at
temperature kBT = β−1 can be written as an integral
over all paths {Rt | 0 ≤ t ≤ β}

ρF (Rβ , R0;β)

=
1

N !

∑

P
(−1)P

∮

PR0→Rβ

dRt exp(−S[Rt]),

(3.1)

where Rt = {r1(t), . . . , rN (t)} represents the positions
of all the particles at imaginary time t. The path begins
at PR0 and ends at Rβ ; P is a permutation of particles
labels. For non-relativistic particles interacting with a
potential V (R), the action of the path, S[Rt], is given
by

S[Rt] =

∫ β

0

dt

[
r2
s

4

∣∣∣∣
dRt

dt

∣∣∣∣
2

+ V (Rt)

]
. (3.2)

Thermodynamic properties, such as the energy, are
related to the diagonal part of the density matrix, so
that the path returns to its starting place or to its per-
mutation P after a time β.

To perform Monte Carlo calculations of the inte-
grand, one makes the imaginary time discrete with a
time step τ , so that one has a finite (and hopefully
small) number of time slices and thus an isomorphic
classical system of N particles in M = β/τ time slices;
an equivalent NM particle classical system of “poly-
mers” [22].

Note that in addition to sampling the path, the per-
mutation is also sampled. This is equivalent to allow-
ing the ring polymers to connect in different ways.
This macroscopic “percolation” of the polymers is
directly related to superfluidity, as Feynman [45–47]
first showed for bosons. Any permutation can be bro-
ken into cycles. Superfluid behavior can occur at low
temperature when the probability of exchange cycles
on the order of the system size is non-negligible. The
superfluid fraction can be computed in a path inte-
gral Monte Carlo (PIMC) calculation as described in
Ref. [43]. The same method could be used to calculate
the superconducting fraction in Jellium at low tempera-
ture. However, the straightforward application of those
techniques to Fermi systems means that odd permuta-
tions must be subtracted from the integrand. This is

the “fermions sign problem” [31] first noted by Feyn-
man [48] who after describing the path integral theory
for boson superfluid 4He, pointed out: “The [path inte-
gral] expression for Fermi particles, such as 3 He, is
also easily written down. However in the case of liquid
3 He, the effect of the potential is very hard to evaluate
quantitatively in an accurate manner. The reason for
this is that the contribution of a cycle to the sum over
permutations is either positive or negative depending
whether the cycle has an odd or an even number of
atoms in its length [. . .]. At very low temperature [. . .],
it is very difficult to sum an alternating series of large
terms which are decreasing slowly in magnitude when a
precise analytic formula for each term is not available.”

Thermodynamic properties are averages over the
thermal, N -fermions density matrix which is defined
as a thermal occupation of the exact eigenstates φi(R)

ρF(R,R′;β) =
∑

i

φ∗
i (R)e−βEiφi(R

′). (3.3)

The partition function is the trace of the density matrix

Z(β) = e−βF =

∫
dR ρF(R,R;β) =

∑

i

e−βEi .(3.4)

Other thermodynamic averages are obtained as

〈O〉 = Z(β)−1

∫
dRdR′ 〈R|O|R′〉ρF(R′, R;β). (3.5)

Note that for any density matrix the diagonal part is
always positive

ρF(R,R;β) ≥ 0, (3.6)

so that Z−1ρF(R,R;β) is a proper probability distri-
bution. It is the diagonal part which we need for many
observables, so that probabilistic ways of calculating
those observables are, in principle, possible.

Path integrals are constructed using the product
property of density matrices

ρF(R2, R0;β1 + β2)

=

∫
dR1 ρF(R2, R1;β2)ρF(R1, R0;β1), (3.7)

which holds for any sort of density matrix. If the prod-
uct property is used M times we can relate the den-
sity matrix at a temperature β−1 to the density matrix
at a temperature Mβ−1. The sequence of intermediate
points {R1, R2, . . . , RM−1} is the path, and the time
step is τ = β/M . As the time step gets sufficiently
small the Trotter theorem tells us that we can assume
that the kinetic T and potential V operator commute so
that: e−τH = e−τT e−τV and the primitive approxima-
tion for the fermions density matrix is found [22]. The
Feynman–Kac formula for the fermions density matrix
results from taking the limit M → ∞. The price we
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have to pay for having an explicit expression for the
density matrix is additional integrations; all together
3N(M − 1). Without techniques for multidimensional
integration, nothing would have been gained by expand-
ing the density matrix into a path. Fortunately, simu-
lation methods can accurately treat such integrands.
It is feasible to make M rather large, say in the hun-
dreds or thousands, and thereby systematically reduce
the time-step error.

One can then measure [22] the internal energy
(kinetic plus potential energy) per particle using the
thermodynamic estimator, the pressure using the virial
theorem estimator, the static structure (the radial dis-
tribution function), and the superconducting fraction
of Jellium.

One solution to Feynman’s task of rearranging terms
to keep only positive contributing paths for diagonal
expectation values is the restricted or fixed-nodes path
integral identity. Suppose ρF is the density matrix cor-
responding to some set of quantum numbers which is
obtained using the antisymmetrization operator A act-
ing on the same spin groups of particles on the distin-
guishable particle density matrix. Then the following
Restricted Path Integral identity holds [31,32].

ρF(Rβ , R0;β)

=

∫
dR′ ρF(R′, R0; 0)

∮

R′→Rβ∈γ(R0)

dRt e−S[Rt],

(3.8)

where the subscript means that we restrict the path
integration to paths starting at R′, ending at Rβ and
node-avoiding (those for which ρF(Rt, R0; t) �= 0 for
all 0 < t ≤ β), i.e. paths staying inside the reach
of the reference point R0, [32] γ(R0) or the nodal
cell [31]. The weight of the walk is ρF(R′, R0; 0) =
(N !)−1

∑
P(−)Pδ(R′ − PR0). It is clear that the con-

tribution of all the paths for a single element of the
density matrix will be of the same sign, thus solving
the sign problem; positive if ρF(R′, R0; 0) > 0, neg-
ative otherwise. On the diagonal the density matrix
is positive and on the path restriction we can always
choose ρF(Rt, R0; t) > 0 for 0 < t ≤ β, then only
even permutations are allowed since ρF(R0,PR0;β) =
(−)PρF(R0, R0;β). It is then possible to use a bosons
calculation to get the fermions case once the restriction
has been correctly implemented.

The problem we now face is that the unknown density
matrix appears both on the left-hand side and on the
right-hand side of Eq. (3.8) since it is used to define the
criterion of node-avoiding paths. To apply the formula
directly, we would somehow have to self-consistently
determine the density matrix. In practice what we need
to do is make an ansatz, which we call ρT, for the nodes
of the density matrix needed for the restriction. The
trial density matrix, ρT, is used to define the trial reach:
γT(R0).

Then if we know the reach of the fermion density
matrix we can use the Monte Carlo method to solve the
fermion problem, restricting the path integral (RPIMC)

to the space-time domain where the density matrix has
a definite sign (this can be done, for example, using
a trial density matrix whose nodes approximate well
the ones of the true density matrix). Furthermore, we
use the antisymmetrization operator to extend it to the
whole configuration space (using the tiling [31] prop-
erty of the reach),

⋃
Pe

γT(PeR0), where only even per-
mutations Pe are needed. This will require the compli-
cated task of sampling the permutation space of the
N -particles [22]. Recently, an intelligent method has
been devised to perform this sampling through a new
algorithm called the worm algorithm [33,34]. To sample
the path in coordinate space, one generally uses various
generalizations of the Metropolis rejection algorithm
[49] and the bisection method [22] to accomplish mul-
tislice moves which becomes necessary as τ decreases.

The pair-product approximation for the action [22]
was used by Brown et al. [10] to write the many-body
density matrix as a product of high-temperature, two-
body density matrices [22]. The pair Coulomb density
matrix was determined using the results of Pollock [50],
even if these could be improved using the results of
Vieillefosse [51,52]. This procedure comes with an error
that scales as ∼ τ3/r2

s where τ = β/M is the time step,
with M the number of imaginary time discretizations. A
more dominate form of time step error originates from
paths which cross the nodal constraint in a time less
than τ . To help alleviate this effect, Brown et al. [10]
use an image action to discourage paths from getting
too close to nodes. Additional sources of error are the
finite size one and the sampling error of the Monte Carlo
procedure itself. In their analysis, for the highest den-
sity points, statistical errors are an order of magnitude
higher than time step errors.

In our calculation, for simplicity, we will use the prim-
itive approximation [22] for the action. This procedure
comes with an error that scales as ∼ τ2/r2

s . And we will
have the additional sources of error due to the finite
size and the sampling of the Monte Carlo procedure
itself, as usual. For the highest density points, statisti-
cal errors are of order 10−3, in the potential energy or
in the pressure, whereas τ2/r2

s ≈ 10−6.

4 The problem

Like Brown et al. [10] we adopted as trial density
matrix for the path integral nodal restriction a free
fermion density matrix. This allowed us to implement
the restriction in the path integral calculation from the
worm algorithm [34,53] to the reach of the reference
point in the moves ending in the Z sector: remove, close,
wiggle, and displace. The worm algorithm is a partic-
ular path integral algorithm where the permutations
need not to be sampled as they are generated with the
simulation evolution. Instead of the pair-product action
used by Brown et al. [10], we used the primitive approx-
imation for the action [22] and modified the original
worm algorithm so that it would work in the presence of
the nodal restriction and in a canonical ensemble calcu-
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lation at fixed number of particles N , volume Ω = Nα3,
and temperature T . We should mention that, due to the
choice of approximation for the action, our results will
suffer of some additional systematic error respect to the
data of Brown et al., although small.

The restriction implementation is rather simple: we
just reject the move whenever the proposed path is
such that the ideal fermion density matrix calculated
between the reference point and any of the time slices
subject to newly generated particles positions has a neg-
ative value. Our algorithm is described in detail in the
following section.

The trial density matrix used to perform the restric-
tion of the fixed-nodes path integral is chosen as the
one of ideal fermions which is given by

ρ0(R,R′; t) ∝ A
[
e−

(ri−r′
j)2

4λt

]

ξ=1
= det

[
exp

(
−

r2
s(ri − r′

j)
2

4t

)]
, (4.1)

where λ = �2/2m, t is the imaginary time, and A is
the antisymmetrization operator acting on the same
spin groups of particles, which for polarized electrons
reduces to a single determinant, and the distances√

(ri − r′
j)

2 are calculated taking care, as usual, of the

wrapping due to the periodic boundary conditions. We
expect this approximation to be best at high temper-
atures (high Θ) and high densities (low rs) when the
quantum and correlation effects are weak. Clearly in
a simulation of the ideal gas (V = 0) this restriction
returns the exact result for fermions.

The Coulomb potential is treated through the method
of Fraser et al. [54] which is alternative to the Ewald
summation of Natoli and Ceperley [55], to cure its long-
range nature.

5 Our algorithms

Our algorithm, that we will call algorithm A, briefly
presented in the previous section is based on the worm
algorithm of Boninsegni et al. [34,53,56–58]. The algo-
rithm of Boninsegni et al. solves the path integral in the
grand canonical ensemble and uses a menu of 9 moves.
Three are self-complementary: swap, displace, and wig-
gle, and the other six are 3-couples of complementary
moves: insert–remove, open–close, and advance–recede.
These moves act on “worms” with an head Ira and a tail
Masha in the β-periodic imaginary thermal time, which
can swap a portion of their bodies (swap move), can
move forward and backward (advance–recede moves),
can be subdivided in two or joined into a bigger one
(open–close moves), and can be born or die (insert–
remove moves) since we are working in the grand-
canonical ensemble. The configuration space of the
worms is called the G sector. When the worms recom-
bine to form a closed path (“world line”) we enter the

so called Z sector and the path can translate in space
(displace move) and can propagate in space through the
bisection algorithm (wiggle move), carefully explained
in Ref. [22]. To reduce the grand canonical algorithm
to a canonical calculation it is sufficient to choose the
chemical potential equal to zero everywhere in the algo-
rithm and to reject all the moves attempting to change
the number of particles N in the Z sector. Of course
it is necessary to initialize the calculation from a path
containing the given number N of particles.

To get the restricted path integral we choose the
trial density matrix as the one of the non-interacting
fermions (4.1) and restrict the Z to Z and the G to
Z moves, that is: displace, wiggle, close, and remove.
To implement the restriction we reject the move when-
ever the proposed path is such that the ideal fermions
density matrix of Eq. (4.1) calculated between the ref-
erence point R0 and any of the time slices subject to
newly generated particles positions, Rt with 0 < t ≤ β,
changes sign. That is, whenever the path ends up in
a region not belonging to the trial reach of the ref-
erence point. So, we implemented the rejection every
time we encounter ρ0(Rt, R0; t)ρ0(Rτ , R0; τ) < 0 for all
τ < t ≤ β. We generally run our simulations with an
acceptance ratio for the occupation of the Z sector close
to 1/2. When calculating diagonal properties we con-
sider the density matrix averaged over the entire path
and not only at the reference point. For each move we
can decide the frequency of the move and the maximum
number of time slices it operates on, apart from the dis-
place move where instead of the maximum number of
time slices we can decide the maximum extent of the
spatial translation displacement.

We noticed that doing like so, at low temperature,
the simulation with all the moves activated would enter
the G sector without being able to get out of it (To
exit the G sector the temporal distance between Ira
and Masha must be close to 0 or β and the spatial dis-
tance close to 0. The temporal distance is a stochastic
variable which change of an amount β in a number of
moves of the order of M2. So at larger M the change
of sector becomes rarer). So at first we switched off the
advance–recede and swap moves and more generally the
access to the G sector (by properly adjusting the dimen-
sionless parameter C [34,53] which controls the relative
statistics of Z and G-sectors) in our simulations. This
is equivalent to restrict the configuration space to only
the primal nodal cell γT(R0) neglecting the other tiles
obtained applying even permutations to the reference
point R0 according to the tiling property [31].

To include correctly the permutations and the tran-
sition through the G sector of the worm algorithm, in
our low-temperature simulations, we had to use a dif-
ferent algorithm that we will call algorithm B. Instead
of using a generic G sector, we work in a restricted
one where we impose equal imaginary times for Ira and
Masha and a spatial distance between Ira and Masha
equal to εL with ε < 1 (here it is important not to
take ε too small otherwise the acceptance ratios of the
various moves ending in the G sector will go to zero).
That is, rather than using the sector of the numerator
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Table 1 Thermodynamic results in our simulations with ξ = 1 and N = 33 electrons interacting through the pair-potential
φ(r) = v(r) − ND/(N − 1) of Eqs. (6.1)–(6.2), at a density fixed by rs, temperature fixed by Θ (at a Coulomb coupling
constant Γ), and with M time slices: e0 (Ry) is the internal energy per particle of the ideal gas, P0 (Ry/r3

sa3
0) is the pressure

of the ideal gas, ek (Ry) is the kinetic energy per particle in our simulation, eBrown
k (Ry) is the kinetic energy per particle

in Brown et al. [10] simulation, ep (Ry) is the potential energy per particle in our simulation, eBrown
p (Ry) is the potential

energy per particle in Brown et al. [10] simulation, et (Ry) = ek + ep is the total energy per particle in our simulation,
and P (Ry/r3

sa3
0) is the pressure in our simulation. In these simulations, we used algorithm A with the advance–recede and

swap moves switched off

M rs Θ Γ e0 P0 eBrown
k eBrown

p ek ep et P

244 1 1 0.342 9.920268 1.578860 9.72(2) − 0.938(1) 9.67(5) − 0.970(3) 8.70(5) 2.670(7)
489 1 0.5 0.684 5.973201 0.950664 5.72(2) − 1.088(1) 5.67(8) − 1.133(3) 4.53(8) 2.02(1)
977 1 0.25 1.368 4.307310 0.685530 4.12(4) − 1.171(1) 4.9(1) − 1.233(2) 3.7(1) 1.89(2)
1000 1 0.125 2.737 3.727579 0.593263 3.64(1) − 1.1961(5) 4.73(6) − 1.276(1) 3.46(6) 1.861(9)
253 2 1 0.684 2.480067 0.394715 2.419(5) − 0.5280(4) 2.39(1) − 0.542(1) 1.85(1) 0.941(2)
507 2 0.5 1.368 1.493300 0.237666 1.435(5) − 0.5917(2) 1.46(2) − 0.612(1) 0.85(2) 0.788(3)
1000 2 0.25 2.737 1.076827 0.171382 1.050(7) − 0.6219(2) 1.24(3) − 0.6484(9) 0.59(3) 0.750(4)
1000 2 0.125 5.473 0.931895 0.148316 0.906(4) − 0.6302(1) 1.22(2) − 0.663(1) 0.55(2) 0.745(4)
128 4 1 1.368 0.620017 0.098679 0.597(1) − 0.2885(3)* 0.593(1) − 0.3026(1) 0.290(1) 0.3725(2)
256 4 0.5 2.737 0.373325 0.059416 0.367(1) − 0.3206(1) 0.361(2) − 0.3282(2) 0.033(2) 0.3335(3)
512 4 0.25 5.473 0.269207 0.042846 0.269(1) − 0.3302(1) 0.303(2) − 0.3396(1) −0.036(2) 0.3234(3)
1000 4 0.125 10.946 0.232974 0.037079 0.237(1) − 0.3318(1) 0.30(1) − 0.3444(6) −0.05(1) 0.322(2)

of the whole Green’s function, one works with the sector
of the single-particle density matrix at a distance less
than εL. We accomplished this by constructing the fol-
lowing set of three, Z to G, G to Z, and G to G, moves
obtained by combining the elementary moves of the
usual worm algorithm [34,53]: open–advance (removes
a random number m of time slices and advances Ira
of m time slices), recede–close (recedes Ira by a ran-
dom number m of time slices and closes the worm),
advance–recede (advances Ira by a random number m
of time slices and advances Masha by the same number
of time slices). Moreover we just killed the usual insert
and remove moves which would have to use a number
of time slices equal to M and would thus have very low
acceptance ratios. Each of these three combined moves
produces a configuration with an Ira and a Masha at
the same imaginary time. We did not change all the
other moves: swap, wiggle, and displace. This amounts
to simulate a G sector for the one-body density matrix
(which can be obtained from the histogram of the spa-
tial distance between Ira and Masha). We note that
this algorithm is inherently a canonical ensemble one.
Moreover we rejected those moves which would bring to
have a spatial distance between Ira and Masha larger
than εL. We then introduced the nodal restriction also
on this set of three moves: open–advance, recede–close,
advance–recede, choosing as the reference point the one
immediately next to Ira in imaginary time.

We used this other algorithm to simulate just two
of the low-temperature cases among the twelve cases
considered in the next section and observed a rele-
vant improvement in the numerical results as compared
with the existing literature data. This fact validated our
algorithms.

It is well known that Monte Carlo algorithms works
better as long as we have a richer moves’ menu, unless

of course one violates detailed balance. So our modified
worm algorithm is very efficient in exploring all the elec-
trons path configurations with all the necessary permu-
tation exchanges, even if in our restricted version, the
winding numbers will reflect the restriction. We will not
be able to determine the superfluid fraction in our simu-
lations. This is a shortcoming of applying the restricted
path integral method where the winding numbers are
biased by the restriction.

6 Results

We simulated the Jellium at high density and low tem-
perature. Given the bare Coulomb potential v(r) =
2 Ry/rsr, according to Fraser et al. [54], it is possi-
ble to use in the simulation the following pair-potential
φ,

φ(r) = v(r) − N

N − 1
D, (6.1)

D =
1

Ω

∫

cell

v(r) dr. (6.2)

This method is equivalent to the Ewald summation
technique or to its developments like the one carried on
by Natoli and Ceperley [55] and gives smaller finite-size
effects. The method is much more simple to implement
than the more common Ewald sums but of course it
has discontinuities when jumping from one side of the
simulation cell to the other. The additive constant D
is chosen to make sure that the average value of the
interaction is zero and the self energy of the electrons
is taken as zero.
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Fig. 1 We show a comparison of our results at the three
different values of density (rs = 1, 2, 4), with (with perm.)
and without (no perm.) permutations, for the kinetic energy
per particle (top panel) and the potential energy per particle
(bottom panel) with the results of Brown et al. [10] (Brown)
as they are reported in Tables 1 (no perm.) and 2 (with
perm.)

In Table 1, we present our results for various ther-
modynamic quantities in the fully polarized ξ = 1 case
with N = 33 particles. The statistical errors in the
various measured quantities were determined, as usual,
through the estimate of the correlation time of the given
observable O, τO, as error =

√
τOσ2

O/N , where σ2
O is

the variance of O and N is the number of MC steps. Our
results can be directly compared with the ones of Brown
et al. [10]. Benchmark data correcting systematic errors
[59] up to a 10% in the high-density rs � 1 and low-
temperature cases of Brown et al., can be found in Refs.
[13,15,16,60,61]. The time steps τ chosen in the simu-
lations are like the ones chosen by Brown et al. [10] as a
function of rs at all temperatures: τ = 0.0007 for rs = 1,
τ = 0.0027 for rs = 2, and τ = 0.0214 for rs = 4 but in
any case with M not bigger than 103. From the table,
we can see how our results agree well with the ones
of Brown et al. [10]: The kinetic energy, in the high-
est density case, is within a 0.5% at high temperatures
(in the correct direction given by the later results of

0.0

0.5

1.0

0 1 2

(a) N=33  ξ=1  Θ=1

g(
r)

r/a0rs

DH
DH
DH

rs=1
rs=2
rs=4

0.0

0.5

1.0

0 1 2

(b) N=33  ξ=1  rs=1

g(
r)

r/a0rs

DH
Θ=1

Θ=0.5
Θ=0.25

Θ=0.125

Fig. 2 The radial distribution function for Jellium in
selected states of Table 1, from algorithm A, at fixed tem-
perature in the upper panel (a) and at fixed density in
the lower panel (b). Also shown is the Debye–Hückel (DH)
result [39] for the high temperature and low density limit,

gDH(r) = exp
[
−Γ

r
exp

(
−

√
3Γr

)]

Refs. [13,61]) and up to a 35% in the lower temperature
case. This discrepancy increase is due to the fact that in
these simulations we had the advance–recede and swap
moves switched off, so we were not sampling the whole
fermions configuration space but only the primal nodal
cell (the one connected directly to the reference point
itself), as explained in the previous section. This clearly
becomes more and more important at low temperature
when the quantum effects are more relevant.

The data denoted with an asterisk in the table have
been considerably corrected by the later work of Groth
et al. [61], who give ep = − 0.305012(33), which is much
closer to our result.

In Fig. 1, we show a comparison of our results for the
kinetic energy per particle (top panel) and the poten-
tial energy per particle (bottom panel) with the results
of Brown et al. [10]. From the figure, we see clearly how
our results with no permutations reproduce well the
results of Brown et al., at sufficiently high temperatures
and low densities. And our results with the permuta-
tions switched on corrects the discrepancy observed at
low temperatures (small Θ) and high densities (small
rs).
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Table 2 Same as Table 1 but using our algorithm B in the high-density low-temperature simulations

M rs Θ Γ e0 P0 eBrown
k eBrown

p ek ep et P

977 1 0.25 1.368 4.307310 0.685530 4.12(4) − 1.171(1) 4.1(2) − 1.226(5) 2.9(2) 1.76(4)
1000 1 0.125 2.737 3.727579 0.593263 3.64(1) − 1.1961(5) 3.8(2) − 1.280(6) 2.5(2) 1.73(2)

0.0

0.5

1.0

0 1 2

N=33  ξ=1  rs=1  Θ=0.125

g(
r)

r/a0rs

A
B

Fig. 3 The radial distribution function forJellium in the
ξ = 1, rs = 1, Θ = 0.125 state as obtained from our two
algorithms A and B: The one without G sector and the one
with G sector, respectively

In Fig. 2, we show our results for the radial distribu-
tion function [62], g(r), for selected states of Table 1 at
fixed temperature and at fixed density, respectively.

As outlined in the previous section we repeated the
calculation for the low temperature cases ξ = 1, rs =
1,Θ = 0.25 and Θ = 0.125 with our modified algorithm
B, with ε = 1/2, able to sample the whole fermions
configuration space including the necessary permuta-
tions. The result in these cases were encouraging and
are shown in Table 2. They were much closer to the cor-
responding result of Brown et al. [10] than the results
obtained with the previous algorithm A: The kinetic
energy, in the highest density case, is within a 5% at
low temperatures. We also checked that the two algo-
rithms, A and B, coincide at high temperature. This
validates our algorithms A and B.

In Fig. 3, we show our results for the radial dis-
tribution function for the ξ = 1, rs = 1,Θ = 0.125
state obtained with the algorithm with the G sector
switched off (A) and with the algorithm with the G
sector switched on (B).

From the figure, we see how the Fermi hole dimin-
ishes by the introduction of the permutations in the
calculation.

7 Conclusions

We have successfully implemented the ideal fermion
density matrix restriction on the path integral worm
algorithm which is able to generate the necessary

RPIMC moves during the simulation evolution thereby
circumventing the otherwise inevitable sign problem.
This allowed us to reach the finite, non-zero, tempera-
ture properties of a given fluid model of Fermi particles
interacting through a given pair-potential. We worked
in the canonical ensemble and applied our method to
the Jellium fluid of Wigner. We explicitly compared
our results with the previous canonical calculation of
Brown et al. [10] in the high density and low tempera-
ture regime where their algorithm had problems in sam-
pling the path [59]. Our results complement the ones of
Brown et al., with the treatment of the high density
rs ≤ 4 and low temperature cases which were found to
be inaccurate by Bonitz et al. [13,16,61] who suggested
an alternative algorithm to circumvent the systematic
errors in Brown calculations [59].

The relevance of our study relies in the fact that our
simulation method is different from both the method
of Ceperley et al. [10,11] who uses the fixed-nodes
approximation in the canonical ensemble of a regu-
lar, and not worm, PIMC [22], and from the one of
Bonitz et al. [12,14–16] who combine configuration- and
permutation-blocking PIMC. Our method is also differ-
ent from other quantum Monte Carlo methods like the
one of Malone et al. [17] that agrees well with the one of
Bonitz et al. at high densities and the direct PIMC one
of Filinov et al. [18] that agrees well with Brown et al.,
at low density and moderate temperature. So our new
algorithms add to the ones already used in the quest for
an optimal way to calculate the properties of the fasci-
nating Wigner’s Jellium model at finite, non zero, tem-
peratures. We devised two different algorithms, A and
B. In algorithm A, we used a restricted, fixed-nodes,
worm algorithm which never passes through the G sec-
tor. In algorithm B we used a restricted, fixed-nodes,
worm algorithm with a G sector which has Masha and
Ira always at the same imaginary time and at a given
small spatial distance. In both cases, the restriction of
the fixed-nodes path integral is the one from a trial
density matrix equal to the one of ideal fermions.

We obtained results for both the static structure
(the radial distribution function) and various thermo-
dynamic quantities (energy and pressure) for the Jel-
lium model with N = 33 fully polarized (ξ = 1) elec-
trons at high density and low temperature. Our results
compare favorably with the ones of Brown et al. [10]
with a discrepancy on the kinetic energy, in the highest
density case, up to a 0.5% at high temperatures (with
our algorithm A) and up to 5% at low temperatures
(with our algorithm B). Our results can also be com-
pared with the later ones of Refs. [13,61] with which
the agreement increases even further. This validates our
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algorithms which are alternative to the ones that have
already been used in the literature.

We expect in the near future to explicitly determine
the dependence of the Jellium properties (structural
and thermodynamic) on the polarization ξ. We would
also like to carry out a more comprehensive compar-
ison with the results in the literature and to predict
other results yet to be determined through quantum
Monte Carlo methods, like the static structure function.
Regarding improvements to the algorithm we would like
to implement the use of better approximations for the
action in the path integral and a search for better trial
density matrices to guide the fixed nodes at low tem-
peratures or the implementation of the released-nodes
recipe.

Another important problem to solve is the one of cal-
culating the superfluid fraction for fermions or super-
conducting fraction for electrons. The winding numbers
that one is computing in RPIMC are not be sufficient
to determine the superfluid fraction since there is the
restriction on the paths.

We would like to thank Saverio Moroni for several relevant
discussions at S.I.S.S.A. of Trieste, Boris Svistunov for use-
ful e-mail and Skype suggestions on how to implement our
algorithm B, and David Ceperley for many e-mail exchanges
which have been determinant for the completion of the work.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: All data generated or analyzed during this study
are included in this published article.]

References

1. R. Fantoni, Eur. Phys. J. B 86, 286 (2013)
2. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Har-

court Inc., San Diego, 1976)
3. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids

(Academic Press, London, 1986)
4. S.L. Shapiro, S.A. Teukolsky, Black Holes, White

Dwarfs, and Neutron Stars. The Physics of Compact
Objects (Wiley, Germany, 1983)

5. R. Fantoni, B. Jancovici, G. Téllez, J. Stat. Phys. 112,
27 (2003)

6. R. Fantoni, G. Téllez, J. Stat. Phys. 133, 449 (2008)
7. R. Fantoni, J. Stat. Mech. P04015, 4 (2012a)
8. R. Fantoni, J. Stat. Mech. P10024, 5 (2012b)
9. R. Fantoni, International Journal of Modern Physics C

29, 1850028 (2018a)
10. E.W. Brown, B.K. Clark, J.L. DuBois, D.M. Ceperley,

Phys. Rev. Lett. 110, 146405 (2013)
11. E. Brown, M.A. Morales, C. Pierleoni, D.M. Ceperley, in

Frontiers and Challenges in Warm Dense Matter, ed by
F. Graziani et al. (Springer, Berlin, 2014) pp. 123–149

12. T. Schoof, M. Bonitz, A. Filinov, D. Hochsthul, J.W.
Dufty, Contrib. Plasma. Phys. 51, 687 (2011)

13. T. Schoof, S. Groth, J. Vorberger, M. Bonitz, Phys. Rev.
Lett. 115, 130402 (2015)

14. T. Dornheim, S. Groth, A. Filinov, M. Bonitz, New J.
Phys. 17, 073017 (2015)

15. T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone,
W.M.C. Foulkes, M. Bonitz, Phys. Rev. Lett. 117,
156403 (2016a)

16. S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone,
W.M.C. Foulkes, M. Bonitz, Phys. Rev. Lett. 119,
135001 (2017)

17. F.D. Malone, N.S. Blunt, E.W. Brown, D.K.K. Lee, J.S.
Spencer, W.M.C. Foulkes, J.J. Shepherd, Phys. Rev.
Lett. 117, 115701 (2016)

18. V.S. Filinov, V.E. Fortov, M. Bonitz, Z. Moldabekov,
Phys. Rev. E 91, 033108 (2015)

19. R. Fantoni, G. Pastore, Phys. Rev. E 87, 052303 (2013)
20. R. Fantoni, Int. J. Modern Phys. C 29, 1850064 (2018)
21. T. Dornheim, S. Groth, M. Bonitz, Phys. Rep. 744, 1

(2018)
22. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)
23. J.P. Hansen, Phys. Rev. A 8, 3096 (1973)
24. J.P. Hansen, P. Vieillefosse, Phys. Lett. 53A, 187 (1975)
25. U. Gupta, A.K. Rajagopal, Phys. Rev. A 22, 2792

(1980)
26. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. A 30,

2619 (1984)
27. K.S. Singwi, M.P. Tosi, R.H. Land, A. Sjölander, Phys.
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Chapter 65

Affine quantization of (φ4)4 succeeds
while canonical quantization fails

Fantoni R. and Klauder J. R., Phys. Rev. D 103, 076013 (2021)
Title: “Affine quantization of (φ4)4 succeeds while canonical quantization fails”
Abstract: Covariant scalar field quantization, nicknamed (φr)n, where r denotes the power
of the interaction term and n = s + 1 where s is the spatial dimension and 1 adds time.
Models such that r < 2n/(n − 2) can be treated by canonical quantization, while models
such that r > 2n/(n − 2) are nonrenormalizable, leading to perturbative infinities, or, if
treated as a unit, emerge as ‘free theories’. Models such as r = 2n/(n− 2), e.g., r = n = 4,
again using canonical quantization also become ‘free theories’, which must be considered
quantum failures. However, there exists a different approach called affine quantization that
promotes a different set of classical variables to become the basic quantum operators and it
offers different results, such as models for which r > 2n/(n−2), which has recently correctly
quantized (φ12)3. In the present paper we show, with the aid of a Monte Carlo analysis,
that one of the special cases where r = 2n/(n − 2), specifically the case r = n = 4, can be
acceptably quantized using affine quantization.
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Covariant scalar field quantization, nicknamed ðφrÞn, where r denotes the power of the interaction term
and n ¼ sþ 1 where s is the spatial dimension and 1 adds time. Models such that r < 2n=ðn − 2Þ can be
treated by canonical quantization, while models such that r > 2n=ðn − 2Þ are nonrenormalizable, leading
to perturbative infinities, or, if treated as a unit, emerge as ‘free theories’. Models such as r ¼ 2n=ðn − 2Þ,
e.g., r ¼ n ¼ 4, again using canonical quantization also become ‘free theories’, which must be considered
quantum failures. However, there exists a different approach called affine quantization that promotes a
different set of classical variables to become the basic quantum operators and it offers different results, such
as models for which r > 2n=ðn − 2Þ, which has recently correctly quantized ðφ12Þ3. In the present paper we
show, with the aid of a Monte Carlo analysis, that one of the special cases where r ¼ 2n=ðn − 2Þ,
specifically the case r ¼ n ¼ 4, can be acceptably quantized using affine quantization.
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I. INTRODUCTION

The family of covariant scalar field theories under
consideration have classical Hamiltonians given by

Hðπ;φÞ ¼
Z �

1

2
½πðxÞ2 þ ð∇⃗φÞðxÞ2 þm2φðxÞ2�

þ gφðxÞr
�
dsx; ð1Þ

where the massm > 0, the coupling constant g ≥ 0, r is the
power of the interaction term, and s is the number of spatial
dimensions. As classical elements they lead to suitable
equations of motion and these solutions automatically
guarantee that, for T > 0, all such solutions obey the rule
that

R
T
0

R
Hðπðx; tÞ;φðx; tÞÞdsxdt < ∞.

However, acceptable classical solutions do not tell the
whole story. The domain of the example in (1) includes the
complete set of arbitrary continuous paths, πðx; tÞ and
φðx; tÞ, that determine the domain

Dðπ;φÞ ¼
�Z

T

0

Z
Hðπðx; tÞ;φðx:tÞÞdsxdt < ∞

�
: ð2Þ

This expression for the domain is unchanged if the
interaction term is excluded, while, on the other hand,
the given domain will be dramatically reduced from the true
free theory domain if the interaction term is sufficiently
strong and has been introduced. These questions can be
answered if we show the domains may be studied.

A. Review of principal domains

The term πðx; tÞ2 is equal to _φðx; tÞ2, and if we include t
as just another spatial variable the classical Hamiltonian
becomes

HðφÞ¼
Z �

1

2
½ð∇⃗φÞðxÞ2þm2φðxÞ2�þgφðxÞr

�
dsx; ð3Þ

where now x ¼ ðx0; x1; x2…; xsÞ, where x0 ¼ ct and
n ¼ sþ 1. The contribution of the separate terms can be
captured if we observe that the three following cases must
be treated separately and constitute unitarily inequivalent
quantizations,

�Z
φðxÞrdnx

�
2=r

<or¼or>
Z n

ð∇⃗φÞðxÞ2þm2φðxÞ2
o
dnx:

ð4Þ

The domain of this expression consists of all fϕðxÞg for
whichHðϕÞ < ∞. For a given finite spacetime dimension n
and power r, it is of considerable interest to learn if the
domain changes when the interaction coupling constant
changes from g ¼ 0 to g > 0. The study of that issue for all
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fϕðxÞg involves an explicit expression in which t becomes
an additional “spatial variable”

�Z
ϕðxÞrdnx

�
2=r

¼ C
Z

½ð∇⃗ϕÞðxÞ2 þm2ϕðxÞ2�dnx: ð5Þ

If C is bounded above for all ϕ, then the domain of H is the
samewith g ¼ 0 or g > 0. IfC ¼ ∞ then the domain ofH is
larger when g ¼ 0 than it is when g > 0. It follows [1,2] that
the domain does not change provided that r < 2n=ðn − 2Þ.
If, on the other hand, r > 2n=ðn − 2Þ, then the domain ofH
drops as soon as g > 0, and thus when one seeks the domain
in the limit that g → 0, continuity forces the resultant domain
to be the smaller domain.
The focus hereafter, in this paper, is on the case r ¼

2n=ðn − 2Þ, and more explicitly, we choose r ¼ n ¼ 4.1

This model has been studied by applying canonical quan-
tization, and the universally accepted result [3–5] is that this
model becomes a “free model” despite the presence of the
interaction and g > 0. Such a result may be considered as a
quantum failure. Additional efforts has beenmade in Ref. [6]
to quantize ðϕ4Þ4 models using alternative procedures that,
regrettably, have also led only to a “free theory.”
Affine quantization can account for certain classical

models that experience two different classical domains,
one (free) without an interaction term, g ¼ 0, and one
(nonfree) with the interaction term, g > 0. If necessary,
such models automatically choose the smaller domain as
g → 0 by simple continuity.2 This feature can imply either
that the quantization leads only to the free theory, or the
quantization leads to the form of a nonfree theory. As an
example, canonical quantization of ðφ4Þ4 leads only to a
free theory [3–5], which, incidentally, may lead to unex-
pected difficulties in the Standard Model (SM). Our
quantization of ðφ4Þ4 by affine quantization is a procedure
that is just like canonical quantization, after choosing a
different pair of classical variables to promote to operators,
and can fit well with other quantization procedures, as is
implicit in our study.
Affine quantization [8] has offered positive results for

several models, one of which includes the nonrenormaliz-
able model ðφ12Þ3 [9]. In this paper we seek to find out
whether affine quantization will lead to a positive quanti-
zation of the model ðφ4Þ4, or, if not positive, what behavior
is actually found.

II. CANONICAL AND AFFINE QUANTIZATIONOF
THE SCALAR EUCLIDEAN FIELD THEORY

Canonical quantization has been the go to method of
quantization for many decades. Clearly, the reason for this
loyalty is because its use has been so successful. The simple

examples from quantum mechanics have led to similar
procedures when dealing with field quantization. The
formulations of continuous fields can also lead to unwanted
divergences. This behavior invites the use of a formal
analysis, which addresses selected equations as beacons
that regularization of the procedure enables preliminary
analysis to occur. This section is devoted to a formal
analysis of both canonical and affine quantization of fields
initially guided by elementary examples.
For a single classical degree of freedom, the favored

variables−∞ < p; q < ∞ and aPoisson bracket fq; pg ¼ 1
lead to the basic quantum operators P, Q, which obey
½Q;P� ¼ iℏ1. A similar story for classical scalar fields
−∞ < πðxÞ, φðxÞ < ∞ has a Poisson bracket fφðxÞ;
πðyÞg ¼ δsðx − yÞ which points toward basic quantum
operators π̂ðxÞ, ϕ̂ðxÞ, that obeys ½ϕ̂ðxÞ; π̂ðyÞ� ¼
iℏδsðx − yÞ. Ideally, the semiclassical action functional for
a field theory model is given by

SðcÞ½φ� ¼
Z �

1

2
½ð∇⃗φÞðxÞ2þm2φðxÞ2�þgφðxÞr

�
dnx: ð6Þ

The affine story introduces an important new structure.
To see that feature, we return to a single degree of freedom,
with p, q. Our analysis instead focuses on the case where
q > 0. This case implies that the operator P ≠ P†. We then
seek an operator that can be self adjoint. The new classical
variables are pq; lnðqÞ, which, with q > 0, permits each
variable to be self adjoint. However, we also need to admit
q < 0, which can be done when we select unusual classical
variables, namely, pq; q which permits −∞ < q ≠ 0 < ∞,
and joins together the cases where q > 0 and q < 0. Affine
quantization then involves pq→ ðP†QþQPÞ=2≡D¼D†

and q → Q ¼ Q†, which obeys ½Q;D� ¼ iℏQ, and already
offers a Lie algebra for the “affine group.” Thus, we are led
to the dilation operator −∞ < D < ∞ and the position
operator −∞ < Q ≠ 0 < ∞. This analysis will implicitly
be used in discussing the affine quantization of scalar fields.
For an affine field story we need πðxÞφðxÞ≡ κðxÞ and

φðxÞ, for which −∞ < φðxÞ ≠ 0 < ∞, and, as basic
operators, ½ϕ̂ðxÞ; κ̂ðyÞ� ¼ iℏδsðx − yÞϕ̂ðxÞ. Just like the
single degrees of freedom, we also have the classical
relation that πðxÞ2 ¼ κðxÞ2=φðxÞ2 as well. However, such
a relation does not hold when quantized. In particular, for a
single degree of freedomDQ−2D ¼ P2 þ ð3=4Þℏ2Q−2. For
the scalar field, the analogous story leads to the relation
that κ̂ðxÞφðxÞ−2κ̂ðxÞ ¼ π̂ðxÞ2 þ ð3=4Þℏ2δ2sð0Þϕ̂ðxÞ−2.
The new term involves a Dirac delta function, δð0Þ ¼ ∞,

raised to the power 2s. This new formal expression follows
the similarly formal expression πðxÞ2 ¼ −ℏ2½δ2=δφðxÞ2�,
wherein such formal terms require regularization, a pro-
cedure that we will introduce very soon. The latest relation
is featured as an all important semi-classical relation in the
following affine action

1The only other similar model is r ¼ 6, n ¼ 3.
2The paper [7] using ultralocal field models clearly illustrates

how the smaller domain wins.
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SðaÞ½φ� ¼
Z �

1

2
½ð∇⃗φÞðxÞ2 þm2φðxÞ2�

þ gφðxÞr þ 3

8
ℏ2

δ2sð0Þ
φðxÞ2 þ ϵ

�
dnx; ð7Þ

where ϵ is a regularization parameter.

A. Lattice formulation of the field theory

We used a lattice formulation of the field theory. The
theory considers a real scalar field φ taking the value φðxÞ
on each site of a periodic, hypercubic, n-dimensional lattice
of lattice spacing a and periodicityNa. The affine action for
the field, Eq. (7), is then approximated by

SðaÞ½φ�=an≈ 1

2

�X
x;μ

a−2ðφðxÞ−φðxþ eμÞÞ2þm2
X
x

φðxÞ2
�

þ
X
x

gφðxÞrþ 3

8

X
x

ℏ2
a−2s

φðxÞ2þ ϵ
; ð8Þ

where eμ is a vector of length a in the þμ direction.
In this paper we are interested in reaching the continuum

limit by taking Na fixed and letting N → ∞.

III. MONTE CARLO SIMULATION

Our Monte Carlo (MC) simulations use the Metropolis
algorithm [10,11] to calculate the vacuum expectation of a
functional observable O½φ�

hOi ≈
R
O½φ� expð−S½φ�ÞQx dφðxÞR

expð−S½φ�ÞQx dφðxÞ
; ð9Þ

where S ¼ R
Hdx0 is the action. This is a Nn multidimen-

sional integral. The simulation is started from the initial
condition φ ¼ 0. One MC step consisted in a random
displacement of each one of the Nn components of φ as
φ → φþ ðη − 1=2Þδ where η is a uniform pseudo random
number in [0, 1] and δ is the amplitude of the displacement.
Each one of these Nn moves is accepted if expð−ΔSÞ > η
whereΔS is the change in the action due to the move (it can
be efficiently calculated considering how the kinetic part
and the potential part change by the displacement of a
single component of φ) and rejected otherwise. The
amplitude δ is chosen in such a way to have acceptance
ratios as close as possible to 1=2 and is kept constant during
the evolution of the simulation. One simulation consisted of
M ¼ 106 steps. The statistical error on the average hOiwill
then depend on the correlation time necessary to decorre-
late the property O, τO, and will be determined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τOσ

2
O=ðMNnÞ

q
, where σ2O is the intrinsic variance for O.

From the real field φðxÞ we extract the Fourier transform

φ̃ðpÞ ¼
Z

dnxeip·xφðxÞ; ð10Þ

with φ̃�ðpÞ ¼ φ̃ð−pÞ. We then find the ensemble
averages hφ̃ð0Þ2i and hφ̃ð0Þ4i and construct the following
observable (a renormalized unitless coupling constant at
zero momentum),

gR ¼ 3hφ̃ð0Þ2i2 − hφ̃ð0Þ4i
hφ̃ð0Þ2i2 ; ð11Þ

so that clearly, using path integrals in the Fourier transform
of the field, we immediately find for the canonical version
of the theory,

gR !g→0
0: ð12Þ

This remains true even for the calculation on a discrete
lattice.
We then choose the momentum p with one component

equal to 2π=Na and all other components zero and
calculate the ensemble average hjφ̃ðpÞj2i. We then con-
struct the renormalized mass

m2
R ¼ p2hjφ̃ðpÞj2i

hφ̃ð0Þ2i − hjφ̃ðpÞj2i : ð13Þ

When g ¼ 0 the canonical version of the theory can be
solved exactly yielding

mR !g→0½π=N sinðπ=NÞ�m: ð14Þ

Following Freedman et al. [3] we will call gR a
dimensionless renormalized coupling constant and we will
use it to test the “freedomness” of our field theories in the
continuum limit. Note that the sum rules of Eqs. (12) and
(14) do not hold for the affine version (7) of the field theory
due to the additional ð3=8Þℏ2δ2sð0Þ=½φðxÞ2 þ ϵ� interac-
tion term.

A. MC results

In our MC simulation, following Freedman et al. [3], for
each N and g, we adjusted the bare massm in such a way to
maintain the renormalized mass approximately constant
mR ≈ 3 to within a few percent (in all cases less than 15%),
and we measured the renormalized coupling constant gR of
Eq. (11) for various values of the bare coupling constant g
at a given small value of the lattice spacing a ¼ 1=N. In
order to keep the renormalized mass constant at large g, it
was necessary to choose a negative m2 giving rise to a
double well interaction density. So that, with Na and mR
fixed, as a was made smaller, whatever change we found in
gRmn

R as a function of g could only be due to the change in
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a. We generally found that a depression in mR produced an
elevation in the corresponding value of gR and viceversa.
The results are shown in Fig. 1 for the affine version with
ℏ ¼ 1 and ϵ ¼ 10−10, where, following Freedman et al. [3]
we decided to compress the range of g for display, by
choosing the horizontal axis to be g=ð50þ gÞ. As we can
see from the top panel of the figure the renormalized mass
was made to stay around the chosen value of 3, even if this
constraint was not easy to implement since for eachN and g
we had to run the simulation several (5–10) times with
different values of the bare mass m.
These results should be compared with the results of

Fig. 1 of Freedman et al. [3] where the same calculation
was done for the canonical version of the field theory. As
we can see from Fig. 1, contrary to the figure of Freedman,
the renormalized coupling constant of the affine version
remains far from zero in the continuum limit (Na ¼ 1 and

N → ∞) for all values of the bare coupling constant. Here,
unlike in the canonical version used by Freedman, the
diminishing space between higher N curves is a pointer
toward a nonfree ultimate behavior as N → ∞. Moreover
going from N ¼ 10 to N ¼ 12 we actually observe a
growth in the renormalized coupling constant.
In order to test our calculations we repeated the

Freedman calculation for the canonical version of the
ðφ4Þ4 theory, by keeping as before mR ≈ 3 (to within a
10%) for all cases. Our results, shown in Fig. 2, compare
favorably with the ones of Freedman Fig. 1.

IV. CONCLUSIONS

The model on which this paper has focused is ðφ4Þ4 and
normally uses canonical quantization that was the only
procedure, or other procedures designed to get equivalent
results. For our model, canonical quantization leads to a

FIG. 1. We show the renormalized mass mR of Eq. (13) (top
panel) and the renormalized coupling constant gRmn

R of Eq. (11)
(bottom panel) as calculated from Eq. (10) formR ≈ 3 and various
values of the bare coupling constant g at decreasing values of the
lattice spacing a ¼ 1=N (N → ∞ continuum limit) for the affine
ðφ4Þ4 Euclidean scalar field theory described by the action in
Eq. (7). The lines connecting the simulation points are just a
guide for the eye.

FIG. 2. We show the renormalized mass mR of Eq. (13) (top
panel) and the renormalized coupling constant gRmn

R of Eq. (11)
(bottom panel) as calculated from Eq. (10) formR ≈ 3 and various
values of the bare coupling constant g at decreasing values of
the lattice spacing a ¼ 1=N (N → ∞ continuum limit) for the
canonical ðφ4Þ4 Euclidean scalar field theory described by the
action in Eq. (6). The lines connecting the simulation points are
just a guide for the eye.
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free theory, as if the interaction term was missing. Affine
quantization is a newer procedure that is qualitatively
different than canonical quantization. The difference is
such that favored Cartesian classical variables [12] choose
the basic quantum operators, while for affine quantization,
the favored classical variables arise from a constant
negative curvature. This is different from the constant zero
curvature, i.e., a flat surface suitable for canonical quan-
tization. Indeed, it leads to affine quantization becoming a
partner procedure and not a substitute for canonical
quantization, with each procedure appropriate for distinct

sets of problems for them to treat. This distinction of
procedures offered by affine quantization has already
clarified the analysis of half-harmonic oscillators [13], a
favorable quantization of the nonrenormalizable model
ðφ12Þ3 [9], and now the strongest test yet for affine
quantization, specifically, quantizing the ðφ4Þ4 model.
It is expected that additional quantum examples may lead

to problems when canonical quantization is used. Such
examples deserve to consider affine quantization, which
might be the answer to those problems.
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continuum limit of (ϕ12)3
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Title: “Monte Carlo evaluation of the continuum limit of (ϕ12)3”
Abstract: We study canonical and affine versions of non-renormalizable euclidean classical
scalar field-theory with twelfth-order power-law interactions on three dimensional lattices
through the Monte Carlo method. We show that while the canonical version of the model
turns out to approach a “free-theory” in the continuum limit, the affine version is perfectly
well defined as an interaction model.
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1. Introduction

Classical versions of all covariant scalar field-theory models with positive interactions
admit acceptable solutions, but some models will lead to divergences when trying to
solve them when using canonical quantum versions [1].

Although classical covariant models, such as (φ12)3, lead to acceptable solutions,
canonical quantization leads only to free solutions, as if the interaction term was not
present. There are simple classical models, e.g. a half-harmonic oscillator that is limited
to 0 < q < ∞, which also fails using canonical quantization. A newer procedure, called
affine quantization [2–5], differs from canonical quantization only because it promotes
different canonical variables to quantum operators. It has been shown that affine quanti-
zation can successfully quantize the oscillator example, and the purpose of this paper is
to demonstrate that affine quantization, in effect, just adds one additional term, which
is proportional to �2, to the Hamiltonian. Which extra term to add is guided by affine
quantization, and the result leads to a valid quantization of (φ12)3

1.
The problem treated in this work deals with covariant scalar fields with power–law

interactions. For the (φr)d theory, the Euclidean time version of the action functional is
then given by,

S[φ] =

∫ {
1

2

[
s∑

μ=0

(
∂φ(x)

∂xμ

)2

+ m2φ2(x)

]
+ gφr(x)

}
ddx, (1.1)

with x = (x0, x1, . . . , xs) for s spatial dimensions, x0 being time, and d = s + 1 for the
number of space-time dimensions, m is the bare mass, g > 0 is the interaction term
coupling constant and r = 4, 6, 8, 10 . . . is the power of the interaction term.

