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We present a self-contained derivation of the Friedel oscillations in a degenerate ideal electron
plasma using a not commonly known theorem on the asymptotic behavior of the Fourier trans-
form of a generalized function presenting some singularities.
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1. Introduction

An electron gas is a system of identical point-like
charged fermions, of mass and charge those of the
electron, neutralized by a uniform, inert background
of opposite charge.

Some recent studies on the electron gas or
the jellium are about two-dimensional systems1–8

or three-dimensional ones.2,9–14 Here, we will just
consider a degenerate ideal electron gas in three
dimensions.

We present a self-contained derivation of the
Lindhard theory of static screening in a degenerate
ideal electron plasma which explains the nature of
the Friedel oscillations. We follow Sec. 4.1 of the
book “Coulomb Liquids” of March and Tosi.15 But
in the end we use a not commonly known the-
orem on the asymptotic behavior of the Fourier
transform of a generalized function presenting some
singularities.

2. A Simple Derivation

Suppose we switch on an appropriately screened
test charge potential δV (actually the so-called

Hartree potential) in a uniform ideal Fermi gas. The
Hartree potential δV (r) created at a distance r from
a static point charge of magnitude e should be eval-
uated self-consistently from the Poisson equation

∇2δV (r) = −4πe2[δ(r) + δn(r)], (2.1)

where δ(r) ia a Dirac delta function in three dimen-
sions and δn(r) is the change in electronic density
induced by the foreign charge. As usual, we will
adopt the notation of indicating in bold the vec-
tors so that r = |r| is the modulus of the three-
dimensional position vector. The electron density
n(r) may be written as

n(r) = 2
∑
k

|ψk(r)|2, (2.2)

where ψk(r) denotes single-electron orbitals, the
sum over k is restricted to occupied orbitals (|k| ≤
kF , kF Fermi wave vector) and the factor 2 comes
from the sum over spin orientations and is needed
for the paramagnetic state (equal population of up
and down spins) taken under examination. We must
now calculate how the orbitals in the presence of the
foreign charge, differ from plane waves exp(ik · r).
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We use for this purpose the Schrödinger equation

∇2ψk(r) +

[
k2 − 2m

ℏ2
δV (r)

]
ψk(r) = 0, (2.3)

having imposed that the orbitals reduce to plane
waves with energy ℏ2k2/(2m) at large distance.a

With the aforementioned boundary condition,
the Schrödinger equation may be converted into an
integral equation

ψk(r) =
1√
Ω
eik·r +

2m

ℏ2

∫
Gk(|r− r′|)

× δV (r′)ψk(r
′)dr′, (2.4)

where Ω is the volume of the system and we have
the “spherical wave” solution Gk(r) = −exp(ikr)/

(4πr). Here, we used the property ∇2v(r) =

−4πδ(r) for the Coulomb potential v(r) = 1/r in

three dimensions, or in Fourier q-space q2v(q) = 4π.
So that in the k → 0 limit Gk(r) reduces to −v(r)/
(4π). And we used the property of the Fourier trans-
form to change a convolution into a product. After
all, note that ∇2Gk(r) = −k2Gk(r) + δ(r), or in

Fourier q-space (k2 − q2)Gk(q) = 1.
Within linear response theory, we can replace

ψk(r) by exp(ik · r)/
√
Ω inside the integral. This

yields (see Appendix A)

δn(r) = −
mk2F
2π3ℏ2

∫
j1(2kF |r− r′|) δV (r′)

|r− r′|2
dr′,

(2.5)

with j1(x) being the first-order spherical Bessel
function [sin(x)− x cos(x)]/x2. Using this result in
the Poisson equation, we get

∇2δV (r) = −4πe2δ(r) +
2mk2F e

2

π2ℏ2

×
∫
j1(2kF |r− r′|) δV (r′)

|r− r′|2
dr′,

(2.6)

which is easily soluble in Fourier transform (see
Appendix B). Writing

δV (k) =
4πe2

[k2ε(k)]

we find,

ε(k) = 1 +
2mkF e

2

πℏ2k2

×
[
1 +

kF
k

(
k2

4k2F
− 1

)
ln

∣∣∣∣k − 2kF
k + 2kF

∣∣∣∣], (2.7)

which is the static dielectric function in RPA.
For k → 0 this expression gives ε(k) → 1 +

k2TF/k
2 with kTF = 3ω2

p/v
2
F (ωp being the plasma

frequency and vF the Fermi velocity.) i.e. the result
of the Thomas–Fermi theory. However, ε(k) has
a singularity at k = ±2kF , where its derivative
diverges logarithmically.b This singularity in δV (k)
determines, after Fourier transform, the behavior of
δV (r) at large r. δV (r) turns out to be an oscillating
function16 rather than a monotonically decreasing
function as in the Thomas–Fermi theory. Indeed,

δV (r) =

∫
dk

(2π)3
4πe2

k2ε(k)
eik·r

=

∫ ∞

0
k2dk

∫ π

0
sin θ dθ

×
∫ 2π

0
dφ

4πe2

(2π)3k2ε(k)
eikr cos θ

=
e2

π

∫ ∞

0
dk

∫ 1

−1
d(cos θ)

eikr cos θ

ε(k)

=
e2

iπr

∫ ∞

0
dk

eikr − e−ikr

kε(k)

