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We show that for the ground state of a one-dimensional free electron gas on a circle the analytic
expression for the canonical ensemble partition function can be easily derived from the density
matrix by assuming that the thermodynamic limit coincides with the limit of the eigenfunction
expansion of the kinetic energy. This approximation fails to give the finite temperature partition
function because those two limits cannot be chosen as coincident.
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1. Introduction

In statistical physics textbooks, like for example
the Feynman (1972) “Statistical Mechanics: A Set
of Lectures”1 Sec. 2.8, the derivation of an ana-
lytic expression for the partition function of the free
fermion or boson gas is accomplished choosing to
work in the grand canonical ensemble. In this brief
paper, we show the difficulties one goes through
if he insists in choosing to work in the canonical
ensemble instead. For definiteness, we will consider
polarized fermions.

Some recent studies on the electron gas or
the jellium are about two-dimensional systems2–9

or three-dimensional ones.3,10–15 Here, we will just
consider an ideal electron gas in one dimension at
a finite absolute temperature T .

The main actor of our problem is the thermal

density operator ρ̂ = e−βĤ where Ĥ is the Hamilto-
nian operator and β = 1/kBT with kB Boltzmann’s
constant. We will only work in position representa-

tion so that ρ(r, r′;β) = ⟨r|e−βĤ |r′⟩.

2. A Simple Derivation

Consider first one single free electron of mass m
in a one-dimensional box of width L with periodic
boundary conditions, which is the same as saying
that the electron lives in a circle. Its wave function
ψ(x) is such that ψ(x + L) = ψ(x) and satisfies
Schrödinger’s equation, namely

−λ∂
2ψ(x)

∂x2
= Eψ(x), (2.1)

where λ = ℏ2/(2m).

The solution of Eq. (2.1) is as follows16:

En = λ

(
2π

L

)2

n2, n = 0, 1, 2, 3, . . . (2.2)

ψn(x) =
1√
L
exp

(
i
2π

L
nx

)
, 0 < x < L, (2.3)

where En are the eigenvalues and ψn the normal-
ized eigenvectors.
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At an inverse temperature β = 1/kBT , the
exact density matrix

ρ1(x, y;β) =

∞∑
n=−∞

ψ⋆
n(x)ψn(y) exp(−βEn)

for one of those fermions in periodic boundary con-
ditions is

ρ1(x, y;β) =
1

L
θ3

(
π

L
(x− y), exp

(
−βλ

(
2π

L

)2))

= lim
q→∞

1

L

q∑
n=−q

exp

(
−βλ

(
2π

L

)2
n2

)

× exp

(
−i2π

L
n(x− y)

)
= lim

q→∞
kq(x, y;β), (2.4)

where θ3(z, q) is a theta function (see Abramowitz
and Stegun,17 Chap. 16, for its properties).

Consider now N = 2p + 1 (with p = 0, 1, 2,
3, . . .) free polarized fermions on a circle of circum-
ference L. Usually for an electron gas, it is more
common to introduce Hartree’s units where lengths
are given in units of a = L/N = 1/ρ, with ρ the
density of the gas, energies are given in Rydbergs
ℏ2/(2ma20), where a0 = ℏ2/(me2), with e the elec-
tron charge, is Bohr’s radius. And the kinetic energy
scales like 1/r2s with rs = a/a0. But since here we
are dealing with a non interacting gas, we prefer
not to use these conventions which would only make
formulas less intuitive and pedagogic.

The density matrix of theN fermions is now1,16

ρN (x,y;β) =
1

N !
det{ρ1(xi, yj ;β)}Ni,j=1

= lim
q→∞

1

N !
det{kq(xi, yj ;β)}Ni,j=1

= lim
q→∞

Kq(x,y;β), (2.5)

where x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ),
and yi, xj are the initial and final positions of the
N fermions.

Note that because of Pauli’ s principle16 (see
Appendix A)

Kq = 0 when q < p. (2.6)

For the particular case q = p there is a simple
expression for Kq, namely,

Kp(x,y;β)

=
1

N !

2N(N−1)

LN
exp

(
−2βλ

(
2π

L

)2 p∑
n=1

n2

)

×
∏

1≤i<j≤N

sin
(π
L
(xi − xj)

)
sin
(π
L
(yi − yj)

)
.

(2.7)

This expression is the exact density matrix of the
ground state (when β → ∞) of the N fermions.

For example, let’s find the partition function
Z(β) = tr(ρ̂N ) =

∫
ρN (x,x;β)dx of the fermion

system in the thermodynamic limit. We need to cal-
culate the trace Zp(β) of Kp(x,y;β) and then take
p to infinity

Zp(β) =

∫ L/2

−L/2
dx1 · · ·

∫ L/2

−L/2
dxN Kp(x,x;β)

= exp

(
−2βλ

(
2π

L

)2 p∑
n=1

n2

)
1

N !