Monte Carlo (MC) [6–8] studies in 1982 [9] showed that these models were correct for
r = 4 and d = 3 but when r = 4 and d = 4 they led only to free models, with a vanishing
renormalized coupling constant in the continuum limit, and this was later confirmed by
analytic studies and that even became simply free models when r = 4 and d > 4, which
includes non-renormalizable models as well.

All of the above stories used canonical procedures, which then failed when r �
2d/(d − 2) [2–4]. It is believed that affine quantization procedures will solve those
problems.

In this work, we chose the (φ12)3 theory. Classically, this is a straightforward problem
that in the g → 0 limit reduces to a free-theory. But in its canonical version it is non-
renormalizable, which means that the domain of the free model, Dg=0, is larger than

1 The example (φ12)3 has been deliberately chosen to be highly nonrenormalizable, while requiring the least amount of computer
time.
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that of the interacting model Dg>0 (integrating φ12 will be finite for less φ than in the
free model). In the continuum limit, the domains disagree and by continuity the new
domain for the ‘free’ version (we can call it a ‘pseudofree’ situation) is the domain Dg>0,
not Dg=0. That is the source of having free models using canonical quantization, such as
(φr)d with r > 2d/(d − 2)2. On the other hand, affine quantization will lead to a non-free
model to begin with and so it is appropriate when g → 0. In parallel to the covariant
theory, one can also define an ultralocal theory that is obtained by neglecting the kinetic
part of the action (the term

∑s
μ=1(∂φ(x)/∂xμ)

2) [3]. It turns out that such a theory will
have a divergent perturbation series already for r > 2 for any d � 2. In these cases, the
field theory will lead to a free-theory, non-renormalizable. So, with r = 12 there should
be an even greater difference between the canonical and affine versions.

Various efforts have been tried in literature [10] to get a good result for the (φ4)4

models, only to find that every effort came to the same conclusion that the result was
a ‘free-theory’. Hence, the affine approach is the first to find an acceptable result [11].

2. Affine version of the field-theory

Our model has a standard classical Hamiltonian given by,

H[π, φ] =

∫ {
1

2

[
π2(x) +

s∑

μ=1

(
∂φ(x)

∂xμ

)2

+ m2φ2(x)

]
+ gφr(x)

}
dsx, (2.1)

where s denotes the number of spatial coordinates and x0 is the time. The momentum
field π(x) = ∂φ(x)/∂x0 and the canonical action S =

∫
Hdx0 is the one of equation (1.1).

Next, we introduce the affine field κ(x) ≡ π(x)φ(x), with φ(x) �= 0 and modify the
classical Hamiltonian to become [2–4],

H ′[κ, φ] =

∫ {
1

2

[
κ(x)φ−2(x)κ(x) +

s∑

μ=1

(
∂φ(x)

∂xμ

)2

+ m2φ2(x)

]
+ gφr(x)

}
dsx. (2.2)

In an affine quantization, the operator term κ̂(x)φ−2(x)κ̂(x) = π̂2(x) +
�2(3/4)δ2s(0)φ−2(x), which leads to an extra ‘3/4’ potential [12] term (see appendix A),
so that the new affine action will formally read,

S ′[φ] =

∫ {
1

2

[
s∑

μ=0

(
∂φ(x)

∂xμ

)2

+ m2φ2(x)

]
+ gφr(x) +

3

8
�2 δ2s(0)

φ2(x) + ε

}
ddx, (2.3)

where ε > 0 is a parameter used to regularize the ‘3/4’ extra term. In the g → 0 limit, this
model remains different from a free-theory, exactly due to the new (3/8)�2δ2s(0)/[φ2(x) +
ε] interaction term.

2 One requires that
∫

ddx [∇φ(x)]2 < [
∫

ddx φr(x)]2/r .

https://doi.org/10.1088/1742-5468/ac0f69 3
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3. The lattice formulation of the field-theory model

We used a lattice formulation of the field theory. The theory considers a real scalar field
φ taking the value φ(x) on each site of a periodic, hypercubic, d-dimensional lattice of
lattice spacing a and periodicity na. The canonical action for the field, equation (1.1),
is then approximated by

S[φ] ≈
{

1

2

[∑

x,μ

a−2(φ(x) − φ(x + eμ))
2 + m2

∑

x

φ2(x)

]
+ g

∑

x

φr(x)

}
ad, (3.1)

where eμ is a vector of length a in the +μ direction. The vacuum expectation of a
functional observable F [φ] is

〈F 〉 ≈
∫

F [φ] exp(−S[φ])
∏

x dφ(x)∫
exp(−S[φ])

∏
x dφ(x)

. (3.2)

We will approach the continuum limit by choosing na = 1 fixed and increasing the
number of discretizations n of each component of the space-time, so that the lattice
spacing a = 1/n → 03.

4. Simulation details and relevant observables

From each real field φ(x), we extract the Fourier transform

φ̃(p) =

∫
ddx eip·xφ(x), (4.1)

with φ̃∗(p) = φ̃(−p), so that the action of equation (1.1) becomes

S[φ̃] =

∫
1

2
[p2 + m2]|φ̃(p)|2 ddp

(2π)d
+ gIr[φ̃], (4.2)

where we denote with Ir the power–law interaction functional.

We then find the ensemble averages 〈φ̃2(0)〉 and 〈φ̃4(0)〉 and construct the following
observable (a renormalized unitless coupling constant at zero momentum),

gR =
3〈φ̃2(0)〉2 − 〈φ̃4(0)〉

〈φ̃2(0)〉2
, (4.3)

so that clearly, using path integrals in the Fourier transform of the field, we immediately
find for the canonical version of the theory,

gR
g→0−−−→ 0. (4.4)

3 Note that one could change the field φ → φ′a1−d/2 so that for example the kinetic term of the action goes to simply∑
x,μ[φ

′(x) − φ′(x + eμ)]
2/2.

https://doi.org/10.1088/1742-5468/ac0f69 4
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This remains true even for the calculation on a discrete lattice.
We then choose the momentum p with one component equal to 2π/na and all other

components zero and calculate the ensemble average 〈|φ̃(p)|2〉. We then construct the
renormalized mass

m2
R =

p2〈|φ̃(p)|2〉
〈φ̃2(0)〉 − 〈|φ̃(p)|2〉

. (4.5)

When g = 0 the canonical version of the theory can be solved, exactly yielding

mR
g→0−−−→[π/n sin(π/n)]m. (4.6)

Following Freedman et al [9], we will call gR a dimensionless renormalized coupling
constant and we will use it to test the ‘freedomness’ of our field theories in the continuum
limit. Note that the sum-rules of equations (4.4) and (4.6) do not hold for the affine
version (2.3) of the field theory due to the additional (3/8)�2δ2s(0)/[φ2(x) + ε] interaction
term.

Our MC simulations use the Metropolis algorithm [6, 8] to calculate the dis-
cretized version of equation (3.2), which is a nd multidimensional integral. The sim-
ulation is started from the initial condition φ = 0. One MC step consisted in a random
displacement of each one of the nd components of φ as follows

φ → φ + (η − 1/2)δ, (4.7)

where η is a uniform pseudo random number in [0, 1] and δ is the amplitude of the
displacement. Each one of these nd moves is accepted if exp(−ΔS) > η, where ΔS is
the change in the action due to the move (it can be efficiently calculated considering
how the kinetic part and the potential part change by the displacement of a single
component of φ) and rejected otherwise. The amplitude δ is chosen in such a way to have
acceptance ratios as close as possible to 1/2 and is kept constant during the evolution
of the simulation. One simulation consisted of N = 106 steps. The statistical error on
the average 〈F 〉 will then depend on the correlation time necessary to decorrelate the

property F , τF , and will be determined as
√

τFσ2
F/(Nnd), where σ2

F is the intrinsic
variance for F , as shown in appendix B.

5. Simulation results

We first chose the Euclidean covariant scalar interaction model with d = 3 and r = 12. In
its canonical version (see the action of equation (1.1)), this is a non-renormalizable model
and, following a perturbation expansion of g, there is an infinite number of different,
divergent terms; or, if treated as a whole, such a model collapses to a ‘free-theory’ with
a vanishing interaction term [13, 14]. This is even more true for the ultralocal version
of the theory.

Following Freedman et al [9], in our MC simulation, for each n and g, we adjusted
the bare mass m in such a way to maintain the renormalized mass approximately con-
stant mR ≈ 3 (for large g it was necessary to take a complex bare mass so that m2

https://doi.org/10.1088/1742-5468/ac0f69 5
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Figure 1. We show the renormalized mass mR of equation (4.5) (top) and the
renormalized coupling constant gRmd

R of equation (4.3) (bottom) as calculated
from equation (3.2) for mR ≈ 3 and various values of the bare coupling constant
g at decreasing values of the lattice spacing a = 1/n (n → ∞ continuum limit)
for the canonical (φ12)3 Euclidean scalar field theory described by the action in
equation (1.1). The lines connecting the simulation points are just a guide for the
eye.

was negative), to within a few percent (in all cases less than 15%), and we measured
the renormalized coupling constant gR of equation (4.3) for various values of the bare
coupling constant g at a given small value of the lattice spacing a = 1/n. Thus, with na
and mR fixed, as a was made smaller, whatever change we found in gRmd

R as a function
of g could only be due to the change in a. We generally found that a depression in
mR produced an elevation in the corresponding value of gR and vice-versa. The results
are shown in figure 1 for the covariant version, where, following Freedman et al [9],
we decided to compress the range of g for display by choosing the horizontal axis to
be g/(50 + g). As we can see from the figure the renormalized mass was made to stay
around a value of 3, even if this constraint was not easy to implement, since for each
n and g we had to run the simulation several (5–10) times with different values of the
bare mass m.

https://doi.org/10.1088/1742-5468/ac0f69 6
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Figure 2. We show the renormalized mass mR of equation (4.5) (top) and the
renormalized coupling constant gRmd

R of equation (4.3) (bottom) as calculated from
equation (3.2) for mR ≈ 3 and various values of the bare coupling constant g at
decreasing values of the lattice spacing a = 1/n (n → ∞ continuum limit) for the
affine (φ12)3 Euclidean scalar field theory described by the action in equation (1.1).
The lines connecting the simulation points are just a guide for the eye.

In figure 2, we show the same calculation but for the regularized affine field-theory
(see the action of equation (2.3)), where we take � = 1 and ε = 10−10.

From figure 1, we can see how at all finite values for the bare coupling constants g the
renormalized coupling at zero momentum gRmd

R appears to move to zero uniformly as
the lattice spacing gets small, for n → ∞. This numerically suggests that the canonical
theory becomes asymptotically a free-theory in the continuum limit of large n, which
is in agreement with the well known theoretical results [2–4]. This does not happen for
the affine theory as shown in figure 2, where the renormalized coupling of the theory
stays far from zero in the continuum limit for all values of the bare coupling constant.

https://doi.org/10.1088/1742-5468/ac0f69 7
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6. Conclusions

Using MC simulations, we determined the dimensionless renormalized coupling constant
of a Euclidean classical scalar field-theory with twelfth-order power-law interactions
on a three-dimensional lattice. Our results for the canonical version of the theory are
consistent with a noninteracting continuum limit. The renormalized coupling constant
tends to zero at each finite value of the bare coupling constant as the lattice spacing
gets small.

We then formulated an affine version of the same field-theory with the ‘3/4’ inter-
action term and observed that the MC results for the renormalized coupling constant
stays far from zero for all values of the bare coupling constant as the lattice spacing
diminishes. This means that the affine model remains a well-defined interacting model
in the continuum limit.

A classical model, such as (φ12)3 with a positive coupling constant, has a natu-
ral behavior, while it becomes a free-theory with a positive coupling constant using
canonical quantization. Canonical quantization also fails for a half-harmonic oscilla-
tor, e.g. 0 < q < ∞ as well. Affine quantization solves both of these problems. There
is a genuinely new procedure that permits various problem models to achieve a proper
quantization. Affine quantization just selects different classical variables to promote to
operators, and then it proceeds just like canonical quantization thereafter.

The present paper shows that the model (φ12)3 also generates a nontrivial behavior
with an affine quantization. It is designed to feature a region where canonical quantiza-
tion fails and there is a new procedure that can help. The classical limit of this quantized
model leads back to a classical model with a positive coupling constant. That does not
happen for canonical quantization. This implies that while canonical quantization is
good for some models, affine quantization is needed for other models.

There are many other models that canonical quantization cannot solve, or struggle
to quantize, that may be possible to quantize using affine quantization. Some of those
models may be useful to specific problems in present-day high energy physics.
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Appendix A. The origin of the ‘3/4’ extra term

The operator corresponding to the affine field κ will be the dilation operator

κ̂ = (π̂φ̂ + φ̂π̂)/2, where the regularized basic quantum Schrödinger operators are

given by φ̂(x) = φ(x) and π̂(x) = −i�δφ(x) = −i�δ/δφ(x) so that the commutator

[φ̂(x), π̂(y)] = i�δs(x − y), where δs(x) is a s-dimensional Dirac delta function since

δφ(x)φ(y) = δs(x − y). Multiplying this by φ̂, we find [φ̂, φ̂π̂] = [φ̂, π̂φ̂] = [φ̂, κ̂] = i�δsφ̂,
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which is only valid for φ �= 0. Then κ̂ = −i�{δφ(x)[φ(x)] + φ(x)δφ(x)}/2 = −i�{δs(0)/2 +
φ(x)δφ(x)}. Now, for φ(x) �= 0, we will have that affine quantization sends π̂2(x) to

κ̂(x)φ−2(x)κ̂(x) = −�2{δs(0)/2 + φ(x)δφ(x)}φ−2(x){δs(0)/2 + φ(x)δφ(x)}
= −�2

{
δ2s(0)φ−2(x)/4 + δs(0)φ(x)δφ(x)[φ

−2(x)]/2

+ δs(0)φ−1(x)δφ(x)/2

+ δs(0)φ−1(x)δφ(x)/2 − δs(0)φ−1(x)δφ(x) + δ2
φ(x)

}

= −�2{δ2s(0)φ−2(x)/4 − 2δ2s(0)φ−2(x)/2 + δ2
φ(x)}

= �2(3/4)δ2s(0)φ−2(x) − �2δ2
φ(x)

= �2(3/4)δ2s(0)φ−2(x) + π̂2(x).

(A1)

We then see the appearance of an extra ‘3/4’ potential term. The lattice version of such
a term will then be

�2(3/4)a−2sφ−2(x) (A2)

where a is the lattice spacing.

Appendix B. Error analysis in the simulation

Let F be a given property and let its value at step k of the random walk be F k. Let the
mean and intrinsic variance of F be denoted by

F̄ = 〈Fk〉 =
1

P

P∑

k=1

Fk (B1)

and

σ2
F = 〈(Fk − F̄ )2〉. (B2)

These quantities depend only on the distribution e−S/
∫

e
−S

, not on the MC procedure.
We can show that the standard error of the estimate of the average, F̄ , over a Markov
chain with P steps, is

error[F̄ ] =

√√√√
〈(

1

P

P∑

k=1

Fk − 1

P

P∑

k=1

F̄

)2〉
=

√
σ2

F τF

P
, (B3)

where τF is the correlation time that can be estimated as follows:

τF ≈ 1 + 2
P∑

k=1

〈(F0 − F̄ )(Fk − F̄ )〉
σ2

F

, (B4)
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and it gives the average number of steps to decorrelate the property F . The correlation
time will depend crucially on the transition rule and has a minimum value of 1 if one
can move so far in the configuration space that successive values are uncorrelated. In
general, the number of independent steps that contribute to reducing the error bar from
equation (B3) is not P but P/τ .

Hence, to determine the true statistical error in a random walk, one needs to estimate
the correlation time. To do this, it is very important that the total length of the random
walk be much greater than τF . Otherwise, the result and the error will be unreliable.
Runs in which the number of steps is P � τF are called well-converged. In general, there
is no mathematically rigorous procedure to determine τ . Usually one must determine it
from the random walk. It is a good practice occasionally to run very long runs to test
that the results are well-converged.
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Abstract
We study canonical and affine versions of the quantized covariant Euclidean free real scalar
field-theory on four dimensional lattices through the Monte Carlo method. We calculate the
two-point function near the continuum limit at finite volume. Our investigation shows that
affine quantization is able to give meaningful results for the two-point function for which is
not available an exact analytic result and therefore numerical methods are necessary.
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1 Introduction

The aim of this work is to find out what affine quantization does to a classical field-theory.
The simplest such theory is a free real scalar field of mass m. In that case, the spectrum
of physical states obtained with canonical quantization is known: states containing many
indistinguishable particles with momenta p1,p2, . . . and energies

√|pi |2 + m2 (here c = 1)
obeying Bose statistics. The simplest question to ask now is: what becomes of this if the
free real scalar field is subject to affine quantization [1,2] rather than canonical quantization
[3]? Does the system describe particles in this case as well? If so, do they interact with one
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another? Working out the two-point function of the free field in that framework should be of
use to answer these questions.

The free real scalar field is well understood by canonical quantization. The standard set
of problems that can be resolved by canonical quantization is distinct from the standard set
of problems that can be resolved by affine quantization, and one can therefore expect that an
affine quantization of the classical free real scalar differs from that of canonical quantization.
The purpose of this paper is to try to understand in what ways an affine quantization is
similar as well as dissimilar from a canonical quantization. We add that some non-free real
scalar fields have already been observed and that canonical quantization fails for several non-
renormalizable fields, such as (φ12)3 [4] and (φ4)4 [5]. The key to that result is the introduction
of a highly unusual, additional, non-quadratic, term that is dictated by affine quantization.
While affine quantization employs an additional term, that particular term formally disappears
when � → 0,whichmakes it a plausiblemodification of the quadratic terms of traditional free
real scalar fields in order to extend acceptable quantization of traditional non–renormalizable
models.

The Euclidean action in canonical quantization [3], in units where � = 1, is

S(c)[φ] =
∫ ⎧

⎨

⎩
1

2

s∑

μ=0

[
∂φ(x)

∂xμ

]2
+ V (φ(x))

⎫
⎬

⎭
dnx, (1.1)

with x = (x0, x1, . . . , xs) = (x0, x) for s spatial dimensions and n = s + 1 for the number
of space-time dimensions with x0 = ct . We will work at s = 3. And V is the self-interaction
potential density forwhichwewill chooseV (φ) = (1/2)m2φ2 corresponding to a free-theory
with a bare mass m.

The Eudlidean action in affine quantization [1,2] is

S(a)[φ] =
∫ ⎧

⎨

⎩
1

2

s∑

μ=0

[
∂φ(x)

∂xμ

]2
+ 3

8

δ2s(0)

φ2(x) + ε
+ V (φ(x))

⎫
⎬

⎭
dnx, (1.2)

where ε > 0 is a parameter used to regularize the “3/8” extra term (see Appendix A in [4])
and δ is a Dirac delta function. In this case the Hamiltonian density contains a divergent term,
in the total potential density V (φ) = 1

2m
2φ2 + 3

8δ
s(0)/(φ2 + ε), in the continuum, but the

field theory can be treated on a lattice, and the approach toward the continuum will be taken
under exam in this work. In fact, the path integral needs this feature since we have examples

such as
∫

φ2(x)e−S(a)[φ] Dφ/
∫
e−S(a)[φ]Dφ which is a creation of 〈ψ |φ̂2

(x)|ψ〉, namely

it creates a quantum version of the classical φ2(x). The quantum operator φ̂
2
(x) ∼ δs(0)

and must be passed through the functional integral which deals with terms within S(a)[φ]
leading to the fact that the term φ2(x) needs to be ∼ δs(0) (at the minima of V ) to handle

the integration and that factor being “passed” to the quantum operator term φ̂
2
(x). In the

V → 0 limit, this model remains different from a massless free-theory due to exactly the
new (3/8)δ2s(0)/[φ2(x) + ε] interaction term (we have a “pseudofree” situation).

In our previous works we studied the non-renormalizable canonical cases with V (φ) =
(1/2)m2φ2+gφ4 [5] in s = 3 and (1/2)m2φ2+gφ12 in s = 2 [4],where g is the bare coupling
constant. And we showed that the corresponding affine cases are indeed renormalizable.

Monte Carlo (MC) [6,7] is the numerical method of choice to treat multidimensional
integrals of high D dimensions (it supercedes the traditional integration methods, like the
trapezoidal rule, the Simpson rule,. . ., based on the knowledge of the αth derivative of the
integrating function already for D > 2α) therefore is especially useful to compute path
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integrals. We will use it to study the two-point function of the Euclidean action of a real
scalar field in affine quantization. Our estimate of the path integrals will be generally subject
to three sources of numerical uncertainties: The one due to the statistical errors, the one due to
the space-time discretization, and the one due to the finite-size effects. Of these the statistical
errors scale like M−1/2 where M is the computer time, the discretization of space-time is
responsible for the distance from the continuum limit (which corresponds to a lattice spacing
a → 0), and the finite-size effects stems from the necessity to approximate the infinite
space-time system with one in a periodic box of volume Ln with L = Na being the box side,
subject to N discretization points.

The work is organized as follows: In Sect. 2 we derive the lattice formulation of the
field theory needed in the treatment on the computer, in Sect. 3 we describe our computer
experiment and introduce the observables that will be measured during our simulations, in
Sect. 4 we present our results, and section 5 is for final remarks.

2 The Lattice Formulation of the Field-TheoryModel

We used a lattice formulation of the field theory. The theory considers a real scalar field φ

taking the value φ(x) on each site of a periodic, hypercubic, n-dimensional lattice of lattice
spacing a and periodicity L = Na. The canonical action for the field, Eq. (1.1), is then
approximated by

S(c)[φ] ≈
{
1

2

∑

x,μ

a−2 [
φ(x) − φ(x + eμ)

]2 +
∑

x

V (φ(x))

}

an, (2.1)

where eμ is a vector of length a in the +μ direction and we are at a temperature T = 1/Na,
in units where Boltzmann constant kB = 1. An analogous expression holds for the affine
action of Eq. (1.2) where the Dirac delta function is replaced by δ2s(0) → a−2s .

We will use this “primitive approximation” for the action even if it can be improved in
several ways [8] in order to reduce the error due to the space-time discretization. In reaching
to the expression (2.1) we neglected the term ∝ a2n due to the commutator of the kinetic and
potential parts of the Hamiltonian, in the Baker–Campbell–Hausdorff formula. In reaching
to the path integral expression this is justified by the Trotter formula.

The affine regularization of the previous paragraphs, leading to x → ka, where a > 0 is
the tiny lattice spacing, is helpful in our analysis but needs not be the final regularization. In
particular, the new term φ(x0, x)−2 → φ−2

k leads to a divergence when, at a fixed value of k,
the integral over the region |φk| < 1, of

∫
(φk)

−2 dφk = ∞. This behavior can be overcome
in an additional form of regularization.1 Instead of just φk we choose 2s additional terms that
are nearest neighbors to k. These additional terms enter in the form φ−2

k → [ ∑
l Jk,l φ

2
l ]−1,

where Jk,l = (2s + 1)−1 for l = k plus l is each of the 2s nearest neighbors of k. This
averaging of φk also leads to a finite integration where, with all |φl| < 1, we have

∫
· · ·

∫ [
∑

l

Jk,l φ
2
l

]−1 ∏

l

dφl < ∞, (2.2)

which is finite as determined by choosing φl = r ul such that
∑

l u
2
l < ∞ leading to the

integral U
∫
r−2r2sdr < ∞, for all s > 0, where U < ∞ accounts for the remaining finite

integrations.

1 The additional regularization is essentially taken from Eq. (14) in [9].
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Clearly, this procedure of averaging the expression φ−2
k offers a smoother regulation, and

we shall also adopt that procedure for ourMCstudies.Wewill refer to this affine regularization
as term B and the one discussed earlier, obtained by choosing Jk,l = δk,l, as term A.

The vacuum expectation of a functional observable O[φ] is

〈O〉 ≈
∫

O[φ] exp(−S[φ]) ∏
x dφ(x)

∫
exp(−S[φ]) ∏

x dφ(x)
, (2.3)

for a given action S.
We will approach the continuum limit by choosing a fixed L and increasing the number

of discretizations N of each component of the space-time. So that the lattice spacing a =
L/N → 0. To make contact with the continuum limit, two conditions must be met a 	
1/m 	 L where 1/m is the Compton wavelength.

3 Simulation Details and Relevant Observables

We want to determine the two-point function

K (x, y) = 〈[φ(x) − 〈φ(x)〉][φ(y) − 〈φ(y)〉]〉 = 〈φ(x)φ(y)〉 − 〈φ(x)〉2, (3.1)

replacing x by x + k with k = awn with wn = (n0, n1, . . . , ns) and nμ ∈ ZZ amounts to
a mere relabeling of the lattice points. Hence, due to translational invariance, K (x, y) can
only depend on the difference between the coordinates of the two points and we can define,

D(z) = 1

Ln

∑

x

K (x, x + z)an, (3.2)

For the massless free-theory with V → 0 in canonical quantization, we find that in non
periodic space-time (at zero temperature)

D′(z) =
∫

e−i p·z

p2
dn p

(2π)n
=

⎧
⎪⎪⎨

⎪⎪⎩

−|z|/2 n = 1
−(ln |z|/l)/2π n = 2
1/|z|4π n = 3
1/|z|24π2 n = 4

, (3.3)

where |z| =
√
z20 + z21 + · · · + z2s and l is a length. This shows how the massless field

generates long range interactions.
For a massive free-theory with V (φ(x)) = 1

2m
2φ2(x) in canonical quantization, we find

that in non periodic space-time (at zero temperature) with n = 4

D′(z) =
∫

e−i p·z

p2 + m2

dn p

(2π)n
= mK1(m|z|)/|z|4π2, (3.4)

where m is the mass and K1 is a modified Bessel function.
In periodic space–time (at a temperature T = 1/Na)

D(z) =
∑

wn

D′(z + Lwn), (3.5)

where the sum can be restricted by an infrared cutoff irc such that−irc ≤ nμ ≤ irc (without
any physical significance) in order to reach a given numerical accuracy. If we remove the
cutoff the function diverges for the massless case.
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Our MC simulations use the Metropolis algorithm [6,7] to calculate the ensemble average
of Eq. (2.3) which is a Nn multidimensional integral. The simulation is started from the initial
condition φ = 0. One MC step consisted in a random displacement of each one of the Nn

φ(x) as follows

φ → φ + (2η − 1)δ, (3.6)

where η is a uniform pseudo random number in [0, 1] and δ is the amplitude of the displace-
ment. Each one of these Nn moves is accepted if exp(−
S) > η where 
S is the change in
the action due to the move (it can be efficiently calculated considering how the kinetic part
and the potential part change by the displacement of a single φ(x)) and rejected otherwise.
The amplitude δ is chosen in such a way to have acceptance ratios as close as possible to 1/2
and is kept constant during the evolution of the simulation. One simulation consisted of M
MC steps. The statistical error on the average 〈O〉 will then depend on the correlation time

necessary to decorrelate the property O , τO , and will be determined as
√

τO σ 2
O /(MNn),

where σ 2
O is the intrinsic variance for O .

4 Simulation Results

We worked in units where c = � = kB = 1. We chose the regularization parameter of the
affine quantization A term to be ε = 10−10.2

For a massive free-theory, V (φ) = 1
2m

2φ2, in canonical quantization (1.1) with m =
1, N = 15, L = 3, a = L/N = 0.2 we obtained the result shown in Fig. 1 where we
compare the MC results with the exact expression of Eq. (3.5) with an infrared cutoff of
irc = 2 which is sufficient for an accuracy of 10−3. The run was M = 106 MC steps long.
The figure shows good agreement between the MC and the exact expression except at the
origin due to the space-time discretization.

For a free massive theory V (φ) = 1
2m

2φ2 in affine quantization (1.2) using term A, the
self-interaction is a double well with a spike barrier at φ = 0. We tuned the width of the
displacement, δ in Eq. (3.6), so that the random walk in the φ(x) will sample the probability
distribution exp(−S[φ])most efficiently, with short equilibration times. In Fig. 2 we show the
result for a free real scalar field subject to affine quantizationwith a total self-interaction of the
form V (φ) = 1

2m
2φ2 + 3

8a
−2s/(φ2 + ε) withm = 1, N = 15, L = 3, a = L/N = 0.2, and

ε = 10−10 after cutting the first equilibrationMC steps of a runmade ofM = 2.5×106 steps.
During the simulations we also calculated the renormalized mass mR and the renormalized
coupling constant gR [4]. As we can see from the figure the symmetry z → L − z of the
two-point function is preserved within the errorbars. The minima of the classical V is at
φ = ±
 with 
2 = −ε + √

3/(2a3m) which diverges in the continuum limit a → 0
(this of course does not happen in the harmonic oscillator case [10] which is independent
of the lattice spacing). Moreover the minimum of the action Ls+1m(

√
3 − mεas)/2as also

diverges, both in the continuum limit at finite volume (ma → 0) and in the infinite volume
limit at fixed lattice spacing (mL → ∞) (this also happen for the affine harmonic oscillator
[10] which has a well defined zero temperature limit). The corresponding contribution to the
vacuum expectation only occurs together with the normalization constant in front of the path
integral and drops out in quantities of physical interest (as long as the system is not placed in

2 Note that we could as well choose a regularization putting hard walls at φ = ±ε therefore rejecting MC
moves whenever φ ∈ [−ε, ε]
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10−3

10−2

10−1

100

101

102

103

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
(z

)

|z|

Covariant Canonical n=4

MC
exact

Fig. 1 Two-point function D(z) of Eq. (3.2), for a free real scalar field subject to canonical quantization with
a self-interaction potential density of the form V (φ) = 1

2m
2φ2 in Eq. (1.1) with m = 1, N = 15, L = 3, a =

L/N = 0.2. We compare with the analytic exact expression of Eq. (3.5) with an infrared cutoff of irc = 2. A
logarithmic scale is used on the y-axis

a curved geometry, i.e. in a gravitational field - there, the cosmological constant does have
physical significance)

The symmetry φ → −φ is broken in the simulations (see Appendix 1) and as a result
〈φ(x)〉 is different from zero. The action S = K̄ + V̄ where K̄ is the kinetic term and V̄ the
total potential term. Imagine now that we are in a configuration where all the Nn components,
φ(x), are around +
. In order to start migrating one single x ′ component, φ(x ′), around
the other minimum at −
 will have no cost in the potential, 
V̄ ≈ 0, but it will have a
big cost in the kinetic term between “neighboring” x , resulting in a big 
K̄ (as long as the
distance between the two minima, 2
, which diverges in the continuum limit, is large). As
a consequence exp(−
S) will be very small and the move will be almost surely rejected
according to the Metropolis rule. Moreover, once the system reaches the phase with all φ(x)
in one of the minima, it is very unlikely that a single φ(x ′) will move to the other minimum
but it cannot be excluded, in principle. If this happens one has a situation where the field is
around +
 at all x except at x ′ where it is around −
. But we can easily see that now it
would be statistically favorable for the single field on the left to rejoin the fields on the right
other then all the fields on the right join the field on the left. Exactly the same holds for affine
quantization (1.2) using term B, since due to the kinetic energy term in the action the fields
at neighboring points tend to assume similar values. On the other hand this would not hold
for an ultralocal [11] theory where we could have the field visiting both wells at ±
 but
only at not “neighboring” times, resulting in a vanishing 〈φ(x)〉. Apart from this the shape
of the two-point function is qualitatively similar to the one of the covariant case of Eq. (1.2).
In addition in a covariant complex field one could go “slowly” “around” the “mountain” at
φ = 0 with no need of “jumps”.

For our choice of the parameters we have 
 ≈ 10.404 with 
2 ≈ 108.253. The results in
Fig. 2 indicate that the quantization increases this number by about 10%. The minimum of
D(z) is reached around |z| = L/2. The two-point function is qualitatively similar to the one
of the free field. This is supported by recent results on a one dimensional harmonic oscillator
treated with affine quantization [10] where it is shown that the eigenvalues are still equally
spaced. A non-linear fit of the MC data (removing the first point at |z| = 0) with the function
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
(z

)

|z|

Covariant Affine n=4 ε=10−10
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Fig. 2 Two-point function D(z) of Eq. (3.2), for a free real scalar field subject to affine quantization with term
A and a self-interaction potential density of the form V (φ) = 1

2m
2φ2 in Eq. (1.2) with m = 1, N = 15, L =

3, a = L/N = 0.2, and ε = 10−10. Also shown is the result of a non-linear fit of the data (except the first
point at |z| = 0) with the function DmD (z) where DmD is the two-point function of a free field of mass mD
of Eq. (3.5) with an irc = 2, taking mD as the only fit parameter

DmD (z) where DmD is the two-point function of a free field of mass mD of Eq. (3.5) with
an irc = 2, taking mD as the only fit parameter, gives mD ≈ 0.9. The result of the fit is also
shown in Fig. 2.

For a free real scalar field subject to affine quantization with term A, in n = 4 space-
time dimensions in a volume 34 with a regularization parameter ε = 10−10, we studied the
continuum limit, N → ∞, (by choosing values lower of 15) and the dependence on the
bare mass m, of the five quantities mR, gR, 〈φ(x)〉2,mD , and D(0). The results are shown
in Table 1. From the table we see how moving towards the continuum limit mD ≈ m but mR

becomes small due to the fact that when the field picks up an expectation value, the Fourier
transform of the field φ̃(0) picks up a contribution proportional to the volume of the box.
Moreover, for the same reason, gR ≈ 2. The Table also shows the value of
2 and of 〈φ(x)〉2
to be compared. We see that the second is always larger than the first one by a percentage
increasing with increasing m and with increasing a. The value of D(0) is increasing with a
decrease of the lattice spacing a, signaling a divergence in the continuum limit.

Summarizing, the two-point function for φ − 〈φ〉 looks similar to the two-point function
of a free field with mass mD . In other words, the correlation length of the affine quantum
field theory is m/mD times the Compton wavelength of the canonical quantum theory of the
free scalar field. Our results seem to suggest that, going towards the continuum, the affine
model is approaching a free field with the same bare mass.

The value ofmD is not easy to understand, however. If the action is treated at the classical
level, small deviations from the minimum are determined by the curvature of the total poten-
tial, m2

c = d2V /dφ2 at φ = 
. The mass term contributes m2 and the “3/8” term yields
a contribution that is 3 times larger. For ε = 0, the mass relevant for the relation between
frequency of the waves and wavelength is: mc = 2m independently of a.

In Fig. 3 we show D(z) as obtained for m = 1 (L = 3, ε = 10−10) and three choices of
N , in the long simulations of the Table 1. One can then see the approach to the continuum
of the two-point function of the affine model.
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Table 1 We determined, for a free real scalar field subject to affine quantization with term A, in n = 4 space–
time dimensions, the dependence of mR , gR ,mD , and D(0) on the number of one dimensional discretization
points N and the bare mass m at L = 3 with a regularization parameter ε = 10−10

N m mR gR 
2 〈φ(x)〉2 mD D(0)

15 1 0.0122(3) 1.9979(1) 108.2 120.6(1) 0.934 3.69(6)

2 0.00646(4) 1.99983(3) 54.13 65.7(1) 1.785 3.32(6)

3 0.0186(6) 1.99925(8) 36.08 45.85(7) 3.009 2.97(6)

12 1 0.01053(5) 1.99958(5) 55.43 63.25(8) 0.302 2.38(5)

2 0.00967(9) 1.99992(2) 27.71 34.54(5) 2.467 2.00(5)

3 0.0095(1) 1.99905(8) 18.47 24.00(4) 5.483 1.66(5)

10 1 0.01417(4) 1.999464(4) 32.07 37.46(5) 0.587 1.58(3)

2 0.0124(1) 1.99995(1) 16.04 20.43(3) 3.789 1.29(3)

3 0.0119(2) 1.99996(1) 10.69 14.03(2) 5.647 1.02(3)

The runs were M = 5 × 106 MC steps long. The value of 
2 and of 〈φ(x)〉2 are also shown for comparison

−1
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4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
(z

)

|z|

Covariant Affine n=4 ε=10−10

N=15
N=12
N=10

Fig. 3 (color online) Two-point function D(z) of Eq. (3.2) for a free real scalar field subject to affine quan-
tization with term A and a self-interaction potential density of the form V (φ) = 1

2m
2φ2 in Eq. (1.2) with

m = 1, L = 3, ε = 10−10 and increasing N = 10, 12, 15

5 Conclusions

In a recent work [5] we studied the case of a non-renormalizable (φ4)4 canonical theory
(where the self-interaction potential is V (φ) = gφ4) in four space-time dimensions and
proved through MC that the theory becomes renormalizable if one treats the field through
affine quantization.

In the present work we observed that for g = 0 the simplest question to ask was: Does
the affine system describe particles as for the canonical one? If so, do they interact with one
another?

We tried to answer these question by looking at the two-point function. What we proved
through ourMC analysis was that the affine case with g = 0 has to be considered like a “sort”
of free-theory of “quasiparticles” (in the sense of Lev Landau in his theory for Fermi liquids)
where the “3/8” term just offers itself like a sort of “collective excitation” term. In this case
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the φ → −φ symmetry is broken and the field acquires a non-zero vacuum expectation.
The two-point function nonetheless has all the same features as those of a free scalar field of
similar mass, in the continuum limit.

One shortcoming of the affine formulation of the field theory is the divergence (in the
continuum) of the vacuum expectation value of the field which generates the disconnected
contribution to the Green’s functions. The path integral is fully determined by the local
properties of the field that enter through the action. The expectation value of the field does
not represent a local property of the field. We cannot imagine how one could possibly get
rid of it. In the Standard Model, however, one of the crucial properties of the Higgs fields
is that they pick up a vacuum expectation value v. The masses of the W- and Z-bosons as
well as those of the leptons and quarks are proportional to v. In order to remedy to this
drawback one should perform the following scaling φ → a−s/2φ (together with g → asg
in a possible interaction term of the form gφ4) which would bring about an additional factor
a−s multiplying the action. This scaling proved successful in our forthcoming work on the
affine quantization of a Higgs complex scalar field [12].

The present paper is wanted to confirm that both canonical and affine procedures lead
to desired and expected behavior for quadratic potential terms. A later paper [12] will be
designed to deal with quartic potential terms with canonical and affine procedures.

Acknowledgements Many thanks to Heinrich Leutwyler for his suggestions, comments, and someone who
proposed the canonical and affine programs with regard to the required features including what to examine
and what to expect, which has influenced our program and its results, and led to many positive results and
highlighted the expected canonical and affine differentiation.

Appendix: Field Configurations in the Vicinity of the Two Degenerate
Minima in the Affine Version

Classically, the affine version of the free Hamiltonian has two degenerate minima, φ = ±
.
If the path integral is dominated by those field configurations that are located in the vicinity
of one of these everywhere on the entire lattice or in the vicinity of the other, then it consists
of two equal pieces

Z =
∫

Dφ exp(−S[φ]),

Z+ =
∫

Dφ exp(−S[φ]), integral only over φ(x) ≈ 
,

Z− =
∫

Dφ exp(−S[φ]), integral only over φ(x) ≈ −
,

and Z+ = Z−. Under a broken symmetry φ → −φ one would get either Z ≈ Z+ or
Z ≈ Z−. This has to be expected in the present case of a real field since in order to move
the field φ(x) at a single x from around 
 to around −
 in the MC path integral one has to
overcome a large kinetic cost. This is not true for a complex field where one can go “slowly”
“around” the “mountain” at φ = 0.

The expectation value of the field

〈φ(x)〉 =
∫

Dφ φ(x) exp(−S[φ])/Z ,

〈φ(x)〉+ =
∫

Dφ φ(x) exp(−S[φ])/Z+, over φ(x) ≈ 


123

Monte Carlo evaluation of the continuum limit of the two-point
function of the Euclidean free real scalar field subject to affine
quantization 998



   28 Page 10 of 10 R. Fantoni , J. R. Klauder

〈φ(x)〉− =
∫

Dφ φ(x) exp(−S[φ])/Z−, over φ(x) ≈ −
,

with 〈φ(x)〉+ ≈ 
, 〈φ(x)〉− ≈ −
, and under the broken symmetry, 〈φ(x)〉 ≈ 〈φ(x)〉± ≈
±
 where the simulation, starting from φ = 0, will choose among the two different cases
just after the first equilibration steps.

For the two-point function

D+(x − y) =
∫

Dφ φ(x)φ(y) exp(−S[φ])/Z+ − 〈φ(x)〉2+, over φ(x) ≈ 
,

D−(x − y) =
∫

Dφ φ(x)φ(y) exp(−S[φ])/Z+ − 〈φ(x)〉2−, over φ(x) ≈ −
,

so that D+(z) ≈ 0, D−(z) ≈ 0, and D(z) ≈ D±(z) ≈ 0.
Moreover one can see how in the broken symmetry configuration in which φ2(x) ≈ 
2 ∼

a−3, the “3/8” term in the Hamiltonian density is also of the same order in the continuum
limit a → 0. This will lead to a convergent two-point function for φ − 〈φ〉 in the continuum
limit.
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I. INTRODUCTION

The aim of this work is to find out what affine
quantization [1,2] does to a classical field-theory for two
real scalar fields, or equivalently a complex scalar field, of
mass m subject to the Mexican-hat, Higgs potential, rather
than canonical quantization [3]. To this aim we will
compare the two-point function of the two fields in the
two frameworks.
In particular in this paper we try to understand in what

ways an affine quantization is similar as well as dissimilar
from a canonical quantization. We add that some nonfree
real scalar fields have already been observed and that
canonical quantization fails for several nonrenormalizable
fields, such as ðϕ12Þ3 [4] and ðϕ4Þ4 [5]. The key to that
result is the introduction of a highly unusual, additional,
nonquadratic, term that is dictated by affine quantization.
While affine quantization employs an additional term, that
particular term formally disappears when the Planck con-
stant ℏ → 0, which makes it a plausible modification of the
quadratic terms of traditional free real scalar fields in order
to extend acceptable quantization of traditional nonrenor-
malizable models. [6–10]
This work should be considered as a follow up of our

previous work [11] where the two-point function of a single
Euclidean free real scalar field subject to affine quantization
was found through Monte Carlo (MC) methods. In par-
ticular in that work we found that the vacuum expectation
value of the field diverges in the continuum limit. This

shortcoming is expected to disappear in the present case of
a complex field φ ¼ ϕ1 þ iϕ2. In fact, in this case, one can
go “slowly” “around” the peak at φ ¼ 0 with no need of
“jumps” [11].
The covariant Euclidean action in canonical quantization

[3] is1

SðcÞ½ϕ1;ϕ2� ¼
Z �

1

2

Xs

μ¼0

��∂ϕ1ðxÞ
∂xμ

�
2

þ
�∂ϕ2ðxÞ

∂xμ
�

2
�

þ Vðϕ1ðxÞ;ϕ2ðxÞÞ
�
dnx; ð1:1Þ

Vðϕ1;ϕ2Þ¼
1

2
m2 ðϕ2

1þϕ2
2Þþg ½ðϕ2

1þϕ2
2Þ−Φ2�2; ð1:2Þ

with x ¼ ðx0; x1;…; xsÞ ¼ ðx0; x⃗Þ for s spatial dimensions
and n ¼ sþ 1 for the number of space-time dimensions
with x0 ¼ ct, where c is the speed of light constant and t
extends from zero to ℏβ with β ¼ 1=kBT, kB being the
Boltzmann constant and T the absolute temperature. We
will work at s ¼ 3. And V is the self-interaction potential
density corresponding to an interacting Higgs theory with a
bare mass m and a bare coupling g.
The covariant Euclidean action in affine quantization

[1,2] is

SðaÞ½ϕ1;ϕ2�¼
Z �

1

2

Xs

μ¼0

��∂ϕ1ðxÞ
∂xμ

�
2

þ
�∂ϕ2ðxÞ

∂xμ
�

2
�

þ 3

8

δ2sð0Þℏ2

ϕ2
1ðxÞþϕ2

2ðxÞþϵ
þVðϕ1ðxÞ;ϕ2ðxÞÞ

�
dnx;

ð1:3Þ
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1Note however that Eq. (1.3) can be simplified to
V ¼ g½ðϕ2

1 þ ϕ2
2Þ − A2�2 þ constant, where A involves a combi-

nation of Φ and m: A2 ¼ Φ2 −m2=4g.
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where ϵ > 0 is a parameter used to regularize the “3=8” extra
term stemming from considering the complex field φðxÞ ¼
ϕ1ðxÞ þ iϕ2ðxÞ and the momentum field πðxÞ ¼
−iℏ∂=∂φðxÞ as the two conjugate canonical variables (see
Appendix A in [4]) and δ is a Dirac delta function. In this case
the Hamiltonian density formally contains a divergent
term,2 in the total potential density VðϕÞ ¼ 3

8
δ2sð0Þℏ2=

ðϕ2
1 þ ϕ2

2 þ ϵÞ þ VðϕÞ, in the continuum, but the field theory
can be regularized and treated on a lattice, and the approach
toward the continuum will be taken under exam in this
work. In the following we will use natural units with
c ¼ ℏ ¼ kB ¼ 1.
In our previousworkswe studied the single real scalar field

nonrenormalizable canonical cases with VðϕÞ ¼ 1
2
m2ϕ2 þ

gϕ4 [5] in s ¼ 3 and 1
2
m2ϕ2 þ gϕ12 in s ¼ 2 [4], where g is

the bare coupling constant. And we showed that the
corresponding affine cases are indeed renormalizable.
MC [12,13] is the numerical method of choice to treat

multidimensional integrals of high dimensions and, there-
fore, is especially useful to compute path integrals. We will
use it to study the two-point function of the Euclidean
action of two real scalar field in affine quantization. Our
estimate of the path integrals will be generally subject to
three sources of numerical uncertainties: The one due to the
statistical errors, the one due to the space-time discretiza-
tion, and the one due to the finite-size effects. Of these, the
statistical errors scale like M−1=2 where M is the computer
time, the discretization of space-time is responsible for the
distance from the continuum limit (which corresponds to a
lattice spacing a → 0), and the finite-size effects stems
from the necessity to approximate the infinite space system
with one in a periodic box of volume Ls with L ¼ Na being
the box side, subject to N discretization points. The finite-
size effects are due to the distance from the thermodynamic
limit (which corresponds to N → ∞). [14]
The work is organized as follows: In Sec. II we derive the

lattice formulation of the field theory needed in the treat-
ment on the computer; in Sec. III we describe our computer
experiment and introduce the observables that will be
measured during our simulations; in Sec. IV we present
our partial results obtained by working with the two scalar
fields ϕ1 and ϕ2 where we encounter ergodicity problems
for the affine case; in Sec. V we are able to overcome the
ergodicity breakdown observed in the previous section and
we present our final results for the affine case obtained by
working with the two scalar fields ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 þ ϕ2

2

p
and θ ¼

arctanðϕ2=ϕ1Þ such that dϕ1dϕ2 ¼ ρdθdρ. Section VI is
for final remarks.

II. THE LATTICE FORMULATION
OF THE FIELD-THEORY MODEL

We used a lattice formulation of the field theory. The
theory considers a complex scalar field φ ¼ ϕ1 þ iϕ2

taking the value φðxÞ on each site of a periodic, hypercubic,
n-dimensional lattice of lattice spacing a and periodicity
L ¼ Na. The canonical covariant action for the field,
Eq. (1.1), is then approximated by

SðcÞ½ϕ1;ϕ2�
an

≈
1

2a2
X
x;μ

f½ϕ1ðxÞ − ϕ1ðxþ eμÞ�2

þ ½ϕ2ðxÞ − ϕ2ðxþ eμÞ�2g
þ
X
x

Vðϕ1ðxÞ;ϕ2ðxÞÞ; ð2:1Þ

where eμ is a vector of length a in the þμ direction and we
are at a temperature T ¼ 1=Na, in units where Boltzmann
constant kB ¼ 1.
Note that in ourmodel the continuous symmetryφ → eiαφ

breaks down spontaneously and the mass spectrum contains
a Goldstone boson. The accepted signal of a system being in
the symmetry broken phase in a finite volume, in the absence
of a small symmetry breaking term, is not a nonzero order
parameter, but rather the fact that a product of order
parameters, at points x, y, tends to a nonzero limit with
increasing jx − yj. To understand the properties of the system
at finite volume, it is convenient to add a small symmetry
breaking term and to work with the potential

V ¼ gðϕ2
1 þ ϕ2

2 − A2Þ2 þ ðε2=2Þϕ2
2 þ constant; ð2:2Þ

The term proportional to ε2 ensures that the classical action
has a proper minimum at the point ϕ1 ¼ A;ϕ2 ¼ 0. The
expansion of the potential in powers of ψ ¼ ϕ1 − A, and ϕ2

starts with

V ¼ ðM2=2Þψ2 þ ðε2=2Þϕ2
2 þ…; ð2:3Þ

M ¼ A
ffiffiffiffiffi
8g

p
: ð2:4Þ

The first term represents a free particle ofmassM, the second
a free particle of mass ε. The situation is the same as in the
case of the free real scalar field: the perturbative expansion of
the two-point function starts with

hϕ1ðxÞϕ1ðyÞi ¼ A2 þDðx − y;M;LÞ; ð2:5Þ

hϕ2ðxÞϕ2ðyÞi ¼ Dðx − y; ε; LÞ; ð2:6Þ

hϕ1ðxÞϕ2ðyÞi ¼ 0; ð2:7Þ

where h…i is the vacuum expectation value [defined in
Eq. (2.11)] andDðz;m; LÞ is the propagator of a free particle

2The divergent integral
R
N
−N dϕ=ϕ2, can bemade finite simply by

a regularized integral such as
RP0N

n¼−Nð1=3r2Þ½ðnþ1Þ2cos2ðkÞþ
n2sin2ðkÞcos2ðk0Þþðn−1Þ2sin2ðkÞsin2ðk0Þ�−1dr3dkdk0 where the
prime over the sum indicates that we are considering a periodic
closure −N, N for the three terms in square brackets.
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of mass m on a hypercubic Euclidean box of size Ln. For
ε ¼ 0, the termDðz; ε; LÞ reduces to a sum of free massless
propagators:

Dðz; 0; LÞ
¼ ð1=4π2Þ

X
n0;n1;n2;n3

1=½ðz0 þ n0LÞ2 þ � � � þ ðz3 þ n3LÞ2�;

ð2:8Þ

where z ¼ ðz0; z1;…; zsÞ and nμ ∈ Z for μ ¼ 0; 1;…; s, but
this expression does not make sense because the sum

diverges. As long as ε is different from zero, the limitL → ∞
ensures that a single term in the sum survives, the one with
n0 ¼ … ¼ n3 ¼ 0, which describes the contribution from
the Goldstone boson.
Expression (2.1) needs to be modified for the affine

action of Eq. (1.3). In this case the Dirac delta function is
replaced by δ2sð0Þ → a−2s. Moreover it is convenient the
following scaling: ϕi ¼ a−s=2ϕ̄i, Φi ¼ a−s=2Φ̄i, g ¼ asḡ,
and ϵ ¼ a−sϵ̄ which gives the following discretized
approximation for the affine action

SðaÞ½ϕ̄1; ϕ̄2�
a−san

≈
1

2a2
X
x;μ

f½ϕ̄1ðxÞ − ϕ̄1ðxþ eμÞ�2 þ ½ϕ̄2ðxÞ − ϕ̄2ðxþ eμÞ�2g

þ
X
x

3

8

1

ϕ̄2
1ðxÞ þ ϕ̄2

2ðxÞ þ ϵ̄

þ
X
x

�
1

2
m2 ðϕ̄2

1ðxÞ þ ϕ̄2
2ðxÞÞ þ ḡ ½ðϕ̄2

1ðxÞ þ ϕ̄2
2ðxÞÞ − Φ̄2�2

�
: ð2:9Þ

Note that if g is taken different from zero, the relation
g ¼ asḡ shows that ḡ carries a dimension. Setting ḡ ¼ Ms,
M is of dimension mass (we are using natural units
c ¼ ℏ ¼ 1). If M as well as m are kept fixed when the
cutoff is removed, the model contains the two dimensionful
parameters m and M. The lattice spacing a must be small
compared to 1=m as well as compared to 1=M and the box
must be large compared to 1=M. Since ϕ̄ is of dimension
mass−1=2, the two-point function of ϕ̄ is of the form

hϕ̄iðxÞϕ̄jðyÞi ¼ fijfMðx − yÞ; m=M; aM;LMg=M:

ð2:10Þ

To approach the continuum limit, the last two argument
must be in the range: aM ≪ 1, LM ≪ 1. The only relevant
parameter, apart from the number of lattice points, used to
regularize the system should be the ratio m=M.
We will use the so called “primitive approximation” for

the action [see Eqs. (2.1) or (2.9)] even if it can be improved
in several ways [15] in order to reduce the error due to the
space-time discretization. In reaching to the expression
(2.1) or (2.9) we neglected the term ∝ a2n due to the
commutator of the kinetic and potential parts of the
Hamiltonian, in the BakerCampbellHausdorff formula. In
reaching to the path integral expression this is justified by
the Trotter formula.
The vacuum expectation of a functional observable

O½ϕ1;ϕ2� is

hOi ≈
R
O½ϕ1;ϕ2� expð−S½ϕ1;ϕ2�Þ

Q
xdϕ1ðxÞdϕ2ðxÞR

expð−S½ϕ1;ϕ2�Þ
Q

xdϕ1ðxÞdϕ2ðxÞ
;

ð2:11Þ

for a given action S.
We will approach the continuum limit by choosing a

fixed L and increasing the number of discretizations N of
each component of the space-time. So that the lattice
spacing a ¼ L=N → 0. To make contact with the con-
tinuum limit, two conditions must be met a ≪ 1=m ≪ L
where 1=m is the Compton wavelength.