=
e2

iπr

∫ ∞

−∞
dk

eikr

kε(k)
, (2.8)

where we expressed the three-dimensional integral
in dk = (dk)(k dθ)(k sin θ dφ) with k = |k| ∈ [0,∞],
θ ∈ [0, π], and φ ∈ [0, 2π] and we used the fact that
ε(k) is an even function. The integrand has non-
analytic behavior at k = ±2kF ,[

1

kε(k)

]
k→±2kF

= −A(k − (±)2kF ) ln|k − (±)2kF |

+regular terms, (2.9)

aThis approach (which lead to the Random Phase Approximation, RPA) is approximate insofar as the potential entering the
Schrödinger equation has been taken as the Hartree potential, thus neglecting exchange and correlation between an incoming
electron and the electronic screening cloud.
bThe discontinuity in the momentum distribution across the Fermi surface introduces a singularity in elastic scattering pro-
cesses with momentum transfer equal to 2kF .
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with A = B/(B + 4k2F )
2 where B = 2mkF e

2/(πℏ2) = k2TF/2. Hence,

δV (r)|r→∞ = −Ae
2

iπr

∫ ∞

−∞
dk eikr[(k − 2kF ) ln|k − 2kF | − (k + 2kF ) ln|k + 2kF |]

= −2Ae2

πr
lim

a→0+

∫ ∞

0
dk e−ak sin(kr)[(k − 2kF ) ln|k − 2kF | − (k + 2kF ) ln|k + 2kF |]

= 2Ae2
{
ln(2kF )

4kF
πr2

+
cos(2kF r)

r3
+ 2

cos(2kF r)Im[E1(i2kF r)]

πr3
+ 2

sin(2kF r)Re[E1(i2kF r)]

πr3

}

= 2Ae2
{
ln(2kF )

4kF
πr2

+
cos(2kF r)

r3
− 1

πkF r4
+O

(
1

r5

)}
, (2.10)

where En(z) is the exponential integral function.
This result is based on a theorem on Fourier trans-
forms (see Theorem 19 in Ref. 17), stating that
the asymptotic behavior of δV (r) is determined
by the low-k behavior as well as by the singular-
ities of δV (k), i.e. the points where it is not ana-
lytic. Obviously, in the present case, the asymp-
totic contribution from the singularities is dominant
over the exponential decay of Thomas–Fermi type,
due to the analytic part of the Fourier transform.
The result (2.10) implies that the screened ion–ion
interaction in a metal has oscillatory character and
ranges over several shells of neighbors.

3. Conclusions

We presented a self-contained derivation of the
Lindhard theory of static screening in a degenerate
ideal electron plasma which explains the nature of
the Friedel oscillations. This derivation can be used
in statistical physics books for graduate students.
We followed Sec. 4.1 of the book “Coulomb Liquids”
of March and Tosi.15

Appendices

Appendix A

From Eqs. (2.2), (2.4) to Eq. (2.6)

Using periodic boundary conditions on the box of
volume Ω = L3 containing the plasma we conclude
that k = (2π/L)n where n is a triplet of integers.
Therefore, (1/Ω)

∑
k . . . →

∫
|k|<kF

dk/(2π)3 . . . .

Now, using Eq. (2.4) into Eq. (2.2), we find

n(r) =
2

Ω

∑
k

{
1 +

2m

ℏ2

∫
δV (r′)2

×Re[Gk(|r− r′|)eik·(r′−r)]dr′+ · · ·
}
, (A.1)

where we omitted terms of order (δV )2. Therefore,
we find

δn(r) =
4m

ℏ2Ω
∑
k

∫
δV (r′)2

×Re[Gk(|r− r′|)eik·(r′−r)] dr′

= −4m

ℏ2

∫
dr′

δV (r′)

4π|r− r′|
2

×Re
∫
|k|<kF

dk

(2π)3
eik|r−r′|eik·(r

′−r)

= −
mk2F
2π3ℏ2

∫
j1(2kF |r− r′|) δV (r′)

|r− r′|2
dr′,

(A.2)

where we used∫
|k|<kF

dk eikreik·r

= 2πi
1 + 2k2F r

2 + ei2kF r(−1 + i2kF r)

4r3
.

(A.3)

Appendix B

Derivation of the Static Dielectric
Function

The Fourier transform of Eq. (2.6) gives

−k2δV (k) = −4πe2 +
kFme

2

π2ℏ2
I(k̃)δV (k), (B.1)

where δV (k) =
∫
eik·rδV (r)dr and we used the

property of the Fourier transform to change a con-
volution into a product to find

I(k̃) =

∫
j1(x)

x2
eik̃·x dx, (B.2)

2420004-3



October 23, 2024 10:41 WSPC/S2661-3395 TPE 2420004

R. Fantoni

where k̃ = k/2kF and the integration is over the
whole three-dimensional space so that dx = x2 dx×
sin θ dθ dφ. Since k̃ · x = k̃x cos θ and x = |x| ∈
[0,∞], θ ∈ [0, π], φ ∈ [0, 2π], we find

I(k̃) = 4π

∫ ∞

0

j1(x)

k̃x
sin(k̃x)dx

= 2π

[
1− k̃2 − 1

k̃
arctanh(k̃)

]
. (B.3)

Recognizing that

arctanh(k̃) =
1

2
ln

∣∣∣∣∣ k̃ + 1

k̃ − 1

∣∣∣∣∣, (B.4)

one readily finds Eq. (2.7).
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