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We critically discuss the application of the Wertheim’s theory to classes of complex associating fluids that can be today
engineered in the laboratory as patchy colloids and to the prediction of their peculiar gas–liquid phase diagrams. Our
systematic study, stemming from perturbative version of the theory, allows us to show that, even at the simplest level of
approximation for the inter-cluster correlations, the theory is still able to provide a consistent and stable picture of the
behaviour of interesting models of self-assembling colloidal suspension. We extend the analysis of a few cases of patchy
systems recently introduced in the literature. In particular, we discuss for the first time in detail the consistency of the
structural description underlying the perturbative approach and we are able to prove a consistency relationship between the
valence as obtained from thermodynamics and from the structure for the one-site case. A simple analytical expression for
the structure factor is proposed.

Keywords: colloidal suspensions; Wertheim thermodynamic perturbation theory; associating fluids; structure of fluids

1. Introduction

Recently, there have been interesting developments of tech-
niques for the synthesis of new colloidal patchy particles in
the laboratory [1], including seeded growth, swelling, and
phase separation. Whereas in the laboratory, relatively less
work has been done on the thermodynamic characterisation
of self-assembly of these particles, from a theoretical point
of view, or in recent computer experiments, these kind of as-
sociating fluids [2] and their clustering and phase behaviour
are actively studied [3–9].

In principle, statistical mechanics should be able to de-
scribe all equilibrium phases. However, the strong and con-
fined attractions responsible of association call for a more
clever approach than brute force. In particular, it has been
found useful to describe an associating fluid as one where
there are nc species of clusters made of a number i of parti-
cles, denoted i-mers. Many definitions of cluster are possi-
ble [10–15] either of a geometric nature or of a topological
one, depending on the spatial arrangement of the bonded
particles. If we measure the concentrations of the i-mers in
an associating fluid, we will find that they are functions of
the thermodynamic state: for one-component systems, the
temperature T and the density ρ of the fluid. Then, special
statistical mechanics approaches have been developed to
obtain such information and phase diagrams from models
of interactions.

In our previous work [2], we compared two theories for
cluster equilibria, the Wertheim association theory [16–19]

∗
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and the Bjerrum-Tani-Henderson theory [20–26] and we
showed that for nc = 2, the two approaches coincide when
inter-cluster correlation are ignored, i.e. the system behaves
as an ideal gas of clusters. Nonetheless, the simple and el-
egant perturbation theory described in Wertheim’s work
is able, unlike the one of Bjerrum-Tani-Henderson, to de-
scribe the case of nc → ∞ fluids. Due to this fact, Wertheim
theory is able to describe the liquid phase, thus giving access
to the study of liquid–gas coexistence in a coherent way,
while the Bjerrum-Tani-Henderson one is not. The first or-
der in the Wertheim perturbation theory approximation is a
simple but very useful tool. At high temperature, the asso-
ciating fluid reduces to the ‘reference’ fluid that can also be
considered as the one obtained from the associating fluid
switching off all attractions. However, in its original form,
the theory is only applicable when some ‘steric incompat-
ibility’ conditions are fulfilled by the associating fluid: a
single bond per site, no more than one bond between any
two particles, and no closed loop, or ring, of bonds.

Patchy colloids are systems of current experimental and
theoretical [1,27] interest. Simple models for their interac-
tions, for example fluids of hard-spheres (HSs) decorated
with attractive sites distributed on their surface, are well
suited for application of Wertheim theory. For particles
with M identical bonding sites, Bianchi et al. [3–5] discov-
ered the ‘empty liquid’ scenario as M approaches two, i.e.
when the clusters allowed in the fluid are just the ‘chains’.
Even more rich phenomenology is found when there are

C© 2015 Taylor & Francis
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sites of two different kinds [6,7] and ‘junctions’ formation
becomes possible. Such structures become responsible for
a re-entrance of the liquid branch of the binodal, and for
‘rings’ formation [8,9]. Moreover, extending Wertheim the-
ory beyond its steric incompatibility conditions, the rings
formation has been found to be responsible for a re-entrance
also in the gas branch and the appearance of a second lower
critical point (recently appeared studies which further ex-
tend Wertheim theory to allow also for doubly bonded sites
[28–30]). From all these studies emerged how Wertheim
theory has very good semi-quantitative agreement with ex-
act Monte Carlo (MC) simulations, when applied to these
one-component patchy particle fluids (especially so at the
level of the clusters concentrations behavior). Far from be-
ing a purely theoretical speculation, these fluids can be
engineered in the laboratory [1] from patchy colloids.