III. SIMULATION DETAILS AND RELEVANT
OBSERVABLES

We want to determine the two-point function

Kijðx; yÞ ¼ hϕiðxÞϕjðyÞi; ð3:1Þ

where in the affine casewe need to replace the fieldsϕi by the
scaled fields ϕ̄i. Replacing x by xþ k with k ¼ awn with
wn ¼ ðn0; n1;…; nsÞ and nμ ∈ Z amounts to a mere relab-
eling of the lattice points. Hence, due to translational
invariance, Kðx; yÞ can only depend on the difference
between the coordinates of the two points andwe can define,

DijðzÞ ¼
1

Ln

X
x

Kijðx; xþ zÞan: ð3:2Þ

Moreover due to the symmetry 1 ↔ 2 we will have D11 ¼
D22 ≡Dlike andD12 ¼ D21 ≡Dunlike. In our simulations we

MONTE CARLO EVALUATION OF THE CONTINUUM LIMIT OF … PHYS. REV. D 104, 054514 (2021)

054514-3

Monte Carlo evaluation of the continuum limit of the two-point
function of two Euclidean Higgs real scalar fields subject to affine
quantization 1004



work in periodic space-time (at a temperature T ¼ 1=Na) so
that ϕiðxμ þ NÞ ¼ ϕiðxμÞ for any x, μ ¼ 0; 1;…; s, and
i ¼ 1, 2.
Our MC simulations use the Metropolis algorithm

[12,13] to calculate the ensemble average of Eq. (2.11)
which is a 2Nn multidimensional integral. The simulation is
started from the initial condition ϕi ¼ 0 for i ¼ 1, 2. One
MC step consisted in a random displacement of each one of
the 2Nn variables ϕiðxÞ for i ¼ 1, 2, as follows

ϕi → ϕi þ ð2η − 1Þδ; ð3:3Þ

where η is a uniform pseudo randomnumber in [0, 1] and δ is
the amplitude of the displacement. The fieldsϕi ∈ ð−∞;∞Þ
for i ¼ 1, 2 and xμ ∈ ½0; L� for μ ¼ 0; 1;…; s. Each one of
these 2Nn moves is accepted if expð−ΔSÞ > η where ΔS is
the change in the action due to the move (it can be efficiently
calculated considering how the kinetic part and the potential
part change by the displacement of a single ϕiðxÞ) and
rejected otherwise. The amplitude δ is chosen in such a way
to have acceptance ratios as close as possible to 1=2 and is
kept constant during the evolution of the simulation. One
simulation consisted ofMMC steps each of which consisted
in a sweep of 2Nn displacement moves of all the fields
variables. The statistical error on the average hOi will then
depend on the correlation time necessary to decorrelate the

propertyO, τO, and will be determined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τOσ

2
O=ðM2NnÞ

q
,

where σ2O is the intrinsic variance for O.

IV. SIMULATION RESULTS

We worked in units where c ¼ ℏ ¼ kB ¼ 1. We chose
the regularization parameter of the affine quantization term
to be ϵ ¼ 10−10.3

In Fig. 1 we show DlikeðzÞ and DunlikeðzÞ as obtained for
m ¼ 1; g ¼ 1;Φ ¼ 1; L ¼ 3 and three choices of N, in the
canonical scenario. One can then see the approach to the
continuum of the two-point functions of the canonical
model. From the figure we can see that the unlike two-point
function is zero over the whole space-time volume. This
can be explained observing that during the random-walk
the field will be localized around the minima of the
potential density so that ϕ2

1 þ ϕ2
2 ≈ Π2

c with Πc the radius
of the minima ring, the circle of vacua, around the origin
φ ¼ 0, which is a function of m, g, and Φ:

Π2
c ¼

4gΦ2 −m2

4g
: ð4:1Þ

So that the Higgs potential density in the action does not
actually contribute to correlate the two fields ϕi for i ¼ 1, 2.

Moreover, the expectation values hϕii ¼ 0 for i ¼ 1, 2
because the complex field φ tends to rotate around the
origin on the minima ring. The approach to the continuum
is manifested through increasing values of Dlikeð0Þ with
increasing N. For our choice of the parameters m2 < 4gΦ2

and we must have symmetry breaking [8–10], with the
circle of vacua having a radius different from zero. The
renormalized coupling constant [5] was found to be: gR ¼
−0.0069ð6Þ forN ¼ 8, gR ¼ −0.0006ð4Þ forN ¼ 10, gR ¼
þ0.0000ð5Þ for N ¼ 13. Since gR must be non-negative, by

FIG. 1. Two-point functions, DlikeðzÞ (top panel) and DunlikeðzÞ
(bottom panel), of Eq. (3.2) for the complex scalar Higgs field
φ ¼ ϕ1 þ iϕ2 subject to canonical quantization with a self-
interaction potential density of the form V ¼ 1

2
m2ðϕ2

1 þ ϕ2
2Þ þ

gðϕ2
1 þ ϕ2

2 −Φ2Þ2 in Eq. (1.3) with m ¼ 1; g ¼ 1;Φ ¼ 1; L ¼ 3

(Π2
c ¼ 3=4) and increasing N ¼ 8, 10, 13. On the abscissa axis

we have jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21 þ � � � þ z2s

p
which is a length.

3Note that we could as well choose a regularization putting
hard walls at ϕi ¼ �ε therefore rejecting MC moves whenever
ϕi ∈ ½−ε; ε�, for i ¼ 1, 2.
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Lebowitz inequality, our results signal a free trivial system
in the continuum limit.
For the affine quantization case the circle of vacua has a

radius Π̄a, which is now a function of m, ḡ, and Φ̄:

Π̄2
a ¼

4ḡΦ̄2 −m2

12ḡ

þ ð4ḡΦ̄2 −m2Þ2
12ḡ½162ḡ2 þ Ξþ 18ḡ2=3ð81ḡ2 þ ΞÞ1=3�

þ 162ḡ2 þ Ξþ 18ḡ2=3½81ḡ2 þ Ξ�1=3
12ḡ

; ð4:2Þ

Ξ ¼ −m6 þ 12ḡm4Φ̄2 − 48ḡ2m2Φ̄4 þ 64ḡ3Φ̄6; ð4:3Þ

where without loss of generality we assumed ϵ ¼ 0. It is
different from zero irrespectively from the values of the
parameters, so symmetry is always broken. In Fig. 2 we
show DlikeðzÞ and DunlikeðzÞ as obtained for m ¼ 1; ḡ ¼
1; Φ̄ ¼ 1; L ¼ 3 (so that m=M ¼ 1), ϵ ¼ 10−10 (the sim-
ulation results are not affected by ϵ as long as it is chosen
sufficiently small), and three choices of N, in the affine
scenario, for the ϕ̄i fields introduced in Eq. (2.9). One can
then see the approach to the continuum of the two-point
functions of the affine model. Note, however, that now the
region around ϕ̄i ¼ 0 for i ¼ 1, 2 is forbidden due to the
affine 3=8 diverging term in the potential density [see
Eq. (2.9)], therefore the complex field in its “winding”
around the origin, in proximity of the potential minima
ring, cannot take a “shortcut” through the “mountain” at the
origin (the forbidden region) and this, in turn, is responsible
for a loss of ergodicity and the appearance of systematic
errors in addition to the usual statistical ones. It is then
necessary an extremely long simulation (much longer than
the average time for a “round trip” of the field), much
longer than in the canonical case. Notice, moreover, that the
action is penalized by the additional a−s factor which grows
as we approach the continuum a → 0. A possible solution
would be to choose the field displacement δ larger than the
diameter of the potential minima ring 2Π̄a. But unfortu-
nately this will not work because the kinetic energy term in
the action doesn’t allow the field to undergo big “jumps.” In
addition this would generate low acceptance ratios thereby
slowing down the simulation. An alternative solution will
be given in the next section. In our simulations, that were
M ¼ 107 MC steps long, the expectation value of the field
hϕ̄1i ¼ hϕ̄2i was equal to −0.23ð4Þ for N ¼ 8, to −0.24ð4Þ
for N ¼ 10, and to −0.784ð9Þ for N ¼ 13. A nonzero value
for the vacuum expectation of the field is due to the
systematic errors described above and will eventually
disappear in an extremely long simulation. From the figure
we see how the two-point like function seems to be
increasing with N, while the unlike one has a constant
behavior fluctuating around the expected zero value. These
results are still affected by the ergodicity systematic errors

stemming from the “winding” random walk. In order to
show this behavior, we calculated the histograms of the
values for hϕ̄1i obtained by averaging over blocks of 100
MC steps during the simulation, that we call Hϕ̄, of
Dlikeð0Þ that we call HDlike, and of Dunlikeð0Þ, that we call
HDunlike. The behavior of these histograms is shown in
Figs. 3–5 respectively. From the histogram of Fig. 3 we see
how for N ¼ 13 the field did not have the chance of
rotating around the origin and this explains the lack of the
first peak in the histogram of Fig. 4. We then conclude that

FIG. 2. Two-point functions, DlikeðzÞ (top panel) and DunlikeðzÞ
(bottom panel), of Eq. (3.2) for the complex scalar Higgs field
φ̄ ¼ ϕ̄1 þ iϕ̄2 subject to affine quantization with a self-interac-
tion potential density of the form V ¼ 1

2
m2ðϕ2

1 þ ϕ2
2Þ þ gðϕ2

1 þ
ϕ2
2 −Φ2Þ2 in Eq. (1.3) with m ¼ 1; ḡ ¼ 1; Φ̄ ¼ 1; L ¼ 3; ϵ ¼

10−10 (Π̄2
a ≈ 0.955410) in Eq. (2.9) and increasing N ¼ 8, 10, 13.

The simulation usedM ¼ 107 MC steps. On the abscissa axis we
have jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21 þ � � � þ z2s

p
which is a length.
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the simulation for N ¼ 13 was not long enough. And this is
responsible for the high value of the two-point like function
observed for N ¼ 13, as shown in Fig. 2. In order to obtain
a fully symmetric rotation of the field random walk around
the origin we would clearly need an extremely long
simulation. Nonetheless from the partial results of our
long simulation we can gather a flavor of the convergence
of the two-point functions in the affine case in the
continuum limit at finite volume.
These results, albeit partial in their nature, give to affine

quantization a role as a method producing meaningful
quantum field theories even when, as we have already seen
in our previous works [4,5,11], the more common canonical
quantization fails. Moreover with the scaling used in
Eq. (2.9) the field theory does not suffer from the unpleasant
feature of a diverging vacuumexpectationvalue of the field in
the continuum limit, which was observed in Ref. [11].

V. EXPONENTIAL REPRESENTATION OF THE
COMPLEX FIELD

In order to solve the ergodicity breakdown problem
encountered in the previous section for the affine case we
decided to rewrite our path integral in terms of the
fields ρðxÞ and θðxÞ such that φ̄ðxÞ ¼ ρðxÞ exp½iθðxÞ�.
Equation (2.9) may be rewritten as follows

SðaÞ½ρ; θ�
a−san

≈
1

2a2
X
x;μ

f½ρðxÞ − ρðxþ eμÞ�2 þ ρ2ðxÞ½θðxÞ − θðxþ eμÞ�2g

þ
X
x

�
3

8

1

ρ2ðxÞ þ ϵ̄
þ 1

2
m2ρ2ðxÞ þ ḡ½ρ2ðxÞ − Φ̄2�2

�
; ð5:1Þ

FIG. 5. Histogram of Dunlikeð0Þ block values during the
simulation shown in Fig. 2. The N ¼ 13 data presents a high
asymmetry during the evolution of the simulation, which again
signals that the simulation was not long enough.

FIG. 3. Histogram of hϕ̄1i block values during the simulation
shown in Fig. 2. The figure shows the “rotation” of the field
around the origin in proximity of the potential minima ring of
radius Π̄a ≈ 0.977451, for N ¼ 8 and 10, but not for N ¼ 13.
Even for N ¼ 8 and 10 the rotation was not symmetric (this
would only be obtained in an extremely long simulation), which
explains the not exactly zero value of the expectation value
of field.

FIG. 4. Histogram of Dlikeð0Þ block values during the simu-
lation shown in Fig. 2. The missing first peak in the N ¼ 13 data
is due to the fact that the field did not perform a full rotation
around the origin as is shown by Fig. 3.
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and the path integral over ρ ∈ ½0;∞� and θ ∈ ½−∞;∞� will
not suffer anymore from the ergodicity problem. In the
Metropolis algorithm we will now have acceptance when
exp½−ðS0 − SÞ�Qx ρ

0ðxÞ=ρðxÞ > η where the primed quan-
tities are the newly generated ones and as usual η is a
pseudo random number in [0, 1]. The modulus displace-
ment move, ρ → ρ0 ¼ ρþ ð2η − 1Þδρ, is rejected whenever
ρ0 < 0. And the argument displacement move is chosen
purposely asymmetric, θ → θ0 ¼ θ þ ηδθ, in order to allow
for the required rotation and break the symmetry. This

transition rule for the argument will not violate the detailed
balance, required by the Metropolis algorithm, as long as
the maximum displacement is chosen δθ ≥ 2π so that the
probability to go from an angle θA to θB will be equal to the
one to return to θA from θB always using counterclockwise
rotations.
In Fig. 6 we show DlikeðzÞ and DunlikeðzÞ as obtained for

m ¼ 1; ḡ ¼ 1; Φ̄ ¼ 1; L ¼ 3; ϵ ¼ 10−10, and four choices
of increasing N, in the affine scenario, for the fields ϕ̄1 ¼
ρ cos θ and ϕ̄2 ¼ ρ sin θ. The simulations, an order of
magnitude shorter than the one of Fig. 2, rapidly converged
and we had vanishing hϕii as required. From the figure we
can see how the symmetry z → L − z appears to be broken
in both two-point functions. In particular the unlike one
appears to be oscillating close to the value of zero. This can
be seen as an artifact due to the chosen asymmetric
expression for the kinetic part of the primitive approxima-
tion. The two-point functions, that are now well converged,
seem to have a well defined continuum limit N → ∞. In
fact the difference between Dlikeðjzj ¼ L=2Þ from N ¼ 10
andN ¼ 8 is 0.043 but the one from N ¼ 15 and N ¼ 13 is
0.036. This supports the conclusion that affine quantization
leads to a well-defined field theory. This is also supported
by looking at the renormalized mass and coupling constant
[5]: mR ¼ 0.101748ð8Þ; ḡR ¼ 1.50000ð1Þ for N ¼ 8,
mR ¼ 0.097307ð8Þ; ḡR ¼ 1.50000ð2Þ for N ¼ 10, mR ¼
0.08949ð4Þ; ḡR ¼ 1.50000ð3Þ for N ¼ 13, mR ¼
0.08398ð6Þ; ḡR ¼ 1.49997ð4Þ for N ¼ 15. We can see
how the renormalized coupling constant remains constant
upon the increase of N.

VI. CONCLUSIONS

Summarizing, in this work we studied, through
Monte Carlo simulations, the two-point function of a
classical Euclidean covariant complex scalar field of mass
m subject to the Higgs Mexican-hat potential in four space-
time dimensions, treated either with canonical quantization
and with affine quantization. And we analyzed the con-
tinuum limit at finite fixed volume. The finite volume
constraint rules out the formation of the massless Goldstone
boson due to the spontaneous symmetry breaking of the
continuous phase symmetry φðxÞ → eiθðxÞφðxÞ that we
continue to observe in the simulations even if only as a
smooth transition (free energies in finite volume systems
are always analytic).
We first studied the path integral in the two real fields ϕ1

and ϕ2 with φ ¼ ϕ1 þ iϕ2 through standard Metropolis
[13] simulations. In the canonical case we found rapidly
converging simulations: the unlike two-point function is
zero everywhere and the like one shows the approach to the
continuum through a diverging value at the origin. It is
periodic of periodicity L and satisfies the symmetry z →
L − z as it should. It has a minimum at half simulation box
jzj ¼ L=2 close to zero, indicating that the scalar field

FIG. 6. Two-point functions, DlikeðzÞ (top panel) and DunlikeðzÞ
(bottom panel), of Eq. (3.2) for the complex scalar Higgs field
φ̄ ¼ ϕ̄1 þ iϕ̄2 ¼ ρ expðiθÞ subject to affine quantization with a
self-interaction potential density of the form V ¼ 1

2
m2ρ2 þ

gðρ2 −Φ2Þ2 in Eq. (1.3) with m ¼ 1; ḡ ¼ 1; Φ̄ ¼ 1; L ¼ 3; ϵ ¼
10−10 in Eq. (5.1) and increasing N ¼ 8, 10, 13, 15. The
simulation used M ¼ 106 MC steps. On the abscissa axis we
have jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21 þ � � � þ z2s

p
which is a length.
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theory is in the unbroken phase under canonical quantiza-
tion, at the chosen couplings and dimension.
In the affine case we found that due to the appearance of

the forbidden region around the origin φ ≈ 0, the ergodicity
of the random walk is broken. Once the field spontaneously
breaks the symmetry falling in the circle of vacua, it can
only rotate around the peak in the potential at the origin.
Therefore very long simulations are necessary in order to
find reliable results for the expectation values—more so
approaching the continuum. This suggested to change
variables from ϕ1 and ϕ2 to the modulus ρ and the
argument θ of the complex field, with φ ¼ ρ expðiθÞ and
choose an asymmetric transition rule for the argument
move in the Metropolis algorithm in order to allow only for
counterclockwise rotations around the origin. This proved
an effective way to overcome the ergodicity problem
encountered previously, and the simulations converged
quickly.

The approach to the continuum appears to be well
behaved also for the affine case where the unlike two-
point function continues to be everywhere close to zero and
the like one develops a minimum at half simulation box
higher than the one observed in the canonical case
indicating that the system under affine quantization is in
the broken phase. Therefore we can say that affine
quantization produces a meaningful quantum field theory.
It would be interesting to carry on a detailed and systematic
study of the approach to the continuum of the renormalized
coupling constant in order to understand whether the affine
approach is able to produce a nontrivial [6,8–10,16]
interacting field theory in the continuum limit also for
the present case of a scalar complex field subject to the
Higgs potential, as was done in our previous works for
scalar real fields [4,5]. This would solve the problem of the
believed triviality of the canonical Higgs particle in four
space-time dimensions.
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1. Introduction

New materials chemical technology allows for the synthesis of colloidal-size particles
with patches exhibiting an interaction pattern different from that of the rest of the
surface [1–3]. When the patch occupies a hemisphere, we are in the presence of so-called
Janus particles [3–8].
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Figure 1. Sketch of a binary mixture of one-dimensional Janus particles. Particles
of species 1 (2) have a white (green) left face and a green (white) right face. In
general, four types of interactions are possible: green–white (φ11), green–green (φ12),
white–white (φ21), and white–green (φ22). However, in most of this paper we will
assume φ11 = φ22 = φ21. In this particular example, x1 = x2 = 1

2 and N = 6.

One-dimensional fluids play an important role in statistical mechanics because they
often offer integrable systems [9–34]. In a recent paper [35], two of us derived the exact
equilibrium thermodynamic and structural properties of one-dimensional Janus fluids
in the thermodynamic limit (TL). The system consisted in a binary mixture of two-
face Ni = xiN particles of species i = 1, 2, where xi is the mole fraction of species i
and N is the total number of particles. See figure 1 for a sketch of the system. In this
type of systems (henceforth referred to as quenched), the number of particles (N 1 and
N 2) with each face orientation is kept fixed but of course one needs to average over
all possible microscopic configurations to obtain macroscopic quantities. Interestingly,
the theoretical predictions for quenched systems agreed excellently well with Monte
Carlo (MC) simulations for annealed systems (where at each MC attempt a particle is
assigned the face orientation 1 or 2 with probabilities q1 and q2 = 1 − q1, respectively)
with N = 500.

The investigation of [35] stimulates a few questions: (i) can the exact derivation of
the Gibbs free energy in the TL (N → ∞) be extended to quenched and/or annealed
finite-N systems? (ii) Does the quenched ↔ annealed equivalence break down at finite
N? (iii) Can those theoretical predictions be validated by MC simulations? (iv) Is the
dependence of the average mole fraction 〈x1〉 on the probability q1 robust with respect
to N in annealed MC simulations for biased situations (q1 �= 1

2
)? The main aim of this

paper is to address those questions. As will be seen, the answers are affirmative in all
the cases.

The remainder of this paper is organized as follows. Section 2 presents the deriva-
tion of the configuration integral, and hence of the Gibbs free energy G, for a finite-
size quenched binary mixture in the isothermal–isobaric ensemble. Those results are
then used in section 3 to derive G for an annealed fluid. Since the exact results in
sections 2 and 3 apply to any choice of the two nearest-neighbor interaction potentials
φ11 = φ22 = φ21 and φ12 (see figure 1), the expressions are particularized in section 4
to the Kern–Frenkel model [36], where φ11 and φ12 are the hard-rod and square-well
potentials, respectively. The theoretical results are validated and confirmed by MC sim-
ulations in section 5, where also the case of biased annealed systems is addressed. Finally,
the main results of the work are summarized in section 6. The most technical parts of
the paper are relegated to five appendices.
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2. Finite-N Gibbs free energy of a quenched binary mixture of Janus rods

2.1. The system

Let us consider a one-dimensional binary fluid mixture made of N 1 particles of species
1 (right ‘spin’) and N 2 = N − N 1 particles of species 2 (left ‘spin’) on a line of length
L (see figure 1). Henceforth, we will use Latin and Greek indices for species and par-
ticles, respectively. A particular spatial configuration will be denoted as x ≡ {xα;α =
1, 2, . . . , N}. Analogously, a particular spin (or species) configuration will be denoted as
s ≡ {sα;α = 1, 2, . . . , N}, where sα = 1, 2 represents the spin of particle α. Since we are
considering a quenched mixture, the number of possible spin configurations are restricted
by the constraint

N∑

α=1

δsα,1 = N1. (2.1)

The total number of allowed spin configurations is
(

N
N1

)
.

We assume that the rods are impenetrable and that their interaction is restricted to
nearest neighbors. Given s and x , the total potential energy can be written as

ΦN (s, x) =

N−1∑

α=1

φsα,sα+1
(xα+1 − xα) + ωφsN ,s1

(x1 + L − xN ), (2.2)

where, without loss of generality, we assume that particles 1, 2, . . . , N are ordered from
left to right. In equation (2.2), ω = 1 if periodic boundary conditions are applied and
ω = 0 otherwise (open systems).

2.2. Isothermal–isobaric partition function

In the isothermal–isobaric ensemble, the partition function is [32, 37]

ZN1,N2
(β, γ) = Z id

N1,N2
(β, γ)QN1,N2

(β, γ), (2.3)

where

Z id
N1,N2

(β, γ) =
CN1,N2

Lref[Λ1(β)]N1 [Λ2(β)]N2
, CN1,N2

(γ) ≡
(

N

N1

)
γ−(N+1), (2.4)

is the ideal-gas partition function and

QN1,N2
(β, γ) =

1

CN1,N2
(γ)

′∑

s

∫ ∞

0

dL e−γL

∫
dNx

0<x1<...<xN<L

e−βΦN (s,x) (2.5)

is the configuration integral. Here, β ≡ 1/kBT (kB and T being the Boltzmann con-
stant and the absolute temperature, respectively) and γ ≡ βp (p being the pressure).

https://doi.org/10.1088/1742-5468/ac2897 4
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Figure 2. Illustration of the change of variables (2.7).

In equation (2.4), Lref is a reference length (introduced to make Z id
N dimensionless)

and Λi(β) ≡ h
√

β/2πmi is the thermal de Broglie wavelength (h being the Planck con-
stant and mi being the mass of a particle of species i). In equation (2.5), the prime in
the summation denotes the constraint (2.1). Note that, by construction, QN1,N2

= 1 if
ΦN = 0.

Let us make QN1,N2
more explicit. First,

QN1,N2
=

1

CN1,N2

′∑

s

∫ ∞

0

dL e−γL

∫ L

0

dx1

∫ L

x1

dx2 . . .

∫ L

xN−1

dxN e−βΦN (s,x)

=
1

CN1,N2

′∑

s

∫ ∞

0

dx1

∫ ∞

x1

dx2 . . .

∫ ∞

xN−1

dxN

∫ ∞

xN

dL e−γL−βΦN (s,x), (2.6)

where in the second step we have changed the order of integration. Next, we perform
the change of variables {x1, x2, . . . , xN , L} → {x1, r2, . . . , rN , rN+1}, where (see figure 2)

ri ≡ xi − xi−1 (i = 2, . . . , N), rN+1 ≡ x1 + L − xN. (2.7)

Note that L =
∑N+1

α=2 rα. With this change of variables, equation (2.6) becomes

QN1,N2
=

1

CN1,N2

′∑

s

[
N∏

α=2

∫ ∞

0

drα e−γrα−βφsα−1,sα (rα)

]

×
∫ ∞

0

dx1

∫ ∞

x1

drN+1e
−γrN+1−βωφsN ,s1

(rN+1)

=
1

CN1,N2

′∑

s

[
N∏

α=2

Ωsα−1,sα
(β, γ)

][
−∂ΩsN ,s1

(βω, γ)

∂γ

]
, (2.8)

where

Ωij(β, γ) ≡
∫ ∞

0

dr e−γr−βφij(r). (2.9)

https://doi.org/10.1088/1742-5468/ac2897 5
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Table 1. Spin configurations s for N 1 = 4 and N 2 = 2, organized according to the
number (nij) of pairs ij. The number of spin configurations sharing the same values
of nij is given by w({nij}); analogously, w12(n12) is the number of spin configurations
sharing the same n12, regardless of the values of n11, n22, and n21.

Henceforth, we particularize to open systems (ω = 0), so that

QN1,N2
=

γ−2

CN1,N2

′∑

s

N∏

α=2

Ωsα−1,sα
. (2.10)

Given a spin configuration s, let us call nij(s) the number of pairs ij. Thus,

N∏

α=2

Ωsα−1,sα
= Ω

n11(s)
11 Ω

n22(s)
22 Ω

n12(s)
12 Ω

n21(s)
21 . (2.11)

Obviously, n11 + n22 + n12 + n21 = N − 1. If we call w(n11, n22, n12, n21) the number of
spin configurations with nij pairs ij, equation (2.10) can be rewritten as

QN1,N2
=

γ−2

CN1,N2

∑

n11,n22,n12,n21

w(n11, n22, n12, n21) Ωn11
11 Ωn22

22 Ωn12
12 Ωn21

21 . (2.12)

Table 1 shows the possible values of nij and w for the simple example of N 1 = 4 and
N 2 = 2.

In general, the evaluation of the number of combinations w({nij}) is quite hard. On
the other hand, since in the end we will apply the results to the Kern–Frenkel Janus
model [36], we can particularize to the case where φ11(r) = φ22(r) = φ21(r), what implies
Ω11 = Ω22 = Ω21, so that equation (2.12) reduces to

QN1,N2
=

γN−1

(
N
N1

)
min{N1,N2}∑

n12=0

w12(n12)Ω
N−1−n12
11 Ωn12

12 , (2.13)

where w12(n12) stands for the number of spin configurations with n12 pairs 12.
To determine w12(n12), imagine that we enumerate particles of each species i = 1

and 2 from left to right as αi = 1, . . . , Ni. Then, each pair of type 12 can be identified

https://doi.org/10.1088/1742-5468/ac2897 6

Finite-size effects and thermodynamic limit in one-dimensional
Janus fluids 1017



J.S
tat.

M
ech.

(2021)
103210

Finite-size effects and thermodynamic limit in one-dimensional Janus fluids

with a label (α1, α2). Thus, given a number n12, each compatible spin configuration s
is characterized by n12 pairs of the form (α1, α2). For example, if N 1 = 4 and N 2 = 2
(table 1), the spin configuration s = {112 121} has n12 = 2 pairs: (α1, α2) = (2, 1) and
(3, 2), while the spin configuration s = {211 121} has a single n12 pair: (α1, α2) = (3, 2).
There is a one-to-one correspondence between the n12 pairs of the form (α1, α2) and the
associated spin configuration s . As a consequence, the number of spin configurations
w12(n12) with n12 pairs of type 12 is given by the number of ways of choosing the n12

labels α1 out of N 1 possible values and the n12 labels α2 out of N 2 possible values.
Therefore,

w12(n12) =

(
N1

n12

) (
N2

n12

)
. (2.14)

As a test of consistency, note that the total number of spin configurations is recovered

as
∑min{N1,N2}

n12=0 w12(n12) =
(

N
N1

)
. Finally, the configuration integral is

QN1,N2
=

(γΩ11)
N−1

(
N
N1

) ΞN1,N2
, ΞN1,N2

≡
min{N1,N2}∑

n=0

ξN1,N2
(n), (2.15)

where

ξN1,N2
(n) ≡

(
N1

n

) (
N2

n

)
(1 − R)−n, R ≡ 1 − Ω11

Ω12

. (2.16)

Interestingly, ΞN1,N2
can be formally rewritten in terms of the hypergeometric function:

ΞN1,N2
=2F1

(
−N1, −N2; 1,

1

1 − R

)
. (2.17)

2.3. Gibbs free energy, internal energy, and equation of state

The finite-size Gibbs free energy GN (T , p, x1) is related to the partition function
ZN1,N2

(β, γ) as GN = −kBT ln ZN1,N2
[32, 37]. According to equations (2.3), (2.4) and

(2.15), the finite-size Gibbs free energy per particle gN = GN/N can be decomposed as
gN = gid

N + gex
N , with

βgid
N = x1 ln (γΛ1) + x2 ln (γΛ2) − N−1 ln

(
N

N1

)
+ N−1 ln (γLref) , (2.18a)

βgex
N = −

(
1 − N−1

)
ln (γΩ11) − N−1 ln

ΞN1,N2(
N
N1

) . (2.18b)

By viewing gN as a function of β and γ (instead of as a function of T and p), it is
easy to obtain the average volume (length) per particle (vN) and the excess energy per
particle (uN) at finite N as

vN =

(
∂βgN

∂γ

)

β

= vid
N + vex

N , uN =

(
∂βgN

∂β

)

γ

= uid + uex
N . (2.19)

https://doi.org/10.1088/1742-5468/ac2897 7
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From equations (2.18a) and (2.18b), one has

vid
N =

1 + N−1

γ
, uid =

1

2β
, (2.20a)

vex
N = −

(
1 − N−1

)(
∂ ln (γΩ11)

∂γ

)

β

− N−1∂ ln ΞN1,N2

∂R

(
∂R

∂γ

)

β

, (2.20b)

uex
N = −

(
1 − N−1

)(
∂ ln Ω11

∂β

)

γ

− N−1∂ ln ΞN1,N2

∂R

(
∂R

∂β

)

γ

, (2.20c)

where, in view of equation (2.17),

∂ΞN1,N2

∂R
=

N1N2

(1 − R)2 2F1

(
−N1 + 1, −N2 + 1 ; 2,

1

1 − R

)
. (2.21)

2.4. Limit N → ∞
Equations (2.18b), (2.20b) and (2.20c) provide the excess quantities for any finite N .
It is important to take the limit N → ∞ to obtain the TL expressions and their first
finite-N corrections.

In appendix A, it is proved that, for large N at fixed mole fractions,

ΞN1,N2
≈ eNψ̄0

√
2πNy0(2 − y0/x1x2)

, (2.22)

where

ψ̄0 = −x1 ln

(
1 − y0

x1

)
− x2 ln

(
1 − y0

x2

)
, y0 =

1 − √
1 − 4x1x2R

2R
. (2.23)

As a consistency test, note that in the case of equal interactions (R → 0), one has
y0 → x1x2 and ψ̄0 → −x1 ln x1 − x2 ln x2, so that ΞN1,N2

→ (xN1
1 xN2

2

√
2πNx1x2)

−1. The

latter expression is not but the Stirling approximation of
(

N
N1

)
, as it should be.

Thus, from equation (2.18b) we obtain

βgex
N ≈ βgex

TL + N−1 ln
[
γΩ11

√
(2 − y0/x1x2)y0/x1x2

]
, (2.24)

where

βgex
TL = − ln(γΩ11) − ψ̄0 − x1 ln x1 − x2 ln x2 (2.25)

and we have taken into account that N−1 ln
(

N
N1

)
≈ −x1 ln x1 − x2 ln x2 −

N−1 ln
√

2πNx1x2. Obviously, gex
TL is the excess Gibbs free energy per particle in

the TL. That quantity was evaluated by a completely independent route in [35] with
the result

https://doi.org/10.1088/1742-5468/ac2897 8
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βgex
TL = − ln(γΩ11) − ln

1 +
√

1 − 4x1x2R

2
√

1 − R
+ |x1 − x2| ln

|x1 − x2| +
√

1 − 4x1x2R

(|x1 − x2| + 1)
√

1 − R
.

(2.26)

Taking into account the identity (see appendix B for a proof)

ψ̄0 = −x1 ln x1 − x2 ln x2 + ln
1 +

√
1 − 4x1x2R

2
√

1 − R

− |x1 − x2| ln
|x1 − x2| +

√
1 − 4x1x2R

(|x1 − x2| + 1)
√

1 − R
, (2.27)

it is obvious that equations (2.25) and (2.26) are equivalent. Note, however, that
equation (2.25) is more compact than equation (2.26).

As for the average volume and internal energy per particle, application of
equation (2.19) yields

vex
TL = −

(
∂ ln (γΩ11)

∂γ

)

β

− y3
0/x1x2

(1 − y0/x1)(1 − y0/x2)

(
∂R

∂γ

)

β

, (2.28a)

uex
TL = −

(
∂ ln Ω11

∂β

)

γ

− y3
0/x1x2

(1 − y0/x1)(1 − y0/x2)

(
∂R

∂β

)

γ

, (2.28b)

vex
N − vex

TL ≈ N−1

(
∂ ln (γΩ11)

∂γ

)

β

+
N−1

2

(1 − y0/x1x2)y
2
0/2x1x2

(1 − y0/2x1x2)2

(
∂R

∂γ

)

β

, (2.28c)

uex
N − uex

TL ≈ N−1

(
∂ ln Ω11

∂β

)

γ

+
N−1

2

(1 − y0/x1x2)y
2
0/2x1x2

(1 − y0/2x1x2)2

(
∂R

∂β

)

γ

. (2.28d)

Note that, while uid has no finite-N contribution, this is not so for vid
N . According to

equation (2.20a), vid
N = vid

TL + (γN)−1, with vid
TL = γ−1.

2.5. Equimolar mixture

In the special case of an equimolar binary mixture (x1 = x2 = 1
2
), equations (2.25),

(2.28a) and (2.28b) become

βgex
TL = − ln

[
γΩ11

2

(
1 +

1√
1 − R

)]
, (2.29a)

vex
TL = −

(
∂ ln (γΩ11)

∂γ

)

β

− 1 −
√

1 − R

2R(1 − R)

(
∂R

∂γ

)

β

, (2.29b)

uex
TL = −

(
∂ ln Ω11

∂β

)

γ

− 1 −
√

1 − R

2R(1 − R)

(
∂R

∂β

)

γ

. (2.29c)
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Analogously, equations (2.24), (2.28c) and (2.28d) simplify to

gex
N − gex

TL ≈ N−1 ln

[
2γΩ11

(
1 −

√
1 − R

)
(1 − R)1/4

R

]
, (2.30a)

vex
N − vex

TL ≈ N−1

(
∂ ln (γΩ11)

∂γ

)

β

− N−1

(
1 −

√
1 − R

)2

4R(1 − R)

(
∂R

∂γ

)

β

, (2.30b)

uex
N − uex

TL ≈ N−1

(
∂ ln Ω11

∂β

)

γ

− N−1

(
1 −

√
1 − R

)2

4R(1 − R)

(
∂R

∂β

)

γ

. (2.30c)

3. Finite-N Gibbs free energy of annealed Janus fluids

In the case of (unbiased) annealed systems, the total number of particles (N) is fixed
but the number of particles (N 1 or N 2) with either spin orientation species is allowed
to take any value between 0 and N . Thus, the associated configuration integral is

QN (β, γ) =
1

CN (γ)

N∑

N1=0

′∑

s

∫ ∞

0

dL e−γL

∫
dNx

0<x1<...<xN<L

e−βΦN (s,x), (3.1)

where now CN (γ) =
∑N

N1=0 CN1,N2
= 2Nγ−(N+1) to guarantee that QN = 1 if ΦN = 0.

By following the same steps as those followed to arrive to equation (2.15), we now
get

QN =
(γΩ11)

N−1

2N
ΞN , ΞN ≡

N∑

N1=0

ΞN1,N2
. (3.2)

Consequently,

βgex
N = −

(
1 − N−1

)
ln (γΩ11) + ln 2 − N−1 ln ΞN , (3.3a)

vex
N = −

(
1 − N−1

) (
∂ ln (γΩ11)

∂γ

)

β

− N−1∂ ln ΞN

∂R

(
∂R

∂γ

)

β

, (3.3b)

uex
N = −

(
1 − N−1

) (
∂ ln Ω11

∂β

)

γ

− N−1∂ ln ΞN

∂R

(
∂R

∂β

)

γ

, (3.3c)

where we recall that the quantity R is defined by the second equality in equation (2.16).
In the limit of large N it is proved in appendix C that

ΞN ≈
(

1 +
1√

1 − R

)N
1 +

√
1 − R

2
. (3.4)
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Therefore,

βgex
N − βgex

TL ≈ N−1 ln
2γΩ11

1 +
√

1 − R
, (3.5a)

vex
N − vex

TL ≈ N−1

(
∂ ln (γΩ11)

∂γ

)

β

+ N−1 1 −
√

1 − R

2R
√

1 − R

(
∂R

∂γ

)

β

, (3.5b)

uex
N − uex

TL ≈ N−1

(
∂ ln Ω11

∂β

)

γ

+ N−1 1 −
√

1 − R

2R
√

1 − R

(
∂R

∂β

)

γ

, (3.5c)

where the TL quantities are given by equations (2.29a)–(2.29c).
Comparison between equations (2.30a)–(2.30c) and equations (3.5a)–(3.5c) shows

that, although the quenched and annealed systems are equivalent in the TL, they differ
in their respective finite-size corrections.

4. Particularization to the Kern–Frenkel model

Thus far, except for the constraint to nearest neighbors, the interaction potentials φ11(r)
and φ12(r) are arbitrary. In the special case of isotropic interactions, one has φ11(r) =
φ12(r), so that R = 0. In that case,

ΞN1,N2
=

(
N1

N2

)
, ΞN = 2N , QN1,N2

= QN = (γΩ11)
N−1, (4.1a)

βgex
N = −

(
1 − N−1

)
ln (γΩ11) , (4.1b)

vex
N = −

(
1 − N−1

)(
∂ ln (γΩ11)

∂γ

)

β

, uex
N = −

(
1 − N−1

) (
∂ ln Ω11

∂β

)

γ

.

(4.1c)

Thus, the finite-size effects become almost trivial if the interactions are isotropic and,
of course, no distinction between quenched and annealed systems remains.

The situation becomes much more interesting in the genuine Janus case φ11(r) �=
φ12(r). We take now the well-known Kern–Frenkel model [7, 36, 38–41], in which case
φ11(r) and φ12(r) correspond to the hard-rod and square-well potentials, respectively,
i.e.

φ11(r) =

{∞, r < σ,

0, r > σ,
φ12(r) =

⎧
⎪⎪⎨
⎪⎪⎩

∞, r < σ,

−ε, σ < r < λσ,

0, r > λσ,

(4.2)
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Table 2. Values of the average volume (length) per particle, vN , in equimolar
quenched mixtures and in annealed systems for N = 4, 10, 20, and 100. In all
cases, λ = 1.2 and p = 0.6. The TL values are vTL = 2.6000 and 1.2265 at T = 1
and 0.2, respectively.

T = 1 T = 0.2

Quenched Annealed Quenched Annealed

N Exact MC Exact MC Exact MC Exact MC

4 2.7658 2.77(2) 2.7819 2.80(2) 1.0502 1.050(3) 1.0547 1.063(4)
10 2.6664 2.68(1) 2.6728 2.69(1) 1.1540 1.150(4) 1.1591 1.152(4)
20 2.6332 2.646(5) 2.6364 2.647(5) 1.1903 1.189(3) 1.1936 1.193(3)
100 2.6067 2.612(8) 2.6073 2.623(8) 1.2194 1.218(2) 1.2200 1.219(1)

where λ � 2. Henceforth, we take σ = 1, ε = 1, and ε/kB = 1 as units of length, energy,
and temperature, respectively. Therefore,

Ω11 =
e−γ

γ
, Ω12 = eβ e−γ

γ
−

(
eβ − 1

) e−λγ

γ
, R =

{
1 +

1

(eβ − 1) [1 − e−(λ−1)γ]

}−1

,

(4.3a)

(
∂ ln (γΩ11)

∂γ

)

β

= −1,

(
∂ ln Ω11

∂β

)

γ

= 0, (4.3b)

(
∂R

∂γ

)

β

= (1 − R)2 (
eβ − 1

)
(λ − 1)e−(λ−1)γ,

(
∂R

∂β

)

γ

= (1 − R)2 eβ
[
1 − e−(λ−1)γ

]
.

(4.3c)

5. Monte Carlo simulations

5.1. Equimolar quenched and unbiased annealed systems

In order to confirm the theoretical results provided by equations (2.20b) and (2.20c)
for quenched systems and by equations (3.3b) and (3.3c) for (unbiased) annealed sys-
tems, we have performed isothermal–isobaric MC simulations. To make contact between
the annealed and quenched results in the TL, we have considered equimolar mixtures
(x1 = 1

2
) in the latter case. Moreover, the Kern–Frenkel model (4.2) with λ = 1.2 is

chosen. Some technical details about the simulation method are given in appendix D.
Tables 2 and 3 give the MC results of vN and −uex

N , respectively, for p = 0.6, T = 1
and 0.2, and N = 4, 10, 20, and 100. Tables 2 and 3 also include the exact theoreti-
cal values given by equations (2.20b) and (3.3b) for vN and by equations (2.20c) and
(3.3c) for −uex

N . The deviations from the TL values are displayed in figures 3 and 4,
which also include the asymptotic behaviors obtained from equations (2.30b) and (2.30c)
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Table 3. Absolute values of the excess energy per particle, −uex
N , in equimolar

quenched mixtures and in annealed systems for N = 4, 10, 20, and 100. In all the
cases, λ = 1.2 and p = 0.6. The TL values are −uex

TL = 0.067 20 and 0.4421 at T = 1
and 0.2, respectively.

T = 1 T = 0.2

Quenched Annealed Quenched Annealed

N Exact MC Exact MC Exact MC Exact MC

4 0.068 15 0.0690(8) 0.051 83 0.0510(6) 0.4820 0.481(2) 0.4635 0.461(2)
10 0.067 52 0.0677(4) 0.061 05 0.0610(4) 0.4664 0.468(3) 0.4453 0.447(2)
20 0.067 35 0.0676(3) 0.064 12 0.0645(3) 0.4539 0.453(2) 0.4402 0.442(2)
100 0.067 23 0.0674(3) 0.066 58 0.0668(3) 0.4441 0.444(2) 0.4416 0.439(2)

Figure 3. Plot of the finite-N correction vN − vTL vs 1/N for λ = 1.2, p = 0.6,
and (a) T = 1 and (b) T = 0.2. The filled circles and solid lines correspond
to MC simulations and exact theoretical results, respectively, for an equimolar
(x1 = x2 = 1

2) quenched mixture, while the open circles and dashed lines corre-
spond to MC simulations and exact theoretical results, respectively, for an annealed
system. The dotted lines represent the exact asymptotic behaviors. Note that the
asymptotic and full lines for the quenched and annealed systems are practically
indistinguishable in (a).

for (equimolar) quenched systems and from equations (3.5b) and (3.5c) for (unbiased)
annealed systems.

We can observe from tables 2 and 3 and figures 3 and 4 that the simulations nicely
confirm our theoretical results. The differences between quenched and annealed finite-
size corrections are much more important for the energy than for the volume. In the
latter case, there is a change of the sign of vN − vTL when decreasing temperature from

https://doi.org/10.1088/1742-5468/ac2897 13
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Figure 4. Plot of the finite-N correction uN − uTL vs 1/N for λ = 1.2, p = 0.6,
and (a) T = 1 and (b) T = 0.2. The filled circles and solid lines correspond
to MC simulations and exact theoretical results, respectively, for an equimolar
(x1 = x2 = 1

2) quenched mixture, while the open circles and dashed lines corre-
spond to MC simulations and exact theoretical results, respectively, for an annealed
system. The dotted lines represent the exact asymptotic behaviors. Note that the
asymptotic and full lines for the annealed system are practically indistinguishable
in (a).

T = 1 to T = 0.2. Interestingly, except for the energy at low temperature (T = 0.2), the
asymptotic behaviors given by equations (2.30b), (2.30c), (3.5b) and (3.5c) apply very
well for any N , including N = 4.

5.2. Biased annealed systems

The MC simulations for annealed systems presented above are unbiased in the sense
that, even though the identities of the particles are not fixed and thus the mole fraction
x1 is a fluctuating quantity, no preference to either spin orientation is imposed, so that
〈x1〉 = 1

2
. As a consequence, the unbiased annealed results become equivalent to the

equimolar quenched ones in the TL.
On the other hand, it is possible to carry out biased annealed simulations by intro-

ducing a parameter q �= 1
2

which favors one of the two possible spin orientations (see
appendix D). As observed in [35], the average value 〈x1〉 ≡ 〈x〉 does not coincide with q,
but a natural question arises as to whether or not the inequality 〈x〉 �= q is a finite-size
artifact.

To address that question, we have performed MC simulations for biased annealed
systems with q = 0.55, 0.65, 0.75, 0.85, and 0.95. As before, we have fixed λ = 1.2,

https://doi.org/10.1088/1742-5468/ac2897 14
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Figure 5. Plot of the average mole fraction 〈x〉 vs q for biased annealed systems,
as obtained from MC simulations with N = 50 and 200 for λ = 1.2, p = 0.6, and
T = 1 and 0.2. The size of the symbols is larger than the error bars. The solid lines
represent the simple heuristic approximation given by the solution to equation (E.7)
with a = 10, while the straight dashed line is the reference 〈x〉 = q.

p = 0.6, and temperatures T = 1 and 0.2. As for the number of particles, the val-
ues N = 50 and 200 have been chosen. The results are displayed in figure 5, which
shows that the data with N = 50 and 200 practically coincide. Therefore, the property
〈x〉 �= q (actually, 1

2
� 〈x〉 � q or q � 〈x〉 � 1

2
) and the dependence 〈x〉(q) are robust

with respect to N and must hold in the TL. While the derivation of the exact
function 〈x〉(q) seems to be rather involved and lies outside of the scope of this
work, we have constructed a simple heuristic approximation in appendix E. Figure 5
shows that equation (E.7) with a = 10 displays an excellent agreement with the
MC data.

In the MC simulations for biased annealed systems we have also evaluated the specific
volume (v) and the excess internal energy per particle (uex). Once the robustness of the
relationship 〈x〉(q) has been checked, one can take q as a parameter and plot v and uex as
functions of the mole fraction 〈x〉. This is done in figure 6. While in the case T = 1 the
mapped range is 0.55 � 〈x〉 � 0.94, the range shrinks to 0.51 � 〈x〉 � 0.63 if T = 0.2.
Again, a very weak influence of N is observed. As a matter of fact, comparison with the
exact theoretical results for non-equimolar mixtures in the TL (see equations (2.28a)
and (2.28b)) presents a very good agreement. It is worth mentioning that v exhibits a
rather weak dependence on the mole fraction, with a local minimum at 〈x〉 = 1

2
. On the

other hand, the excess energy uex is much more sensitive to 〈x〉, vanishing at 〈x〉 = 0
and 〈x〉 = 1, as expected.

https://doi.org/10.1088/1742-5468/ac2897 15

Finite-size effects and thermodynamic limit in one-dimensional
Janus fluids 1026



J.S
tat.

M
ech.

(2021)
103210

Finite-size effects and thermodynamic limit in one-dimensional Janus fluids

Figure 6. Plot of (a) the volume v and (b) the excess internal energy uex vs the
average mole fraction 〈x〉 for biased annealed systems, as obtained from MC sim-
ulations with N = 50 and 200 for λ = 1.2, p = 0.6, and T = 1 and 0.2. The size of
the symbols is larger than the error bars. The lines represent the exact theoretical
results in the TL.

