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Abstract 

The asymptotic behaviours of the momentum distribution, the static structure factor and the local field factor at large 
momenta are evaluated for the jellium model of an interacting electron fluid confined in a quantum wire. The dependence 
of the results on the character of the confinement and their relevance to models of the dielectric screening function are 
discussed. 

1. Introduction 

Recent developments in fabrication techniques of 
quantum wires have made available for experi- 
mental study systems in which the conduction elec- 
trons can be described by a quasi-one-dimensional 
Fermi liquid (1DEL) model [1, 2]. The role of the 
electron-electron interactions in determining the 
observed electronic excitation spectra in these sys- 
tems has been accounted for within the random 
phase approximation (RPA: see Ref. I-3] and refer- 
ences given therein). 

In such quantum wires the many-body effects are 
still small, because of the relatively high effective 
electron density and the relative large effective wire 
radius. One may expect, however, that with further 
developments in the production of semiconductor 
wire structures these system parameters may be 
varied into a range where the short-range electron- 
electron correlations that are neglected in the RPA 
would become relevant. 

* Corresponding author. 

In the present paper we study some exact asymp- 
totic behaviours of short-range correlations in 
a 1DEL. Specific attention is given to the behaviour 
of the momentum distribution at high momenta  
and to those of the structure factor and of the local 
field factor in dielectric screening at high wave 
numbers. Our  approach is taken from earlier work 
on three-dimensional (3D) and two-dimensional 
(2D) electron liquids I-4]. The results emphasize the 
dependence of short-range correlations in a 1DEL 
on the nature of the confinement. 

2. The model 

We consider a quantum wire of length L extend- 
ing in the £ direction. It contains N electrons which 
are free to move along the wire axis in the effective 
mass sense, but are confined in the ~-)3 plane by 
a potential well Uc(x/ax,  y /a  r) where ax and a r are 
the characteristic lengths of the confinement along 
the 2 and )3 directions. The electronic system at zero 
temperature is characterized by an effective width 
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Ro and by the one-dimensional carrier density 
Pll = N/L. All vectors will be decomposed into their 
in-plane and 2 components, with the notations 
R -- (r, z) for position vectors and K - (k, kz) for 
wave vectors. 

The Hamilton±an H is the sum of a transverse 
part Hs ,  a longitudinal part Hii and the 3D elec- 
tron-electron Coulomb interaction V~_~: H =  
HII + H i  + V~_~. The many-body wave function 
may be expanded in terms of the eigenfunctions ~b~ 
of HII and g~ of H±, 

T(R1 .. . . .  RN) = ~ Ci.j~)i(zl, ... ,zN)Xj(rl . . . . .  rN). (1) 
i,j 

If the combination of energy level spacing due to 
the confinement and linear carrier density is such 
that (H±)>>(V~_~),  one may neglect any contri- 
bution from excited subband states. The wave func- 
tion takes the form 

~(R,  . . . . .  RN) ~ ~P(Zx . . . . .  ZN) ]--[ )~(ri), (2) 
i 

where ~P(zl . . . . .  ZN) =ZiCi ,  oC~i(Zl,...,ZN) and we 
have set Xo(rl, ... ,rN) = [Iix(ri; ax, ay). The nor- 
malized single-particle ground state x(ri; a~, ay) is 
completely determined by the confining potential. 
The electron density in the wire is then given by 
pw(R) = PllP±(r), where p±(r) = ]g(r; a~, ay)] 2. 

The approximation (2) allows one to formally 
define a purely one-dimensional jellium problem 
[5] in terms of the many-body wave function 
~k(zl . . . . .  ZN), the effective interactions in the limit 
L ~ ~ being weighted with p±(r) according to 

v(kz)=2e2fd2rfd2r'p±(r)p±(r')Ko(k~,r-r ' l ) .  

(3) 

Here, Ko(x) is the zeroth-order modified Bessel 
function of the second kind and 2e2Ko (k~ l al) is the 

Fourier transform of eE/k/z 2 + o 2. We recall that 
Ko(x) = - ln(x) for x<< 1 and Ko(x) = exp( - x) 

x ~ / 2 x  for x>> I. For  the 1DEL model we define the 
dimensionless length r~--(2&ao) -1 with ao the 
Bohr radius and the Fermi wave number 
k F = rcpll/2. 