In the present work, while critically reviewing such
theoretical results, in particular elucidating the role of the
accuracy of inter cluster correlations, we will discuss the
solution of the Wertheim theory applied to HSs with M
identical bonding sites and with sites of two different kinds.
Our analysis is intended to be as simple and systematic as
possible while re-analysing the many works found in the
literature on various particular highly idealised associating
colloidal suspension models. This will allow us to treat
the ring forming systems of Rovigatti et al. [8,9] fully
analytically as freely jointed chains. We show that also the
results in Ref. [31], extending Russo et al. [6,7] results
to take into account the ‘X-junctions’ formation, and
in particular, the existence of characteristic ‘R’-shaped
spinodals, are largely independent on the choice of the
reference system correlations. Moreover, we find the
indication of a gas–liquid coexistence with a critical point
at extremely low densities and temperatures at r < 1/3,
with r the ratio between the gain in energy between the
bond of two unlike sites and the one between two like sites.

We also study in detail the relationship between struc-
tural and thermodynamic information within Wertheim the-
ory, and in particular between the effective valence as ob-
tained from the thermodynamics and from the structure.

The paper is organised as follows: in Section 2, we
introduce the thermodynamic quantities we will take un-
der consideration in the rest of the work; in Section 3,
we will review Wertheim association theory in the light
of the present work needs, the problem of identical at-
tractive site (Section 3.1.2), and the problem of attractive
sites of two different kinds (Section 3.1.3); in Section 3.2,
we introduce the problem of the gas–liquid coexistence;
in Section 3.3, we comment on the relevance of the pair-
potential microscopic level of description; and in Section
4, we systematically re-analyse many results obtained ap-
plying Wertheim theory to specific fluids with identical
sites (Section 4.1) and sites of two different kinds (Sec-
tion 4.2). We show, in a systematic way, that all the results
present in the literature are structurally stable with respect

to changes in the reference system accuracy; in Section 6,
we determine a simple analytical expression for the radial
distribution function which we then use to calculate the
valence; in Section 7, we determine a simple analytical ex-
pression for the structure factor; and Section 8 is for final
remarks.

2. Thermodynamics

Consider a one-component fluid of N associating HS par-
ticles in a volume V at an absolute temperature T = 1/βkB

with kB Boltzmann constant.
The Helmholtz free energy A of a HS associating fluid

can be written as a sum of separate contributions [32]

A = A0 + Amf + Abond, (1)

where A0 is the free energy of a HS fluid at a density ρ =
N/V, Amf is the mean-field contribution due to the dispersion
forces, and Abond is the change in the free energy due to
association. We will generally use the notation a(ρ, T) =
a = A/N for the free energy per particle.

The HS free energy per particle in excess of the ideal
gas one is accurately given by the Carnahan and Starling
expression [33]

βaex
0 = 4η − 3η2

(1 − η)2
, (2)

where η = (π /6)ρσ 3 is the packing fraction of the HSs of
diameter σ . So that adding the ideal gas contribution βaid =
ln (ρ�3/e), with � the de Broglie thermal wavelength, we
obtain a0 = aid + aex

0 .
The mean-field contribution has the van der Waals

form

βamf = −εmf ρ

kBT
, (3)

where the constant εmf is the measure of the strength of the
mean-field attractions. The addition of this contribution to
A0 is essential to have a gas–liquid coexistence.

From a microscopic point of view, one can see, for ex-
ample, the mean-field contribution as arising from the first
order in β in a high-temperature expansion of a thermo-
dynamic perturbation theory treatment of the square-well
(SW) fluid, with the HS taken as the reference system. So,
the free energy of the corresponding associating fluid will
be given by A = ASW + Abond. But, as we will see in Section
4, one can have gas–liquid coexistence with just A = A0 +
Abond for a properly chosen Abond.

We can define a unit of length, S, and a unit of energy,
E , so that we can introduce a reduced density, ρ∗ = ρS3,
and a reduced temperature, T ∗ = kBT /E .