6. Conclusions

This paper has focused on the study of finite-size effects on the thermodynamic quanti-
ties of Janus fluids confined to one-dimensional configurations. Two classes of systems
(quenched and annealed) have been considered. In the quenched case, the fraction xi

of particles with a particular face (or spin) orientation is kept fixed. On the other
hand, particles can flip their orientations in annealed systems, so that the mole fraction
xi fluctuates around a value 〈xi〉 = 1

2
(unbiased case, qi = 1

2
) or 〈xi〉 �= 1

2
(biased case,

qi �= 1
2
).

Our study allows us to answer affirmatively the four questions initially posed in
section 1:

(i) Can the exact derivation of the Gibbs free energy in the TL (N → ∞) be extended
to quenched and/or annealed finite-N systems?

By working on the isothermal–isobaric ensemble with open boundary conditions,
we have been able to derive exactly the configuration integral (and hence the Gibbs
free energy, the specific volume, and the internal energy) for quenched systems with
arbitrary values of number of particles N , mole fraction x1, temperature T , pres-
sure p, and nearest-neighbor interactions φ11 and φ12. The results are summarized by
equations (2.15)–(2.20c).

The exact results for quenched systems are next exploited to get the finite-size
quantities for unbiased annealed systems, as given by equations (3.2)–(3.3c).
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(ii) Does the quenched ↔ annealed equivalence break down at finite N?
The exact results referred to in the previous point apply to any finite N . An

interesting problem consists in taking the limit N → ∞ in order to obtain well-
defined expressions for the thermodynamic quantities in the TL, as well as the
first N−1-correction. This is done in appendices A and C, the correction results
being given by equations (2.24), (2.28c) and (2.28d) for the quenched case and by
equations (3.5a)–(3.5c) for the unbiased annealed case.

The quenched quantities in the TL are provided by equations (2.25), (2.28a) and
(2.28b). As proved in appendix B, equation (2.25) is equivalent to (but more compact
than) the Gibbs free energy derived in [35] from a completely different method. While
in [35] the thermodynamic results were derived directly in the TL from the structural
correlation functions, here they have been derived by carefully taking the limit N → ∞
from the configuration integral. The equivalence between both routes reinforces the
exact character of the results.

The results for equimolar quenched systems and those for unbiased annealed sys-
tems agree in the TL (equations (2.29a)–(2.29c)), but they differ in the first N−1-
correction (compare equations (2.30a)–(2.30c) with equations (3.5a)–(3.5c)). Therefore,
the quenched ↔ annealed equivalence does break down at finite N .

(iii) Can those theoretical predictions be validated by MC simulations?
The conclusions summarized by the two preceding points apply to any choice of

the interaction potentials φ11 and φ12. In order to validate them by simulations, we have
specialized to the Kern–Frenkel model [36], as defined by equation (4.2). MC results have
been measured for a well range λ = 1.2, a common pressure p = 0.6, two temperatures
(T = 1 and 0.2), and four values of the number of particles (N = 4, 10, 20, and 100).
As shown by figures 3 and 4, the agreement is very good. Interestingly, except for the
case of the internal energy at T = 0.2, the deviations from the TL values closely follow
the N−1 rule even for system sizes as small as N = 4.

(iv) Is the dependence of the average mole fraction 〈x〉 on the probability q robust
with respect to N in annealed MC simulations for biased situations (q �= 1

2
)?

The finite-size corrections mentioned above for annealed systems apply to unbi-
ased situations. In particular, in each MC step an attempt to assign the orientation
identity i = 1 to a given particle is carried out with a probability q = 1

2
, what results

in an average mole fraction 〈x〉 = 1
2
. The procedure can be extended in a straightfor-

ward way to a biased choice q �= 1
2
, which gives rise to 〈x〉 �= 1

2
. The naive expectation

would be 〈x〉 = q, but preliminary results in [35] showed that either 1
2

< 〈x〉 < q or
1
2

> 〈x〉 > q, depending on whether q > 1
2

or q < 1
2
, respectively. One might reason-

able wonder whether the property 〈x〉 �= q is a finite-size effect that would disappear
in the TL.

However, our MC results provide strong evidence about the robustness of the inequal-
ity 〈x〉 �= q and the dependence of 〈x〉 on q (see figure 5). This can be qualitatively
explained as follows. In the quenched case, the configuration integral presents a peaked
local maximum at N 1 = N/2, i.e. x = 1

2
, as can be seen from equations (2.15), (2.22) and

(E.1). For annealed systems, this competes against a weight function wN (x) exhibiting
a peaked local maximum at x = q. The annealed probability density P N(x) is pro-
portional to the product of both functions and then it has a peaked maximum at an
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intermediate value x = 〈x〉. Based on these arguments, a heuristic approach has been
put forward in appendix E. Its theoretical predictions (with a single fitting parameter
a = 10 independent of T and q) agree excellently well with MC simulations, as figure 5
shows.

As a bonus of the biased annealed simulations, and given the weak influence of N
observed in figure 5, we have compared the measured MC values of volume and energy
with the theoretical exact results in the TL as functions of the mole fraction. The results
displayed by figure 6 show again an excellent agreement.

To put our findings in a proper context, some of their limitations should be remarked.
First, the theoretical results have been obtained for open boundary conditions (ω = 0 in
equation (2.2)). As shown by equation (2.8), application of periodic boundary conditions
(ω = 1) significantly hampers the quest for an exact treatment at finite N . While the
choice of the boundary conditions (open or periodic) becomes irrelevant in the TL,
finite-size effects are affected by such a choice.

A second limitation arises from the use of the isothermal–isobaric ensemble rather
than the standard canonical ensemble. Of course, the partition function and its associ-
ated configuration integral can be formally written in the canonical ensemble [consider
equation (2.5) with the integration over L removed], but then it is much more difficult to
reduce the problem to a purely combinatorial one at finite N , as happens, however, with
equations (2.10)–(2.13). One might believe that it would be possible to get the finite-size
Helmholtz free energy from the finite-size Gibbs free energy derived here by means of
the conventional Legendre transformation. However, this transformation is justified in
the TL only and washes out finite-size effects, as we have checked by comparison with
canonical MC simulations (not shown).

Third, we have not addressed in the present paper the problem of deriving the
exact relationship between 〈x〉 and q in biased annealed systems, even in the TL. The
theoretical approach in appendix E is heuristic and depends upon a parameter a whose
value must be obtained by a fitting procedure. It would be very interesting to analyze
in detail the random walk represented by the annealed MC simulations and derive the
dependence 〈x〉(q), at least in the TL. However, this goal is outside of the scope of the
present work.

The last limitation refers to the choice of the one-dimensional geometry itself.
Of course, two- and three-dimensional systems are much more realistic, but the one-
dimensional setting, apart from being applicable to single-file confinement situations,
has the enormous advantage of allowing for the derivation of nontrivial exact results.
For instance, we have explicitly shown in a clean way that the first corrections to the
TL values are of order N−1, as usually assumed in the literature to get rid of finite-
size effects and extrapolate the simulation data to the TL. Moreover, exact results are
utterly important to test simulation methods and/or theoretical approaches that can
then be extended to scenarios where exact solutions are absent.
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Appendix A. Function ΞN1,N2
for large N

In this appendix, we prove that the function ΞN1,N2
defined in equations (2.15) and (2.16)

reduces to equation (2.22) in the limit N → ∞.
First, application of the Stirling approximation x! ≈

√
2πx(x/e)x yields

ξN1,N2
(n = Ny) ≈ exp [Nψ(y)] , ψ(y) = ψ0(y) + N−1ψ1(y), (A.1)

where

ψ0(y) = −x1 ln

(
1 − y

x1

)
− x2 ln

(
1 − y

x2

)
+ y ln

(x1 − y)(x2 − y)

y2(1 − R)
, (A.2)

ψ1(y) = − ln

[
2πNy

√(
1 − y

x1

) (
1 − y

x1

)]
. (A.3)

Equating to zero the first derivative of ψ(y) with respect to y, one can find that the
maximum value of ψ(y) corresponds to

ymax ≈ y0 + N−1y1, (A.4)

where

y0 =
1 − √

1 − 4x1x2R

2R
, y1 = −1 + (4y0 − 3)y0/2x1x2

2 − y0/x1x2

. (A.5)

Note that ψ′
0(y0) = 0 and y1 = −ψ′

1(y0)/ψ′′
0(y0), where the second derivative of the ψ0(y)

is

ψ′′
0 (y) = − 2 − y/x1x2

y(1 − y/x1)(1 − y/x2)
. (A.6)

Note also that the last term on the right-hand side of equation (A.2) vanishes at y = y0,
so that ψ̄0 ≡ ψ0(y0) is given by equation (2.23).

As a second step, let us expand ψ(y) around y = ymax to get

ψ(y) ≈ ψ(ymax) +
ψ′′(ymax)

2
(y − ymax)

2. (A.7)

Next, we replace the sum in ΞN1,N2
by an integral:
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ΞN1,N2
≈ N

∫ ∞

−∞
dy ξN1,N2

(Ny)

≈ NeNψ(ymax)

∫ ∞

−∞
dy e

Nψ′′(ymax)
2 (y−ymax)

2

= NeNψ(ymax)

√
2π

−Nψ′′(ymax)
, (A.8)

where in the second step use has been made of equation (A.7). Finally, taking
into account that ψ(ymax) ≈ ψ0(y0) + N−1ψ1(y0) and ψ′′(ymax) ≈ ψ′′

0 (y0), equation (A.8)
becomes

ΞN1,N2
≈ NeNψ0(y0)+ψ1(y0)

√
2π

−Nψ′′
0 (y0)

. (A.9)

Insertion of equations (A.3) and (A.6) into equation (A.9) yields equation (2.22).

Appendix B. Proof of equation (2.27)
While ψ̄0 is expressed in terms of y0 (see equation (2.23)), the right-hand side of
equation (2.27) is expressed in terms of R. The latter quantity is related to y0 by the
identities

R =
y0 − x1x2

y2
0

,
√

1 − 4x1x2R =
2x1x2

y0

− 1,
√

1 − R =

√
(x1 − y0)(x2 − y0)

y0

,

(B.1)

1 +
√

1 − 4x1x2R

2
√

1 − R
=

x1x2√
(x1 − y0)(x2 − y0)

, (B.2)

|x1 − x2| +
√

1 − 4x1x2R

(|x1 − x2| + 1)
√

1 − R
=

x2

x1

√
x1 − y0

x2 − y0
, (B.3)

where, without loss of generality, we have assumed x1 � x2 in equation (B.3).
The right-hand side of equation (2.27) can be rewritten as

r.h.s. = −x1 ln

[
x1

2
√

1 − R

1 +
√

1 − 4x1x2R

x1 − x2 +
√

1 − 4x1x2R

(x1 − x2 + 1)
√

1 − R

]

− x2 ln

[
x2

2
√

1 − R

1 +
√

1 − 4x1x2R

(x1 − x2 + 1)
√

1 − R

x1 − x2 +
√

1 − 4x1x2R

]

= −x1 ln

(
1 − y0

x1

)
− x2 ln

(
1 − y0

x2

)
, (B.4)
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where we have made use of equations (B.2) and (B.3). Comparison with equation (2.23)
closes the proof of equation (2.27).

Appendix C. Function ΞN for large N

The method is analogous to the one followed in appendix A. The quantities ψ̄0 and y0

defined in equation (2.23) are functions of the mole fraction x1. It can be checked that
ψ̄0 presents a maximum at x1 = 1

2
. Expanding in powers of x1 − 1

2
,

ψ̄0 ≈ ln

(
1 +

1√
1 − R

)
− 2√

1 − R

(
x1 − 1

2

)2

. (C.1)

Combination of equations (2.22) and (C.1) yields

ΞN1,N2
≈

(
1 +

1√
1 − R

)N
1 +

√
1 − R√

2πN
√

1 − R
e−2N(x1− 1

2 )
2
/
√

1−R. (C.2)

As a second step, for large N the summation of ΞN1,N2
over N 1 can be approximated

by an integral over x1:

N∑

N1=0

ΞN1,N2
≈

(
1 +

1√
1 − R

)N
1 +

√
1 − R√

2πN
√

1 − R
N

∫ ∞

−∞
dx1 e−2N(x1− 1

2 )
2
/
√

1−R. (C.3)

This finally gives equation (3.4).

Appendix D. Technical details of the MC simulations

Since our exact finite-size results are found in the isothermal–isobaric ensemble and the
Legendre transform ‘washes out’ the finite-size effects, we found it necessary to perform
our numerical experiments also in the isothermal–isobaric ensemble [42]. Moreover, in
order to find agreement with our theoretical exact results, open boundary conditions
were used. Of course, only in the TL open and periodic boundary conditions become
equivalent.

We performed two kinds of MC experiments, which we label as MCa and MCq for
annealed and quenched systems, respectively.

The MCa transition rule consists of single particle MC moves (one MC step), which
are the combination of a particle position displacement xα → xα + (2η − 1)δ, where η
is a pseudo-random number in [0, 1] and δ < σ is the maximum displacement (to be
kept fixed during the whole simulation to preserve detailed balance) and a particle
assignment to species i = 1, 2 with probability qi (where q1 = q and q2 = 1 − q). Open
boundary conditions were enforced by generating a new position until it falls inside
the segment xα ∈ [−L/2, L/2]. According to the Metropolis algorithm [43, 44] the move
is accepted with probability e−βΔΦN , ΔΦN being the change in potential energy due
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to the combined move. This would be enough in the canonical ensemble, while in the
isothermal–isobaric ensemble we also need to perform a volume move. The latter is
computationally the most expensive one, since it requires a full energy calculation at
each attempt and therefore should be used with a low frequency during the run. We
chose 30% for the frequency of the volume move in all our simulations. For the transition
and acceptance probability for this volume move, see for example [42].

In contrast to the MCa case, in the MCq simulations the particles are assigned an
identity i = 1, 2 with probability xi = qi from the start and the species assignment is
never changed afterwards. The MCq transition rule consists of single particle MC moves
that amount to a particle position displacement with δ > σ (note that this condition
may be relieved in dimensions higher than one), which is accepted with probability
e−βΔΦN , ΔΦN being the change in potential energy due to the displacement. Again, in
the isothermal–isobaric ensemble we also have the volume move [42].

Notice that we can obtain the same result for quenched systems by using a third
simulation strategy that we will call MCaq. The MCaq transition rule consists of single
particle MC moves that are the combination of a particle position displacement (with
δ > σ), which is accepted with probability e−βΔΦN (where ΔΦN is the change in potential
energy due to the displacement only), followed by a particle assignment to species i = 1, 2
with probability qi, which is always accepted and therefore completely disentangled
from the displacement move. As before, we also have the volume move [42] in the
isothermal–isobaric ensemble.

In all cases we chose δ so to have acceptance ratios as close as possible to 1
2
. The

equilibration time for MCa was much longer than for MCq.
Given an observable O, its statistical-mechanical average 〈O〉 was evaluated by aver-

aging O over a sufficiently large number of MC configurations after a sufficiently long
equilibration time. The measured observables were the mole fraction x = N−1

∑N
α=1 δsα,1,

the specific volume (or reciprocal density) v = L/N , and the excess internal energy per
particle uex = ΦN/N .

The statistical error on 〈O〉 is as usual given by σ〈O〉 =
√

σ2
OτO/M , where M is the

number of MC steps, σ2
O is the intrinsic variance of O, and τO is the correlation time

for the observable O [44]. The latter quantity depends crucially on the transition rule
and has a minimum value equal to 1 if one can move so far in configuration space that
successive values become uncorrelated. In general, the number of independent steps
which contribute to reducing the error bar is not M but M/τO. Hence, to determine the
true statistical error in the random walk, one needs to estimate the correlation time. To
do this, it is very important that the total length of the random walk be much greater
than τO. Otherwise, the result and its error bar will not be reliable. In general, there is no
mathematically rigorous procedure to determine τO, so that usually one must determine
it from the random walk itself. It is a good practice occasionally to carry out very long
runs to test that the results are well converged. In order to equilibrate the random walk,
we generally found it necessary to use 106 MC steps at high temperature (T = 1) and
2 × 107 MC steps at low temperature (T = 0.2), and collect averages over M = 105 MC
steps.
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Appendix E. A heuristic approximation for the dependence of 〈x〉 on q for biased
annealed systems

From equations (C.2) and (3.4), we have that, for large N , the probability that the mole
fraction x1 lies between x and x + dx in the unbiased annealed system is

PN (x)dx =
1

ΞN

N(x+dx)∑

N1=Nx

ΞN1,N2
≈ NΞNx,N(1−x)

ΞN

dx ≈ e−2N(x− 1
2 )

2
/
√

1−R

√
π
√

1 − R/2N
dx. (E.1)

Obviously, 〈x〉 = 1
2
.

Imagine now a biased annealed system where each value of x = N 1/N is weighed
with a certain function wN (x) centered around a value x = q �= 1

2
. In that case,

PN (x) ∝ wN (x)ΞNx,N(1−x), (E.2)

which, for large N , would be extremely peaked around a value (comprised between 1
2

and q) that coincides with the average 〈x〉 =
∫ 1

0
dx xPN (x). Thus, the value 〈x〉 can be

determined as the solution to the equation

0 =
∂

∂x
lim

N→∞
N−1

[
ln wN (x) + ln ΞNx,N(1−x)

]

=
∂

∂x
lim

N→∞
N−1 ln wN (x) +

∂ψ̄0

∂x
, (E.3)

where in the second step we have made use of equation (2.22). Note that here, in contrast
to equation (E.1), we need to take into account the full dependence of ψ̄0 on x because
the solution to equation (E.3) is not, in general, close to 1

2
. According to equation (2.23),

∂ψ̄0

∂x
= − ln

[
1 − 1 −

√
1 − 4x(1 − x)R

2xR

]
+ ln

[
1 − 1 −

√
1 − 4x(1 − x)R

2(1 − x)R

]
. (E.4)

The simplest choice for the weight function wN (x) is the binomial distribution

wN (x) =
(

Neff

Neffx

)
qNeffx(1 − q)Neff(1−x), where N eff ≡ Nb, b being an effective factor account-

ing for the expected dependence of wN(x) on the thermodynamic state (T and p). In
that case,

lim
N→∞

N−1 ln wN (x) = b

[
x ln

q

x
+ (1 − x) ln

1 − q

1 − x

]
, (E.5)

∂

∂x
lim

N→∞
N−1 ln wN (x) = b ln

q(1 − x)

x(1 − q)
. (E.6)
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Therefore, equation (E.3) becomes

0 = − ln

[
1 − 1 −

√
1 − 4x(1 − x)R

2xR

]
+ ln

[
1 − 1 −

√
1 − 4x(1 − x)R

2(1 − x)R

]

+ a
√

1 − R ln
q(1 − x)

x(1 − q)
, (E.7)

where we have taken b = a
√

1 − R, a being a constant to be empirically determined. A
simple and yet optimal value is a = 10.
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Title: “Jellium at finite temperature”
Abstract: We adopt the fixed node restricted path integral Monte Carlo method within the
“Worm algorithm” to simulate Wigner’s Jellium model at finite, non zero, temperatures
using free-particle nodes of the density matrix. The new element is that we incorporate
theWorm algorithm paradigm of Prokof’ev and Svistunov in order to more efficiently handle
the fermionic exchanges. We present results for the structure and thermodynamic properties
of the ideal Fermi gas and three points for the interacting electron gas. We treat explicitly
the case of the partially polarized electron gas.
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1. Introduction

The free electron gas or the Jelliummodel ofWigner [1,2]
is the simplest physical model for the valence electrons
in a metal [3] (more generally it is an essential ingredi-
ent for the study of ionic liquids (see Ref. [4] Chapter 10
and 11): molten-salts, liquid-metals, and ionic-solutions)
or the plasma in the interior of a white dwarf [5]. It can
be imagined as a system of pointwise electrons of charge e
made thermodynamically stable by the presence of a uni-
form inert neutralising background of opposite charge
density inside which they move. In this work we will
only be interested in the jellium in the three dimensional
Euclidean space, leaving its study in a curved surface
[6–9] to later studies.

The zero temperature, ground-state, properties of the
statistical mechanical system thus depends just on the

CONTACT Riccardo Fantoni riccardo.fantoni@posta.istruzione.it Dipartimento di Fisica, Università di Trieste, 34151 Grignano (Trieste), Italy

electronic density n, or the Wigner-Seitz radius rs =
(3/4πn)1/3/a0 where a0 is Bohr radius, or the Coulomb
coupling parameter � = e2/(a0rs). Free electrons in
metallic elements [3] has 2 � rs � 4 whereas in the inte-
rior of a white dwarf [5] rs � 0.01.

The recent two decades have witnessed an impres-
sive progress in experiments and also in quantumMonte
Carlo simulations which have provided the field with
the most accurate thermodynamic data available. These
simulations started with the work by Ceperley and co-
workers and Filinov and co-workers for jellium [10–18],
hydrogen, hydrogen-helium mixtures and electron-hole
plasmas in the 1990s and have been improved dramat-
ically. We recently also applied our newly developed
method to the binary fermion-boson plasma mixture
at finite temperature [19], where we discussed the

© 2021 Informa UK Limited, trading as Taylor & Francis Group
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thermodynamic stability of the two component mixture
where the two species are both bosons, both fermions,
and one boson and one fermion.

According to the Lindhard theory of static screening,
March and Tosi [20] suppose we switch on an appropri-
ately screened test charge potential δV in a free electron
gas. The Hartree potential δV(r) created at a distance r
from a static point charge of magnitude e at the origin,
should be evaluated self-consistently from the Poisson
equation,

∇2δV(r) = −4πe2[δ(r)+ δn(r)], (1)

where δn(r) is the change in electronic density induced by
the test charge. The electron density n(r)may be written
as

n(r) = 2
∑
k

|ψk(r)|2, (2)

where ψk(r) are single-electron orbitals, the sum over
k is restricted to occupied orbitals (|k| ≤ kF, where kF
is the Fermi wave vector) and the factor 2 comes from
the sum over spin orientations. We must now calculate
how the orbitals in the presence of the test charge, differ
from plane waves exp(ik · r). We use for this purpose the
Schrödinger equation,

∇2ψk(r)+
[
k2 − 2m

�2 δV(r)
]
ψk(r) = 0, (3)

having imposed that the orbitals reduce to plane waves
with energy �2k2/(2m) at large distance .1

With the aforementioned boundary condition the
Schrödinger equation may be converted into an integral
equation,

ψk(r) = 1√
�
eik·r + 2m

�2

∫
Gk(r − r′)δV(r′)ψk(r′) dr′,

(4)
with Gk(r) = − exp(ik · r)/(4πr) and � the volume of
the system.

Within linear response theory we can replaceψk(r) by
�−1/2 exp(ik · r) inside the integral. This yields

δn(r) = − mk2F
2π3�2

∫
j1(2kF|r − r′|) δV(r

′)
|r − r′|2 dr

′, (5)

with j1(x) being the first-order spherical Bessel function
[sin(x)− x cos(x)]/x2. Using this result in the Poisson
equation we get

∇2δV(r) = −4πe2δ(r)

+ 2mk2Fe
2

π2�2

∫
j1(2kF|r − r′|) δV(r

′)
|r − r′|2 dr

′,

(6)

which is easily soluble in Fourier transform. Writing
δV(k) = 4πe2/[k2ε(k)] we find,

ε(k) = 1 + 2mkFe2

πk2�2

[
1 + kF

k

(
k2

4k2F
− 1

)
ln

∣∣∣∣k − 2kF
k + 2kF

∣∣∣∣
]
,

(7)
which is the static dielectric function in RPA.

For k → 0 this expression gives ε(k) → 1 + k2TF/k
2

with kTF = 3ω2
p/v2F (ωp being the plasma frequency and

vF the Fermi velocity) i.e. the result of the Thomas-Fermi
theory. However ε(k) has a singularity at k = ±2kF,
where its derivative diverges logarithmically .2 This sin-
gularity in δV(k) determines, after Fourier transform,
the behaviour of δV(r) at large r. δV(r) turns out to
be an oscillating function [21] rather than a monotoni-
cally decreasing function as in the Thomas-Fermi theory.
Indeed,

δV(r) =
∫

dk
(2π)3

4πe2

k2ε(k)
eik·r = e2

iπr

∫ ∞

−∞
dk

eikr

kε(k)
,

(8)
and the integrand has non-analytic behaviour at q =
±2kF,[

1
kε(k)

]
k→±2kF

= −A(k − (±)2kf ) ln |k − (±)2kF| + regularterms,
(9)

with A = (k2TF/4k
2
F)/(k

2
TF + 8k2F). Hence,

δV(r)|r→∞ = −Ae2

iπr

∫ ∞

−∞
dk eikr

[
(k − 2kF) ln |k − 2kF|

+ (k + 2kF) ln |k + 2kF|
]

= −2Ae2
cos(2kFr)

r3
. (10)

This result is based on a theorem on Fourier transforms,
Lighthill [22] stating that the asymptotic behaviour of
δV(r) is determined by the low-k behaviour as well as the
singularities of δV(k). Obviously, in the present case the
asymptotic contribution from the singularities is domi-
nant over the exponential decay of Thomas-Fermi type.
The result implies that the screened ion–ion interac-
tion in a metal has oscillatory character and ranges over
several shells of neighbours.

Today we are able to simulate on a computer the
structural and thermodynamic properties of Jellium at
finite, non zero, temperature. This allows us to predict
thermodynamic states that would be rather difficult to
obtain in nature or in the laboratory. Such as Jellium
under extreme conditions, partially polarised Jellium,
etc. In this work we will carry on some of these path
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integral simulations which make use of the Monte Carlo
technique, which is the best known method to compute
a path integral [23]. The computer experiment is alterna-
tive to the theoretical analytical approximations like RPA
that has been developed, during the years, with various
degrees of accuracies in different thermodynamic con-
ditions. Such theoretical approximations generally fall
into two categories: those which extend down from the
classical regime and those which assume some interpo-
lation between the T = 0 and high-T regimes. From the
former group we recall the Debye-Hückel (DH) theory
which solves for the Poisson-Boltzmann equations for
the classical one-component plasma and the quantum
corrections of Hansen et al. [24,25] of the Coulomb sys-
tem both with Wigner-Kirkwood corrections (H+WK)
and without (H). Clearly these methods do not perform
well in the quantum regime below the Fermi temperature
since they lack quantum exchange. The Random Phase
Approximation (RPA) [26,27] is a reasonable approxima-
tion in the low-density, high-temperature limit (where it
reduces to DH) and the low-temperature, high-density
limit, since these are both weakly interacting regimes.
Its failure, however, is most apparent in its estimation of
the equilibrium, radial distribution function g(r) which
becomes negative for stronger coupling. Extensions of the
RPA into intermediate densities and temperatures have
largely focused on constructing local-field corrections
(LFC) through interpolation since diagrammatic resum-
mation techniques often become intractable in strongly
coupled regimes. Singwi et al. [28] introduced one such
strategy. Tanaka and Ichimaru [29] (TI) extended this
method to finite temperatures and provided the parame-
terisation of the Jellium correlation energy. This method
appears to perform marginally better than the RPA at all
temperatures, though it still fails to produce a positive-
definite g(r) at values of rs > 2. A third, more recent
approach introduced by Perrot and Dharma-wardana
(PDW) [30] relies on a classical mapping where the dis-
tribution functions of a classical system at temperature
Tcf , solved for through the hypernetted-chain equation,
reproduce those for the quantum system at temperature
T. In a previous work, PDW showed such a temperature
Tq existed for the classical system to reproduce the corre-
lation energy of the quantum system at T = 0. Dharma-
wardana and Perrot [31] To extend this work to finite
temperature quantum systems, they use the simple inter-
polation formula Tcf =

√
T2 + T2

q . This interpolation is
clearly valid in the low-T limit where Fermi liquid theory
gives the quadratic dependence of the energy on T. Fur-
ther in the high-T regime, T dominates over Tq as the
system becomes increasingly classical. The PDW results
match well with the simulation results in these two limits.

It is not surprising, however, that in the intermediate
temperature regime, where correlation effects are great-
est, the quadratic interpolation fails. A contemporary, but
similar approach by Dutta and Dufty [32] uses the same
classical mapping as PDW which relies on matching the
T = 0 pair correlation function instead of the correla-
tion energy. While we expect this to give more accurate
results near T = 0, we would still expect a breakdown of
the assumed Fermi liquid behaviour near the Fermi tem-
perature. Strict benchmarks have only recently been pre-
sented in Ref. [33]. Future Jellium work will include cre-
ating a new parameterisation of the exchange-correlation
energywhich uses the simulation data directly [16,34,35].
In doing so, simulations at higher densities and both
lower and higher temperaturesmay be necessary in order
to complete the interpolation between the ground-state
and classical limits.

As will be made clear in Section 4, till recently, not
even through computer experiments we were able to
obtain exact numerical results, since one had to face the
so called fermions sign problem which had not been
solved before the advent of recent simulation [15,16]
when it was demonstrated that the fermion sign prob-
lem can be completely avoided and exact results (with an
error below 1%) for the thermodynamic functions can
be obtained. In other words we were not able to extract
exact results not even numerically from a simulation for
fermions, unlike for bosons or boltzmannons. There-
fore, in order to circumvent the fermion sign problem,
we will here resort to the most widely used approxima-
tion in quantum Monte Carlo that is the restricted path
integral fixed nodes method [36,37]. But unlike previ-
ous studies we will implement this method upon the
worm algorithm [38,39] in the grand canonical ensem-
ble. This complements our previous study [2] carried out
in the canonical ensemble. In this work we will be just
interested in proving the validity of our new numeri-
cal scheme but not its accuracy. We will then not worry
about the finite size corrections, the imaginary thermal
time discretization error, and about a stringent compari-
sonwith previous canonical ensemble studies available in
literature since this program has been already carried on
in Ref. [2].

The work is organised as follows: in Section 2 we
describe the Jelliummodel from a physical point of view,
in Section 3 we introduce the parameter space neces-
sary for the description of Jellium at finite temperature, in
Section 4we describe the simulationmethod, in Section 5
we outline the problemwewant to solve on a computer, in
Section 6 we presents some details of our new algorithm,
Section 7 is for our numerical results, and in Section 8 we
summarise our concluding remarks.
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2. Themodel

The Jellium model of Wigner [20,40–42] is an assembly
of N+ spin up pointwise electrons and N− spin down
pointwise electrons of charge e moving in a positive
inert background that ensures charge neutrality. The total
number of electrons is N = N+ + N− and the average
particle number density is n = N/�, where� is the vol-
ume of the electron fluid. In the volume � = L3 there is
a uniform neutralising background with a charge density
ρb = −en. So that the total charge of the system is zero.
The fluid polarisation is then ξ = |N+ − N−|/N: ξ = 0
in the unpolarised (paramagnetic) case and ξ = 1 in the
fully polarised (ferromagnetic) case.

Setting lengths in units of a = (4πn/3)−1/3 and ener-
gies in Rydberg’s units, Ry = �2/2ma20, where m is the
electron mass and a0 = �2/me2 is the Bohr radius, the
Hamiltonian of Jellium is

H = − 1
r2s

N∑
i=1

∇∇∇2
ri + V(R), (11)

V = 1
rs

⎛
⎝2

∑
i<j

1
|ri − rj| +

N∑
i=1

r2i + v0

⎞
⎠ , (12)

where R = (r1, r2, . . . , rN) with ri the coordinate of the
ith electron, rs = a/a0, and v0 a constant containing the
self energy of the background. Note that the presence
of the neutralising background produces the harmonic
confinement shown in Equation (12).

The kinetic energy scales as 1/r2s and the poten-
tial energy (particle-particle, particle-background, and
background-background interaction) scales as 1/rs, so
for small rs (high electronic densities), the kinetic energy
dominates and the electrons behave like an ideal gas. In
the limit of large rs, the potential energy dominates and
the electrons crystallize into a Wigner crystal. Wigner
[43] No liquid phase is realisable within this model since
the pair-potential has no attractive parts even though
a superconducting state [44] may still be possible (see
chapter 8.9 of Refs. [45,46]).

The Jelliumhas been solved either by integral equation
theories in its ground-state [28] or by computer exper-
iments in its ground-state [47] in the second half of
last century but more recently it has been studied at
finite, non zero, temperatures by several research groups
[10–12,14–18].

It was shown in Ref. [13] that the data of Brown et
al. [10,11] are inaccurate at rs = 1. This appears to be a
systematic error of the fixed node method so it would be
interesting to know whether this problem may be solved
with the present method which seems a promising route

to access higher densities which was not possible in the
paper by Brown et al.

3. Jellium at finite temperature

For the Jellium at finite temperature it is convenient to
introduce the electron degeneracy parameter� = T/TF,
where TF is the Fermi temperature

TF = TD
(2π)2

2[(2 − ξ)α3]2/3
, (13)

here ξ is the polarisation of the fluid that can be either
ξ = 0, for the unpolarised case, and ξ = 1, for the fully
polarised case, α3 = 4π/3, and

TD = n2/3�2

mkB
= �2

mkBα
2/3
3 (a0rs)2

, (14)

is the degeneracy temperature, [23] for temperatures
higher than TD quantum effects are less relevant.

The state of the fluid will then depend also upon the
Coulomb coupling parameter,� = e2/(a0rs)kBT [10]. So
that

� = rs
�

[
2(2 − ξ)2/3α

4/3
3

(2π)2

]
. (15)

The behaviour of the internal energy of the Jellium in
its ground-state (� = 0) has been determined through
Diffusion Monte Carlo (DMC) by Ceperley and Alder
[47]. Three phases of the fluid appeared, for rs < 75 the
stable phase is the one of the unpolarised Jellium, for
75 < rs < 100 the one of the polarised fluid, and for rs >
100 the one of the Wigner crystal. They used systems
from N = 38 to N = 246 electrons.

4. The simulation

The density matrix of a system of many fermions at tem-
perature kBT = β−1 can be written as an integral over all
paths {Rt}
ρF(Rβ ,R0;β)

= 1
N!

∑
P

(−1)P
∮

PR0→Rβ
dRt exp(−S[Rt]), (16)

the pathRt begins atPR0 and ends atRβ andP is a per-
mutation of particles labels. For nonrelativistic particles
interacting with a potential V(R) the action of the path,
S[Rt], is given by (see Appendix 1)

S[Rt] =
∫ β

0
dt

[
r2s
4

∣∣∣∣dRtdt

∣∣∣∣
2
+ V(Rt)

]
. (17)

Thermodynamic properties, such as the energy, are
related to the diagonal part of the density matrix, so that
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the path returns to its starting place or to a permutation
P after a time β .

To performMonte Carlo calculations of the integrand,
one makes imaginary time discrete with a time step τ ,
so that one has a finite (and hopefully small) number of
time slices and thus a classical system of N particles in
M = β/τ time slices; an equivalentNM particle classical
system of ‘polymers’ [23].

Note that in addition to sampling the path, the permu-
tation is also sampled. This is equivalent to allowing the
ring polymers to connect in different ways. This macro-
scopic ‘percolation’ of the polymers is directly related to
superfluidity as Feynman [48–50] first showed. Any per-
mutation can be broken into cycles. Superfluid behaviour
can occur at low temperature when the probability of
exchange cycles on the order of the system size is non-
negligible. The superfluid fraction can be computed in
a path integral Monte Carlo calculation as described in
Ref. [46]. The same method could be used to calculate
the superconducting fraction in Jellium at low temper-
ature. However, the straightforward application of those
techniques to Fermi systems means that odd permuta-
tions subtract from the integrand. This is the ‘fermions
sign problem’ [36] first noted by Feynman [51] who after
describing the path integral theory for boson superfluid
4He, pointed out:

The [path integral] expression for Fermi particles, such
as 3He, is also easily written down. However in the case
of liquid 3He, the effect of the potential is very hard to
evaluate quantitatively in an accurate manner. The rea-
son for this is that the contribution of a cycle to the sum
over permutations is either positive or negative depend-
ing whether the cycle has an odd or an even number of
atoms in its length L.

Thermodynamic properties are averages over the ther-
mal N-fermions density matrix which is defined as a
thermal occupation of the exact eigenstates φi(R)

ρF(R,R′;β) =
∑
i
φ∗
i (R)e

−βEiφi(R′). (18)

The partition function is the trace of the density matrix

Z(β) = e−βF =
∫

dR ρF(R,R;β) =
∑
i
e−βEi . (19)

Other thermodynamic averages are obtained as

〈O〉 = Z(β)−1
∫

dR dR′ 〈R|O|R′〉ρF(R′,R;β). (20)

Note that for any density matrix the diagonal part is
always positive

ρF(R,R;β) ≥ 0, (21)

so that Z−1ρF(R,R;β) is a proper probability distribu-
tion. It is the diagonal part which we need for many

observables, so that probabilistic ways of calculating
those observables are, in principle, possible.

Path integrals are constructed using the product prop-
erty of density matrices

ρF(R2,R0;β1 + β2)

=
∫

dR1 ρF(R2,R1;β2)ρF(R1,R0;β1), (22)

which holds for any sort of density matrix. If the prod-
uct property is used M times we can relate the den-
sity matrix at a temperature β−1 to the density matrix
at a temperature Mβ−1. The sequence of intermediate
points {R1,R2, . . . ,RM−1} is the path, and the time step
is τ = β/M. As the time step gets sufficiently small the
Trotter theorem tells us that we can assume that the
kinetic T and potential V operator commute so that:
e−τH = e−τT e−τV and the primitive approximation for
the fermions density matrix is found [23]. The Feynman-
Kac formula for the fermions density matrix results from
taking the limit M → ∞. The price we have to pay for
having an explicit expression for the density matrix is
additional integrations; all together 3N(M − 1). With-
out techniques formultidimensional integration, nothing
would have been gained by expanding the density matrix
into a path. Fortunately, simulation methods can accu-
rately treat such integrands. It is feasible tomakeM rather
large, say in the hundreds or thousands, and thereby
systematically reduce the time-step error.

In addition to the internal energy and the static struc-
ture of the Jellium one could also measure its dynamic
structure, the ‘superconducting fraction’, the specific
heat, and the pressure [23].

4.1. Restricted path integral Monte Carlo

In this section we give a brief review of the restricted path
integral Monte Carlo (RPIMC) method fully described
in Refs. [36,37]. The fermion density matrix is defined
by the Bloch equation which describes its evolution in
imaginary time

∂

∂β
ρF(R,R0;β) = −H ρ(R,R0;β), (23)

ρF(R,R0; 0) = A δ(R − R0), (24)

where β = 1/kBT with T the absolute temperature and
A is the operator of antisymmetrisation. The reach ofR0,
γ (R0, t), is the set of points {Rt} for which

ρF(Rt′ ,R0; t′) > 0 0 ≤ t′ ≤ t, (25)

where �t is the imaginary thermal time, and is illustrated
in Figure 1.
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6 R. FANTONI

Figure 1. Illustration of the reach γ (R0, t) of the fermion density
matrix.

Note that

ρF(R0,R0; t) > 0, (26)

and clearly

ρF(R,R0; t)|R∈∂γ (R0,t) = 0. (27)

We want to show that (27) uniquely determines the solu-
tion. Suppose δ(R, t) satisfies the Bloch equation

(
H + ∂

∂t

)
δ(R, t) = 0, (28)

in a space-time domai α = {t1 ≤ t ≤ t2,R ∈ �t} where
�t is the space domain at fixed imaginary thermal time.
And the two conditions

δ(R, t1) = 0, (29)

δ(R, t)|R∈∂�t = 0 t1 ≤ t ≤ t2, (30)

are also satisfied. Consider
∫ t2

t1
dt

∫
�t

dR e2V0tδ(R, t)
(
H + ∂

∂t

)
δ(R, t) = 0,

(31)
where V0 is a lower bound for V(R).

We have

∂

∂t
[
e2V0tδ2(R, t)

]
= 2V0e2V0tδ2(R, t)+ 2e2V0tδ(R, t)

∂

∂t
δ(R, t). (32)

Since ∫ t2

t1
dt

∫
�t

dR
∂

∂t

(
e2V0t

2
δ2(R, t)

)

=
∫ t2

t1
dt
∂

∂t

(
e2V0t

2

∫
�t

dR δ2(R, t)
)

= e2V0t2

2

∫
�t2

dR δ2(R, t2), (33)

where in the last equality we used Equation (29). Then
from Equation (31) follows

e2V0t2

2

∫
�t2

dR δ2(R, t2)

−
∫ t2

t1
dt e2V0t

∫
�t

dR

× [
V0δ

2(R, t)− δ(R, t)H δ(R, t)
] = 0. (34)

Then using Equation (30) we find

e2V0t2

2

∫
�t2

dR δ2(R, t2)

+
∫ t2

t1
dt e2V0t

∫
�t

dR

× [
(V(R)− V0)δ

2(R, t)+ λ (∇∇∇δ(R, t))2] = 0. (35)

With λ = �2/2m. Each term in Equation (35) is non-
negative so it must be

δ(R, t) = 0 inα. (36)

Let ρ1 and ρ2 be two solutions of the restricted path prob-
lem and let δ = ρ1 − ρ2. Then δ(R, t)|R∈∂γ (R0,t) = 0 for
t1 ≤ t ≤ t2. By taking t2 to infinity and t1 to zero we
conclude that the fermion density matrix is the unique
solution.

Equation (35) also shows that the reach γ has the tiling
property [36]. Suppose it did not. Then there would exist
a space-time domain with the density matrix non-zero
inside and from which it is only possible to reach R0 or
any of its images PR0, with P any permutation of the
particles, crossing the nodes of the density matrix. But
such a domain cannot extend to t = 0 because in the clas-
sical limit there are no nodes. Then this density matrix
satisfies for some t1 > 0 the boundary conditions (29)
and (30) and as a consequence it must vanish completely
inside the domain contradicting the initial hypothesis.

We now derive the restricted path identity. Suppose
ρF is the density matrix corresponding to some set of
quantum numbers which is obtained by using the projec-
tion operator A on the distinguishable particle density
matrix. Then it is a solution to the Bloch equation (23)
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with boundary condition (24). Thus we have proved the
Restricted Path Integral identity

ρF(Rβ ,R0;β)

=
∫

dR′ ρF(R′,R0; 0)
∮
R′→Rβ∈γ (R0)

dRt e−S[Rt],

(37)

where the subscript means that we restrict the path
integration to paths starting at R′, ending at Rβ and
node-avoiding. The weight of the walk is ρF(R′,R0; 0) =
(N!)−1 ∑

P(−)Pδ(R′ − PR0). It is clear that the con-
tribution of all the paths for a single element of the density
matrixwill be of the same sign, thus solving the sign prob-
lem; positive if ρF(R′,R0; 0) > 0, negative otherwise. On
the diagonal the densitymatrix is positive and on the path
restriction ρF(R,R0;β) > 0 then only even permutations
are allowed since ρF(R,PR;β) = (−)PρF(R,R;β). It
is then possible to use a bosons calculation to get the
fermions case.

Important in this argument is that the random walk is
a continuous process so we can say definitely that if sign
of the density matrix changed, it had to have crossed the
nodes at some point.

The restricted path identity is one solution to Feyn-
man’s task of rearranging terms to keep only positive
contributing paths for diagonal expectation values.

The problem we now face is that the unknown den-
sity matrix appears both on the left-hand side and on
the right-hand side of Equation (37) since it is used to
define the criterion of node-avoiding paths. To apply
the formula directly, we would somehow have to self-
consistently determine the density matrix. In practice
what we need to do is make an ansatz, which we call ρT ,
for the nodes of the density matrix needed for the restric-
tion. The trial density matrix, ρT , is used to define trial
nodal cells: γT(R0).

Then if we know the reach of the fermion density
matrix we can use the Monte Carlo method to solve the
fermion problem restricting the path integral (RPIMC)
to the space-time domain where the density matrix has a
definite sign (this can be done, for example, using a trial
density matrix whose nodes approximate well the ones
of the true density matrix) and then using the antisym-
metrisation operator to extend it to the whole configu-
ration space. This will require the complicated task of
sampling the permutation space of the N-particles [23].
Recently it has been devised an intelligentmethod to per-
form this sampling through a new algorithm called the
worm algorithm [38,39]. In order to sample the path in
coordinate space one generally uses various generalisa-
tions of the Metropolis rejection algorithm [52] and the

bisection method [23] in order to accomplish multislice
moves which becomes necessary as τ decreases.

The pair-product approximation was used by Brown
et al. [10] (see Appendix 2) to write the many-body den-
sity matrix as a product of high-temperature two-body
density matrices [23]. The pair Coulomb density matrix
was determined using the results of Pollock [53] even if
these could be improved using the results of Vieillefosse
[54,55]. This procedure comes with an error that scales
as ∼ τ 3/r2s where τ = β/M is the time step, with M the
number of imaginary time discretizations. A more dom-
inate form of time step error originates from paths which
cross the nodal constraint in a time less than τ . To help
alleviate this effect, Brown et al. [10] use an image action
to discourage paths fromgetting too close to nodes. Addi-
tional sources of error are the finite size one and the
sampling error of the Monte Carlo algorithm itself. For
the highest density points, statistical errors are an order
of magnitude higher than time step errors.

The results at a given temperature T where obtained
starting from the density matrix in the classical limit, at
small thermal times, and using repetitively the squaring
method

ρF(R1,R2;β) =
∫

dR′ ρF(R1,R′;β/2)ρF(R′,R2;β/2).
(38)

Time doubling is an improvement also because if we have
accurate nodes down to a temperature T, we can do accu-
rate simulations down to T/2. Equation (38) is clearly
symmetric in R1 and R2. The time doubling cannot be
repeated without reintroducing the sign problem.

Brown et al. [10] use N = 33 electrons for the fully
spin polarised systemandN = 66 electrons for the unpo-
larised system.

5. The problem

We need to adopt a free fermion density matrix restric-
tion [10] for the path integral calculation from the worm
algorithm [39,56] to the reach of the reference point in
the moves ending in the Z sector: remove, close, wig-
gle, and displace. The worm algorithm is a particular
path integral algorithmwhere the permutations need not
to be sampled as they are generated with the simula-
tion evolution. We will use the primitive approximation
of Equations (A8)–(A10), randomise the reference point
time slice, restrict also the G sector, in particular the
advance and swapmoves, choose the probability of being
in the G sector, C0 defined in Ref. [39], as small as possi-
ble, in order not to let theworm algorithm get stuck in the
G sector when we have many time slices. Usually choos-
ing a smaller time step allows to use a larger C0 since the
path is smoother and the restriction gives less problems
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in the transition from the G to the Z sector. Or equiv-
alently increasing the number of time slices at fixed C0
gives a larger permanence in the Z sector. The algorithm
chooses autonomously the optimal τ to be used.

The restriction implementation is rather simple: we
just reject the move whenever the proposed path is such
that the ideal fermion density matrix calculated between
the reference point and any of the time slices subject to
newly generated particles positions has a negative value.
Our algorithm is described in detail in the following
section.

The trial density matrix used to perform the restric-
tion of the fixed nodes path integral is chosen as the one
of ideal fermions which is given by

ρ0(R,R′; t) ∝ A

[
e−

(ri−r′j)2
4λt

]
, (39)

where λ = �2/2m and A is the antisymmetrisation
operator acting on the same spin groups of particles. We
expect this approximation to be best at high tempera-
tures and low densities when the correlation effects are
weak. Clearly in a simulation of the ideal gas (V = 0) this
restriction returns the exact result for fermions.

We will use the primitive approximation in a grand
canonical ensemble calculation at fixed chemical poten-
tial μ, volume �, and temperature T. Decreasing the
chemical potential the average number of particles
diminishes. Decreasing C0 the simulation spends more
time in the Z sector.

So, we will take the Bohr radius a0 as units of length
and energies in Rydberg’s units. In particular in the grand
canonical simulation the path integral time step τ (Ry−1)

will be independent from rs, unlike the simulations of
Brown et al. [10]

The Coulomb potential is treated through the method
of Natoli and Ceperley [57] which cures its long range
nature (see Appendix 3). Even if the comparison with
the direct method by Fraser et al. [58] gives already
reasonable results.

Wewill explicitly determine the dependence of the Jel-
lium properties (structural and thermodynamic) on the
polarisation ξ .

6. Our algorithm

Our algorithm briefly presented in the previous section
is based on the worm algorithm of Boninsegni et al.
[39,56,59–61]. This algorithmuses amenuof ninemoves.
Three self-complementary: swap, displace, and wiggle,
and the other six are three couples of complementary
moves: insert-remove, open-close, and advance-recede.
These moves act on ‘worms’ with a head Ira and a tail

Masha in the β-periodic imaginary thermal time, which
can swap a portion of their bodies (swapmove), canmove
forward and backward (advance-recede moves), can be
subdivided in two or joined into a bigger one (open-close
moves), and can be born or die (insert-remove moves)
since we are working in the grand-canonical ensemble.
The configuration space of the worms is called the G sec-
tor. When the worms recombine to form a closed path
we enter the so called Z sector and the path can trans-
late in space (displace move) and can propagate in space
through the bisection algorithm (wiggle move) carefully
explained in Ref. [23].

In order to reach a restricted path integral we restrict
themoves that end in theZ sector, that is: displace, wiggle,
close, and remove. This is pictorially shown in Figure 2
for the first three moves. It is important to stress the fact
that we choose the reference point time slice randomly
(i.e. we choose an integer random number between 1
and M, say m, and the reference point will then be R0 =
Rmτ ), before eachmove, to increase the acceptances in the
restrictions. This is allowed because we are free to per-
form a translation in the β-periodic imaginary thermal
time. The reaches of different reference points will in gen-
eral be different. In the figure the reach is schematically
represented as a double cone.

In order to increase the acceptances in the restrictions
we also restricted some moves in the G sector: swap and
advance.

In order to implement the restriction we reject the
move whenever the proposed path is such that the
ideal fermion density matrix of Equation (39) calculated
between the reference point and any of the time slices
subject to newly generated particles positions has a nega-
tive value. That is, whenever the path ends up in a region
not belonging to the reach of the reference point as shown
in Figure 2. The restriction of the G sector moves acts in
the same way but on worms rather than on closed paths.
When calculating diagonal properties we consider only
the density matrix at the reference point.

Since the averages are only taken during the perma-
nence in the Z sector it is fundamental to restrict the
moves that end in the Z sector. Since these are the ones
that have an influence on the measures of the various
estimators during the run. If we enter the Z sector in
such a way that we are out of the reach of the reference
point the algorithm will continue wandering in the G
sector till a door to the Z sector opens up. The code with-
out restrictions gives the bosonic calculation so we are
free to restrict also the G sector in order to increase the
acceptances of the Z sector.

For each move we can decide the frequency of the
move and the maximum number of time slices it oper-
ates on, apart from the displace move where instead of
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Figure 2. (Color online) Illustration of the rejection algorithm
within the worm algorithm. The bold line represents schemati-
cally the closed path or the openworm, of a single electron. In the
most general case thesewillwind through thebeta periodic imag-
inary thermal time circle, but this is not shown in the illustration.
The reference point is ri0 and themicroscopic reach is represented
schematically as the shaded doubly cylindrical region. In general
the reach will be a complicated region of space-time as pointed
out in Figure 1 for the macroscopic reach. Only the three moves:
displace (Z→Z), wiggle (Z→Z), and close (G→Z) are shown. On
the left we have the starting configuration and on the right we
show two different actions of each move, one accepted and one
rejected.

the maximum number of time slices we can decide the
maximum extent of the spatial translation displacement.
It is well known thatMonteCarlo algorithmsworks better
as long as we have a longer moves menu, unless of course
one violates detailed balance. So the worm algorithm is
very efficient in exploring all the electrons path configu-
ration with all the necessary exchanges.