2N(N−1)

(2π)N
IN ,

(2.8)

where

IN =

∫ π

−π
dθ1 · · ·

∫ π

−π
dθN

∏
1≤i<j≤N

sin2
(
θi − θj

2

)

= N !
(2π)N

2N(N−1)
. (2.9)

So, we get

Zp(β) = exp

(
−2βλ

(
2π

L

)2 p∑
n=1

n2

)
. (2.10)

Or for the Helmholtz free energy, F = −lnZ/β,

Fp(β) = 2λ

(
2π

L

)2 p∑
n=1

n2

=
π2

3
ρ2λ

N2 − 1

N
. (2.11)

And in the thermodynamic limit,

f(β) = lim
p→∞

Fp(β)

N
=
π2

3
ρ2λ. (2.12)

As expected the free energy is independent of tem-
perature in the thermodynamic limit. Moreover, we
found the expected results for the ground state
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energy

E0 = λL

∫ kF

−kF

k2
dk

2π

=

(
L

2π

)
2

3
λk3F

= N

(
λρ2π2

3

)
, (2.13)

where the Fermi wave vector is kF = πρ.
But we see from Eq. (2.5) that in the thermody-

namic limit (i.e. p → ∞ and ρ = N/L constant) it
fails to give the exact density matrix of the fermions
at finite inverse temperature β for which it is nec-
essary to relax the constraint q = p and respect the
order of the two limits, first the one over q and only
later the one over p.

3. Conclusions

When writing the canonical partition function of a
free electron gas on a circle in the thermodynamic
limit one has to deal with two kinds of limits: The
limit of the eigenfunction expansion of the kinetic
energy and the thermodynamic limit. In this brief
paper, we showed that if one takes the two limits as
coincident then necessarily falls in the ground state
case, the β → ∞ limit. In this case, in fact, the zero
temperature limit permits to take those two limits
as the same. But in order to find the correct finite
temperature case, it is necessary to take those two
limits independently in the correct order.

Appendix A

A Determinantal Identity

Given three functions of two variables, K(x, y),
L(x, y) and M(x, y) such that

K(x, y) =
∞∑

n=−∞
L(x, n)M(n, y). (A.1)

Take the following product:

K(x1, yπ1)K(x2, yπ2) · · ·K(xn, yπn)

=
∑

k1,k2,...,kn

[L(x1, k1)L(x2, k2) · · ·L(xn, kn)]

× [M(k1, yπ1)M(k2, yπ2) · · ·M(kn, yπn)].

(A.2)

Summing appropriately with respect to all permu-
tations, we obtain

det{K(xi, yj)}ni,j=1

=
∑

k1,k2,...,kn

L(x1, k1)L(x2, k2) · · ·L(xn, kn)

×det{M(ki, yj)}ni,j=1. (A.3)

The region of summation can be decomposed in
nonoverlapping regions ∆ν characterized by the
inequalities kν1 < kν2 < · · · < kνn, where ν is an
arbitrary permutation of the set (1, 2, . . . , n) into
itself.

Transforming the region ∆ν by the change of
variable kνi → ki (i = 1, 2, . . . , n) and collecting the
resulting sums, we obtain, for the right-hand side
of (A.3)∑

k1<k2<...<kn

∑
ν

(−)|ν|L(x1, kν−11)L(x2, kν−12)

· · ·L(xn, kν−1n) det{M(ki, yj)}ni,j=1, (A.4)

where the signature (−)|ν| in each term appears as
a consequence of rearranging the rows of detM .

So, we derived the following composition
formulaa:

det{K(xi, yj)}ni,j=1

=
∑

k1<k2<···<kn

det{L(xi, kj)}ni,j=1

×det{M(ki, yj)}ni,j=1. (A.5)

Applied to the function kq defined in (2.4) as

kq(θ, ϕ) =

q∑
n=−q

µne
inθe−inϕ, (A.6)

we see that for q ≥ (N − 1)/2

det{kq(θi, ϕj)}Ni,j=1

= µ0

q∏
n=1

|µn|2
∑

−q≤k1<k2<···<kn≤q

det{eikjθi}Ni,j=1

×det{e−ikiϕj}Ni,j=1. (A.7)

So when q = (N − 1)/2 the sum has only one term
which is given by Eq. (2.7). And for q < (N − 1)/2,
det{kq} = 0.

aWhich holds also after replacing the sums with integrals.
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