The association contribution Abond will be discussed in
the next section.
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3. Associating fluids

We recall here the main result of Wertheim association the-
ory [16–19]. We write the bond free energy per particle
abond such that the full free energy per particle of the asso-
ciating fluid can be written as a = a0 + abond, where a0

is the contribution of the reference fluid, the one obtained
from the associating fluid setting to zero all the bonding
attractions. We discuss the importance of the choice of a
proper pair-potential for the fulfillment of the steric incom-
patibility conditions in the microscopic description of the
fluid. And we discuss the problem of the determination of
the gas–liquid coexistence line (the binodal) in our one-
component fluid.

3.1. Wertheim statistical thermodynamic theory

In Wertheim theory [16–19], one assumes that each HS
of the one-component fluid is decorated with a set 	 of
M attractive sites. Under the assumptions of: (1) a single
bond per site, (2) no more than one bond between any two
particles, and (3) no closed loop, or ring, of bonds, one can
write in a first-order thermodynamic perturbation theory
framework, valid at reasonably high temperatures,

βaW
bond =

∑
α∈	

(
ln xα − xα

2

)
+ M

2
, (4)

where xα = Nα/N is the fraction of sites α that are not
bonded. We will also introduce the symbol xi to denote the
concentration of clusters made of a number i of particles.
We will always use a Greek index to denote a specific site.
We can solve for the xα from the ‘law of mass action’

xα = 1

1 + ρ
∑

β∈	 xβ�αβ

, α ∈ 	 (5)

where the probability to form a bond, once the available
sites of the two particles are chosen, is given by ρ�αβ =
ρ�βα and approximated as

�αβ =
∫

g0(r12)〈fαβ(12)〉�1,�2dr12. (6)

Here, g0 is the radial distribution function of the reference
system, fαβ is the Mayer function between site α on particle
1 and site β on particle 2 (see Section 3.3), and 〈. . .〉�1,�2

denotes an angular average over all orientations of particles
1 and 2 at a fixed relative distance r12. Equation (5) should
be solved for the real physically relevant solution such that
limρ → 0xα = 1. Even if we cannot exclude the possibility
of having multiple solutions satisfying to this condition, we
never encountered such a case in the present work. Clearly,
we cannot assign any physical value to the branches with
xα 	∈ [0, 1].

At high temperatures �αβ → 0 and xα → 1, which
means we have complete dissociation. At low tempera-
tures (Wertheim theory is a high-temperature expansion but
here we just mean the formal low T limit of the first-order
Wertheim results) �αβ → ∞ and xα → 0, which means
that we have complete association.

The number of attractive sites controls the physical be-
haviour. Models with one site allow only dimerisation. The
presence of two sites permits the formation of chain and
ring polymers. Additional sites allow formation of branched
polymers and amorphous systems.

3.1.1. One attractive site

The case of a single attractive site was carefully considered
in our previous work [2] where a comparison between the
Wertheim theory and the Bjerrum-Tani-Henderson theory
[20–26] was made.

3.1.2. Identical attractive sites

Another simple case we can consider in Wertheim theory
is the one with M identical attractive sites of kind A (we
will always use a capital letter to denote a site kind). Now,
the law of mass action for x = xA (the fraction of unbonded
specific sites of kind A) is solved by

x = 2

1 + √
1 + 4Mρ�

, (7)

with � = �AA.
The free energy contribution due to association is now

given by

βaW
bond = M(ln x − x/2) + M/2. (8)

In this case, x1 = xM.

3.1.3. Attractive sites of two kinds

A more complex case in Wertheim theory is the one with MA

identical attractive sites of kind A and MB identical attractive
sites of kind B. Now, the law of mass action reduces to the
following system of two coupled quadratic equations

xA + MAρ�AAx2
A + MBρ�ABxAxB = 1, (9)

xB + MBρ�BBx2
B + MAρ�ABxAxB = 1, (10)

which admits in general a set of four different solutions for
(xA, xB) from which it is necessary to single out the phys-
ically relevant one. In the event that there is no attraction
between a site of kind A and a site of kind B, then �AB = 0
and the system simplifies to
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4 R. Fantoni and G. Pastore

xA = 2

1 + √
1 + 4MAρ�AA

, (11)

xB = 2

1 + √
1 + 4MBρ�BB

. (12)