7. Results

In order to test the validity of the restriction proce-
dure we first simulated a system of free (V = 0) particles
without the restriction (bosons) and with the restriction
(fermions). The result for the radial distribution function
is shown in Figure 3. The small discrepancy with the ana-
lytic result of Bosse et al. [62] is due to the finite size effect.
The average number of particles in the simulation for
the bosons being around 107 and for the fermions 46 for
β = 1Ry−1, 27 forβ = 10Ry−1, and 21 forβ = 30Ry−1.
For the free particles we do not have any source of error
coming from the imaginary time discretization. Since we
were not interested in a quantitative accurate analysis we
chose the simulations at smaller temperatures shorter.

Figure 3. (Color online) The radial distribution function for an
ideal gas of bosons at one inverse temperature (β = 1 Ry−1)
and an ideal gas of fermions at three inverse temperatures (β =
1Ry−1, 10Ry−1, 30Ry−1).We simulate fully polarised (ξ = 1) par-
ticles. The exact analytical results are shown as guiding lines and
were derived from the work of Bosse et al. [62]

The volume was kept fixed at � = 1.25 × 105a30 corre-
sponding to a half box side of L/2 = 25a0. We used 20
time slices for the boson case and 80 for the fermion cases.

In these simulations we find good agreement with
the exact analytic results also for the internal energy per
particle (kinetic and potential) and for the pressure.

Then we simulated the Jellium using for the poten-
tial energy, V, the image potential, VI , of Equation (A33)
where we chose the short and long range splitting, nec-
essary for the bare Coulomb potential v(r) = 2 Ry/r,
using the optimised method of Natoli and Ceperley [57]
with an eight-order polynomial for the radial interpola-
tion. In the long range part we keep up to 128 Fourier
components.

In Table 1 we present our results for various ther-
modynamic quantities. Our results cannot be directly
compared with the ones of Brown et al. [10] since we are
running at fixed chemical potential but we believe that we
are able to extend their results at higher density rs < 1.
Benchmark data can be found in Refs. [63,64]. We leave
a careful comparison in a subsequent work.

In Figure 4 we show our results for the radial distribu-
tion function for the states of Table 1.

8. Conclusions

We have successfully implemented the ideal fermion
density matrix restriction on the path integral worm
algorithmwhich is able to generate the necessary permu-
tations during the simulation evolution without the need
of their explicit sampling. This allowed us to reach the
fermionic finite temperature properties of a given fluid of
particles interacting through a pair potential. We worked
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Table 1. Thermodynamic results in our simulations: β (Ry−1) inverse temperature, ek (Ry) kinetic energy per particle, ep (Ry) potential
energy per particle, P (Ry/a30) pressure.

M ξ N L β rs � � ek ep P

60 1 35.35(4) 5 0.04 0.945 3.819 0.085 31.5(5) −0.736(3) 5.7(1)
80 0.154 57.0(2) 50 4 8.060 4.180 0.993 0.365(8) −0.0921(4) 5.2(2)×10−5

680 1 30.15(3) 50 68 9.966 0.250 13.647 0.016(1) −0.12198(5) ≈ 0

Figure 4. (Color online) The radial distribution function for Jel-
lium in the states of Table 1. Also shown is the DH result for the
highest temperature state, gDH(r) = exp[−�

r exp(−
√
3�r)].

in the grand canonical ensemble and applied our method
to the Jellium fluid of Wigner. Even if our results cannot
be directly compared with the previous canonical cal-
culation of Brown et al. [10] (this program was already
carried out in our previous work [2]) we believe that they
complement them with the access to the high density
regime and with the treatment of the general polarisa-
tion case. In this preliminary paper we just address the
validity of our method, its accuracy will be treated in a
forthcoming work.

The relevance of our study relies in the fact that our
simulation method is different from both the method of
Ceperley et al. [10,11] who uses the fixed nodes approxi-
mation in the canonical ensemble and explicitly samples
the necessary permutations, and from the one of Bonitz
et al. [12,14–16] who combine configuration path inte-
gralMonte Carlo and permutation blocking path integral
Monte Carlo. Our method is also different from others
quantumMonte Carlo methods like the one of Malone et
al. [17] that agrees well with the one of Bonitz at high
densities and the direct path integral Monte Carlo one
of Filinov et al. [18] that agrees well with Brown at low
density andmoderate temperature. So our new algorithm
adds to the ones already used in the quest for an optimal
way to calculate the properties of the fascinatingWigner’s
Jellium model at finite temperatures.

We obtained results for both the structure, the radial
distribution function, and various thermodynamic quan-
tities.

We intend to adopt this method to simulate Jellium in
a curved surface [6–9] in the near future. For example
the Jellium on the surface of a sphere with a Dirac mag-
netic monopole at the centre could be used to study the
quantumHall effect [65].We already successfully applied
the present method to Jellium on the surface of a sphere
[66] and to two component boson-fermion plasma on a
plane [19].

Notes

1. This approach (which leads to the Random Phase Approx-
imation, RPA) is approximate insofar as the potential
entering the Schrödinger equation has been taken as the
Hartree potential, thus neglecting exchange and corre-
lation between an incoming electron and the electronic
screening cloud.

2. The discontinuity in the momentum distribution across
the Fermi surface introduces a singularity in elastic scat-
tering processes with momentum transfer equal to 2kF.
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Appendices

Appendix 1. The primitive action

In this appendix we give a brief review of the derivation of the
primitive approximation given in Ref. [23]. Suppose theHamil-
tonian is split into two pieces H = T + V , where T and V
are the kinetic and potential operators. Recall the exact Baker-
Campbell-Hausdorff formula to expand exp(−τH ) into the
product exp(−τT ) exp(−τV ). As τ → 0 the commutator
terms which are of order higher than τ 2 become smaller than
the other terms and thus can be neglected. This is known as the
primitive approximation

e−τ(T +V ) ≈ e−τT e−τV . (A1)

hence we can approximate the exact density matrix by prod-
uct of the density matrices for T and V alone. One might
worry that this would lead to an error as M → ∞, with small
errors building up to a finite error. According to the Trotter [67]
formula, one does not have to worry

e−β(T +V ) = lim
M→∞

[
e−τT e−τV

]M
. (A2)

The Trotter formula holds if the three operators T , V , and
T + V are self-adjoint and make sense separately, for exam-
ple, if their spectrum is bounded below [68]. This is the case for
the Hamiltonian describing Jellium.

Let us now write the primitive approximation in position
space

ρ(R0,R2; τ) ≈
∫

dR1〈R0|e−τT |R1〉〈R1|e−τV |R2〉, (A3)

and evaluate the kinetic and potential density matrices. Since
the potential operator is diagonal in the position representa-
tion, its matrix elements are trivial

〈R1|e−τV |R2〉 = e−τV(R1)δ(R2 − R1). (A4)

The kinetic matrix can be evaluated using the eigenfunction
expansion of T . Consider, for example, the case of distin-
guishable particles in a cube of side L with periodic boundary
conditions. Then the exact eigenfunctions and eigenvalues of
T are L−3N/2eiKnR and λK2

n, with Kn = 2πn/L and n a 3N-
dimensional integer vector. We are using here dimensional
units. Then

〈R0|e−τT |R1〉 =
∑
n

L−3Ne−τλK
2
ne−iKn(R0−R1) (A5)

= (4πλτ)−3N/2 exp
[
− (R0 − R1)2

4λτ

]
, (A6)

whereλ = �2/2m. Equation (A6) is obtained by approximating
the sum by an integral. This is appropriate only if the ther-
mal wavelength of one step is much less than the size of the
box, λτ � L2. In some special situations this condition could
be violated, in which case one should use Equation (A5) or
add periodic ‘images’ to Equation (A6). The exact kinetic den-
sity matrix in periodic boundary conditions is a theta function,∏3N

i=1 θ3(zi, q), where zi = π(Ri0 − Ri1)/L, R
i is the ith compo-

nent of the 3N dimensional vector R, and q = e−λτ(2π/L)2 (see
chapter 16 of Ref. [69]). Errors from ignoring the boundary
conditions are O(q), exponentially small at largeM.

A link m is a pair of time slices (Rm−1,Rm) separated by a
time step τ = β/M. The action Sm of a link is defined as minus
the logarithm of the exact density matrix. Then the exact path-
integral expression becomes

ρ(R0,RM ;β) =
∫

dR1 . . . dRM−1 exp

[
−

M∑
m=1

Sm
]
. (A7)

It is convenient to separate out the kinetic action from the rest
of the action. The exact kinetic action for linkmwill be denoted
Km

Km = 3N
2

ln(4πλτ)+ (Rm−1 − Rm)2

4λτ
. (A8)

The inter-action is then defined as what is left

Um = U(Rm−1,Rm; τ) = Sm − Km. (A9)

In the primitive approximation the inter-action is

Um
1 = τ

2
[V(Rm−1)+ V(Rm)], (A10)

where we have symmetrised Um
1 with respect to Rm−1 and Rm,

since one knows that the exact density matrix is symmetric and
thus the symmetrised form is more accurate.

A capital letter U refers to the total link inter-action. One
should not think of the exact U as being strictly the poten-
tial action. That is true for the primitive action but, in general,
is only correct in the small−τ limit. The exact U also con-
tains kinetic contributions of higher order in τ . If a subscript
is present on the inter-action, it indicates the order of approxi-
mation; the primitive approximation is only correct to order τ .
No subscript implies the exact inter-action.
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The residual energy of an approximate density matrix is
defined as

EA(R,R′; t) = 1
ρA(R,R′; t)

[
H + ∂

∂t

]
ρA(R,R′; t). (A11)

The residual energy for an exact density matrix vanishes; it is
a local measure of the error of an approximate density matrix.
TheHamiltonianH is a function ofR; thus the residual energy
is not symmetric in R and R′.

It is useful to write the residual energy as a function of the
inter-action. We find

EA(R,R′; t) = V(R)− ∂UA

∂t
− (R − R′) · ∇UA

t
+ λ∇2UA − λ (∇UA)

2 . (A12)

The terms on the right hand side are ordered in powers of τ ,
keeping inmind thatU(R) is of order τ , and |R − R′| is of order
τ 1/2. One obtains the primitive action by setting the residual
energy to zero and dropping the last three terms on the right
hand side.

The residual energy of the primitive approximation is

E1(R,R′; t) = 1
2

[
V(R)− V(R′)

] − 1
2
(R − R′) · ∇V

+ λt
2

∇2V − λt2

4
(∇V)2 . (A13)

With a leading error of ∼ λτ 2.

Appendix 2. The pair-product action

An often useful method to determine the many-body action
is to use the exact action for two electrons [70]. To justify this
approach, first assume that the potential energy can be broken
into a pairwise sum of terms

V(R) =
∑
i<j

v(|ri − rj|), (A14)

with |ri − rj| = rij. Next, apply the Feynman-Kac formula for
the inter-action

e−U(R0,RF ;τ) =
〈
exp

[
−

∫ τ

0
dt V(R(t))

]〉
RW

, (A15)

where the notation 〈· · · 〉RW means the average over all Gaus-
sian random walks from R0 to RF in a ‘time’ τ . So that

e−U(R0,RF ;τ) =
〈
exp

⎡
⎣−

∫ τ

0
dt

∑
i<j

v(rij(t))

⎤
⎦〉

RW

(A16)

=
〈∏
i<j

exp
[
−

∫ τ

0
dt v(rij(t))

]〉
RW

(A17)

≈
∏
i<j

〈
exp

[
−

∫ τ

0
dt v(rij(t))

]〉
RW

(A18)

=
∏
i<j

exp
[
−u2(rij, r′ij; τ)

]
(A19)

= exp

⎡
⎣−

∑
i<j

u2(rij, r′ij; τ)

⎤
⎦ = e−U2(R0,RF ;τ),

(A20)

where U2 is the pair-product action and u2 is the exact action
for a pair of electrons. At low temperatures the pair action
approaches the solution of the two particle wave equation.
The result is the pair-product or Jastrow ground-state wave
function, which is the ubiquitous choice for a correlated wave
function because it does such a good job of describing most
ground-state correlations.

The residual energy (see Equation (A11)) for the pair-
product action is less singular than for other forms. We have
that

u2(rij, r′ij; τ) = − ln
〈
exp

(
−

∫ τ

0
dt v(rij(t))

)〉
RW

, (A21)

is of order τ 2 since the two body problem can be factorised
into a centre-of-mass term and a term that is a function of the
relative coordinates. Moreover we must have

∂u2
∂τ

= v(rij(τ )), (A22)

so that
∂U2

∂τ
= V(R(τ )), (A23)

which tells that only the last three terms on the right hand side
of Equation (A12) contribute to the residual energy. We also
have

∇U2 =
∑
i

∑
i�=j

∇iu2(rij, r′ij; τ), (A24)

where the indices run over the particles. So the leading error of
the pair-product action is ∼ λτ 3.

Appendix 3. Long-range potentials with the
Ewald image technique

Suppose the bare potential in infinite d dimensional space is
v(r). Let us define the Fourier transform by

ṽk =
∫ ∞

−∞
ddr e−ik·rv(r). (A25)

Then its inverse is

v(r) =
∫ ∞

−∞
ddk
(2π)d

eik·rṽk . (A26)

Now let us find the energy of a single particle interacting
with an infinite rectangular lattice of another particle a distance
r away. To make it converge we also add a uniform background
of the same density (� =volume) of opposite charge. Thus the
‘image pair-potential’ is equal to

vI(r) =
∑
L

v(r + L)− ṽ0/�. (A27)

The L sum is over the Bravais lattice of the simulation cell
L = (mxLx,myLy, . . .)wheremx,my, . . . range over all positive
and negative integers. Converting this to k-space and using the
Poisson sum formula we get

vI(r) = 1
�

′∑
k

ṽkeik·r, (A28)

where the prime indicates that we omit the k = 0 term; it can-
cels out with the background. The k-sum is over reciprocal lat-
tice vectors of the simulation boxk = (2πnx/Lx, 2πny/Ly, . . .).
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Because both sums are so poorly convergent, we make the
division into k-space and r-space; taking the long-range part
into k-space. We write

v(r) = vs(r)+ vl(r), (A29)

where the optimal splitting is discussed in the work by Natoli
andCeperley [57]. Since Fourier transform is linear, we can also
write

ṽk = ṽsk + ṽlk . (A30)
Then the image pair-potential is written as

vI(r) =
∑
L

vs(|r + L|)+ 1
�

∑
k

ṽlkeik·r − 1
�
ṽ0. (A31)

Now let us work with N particles of charge qi in a periodic
box and let us compute the total potential energy of the unit cell.
Particles i and j are assumed to interact with a pair-potential
qiqjv(rij). The image potential energy for theN-particle system
is

VI =
∑
i<j

qiqjvI(rij)+
∑
i
q2i vM , (A32)

where vM is the interaction of a particle with its own images; it
is aMadelung constant for particle i interacting with the perfect
lattice of the simulation cell. If this term were not present, par-
ticle i would only see N−1 particles in the surrounding cells
instead of N. We can find its value by considering the limit as
two particles get close together with the image pair-potential.
Hence

vM = 1
2
lim
r→0

[vI(r)− v(r)]. (A33)

Now we substitute the split up image pair-potential and collect
all the terms together

VI =
∑
i<j

∑
L

qiqjvs(|rij + L|)+ 1
�

′∑
k

ṽlk
∑
i<j

qiqjeik·rij

− 1
�

∑
i<j

ṽs0qiqj +
∑
i
q2i vM . (A34)
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Following a modest comparison between canonical and affine quantization, which points
to positive features in the affine procedures. We prove through Monte Carlo analysis

that the covariant Euclidean scalar field theory, ϕr
n, where r denotes the power of the

interaction term and n = s + 1 where s is the spatial dimension and 1 adds imaginary

time, such that r = n = 4 can be acceptably quantized using scaled affine quantization

and the resulting theory is nontrivial, unlike what happens using canonical quantization.

Keywords: Covariant Euclidean scalar field theory; affine quantization; path integral
Monte Carlo; renormalization.

PACS numbers: 03.65.−w, 11.10.Cd, 11.10.Ef, 11.10.Gh, 11.10.Lm

1. Introduction

Covariant Euclidean scalar field quantization, henceforth denoted ϕrn, where r is

the power of the interaction term and n = s + 1 where s is the spatial dimen-

sion and 1 adds imaginary time, such that r < 2n/(n − 2) can be treated by

canonical quantization (CQ), while models such that r > 2n/(n− 2) are trivial.1–5

Models such as r = 2n/(n − 2), e.g. r = n = 4, also are nonrenormalizable using

∗Corresponding author.

2250029-1

Eliminating Nonrenormalizability Helps Prove Scaled Affine
Quantization of φ4

4 is Nontrivial 1056



March 5, 2022 14:56 IJMPA S0217751X22500294 page 2

FA

R. Fantoni & J. R. Klauder

canonical quantization.1 However, there exists a different approach called affine

quantization (AQ)6,7 that promotes a different set of classical variables to become

the basic quantum operators and it offers different results, such as models for which

r > 2n/(n− 2), which has been recently correctly quantized ϕ12
3 .8 In this work, we

show, with the aid of a Monte Carlo (MC) analysis, that one of the special cases

where r = 2n/(n− 2), specifically the case r = n = 4, can be acceptably quantized

using affine quantization.9–11

This program was already carried on with partial success in Refs. 9 and 10,

where, however, a diverging value of the vacuum expectation value of the field was

found. We show here that using a simple rescaling of the affine quantized theory

allows to solve this shortcoming keeping the field theory nontrivial.

2. A Comparison Between Canonical Quantization and

Affine Quantization for Fields

2.1. Canonical quantization of scalar fields

Let us begin with the classical Hamiltonian for a single field ϕ(x)

H(π, ϕ) =

∫ {
1

2

[
π(x)2 + (∇ϕ(x))2 +m2ϕ(x)2

]
+ gϕ(x)r

}
dsx , (1)

where n = s + 1 is the number of space–time variables, and r is a positive, even,

integer. When g is zero, the remaining expression involves a domain in which a

full set of variables, i.e. π(x) and ϕ(x), leads to a finite Hamiltonian value. If

g = 0 → g > 0, there are two possible results. If r < 2n/(n − 2), then the domain

remains the same. However, if r ≥ 2n/(n − 2), then there is a new domain that

is smaller than the original domain because the interaction term
∫
ϕ(x)r dsx =∞

leads to a reduction of certain fields. The fields that cause that divergence are not

ϕ(x) = ∞, because that would have eliminated the original domain when g = 0.

The only way for
∫
ϕ(x)r dsx = ∞ is, for example, given by ϕ(x) = 1/[(x − c)2]k

where k is small enough so that the gradient term will diverge sooner than the

mass term, while r > 2 is big enough so that
∫
ϕ(x)r dsx =∞. Such behavior leads

to immediate results in perturbation infinities in a power series of g, leading to a

nonrenormalizable process, for which quantum efforts, using canonical quantization,

collapse to “free” results, despite that g > 0, as all that is continuously connected

to the original free theory where g = 0.

This analysis is confirmed with several efforts. As examples, we note that MC

and analytical methods have confirmed that the model ϕ4
4 leads only to “free”

results,1–4 as well as the model ϕ12
3 also leads to “free” results.8 Having seen what

CQ can show us what it can do, now let us turn to AQ.
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2.2. Affine quantization of scalar fields

The classical affine variables are κ(x) ≡ π(x)ϕ(x) and ϕ(x) 6= 0. The reason we

insist that ϕ(x) 6= 0 is because if ϕ(x) = 0 then κ(x) = 0 and π(x) cannot help.

We next introduce the same classical Hamiltonian we chose before now expressed

in affine variables. This leads us to

H ′(κ, ϕ) =

∫ {
1

2

[
κ(x)2ϕ(x)−2 + (∇ϕ(x))2 +m2ϕ(x)2

]
+ gϕ(x)r

}
dsx , (2)

in which ϕ(x) 6= 0 is an important fact. With these variables we do not let ϕ(x) =∞
for the reasons made in the CQ story, but now we must forbid ϕ(x) = 0 which

would admit ϕ(x)−2 = ∞. The fact that 0 < ϕ(x)−2 < ∞, it follows that, using

these variables, 0 < ϕ(x)r <∞, with any 2 < r <∞. This essential result leads to

the fact that these AQ bounds on ϕ(x) forbid any nonrenormalizability , a “disease”

which plagues the CQ analysis. With AQ, this new insight implies that every model

ϕrn does not become a “free” result, but leads to an appropriate “nonfree” result.

Specifically, this assertion should lead to “nonfree” results for ϕ12
3 and ϕ4

4, as MC

results, have already shown.8–11

What follows in the coming sections is additional MC studies using AQ proce-

dures. As the former story promises, that study will definitely succeed.

3. Lattice Formulation of the Field Theory

We used a lattice formulation of the AQ field theory studied in Eq. (8) of Ref. 9

using the scaling ϕ → a−s/2ϕ, g → asg, ε → a−sε where ε is the regularization

parameter. The theory considers a real scalar field ϕ taking the value ϕ(x) on

each site of a periodic, hypercubic, n-dimensional lattice of lattice spacing a, our

ultraviolet cutoff and periodicity L = Na. The affine action for the field, S′ =∫
H ′ dx0 (with x0 = ct where c is the speed of light constant and t is imaginary

time), is then approximated by

S′[ϕ]

an−s
≈ 1

2

{∑

x,µ

a−2[ϕ(x)− ϕ(x+ eµ)]2 +m2
∑

x

ϕ(x)2

}

+
∑

x

g ϕ(x)r +
3

8

∑

x

~2
1

ϕ(x)2 + ε
, (3)

where eµ is a vector of length a in the +µ direction.

In this work, we are interested in reaching the continuum limit by taking Na

fixed and seeking N →∞ at fixed volume Ls and absolute temperature T = 1/kBL

with kB the Boltzmann’s constant.

3.1. MC results

We repeated the path integral MC12–15 calculation for the AQ field theory pre-

viously done in Ref. 9 for the case r = n = 4 using now the scaling ϕ → a−s/2ϕ,
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FIG. 1. (color online) We show the renormalized mass mR ≈ 3 (top panel), the renormalized

coupling constants gR (central panel), and gRm
n
R (bottom panel) for various values of the bare

coupling constant g at decreasing values of the lattice spacing a = 1/N (N → ∞ continuum limit)

for the scaled affine φ4
4 covariant euclidean scalar field theory described by the action in Eq. (3)

for r = n = 4. The lines connecting the simulation points are just a guide for the eye.

6

Fig. 1. The renormalized mass mR ≈ 3 (top panel), the renormalized coupling constants gR
(central panel), and gRmn

R (bottom panel) for various values of the bare coupling constant g at
decreasing values of the lattice spacing a = 1/N (N →∞ idealized limit) for the scaled affine ϕ4

4

covariant Euclidean scalar field theory described by the action in Eq. (3) for r = n = 4. The lines

connecting the simulation points are just a guide for the eye.
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g → asg, ε → a−sε, which brings to using the lattice formulation for the action

of Eq. (3). In particular, we calculated the renormalized coupling constant gR and

mass mR defined in Eqs. (11) and (13) of Ref. 9, respectively.

Following Freedman et al.,1 for each N and g, we adjusted the bare mass m

in such a way to maintain the renormalized mass approximately constant mR ≈
3,a to within a few percent (in all cases less than 10%), and we measured the

renormalized coupling constant gR defined in Refs. 8 and 9 for various values of

the bare coupling constant g at a given small value of the lattice spacing a = 1/N

(this corresponds to choosing an absolute temperature kBT = 1 and a fixed volume

L3 = 1). With Na and mR fixed, as a was made smaller, whatever change we found

in gRm
n
R as a function of g could only be due to the change in a. We generally

found that a depression in mR produced an elevation in the corresponding value of

gR and vice versa. The results are shown in Fig. 1 for the scaled affine action (3)

in natural units c = ~ = kB = 1 and ε = 10−10 (the results are independent from

the regularization parameter as long as this is chosen sufficiently small), where,

following Freedman et al.,1 we decided to compress the range of g for display, by

choosing the horizontal axis to be g/(50 + g). The constraint mR ≈ 3 was not easy

to implement since for each N and g we had to run the simulation several times

with different values of the bare mass m in order to determine the value which

would satisfy the constraint mR ≈ 3.

These results should be compared with the results of Fig. 1 of Freedman et al.1

where the same calculation was done for the canonical version of the field theory.

As we can see from our figure, contrary to the figure of Freedman, the renormalized

coupling constant of the affine version remains far from zero in the continuum limit

when the ultraviolet cutoff is removed (Na = 1 and N → ∞) for all values of the

bare coupling constant. Here, unlike in the canonical version used by Freedman, the

diminishing space between higher N curves is a pointer toward a nonfree ultimate

behavior as N → ∞ at fixed volume. Moreover as one can see the N = 15 results

for the renormalized coupling fall above the ones for N = 12.

During our simulations we kept under control also the vacuum expectation value

of the field which in all cases was found to vanish in agreement with the fact that

the symmetry ϕ→ −ϕ is preserved.

4. Conclusions

In conclusion, we performed a path integral Monte Carlo study of the properties

(mass and coupling constant) of the renormalized covariant Euclidean scalar field

theory ϕ4
4 quantized through scaled affine quantization. As shown in Ref. 11 the

vacuum expectation values for the field and the two-point function are well defined.

We show here that, unlike what happens for the theory quantized through canonical

aDifferently from our previous study9 with the unscaled version of the affine field theory we did

not need to choose complex m in order to fulfill this constraint. Moreover, the needed m was only
very slightly depending on g.
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quantization, the renormalized coupling constant gR does not tend to vanish in

the continuum limit, where we remove the ultraviolet cutoff at fixed volume. This

success of affine quantization to produce a well defined, renormalizable, nontrivial,

“nonfree” quantum field theory is one of its merits and benefits.
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Affine quantization, which is a parallel procedure with canonical quantization, needs
to use its principal quantum operators, most simply D = (PQ + QP )/2 and Q 6= 0,

to represent appropriate kinetic factors, normally P 2, which involve only one canonical

quantum operator. The need for this requirement stems from the quantization of selected
problems that require affine quantization to achieve valid Monte Carlo results. This task

is resolved for introductory examples as well as examples that involve scalar quantum

field theories.
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1. Introduction

In our previous papers, where some suitable Monte Carlo (MC) calculations have

been reported, it was established that the quantum procedure called affine quan-

tization (AQ) finds “nonfree” results for the model ϕ4
4,1,2 while identical studies,

which used canonical quantization (CQ), have only found “free” results, as if the

coupling constant had been zero.3–7 After a careful comparison between the pro-

cedures of both CQ and AQ, a detailed MC study of the model (ϕ2 − Φ2)24 is

∗Corresponding author.

2250094-1

Kinetic Factors in Affine Quantization and Their Role in Field
Theory Monte Carlo 1064



June 13, 2022 12:18 IJMPA S0217751X22500944 page 2
FA

R. Fantoni & J. R. Klauder

presented. While the differences between AQ and CQ for the first model are signif-

icant, the differences between AQ and CQ for the second model are much smaller,

and a detailed study has found the reason why that could happen. Even if the AQ

and CQ results for the second model are rather close, only one of those results can

be physically correct.

A general effort to transform a variety of affine expressions opens up a variety

of problems regarding their interaction terms and our present work was designed

to do just that.

MC studies are greatly simplified by transforming affine variables back into

canonical variables, so the π2 can join (
∑
j dϕ/dxj)

2 and imaginary time, to ensure

a vast simplification of the MC work. Such a transformation from affine to equivalent

canonical variables being required to achieve nontrivial results.

2. Some Relations Involving the Quantum Operators P , Q, and D

We need [Q,P ] = i~11, F = F (Q) 6= 0, and we define D = [PF + FP ]/2, so that

P †F = PF .a Then we examine

2[F,D] = F (PF + FP )− (PF + FP )F

= FPF + FFP − PFF − FPF = FFP − PFF = [F 2, P ]. (1)

This leads to [F,D] = [F 2, P ]/2 = i~(F 2)′/2, where the prime denotes a deriva-

tive with respect to Q. As a familiar example, choose F (Q) = Q, then [Q,D] =

[Q2, P ]/2 = i~ (Q2)′/2 = i~Q, analogues to the Lie algebra of the affine group,8

and from which AQ got its name.

3. The Kinetic Factor in Hamiltonians

In simple problems, the most commonly chosen classical kinetic factor is p2. In that

realm, we can choose f(q) = 1/g(q) 6= 0 (g(q) 6= 0 is added because 1/f(q) is very

often used). Now we define d = pf(q) and we then recover p2 from d2g2 = d2/f2 =

p2. Admittedly, this is utterly trivial. However, when we quantize these variables

to P , D = (PF +FP )/2, F = F (Q) 6= 0 and G = G(Q) = 1/F (Q) 6= 0, difficulties

can arise.

The quantum kinetic term (with ~ = 1) in affine variables is DG2D. This

expression, helped by FP − PF = i F ′ and GP − PG = iG′, leads to

4DG2D = (PF + FP )GG(PF + FP )

= PP + FPGGPF + FPGP + PGPF

= PP + (PF + iF ′)GG(FP − iF ′) + (PF + iF ′)GP + PG(FP − iF ′)

aAs AQ permits, the dilation operator, D, may take different forms, namely, D = [PF (Q) +

F (Q)P ]/2, for a variety of F (Q) 6= 0 functions — chosen such that P †F (Q) = PF (Q) — and
which are of assistance in solving various problems.
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= 4PP + 2i(F ′GP − PGF ′) + F ′GGF ′

= 4PP − 2(F ′G)′ + (F ′)2G2. (2)

Restoring ~, it follows that

DG2D = P 2 + (1/4)~2[(F ′)2G2 − 2(F ′G)′]. (3)

As a check on this expression, the example in which F (Q) = Q and thus G(Q) =

1/Q, leads to P 2 + (3/4)~2/Q2, which is the result previously found when F (Q) =

Q. There is every reason to accept this latter equation as the proper kinematical

operator for the half-harmonic oscillator.9–11

4. Application to Some Field Theory Examples

4.1. A straightforward example for ϕp
n

Regarding our field theory examples, our procedures will naturally encounter δ(0)

divergences. A scaling procedure that eliminates such divergences will be intro-

duced as well as illustrated. As our fist example, we choose the classical canonical

kinematic field π(x)2, for which we choose the dilation field κ(x) = π(x)ϕ(x), with

ϕ(x) 6= 0. The classical Hamiltonian in affine variables is

H1 =

∫ {
1

2
[κ(x)2/ϕ(x)2 + (∇ϕ(x))2 +m2ϕ(x)2] + g ϕ(x)p

}
dsx, (4)

where p = 4, 6, 8, . . . is the interaction power and n = s+ 1 is the number of space–

time dimensions. The advantage of this pair of variables is that 0<ϕ(x)−2<∞
which implies that 0<ϕ(x)p<∞, for all p, and thus the Hamiltonian does not

experience any non-renormalizability.

Adopting the message from the half-harmonic oscillator, the affine quantum

Hamiltonian for this model is

H1 =

∫ {
1

2
[κ̂(x)(ϕ̂(x))−2κ̂(x) + (∇ϕ̂(x))2 +m2ϕ̂(x)2] + g ϕ̂(x)p

}
dsx, (5)

where

κ̂(x)(ϕ̂(x)−2)κ̂(x) = π̂(x)2 + (3/4)~2δ(0)2s/ϕ(x)2. (6)

The origin of δs(0) =∞ is simply the fact that [ϕ̂(x), π̂(x)] = i~ δs(0)11.

In a sense, this result is strange. For example, for a single classical variable

(pq)2 <∞ and |QP − PQ|2 = ~211. However, for a classical field (π(x)ϕ(x))2 <∞
while |ϕ̂(x) π̂(x)− π̂(x) ϕ̂(x)|2 =∞ ~211. When approximated, as for an integration,

then ϕ̂(x)→ ϕ̂k and π̂(x)→ π̂k, where instead of the continuum that x represents,

k identifies different points on a discrete lattice. This leads to [ϕ̂k, π̂k] = i~ a−s11,

where a is a tiny spatial distance between neighboring lattice points. In preparation

for our integration, just as every integral involves a continuum limit of an appropri-

ate summation, these expressions are used in MC calculations which involve proper

sums for their “integrals”. All of these are designed to provide a path integral
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quantization, and, when necessary, their sums need to be regularized. In our case,

the regularized version becomes appropriately “scaled”: specifically ϕk → a−s/2ϕk,

πk → a−s/2πk, κk → a−sκk, g → as(p−2)/2 g, and the regularized dsx → as may

also be scaled as as → a2s.

Using such scaling, in an AQ formulation with MC, has led to a “nonfree” result

for the scalar field ϕ4
4.1 However, a CQ formulation with MC, along with analytic

studies, has led to a “free” result.1,3–7

4.2. A less common example using CQ and AQ

With first using CQ for the next example, our next classical Hamiltonian is given by

H2 =

∫ {
1

2
[π(x)2 + (∇ϕ(x))2 +m2ϕ(x)2] + g (ϕ(x)2 − Φ2)r

}
dsx, (7)

where the interaction power has been changed to r = 2, 4, 6, . . . , and n = s + 1 is

the same as before. This unusual interaction term deserves a new dilation variable,b

and in this section we choose κ(x) = π(x) (ϕ(x)2 − Φ2), where (ϕ(x)2 − Φ2) 6= 0.

In this case, the classical Hamiltonian in affine variables becomes

H3 =

∫ {
1

2
[κ(x)2/(ϕ(x)2 − Φ2)2 + (∇ϕ(x))2 +m2ϕ(x)2]

+ g (ϕ(x)2 − Φ2)r
}
dsx. (8)

In these variables, 0 < (ϕ(x)2−Φ2)−2 <∞, which implies that 0 < (ϕ(x)2−Φ2)r <

∞, for all r, thereby eliminating any non-renormalizablity.

Next we find that the quantum Hamiltonian, using affine variables and

Schrödinger’s representation, is given by

H3 =

∫ {
1

2
[κ̂(x)(ϕ(x)2 − Φ2)−2κ̂(x) + (∇ϕ(x))2 +m2ϕ(x)2]

+ g (ϕ(x)2 − Φ2)r
}
dsx, (9)

and this expression will become more useful after the kinetic term is fully analyzed.

In order to obtain a valid quantum Hamiltonian for this model, we are first drawn

back to Eq. (3) in Sec. 2, which reads DG2D = P 2 + (1/4)~2[(F ′)2G2 − 2(F ′G)′].
In the present case, temporally ignoring (x) and still using Schrödinger’s rep-

resentation, F = (ϕ2 − Φ2) and G = 1/F . It follows, that F ′ = 2ϕ and

G′ = −2ϕ/(ϕ2 − Φ2)2. We also need (F ′)2G2 = 4ϕ2/(ϕ2 − Φ2)2 and −2(F ′G)′ =

−4/(ϕ2 − Φ2) + 8ϕ2/(ϕ2 − Φ2)2 = 4(ϕ2 + Φ2)/(ϕ2 − Φ2)2. Hence, for this model,

the kinematic factor is

κ̂(x)(ϕ(x)2 − Φ2)−2κ̂(x)

= π̂(x)2 + ~2δ2s(0)(2ϕ(x)2 + Φ2)/(ϕ(x)2 − Φ2)2. (10)

bBeing able to change the dilation variable is an important feature of AQ.
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As was the case in Sec. 3.1, scaling can eliminate the δ2s(0) factor by including the

additional scaling factor Φ2 → a−sΦ2, and changing the scaling of g to g → as(r−1)g.

5. Lattice Formulation of the Field Theory

We used a lattice formulation of the AQ field theory stemming from the Hamiltonian

of Eq. (9) for r = 2 and s = 3 using the scaling ϕ→ a−s/2ϕ,Φ→ a−s/2Φ, g → asg

already employed in Refs. 2, 12, 13. The theory considers a real scalar field ϕ taking

the value ϕk on each site of a periodic, hypercubic, n-dimensional lattice of lattice

spacing a, our ultraviolet cutoff, and periodicity L = Na. Using the usual classical

expression π = dϕ/dt, where t is imaginary time, for the momentum field, the affine

action, S =
∫
H3 dx0, with x0 = ct where c is the speed of light constant, is then

approximated on the lattice by

S[ϕ]/an−s ≈ 1

2

{∑

k,µ

a−2(ϕk − ϕk+eµ)2 +m2
∑

k

ϕ2
k

}
+
∑

k

g (ϕ2
k − Φ2)2

+
1

2

∑

k

~2
2ϕ2

k + Φ2

(ϕ2
k − Φ2)2

, (11)

where eµ is 1 in the +µ direction and 0 else. This is known as the primitive approx-

imation for the action and could be improved in various ways.14 For the CQ field

theory, the last term in (11), proportional to ~2 should be dropped.

In this work, we are interested in reaching the continuum limit by taking Na

fixed and letting N →∞ at fixed volume Ls and absolute temperature T = 1/kBL

with kB the Boltzmann’s constant. We will always work in natural units c = ~ =

kB = 1.

6. PIMC Results

We performed path integral MC14–17 calculation for the AQ field theory described

by Eq. (11) for n = 3 + 1 and Φ = 1, and compared it with the corresponding

CQ field theory. In particular, we calculated the renormalized coupling constant gR
(which must be non-negative due to Lebowitz inequality) and mass mR defined in

Eqs. (4.3) and (4.5) of,18 respectively. This will allow us to explore the behavior of

the renormalized system, for a given set of parameters m, g, as a function of N at

fixed volume and temperature.

Following Freedman et al.,3 for each N and g, we adjusted the bare mass m

in such a way to maintain the renormalized mass approximately constant mR ≈ 3

to within a few percent (in all cases less than 25%). Differently from our previous

study1 with the unscaled version of the affine field theory we did not need to choose

complex m in order to fulfill this constraint, as shown in Table 1. In fact, our

present CQ model can be obtained from the ϕ4
4 model studied in Ref. 1 by changing

m2 → m2 − 4gΦ2 ≡ M2 which will become negative for g big enough. From the
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Table 1. Choice of the bare mass m in the simulations for CQ and AQ cases. Also shown
is M2 = m2 − 4gΦ2 and m2/4gΦ2.

CQ AQ

N g m M2 m2/4gΦ2 m M2 m2/4gΦ2

4

12 7.00 1.000 1.021 6.65 −3.777 0.921

50 13.70 −12.31 0.938 13.55 −16.397 0.918

200 27.20 −60.16 0.925 27.10 −65.590 0.918
1000 61.25 −248.438 0.938 61.20 −254.56 0.936

6

12 7.20 3.840 1.080 6.80 −1.76 0.963
50 14.00 −4.000 0.980 13.75 −10.937 0.945

200 27.50 −43.750 0.945 27.40 −49.240 0.938

1000 61.57 −209.135 0.948 61.53 −214.059 0.946

10

12 7.40 6.760 1.141 7.00 1.000 1.021

50 14.20 1.640 1.008 14.00 −4.000 0.980
200 27.80 −27.160 0.960 27.80 −27.160 0.960

1000 62.10 −143.590 0.964 62.00 −156.000 0.961

12

12 7.40 6.760 1.141 7.30 5.29 1.110

50 14.20 1.640 1.008 14.20 1.640 1.008

200 27.90 −21.590 0.973 27.90 −21.590 0.973
1000 62.20 −131.160 0.936 62.20 −131.160 0.936

15

12 7.40 6.760 1.141 7.40 6.760 1.141
50 14.40 7.36 1.037 14.20 1.640 1.008

200 28.10 −10.390 0.987 27.90 −21.590 0.973

1000 62.40 −106.240 0.973 62.40 −106.240 0.973

table, we can see how for the chosen cases m2/4g∼Φ2, meaning that the minima

ϕ± = ±
√
−M2/4g of the potential profile V[φ] = m2ϕ2/2 + g (ϕ2 − Φ2)2 are far

from ±Φ, where the effective potential term, (2ϕ2 + Φ2)/2(ϕ2 − Φ2)2, stemming

from the kinetic part of the action (the last term in Eq. (11) proportional to ~2)

diverges. As a consequence, CQ will be very similar to AQ, which means that the

required bare masses to reach a given renormalized mass in the two cases are very

close. Then we measured the renormalized coupling constant gR defined in Refs. 1,

18 for various values of the bare coupling constant g at a given small value of the

lattice spacing a = 1/N (this corresponds to choosing a fixed absolute temperature

kBT = 1 and a fixed volume L3 = 1) as already explained for example in Refs. 1,

18. With Na and mR fixed, as a was made smaller, whatever change we found in

gRm
n
R as a function of g could only be due to the change in a. We generally found

that a depression in mR produced an elevation in the corresponding value of gR
and vice-versa. The results are shown in Fig. 1 for the scaled affine action (AQ

case) (11), where, following Freedman et al.3 we decided to compress the range of

g for display, by choosing the horizontal axis to be g/(50 + g). For comparison we

also show in Fig. 2 the results for canonical quantized action (CQ case) which is

given by Eq. (11) without the last term proportional to ~2. The constraint mR ≈ 3

was not easy to implement since for each N and g we had to run the simulation

several (5–10) times with different values of the bare mass m in order to determine
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Fig. 1. AQ case. We show the renormalized mass mR ≈ 3 (top panel), the renormalized coupling

constants gR (central panel), and gRmn
R (bottom panel) for various values of the bare coupling

constant g at decreasing values of the lattice spacing a = 1/N (N →∞ continuum limit) for the
scaled affine covariant Euclidean scalar field theory described by the lattice action of Eq. (11) for

n = 3 + 1 and Φ = 1. The lines connecting the simulation points are just a guide for the eye.

The lack of error bars in the data presented is justified by the fact that the errors are dominated
not from the statistical ones but rather from the ones due to the adjustments in the bare mass

required by the trial and error procedure suggested by Freedman et al.3 This error is very hard
to be estimated.
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Fig. 2. CQ case. We show the renormalized mass mR ≈ 3 (top panel), the renormalized coupling

constants gR (central panel), and gRmn
R (bottom panel) for various values of the bare coupling

constant g at decreasing values of the lattice spacing a = 1/N (N →∞ continuum limit) for the
canonical covariant Euclidean scalar field theory described by the lattice action of Eq. (11) without

the last term proportional to ~2, for n = 3 + 1 and Φ = 1. The lines connecting the simulation

points are just a guide for the eye. The lack of error bars in the data presented is justified by the
fact that the errors are dominated not from the statistical ones but rather from the ones due to

the adjustments in the bare mass required by the trial and error procedure suggested by Freedman
et al.3 This error is very hard to be estimated.
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the value which would satisfy the constraint mR ≈ 3. In our simulations we always

used 3×107 MC sweeps (where one sweep moves all the Nn field points which took

about one week of computer time for the N = 15 case). We estimated that it took

roughly 10% of each run in order to reach equilibrium from the arbitrarily chosen

initial field configuration, for each set of parameters.

As we can see from our figures, the renormalized coupling constant gR(mR)4

of the scaled affine version (AQ of Fig. 1) behaves very similarly to the one of the

canonical version (CQ of Fig. 2) going toward the continuum limit, taken at fixed

volume and temperature, when the ultraviolet cutoff is gradually removed (Na = 1

and N → ∞). The only difference is at g = 50 − 100 where in the AQ case the

N = 12 results for the renormalized coupling fall above the ones for N = 10, unlike

what happens in the CQ case. Note that for the CQ case the results at N = 12, 15

are new, since Freedman et al.3 and ourselves1 only previously studied up to N = 10

discretization points.

During our simulations, we kept under control also the vacuum expectation

value of the field which is not diverging going toward the continuum limit, like what

was happening in Ref. 12 but not in Ref. 19. Choosing the initial configuration with

ϕ = 0 at all lattice points, when M2 is not too negative the symmetry ϕ→ −ϕ is

not broken and we find 〈ϕ〉∼0.

We also studied the behavior of the AQ case when choosing a much lower

renormalized mass mR∼1/10. In this case, the necessary bare mass is such that

m2/4g � Φ2, at all studied values of the bare coupling g = 12, 50, 200, 1000. In

particular, the potential profile V becomes a symmetric double well with the two

minima, at ϕ±, near the two repulsive spikes localized at ϕ = ±Φ and forbidding

paths to access the minima of the double well.c In this case, we found that the paths

tend to be very localized just outside of the forbidden region due to the repulsive

spikes. As a consequence, we found gR∼2 for all N . So in this case, AQ is very

different from CQ and the bare masses necessary to reach the same renormalized

mass are very different. Note that when M2 > 0 the two repulsive spikes do not

forbid the path from sitting at the minimum of the potential profile at ϕ = 0 and

as a consequence AQ and CQ are very similar. Note also that in the limit Φ → 0

the situation is inverted and for m2 positive, AQ is very different from CQ, whereas

for m2 negative, AQ is very similar to CQ.

7. Conclusions

We studied through path integral MC a plausible kinetic factor in AQ of a scalar

covariant Euclidean field theory of mass m subject to a potential energy of the

form g(ϕ2 − Φ2)2 in 3 + 1 space–time dimensions, which is known to suffer from

asymptotic freedom in the continuum limit when it is quantized through CQ. This

cThe case when the classical minima of the potential and the extra spikes in the potential of

the affine Hamiltonian are close together has been already studied in several of our previously
published papers.1,2,13,18,20
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kinetic factor reduces to the usual one previously introduced in Refs. 1, 2, 12, 13,

18, 19 in the limit Φ → 0, apart from the multiplicative coefficient. Moreover, its

behavior is similar to the one found in the Φ → 0 limit in the sense that it gives

rise to an additive effective potential term which diverges in a neighborhood of the

minima in the potential therefore producing a forbidden region for the field paths

exactly where it would naturally sit in a CQ framework. This exclusion of the field

path from the minima of the potential renders the AQ version of the field theory

asymptotically non-free in the continuum limit.

Our numerical results clearly show how the two field theories obtained through

CQ and AQ behave very differently whenever m2/4g � Φ2. Otherwise they are

very similar.

References

1. R. Fantoni and J. R. Klauder, Phys. Rev. D 103, 076013 (2021).
2. R. Fantoni and J. R. Klauder, Int. J. Mod. Phys. A 37, 2250029 (2022).
3. B. Freedman, P. Smolensky and D. Weingarten, Phys. Lett. B 113, 481 (1982).
4. M. Aizenman, Phys. Rev. Lett. 47, 886(E) (1981).
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Abstract We prove through Monte Carlo analysis that the
covariant Euclidean scalar field theory, ϕr

n , where r denotes
the power of the interaction term and n = s + 1 where s is
the spatial dimension and 1 adds imaginary time, such that
r = n = 4 can be acceptably quantized using scaled affine
quantization and the resulting theory is nontrivial and renor-
malizable even at low temperatures in the highly quantum
regime.

1 Introduction

The classical limit only imposes a constraint on the quan-
tum theory of a given system so there is no reason why the
classical limit should determine the quantum theory uniquely.
Accordingly, it is worthwhile to look for alternative quantiza-
tion recipes, such as affine quantization. We recently showed
[1–4] that a covariant Euclidean scalar field quantization,
henceforth denoted ϕr

n , where r is the power of the interac-
tion term and n = s + 1, where s is the spatial dimension
and 1 adds imaginary time, such that r = 2n/(n − 2), e.g.,
r = n = 4, can be acceptably quantized using scaled affine
quantization (AQ) [5,6] and the resulting theory is nontrivial,
unlike what happens using the usual canonical quantization
(CQ) [7–10].1 In such studies the temperature was kept con-
stant throughout the whole analysis. It is therefore important

1 In a CQ covariant model the interaction term g
∫

φ(x)r dnx has a
power r/n per integration. This should be compared with the kinetic
term

∫ [∇φ(x)]2 dnx which has a power 2/(n−2) per integration. Now,
since we work in a finite volume region, if r/n > 2/(n − 2) then the
domain where the CQ action is finite Dg>0 ⊂ Dg=0 and the domains
change because of reducing g back to zero will only retain the smallest
version of the domain by continuity, and that will not be the theory
you started out with so that the CQ model is trivial. Models for which
r > 2n/(n − 2) have been also recently correctly quantized, as for
example ϕ12

3 [11,12].
a e-mail: riccardo.fantoni@posta.istruzione.it (corresponding author)
b e-mail: klauder@ufl.edu

to study the behavior of the system as we allow temperature
to become lower and lower thereby approaching the extreme
quantum regime.

The present study will show, through a path integral Monte
Carlo (MC) analysis, that as the temperature is lowered the
renormalized mass is almost unaffected but the renormal-
ized coupling constant diminishes. Nonetheless at any given
temperature, even in the low temperature, strongly quantum,
regime, the scaled AQ model appears to be renormalizable
showing a non-free behavior in the continuum limit. This
success of scaled AQ suggests that for the ϕ4

4 field theory the
more common CQ should be replaced by the less known AQ.

2 Affine quantization field theory

For a single scalar field, with spacial degrees of freedom x =
(x1, x2, . . . , xs), ϕ(x) with canonical momentum π(x), the
classical affine variables are κ(x) ≡ π(x) ϕ(x) and ϕ(x) �=
0. The reason we insist that ϕ(x) �= 0 is because if ϕ(x) = 0
then κ(x) = 0 and π(x) can not help.

We next introduce the classical Hamiltonian expressed in
affine variables. This leads us to

H(κ, ϕ) =
∫

{ 1
2 [κ(x)2 ϕ(x)−2

+(∇ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)r } dsx, (1)

where r is a positive, even, integer and g ≥ 0 is the bare
coupling constant such that for g → 0 we fall into the free
field theory. With these variables we do not let ϕ(x) = ∞
otherwise ϕ(x)−2 = 0 which is not fair to κ(x) and, as we
already observed, we must forbid also ϕ(x) = 0 which would
admit ϕ(x)−2 = ∞ giving again an undetermined kinetic
term. Therefore the AQ bounds 0 < |ϕ(x)| < ∞ forbid any
nonrenormalizability which is otherwise possible for CQ [7–
10].

0123456789().: V,-vol 123
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The quantum affine operators are the scalar field ϕ̂(x) =
ϕ(x) and the dilation operator κ̂(x) = [ϕ̂(x)π̂(x) +
π̂(x)ϕ̂(x)]/2 where the momentum operator is π̂(x) =
−i h̄δ/δϕ(x). Accordingly for the self adjoint kinetic term
κ̂(x)ϕ̂(x)−2κ̂(x) = π̂(x)2 + (3/4)h̄δ(0)2sϕ(x)−2 and one
finds for the quantum Hamiltonian operator

Ĥ(κ̂, ϕ̂) =
∫ {

1
2 [π̂(x)2 + (∇ϕ(x))2 + m2 ϕ(x)2]

+g ϕ(x)r + 3
8 h̄

2 δ(0)2s

ϕ(x)2

}

dsx . (2)

The affine action is found adding time, x0 = ct , where
c is the speed of light constant and t is imaginary time, so
that S = ∫ β

0 H dx0, with H the semi-classical Hamiltonian
corresponding to the one of Eq. (2), will then read

S[ϕ] =
∫ β

0
dx0

∫

Ls
ds x

⎧
⎨

⎩
1

2

⎡

⎣
s∑

μ=0

(
∂ϕ(x)

∂xμ

)2

+m2 ϕ(x)2

⎤

⎦ + g ϕ(x)r + 3

8
h̄

δ(0)2s

ϕ(x)2

⎫
⎬

⎭
, (3)

where with an abuse of notation we here use x for (x0, x1, x2,

. . . , xs) and β = 1/kBT , with kB the Boltzmann’s constant,
is the inverse temperature. At low temperatures the quantum
effects become more relevant and this is the regime we are
interested in this work.