Eq. (3) can be rewritten as 

e2 f l P ± ( k ) l  2 2. 
/)(kz) - - / ~ d  x, (4) 

where we have indicated with p±(k) the Fourier 
transform of p±(r). If both confinement lengths ax 
and ay are non-vanishing, and noticing that 
SIp; (k)[ 2 d2k = (2n) 2 t iP± (r)[ 2 d2r < oo, we can use 
the dominated convergence theorem [6] to evalu- 
ate the asymptotic large-kz behaviour of the inte- 
gral in Eq. (4). We obtain 

4he 2 
v(kz) --, (5) 

where Q2 = flp±(r)l 2d2r. However, if one of the 
confinement lengths (ay say) vanishes, i.e. in the case 
p±(r) = px(X)6(y) we can first perform the kr integ- 
ration in Eq. (4) and subsequently apply the domin- 
ated convergence theorem. We then obtain 

2~e 2 
v(k=) ~ k ~ Q , ,  (6) 

where QI = ~lpx(X)] 2dx. We shall refer to these 
two cases in the following as a 3D-like and a 2D- 
like quantum wire and use them to emphasize the 
role of the type of confinement in determining the 
short-range correlations between the electrons. 

3. The  stat ic  structure factor  

The pair distribution function gw(R~, R2) in the 
quantum wire is the probability of finding a pair of 
electrons at points R~ and R2, namely 

gw(R1, R2) 

_ S ( S -  1) f N 
pw~-S~-~2x.l~,.ijpwt.X ,.J ~ ( g l  . . . . .  RN)[2 H d3Ri"  (7) 

i=3 

Upon inserting Eq. (2) in Eq. (7) we find the pair 
distribution function for the 1DEL, 

N(N - 1 ) f  N 
g ( z ,  - z2) - . . . , z N ) l  2 H dz, .  (8) 

3 Pll i=3 

The static structure factor Sw(K) of the quantum 
wire is related to the pair distribution function by 

f[Sw(k, kz) 1] exp( 
daK 

- - iK R) (2g)  3 

= ~llfd2r2Pw(r2 +r)pw(r2)[g,(R2 + R, R 2 ) -  1] 

l 
- - -  [G(R) - l(g)].  (9) 

Pll 
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For the 1DEL we define S(kz)  = Sw(O, kz) so that 
Eq. (9) becomes 

f ~  [ S(kz) - l ] e x p (  - ikzz)d2~ = p,,[g(z) - l].  

(10) 

3.1. Large k~ behaviour in the 1DEL 

Yasuhara [7] has shown for 3D jellium that the 
electron--electron ladder interactions at all orders 
determine the asymptotic form of the structure fac- 
tor at large momenta. Following his method it is 
easily shown that S(k~) in the 1DEL has the follow- 
ing exact asymptotic form for large k~ (kz>>kF): 

v(k~) ,,,, 
1 - S(kz)  = e--~) PllOtO) + ..., (11) 

with e(kz) = k~/2m. Therefore, if the 1DEL is con- 
fined in a 3D-like quantum wire, by inserting 
Eq. (5) in Eq. (11) we get 

where G(IRI) - I(IRI) is the average of G(R)  - 
I (R)  taken over the sphere of radius IRI. The 
analogous expression for a 2D wire is 

lim (tK) 3 [Sw(tk~, tkz) - 1] 
[ ~ o t 3  

= - 2xPlld~Ri [G([RI) - I'(IR[)] [R[ = 0  (15) 

Since I (R)  is completely determined from the 
knowledge of the confining potential, the same will 
be true for (d /d lR l ) I ( IR l ) l lRb= o. On the other 
hand, (d /d IRI )G(IRI ) I IRI= o must be proportional 
to G(0) as a consequence of the cusp theorem [10]. 
This yields 

d G(IRI)IRI 1 = --G(0)  (16) 
dIRI =o ao 

for a 3D-like wire and 

d G(IR[)IRI 2 = - -G(0)  (17) 
dlRI =0 ao 

for a 2D-like one. 