The vacuum expectation value of an observable O[ϕ] will
then be given by the following expression

〈O〉 =
∫

O[ϕ] exp(−S[ϕ]) Dϕ(x)
∫

exp(−S[ϕ]) Dϕ(x)
, (4)

where the functional integrals will be calculated on a lattice
using the path integral Monte Carlo method as explained
further on.

3 Lattice formulation of the field theory

The theory considers a real scalar field ϕ taking the value
ϕ(x) on each site of a periodic n-dimensional lattice, with
n = s + 1 space-time dimensions, of lattice spacing a, the
ultraviolet cutoff, and spacial periodicity L = Na and tem-
poral periodicity β = N0a. The field path is a closed loop
on an n-dimensional surface of an (n + 1)-dimensional β-
cylinder. We used a lattice formulation of the AQ field theory
of Eq. (3) (also studied in Eq. (8) of [1]) using the scaling
ϕ → a−s/2ϕ and g → as(r−2)/2g which is necessary2 to

2 Note that from a physical point of view one never has to worry about
the mathematical divergence since the lattice spacing will necessarily
have a lower bound. For example at an atomic level one will have a �
1Å. In other words the continuum limit will never be a mathematical
one.

eliminate the Dirac delta factor δ(0) = a−1 divergent in the
continuum limit a → 0. The affine action for the field (in the
primitive approximation [13]) has then the following valid
discretization

S[ϕ]/a = 1
2

{
∑

x,μ

a−2[ϕ(x) − ϕ(x + eμ)]2+m2
∑

x

ϕ(x)2

}

+
∑

x

g ϕ(x)r + 3

8

∑

x

h̄2

ϕ(x)2 ,

(5)

where eμ is a vector of length a in the +μ direction with
μ = 0, 1, 2, . . . , s. We will have S ≈ S.

In this work we are interested in reaching the continuum
limit by taking Na fixed and letting N → ∞ at fixed volume
Ls . The absolute temperature T = 1/kBβ is allowed to vary
so that the number of discretization points for the imaginary
time interval [0, β] will be N0 = β/a. We are here interested
in the N0 � N (or β � L) regime.

3.1 Monte Carlo results

We performed a path integral MC [13–16] calculation for the
AQ field theory described by the action of Eq. (5). We cal-
culated the renormalized coupling constant gR and mass mR

defined in Eqs. (11) and (13) of [1] respectively, measuring
them in the path integral MC through vacuum expectation
values like in Eq. (4). In particular

m2
R = p2

0〈|ϕ̃(p0)|2〉
〈ϕ̃(0)2〉 − 〈|ϕ̃(p0)|2〉 , (6)

and at zero momentum

gR = 3〈ϕ̃(0)2〉2 − 〈ϕ̃(0)4〉
〈ϕ̃(0)2〉2 , (7)

where ϕ̃(p) = ∫
dnx eip·xϕ(x) is the Fourier transform of

the field and we choose the 4-momentum p0 with one spacial
component equal to 2π/Na and all other components equal
to zero.

In our previous studies [1,4] we set L = β = 1. Here we
will consider L = 1 and β � L instead. As usual we will
impose periodic boundary conditions both in space and in
imaginary time. We will use natural units c = h̄ = kB = 1
throughout the whole analysis.

Following Freedman et al. [7], we fix (within 10%) the
renormalized mass mR ≈ 3, tuning appropriately the bare
mass m by trial and error, and we measure the renormalized
coupling constant gR at various values of the bare coupling g.
We found that the renormalized mass is almost independent
on β. So we chose the same values of m for all the tem-
peratures studied. But the renormalized coupling gR dimin-
ishes as β and/or m increase. It is then convenient to define a
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Fig. 1 The left panel is for AQ with L = 1 and T = 1, The cen-
tral panel is for AQ with L = 1 and T = 0.5, and the right panel is
for AQ with L = 1 and T = 0.2. We show the renormalized cou-
pling constant GR , defined in the text, as a function of g/(50 + g) for
decreasing values of the lattice spacing a. The renormalized mass was
kept fixed to mR ≈ 3 (within 10%) in all cases. The statistical errors

in the Monte Carlo were in all cases smaller than the symbols used.
The main source of uncertainty is nonetheless the indirect one stem-
ming from the unavoidable difficulty of keeping the renormalized mass
constant throughout all cases. The lines connecting the points are just
a guide for the eye

second renormalized coupling constant which is less depen-
dent on β, L , and m. Following Freedman et al. [7] we set
GR = gRmn

RL
sβ.

We chose two low temperatures (the case T = 1 had
already been studied in Ref. [4]), namely an intermediate
one T = 0.5 and an extreme one T = 0.2. In each case we
study the continuum limit by choosing decreasing values of
a, namelya = 1/4, 1/6, 1/10, 1/12 and 1/15 corresponding
respectively to N0 = 1/Ta = 8, 12, 20, 24, 30 for T = 0.5
and to N0 = 20, 30, 50, 60, 75 for T = 0.2. In each run we
used 3 × 107 MC steps, where one step consists in NsN0

Metropolis [14] configuration moves of each field compo-
nent, reaching equilibrium after 10% of the largest a run to
50% of the smallest a run. In our simulations we used block
averages and estimated the statistical errors using the jakknife
method (described in Section 3.6 of [17]) to take into account
of the correlation time. It took roughly 25 days of computer
time for the T = 0.2, a = 1/12 run to complete. In Fig. 1
we show the numerical results.

From the figure we can see how at all temperatures and all
bare coupling constants GR tends to stay far from zero as we
approach the continuum limit a → 0. Moreover, with respect
to the case T = 1, already studied in Ref. [4], where the value
for GR tends to revert its trend to decrease for a decrease of
the lattice spacing only for an ultraviolet cutoff as small as
a = 1/15, now we find that at T = 0.5 this inversion happens
already for a = 1/10 at least at intermediate bare coupling
and at T = 0.2 already for a = 1/6. This had to be expected
on general grounds because it is impossible to distinguish
time from the other spacial components just by looking at
the action expression (5) and the T = 1, a = 1/15 case has
a total of 154 = 50625 lattice points which is very close to

the total lattice points of the case T = 0.2, a = 1/10 which
are 10350 = 50000. We are just choosing an hyperrectangle
instead of an hypercube periodic lattice. Nonetheless there is
a strong indication that our scaled AQ model is indeed non-
free in the continuum thus resulting renormalizable, unlike
the corresponding CQ model.3 And the more so at lower
temperatures. We can therefore infer that the same should
continue to hold also in the T → 0, ground state, limit.

4 Conclusions

In conclusion we studied the renormalizability property of
one real scalar covariant Euclidean field quantized through
scaled affine quantization (AQ) with the path integral Monte
Carlo method on a lattice permeating the whole spacetime.
We therefore used periodic spacial boundary conditions at
finite unit volume to simulate an infinite volume system and
in measuring the renormalized mass and coupling constant
of the model we also enforced periodic temporal boundary
conditions which are necessary in order to determine the
required vacuum expectation values. The periodicity on the
imaginary time, i.e. the inverse temperature β = 1/T , was
chosen at increasing values equal to 1, 2, 5. Keeping fixed
the renormalized mass, our numerical results for the renor-

3 For a comparison with the corresponding scaled CQ results see
Ref. [18] and for the unscaled CQ ones see Ref. [1].
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malized coupling constant showed how this has a non mono-
tonically decreasing behavior with respect to a decreasing
lattice spacing. This remains true even at low temperature
thus proving the renormalizability of the model even when
the temperature is lowered in the extreme quantum regime.
We therefore suspect that the non triviality still holds for the
ground state.

On general grounds we should accept affine quantization
as a way to remove infinities, which are mathematical but
not physical, from the field theory. In fact just by looking at
the kinetic term in Eq. (1) we can say that if ϕ is allowed to
become infinity (or zero) then κ cannot help. If κ becomes
infinite then ϕ cannot help. κ = 0 is allowed so that π = 0.
When π and ϕ were alone, as in the canonical quantization
picture, they could allow mathematical infinities. In a phys-
ical (or Monte Carlo) measure of an observable there is no
space for mathematical infinities.

For the Higgs sector of the Standard Model, the low energy
properties are very specific and, so far, observation confirms
that they are well described by canonical ϕ4. It is certainly
true that canonical quantization (CQ) of ϕ4 does not reach
down to distances of the order of the Planck length – in that
realm, anyway, gravity cannot be dealt with classically – so
affine quantization (AQ) may be used to solve this problem.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No data will be
deposited because it can be extracted directly from our Figures.]
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sis that the covariant euclidean scalar field theory, φr

n, where r denotes the power of the
interaction term and n = s + 1 with s the spatial dimension and 1 adds imaginary time,
such that r ≥ 2n/(n− 2) can be acceptably quantized and the resulting theory is nontrivial,
unlike what happens using canonical quantization, we show here that the same has to be
expected for r > 2 and any n even for the ultralocal field theory. In particular we consider
the ultralocal φ4

2 model and study its renormalized properties for both the scaled canonical
quantization version and the scaled affine quantization version through path integral Monte
Carlo.
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the spatial dimension and 1 adds imaginary time, such that r ≥ 2n=ðn − 2Þ can be acceptably quantized
and the resulting theory is nontrivial, unlike what happens using canonical quantization, we show here that
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2 model and study its renormalized properties for both the scaled canonical
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I. INTRODUCTION

Ultralocal euclidean scalar field quantization, henceforth
denoted φr

n, where r is the power of the interaction term and
n ¼ sþ 1 where s is the spatial dimension and 1 adds
imaginary time, such that r < 2 can be treated by canonical
quantization (CQ), while models such that r > 2 and any
n ≥ 2 are trivial [1–5]. However, there exists a different
approach called affine quantization (AQ) [1,6,7] that
promotes a different set of classical variables to become
the basic quantum operators and it offers different results,
such as models for which r > 2. In particular one can show
that while the Fubini-Study metric for the canonical
coherent states that evaluates the distance-squared between
two infinitesimally close ray vectors (minimized over any
simple phase) leads to a flat space that already involves
Cartesian coordinates, in the affine case the Fubini-Study
metric describes a Poincaré half plane [7,8], has a constant
negative curvature [9], and is geodesically complete. Unlike
a flat plane, or a constant positive curvature surface (which
holds the metric of three-dimensional spin coherent states),
a space of constant negative curvature can not be visualized
in a three-dimensional flat space. At every point in this
space the negative curvature appears like a saddle having an

“up curve” in the direction of the rider’s chest and a “down
curve” in the direction of the rider’s legs.1

In the present work we show, with the aid of a path
integral Monte Carlo (PIMC) analysis, that r ¼ 4 and
n ¼ 2 can be acceptably quantized using scaled affine
quantization which had been previously successfully used
for the covariant case [12–19]
Being the current study in a lower, therefore unphysical,

spacial dimension it nonetheless allowed us to get closer to
the continuum limit than it was feasible for the physically
relevant four-dimensional case on the computer due to the
rapid increase of necessary lattice points as dimensionality
is increased. Therefore, this work can indirectly give us a
better understanding of the physically relevant case which
had been already preliminarily studied by us in its covariant
version [13]. Interestingly, the triviality of the scaling
limits of the canonical Ising and covariant self-interacting
scalar field models in four dimensions has been rigorously
demonstrated recently [20].

II. A COMPARISON BETWEEN CANONICAL
QUANTIZATION AND AFFINE QUANTIZATION

FOR ULTRALOCAL FIELDS

A. Canonical quantization of scalar fields

Let us begin with the classical Hamiltonian for a single
ultralocal field φðxÞ

Hðπ;φÞ ¼
Z �

1

2
½πðxÞ2 þm2φðxÞ2� þ gjφðxÞjr

�
dsx; ð1Þ

*riccardo.fantoni@posta.istruzione.it
†klauder@ufl.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Of course other types of more complex quantizations may still
be possible which involve nonconstant curvature surfaces [10,11].
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where n ¼ sþ 1 is the number of spacetime variables, and
r is any real number. When g is zero, the remaining
expression involves a domain in which a full set of
variables, i.e., πðxÞ and φðxÞ, lead to a finite
Hamiltonian value. If g ¼ 0 → g > 0, there are two
possible results. If r < 2, then the domain remains the
same. However, if r > 2, then there is a new domain that is
smaller than the original domain because the interaction
term

R jφðxÞjrdsx ¼ ∞ leads to a reduction of certain
fields. Since we work in a finite volume region, the fields
that cause that divergence are not φðxÞ ¼ ∞, because that
would have eliminated the original domain when g ¼ 0.
The only way for

R jφðxÞjrdsx ¼ ∞ is, for example, given
by φðxÞ ¼ 1=jx − cjk where k is small enough so thatR
φðxÞ2dsx < ∞, while r > 2 is big enough so thatR jφðxÞjrdsx ¼ ∞ for example for r ¼ 5=2. Such behavior

leads to immediate results in perturbation infinities in a
power series of g, leading to a nonrenormalizable process,
for which quantum efforts, using canonical quantization,
collapse to “free” results, despite that g > 0, as all that is
continuously connected to the original free theory where
g ¼ 0. Here we should be more precise since the relevant
quantity to look at is the action rather than the
Hamiltonian, so we should really compare the interaction
term

R jφðxÞjrdnx and the kinetic term
R ½∂φðxÞ=∂x0�2dnx

or the mass term
R
φðxÞ2dnx. If we consider stationary

fields as particular cases then the relevant integral is the
mass term and we immediately see that we may have
triviality for r > 2. But the same remains true also for
space independent fields.2 As we will see in Sec. IV, our
numerical results give evidence for a “free” behavior of
the CQ theory in this case.
Having seen what CQ can show us, now let us turn

to AQ.

B. Affine quantization of scalar fields

The classical affine variables are the dilation κðxÞ≡
πðxÞφðxÞ and the field φðxÞ ≠ 0. The reason we insist that
φðxÞ ≠ 0 is because if φðxÞ ¼ 0 and κðxÞ ¼ 0 then πðxÞ is
not well-defined.

We next introduce the same classical Hamiltonian we
chose before now expressed in affine variables. This leads
us to

H0ðκ;φÞ¼
Z �

1

2
½κðxÞ2φðxÞ−2þm2φðxÞ2�þgjφðxÞjr

�
dsx;

ð2Þ

in which φðxÞ ≠ 0 is an important fact. With these
variables we see that π ¼ k=φ so we should not let neither
φ ¼ 0 nor φ ¼ �∞ otherwise in either cases we could find
a form of indecision (0=0 or∞=∞) for the dilation kwhich
would then be not well defined. The essential result
0 < jφðxÞj < ∞, leads to the fact that these AQ bounds
on φðxÞ forbid any nonrenormalizability, a ‘disease’ which
plagues the CQ analysis. With AQ, this new insight implies
that any model φr

n does not become a “free” result, but
leads to an appropriate “nonfree” result.
What follows in the coming sections is additional PIMC

studies using AQ and CQ procedures.

III. LATTICE FORMULATION
OF THE FIELD THEORY

The quantum affine operators are the scalar field
φ̂ðxÞ ¼ φðxÞ and the dilation operator3 κ̂ðxÞ ¼ ½φ̂ðxÞπ̂ðxÞ þ
π̂ðxÞφ̂ðxÞ�=2 where the momentum operator is π̂ðxÞ ¼
−iℏδ=δφðxÞ. Accordingly for the self-adjoint kinetic term
κ̂ðxÞφ̂ðxÞ−2κ̂ðxÞ ¼ π̂ðxÞ2 þ ð3=4Þℏδð0Þ2sφðxÞ−2 and one
finds for the quantum Hamiltonian operator

Ĥ0ðκ̂; φ̂Þ ¼
Z �

1

2
½π̂ðxÞ2 þm2φðxÞ2� þ gjφðxÞjr

þ 3

8
ℏ2

δð0Þ2s
φðxÞ2

�
dsx: ð3Þ

As in previous works [16,17,19] we use the scaling
π → a−s=2π;φ → a−s=2φ; g → asðr−2Þ=2g, which is neces-
sary4 to eliminate the Dirac delta factor δð0Þ ¼ a−1 diver-
gent in the continuum limit a → 0. Of course for r > 2 the
rescaled coupling constant, g, vanishes in the continuum
limit since a → 0, therefore we expect no difference
between the interacting and the free model in such a limit.
The theory considers a real scalar field φ taking the value
φðxÞ on each site of a periodic, hypercubic, n-dimensional

2If we consider φðxÞ ¼ 1=jx0 − cjk then in order to have
Dg>0 ⊂ Dg¼0, where Dg is the domain of those φðxÞ, in the
ultralocal theory, where the action is not divergent, we require a
divergent interaction term but a convergent kinetic term or rk >
1 > 2ðkþ 1Þ that is possible if r > −2. Additionally, since we
always want a convergent mass term we must also have 0 < k <
1=2 which again requires r > 2 for triviality. This means that for
r > 2 the domains change because of reducing g back to zero will
only retain the smallest version of the domain by continuity, and
that will not be the theory you started out with. For space
independent fields the ultralocal theory is the same as the
covariant theory which is trivial for r > 2n=ðn − 2Þ > 2. This
is due to the fact that Dcovariant

g ≠ Dultralocal
g .

3Since φðxÞ ≠ 0, that means π† ≠ π so, to make that clear we
should say that κ̂ðxÞ≡ ½φ̂ðxÞπ̂ðxÞ þ π̂†ðxÞφ̂ðxÞ�=2 to make sure
that k̂† ¼ k̂. But π̂†φ̂ ¼ π̂ φ̂ because in that case π̂† acts like π̂
thanks to having π̂ acting on φ̂.

4Note that from a physical point of view one never has to worry
about the mathematical divergence since the lattice spacing will
necessarily have a lower bound. For example at an atomic level
one will have a ≳ 1Å. In other words the continuum limit will
never be a mathematical one.
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lattice of lattice spacing a, our ultraviolet cutoff, and
periodicity L ¼ Na. The affine action for the field, S0 ¼R
H0dx0 (with x0 ¼ ct where c is the speed of light constant

and t is imaginary time), with H0 the semiclassical
Hamiltonian corresponding to the one of Eq. (3), is then
approximated by

S0½φ�=a ≈
1

2

�X
x

a−2½φðxÞ − φðxþ e0Þ�2 þm2
X
x

φðxÞ2
�

þ
X
x

gjφðxÞjr þ 3

8

X
x

ℏ2
1

φðxÞ2 ; ð4Þ

where eμ is a vector of length a in theþμ direction. Respect
to the previously considered covariant case [12–19], being
now absent derivatives with respect to space, the field is
allowed to be discontinuous in space (but will still be
continuous in time).
The corresponding canonical action, S ¼ R

H̄dx0, is
then approximated by

S½φ�=a ≈
1

2

�X
x

a−2½φðxÞ − φðxþ e0Þ�2 þm2
X
x

φðxÞ2
�

þ
X
x

gjφðxÞjr: ð5Þ

In this work we are interested in reaching the continuum
limit by taking Na fixed and letting N → ∞ at fixed
volume Ls and absolute temperature T ¼ 1=kBL with kB
the Boltzmann’s constant.
The vacuum expectation value of an observable O½φ�

will then be given by the following expression

hOi ¼
R
O½φ� expð−S½φ�ÞDφðxÞR

expð−S½φ�ÞDφðxÞ ; ð6Þ

where the functional integrals will be calculated on a lattice
using the path integral Monte Carlo method as explained
further on.

IV. PATH INTEGRAL MONTE CARLO
SIMULATION

We performed PIMC [21–24] for the action of Eq. (4)
with r ¼ 4 and n ¼ 2. In particular we calculated the
renormalized coupling constant gR and mass mR defined
in Eqs. (11) and (13) of [13] respectively, measuring them in
the path integral MC through vacuum expectation values
like in Eq. (6). In particular m2

R ¼ p2
0hjφ̃ðp0Þj2i=½hφ̃ð0Þ2i −

hjφ̃ðp0Þj2i� and at zero momentum gR ¼ ½3hφ̃ð0Þ2i2−
hφ̃ð0Þ4i�=hφ̃ð0Þ2i2, where φ̃ðpÞ ¼ R

dnxeip·xφðxÞ is the
Fourier transform of the field and we choose the
2-momentum p0 with the zero component equal to
2π=Na and the other component equal to zero. Since the
integration variables in Eq. (6) are Nn, being able to choose

n ¼ 2 allowed us to greatly speed up the calculations
compared to our previous covariant studies for n > 2
[12–19] and this made possible to push ourselves closer
to the continuum limit, to bigger N.
Following Freedman et al. [2], for each N and g, we

adjusted the bare mass m in such a way to maintain the
renormalized mass approximately constant, mR ≈ 3, to
within a few percent (in all cases less than 20%), and we
measured the renormalized coupling constant gR for various
values of the bare coupling constant g at a given small value
of the lattice spacing a ¼ 1=N (this corresponds to choosing
an absolute temperature kBT ¼ 1 and a fixed length L ¼ 1).
Note that in the CQ case it was necessary to choose
imaginary bare masses for g > 0. With Na and mR fixed,
as a was made smaller, whatever change we found in gRmn

R
as a function of g could only be due to the change in a. We
generally found that a depression in mR produced an
elevation in the corresponding value of gR and viceversa;
for this reason it is convenient to define an alternative
renormalized coupling constant less sensitive to small
variations of mR, namely gRðmRÞn (see Ref. [2]). The
results are shown in Fig. 1 for the scaled canonical action
(5) and the scaled affine action (4) in natural units
c ¼ ℏ ¼ kB ¼ 1, where, following Freedman et al. [2]
we decided to compress the range of g for display, by
choosing the horizontal axis to be g=ð50þ gÞ. The con-
straint mR ≈ 3 was not easy to implement since for each N
and g we had to run the simulation several times with
different values of the bare massm in order to determine the
value which would satisfy the constraint mR ≈ 3. This was
the main source of uncontrolled uncertainty in the data.
In our simulations we used 108 MC steps where in each

step we attempt to move once all the Nn fields variables of
integration through the Metropolis algorithm [21]. We used
block averages and estimated the statistical errors using the
jackknife method (described in Sec. 3.6 of [25]) to take into
account of the correlation time of the simulations. We
always adjusted the field displacement in the random walk
so to keep the acceptance ratios as close as possible to 1=2.
Comparing the results for the scaled canonical and affine

action we can see how the renormalized coupling constant
of the two approaches behaves very similarly at g ≠ 0,5 but
in a neighborhood of g ¼ 0 the affine version remains
far from zero in the continuum limit when the ultraviolet
cutoff is removed (Na ¼ 1 and N → ∞). The decrease of
the renormalized coupling gR for increasing N has to be
expected, both for the CQ and the AQ cases, due to the use
we made of the scaling g → asðr−2Þ=2g which makes the
model a “free” one in the continuum limit, a → 0, when
r > 2. Of course the scaling we used has just a mathematical

5Comparing with the previous covariant studies [12–19] we
can now say that removing the gradient term leads to a wilder
behavior of the paths which could complicate finding any
difference between CQ and AQ.
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and not a physical justification (see footnote 4). In particular
the scaling permits to have nondiverging field expectation
values in the AQ approach. Therefore, as already observed
in several previous covariant studies [12–15,18], we expect
that also in this ultralocal case the AQ approach gives rise to
a “nonfree” field theory contrary to what happens for the
CQ approach for r > 2. This success of affine quantization
to produce a well-defined, renormalizable, nontrivial, “non-
free” quantum field theory is one of its merits and benefits.
During our simulations we kept under control also the

vacuum expectation value of the field which in all cases
was found to vanish in agreement with the fact that the
symmetry φ → −φ of the scaled canonical action is

preserved in the scaled affine case. The random walk in
the field is always able to tunnel through the barrier at
φ ¼ 0 due to the affine effective term, 3

8
ðℏ=φÞ2, in the

interaction. This is a consequence of working at finite N
and we expect the symmetry to be spontaneously broken in
the continuum N → ∞ limit6 when the point at φ ¼ 0 is
excluded. Our results also show how the sum rules gR → 0

and mR → m for g → 0 are satisfied for CQ as it should for
any gaussian weighting factor expð−S½φ�Þ for any N.

FIG. 1. For the scaled canonical (left panels) and scaled affine (right panels) φ4
2 ultralocal euclidean scalar field theory, we show the

renormalized mass mR (top panels), the renormalized coupling constants gR (central panels), and gRmn
R (bottom panels) for various

values of the bare coupling constant g at decreasing values of the lattice spacing a ¼ 1=N (N → ∞ continuum limit). The statistical
errors in the Monte Carlo were smaller than the symbols used. The main source of uncertainty is nonetheless the indirect one stemming
from the unavoidable difficulty of keeping the renormalized mass constant throughout all cases. The lines connecting the simulation
points are just a guide for the eye.

6Once again this is only possible in a mathematical world but
not in the physical (see footnote 4).
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V. CONCLUSIONS

In conclusion we performed a path integral Monte Carlo
study of the properties (mass and coupling constant) of the
renormalized ultralocal euclidean scalar field theory φ4

2

quantized through scaled affine and canonical quantiza-
tion. Our results confirm the theoretical expectation for a
“free” theory in the continuum limit. This is merely a
consequence of the chosen scaling. As in previous works
on covariant theories we expect that also in this ultralocal
case the un-scaled AQ approach gives rise to a “nonfree”

field theory contrary to what happens for the unscaled
CQ approach for r > 2. Indeed already for the scaled
version in the AQ theory the renormalized coupling does
not seem to go towards zero at least when the bare
coupling is zero when one approaches the continuum
limit, as stems from our path integral Monte Carlo results.
This means that a “free” scaled AQ theory is profoundly
different from a “free” scaled CQ one; the former is
therefore nontrivial and renormalizable and the latter is
trivial and nonrenormalizable.
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One-component fermion plasma on a
sphere at finite temperature: the
anisotropy of the path conformations

Fantoni R., J. Stat. Mech. 083103 (2023)
Title: “One-component fermion plasma on a sphere at finite temperature: the anisotropy of
the path conformations”
Abstract: In our previous work (Fantoni 2018 Int. J. Mod. Phys. C 29 1850064) we studied,
through a computer experiment, a one-component fermion plasma on a sphere at finite, non-
zero temperature. We extracted thermodynamic properties, such as the kinetic and internal
energy per particle, and structural properties, such as the radial distribution function, and
produced some snapshots of the paths to study their shapes. Here, we revisit this study,
giving more theoretical details explaining the path shape anisotropic conformation due to
the inhomogeneity in the polar angle of the variance of the random walk diffusion from the
kinetic action.
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1. Introduction

In our work in [1] we studied, through restricted path integral Monte Carlo, a one-
component fermion plasma on a sphere of radius a at finite, non-zero, absolute temper-
ature T. We extracted thermodynamic properties like the kinetic and internal energy
per particle and structural properties like the radial distribution function, and produced
some snapshots of the paths to study their shapes.

Our results extend to the quantum regime the previous non-quantum results
obtained for the analytically exactly solvable plasma on curved surfaces [2–7] and for
its numerical Monte Carlo experiment [8]. In particular, we show how the configuration
space (see figure 1 of [1]) appears much more complicated than in the classical case (see
figures 5 and 6 of [8]). The first notable phenomenon is the fact that whereas the particle
distribution is certainly isotropic, the path conformation is not. Some paths tend to wind
around the sphere running along the parallels in proximity to the poles, while others
run along the meridians in proximity to the equator. This is a direct consequence of
the coordinate dependence of the variance of the diffusion. At high temperatures, the
paths tend to be localized, whereas at low temperatures, they tend to be delocalized
and distributed over a larger part of the surface with long links between the beads.

The plasma is an ensemble of point-wise electrons that interact through the Coulomb
potential, assuming that the electric field lines can permeate the three-dimensional space
where the sphere is embedded. The system of particles is thermodynamically stable even
if the pair-potential is purely repulsive because the particles are confined to the compact
surface of the sphere, and we do not need to add a uniform neutralizing background as
in the Wigner Jellium model [9–13]. Therefore, our spherical plasma made of N spinless
indistinguishable electrons of charge −e and mass m will carry a total negative charge
−Ne, a total mass Nm, and will have a radius a.

In this work, we conduct a thought computer experiment such as the one carried
out in [1] in order to extract some theoretical conclusions on the path shape and con-
formation and try to explain the results found in [1].

Our study can be used to predict the properties of a metallic spherical shell, such as a
spherical shell of graphene. Today, we assisted to a rapid development of the laboratory

https://doi.org/10.1088/1742-5468/aceb54 2
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realization of graphene hollow spheres [14, 15] with many technological interests. These
are used as electrodes for supercapacitors and batteries, as superparamagnetic materials,
as electrocatalysts for oxygen reduction, in drug delivery, and as a conductive catalyst
for photovoltaic applications [16–24]. Of course, with simulation we can access the more
various and extreme conditions otherwise not accessible in a laboratory.

A possible further study would be the simulation of the neutral sphere, where we
model the plasma of electrons embedded in a spherical shell that is uniformly positively
charged in such a way that the system is globally neutrally charged. This could easily
be done by changing the Coulomb pair-potential into e2/r → e2(1/r − 1). In the a → ∞
limit, this would reduce to the Wigner Jellium model that has received much attention
lately, from the point of view of a path integral Monte Carlo simulation [1, 25–33].
Alternatively, we could study the two-component plasma on the sphere, as has recently
been done in the tridimensional Euclidean space [33]. Another possible extension of our
work is the realization of the simulation of the full anyonic plasma on the sphere, taking
appropriate care of the fractional statistics and the phase factors to append to each
disconnected region of the path integral expression for the partition function [1]. This
could become important in a study of the quantum Hall effect by placing a magnetic
Dirac monopole at the center of the sphere [34, 35]. In addition, the adaptation of our
simulation to a fully relativistic Hamiltonian could be of some interest in the study of
graphinos.

The paper is organized as follows: in section 2 we describe the thought system
and the method used for its study, in section 3 we present our theoretical study and
predictions, and section 4 contains the concluding discussion.

2. The problem

A point q on the sphere of radius a, the surface of constant positive curvature, is
given by

r/a = sinθ cosφx̂ + sinθ sinφŷ + cosθẑ, (2.1)

where θ is the polar angle and φ is the azimuthal angle. The N particle positions are
at R = (r1,r2, . . . ,rN ). The surface density of the plasma will then be σ = N/4πa2. On
the sphere we have the following metric:

ds2 = gµνdqµdqν = a2
[
dθ2 + sin2 θdφ2

]
, (2.2)

where Einstein summation convention on repeated indices is assumed. We will use
Greek indices for either the surface components or the surface components of each
particle coordinate and Roman indices for either the particle index or the time-slice
index, q1 = θ ∈ [0,π), q2 = φ ∈ [−π,π), and the positive definite and symmetric metric
tensor is given by

gµν =

(
a2 0
0 a2 sin2 θ

)
. (2.3)

https://doi.org/10.1088/1742-5468/aceb54 3
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We have periodic boundary conditions in θ + π = θ and in φ +2π = φ. We will also
define Q = (q1,q2, . . . ,qN ). The geodesic distance between two infinitesimally close

points Q and Q ′ is ds2(Q,Q ′) =
∑N

i=1 ds2(qi,q
′
i), where the geodesic distance between

the points q and q ′ on the sphere is

s(q,q ′) = aarccos
[
cos(q1)cos(q1 ′

)+ sin(q1)sin(q1 ′
)cos(q2 − q2 ′

)
]
.

(2.4)

The Hamiltonian of the N non-relativistic indistinguishable particles of the one-
component spinless fermion plasma is given by

H = T + V = −λ

N∑

i=1

∆i +
∑

i<j

vij, (2.5)

with λ = h̄2/2m, where m is the electron mass, and ∆i = g
−1/2
i ∂(g

1/2
i gµν

i ∂/∂qν
i )/∂qµ

i the
Laplace–Beltrami operator for the ith particle on the sphere of radius a in local coordin-
ates, where gµαgαν = δν

µ and gi = det ||gµν(qi)||. We have assumed that H in curved space
has the same form as in flat space. For the pair-potential, v, we will choose

vij = e2/rij, (2.6)

where e is the electron charge and r ij is the Euclidean distance between two particles
at qi and qj , which is given by

rij = a
√

2 − 2r̂i · r̂j = 2asin[arccos(r̂i · r̂j)/2], (2.7)

where r̂i = ri/a is the versor that from the center of the sphere points toward the center
of the ith particle. So, the electrons move on a spherical shell with the electric field
lines permeating the surrounding three-dimensional space, but they do not live in the
shell.

Given the antisymmetrization operator A =
∑

P /N !, where the sum runs over
all particle permutations P, and the inverse temperature β = 1/kBT , where kB is
Boltzmann’s constant, the one-component fermion plasma density matrix, ρF = Ae−βH,
in the coordinate representation, on a generic Riemannian manifold of metric g
[5, 36], is

ρF(Q ′,Q;β) =

ˆ
ρF(Q ′,Q((M − 1)τ);τ) · · ·ρF(Q(τ),Q;τ)

M−1∏

j =1

√
g̃( j)

N∏

i=1

dq1
i (jτ) ∧ dq2

i (jτ) , (2.8)

where as usual we discretize the imaginary thermal time in bits τ = h̄β/M . We will often

use the following shorthand notation for the path integral measure:
∏M−1

j =1

√
g̃(j)

∏N
i=1

dq1
i (jτ) ∧ dq2

i (jτ) → DQ as M → ∞. The path of the ith particle is given by {qi(t)|t ∈
[0, h̄β]} with t the imaginary thermal time. Each qi(jτ) with i = 1, . . . ,N and j =
1, . . . ,M represents the various beads forming the discretized path. The N particle path

https://doi.org/10.1088/1742-5468/aceb54 4
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is given by {Q(t)|t ∈ [0, h̄β]}. Moreover,

g̃(j) = det ||g̃µν(Q(jτ))||, j = 1,2, . . . ,M − 1, (2.9)

g̃µν(Q) = gα1β1(q1) ⊗ . . . ⊗ gαNβN
(qN ), (2.10)

In the small τ limit, we have

ρF(Q(2τ),Q(τ);τ) ∝ A
[
g̃

−1/4
(2)

√
D(Q(2τ),Q(τ);τ)g̃

−1/4
(1) eλτR(Q(τ))/6h̄e− 1

h̄
S(Q(2τ),Q(τ);τ)

]
,

(2.11)

where A can act on the first, the second, or on both time slices. R(Q) is the scalar
curvature of the curved manifold, S is the action and D is van Vleck’s determinant

Dµν =
∂2S(Q(2τ),Q(τ);τ)

∂Qµ(2τ)∂Qν(τ)
, (2.12)

det ||Dµν || = D(Q(2τ),Q(τ);τ), (2.13)

where here the Greek index denotes the two components of each particle coordinate.
For the action and the kinetic action, we have

S(Q ′,Q) = K(Q ′,Q)+ U(Q ′,Q), (2.14)

K(Q ′,Q) = Nh̄ ln(4πλτ/h̄)+
h̄2s2(Q ′,Q)

4λτ
, (2.15)

where in the primitive approximation [37] we find the following expression for the inter-
action,

U(Q ′,Q) =
τ

2
[V (Q ′)+ V (Q)], (2.16)

V (Q) =
∑

i<j

vij. (2.17)

In particular, the kinetic action is responsible for the diffusion of the random walk with
a variance of 2λτgµν/h̄.

On the sphere, we have R = NR with R = 2/a2, the scalar curvature of the

sphere of radius a, and in the M → ∞ limit s2(Q ′,Q) → ds2(Q ′,Q) and g̃
−1/4
(2)√

D(Q(2τ),Q(τ);τ) g̃
−1/4
(1) →

(
h̄2/2λτ

)N
[38]. We recover the Feynman–Kac path integ-

ral formula on the sphere in the τ → 0 limit. We will then have to deal with 2NM mul-
tidimensional integrals for which Monte Carlo [39] is a suitable computational method.
For example, to measure an observable O we need to calculate the following quantity:

⟨O⟩ =

´
O(Q,Q ′)ρF (Q ′,Q;β)dQdQ ′´

ρF(Q,Q;β)dQ
, (2.18)
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where
√

g̃
∏N

i=1 dq1
i ∧ dq2

i ≡ dQ. Notice that most of the properties that we will meas-
ure are diagonal in coordinate representation, requiring then just the diagonal density
matrix, ρF(Q,Q;β).

For example, for the density ρ(q) = ⟨O⟩ with

O(Q;q) =

N∑

i=1

δ(2)(q − qi), (2.19)

where δ(2)(q) = δ(q1)δ(q2) and δ is the Dirac delta function. Clearly
´

σ(q)
√

g(q)dq = N
and a uniform distribution of electrons is signaled by a constant density throughout the
surface of the sphere.

Fermion properties cannot be calculated exactly with the path integral Monte Carlo
because of the fermion sign problem [40, 41]. We then have to resort to an approximated
calculation. The one we chose in [1] was the restricted path integral approximation [40,
41] with a ‘free fermion restriction’. The trial density matrix used in the restriction is
chosen as the one reducing to the ideal density matrix in the limit of t ≪ 1, and is given
by

ρ0(Q
′,Q; t) ∝ A

∣∣∣∣
∣∣∣∣e− h̄s2(q ′

i ,qj )

4λt

∣∣∣∣
∣∣∣∣ . (2.20)

The restricted path integral identity that can be used [40, 41] is as follows: mathindent0pt

ρF(Q ′,Q;β) ∝
ˆ √

g̃ ′ ′dQ ′ ′ ρF(Q ′ ′,Q;0)

˛
Q ′ ′→Q ′∈γ0(Q)

DQ ′ ′ ′ e−S[Q ′ ′ ′]/h̄,

(2.21)

where S is the Feynman–Kac action

S[Q] =

ˆ h̄β

0

dt

[
h̄2

4λ
Q̇µQ̇

µ
+ V (Q)

]
, (2.22)

where the dot indicates a total derivative with respect to the imaginary thermal time,
and the subscript in the path integral of equation (2.21) means that we restrict the
path integration to paths starting at Q ′ ′, ending at Q ′ and avoiding the nodes of ρ0,
that is to the reach of Q, γ0. The nodes are on the reach boundary ∂γ0. The weight
of the walk is ρF(Q ′ ′,Q;0) = Aδ(Q ′ ′ − Q) = (N !)−1

∑
P(−)P δ(2N)(Q ′ ′ −PQ), where

the sum is over all the permutations P of the N fermions, (−)P is the permutation
sign, positive for an even permutation and negative for an odd permutation, and δ
is a Dirac delta function. It is clear that the contribution of all the paths for a single
element of the density matrix will be of the same sign, thus solving the sign problem; it is
positive if ρF(Q ′ ′,Q;0) > 0, and negative otherwise. On the diagonal, the density matrix
is positive and on the path restriction ρF(Q ′,Q;β) > 0 then only even permutations
are allowed since ρF(Q,PQ;β) = (−)PρF(Q,Q;β). It is then possible to use a boson
calculation to get the fermion case. Clearly, the restricted path integral identity with
the free fermion restriction becomes exact if we simulate free fermions, but otherwise is
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just an approximation. The approximation is expected to improve at low density and
high temperature, i.e. when correlation effects are weak. The implementation of the
restricted, fixed-node, path integral identity within the worm algorithm was also the
subject of our previous study on the three-dimensional Euclidean Jellium [11].

In [1] we worked in the grand canonical ensemble with fixed chemical potential µ,
surface area A = 4πa2, and absolute temperature T. At a higher value of the chem-
ical potential we will have a higher number of particles on the surface and a higher
density. On the other hand, increasing the radius of the sphere at constant chemical
potential will produce a plasma with lower surface density. The Coulomb coupling con-
stant is Γ = βe2/a0rs with a0 = h̄2/me2 the Bohr radius and rs = (4πσ)−1/2/a0. At weak
coupling, Γ ≪ 1, the plasma becomes weakly correlated and approaches the ideal gas
limit. This will occur at high temperatures and/or low densities. The electron degen-
eracy parameter is Θ = T/TD, where the degeneracy temperature TD = σh̄2/mkB. For
temperatures higher than TD, Θ ≫ 1, the quantum effects are less relevant.

3. Theoretical study

In order to understand the anisotropic conformation of the path snapshots and their
dependence on the azimuthal angle φ and polar angle θ, we observe that in the primitive
approximation we have in the path integral a weight factor ∝ exp(−h̄ds2/4λτ) stemming
from the kinetic part of the action, where ds2 is given by equation (2.2). In particular,
we see that if we are near the poles, θ ≈ 0 or π, then ds2 ≈ a2dθ2 and we see that it
costs nothing to change the azimuthal angle. This explains the paths winding along the
parallels in proximity to the poles. On the other hand, near the equator, at θ ≈ π/2, we
find ds2 ≈ a2(dθ2 + dφ2) so that the paths will tend to wander around the equator in
no particular direction.

The same can be seen when studying the behavior of the finite geodesic distance
of equation (2.5). In figure 1 we show a three-dimensional plot for θ ′ = 0.2 and φ ′ = 0.
Again, we see that around the pole at θ ≈ 0 it costs nothing to change φ, that is, to
go along a parallel, while a path traveling along a meridian will be unfavored since we
need to increase θ. In figure 2 we show a three-dimensional plot for θ ′ = π/2 and φ ′ = 0.
We now see that around the equator at θ ≈ π/2 a path wandering around the initial
position is favored, with no preferred direction along the parallels or the meridians.

Clearly, if we rotate the sphere, the path shape will simply rotate following the rota-
tion of its poles. This anisotropy of the path conformations is rather counter-intuitive
since the sphere is notoriously isotropic, but it reflects the inhomogeneity of the metric
with respect to the polar angle.

It is important to distinguish the effect that we just described due to the weight
factor ∝ exp(−h̄ds2/4λτ) stemming from the kinetic part of the primitive action from

the measure factor
∏M

j =1

√
g̃(j) also entering the path integral. This last factor, being

also independent of the azimuthal angles, will produce the same local density ρ(q) under
a rotation of the sphere around its axis through the poles. As a result, by isotropy, we
conclude that the density must be a constant under any rotation, which means that the
plasma must be uniform [5].

https://doi.org/10.1088/1742-5468/aceb54 7

One-component fermion plasma on a sphere at finite tempera-
ture: the anisotropy of the path conformations 1094



One-component fermion plasma on a sphere at finite temperature: the anisotropy of the path conformations

J.S
tat.

M
ech.(2023)

083103

Figure 1. Three-dimensional plot of the geodesic distance of equation (2.5) for
θ ′ = 0.2 and φ ′ = 0. From the surface graph we see how in the proximity of the
poles the geodesic distance between points moving along parallels is small, while it
increases rapidly if one moves along the meridians.

Figure 2. Three-dimensional plot of the geodesic distance of equation (2.5) for
θ ′ = π/2 and φ ′ = 0. From the surface graph we see how in the proximity of the
equator the geodesic distance between points moving in circles in the (θ,φ) plane
is small, while it increases rapidly if one moves along the parallels.

The temperature dependence can also be easily explained. At high temperature, β
is small, Θ ≫ 1, and the path extending from t =0 to t = h̄β will be localized, of a
small size, and quantum effects will be less relevant. Meanwhile, at low temperature,
β is large, Θ ≪ 1, and the path will be delocalized, increased in size, it diffuses more
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Figure 3. Snapshot of the macroscopic path during a simulation. The different
paths have different colors. The simulation parameters specifying the thermody-
namic conditions are as follows: a = 5,λ = 1,β = 5,µ = 8.

on the surface, and quantum effects are more relevant. Usually, we are interested in
measuring observables that are diagonal so that when dealing with the diagonal density
matrix ρF(Q,Q;β) we will observe ring paths, such that Q(0) = Q(h̄β). Moreover, at
high temperature, the diagonal density matrix will involve almost straight localized
ring paths closing themselves on the identity permutation. At low temperatures, the
delocalized paths will eventually wind through the h̄β periodicity by means of several
different permutations P, so that Q(0) = PQ(h̄β) and so on. Any permutation can be
broken into a product of cyclic permutations. Each cycle corresponds to several paths
‘cross-linking’ and forming a larger ring path. Quantum mechanically, the plasma does
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this to lower its kinetic energy. According to Feynman’s 1953 theory [37], the super-
conductor transition is represented by the formation of macroscopic paths, i.e. those
stretching across the whole sphere and involving on the order of N electrons. In other
words, the ring paths percolate through the periodic boundary conditions θ = θ + π and
φ = φ +2π by means of permutations.

In figure 3 we show a snapshot of the macroscopic path during a simulation of [1].

4. Conclusions

In this work we revised our restricted path integral Monte Carlo simulation [1] of a
one-component spinless fermion plasma at finite, non-zero temperature on the surface
of a sphere. The Coulomb interaction is e2/r with r the Euclidean distance between two
electrons of elementary charge e (we could also have chosen instead of r the geodesic
distance, s, within the sphere). This gives us an approximated numerical solution of
the many-body problem. The exact solution cannot be accessed due to the fermion sign
catastrophe. Impenetrable indistinguishable particles on the surface of a sphere admit,
in general, anyonic statistics [42]. Here, we just project the larger braid group onto the
permutation group and choose the fermion sector for our study.

The path integral Monte Carlo method chosen in [1] used the primitive approxima-
tion for the action, which can be improved, for example, by the use of the pair-product
action [37]. The restriction was carried out choosing as guiding trial density matrix the
one of ideal free fermions. This choice would of course return an exact solution for the
simulation of ideal fermions, but it furnishes just an approximation for the interacting
coulombic plasma.

In this work we showed how the conformation anisotropy of the paths observed in
the simulations of [1] can be explained through the inhomogeneous nature of the metric
in the polar angle, or equivalently, from the inhomogeneous nature of the geodesic
distance on the surface of the sphere. This is ultimately due to the fact that the metric
enters with the negative sign in the exponent of the primitive approximation of the
density matrix. We should not confuse the anisotropy in the path conformation with
the fact that the plasma will always be homogeneous (with a constant local density
ρ) on the sphere. In the degenerate regime (low T ) the observed strong anisotropy in
the path conformation near the poles or the equator of the sphere should also be due
to a peculiar behavior in the properties of the N -particle off-diagonal density matrix.
This, as is well known, is directly related to a number of physical properties, such as
the quasi-particle excitation spectrum and the momentum distribution. Therefore, the
system properties can deviate significantly from just a pure homogeneous 2D system,
and the inhomogeneous nature of the space metric is of particular importance.

We also suggest the possibility to observe a superconducting plasma at low tem-
perature when we observe ring paths percolating through the periodic boundary con-
ditions θ = θ + π and φ = φ +2π by means of permutations, even if some care has to
be addressed to take into account the peculiar asymptotic behavior of the one-particle
density matrix.
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1. A Preface

The scope of quantum physics has expanded remarkably, as will be clear in this
presentation. Many problems have new and novel results.

The basic rules of quantization were largely set around mid-(1920), and have changed
very little thereafter. There are many problems that using those rules can lead to acceptable
results, but there are many more problems that those rules are inadequate. As an example,
the traditional harmonic oscillator, which is set on the whole real line, can be fully solved
with the original rules. However, if the harmonic oscillator is set only on the positive real
line, it can not be solved with the old quantization rules despite the fact that it can be
solved classically. Many problems that can be solved classically cannot be solved with old
rules known as canonical quantization (CQ). Those procedures fail on non-renormalizable
examples which include certain relativistic scalar fields and Einstein’s gravity.

A new quantization procedure, called affine quantization (AQ), has now been added
to the old rules. This procedure is now about 30 years old. AQ is not well known and it
deserves to be as strongly known as CQ. While CQ chooses the momentum, e.g., p, and the
coordinate, e.g., q, to promote to quantum operators, AQ chooses what we call the dilation,
namely d = pq.

We start slowly with simple models to appreciate what AQ is able to accomplish.
Already, using Monte Carlo methods, several non-renormalizable relativistic scalar models
have confirmed what AQ can do for them. Einstein’s gravity is more complicated, but the
rules of AQ offer considerably positive results.

A brief example of the affine procedures, and a brief integration interval,
H =

∫ 1
−1[π(x)2 + |ϕ(x)|p] dx < ∞, with p = 1, 2, 3, . . . , then H can be finite if the inte-

grand reaches infinity, e.g., π(x)2 = A/|x|1/4. This is proper mathematics, but the fields of
nature should never reach infinity. Our solution introduces a new field, κ(x) = π(x) ϕ(x).
Now, H =

∫
H(x) dx =

∫
[κ(x)2/ϕ(x)2 + |ϕ(x)|p] dx < ∞. To represent π(x), then

0 < |ϕ(x)| < ∞, 0 ≤ |κ(x)| < ∞, and H(x) < ∞. While ϕ(x) 6= 0, π̂(x)† 6= π̂(x), then
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κ̂(x) = [π̂(x)† ϕ̂(x) + ϕ̂(x)π̂(x)]/2, and after scaling, then H =
∫
[π̂(x)2 + 2h̄2/ϕ̂(x)2 +

|ϕ̂(x)|p] dx < ∞. Note that |ϕ̂(x)|p < ∞ for all x, and all p, 0 < p < ∞, due to
0 < |ϕ̂(x)| < ∞ as well as 0 ≤ |π̂(x)| < ∞!

2. An Introduction to the Variables

Quantum operators are promoted from classical variables that can play an important
role and need to be presented here because it is poorly covered. Our story involves three
sets of classical variables that will, later, find their importance when they are promoted to
basic quantum variables.

2.1. A Survey of Principal Topics

The common examination of quantum topics starts with a classical review, and we shall
do the same. Our focus features three different classical versions. These three have some
similar features as well as their differences, but they all play a role in the quantum story.

The three versions of quantum theory, which develop from the three classical versions,
have important and distinct roles to play. After studying the procedures, we will apply
them to specific problems. It follows that the various procedures fit specific sets of problems,
and fail when the wrong procedures are applied to any wrong set of problems. In particular,
problems that are non-renormalizable quantum problems, and which have been unsolved
for decades, can, in fact, be properly solved by using the correct quantum procedures
instead of the wrong procedures. While they may have been favored, they also may
have been the incorrect procedure for decades! In later chapters, we will solve non-
renormalizable covariant scalar fields as well as Einstein’s gravity.

2.2. A Familiar Example of Classical Variables

The everyday behavior of most objects consists of its position, abbreviated by q, and
its momentum, namely its mass multiplied by its velocity, like p = mv. These objects also
change place and/or motion, which is represented by q(t) and p(t), with t serving as time.
In an ideal universe, there would be no friction to slow motion down, while instead energy
is typically considered to be a constant. The important Hamilton expression, H(p, q), and
the equations of motion are given by

q̇(t) = ∂H(p, q)/∂p(t) , ṗ(t) = −∂H(p, q)/∂q(t) . (1)

A common example is the harmonic oscillator, for which, like all systems, the energy
is contained in the Hamiltonian,

H(p, q) = [p(t)2/m + ω2 m q(t)2]/2 . (2)

This leads to the equations of motion given by q̇(t) = p(t)/m, while ṗ(t) = −ω2 m q(t).
These equations lead to q̈(t) = −ω2q(t) and p̈(t) = −ω2 p(t), with solutions given by

q(t) = A cos(ωt) + B sin(ωt) (3)

p(t) = Bmω cos(ωt)− Amω sin(ωt) (4)

2.3. Selected Canonical Topics

The action functional is an important expression that also leads to the same equations
that we dealt with in the section above, e.g.,

A =
∫ T

0 [p(t) q̇(t)− H(p(t), q(t))] dt , (5)
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and which leads to tiny variations in the variables, δq(t) and δp(t), and now δq(T) = δq(0) = 0
as well as δp(T) = δp(0) = 0. The variations lead to

δA = 0 =
∫ T

0 { [ q̇(t)− δH(p(t), q(t))/δp(t)] δp(t)

+[− ṗ(t)− δH(p(t), q(t))/δq(t)] δq(t) } dt (6)

which leads to the correct equations of motion being recovered when arbitrary variations
are implied.

3. Phase Space, Poisson Brackets, and Constant Curvature Spaces

Phase space consists of a collection of general, continuous, functions p(t) and q(t).
These functions can be turned into different functions, such as f (t) = F( f (t)); a simple
example is f (t) = f (t)3. The family of functions is chosen to observe the integral

∫
F(p(t), q(t)) dp(t) dq(t) =

∫
F(p(t), q(t)) dp(t) dq(t) . (7)

The Poisson brackets for these variables is given by

{g(p, q), f (p, q)} = ∂g(p, q)
∂q

∂ f (p, q)
∂p

− ∂g(p, q)
∂p

∂ f (p, q)
∂q

. (8)

Poisson brackets play a reducing lever putting multiple expressions into fixed sets.
For example, {q, p} = 1 and {q3/3, p/q2} = 1, and also as {q, pq} = q.

The pair of functions, p(t) & q(t), also has a geometric role to play. Let us assume we
choose to create a flat, two-dimensional surface, by using the following expression,

dσ2 = ω−1 dp(t)2 + ω dq(t)2 , (9)

where ω is a positive constant that does not depend on p(t) or q(t) in any way. A common
name for this case is ‘Cartesian variables’. It is noteworthy that this two-dimensional
surface is completely identical if you move to any other location. That property may be
called a ‘constant zero curvature’.

Moreover, such a mathematical plane is infinitely big, meaning that −∞ < p & q < ∞.
Observe that this property of p & q is complete, which means every point in IR2 is

included. There is no case where q = 17, for example, is excluded from the rest of
−∞ < q < ∞.

3.1. A Brief Review of Spin Quantization

The operators in this story are Si with i = 1, 2, 3, and which – here i =
√
−1, as

well – satisfy [Si, Sj] = i h̄ εijk Sk. These operators obey Σ3
l=1 S2

l = h̄2s(s + 1)112s+1, where
2s + 1 = 2, 3, 4, . . . is the dimension of the spin matrices. The normalized eigenvectors of
S3 are S3 |s, m〉 = m h̄ |s, m〉, where m ∈ {−s, . . . , s− 1, s}.

3.1.1. Spin Coherent States

The spin coherent states are defined by

|θ, ϕ〉 ≡ e−iϕS3/h̄ e−iθS2/h̄ |s, s〉 , (10)

where −π < ϕ ≤ π, and −π/2 ≤ θ ≤ π/2. It follows that

dσ(θ, ϕ)2 ≡ 2h̄ [ || d|θ, ϕ〉||2 − |〈θ, ϕ| d|θ, ϕ〉|2 ]
= (sh̄)[dθ2 + cos(θ)2 dϕ2 ] . (11)
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We can also introduce q = (sh̄)1/2 ϕ and p = (sh̄)1/2 sin(θ), with |p, q〉 = |p(θ, ϕ),
q(θ, ϕ)〉, which leads to

dσ(p, q)2 ≡ 2h̄ [ || d|p, q〉||2 − |〈p, q| d|p, q〉|2 ] (12)

= (1− p2/sh̄)−1dp2 + (1− p2/sh̄) dq2 .

Equation (11) makes it clear that we are dealing with a spherical surface with a radius
of (sh̄)1/2; this space is also known as a ‘constant positive curvature’ surface, and it has
been created!

These classical variables can not lead to a physically correct canonical quantization.
Instead, they offer a distinct quantization procedure that applies to different problems.

However, Equation (12) makes it clear that if s→ ∞, in which case both p and q span
the real line, we are led to ‘Cartesian coordinates’, a basic property of canonical quantization.

3.1.2. A Brief Review of Affine Quantization

Consider a classical system for which −∞ < p < ∞, but 0 < q < ∞, that does not
lead to a self-adjoined quantum operator P, i.e., P† 6= P. Perhaps we can do better if
we change classical variables. For example, 0 < q < ∞ – or it may arise instead that
−∞ < q < 0. To capture these possibilities for q —and thus also for Q (=Q†)—we are led
to d = pq ⇒ D = (P†Q + QP)/2 (= D†), which leads to [Q, D] = ih̄Q. This expression
happens to be like the Lie algebra of the “affine group” [1], and, incidentally, that name has
been adopted by “affine quantization”. Again, it is useful to choose dimensions such that
q & Q are dimensionless while d & D have the dimensions of h̄.

3.1.3. Affine Coherent States

The affine coherent states involve the quantum operators D and Q, where now Q > 0.
We use the classical variables p and ln(q), with q > 0. Specifically, we choose

|p; q〉 ≡ eipQ/h̄ e−i ln(q) D/h̄ |β〉 , (13)

where the fiducial vector |β〉 fulfills the condition [(Q− 11) + iD/βh̄]|β〉 = 0, which implies
that 〈β|Q|β〉 = 1 and 〈β|D|β〉 = 0 ( the semicolon in |p; q〉 distinguishes the affine ket from
the canonical ket |p, q〉. If −∞ < q < 0, change ln(q) to ln(|q|), but keep q→ Q < 0 so that
|q|Q = q|Q|). This expression leads to

H′(pq, q) = 〈p; q|H′(D, Q)|p; q〉 = 〈β|H′(D + pqQ, qQ)|β〉
= H′(pq, q) +O′(h̄; pq, q) , (14)

and, as h̄ → 0, and O′(h̄; pq, q) = 0, H′(d, q) = H′(d, q), a relation very similar to
H(p, q) = H(p, q) when using CQ.

It follows that the Fubini–Study metric, for q > 0, becomes

dσ(p; q)2 ≡ 2h̄[|| d|p; q〉||2 − |〈p; q| d|p; q〉|2]
= (βh̄)−1q2 dp2 + (βh̄) q−2 dq2 . (15)

This expression leads to a surface that has a ‘constant negative curvature’ [2] of
magnitude −2/βh̄, which, like the other curvatures, has been ‘created’ ( as noted, while
constant zero and positive curvatures can be seen in our three spatial dimensions, a
visualization of a complete constant negative curvature is not possible. A glance of one
would be a single point on a saddle, namely the highest point from the rider’s feet direction,
and the lowest point from the horse’s head direction). The set of classical variables can not
lead to a physically correct canonical quantization. Instead, they offer a distinct quantization
procedure that applies to different problems. Any use of classical variables that do not
form a ‘constant negative curvature’ subject to an affine quantization is very likely not a
physically correct quantization.
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The inner product of two affine coherent state vectors is given by

〈p′; q′|p; q〉 =
[
[(q′/q)1/2 + (q/q′)1/2]/2 + i(q′q)1/2 (p′ − p)/2βh̄

]−2β
, (16)

while
∫ ∫
|p; q〉〈p; q|(1− 1/2β) dp dq/2πh̄ = 11, provided that β > 1/2. While the variable

change for all p, q → cp, q/c leaves a Cartesian metric still Cartesian, it can be seen that
there is no change whatsoever in (15), illustrating the significance of the affine Fubini–
Study metric.

The rule that 0 < q < ∞ is limited and we can easily consider 0 < q + k < ∞, where
k > 0. This changes the coherent states from ln(q) to ln(q + k), which then changes the
Fubini–Study metric to (βh̄)−1(q + k)2 dp2 + (βh̄) (q + k)−2 dq2. If we choose to let k→ ∞,
and at the same time let βh̄→ (βh̄ + ωk2), we are led to ω−1dp2 + ω dq2, now with q ∈ IR,
which, once again, applies to canonical quantization. Briefly stated, we can arrange that
AQ→ CQ!

3.2. Summarizing Constant Curvatures and Coherent States

These three stories complete our family of ‘constant curvature’ spaces, specifically,
constant positive, zero, and negative curvatures. Additionally, the various coherent states
can be used to build “bridges” in each case that enable one to pass from the classical realm
to the quantum realm or pass in the other direction [3].

4. Learning to Quantize Selected Problems

We begin with two different quantization procedures, and two simple, but distinct,
problems, one of which is successful and the other one is a failure in trying to use both of
the quantization procedures on each example.

This exercise serves as a prelude to a valid and straightforward clarification of the
fact that affine quantization and canonical quantization solve completely different sets of
problems. This fact will help us when we turn to the quantization of field theories and of
gravity in later chapters.

4.1. Choosing a Canonical Quantization

The classical variables, p & q, which are elements of a constant zero curvature, better
known as Cartesian variables, such as those featured by Dirac [4], are promoted to self-
adjoined quantum operators P(=P†) and Q (=Q†), ranged so that −∞ < P & Q < ∞, and
scaled so that [Q, P] = ih̄11 ( in particular, in [4], the mid-page of 114, Dirac wrote “However,
if the system does have a classical analogue, its connexion with classical mechanics is
specially close and one can usually assume that the Hamiltonian is the same function of
the canonical coordinates and momenta in the quantum theory as in the classical theory †
Footnote †: This assumption is found in practice to be successful only when applied with
the dynamical coordinates and momenta referring to a Cartesian system of axes and not to
more general curvilinear coordinates”).

4.1.1. First Canonical Example

Our example is just the familiar harmonic oscillator, for which −∞ < p & q < ∞
and a Poisson bracket {q, p} = 1, also a classical Hamiltonian, with the common factors
m = ω = 1, given by H(p, q) = (p2 + q2)/2. The quantum Hamiltonian is H(P, Q) =
(P2 + Q2)/2, and Schrödinger’s representation is given by P = −ih̄(∂/∂x) and Q = x, for
−∞ < x < ∞. Finally, for our example, Schrödinger’s equation is given by

ih̄(∂ψ(x, t)/∂t) = (−h̄2∂2/∂x2 + x2)/2 ψ(x, t) . (17)

Solutions to Equation (7) for our example are well known. In particular, for the
harmonic oscillator, the eigenvalues are given by En = h̄(n + 1/2) for n = 0, 1, 2, , . . . , and
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the eigenfunctions (with h̄ = 1) are given by ψn(x) = Nn Hn(x) e−x2/2 with n = 0, 1, 2, . . . .
Here, Nn serves to enforce normalization, and the remainder is

Hn(x) e−x2/2 = ex2/2(−d/dx)ne−x2
. (18)

This model is one of the most well understood of all examples.

4.1.2. Second Canonical Example

For our next example, we keep the same classical Hamiltonian, and we retain
−∞ < p < ∞, but now we restrict 0 < q < ∞. This new model is called the ‘half-harmonic
oscillator’. It follows that the operator P† 6= P, which leads to a different behavior to that
when P is self adjoined, i.e., P† = P. In particular, this can lead to infinitely many different
self-adjoined Hamiltonians each of which passes to the same classical Hamiltonian that
would be (p2 + q2)/2 in this case. Just two of the different quantum Hamiltonians could be
H0(P, Q) = (PP† + Q2)/2, while the other is H1(P, Q) = (P†P + Q2)/2. Clearly, both of
these quantum Hamiltonians lead to the same classical Hamiltonian, namely (p2 + q2)/2,
when h̄→ 0 ( here is one example of infinitely many quantum Hamiltonians for the half-
harmonic oscillator, when P† 6= P, would be [(P† n+4/Pn+2 + Pn+4/P† n+2)/2 + Q2]/2,
for all n = 0, 1, 2, . . . ).

This judgement renders the canonical quantization of the half-harmonic oscillator to
be an invalid quantization.

We interrupt our present story to bring the reader an important message.
——————————————————————————

A Simple Truth

Consider A×B = C, as well as A = B/C

If B = C = 0, what is A?
If B = C = ∞, what is A?

To ensure getting A one must require 0 < |B| & |C| < ∞.

This is good mathematics, but physics has an opinion as well.

Consider mv = p. If the velocity v = 0, then the momentum p = 0, which
makes good sense. However, if the mass m = 0 and the velocity v = 9, then the
momentum, p = 0, makes bad physics. However, if any of them are infinite, that is
certainly bad math as well as bad physics.

We will especially use this topic for the dilation variable d = pq, where q is
the coordinate of a position and p denotes its time derivative (times its mass too).
The position q(t) is continuous, while p(t) is traditionally continuous, but it can
change sign, like bouncing a ball off a wall.

We may point to an ABC-item to remind the reader of its relevance.

——————————————————————————
This important notification is finished.

4.1.3. First Affine Example

The traditional classical affine variables are d ≡ pq and q > 0 (ABC), and they have
a Poisson bracket given by {q, d} = q. In addition, we can choose a different dilation
variable, d = p(q + b), for which −b < q < ∞, generally, with b > 0. For very large b we
can approximate a full-line harmonic oscillator and even see what happens if we choose
b→ ∞ to mimic the full-line story.

The classical affine variables now are −∞ < d ≡ p(q + b) < ∞ and 0 < (q + b) < ∞,
while the classical harmonic oscillator Hamiltonian is given by H′(d, q) = [d2/(q + b)2 + q2]/2,
an expression that obeys H(p, q) = (p2 + q2)/2 albeit that −b < q < ∞.
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Now, we consider basic quantum operators, namely D = [P†(Q + b) + (Q + b)P)]/2
and Q + b, which lead to [Q + b, D] = ih̄ (Q + b), along with Q + b > 0 The quantum
‘partial-harmonic oscillator’ is now given by

H′(D, Q) = [D(Q + b)−2D + Q2]/2 = [P2 + (3/4)h̄2/(Q + b)2 + Q2]/2 , (19)

while, in a proper limit, an affine quantization becomes a canonical quantization when the
partial real line (−b < q & Q < ∞) is stretched to its full length, (−∞ < q & Q < ∞).

Evidently, an affine quantization fails to quantize a full harmonic oscillator.

4.1.4. Second Affine Example

The common canonical operator expression, [Q, P] = ih̄11, directly implies
[Q, (P†Q + QP)/2] = ih̄ Q, which are the basic affine operators.

To confirm this affine expression, let us multiply ih̄11 = [Q, P] by Q, which gives
ih̄ Q = (Q2P− QPQ + QPQ− PQ2)/2, i.e., ih̄ Q = [Q, (QP + PQ)/2], which is the basic
affine expression, [Q, D] = ih̄ Q, where D ≡ (PQ + QP)/2 ≡ (P†Q + QP)/2. This deriva-
tion assumes that Q > 0 or Q < 0. Canonical quantization implies affine quantization, but
adds a limitation, for classical as well as quantum, on the coordinates.

Regarding our problem, now b = 0, and so the classical affine variables are d ≡ pq
and q > 0, which lead to the half-harmonic oscillator H′(d, q) = (d2/q2 + q2)/2. The
basic affine quantum operators are D and Q, where D (= D†) and Q > 0 (= Q† > 0).
These quantum variables lead to [Q, D] = ih̄ Q. The half-harmonic oscillator quantum
Hamiltonian is given byH′(D, Q) = (DQ−2D + Q2)/2, and Schrödinger’s representation
is given by Q→ x > 0 and

D = −ih̄[x(∂/∂x) + (∂/∂x)x)]/2 = −ih̄[x(∂/∂x) + 1/2] . (20)

Finally, Schrödinger’s equation is given by

ih̄(∂ψ(x, t)/∂t) =

= [−h̄2(x(∂/∂x) + 1/2) x−2 (x(∂/∂x) + 1/2) + x2]/2 ψ(x, t)

= [−h̄2 (∂2/∂x2) + (3/4)h̄2/x2 + x2]/2 ψ(x, t) . (21)

We note that kinetic factors, such as P and D, can annihilate separate features. Adopt-
ing Schrödinger’s representation, it follows thar P 1 = 0 while Dx−1/2 = 0. We will exploit
this simple fact in later chapters.

Solutions of (21) have been provided by L. Gouba [5]. Her solutions for the half-
harmonic oscillator contain eigenvalues that are equally spaced as are the eigenvalues
of the full-harmonic oscillator, although the spacing itself differs in the two cases. The
relevant differential equation in (21) is known as a ‘spiked harmonic oscillator’, and its
solutions are based on confluent hypergeometric functions. It is noteworthy that every
eigenfunction, ψn(x) ∝ x3/2(polynomialn)e−x2/2h̄, which applies for all n = 0, 1, 2, . . . .
The leading factor of the eigenfunctions, i.e., x3/2, provides a continuous result after the
first derivative, but the second derivative could lead to an x−1/2 behavior, except that
[−d2/dx2 + (3/4)/x2] x3/2 = 0. This zero ensures that after two derivatives, the wave
function is still finite, continuous, and belongs in a Hilbert space ( there are examples in
which a/x2, with a > 0, such potentials are studied, but some are negative, i.e., −a/x2,
with a > 0, which has a completely different behavior).

It is interesting to consider an increase in the coordinate space by choosing x + b > 0.
This leads to a related Schrödinger’s equation, given by

[−h̄2 (∂2/∂x2) + (3/4)h̄2/(x + b)2 + x2]/2 ψ(x, t) = Eb ψ(x) , (22)

which has been shown to also have equally spaced eigenvalues that become narrower as
b becomes larger. Moreover, if b→ ∞, then the h̄-term disappears and the full-harmonic
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oscillator, with its canonical quantization features, is fully recovered [6]. In this fashion, we
observe that AQ can pass to CQ, but the reverse is, apparently, impossible.

Finally, we can assert that an affine quantization of the half-harmonic oscillator can be
considered to be a correctly solved problem.

4.1.5. A Canonical Version of the Half-Harmonic Oscillator

We start again with the classical Hamiltonian for the half-harmonic oscillator which is
still H = (p2 + q2)/2 and q > 0, but this time we will use different coordinates. To let our
new coordinate variables span the whole real line, which makes them ‘Ashtekar-like’ [7], we
choose q = s2, where −∞ < s < ∞. Thus, s is the new coordinate. For the new momentum,
r , we choose p = r/2s. We choose it because the Poisson bracket {s, r} = {√q, 2p

√
q} = 1

( it may be noticed that while q > 0, and now q = s2, this would imply that s 6= 0. However,
we will skip over this “unimportant point” until later). The classical Hamiltonian now
becomes H = (p2 + q2)/2 = (r2/4s2 + s4)/2.

4.1.6. A CQ Attempt to Solve the Half-Harmonic Oscillator

For quantization, the new variables use canonical quantum operators, r → R and s→
S, with [S, R] = ih̄11. Following the CQ rules, this leads toHCQ = [R S−2R/4 + S4 ]/2 ≤ ∞.
This quantum operator, using canonical operators where [S, R] = ih̄11, is quite different
from the affine expression HAQ = [DQ−2D + Q2]/2 < ∞; rearranged into canonical
operators with [Q, P] = ih̄11, that leads toHAQ = [P2 + (3/4)h̄2/Q2 + Q2]/2 < ∞.

It is self-evident that these two canonical quantum Hamiltonian operators,HAQ and
HCQ, have different eigenfunctions and eigenvalues. Does it matter thatHAQ < ∞ while
HCQ ≤ ∞, due to S = 0 while R 6= 0? It is clear that answer to this question is “No”.
Trying to quantize the half-harmonic oscillator, using CQ variables, has led to physically
incorrect results.

Now, we examine a very different model using both CQ and AQ.

5. Using CQ and AQ to Examine ‘The Particle in a Box’
5.1. An Example That Needs More Analysis

This model has often been used in teaching and it is introduced early in the process
as an easy example to solve. The classical Hamiltonian for this model is simply H = p2,
allowing, for simplicity, that 2m = 1. Now, the coordinate space is −b < q < b, where
0 < b < ∞ (which also may be chosen as 0 < q < 2b ≡ L < ∞). To accommodate the CQ
operators, we assume that outside the box there are infinte potentials that force any wave
functions to be zero in the entire outside region where |x| ≥ b. Inside the box, we have the
quantum equation

−h̄2(d2 φn(x)/dx2) = En φn(x) . (23)

Evidently, cos and sin are relevant. In particular, φ(−b) = φ(b) = 0 is necessary to
continuously join the squashed wave functions, φ(|x| ≥ b) = 0. This leads to eigenfunctions
which are cos(nπx/2b) for n = 1, 3, 5, . . . and sin(nπx/2b) for n = 2, 4, 6 . . . . That leads to
the eigenvalues n2π2/4b2, now for n = 1, 2, 3, 4, . . . .

5.1.1. Failure of the Canonical Quantization of the Particle in a Box

While the statements in the last section seem to be correct, there is a problem. Let us fo-
cus on the ground state, cos(πx/2b). We need to consider two derivatives of this function, so
let us start with cos′(πx/2b) = −(π/2b) sin(πx/2b) which leads to cos′(±π/2) = ∓π/2b,
i.e., the first derivative is not a continuous function with the squashed portion. This
forces the second derivative to contain two factors proportional to δ(|x| = b), the Dirac
delta function δ(x), which vanishes everywhere but x = 0 where δ(0) = ∞, such that∫ a(>0)
−a δ(x) dx = 1. It now follows that

∫
δ(x)2 dx = ∞, which then excludes such a

function, which is supposed to be finite, e.g.,
∫
|φ(x)|2 dx < ∞, to join any Hilbert space.
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It was remarked in Wikipedia’s discussion of the particle in a box [8] that the first deriva-
tive was not continuous as it should have been, but it was effectively ignored afterwards.

In summary, we conclude that by using CQ, the standard treatment and results for the
particle in a box are incorrect.

The reduced coordinate space now requires a newly named dilation variable,
d′ = p(b + q)(b− q) = p(b2 − q2), along with accepting only −b < q < b. Using affine
variables, the classical Hamiltonian now becomes H′ = d′2/(b2− q2)2. Following the affine
quantization rules means that the D′ = [P†(b2 −Q2) + (b2 −Q2)P]/2, and the quantum
Hamiltonian is

H′ = D′(b2 −Q2)−2D′ = P2 + h̄2[2Q2 + b2]/[b2 −Q2]2 . (24)

The new h̄-expression is unravelled later in the Appendix A to Section 5.
When comparing the different h̄-terms, we find, with using Q → x, that if x ' ±b,

then [2x2 + b2]/(b2 − x2)2 ' 3b2/(b∓ x)24b2, which mimics the (3/4)-factor for the half-
harmonic oscillator. This implies that the x term in eigenfunctions, extremely close to either
±b, should be like ψ(x) ' (b2 − x2)3/2 (remainder).

For a moment, we take an about face.
A very different use of (24) is to accept the outside space, |x| > b, and reject |x| < b,

which then becomes an ‘anti-box’.
Note that this system has a similarity to a toy ‘black hole’. It could happen that

particles would pile up close to an ‘end of space’, while having been attracted there by a
simple, “gravity-like”, pull of a potential, such as V(x) = W2x4. If you choose AQ, then
the barracked, h̄-like term, in (24), would prevent the particles from falling ‘out of space’,
while the shores exhibit light from the fires of trapped trash.

5.1.2. Removing a Single Point

Assuming that we still have chosen the outside, |x| > b, coordinates, it is noteworthy
that if we focus on the region where b → 0, while insisting that |x| > 0. In this case, the
h̄-term becomes 2h̄2/x2. However, the previous eigenfunction behavior of (x2 − b2)3/2,
now with x2 > b2, implies that any eigenstates (again, having potentials, like V(x) = |x|r,
for r ≥ 2, that reach infinity) must start like ψn(x) ' x3(remaindern). This offers effective
continuity for the eigenfunction and its first two derivatives, even though x 6= 0 can permit
a more different behavior on either side of x = 0. This, then, is the ‘cost’ to remove a single
point in the usual coordinate space, e.g., in this case, removing just the single point at q = 0.

This result has been made possible using AQ and not using CQ, which requires
including all x, i.e., −∞ < x < ∞.

A Vector Version: The point we now wish to remove is −→q = 0; stated, we want to
retain all the variables that obey−→q 2 > 0 and all those of−→p 2 ≥ 0. In addition, we introduce−→
P 2 = Σs

j=1 P2
j and

−→
Q 2 = Σs

j=1 Q2
j > 0.

Using these variables, we are led to d∗ = |−→p | (−→q 2 − b2), which leads to −→p 2 =

d∗ 2/(−→q 2 − b2)2. Quantizing, we have D∗ = [ |−→P | (−→Q 2 − b2) + (
−→
Q 2 − b2) |−→P | ]/2 (=

D∗†). Adopting the kinetic factor, D∗(
−→
Q 2 − b2)−2D∗, that equation also unfolds, in a

fashion similar to that shown in the Appendix A to Section 5, below, and leads to the
quantum Hamiltonian

H = 1
2 [
−→
P 2 + h̄2(2

−→
Q 2 + b2)/(

−→
Q 2 − b2)2] + V(

−→
Q 2). (25)

Just by sending b2 → 0, we achieve the situation where only the single point, i.e.,
−→q 2 = 0→ −→Q 2 = 0 is removed from our s-dimensional space. The quantum Hamiltonian
in this case is

Hs =
1
2 [
−→
P 2 + 2h̄2/

−→
Q 2 ] + V(

−→
Q 2) . (26)
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To offer a justification that this relation holds for all
−→
Q including just the case where

s = 1, i.e., just Q2. To do so, let us introduce the wave function ψ(x) = U(x)WB(Bxj), by
introducing a partial expectation of the Hamiltonian given by

∫
WB(Bxj)

∗[
−→
P 2 − 2V(x2)]WB(Bxj) ds−1x

=
∫

WB(Bxj)
∗ 2h̄2[2/(x2 + Σs

j=2x2
j )] WB(Bxj) ds−1x (27)

in which we have integrated all xj except x = x1. Now, for all, but x1, we let xj → xj/B,
which changes the previous equation to become

∫
WC(xj)

∗[
−→
P 2 − 2V(x2 + B−2Σj x2

j )]WC(xj) ds−1x

=
∫

WC(xj)
∗ 2h̄2[2/(x2 + B−2Σj x2

j )]WC(xj) ds−1x . (28)

The purpose of this exercise is to show that the original quantum Hamiltonian (26) for
s many dimensions holds the equation for a final quantum Hamiltonian (28) as B→ ∞ for
a single dimension.

Briefly stated, an (s− 1)-dimensional reduction may be arranged that can force all of
those coordinates to become zero. This leaves behind just one of the coordinates, which
is part of a proper equation, and is already waiting to fulfill its duty (additional xj factors
may be made active by simply removing their B factor from the beginning).

5.2. Lessons from Canonical and Affine Quantization Procedures

An important lesson from the foregoing set of examples is that canonical quantization
requires special classical variables, i.e., −∞ < p & q < ∞, that create a flat surface, to
be promoted to valid quantum operators that satisfy −∞ < P & Q < ∞. However, an
affine quantization requires different classical variables, e.g.,−∞ < db = p(b + q) < ∞ and
−b < q < ∞, chosen so that 0 < b < ∞, to be promoted to valid affine quantum operators,
which satisfy −∞ < D < ∞ and −b < Q < ∞, provided that the classical variables arise
from a constant negative curvature.

The essential information from this exercise is that affine quantization variables are
created from canonical quantization variables and they permit classical and quantum alike
in having a limited behavior where −b < q & Q < ∞, b is finite, and −∞ < d & D < ∞.

6. Ultralocal Field Models
6.1. Introduction

In some ways, our first example of a field theory is the hardest to deal with its quantiza-
tion. An ultralocal form of any classical field theory eliminates all spatial (but not temporal)
derivatives in its action functional, and specifically, in its classical Hamiltonian such as
H =

∫
{ 1

2 [π(x)2 + m2 ϕ(x)2] + g ϕ(x)p} dsx, where p = 4, 6, 8, . . . and s = 1, 2, 3, . . . .
If we can handle this model, we should be able to handle more relevant relativistic

field models that restore spatial derivatives.

6.2. What Is the Meaning of Ultralocal

The phrase ‘ultralocal’ implies there are no spatial derivatives of the fields only a
separate time derivative. Previously, one of the authors has quantized ultralocal scalar
fields by affine quantization to show that these non-renormalizable theories can be correctly
quantized by affine quantizations; the story of such scalar models is introduced in this
chapter. The present chapter will also show that ultralocal gravity can be successfully
quantized by affine quantization.

The purpose of this study is to show that a successful affine quantization of any
ultralocal field problem would imply that, with properly restored spacial derivatives, the
classical theory can, in principle, be guaranteed a successful quantization result using either
a canonical quantization in some cases or an affine quantization in different cases.
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In particular, Einstein’s gravity requires an affine quantization, and it will be successful,
as we will find out in a following chapter.

6.3. Classical and Quantum Scalar Field Theories

The purpose of this section is to review a modest summary of the results of canonical
quantization when it has been used to study a variety of covariant scalar field models.

We interrupt our present story to upgrade ‘A Simple Truth’ to prepare the reader for
its use with fields:

——————————————————————————

Another Simple Truth

Consider A(x)× B(x) = C(x) as well as A(x) = C(x)/B(x)

If B(x) = C(x) = 0 what is A(x)?
If B(x) = C(x) = ∞ what is A(x)?

To ensure getting A(x) one must require 0 < |B(x)| & |C(x)| < ∞.

This is good mathematics, but physics has an opinion as well.

Consider k(x) = π(x)ϕ(x), where ϕ(x) is a chosen physical field, π(x) is its
momentum field, and their product is κ(x), which we will call the dilation field.
Since π(x) serves as the time derivative of ϕ(x), it can vanish along with κ(x).
However, requiring that both plus and minus sides of ϕ(x) 6= 0 are acceptable,
since the derivative term ensures it will still seem to come from a continuous func-
tion. Moreover, if ϕ(x) = 0 it could be confused with any other field, e.g., α(x) = 0
( if you think dimensions can distinguish two such fields, we can eliminate dimen-
sional features by first introducing ϕ(y) 6= 0 and α(z) 6= 0. Now, dimensionless
factors lead to ϕ(x)/ϕ(y) = 0 = α(x)/α(z). Thus, omitting points, or streams of
them, where ϕ(x) = 0, do not violate any physics. In fact, it may seem logical to
say that ϕ(x) = 0 never even belonged in physics. It fact, since numbers were used
to count physical things, in very early times, zero = 0, was banned for 1500 years;
see [9]).

It is good math for finite integrations if there are examples where the
fields may reach infinity, e.g.,

∫ 1
−1 ϕ−2/3 dϕ < ∞. However, such cases are very

likely to be bad physics because no item of nature reaches infinity. Accepting
κ(x) (= π(x) ϕ(x)) and ϕ(x) 6= 0, instead of π(x) and ϕ(x), as the basic variables,
will have profound consequences.

For example, the classical Hamiltonian expressed as

H =
∫
{ 1

2 [κ(x)2/ϕ(x)2 + m2ϕ(x)2] + g ϕ(x)p} dsx , (29)

in which 0 ≤ |κ(x)| < ∞ and 0 < |ϕ(x)| < ∞, to well represent π(x), fulfills the
remarkable property that H(x) < ∞, where H =

∫
H(x) dsx, as nature requires! This

fact shows that κ(x) and ϕ(x) 6= 0 should be the new variables!
We now point to our new ABC-items to remind the reader of their relevance.

——————————————————————————
This important notification is finished.

6.4. Canonical Ultralocal Scalar Fields

These models have a classical (labelled by c) Hamiltonian given by

Hc =
∫
{ 1

2 [π(x)2 + m2 ϕ(x)2] + g ϕ(x)p} dsx , (30)

with p = 4, 6, 8, . . . and s = 1, 2, 3, . . . . With n = s + 1 spacetime dimensions, and first
using canonical quantization, we examine these models. In preparation for a possible path
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integration, the domain of Hc consists of all, momentum functions π(x) and scalar fields
ϕ(x), for which 0 ≤ Hc < ∞.

Since all derivatives have now been removed, even stronger issues can be expected by
path integrations being swamped by integrable infinities of the field, or by vast numbers of
almost integrable infinities. However, effectively, that strong behavior fails to contribute to
the path integration results, e.g., for p ≥ 4, while the middle range contributions have the
most influence on the final result.

To confirm that view, Monte Carlo computations have shown an effectively free-like
behavior for analogous CQ models.

6.5. An Affine Ultralocal Scalar Field

Affine classical variables are given by κ(x) ≡ π(x) ϕ(x) and ϕ(x), with the restriction
that ϕ(x) 6= 0 (ABC), and the Poisson bracket is given by {ϕ(x), κ(x′)} = δ(x− x′)s ϕ(x).
The ultralocal classical Hamiltonian, expressed in affine variables, is given by

Hu =
∫
{ 1

2 [κ(x)2/ϕ(x)2 + m2 ϕ(x)2] + g ϕ(x)p} dsx . (31)

The term κ(x)2/ϕ(x)2 requires that 0 < |ϕ(x)| < ∞ to be fair to κ(x), while κ(x) is
limited only by |κ(x)| < ∞ to be fair to ϕ(x) (ABC). Observe that 0 < |ϕ(x)| < ∞ now
implies that 0 < |ϕ(x)|p < ∞ for all 0 < p < ∞ and for all s = 1, 2, 3, . . . .

The basic quantum operators are ϕ̂(x) 6= 0 and κ̂(x), and their commutator is given
by [ϕ̂(x), κ̂(x′)] = ih̄δs(x− x′)ϕ̂(x). The quantum, ultralocal, affine Hamiltonian, is now
given by

H =
∫
{ 1

2 [κ̂(x)ϕ̂(x)−2κ̂(x) + m2 ϕ̂(x)2] + g ϕ̂(x)p} dsx , (32)

with κ̂(x) = − 1
2 ih̄[ϕ(x)(δ/δϕ(x)) + (δ/δϕ(x)) ϕ(x)] .

Clearly, this is a formal equation for the Hamiltonian operator, etc. Such expressions
deserve a regularization and rescaling of these equations.

The kinetic term in (32) isK(π̂, ϕ̂) = κ̂(x)ϕ̂(x)−2κ̂(x) = π̂(x)2 + 2h̄2 W/ϕ̂(x)2 , where
W = δ(0)2s = ∞, and δ(x) is a special function of Dirac. Now, a kinetic scaling can be
taken simply by first letting that Z = (a2W)1/4 and then K(π̂, ϕ̂)new = Z−2K(Zπ̂, Zϕ̂) =
π̂(x)2 + 2h̄2/a2 ϕ̂(x)2, and since 0 < a < ∞, any factor is allowed.

It is noteworthy that Monte Carlo computations have shown a reasonable active
behavior for analogous AQ models [10].

7. An Ultralocal Gravity Model

An affine formulation would use the classical metric gab(x), which, as before, has a
positivity requirement, while the momentum field will be replaced by the dilation field,
πa

b(x) [≡ πac(x) gbc(x)], summed by c. These basic affine variables are promoted to quan-
tum operators, both of which can be self-adjoined, while the metric operator is also positive
as required.

The principle of using ultralocal rules, as before, is that spacial derivatives must be
eliminated. To satisfy that rule, we drop the factor (3)R(x), the Ricci scalar field composed of
the metric field and its spacial derivatives, and replace it with a new function, Λ(x), which
will be called a ‘Cosmological Function’ to imitate the standard constant factor, Λ, known
as the ‘Cosmological Constant’. This new function is independent of the dilation and
metric functions, and is simply used as a continuous function that obeys 0 < Λ(x) < ∞,
or otherwise.

With this substitution, the ultralocal classical Hamiltonian is now given by

Hu =
∫
{g(x)−1/2[πa

b(x)πb
a(x)− 1

2 πa
a(x)πb

b(x)] + g(x)1/2 Λ(x)} d3x . (33)

Since there are no spatial derivatives, we are given another example that every spatial
point x labels a pair of distinct variables, namely πa

b(x) and gcd(x). Once again, we find a
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quantum wave function, using the Schrödinger representation for the metric field gab(x),
that is a product of independent spacial values of the form Ψ({g}) = ΠxW(x), where {g}
denotes gab(·) for all x.

When this Hamitonian is quantized, the only variables that are promoted to quantum
operators are the metric field, gab(x), and the dilation (sometimes known as ‘momentric’
to include momentum and metric) field, πa

b(x) = πac(x) gbc(x), and the field Λ(x) is fixed
and not made into any operator.

7.1. An Affine Quantization of Ultralocal Gravity

The quantum operators are ĝab(x) and π̂c
d(x), and their Schrödinger representations

are given by ĝab(x) = gab(x) and π̂a
b(x) = −i 1

2 h̄[gbc(x) (δ/δgac(x)) + (δ/δgac(x))gbc(x)].
The Schrödinger equation for the ultralocal Hamiltonian is then given by

ih̄ ∂ ψ({g}, t)/∂t =
∫
{ π̂a

b(x) g(x)−1/2 π̂b
a(x)− 1

2 π̂a
a(x) g(x)−1/2 π̂b

b(x)

+g(x)1/2 Λ(x)} d3x ψ({g}, t) , (34)

where, as noted, the symbol {g} denotes the full metric matrix. Solutions of (34) are
governed by the Central Limit Theorem.

7.2. A Regularized Affine Ultralocal Quantum Gravity

Much like the regularization of the ultralocal scalar fields, we introduce a discrete
version of the underlying space such as x → ka, where k ∈ {. . . ,−1, 0, 1, 2, 3, . . . }3 and
a > 0 is the spacing between rungs in which, for the Schrödinger representation,
gab(x) → gab k and π̂c

d(x) → π̂c
d k. It can be helpful by assuming that the metric has

been diagonalized so that gab k → {g11 k, g22 k, g33 k}, as it becomes

π̂c
d k = −i 1

2 h̄[gde k(∂/∂gce k) + (∂/∂gce k)gde k] a−s (35)

= −ih̄[gde k(∂/∂gce k) + δc
d/2] a−s .

Take note that π̂a
b k g−1/2

k = 0, where gk = det(gab k). We will exploit such an expres-
sion one more time.

The regularized Schrödinger equation is now given by

ih̄ ∂ψ(g, t)/∂t (36)

= ∑k{π̂a
b k g−1/2

k π̂b
a k − 1

2 π̂a
a k g−1/2

k π̂b
b k + g1/2

k Λk } as ψ(g, t) .

Observe that gk = det(gab k) is now the only representative of the metric gabk
.

A normalized, stationary solution to this equation may be given by some Y(gk), which

obeys Πk
∫
|Y(gk)|2(ba3)/g(1−ba3)

k dgk = 1, which offers a unit normalization for

ΨY(g) = ΠkY(gk) (ba3)1/2 g−(1−ba3)/2
k . (37)

The Characteristic Function for such expressions is given by

CY( f ) = lim
a→0

Πk
∫

ei fkgk |Y(gk)|2(ba3)g−(1−ba3)
k dgk (38)

= lim
a→0

Πk{1− (ba3)
∫
[1− eifkgk ]}|Y(gk)|2 g−(1−ba3)

k dgk

= exp{−b
∫

d3x
∫
[1− ei f (x) g(x)] |Y(g(x))|2 dg(x)/g(x)} ,

where the scalar gk → g(x) > 0 and Y accommodates any change due to a→ 0. The final
result is a (generalized) Poisson distribution, which obeys the Central Limit Theorem.

The formulation of Characteristic Functions for gravity establishes the suitability
of an affine quantization as claimed. Although this analysis was only for an ultralocal
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model, it nevertheless points to the existence of proper quantum solutions for Einstein’s
general relativity.

7.3. The Main Lesson from Ultralocal Gravity

Just like the success of quantizing ultralocal scalar models, we have also showed
that ultralocal gravity can be quantized using affine quantization. The purpose of solving
ultralocal scalar models was to ensure that non-renormalizable covariant fields can be
solved using affine quantization. Likewise, the purpose of quantizing an ultralocal version
of Einstein’s gravity shows that we should, in principle, and using affine quantization, be
able to quantize the genuine version of Einstein’s gravity using affine quantization.

The analysis of certain gravity models with significant symmetry may provide exam-
ples that can be completely solved using the tools of affine quantization.

8. How to Quantize Relativistic Fields

If the reader thinks that canonical quantization is the best way to quantize relativistic
field theories, the reader should read this chapter carefully.

8.1. Reexamining the Classical Territory

We now turn from ultralocal models to those that are relativistic. These are models that
really can represent nature, and they are clearly the most important examples. The principal
example of a covariant scalar field theory is the usual one that we focus on, namely

H =
∫

H(x) dsx =
∫
{ 1

2 [π(x)2 + (
−→∇ ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)p} dsx . (39)

This example is meant to deal with fields that obey the rule that |π(x)|+ |ϕ(x)| < ∞ to
ensure that H(x) < ∞. That is a very reasonable restriction; however, a path integration can
violate that rule. We have in mind integrable infinities, such as π(x)2 = 1/|x|2s/3, where s
is the number of spatial coordinates, i.e., |x|2 = x2

1 + x2
2 + · · ·+ x2

s , which from a classical
viewpoint seem unlikely, but from a path integration point of view seem very likely. Such
integrable infinities encountered here in the classical analysis lead to non-renormalizable
behavior in which the domain of the variables for a free model, i.e., g = 0, becomes reduced
then, when g > 0, and p ≥ 2n/(n− 2), with n = s + 1. Since the domain of the classical
variables becomes reduced, it remains that way when the coupling constant is reduced to
zero using g → 0. With such behavior for the classical analysis, there is every reason to
expect considerable difficulties in using canonical quantization.

To make that statement clear, it is a fact that Monte Carlo calculations for the scalar
fields ϕ12

3 and ϕ4
4 apparently led to free results, using CQ, as if the coupling constant g = 0

when that was not the case, but offered reasonable results using AQ. Clearly, integrable
infinities are not welcome!

This section will draw on Section 5 to a large extent, although it has been somewhat
changed by the introduction of the gradient term. That may lead to some repeats of
certain topics.

8.1.1. A Simple Way to Avoid Integrable-Infinities

Let us, again, introduce a new field, κ(x) ≡ π(x) ϕ(x), as a featured variable rather
than π(x), to accompany ϕ(x) 6= 0 (ABC). We do not really ‘change any variable’, but just
give the usual ones ‘a new role’.

Some care is needed in choosing κ(x) and ϕ(x) as the new pair of variables, and
physics can be a good guide.

Let us recall the simple analog, namely p = mv. If the velocity v = 0, then physics
agrees that the momentum p = 0. However, if the mass m = 0 and v = 6, then having
p = 0, along with any term being infinity, is very bad physics. Instead, physics requires
that 0 ≤ |v| & |p| < ∞ and 0 < m < ∞ makes good physics. This story can apply to other
variables, and as has often been noted, we point to such items as (ABC).
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In our case, we assume ϕ(x) is a physical field, π(x) is its time derivative, and
κ(x) ≡ π(x) ϕ(x), their product, which will be called the ‘dilation field’, serves as a kind
of momentum. Now, using a similar argument as above, we accept the assertion that
0 ≤ |κ(x)| & |π(x)| < ∞ and 0 < |ϕ(x)| < ∞, which makes good physics.

The reader may still worry about requiring ϕ(x) 6= 0. Surely, integrations like∫
ϕ(x)r dsx, r > 0, are not affected. However, there is a good reason to accept it. Such

an equation lends itself to ϕ(x) = 0 = ζ(x) if two different fields might find this fact.
If you worry about dimensions, or different charges (denoted here by ∗), you can use
ϕ(y) 6= 0 and ζ(z) 6= 0 or ζ∗(z) 6= 0, which then leads to ϕ(x)/ϕ(y) = 0 = ζ(x)/ζ(z) or
ϕ(x)/ϕ(y) = 0 = ζ(x)∗/ζ(z)∗ which equates two fully dimensionless terms. Adopting
ϕ(x) 6= 0 still leads to continuity thanks to the presence of the gradient term, (

−→∇ ϕ(x))2,
which enforces a necessarily continuous field behavior.

8.1.2. The Absence of Infinities by Using Affine Field Variables

Now, let us use κ(x) and ϕ(x) 6= 0 as the new variables to be used in the classical
Hamiltonian (39), which then becomes

H =
∫
{ 1

2 [ κ(x)2/ϕ(x)2 + (
−→∇ ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)p} dsx . (40)

Now, things are different. To represent π(x), then κ(x) and ϕ(x), must serve their
role. Hence we require that 0 < |ϕ(x)| < ∞, which implies that 0 < |ϕ(x)|p < ∞ for all
0 < p < ∞ and all s. In addition, we require that |κ(x)| < ∞ for a similar reason.
The gradient term, which arises in the spacial derivative (

−→∇κ(x)) = (
−→∇π(x))ϕ(x) +

π(x)(
−→∇ ϕ(x)), creates another kind of (ABC) issue that leads to |(−→∇ ϕ(x))| < ∞. The

Hamiltonian density, H(x), is now finite everywhere! It follows that the Hamiltonian,
H =

∫
H(x) dsx, will be finite if it is confined to any finite spacial region, or if the field

values taper off sufficiently, as is customary.

Although we have pointed out some difficulties that might arise in a canonical quanti-
zation, we follow a careful road to see how far we can get.

The usual continuum limit of the canonical quantum Hamiltonian leads to

H =
∫
{ 1

2 [π̂(x)2 + (
−→∇ ϕ̂(x))2 + m2 ϕ̂2(x)2] + g ϕ̂(x)p} dsx , (41)

but now there is some confusion.
The confusion arises in comparing [Qk, Pl ] = ih̄δkl11 with [ϕ̂(x), π̂(y)] = ih̄δ(x− y)11.

As with the ultralocal case, it seems that we have a big difference in scale when p ≥
2n/(n− 2) and the domain reduction appears when the interaction term is active compered
with if it is not active. The same issue applied to the ultralocal case, which the p-value
happened even earlier due to the absence of the gradient term, which, then is p > 2. From a
path integration viewpoint, fields like |ϕ(x)| >> 1 are less likely to help their contribution.
That can also apply to |ϕ(x)| << 1 about the fields. Indeed, having both π(x) and ϕ(x)
fields in ‘the middle’ tends to make them more prominent features in a path integration.

8.2. Affine Quantization of Relativistic Field Models
8.2.1. Affine Classical Variables for Selected Field Theories

We first reexamine the features of a classical Hamiltonian once again, now with the
affine variables κ(x) and ϕ(x) 6= 0, which becomes

H =
∫
{ 1

2 [κ(x)2/ϕ(x)2 + (
−→∇ ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)p} dsx . (42)

In this case, we need 0 < |ϕ(x)| < ∞, and |−→∇ ϕ(x)| & |κ(x)| < ∞ (ABC). This
requirement leads to the Hamiltonian density, H(x), which will entirely be 0 ≤ H(x) < ∞,
for all x, signaling that integrable infinities may be excluded. That is true, and it must be
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obeyed, also in a path integration. This rule, regarding quantization, already distinguishes
AQ from CQ.

If new variables can calm down the classical Hamiltonian, is it possible that they might
also calm down the quantum Hamiltonian? Let us see how we can do just that!

8.2.2. An Affine Quantization of Relativistic Fields

We first focus on the several field factors, which obey π(x)2 = κ(x)2/ϕ(x)2. Using
Schrödinger’s representation, the quantization of these fields leads to π(x)2 ⇒ κ̂(x)(ϕ(x))−2κ̂(x),
where κ̂(x) = [π̂(x)† ϕ(x) + ϕ(x)π̂(x)]/2. In a similar case, in an earlier chapter, we found
that p2 = d2/q2 → DQ−2D = P2 + 2h̄2/Q2, with D = (P†Q + QP)/2. Now, we follow
the same path, more or less.

Still using Schrödinger’s representation, then

π(x)2 = κ(x)2/ϕ(x)2⇒ κ̂(x)(ϕ(x)−2)κ̂(x)

= π̂(x)2 + 2h̄2δ(0)2s/ϕ(x)2 , (43)

which involves the Dirac delta function much like [ϕ̂(x), π̂(x)] = ih̄δ(0)s11 does as well.
Now is the time to introduce some scaling. Such a feature can adopt πκ → a−s/2Pκ and

ϕκ → a−s/2Qκ , with κ̂κ = (π̂†
κ ϕ̂κ + ϕ̂κπ̂k)/2 = a−s[P†

κ Qκ + Qκ Pκ ]/2. Now, we re-examine
the kinetic factor for which κ̂κ(ϕ̂−2

κ )κ̂κ = a−sP2
κ + 2a−2s h̄2/a−sQ2

κ . This regularization now
leads to a regularized quantum Hamiltonian

H = Σκa−s{ 1
2 [P

2
κ + 2h̄2/Q2

κ + m2Q2
κ ] + gQp

κ} as , (44)

provided that g a−s(p−2)/2 → g a−s by properly changing g.

8.2.3. Schrödinger’s Representation and Equation

We are now in position to suggest the important affine quantization of standard
classical models such as

H =
∫
{ 1

2 [κ(x)2/ϕ(x)2 + (
−→∇ ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)p } dsx , (45)

followed by the usual rules leading to
∫
{ 1

2 [κ̂(x)(ϕ(x)−2)κ̂(x)

+(
−→∇ ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)p} dsx Ψ(ϕ) = E Ψ(ϕ) . (46)

As like other Characteristic Functions, such as were used for the ultralocal models, we
note that for any normalized wave function, such as Πx W(ϕ(x))/ϕ(x)1/2 in the Hilbert
space, a Fourier transformation leads to

CW( f ) = exp{−b
∫

dsx
∫
[1− ei f (x)ϕ(x)] |W(ϕ(x))|2 dϕ(x)/|ϕ(x)|} . (47)

9. How to Quantize Einstein’s Gravity

If the reader thinks that canonical quantization is the best way to quantize Einstein’s
gravity, the reader should read this chapter carefully.

9.1. Gravity and AQ, Using Basic Operators

In order to quantize gravity it is important to render a valid quantization of the
Arnowitt, Deser, and Misner classical Hamiltonian [11]. We first choose our new classical
variables which include what we also call the dilation field πa

b(x) ≡ πac(x) gbc(x) (summed
on c) along with the metric field gab(x). We do not need to impose any restriction on the
metric field because physics already requires that ds(x)2 = gab(x) dxa dxb > 0 provided
that Σ3

a=1(dxa)2 > 0. The metric can also be diagonalized by non-physical, orthogonal
matrices, and then it includes only g11(x), g22(x), & g33(x), each of which must be
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strictly positive as required by physics (the reader should compare the three diagonalized
positive metric variables with q > 0, which then requires an affine quantization for the
half-harmonic oscillator, and also then appreciate the need for such a quantization that lead
to positive results).