1 - S(kz) _ 80._rcr, ' 1,~ 
O2g(o) + 

ao tCz 
(12) 

If instead the 1DEL is confined in a 2D-like quan- 
tum wire we should use Eq. (6) in Eq. (11), thus 
obtaining 

1 -- S(k~) - 4~tpll 1 
ao [k~l 3Q19(0)  + """ (13) 

The power law for the asymptotic approach of the 
structure factor to unity in Eq. (12) resembles that 
found by Kimball [8] for 3D jellium. Similarly, the 
form of Eq. (13) resembles that for 2D jellium [9]. 

3.2. Large kz behaviour in a quantum wire 

More generally, for a 3D quantum wire Eq. (9) 
yields 

lim ( tK)4[Sw( tkx ,  tk r, tkz) - 1] 

d I (14) = - 8rcplld-~ [8(IRI)  - I(IRI)] IRI =0' 

4. The momentum distribution 

The probability nw(K) of finding an electron with 
momentum K in the quantum wire, per unit trans- 
verse area, can be written as 

= Pll fexp [ iK (R - R')] ~* (R,  R2, . . . ,  RN) nw(g) 

N 

x ~P(R', R2 . . . . .  RN) d R  dR '  1-[ dRi .  
i = 2  

(18) 

In the IDEL approximation nw(K) takes the form 

nw(K) = Iq~(k)12n(kz) (19) 

where ~b(k) is the Fourier transform of the single- 
particle ground state for the motion in the trans- 
verse direction and n(kz) is the momentum distribu- 
tion in the IDEL. From Eq. (2) we have 

Oil fexp[ik~ (z - z')] O*(z, z2 . . . . .  ZN) n(kz) 

N 

x ~O(z', zz . . . . .  ZN) dz  dz' I~ dzi .  (20) 
i = 2  
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4.1. Large kz behaviour in the 1DEL 

As was shown for 3D jellium by Yasuhara and 
Kawazoe [11], the electron-electron ladder dia- 
grams also determine the asymptotic form of the 
momentum distribution at large momenta. We fol- 
low their approach for the one-electron momentum 
distribution in the 1DEL. It is easily shown that 
n(k~) has for large k~ (kz>>kF) the asymptotic 
form 

n(kz) = (PllV(k,)~2g(0) + .... 
\ 2e(kz) J 

(21) 

Therefore, if the 1DEL is confined in a 3D-like 
quantum wire, using Eq. (5) in Eq. (21) yields 

(22) n(k:) = g(O) + "".  

If instead the 1DEL is confined in a 2D-like quan- 
tum wire we should use Eq. (6) in Eq. (21), with the 
result 

(23) n(k~) = g(O) + .... 

The power-law decays of the momentum distribu- 
tion in Eqs. (22) and (23) are the same as for 3D and 
2D jellium. These were derived by Kimball [12] 
and by Rajagopal and Kimball [9], respectively, 
through an alternative argument that we apply to 
a quantum wire immediately below. 

4.2. Large kz behaviour in a quantum wire 

The momentum distribution is obtained from 
Eq. (18) as the Fourier transform of a function 
which is bilinear in the many-electron wave func- 
tion and its asymptotic form at large momenta is 
determined by the points of non-analyticity in the 
wave function. On the other hand, when two elec- 
trons are very close to each other their mutual 
repulsion dominates over the interactions with the 
other electrons and hence the dominant behaviour 
of the wave function can be determined from the 
two-body Schr6dinger equation. Such a constraint 
implies that the many-electron wave function is 
everywhere continuous with its derivative excepts 

at points in phase space which correspond to zero 
interparticle separation. 

By developing this argument, which is originally 
due to Kimball [12], we find 

nw(k, kz) ' 7.8 [P±(r)12g~( R, g ) d r  
~ o ~  k ao / kz 
k fixed 

(24) 

for a 3D-like quantum wire and 

nw(k, kz) 
/2npll'~ 2 1 /', . ,  

k _, ~' !,,-~o ) ~ j  Ip±tOI2gwtR,R)dr  
k fixed 

(25) 

for a 2D-like one. 

5. The local field factor 

The linear density response function Z(kz, to) of 
the 1 DEL can be written in terms of the interacting 
reference susceptibility zl(kz, ~o) and of a local field 
factor G(k:, o9) as 

zl(k~, m) 
z(kz, o9) = 1 - v(k~)[1 - (~(kz, m)]z~(k~, co)" (26) 

The interacting reference susceptibility, first intro- 
duced by Niklasson [13] for 3D jellium, is defined 
in a similar way as the Lindhard free-electron 
response function but with the ideal Fermi mo- 
mentum distribution replaced by the true mo- 
mentum distribution of the interacting electron as- 
sembly. 

Following the method used by Niklasson [13] it 
can be shown that for points in the (kz, 09) plane 
well outside the region of particle-hole excitations, 
the local field factor in Eq. (26) satisfies two exact 
limiting behaviours. These are expressed in terms of 
the function 

1 
GaV(kz) ~np, f_dq[,q%(q) 

(q + k:)2v(q + k~)) 
-- k2v(k: ) ~ [S(q) -- 1]. (27) 
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GPV(k~) is the form taken in the 1DEL by the static 
local field factor first introduced by Pathak and 
Vashishta [14,] for 3D jellium. 

Niklasson's method involves a study of the equa- 
tions of motion for the single-particle and the two- 
particle density matrices, which allow a full evalu- 
ation of the interacting reference susceptibility 
in the limit of large K or large co. It is easily shown 
that the following limit must hold for 
l co + k2z/2ml >> k2/2m and co finite, 

lim (~(kz, co) = GPV(oo). (28) 
kz --* oc 

Using Eqs. (5) and (6) in Eqs. (27) and (28) we find 

G(k~ --* oc, co) = 1 -- 0(0) 

1 [ "  2 

+ 8rtZeTpl I / d q  q v(q) IS(q) - 1] O~ 3 

(29) 

for a 1DEL obtained from 3D confinement and 

G(kz --, oe, o) = 1 - g(0) (30) 

for a 1DEL with 2D confinement. Eq. (30) coincides 
with the result obtained by Santoro and Giuliani 
[15] for 2D jellium. 

Finally, it is also easily shown by the same 
method that 

lim (~(kz, co) = GPV(kz) (31) 
o)~oo  

for Lco - k2~/2ml>>k2/2m and k~ finite. 
A final remark concerning the asymptotic behav- 

iour of static dielectric screening at large wave 
numbers is in order. After rewriting Eq. (26) in 
terms of the Lindhard function Zo(k~, co) and of 
a new local field factor G(k~, co), 

Zo(k~, co) 
Z(kz, co) 1 - v(kz)[1 - G(k~)Xo(kz, co)] ' (32) 

it is easily shown from our results that G(kz, O) 
increases as k~ at large momenta in a 1DEL with 
3D-like confinement and as I k~l when the confine- 
ment is 2D-like. These behaviours reproduce those 
first pointed out by Holas [16] for 3D and 2D 
jellium. 

6. Concluding remarks 

The Coulomb interaction potential between elec- 
trons in a quantum wire would not have a Fourier 
transform if both confinement lengths were taken 
as vanishingly small, because of its divergence at 
vanishing separation. The transverse density form 
factor p~(r), with Fourier transform pl(k), therefore 
is a crucial element of the theory and through it the 
nature of the confinement enters to determine the 
effective I D electron-electron interaction in Eqs. 
(3) and (4). The Coulomb matrix element at large 
momentum transfers takes in general a 3D-like 
form as in Eq. (5), reducing to the 2D-like form of 
Eq. (6) in the case where one of the confinement 
lengths can be taken as vanishingly small. These 
asymptotic forms arise from transverse averaging 
of the Bessel function in the integrand in Eq. (3), 
which by itself would lead to an exponential decay 
factor at large momenta. 

The asymptotic behaviours of the momentum 
distribution, the static structure factor and the local 
field factor that we have explicitly evaluated at 
large momenta reflect the above nature of the 
Coulomb matrix element. Dimensional cross-over 
in these behaviours is to be expected as one of the 
confinement lengths is squeezed down. Even in the 
case of 3D-like confinement, however, the short- 
range correlations reflect the confinement through 
the magnitude of the parameter Q2. 
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