Next we present the ADM classical Hamiltonian in our chosen affine variables, which,
introducing g(x) ≡ det[gab(x)] > 0, leads to

H(π, g) =
∫
{g(x)−1/2[πa

b(x)πb
a(x)− 1

2 πa
a(x)πb

b(x)]

+g(x)1/2 (3)R(x)} d3x , (48)

where (3)R(x) is the Ricci scalar for three spatial coordinates and which contains all of the
derivatives of the metric field. Already, this version of the classical Hamiltonian contains
reasons that restrict g(x) to 0 < g(x) < ∞, 0 ≤ |πa

b(x)| < ∞, and 0 ≤ |(3)R(x)| < ∞,
which, like the previous field theory examples, and lead to no integral-infinities for the
gravity story.

Finally, we introduce the dilation gravity operator π̂a
b(x) = [π̂ac(x)† ĝbc(x) + ĝbc(x) π̂ac(x)]/2

along with ĝab(x) > 0, and adopting Schrödinger‘s representation and equation, we are
led to

H′(π̂, g) =
∫
{ [ π̂a

b(x) g(x)−1/2 π̂b
a(x)− 1

2 π̂a
a(x) g(x)−1/2 π̂b

b(x) ]

+ g(x)1/2 (3)R(x) } d3x . (49)

And now, as before, we close with Schrödinger’s equation

ih̄ ∂ Ψ(g, t)/∂t = H′(π̂, g) Ψ(g, t) , (50)

which offers the necessary ingredients for the foundation of a valid quantization of the
classical Hamiltonian, which is an important part of the full story.

As before, it may be necessary to introduce some version of regularization for these
equations, but these same equations point the way to proceed. In that effort, note that
although π̂ac(x)† 6= π̂ac(x) it can be helpful to know that π̂ac(x)† gbc(x) = π̂ac(x) gbc(x).

A full quantization of gravity must deal with first and likely second order constraints,
which are designed to reduce the overall Hilbert space to secure a final quantization. This
project is not the proper place to finalize a quantization of gravity, but several of the author’s
articles have been designed to go further toward the final steps [12].

Additional Aspects of Quantum Gravity

This section is relevant to follow sections which lead toward a path integration. These
topics involve constraints required in the ADM approach. The present story, told just above,
follows in the pattern of establishing a Schrödinger equation using his representation, has
been the rule in discussing prior examples, e.g., the half-harmonic oscillator, quantum field
theories over multiple powers of the interaction term, ultralocal examples of fields and
gravity, and covariant field theories.

Now, in the forthcoming section, we offer a careful treatment of constraints and their
analysis, which is prominent in gravity and needs its own analysis.

9.2. Gravity and AQ, Using Path Integration

We first recall the Arnowitt, Deser, and Misner version of the classical Hamiltonian,
seen in [11], as originally expressed in the standard classical variables, namely the mo-
mentum, πab(x), the metric, gcd(x), the metric determent, g(x) = det[gab(x)], and (3)R(x),
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which is the Ricci scalar for three spatial variables. Now, the ADM classical Hamiltonian is
essentially given by

H(π, g) =
∫
{g(x)−1/2[πac(x)gbc(x)πbd(x)gad(x)

− 1
2 πac(x)gac(x)πbd(x)gbd(x)]

+g(x)1/2 (3)R(x)} d3x , (51)

9.2.1. Introducing the Favored Classical Variables

The ingredients in providing a path integration of gravity include proper coherent
states, the Fubini–Study metric which turns out to be affine in nature, and affine-like Wiener
measures are used for the quantizing of the classical Hamiltonian. While that effort is only
part of the story, it is an important portion to ensure that the quantum Hamiltonian is a
bonafide self-adjoined operator.

According to the ADM classical Hamiltonian, it can also be expressed in affine-like
variables, as we did in the previous chapter, namely by introducing, in some papers of
this author, the ‘momentric’ (a name that is the combination of momentum and metric) and,
instead, this item is now called the ‘dilation variable’ becoming πa

b(x) (≡ πac(x) gbc(x)),
along with the metric gab(x). The essential physical requirement is that gab(x) > 0, which
means that ds(x)2 = gab(x) dxa dxb > 0, provided that Σa(dxa)2 > 0.

Now, the classical Hamiltonian, expressed in affine classical variables, is again given by

H ≡
∫

H(x) d3x =
∫
{g(x)−1/2[πa

b(x)πb
a(x)− 1

2 πa
a(x)πb

b(x)]

+g(x)1/2 (3)R(x)} d3x . (52)

9.2.2. The Gravity Coherent States

The principal operators π̂a
b(x) = [π̂ac(x)† ĝbc(x) + ĝbc(x)π̂ac(x)]/2 (= π̂a

b(x)†) and
ĝab(x) = ĝab(x)† > 0 offer a closed set of commutation relations given by

[π̂a
b(x), π̂c

d(y)] = i 1
2 h̄ δ3(x, y)[δa

d π̂c
b(x)− δc

b π̂a
d(x)] ,

[ĝab(x), π̂c
d(y)] = i 1

2 h̄ δ3(x, y)[δc
a ĝbd(x) + δc

b ĝad(x)] , (53)

[ĝab(x), ĝcd(y)] = 0 .

We now choose the basic affine operators to build our coherent states for gravity, specifically

|π; η〉 = e(i/h̄)
∫

πab(x) ĝab(x) d3x e−(i/h̄)
∫

ηa
b(x) π̂b

a(x) d3x |β〉 [ = |π; g〉] . (54)

Note: The last item in this equation is the new name of these vectors hereafter.
A new fiducial vector, also named |β〉 but now different, has been chosen now in

connection with the relation [eη(x)]ab ≡ gab(x) > 0, while −∞ < {η(x)} < ∞, and which
enters the coherent states as shown, using |β〉 as the new fiducial vector that is affine-like,
and obeys [(ĝab(x)− δab11) + iπ̂c

d(x)/β(x)h̄]|β〉 = 0. It follows that 〈β|ĝcd(x)|β〉 = δcd and
〈β|π̂c

d(x)|β〉 = 0, which leads to the form given by

〈π; g|ĝab(x)|π; g〉 = [eη(x)/2]ca 〈β|ĝcd(x)|β〉 [eη(x)/2]db

= [eη(x)]ab = gab(x) > 0 . (55)

In addition, we introduce the inner product of two graviy coherent states, which is
given by

〈π′′; g′′|π′; g′〉 = exp
{
−2

∫
β(x) d3x

× ln
{

det{ [g
′′ab(x) + g′ab(x)] + i/(2 β(x) h̄)[π′′ab(x)− π′ab(x)]

det[g′′ab(x)]1/2 det[g′ab(x)]1/2

}}}
. (56)
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Finally, for some C, we find the Fubini–Study gravity metric to be

dσ2
g = Ch̄[ || d|π; g〉||2 − |〈π; g| d|π; g〉|2] (57)

=
∫
[ β(x)h̄)−1 (gab(x) dπab(x))2 + (β(x)h̄) (gab(x) dgab(x))2 ] d3x ,

which is seen to imitate an affine metric, leading to a constant negative curvature, as well,
and that will provide a genuine Wiener-like measure for a path integration. In no way
could we transform this metric into a proper Cartesian form, as was carried out for the
half-harmonic oscillator. That is because there is no physically proper Cartesian metric for
the variables πab(x) and gcd(x).

9.2.3. A Special Measure for the Lagrange Multipliers

To ensure a proper treatment of the operator constraints, we choose a special measure
of the Lagrange multipliers, R(Na, N), guided by the following procedures.

The first step is to unite the several classical constraints by using
∫∫

ei(ya Ha(x)+yH(x)) W(u, ya, y, gab(x)) Πadya dy

= e−iu[Ha(x)gab(x)Hb(x)+H(x)2]

≡ e−iuHv(x)2
(58)

with a suitable measure W.
An elementary Fourier transformation (in mathematics, the following function being

Fourier transformed is known as (a version of) rect(u) = 1 for |u| ≤ 1, and 0 for |u| > 1)

is given by M
∫ δ2

−δ2 eiετ uy dy/2 = sin(uετδ2)/u, using a suitable M, which then ensures
that the inverse Fourier transformation, where ε represents a tiny spatial interval and τ
represents a tiny time interval, as part of a fully regularized integration in space and time,
and u is another part of the Lagrange multipliers, Na(nε) and N(nε), which leads to

lim
ζ→0+

lim
L→∞

∫ L

−L
e−iuετH2

v(x) sin(uετ(δ2 + ζ))/uπ du

= IE(ετHv(x)2 ≤ ετδ2)

= IE(Hv(x)2 ≤ δ2) . (59)

This expression covers all self-adjoined operators, and leads to a self-adjoined
Hv =

∫
Hv(x) d3x.

Bringing together our present tools lets us first offer a path integral for the gravity
overlap of two coherent states, as given by

〈π′′; g′′|π′; g′〉 = lim
ν→∞
Nν

∫
exp[−(i/h̄)

∫ T
0

∫
[(gab π̇ab) d3x dt]

× exp{−(1/2νh̄)
∫ T

0

∫
[(β(x)h̄)−1 (gab π̇ab)2 + (β(x)h̄) (gab ġab)

2] d3x dt}
×Πx,tΠa,b dπab(x, t) dgab(x, t)

= exp
{
−2

∫
β(x) d3x (60)

× ln
{

det{ [g
′′ab(x) + g′ab(x)] + i/(2 β(x) h̄)[π′′ab(x)− π′ab(x)]

det[g′′ab(x)]1/2 det[g′ab(x)]1/2

}}}
,

where the second equation indicates what such a path integration has been designed to
acheive for its goal.
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9.3. The Affine Gravity Path Integration

By adding all the necessary tools, and implicitly having examined a regularized
integration version in order to effectively deal with suitable constraint projection terms, we
have chosen IE ≡ IE(H2

v ≤ δ(h̄)2) for simplicity here, all of which leads us to

〈π′′; g′′ : T|IE|π′; g′ : 0〉 = 〈π′′; g′′|IE e−(i/h̄)IE TIE |π′; g′〉
= lim

ν→∞
N ′ν

∫
exp{−(i/h̄)

∫ T
0

∫
[gab π̇ab + Na Ha + NH] d3x dt}

× exp{−(1/2νh̄)
∫ T

0

∫
[(β(x)h̄)−1 (gab π̇ab)2 + (β(x)h̄) (gab ġab)

2] d3x dt}
×[Πx,tΠa,b dπab(x, t) dgab(x, t)DR(Na, N) . (61)

The role of the measure R(Na, N) is defined so that the operators,Ha H, only support
a sample of non-zero eigenvalues, e.g., IE(H2

v ≤ δ(h̄)2), where, e.g., δ(h̄)2 ∼ c h̄2, or some
other tiny value that vanishes if h̄→ 0 ifH2

v ≤ δ(h̄)2 consists only of a continuous spectrum;
see [12].

We let the reader choose their own regularization of the last equation to ensure that
the ε terms are proper, and that the ε2 terms —And higher εK, K > 2, terms as well —Lead
to a proper continuum limit. In so doing, the overlap of two gravity coherent states, as
above in (60), could be particularly useful.

Several papers by the author offer additional information regarding topics, and addi-
tional procedures to use, has been discussed in [Kla-2].

10. Summary, and Outlook
Each Field Problem Needs AQ or CQ, Otherwise, There Can Be Incorrect Results

Could it be the time now to pass from CQ to AQ to solve difficult problems? Perhaps
new procedures can help. The passing of years can often lead to the introduction of
improved procedures. For example, though history, people first took around the mail on
horses , then trains, then cars, then switched to the internet, etc. Likewise, first there was CQ,
now AQ, which is added to become CQ & AQ = EQ, known as ‘Enhanced Quantization’. It
has introduced a huge jump that greatly extends quantization procedures, along with a
noteworthy proof that, essentially, AQ→ CQ.

In an artistic sense, CQ represents the beautiful surface of a brick made of pure gold,
while AQ represents the wonderful interior of the same gold brick. Hence, moving around
within an inside path, AQ points can reach a point on the CQ surface!

While the half-harmonic oscillator using AQ was shown to be valid, the validity of AQ
for field theories or for gravity are not as yet proved to be true, and there are opportunities
for others to test their out coming. While every attempt to maintain correctness has been
made, something may still have been overlooked. The improvement of every step is open
to consideration and further recommendation.
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Appendix A. Appendix to Section 5

Any tired reader may skip to the last paragraph.
Our analysis of general dilation variables is given as follows. The quantum kinetic term

(now, with h̄ = 1) in affine variables is DF−2D. This expression, is helped by F = F(Q), G =
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G(Q) ≡ 1/F(Q), F(Q)P − PF(Q) = i F′(Q). and G(Q)P − PG(Q) = i G′(Q) leads to
4DG2D = (PF + FP)GG(PF + FP) = PP + FPGGPF + FPGP + PGPF = PP + (PF +
iF′)GG(FP− iF′) + (PF + iF′)GP + PG(FP− iF′) = 4PP + 2i(F′GP− PGF′) + F′GGF′ =
4PP− 2(F′G)′ + (F′)2G2. Restoring h̄, we have DG2D = P2 + (1/4)h̄2[(F′)2G2 −2(F′G)′].

Keeping h̄, and here, using D = [P†F(Q) + F(Q)P]/2, then DF−2D = P2 + (1/4)h̄2

[(ln(F)′)2 − 2(ln(F))′′], where, symbolically, F′(Q) = dF(Q)/dQ. For F(Q) = (Q2 − b2),
we now find the h̄-term to be h̄2(2Q2 + b2)/(b2 −Q2)2.
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pairs profiles, the radial distribution function and longitudinal distribution function, and
the (static) longitudinal structure factor. We compare our results with a recent exact semi-
analytic solution found by Montero and Santos for the single file formation and first nearest
neighbor fluid, and explore how their solution performs when these conditions are not fulfilled
making it just an approximation.
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Abstract. We perform Monte Carlo simulation of the thermodynamic and structural properties of hard-,
square-well, and square-shoulder disks in narrow channels. For the thermodynamics, we study the inter-
nal energy per particle and the longitudinal and transverse compressibility factor. For the structure, we
study the transverse density and density of pairs profiles, the radial distribution function and longitudinal
distribution function, and the (static) longitudinal structure factor. We compare our results with a recent
exact semi-analytic solution found by Montero and Santos for the single file formation and first nearest
neighbor fluid, and explore how their solution performs when these conditions are not fulfilled making it
just an approximation.

1 Introduction

Confined fluids are an important field of study due to
the wide range of applications and situations where
they can be found [1]. Interesting systems in physics,
chemistry, or biology involve dealing with confined par-
ticles. Examples are carbon nanotubes [2,3] or biologi-
cal ion channels [4]. In many of these systems, the geom-
etry is so restrictive that one or more spatial dimensions
become negligible. One can, therefore, often describe
these systems as living in a one (1D) or two (2D) dimen-
sional space to simplify the mathematical model and
its subsequent study. Yet, in some cases, it is neces-
sary a more realistic description which can be obtained
by modeling the geometrical restriction without recur-
ring to a dimensionality reduction. So, for particles liv-
ing in three dimensions, we will talk about quasi two-
dimensional (quasi 2D) or quasi one-dimensional (quasi
1D) fluids. In this work, we will study particles living
in 2D which are quasi 1D.

Despite its clear importance, systems whose struc-
tural properties are amenable to exact analytic solu-
tions are very scarce, and usually limited to 1D flu-
ids [5–14] with only nearest neighbor interactions [15–
17]. Even if for restricted values of the thermodynamic
parameters, even 2D fluids may offer an exact ana-
lytic classical equilibrium statistical mechanics solution
[18–21]. Otherwise, one must resort to approximations,
numerical methods, or simulations.

Recently, Montero and Santos [22,23] developed an
exact semi-analytic formalism able to solve the longi-

a e-mail: riccardo.fantoni@posta.istruzione.it (corre-
sponding author)

tudinal structure and thermodynamics of a quasi 1D
problem of single file formation and first nearest neigh-
bor fluids of hard-core particles in narrow channels.

In particular, the single file confinement constraint
[24,25] implies that particles are inside a pore that is
not wide enough to allow particles to bypass each other,
therefore confining them into a single file formation.

Whereas, the first nearest neighbor constraint implies
that the particles are not allowed to interact with their
second (or beyond) nearest neighbors [14].

The pore is a 2D narrow channel or band with peri-
odic boundary conditions along the longitudinal direc-
tion and open boundary conditions along the transverse
direction where the particles are assumed to be confined
by hard walls.

The nearest neighbor constraint allows the use of
the exact solution that is available for 1D fluids sub-
ject to such constraint [15–17]. In fact, Montero and
Santos study their quasi 1D fluids of particles inter-
acting through a pairwise potential ϕ2D(r) with a
mapping to a 1D non-additive mixture [26] of equal
chemical potentials species, where the species index
i denotes those particles with the ordinate equal to
a fixed value within the channel and the interaction
potential becomes ϕij(x) = ϕ2D(

√
x2 + (yi − yj)2).

They further assume the mixture to be polydisperse
[27–29], so that the molar fraction xi of the ith species
can be rewritten as F (y)dy which represents the frac-
tion of particles with the ordinate lying in the interval
[y, y + dy]. What they find [30] is that working in the
isothermal isobaric ensemble, the average of a function
of y can be expressed as 〈f(y)〉 =

∫
dy F (y)f(y), where

F (y) = φ2(y). Here φ(y) is the eigenfunction of the

0123456789().: V,-vol 123
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maximum eigenvalue of a certain operator K(y1, y2) =
exp{−βPLσ(y1, y2) − 1

2β[Φext(y1) + Φext(y2)]}, where
β = 1/kBT with kB Boltzmann constant and T the
absolute temperature, PL is the longitudinal pressure,
σ(y1, y2) is the distance of closest approach of particles
1 and 2, which are nearest neighbors, and Φext(y) is the
external potential which acts only in the dimension of
the y coordinates and confines the particles within the
channel.

In this work, we will perform Monte Carlo (MC)
simulations [31,32], in the canonical ensemble (for
results using molecular dynamics see Ref. [33]), to study
the thermodynamic and structural properties of Hard
(HD), Square-Well (SW), and Square-Shoulder (SS)
disks in narrow channels. For the thermodynamics, we
will study the internal energy and the compressibil-
ity factor. For the structure, we will study the Trans-
verse Density Profile (TDP), the Transverse Density of
Pairs Profile (TDPP), the Radial Distribution Function
(RDF) and Longitudinal Distribution Function (LDF),
and the (static) Longitudinal Structure Factor (LSF).

Of course with our MC simulations, we are not bound
to fulfill the single file and nearest neighbor constraints.
We will, therefore, also study the performance of the
solution of Montero and Santos outside the nearest
neighbor regime where it is expected to be just an
approximation.

The work is organized as follows: In Sect. 2, we will
describe the mathematical model of the physical fluid of
interest, the MC estimators for the quantities we want
to measure in our computer experiments, and some MC
results for the thermodynamics. In Sect. 3, we present
our MC results for the structure. Section 4 is for con-
cluding remarks.

2 Model and simulation details

Consider a 2D system of N particles interacting via a
pairwise potential ϕ2D(r). The particles are confined in
a very long channel of width w = 1+ ε and length L �
w, in such a way that they are in single file formation
and only first nearest neighbor interactions take place.
The channel surface density of the fluid will be σ =
N/Lw = λ/w with λ the longitudinal density. The total
potential energy of the fluid will be

Φ(Q) =
1

2

∑

i,i �=j

ϕ2D(qij) + Φext, (2.1)

where Q = (q1,q2, . . . ,qN ) are the positions of the
particles in the channel and q = (x, y) with x ∈
[−L/2, L/2] and y ∈ [−ε/2, ε/2]. We have periodic
boundary conditions (PBC) along x so that xi →
xi −nint(xi/L)L where ‘nint’ is the nearest integer and
enforce the usual minimum image convention so that
xi −xj → xi −xj −nint[(xi −xj)/L]L. Along y, instead,
we have open boundary conditions (OPC) where in par-
ticular we assume to have an infinitely repulsive exter-

nal potential Φext for y > ε/2 and y < −ε/2 and
we do not employ the minimum image convention. We
will denote with qij =

√
(xi − xj)2 + (yi − yj)2 the dis-

tance between particles at qi and at qj .
For Hard Disks (HD), we have

ϕ2D(r) =

{
∞ if r < 1
0 else

. (2.2)

If the transverse separation between two disks at con-
tact is s, their longitudinal separation is

a(s) =
√

1 − s2. (2.3)

The single file constraint in this case requires clearly
ε < εsf = 1. In this case, we have a close packing limit
longitudinal density given by λcp = 1/a(ε). To enforce
also the first nearest neighbor constraint we require
ε < εnn−HD =

√
3/2. For ε =

√
3/2, the close packing

longitudinal density is λcp = 2 and the surface density

is σcp = 2/(1 +
√

3/2) = 1.071 . . ..
For Square-Wells (SW) or Square-Shoulders (SS), we

have

ϕ2D(r) =

{∞ if r < 1
−ϕ0 if 1 < r < r0

0 else
, (2.4)

with ϕ0 > 0 for SW and ϕ0 < 0 for SS.
In this case, to enforce the first nearest neighbor

constraint, we require ε < εnn =
√

1 − (r0/2)2. Since
r0 > 1, we will have εnn < εnn−HD.

In our computer experiment, we measured various
thermodynamic and structural properties of these flu-
ids. We could than compare our numerical meta data
with analytic or semi-analytic theoretical data available
in the literature. To measure an observable O, we need
to calculate [34] the following quantity

〈O〉 =

∫
O(Q) exp[−βΦ(Q)] dQ∫

exp[−βΦ(Q)] dQ
, (2.5)

where β = 1/kBT with kB Boltzmann constant and T
absolute temperature. In our canonical (at fixed num-
ber of particles, surface area, and temperature) Monte
Carlo (MC) simulation, we employed the usual M(RT)2

algorithm [34] to sample the probability distribution
∝ exp[−βΦ(Q)].

We generally found it sufficient to use N = 100 with
runs up to 109 MC single particle moves long. The spa-
tial extent of the uniform particle displacement move
was tuned so to have acceptance ratios around 1/2 and
kept constant during the run, even if this was not always
possible at high densities.
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2.1 Structure

For the Radial Distribution Function (RDF) [35,36],
g(r) = 〈O〉, we have the following histogram estimator

O(Q; r) =
∑

i,i �=j

1[r−Δ/2,r+Δ/2[ (qij)

Nnid(r)
, (2.6)

where Δ is the histogram bin, 1[a,b[(t) = 1 if t ∈ [a, b[
and 0 otherwise, and nid(r) is the average number of
particles on the interception of the circular crown [r −
Δ/2, r+Δ/2[ with the part of the channel accessible to
the particles centers, for the uniform gas at the same
longitudinal density λ, which for a narrow channel can
be approximated to

nid = 2λΔ , (2.7)

independent of r. We have that g(r) gives the probabil-
ity density that sitting on a particle at q one has to find
another particle at q′, where r =

√
(x − x′)2 + (y − y′)2.

Instead of counting how many disks are separated a
2D distance r we can count how many are separated a
1D longitudinal distance |x|. So, doing the same calcu-
lation described above, but, in the end, keeping track
only of the relative abscissas, r =

√
(x − x′)2 = |x−x′|,

of the particles, we find the quasi 1D or Longitudinal
Distribution Function (LDF) g(|x|).

The Fourier transform of the radial distribution func-
tion is the (static) structure factor S(k) which for an
isotropic system is given by

S(k) = 1 +
λ

ε

∫
[g(r) − 1] exp(−ik · r) dr

+
λ

ε
(2π)2δ(k), (2.8)

where usually the Dirac delta function is neglected.
Note also that from the definition (2.6) we find the fol-
lowing sum rule

λ

ε

∫
[g(r) − 1] dr = −1, (2.9)

and from the definition (2.8) follows limk→0 S(k) = 0.
Moreover if limr→0 g(r) = 0 then limk→∞ S(k) = 1.
Now for our quasi 1D geometry of the narrow chan-
nel, the isotropy is clearly lost and when we count just
the longitudinal distances between the particles, for the
LDF g(|x|), we may still find limkx→0 S(kx) 
= 0 since
the sum rule becomes λ

ε

∫
[g(|x|)−1] dx = − 1

ε < −1. In
the following, we will always refer to this Longitudinal
Structure Factor (LSF) S(kx) and for brevity, we will
simply rewrite kx → k.

Another structural property to study is the Trans-
verse Density Profile (TDP) F (y) such that F (y)dy
gives the fraction of particles with the ordinate in the
interval [y, y + dy]. By symmetry, we clearly must have
for F an even function. A related function is F2(y),

the fraction of pairs of different particles 1 and 2 such
that their transverse distance |y2 − y1| ∈ [y, y + dy].
We will call this the Transverse Density of Pairs Profile
(TDPP).

2.2 Internal energy

For the internal energy per particle of the fluid [35,36],
we have u = 〈O〉 with the following internal energy per
particle estimator

O(Q) = Φ(Q)/N. (2.10)

For SW/SS with |βϕ0| = 1, we found the results of
Table 1.

2.3 Compressibility factor

For the compressibility factor Z = βP/(λ/ε) of the con-
fined 2D fluid, we have, from the virial theorem [37]

Z = 1 − β
λ

ε

1

4

∫∫
x1,x2∈[−L/2,L/2]

y1,y2∈[−ε/2,ε/2]

rϕ′
2D(r)g(r) dr

≈ 1 +
λ

2

∫ ∞

0

d exp[−βϕ2D(r)]

dr
ry(r) dr

= 1 +
λ

2
[g(1+) + (1 − eβϕ0)r0g(r+

0 )], (2.11)

where in the first line dr = d(x1 − x2)d(y1 − y2),
g(r) = g(|x1−x2|; y1, y2), and we used polar coordinates
so that dr = rdθdr. In the second line, we approxi-
mated

∫
channel

rdθ ≈ 2ε for the narrow channel, we then
introduced the continuous indirect correlation function
y(r) = g(r) exp[−βϕ2D(r)], where g(r) is the 2D RDF
of Eq. (2.6), and used the fact that for the SW/SS pair
potential of Eq. (2.4), we have

d exp[−βϕ2D(r)]

dr
= eβϕ0δ(r − 1)

+(1 − eβϕ0)δ(r − r0). (2.12)

The total thermodynamic pressure P = (PL +PT)/2,
where PL and PT are the longitudinal and transverse
2D pressures, respectively. In Table 1, we present some
results for SW/SS.

Let us now specialize to the HD case so that ϕ0 = 0.
We will also introduce p = PLε. From the Table I of
Ref. [22], we find that Zexact

L = βp/λ = 12.774 when
ε = 0.4 and βp = 12. From these data, we extract
λ = βp/Zexact

L = 0.671w and, at this longitudinal den-
sity, our canonical simulation gives βP = 15.85(2) for
Δ = 10−2 and βP = 16.53(1) for Δ = 10−3. Since the
exact longitudinal pressure is βP exact

L = βp/ε = 30, we
estimate a transverse pressure of βPT ≈ 2(16.53)−30 =
3.06. For the case when ε = 0.8 and βp = 12, we find
βP = 14.46(1) (these measures tend to slightly increase
even further at lower Δ). See Table 2 for these Z mea-
surement. Exact results from the Montero and Santos

123

Monte Carlo simulation of hard-, square-well, and square-
shoulder disks in narrow channels 1126



  155 Page 4 of 10 Eur. Phys. J. B          (2023) 96:155 

Table 1 Internal energy per particle (2.10) and total pressure (2.11) for N = 100 SW/SS with |βϕ0| = 1. The results were
determined from runs made of 5 × 107 single particle moves

ε r0 λcp λ σ u βP

SW SS SW SS

4/5 6/5 1.66667 1.080 0.6 −0.9303(4) +0.7673(7) 7.351(1) 9.965(3)
4/5 6/5 1.66667 1.260 0.7 −0.9797(4) +0.9176(8) 14.653(4) 16.45(1)√

7/4 3/2 1.33333 0.997 0.6 −0.99837(2) +0.9895(2) 9.865(2) 10.160(2)√
7/4 3/2 1.33333 1.163 0.7 −0.9999989(6) +0.99998(1) 23.856(7) 23.12(2)

Table 2 Results for N = 100 HD from Eqs. (2.11) and (2.13a) and comparison with the exact values of Table I of Ref.
[22]. ZMon

L are the MC values of Ref. [31]. The two low-density cases were determined from runs made of 5 × 107 single
particle moves, Δ = 10−5 for ZL, and Δ = 10−3 for Z

ε p Zexact
L ZMon

L λ λ/ε λcp 2 + a(ε)p Z ZL Zexact
L /ZL λ(I0 − Iasy

0 ) λ2(I1 − Iasy
1 )

0.4 12 12.774 12.774 0.939408 2.34852 1.09109 12.998 7.04(1) 12.8094(3) 0.997 2.1 2.3
0.4 120 112.04 112.03 1.07105 2.67762 1.09109 111.98 – ? ? +3.6 × 10−4 +3.5 × 10−4

0.8 12 9.6547 9.6548 1.24292 1.55365 1.66667 9.2000 9.31(1) 9.780(4) 0.987 −2.4 × 10−2 −2.5 × 10−2

0.8 120 74.017 74.016 1.62125 2.02656 1.66667 74.000 – ? ? < 10−15 −4.9 × 10−6

analysis [38] give βP = 16.722 for ε = 0.4, βp = 12 and
βP = 14.8551 for ε = 0.8, βp = 12. Alternatively, one
can use the canonical ensemble exact expression found
by Pergamenshchik [39].

Alternatively, one can use the quasi 1D scenario and
the LDF g(|x|) to find the longitudinal compressibility
factor ZL = βPL/(λ/ε). To do this, we need to calculate
(see Appendix A [40])

ZL =
1 − λI0

1 − λ + λ2(I0 − I1)
, (2.13a)

In =

∫ 1

a(ε)

xng(x) dx. (2.13b)

We computed the integrals In for n = 0, 1 numeri-
cally with a discretization Δ on the abscissa xi = Δi
with i = 0, 1, 2, 3, . . .. In Table 2, we show our results
compared with the ones of Ref. [22]. Note that for the
two high-density cases, this way of estimating numeri-
cally ZL is not useful since for λ → λcp we find

λI0 → 1 − 8 exp{−βp[1 − a(ε)]} = λIasy
0 ,

λ2I1 → 1 − 1

2
{1 + [2 − a(ε)]λ}(1 − λIasy

0 )(2.14a)

= λ2Iasy
1 , (2.14b)

and both numerator and denominator in Eq. (2.13a)
vanish. In this case, one can use the analytic expression
(see Appendix C of Ref. [22])

ZL → 2 + a(ε)p =
2

1 − λ/λcp
, (2.15)

valid asymptotically for λ near to its close packing limit
λcp.

1

5

25

0.0 0.5 1.0 1.5

Z L

λ

ε=0.1
ε=0.4
ε=0.6
ε=0.8

Fig. 1 Comparison between our MC (points) and the
exact results (lines) of Ref. [22] for the longitudinal com-
pressibility factor. The statistical error in the MC points is
smaller than the point symbol. The MC simulations were
up to 109 single particle moves long

Additional points are presented in Fig. 1, where we
compare with the exact results of Ref. [22] (results
shared privately and not all previously published). We
found that at the same value of λ, it takes longer to
equilibrate the large ε cases. For example, the MC
points at ε = 0.1 required just 107 single particle moves;
whereas, the ones at ε = 0.8 required up to 109 moves
(Figs. 2, 3).

Note that a drawback of this way of estimating the
longitudinal pressure is that it is hard to tell if the sta-
tistical error is more or less important than the system-
atic error due to the choice of the discretization Δ. In
this respect, instead of working in the canonical NλT
ensemble, it would be desirable to work in the isother-
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Fig. 2 Snapshot of the simulation box for N = 100 HD of radius r0 = 1 with ε =
√

3/2 and λ = 1

Fig. 3 Snapshot of the simulation box for N = 100 SW with βϕ0 = 1 and radius r0 = 6/5 with ε = 4/5 and σ = 7/10

2.0

2.5

3.0

3.5

0.00 0.05 0.10 0.15 0.20

F(
y)

y

ε=0.4, σ=0.671, N=100
exact

Fig. 4 TDP for N = 100 HD with ε = 0.4 and λ = 0.671w.
The exact result, shared privately by A. Montero and not
published before, fits our MC results very well. In particular
from Fig. 4 of Ref. [22], we see how the particles tend to
escape from the center of the channel preferring to stay in
contact with the walls as density approaches the packing
density

mal isobaric NpT ensemble with a volume change move
where one only varies the length of the channel L.

For the HD case, with ε = 0.4 and λ = 0.671w, we
find the TDP F (y) shown in Fig. 4. As you can see
the exact result of Ref. [22] fits our MC data very well.
For the same case the TDPP, F2(y), is shown in Fig. 5.
From this figure, we can see how the TDPP changes
drastically only getting really near to the close packing
density λcp = 1.091.

3 Results for the structure

In this section, we present our MC results for the struc-
tural properties of the confined quasi 1D fluids of our
interest.

3.1 Ideal gas (id)

We first tried to switch off the pair potential between
the particles taking ϕ2D(r) = 0 but keeping the confin-
ing infinitely repulsive external potential Φext switched
on. For the case λ = σw = 1 and ε =

√
3/2 we found the

results for the LDF and RDF shown in Figs. 6 and 7,
respectively. As you can clearly see from the MC results,

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

0.0 0.1 0.2 0.3 0.4

F 2
(y

)

y

σ=0.671
σ=0.714
σ=0.730
σ=0.765

Fig. 5 TDPP for N = 100 HD with ε = 0.4 and
σ = 0.671, 0.714, 0.730, 0.765 corresponding to λ =
0.939, 1.000, 1.022, 1.071, respectively. We can see how this
density function starts changing only really near to the close
packing density λcp = 1.091, when the TDP becomes very
small at y ≈ 0

the LDF, and as a consequence the LSF, is uniform but
the RDF is not.

Note that this is just an effect of the geometry of the
confinement in fact using periodic boundary conditions
also along the transverse, y, direction one gets both
a uniform LDF and RDF as expected. Moreover, the
TDP turns out to be uniform F (y) = 1/ε irrespective
of using open or periodic boundary conditions along the
transverse direction.

For the case of our interest, with periodic boundary
conditions along x and open boundary conditions along
y, the RDF can be calculated exactly analytically as
follows (see Appendix B [40])

gid(r) =
2r

ε{
π/2 − r/ε r < ε√

(r/ε)2 − 1 − r/ε + arctan[1/
√

(r/ε)2 − 1] else
.

(3.1)

3.2 Hard disks (HD)

We tried to reproduce the case ε =
√

3/2, λ = σw = 1
of Fig. 5(a) of Ref. [23]. Our results for the LDF, LSF,

123

Monte Carlo simulation of hard-, square-well, and square-
shoulder disks in narrow channels 1128



  155 Page 6 of 10 Eur. Phys. J. B          (2023) 96:155 

0.0
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g(
x)

x

ε=0.866, σ=0.536, N=100
1−1/N

Fig. 6 LDF for the ideal gas with λ = 1 and ε =
√

3/2.
The MC data are fitted very well by the exact result of
gid(x) = 1 − 1/N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5

g(
r)

r

ε=0.866, σ=0.536, N=100
analytic

Fig. 7 RDF for the ideal gas with λ = 1 and ε =
√

3/2.
Here, the g(r) is calculated from Eq. (2.6) using for nid(r)
its asymptotic value 2λΔ everywhere. The analytic result is
the one in the thermodynamic limit of Eq. (3.1). The slight
discrepancy is the expected finite size effect. Remember that
limr→∞ gid(r) = 1 − 1/N

and RDF are shown in Figs. 8, 9, and 10, respectively.
In Fig. 2, we show a snapshot of the simulation box.

We also run simulations for the cases considered in
Fig. 10 of Ref. [23]. The results are shown in Fig. 10.
Comparison with the work of Montero and Santos [23]
shows that our RDF is different from what they define
as g2D [40].

It is interesting to study how the solution of Montero
and Santos [23] performs outside of the nearest neighbor
regime where it is expected to be not exact anymore.
Such a study was carried out at the level of the com-
pressibility factor in Fig. 7 of Ref. [22]. We want here
to repeat it for the structure. In Fig. 11 we show the
comparison for the LDF between our exact MC simu-
lations and the approximate solution of Montero and
Santos for HD at λ = 1.2 and ε = 0.9, 1.0, 1.118. From

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5

g(
x)

x

ε=0.866, r0=1, σ=0.536, N=100
exact

Fig. 8 LDF for N = 100 HD of radius r0 = 1 with ε =√
3/2 and λ = 1. Our MC data are fitted very well by the

exact result of Ref. [23] which is in the thermodynamic limit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20

S(
k)

k

ε=0.866, r0=1, σ=0.536, N=100
exact

Fig. 9 LSF for N = 100 HD of radius r0 = 1 with ε =√
3/2 and λ = 1. We used 2nmax + 1 wave numbers with

nmax = 270. The exact result in the thermodynamic limit,
shared privately by A. Montero and not published before,
fits our MC results very well

the comparison, we see that the solution of Montero &
Santos, which is exact for ε ≤ εnn−HD, is a rather good
approximation for εnn−HD < ε < εsf , but it becomes
a poor approximation for ε ≥ εsf . The breakdown of
their solution at ε > 1 manifests itself through an LDF
that does not follow the exact result from the MC sim-
ulation. This confirms the findings of Kofke and Post
[30].

It is interesting to note that Hu and Charbonneau
[41] have shown how the envelope of the LDF g(x) − 1
has an exponential decay at large distances.

3.3 Square-wells (SW) and square-shoulders (SS)

For SW/SS, we explored the following two limiting
nearest neighbor cases considered in Table 1, namely:
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Fig. 10 RDF for N = 100 HD of radius r0 = 1 with ε =√
3/2 and λ = 1.0, 1.2, 1.4. The contact value for the λ =

1.2, 1.4 cases is not shown. To be compared with Fig. 10 of
Ref. [23]

MC ε=0.900
MC ε=1.000
MC ε=1.118

0.0

0.5

1.0

1.5
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g(
x)

x

MS ε=0.866
MS ε=0.900
MS ε=1.000
MS ε=1.118

Fig. 11 LDF for N = 100 HD of radius r0 = 1 with λ =
1.2 and ε = 0.9, 1.0, 1.118. Comparison between our exact
MC simulation (thick lines) and the theoretical approximate
solution of Montero and Santos (MS) of Refs. [22,23] (thin
lines). For the MS data, we also show the exact result at
ε =

√
3/2 already published in Fig. 5(a) of Ref. [23]. The

remaining theoretical MS data were shared privately by A.
Montero and was not published before

(a) ε = 4/5, r0 = 6/5 and (b) ε =
√

7/4, r0 = 3/2,
with |βϕ0| = 1, and a surface density σ = 6/10, 7/10.
Our results for the LDF, LSF, and RDF are shown in
Figs. 12, 13, and 14, respectively. In Fig. 3, we show a
snapshot of the simulation box for SW case (a) with
σ = 7/10.

Our results show how the two cases SW and SS have
very similar structures in the confined geometry under
the nearest neighbor condition near close packing. The
difference in structure between the two cases can be bet-
ter seen at the level of the RDF where the SW produce
a negative jump at r = r0; whereas, the SS produce a
positive jump as expected.
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SW (a) σ=0.7
SS (a) σ=0.7

SW (b) σ=0.6
SS (b) σ=0.6

Fig. 12 LDF for N = 100 SW/SS cases a with σ =
6/10, 7/10 and b with σ = 6/10
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Fig. 13 LSF for N = 100 SW/SS cases a with σ =
6/10, 7/10 and b with σ = 6/10. We used 2nmax + 1 wave
numbers with nmax = 270
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Fig. 14 RDF for N = 100 SW/SS cases a with σ =
6/10, 7/10 and b with σ = 6/10. Clearly g(r) = 0 for r < 1.
Note the logarithmic scale on the ordinates
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It would be an interesting project to explore how the
sticky limit is approached in this constrained geometry
[27–29,42–46].

4 Conclusions

In this work, we performed Monte Carlo computer
experiments to extract meta data for the thermo-
dynamic and structural properties of hard-, square-
well, and square-shoulder disks in narrow channels. We
worked in the canonical ensemble. Our data are subject
only to the statistical (we never used more than 109 sin-
gle particle moves) and finite size errors (we used always
100 particles).

The novelty respect to previous studies relies in the
use of the canonical ensemble instead of the isothermal
isobaric one and in the study of both the radial and the
linear distribution functions and of both the longitudi-
nal and transverse pressures.

We compare our exact results for hard-disks with the
semi-analytic ones of Montero and Santos [22,23] which
are also exact in the nearest neighbor regime. We fur-
ther compare our results with the results of the same
authors but when the nearest neighbor condition is not
met, making their solution just an approximation. In
particular, we see how such theoretical solution ceases
to be a good approximation as soon as the single file
condition is violated.

Regarding the comparison with the works of Montero
and Santos, it is important to point out that the “exact”
approach of those authors is based on a mapping to a
pure 1D system, while our simulations deal with a true
(confined) 2D system. Thus, our results reinforce the
exact character of their method.

We are aware that Montero and Santos are currently
working at extending their theoretical framework to
include the description of particles with a potential tail
which would make possible the comparison with our
Monte Carlo simulations of the square-Well and square-
shoulder particles.
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Appendix A: On the longitudinal pressure of
HD from the LDF

Using the notation of Refs. [22,23], we have for the Equation
Of State (EOS)

ZL =
βp

λ
= 1 + A2

∑

i,j

φiφjaije
−βpaij , (A1)

where A2 and φi are the solutions to

∑

j

e−βpaij φj =
βp

A2
φi. (A2)

The LDF in the range a(ε) < x < 2a(ε) is

g(x) =
A2

λ

∑

i,j

φiφjaije
−βpxΘ(x − aij). (A3)

Our aim is to express the EOS in terms of the integrals

In =

∫ 1

a(ε)

dx xng(x), n = 0, 1 (A4)

Inserting Eq. (A3) into Eq. (A4)

I0 =
A2

βpλ

∑

i,j

φiφj

(
e−βpaij − e−βp

)
, (A5a)

I1 =
A2

(βp)2λ

∑

i,j

φiφj

[
e−βpaij (1 + βpaij)

−e−βp(1 + βp)
]
. (A5b)

From Eq. (A2), we have
∑

i,j φiφje
−βpaij = βp/A2. There-

fore,

λI0 = 1 − A2

βp
e−βp

∑

i,j

φiφj , (A6a)

βpλI1 = 1 + A2

[∑

i,j

φiφjaije
−βpaij

−e−βp

(
1 +

1

βp

) ∑

i,j

φiφj

]
. (A6b)

Comparison with Eq. (A1) yields

βpλI1 = ZL − (1 + βp)(1 − λI0). (A7)

This is a linear equation in ZL which is solved by Eq. (2.13a)
in the main text. From which immediately follows that for
the pure 1D (Hard Rods) case, we find ZL = 1/(1−λ), since
ε → 0 and a(ε) → 1 so that In = 0, as it should be [16].

Note also that from Appendix C of Ref. [23] follows that
in the p → ∞ limit or equivalently in the λ → λcp limit one
finds limλ→λcp λI0 = limλ→λcp λ2I1 = 1. In the continuum
limit, one has from Eq. (A6a)

λI0 = 1 − e−βp

	
J2, (A8a)

J =

∫ ε/2

−ε/2

φ(y) dy. (A8b)
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In the high-pressure regime

φ(y) → 1√
N

[φ+(y) + φ−(y)], (A9a)

φ±(y) = e−a(y±ε/2)βp, (A9b)

N → a(ε)

εβp
e−2a(ε)βp, (A9c)

	 → a(ε)

2εβp
e−a(ε)βp. (A9d)

Thus,

J =
2√
N

∫ ε/2

−ε/2

φ+(y) dy. (A10)

By expanding a(y + ε/2) around y = ε/2

a(y + ε/2) → a(ε) +
ε

a(ε)
(ε/2 − y) + · · · (A11)

Therefore,

J → 2√
N

e−a(ε)βp

∫ ε/2

−ε/2

e
− εβp

a(ε)
(ε/2−y)

dy

→ 2√
N

e−a(ε)βp a(ε)

εβp
= 2

√
a(ε)

εβp
. (A12)

Consequently

λI0 → 1 − 8e−βp[1−a(ε)]. (A13)

Consistency between this result and Eq. (2.15) gives Eqs.
(2.14a)–(2.14b) in the main text.

Appendix B: RDF of the ideal gas in a nar-
row channel

We arrive at the analytically exact Eq. (3.1) for the RDF
of the ideal gas confined in the narrow channel with the
following steps

gid(r) =
λ

2N

∫ L

0

dx1

∫ L

0

dx2

∫ ε/2

−ε/2

dy1
1

ε

∫ ε/2

−ε/2

dy2
1

ε

×δ(r −
√

(x2 − x1)2 + (y2 − y1)2). (B1)

Since the integrand depends only on x = |x2 − x1|, we have∫ L

0
dx1

∫ L

0
dx2 . . . = 2

∫ L

0
dx (L − x) . . .. Moreover,

δ(r −
√

x2 + s2) =
r

x
δ(x −

√
r2 − s2). (B2)

Therefore,

gid(r)

=
λ

Nε2
r

∫ ε/2

−ε/2

dy1

∫ ε/2

−ε/2

dy2

(
L√

r2 − (y2 − y1)2
− 1

)

=
2

ε2
r

∫ min(ε,r)

0

ds (ε − s)

(
1√

r2 − s2
− 1

L

)

≈ 2

ε2
r

∫ min(ε,r)

0

ds
ε − s√
r2 − s2

. (B3)

Where in the first step, we have assumed that√
r2 − (y2 − y1)2 < L and in the third step we have taken

the limit L → ∞. In the limit r � 1,
√

r2 − s2 ≈ r, so that
gid(r) ≈ 1 as expected.

The integral in Eq. (B3) can be analytically performed
and the result is given by Eq. (3.1) in the main text.
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Chapter 78

Scaled Affine Quantization of φ123 is
Nontrivial

Fantoni R., J. Stat. Phys. submitted (2023)
Title: “Scaled Affine Quantization of φ12

3 is Nontrivial”
Abstract: We prove through Monte Carlo analysis that the covariant euclidean scalar field
theory, φr

n, where r denotes the power of the interaction term and n = s+ 1 where s is the
spatial dimension and 1 adds imaginary time, such that r = 12, n = 3 can be acceptably
quantized using scaled affine quantization and the resulting theory is nontrivial, unlike what
happens using canonical quantization.
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Chapter 79

Glossary

1. fluid: in statistical physics a fluid is a system of particles interacting through a partic-
ular potential energy.

2. mixture: In chemistry, a mixture is a material system made up by two or more different
substances which are mixed but are not combined chemically. Mixture refers to the
physical combination of two or more substances the identities of which are retained
and are mixed in the form of alloys, solutions, suspensions, and colloids.

3. polydispersity: in physical and organic chemistry, the dispersity is a measure of the
heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is
called monodisperse if the objects have the same size, shape, or mass. A sample of ob-
jects that have an inconsistent size, shape and mass distribution is called polydisperse.
The objects can be in any form of chemical dispersion, such as particles in a colloid,
droplets in a cloud, crystals in a rock, or polymer molecules in a solvent.

4. plasma: a plasma is a classical fluid of charged particles. A one component plasma is
made of one species of charges moving in a uniform neutralizing background.

5. jellium fluid: a quantum one component plasma.

6. sticky hard spheres fluid: a fluid made of hard spheres which have surface adhesion as
in the model of R. Baxter.

7. penetrable square well fluid: a fluid made of square well particles with a certain degree
of penetrability.

8. non additive hard spheres fluid: a binary mixture of hard spheres where the diameter
of closest approach between two different species is not equal to the average of the
diameters of the two particles species. The Widom-Rowlinson fluid is a special case.

9. Janus fluid: a fluid made of Janus particles, hard spheres with the hemispheres of
different functionalities.

10. polymer: a polymer is a large molecule (macromolecule) composed of repeating struc-
tural units. These sub-units are typically connected by covalent chemical bonds. Al-
though the term polymer is sometimes taken to refer to plastics, it actually encompasses
a large class of compounds comprising both natural and synthetic materials with a wide
variety of properties.
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11. patch: a portion of the surface of a spherical particle.

12. cluster: a stable structure that may occur in particular fluids made of an ensemble of
particles.

13. percolation: a transition that may occur in particular fluids where there is the formation
of a thermodynamically relevant number of clusters of particles spanning the whole
volume of the fluid.

14. binodal or coexistence curve: the curve in the phase diagram delimiting the coexistence
region of two phases of matter (as the vapor and the liquid one).

15. Monte Carlo simulation: Monte Carlo methods (or Monte Carlo experiments) are a
class of computational algorithms that rely on repeated random sampling to com-
pute their results. Monte Carlo methods are often used in computer simulations of
physical and mathematical systems. These methods are most suited to calculation
by a computer and tend to be used when it is infeasible to compute an exact result
with a deterministic algorithm. This method is also used to complement theoretical
derivations.

16. integral equation theory: integral equations are commonly found in the study of the
statistical theory of fluids as approximate theories used to determine the structure and
the thermodynamics of the fluid. Most known integral equations are the Percus-Yevick,
the hypernetted chain, and the mean spherical approximation. It is usual practice to
compare the approximate results stemming from an integral equation theory with the
exact Monte Carlo results.

17. correlation function: A correlation function is the correlation between random variables
at two different points in space or time, usually as a function of the spatial or temporal
distance between the points.

18. radial distribution function or pair correlation function: the two body correlation func-
tion. Measures the probability that if one sits on a particle has to find another particle
at a distance r.

19. structure factor: the Fourier transform of the two body correlation function. This
quantity can be measured through experiments of diffraction on the fluid sample.

20. density: the density of a fluid is the number of particles divided by the volume occupied
by the fluid.

21. Chemical potential: In thermodynamics, Chemical potential, symbolized by µ, is a
measure of the potential that a substance has to produce in order to alter a system.
In broadest terms, it is an analogue to electric potential or gravitational potential,
utilizing the same idea of force fields as being the cause of things moving, be they
charges, masses, or, in this case, chemicals. Chemical potential was first described by
the American engineer, chemist and mathematical physicist Josiah Willard Gibbs. He
defined it as follows: “if to any homogeneous mass in a state of hydrostatic stress we
suppose an infinitesimal quantity of any substance to be added, the mass remaining
homogeneous and its entropy and volume remaining unchanged, the increase of the
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energy of the mass divided by the quantity of the substance added is the potential for
that substance in the mass considered.”

22. pressure: the pressure is the force per unit area applied in a direction perpendicular to
the surface of an object.

23. isothermal compressibility: in thermodynamics and fluid mechanics, compressibility is
a measure of the relative volume change of a fluid or solid as a response to a pressure
(or mean stress) change. The above statement is incomplete, because for any object or
system the magnitude of the compressibility depends strongly on whether the process
is adiabatic or isothermal.
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