In the event that there is no attraction between sites of the
same kind, it simplifies to

xA = 2/{1 + (MB − MA)ρ�AB

+
√

[1 + (MB − MA)ρ�AB]2 + 4MAρ�AB}, (13)

and xB obtained exchanging A↔B in the equation above.
The free energy contribution due to association is now

given by

βaW
bond = MA(ln xA − xA/2) + MA/2

+MB(ln xB − xB/2) + MB/2. (14)

In this case, x1 = x
MA

A x
MB

B .

3.2. The gas–liquid coexistence

In order to determine the gas–liquid coexistence line (the
binodal), one needs to find the compressibility factor z =
βp/ρ, with p the pressure, and the chemical potential μ

of the associating fluid according to the thermodynamic
relations

z(ρ, T ) = ρ

(
∂βa

∂ρ

)
T ,N

, (15)

βμ(ρ, T ) =
(

∂βaρ

∂ρ

)
T ,V

= z + βa. (16)

The coexistence line is then given by the Gibbs equilib-
rium condition of equality of the pressures and chemical
potentials of the two phases

ρgz(ρg, T ) = ρlz(ρl, T ), (17)

βμ(ρg, T ) = βμ(ρl, T ), (18)

from which one can find the coexistence density of the gas
ρg(T) and of the liquid ρ l(T) phases.

The critical point (ρc, Tc) is determined by solving the
following system of equations

∂zρ

∂ρ

∣∣∣∣
ρc,Tc

= 0, (19)

∂2zρ

∂ρ2

∣∣∣∣
ρc,Tc

= 0. (20)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T*

ρ*

Figure 1. Gas–liquid binodal for the HS plus the van der
Waals mean-field term. The circle is the critical point at ρ∗

c ≈
0.249129, T ∗

c ≈ 0.180155, and zc ≈ 0.358956 [34].

3.2.1. The mean-field case

For the HS fluid in the presence of just a van der Waals
mean-field free energy contribution, described by Equation
(1) without the last association term, the thermodynamics
is parameter free. We take the diameter of the spheres σ as
the unit of length (so that ρ∗ ∈ [0,

√
2] with

√
2 the close-

packing reduced density) and εmf as the unit of energy.
Solving the Gibbs equilibrium conditions of Equations (17)
and (18), we find the binodal of Figure 1 and from Equations
(19) and (20), we find the critical point.

We can see this case as describing a thermodynamic
perturbation theory approximation for a SW fluid to first
order in β small [35]. MC simulations of the SW fluid are
well known to show a gas–liquid binodal with the critical
point shifting at lower temperatures and higher densities as
the width of the attractive well decreases [36,37].

Recently [38], it was shown through numerical simu-
lation and theoretical approaches that a binodal with two
maxima, implying the existence of a low-density liquid and
a high-density liquid, can arise solely from an isotropic
interaction potential with an attractive part and with two
characteristic short-range repulsive distances.

We consider the binodal of Figure 1 as ‘standard’ in
the sense that the gas branch Tg(ρ) is a monotonously in-
creasing function of density and the liquid branch Tl(ρ) a
monotonously decreasing function of density. We will see
in the next section that using Wertheim association theory,
it is possible to obtain non-standard binodals by replacing
the mean-field contribution Amf with a proper association
contribution Abond.

3.3. Microscopic description: importance of the
pair-potential

The fluid is assumed to be made of particles interacting only
through a pair-potential φ(12) = φ(r1,�1, r2,�2) where ri
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and �i are the position vector of the centre of particle i and
the orientation of particle i, respectively.

To give structure to the fluid, we further assume that the
particles have an isotropic hard-core of diameter σ with

φ(12) = φ0(r12) + �(12), (21)

where r12 = |r12| = |r2 − r1| is the separation between the
two particles 1 and 2 and

φ0(r) =
{+∞ r ≤ σ

0 r > σ
, (22)

The anisotropic part �(12) in Wertheim theory is generally
chosen as

�(12) =
∑
α∈	

∑
β∈	

ψαβ(rαβ), (23)

where

rαβ = r2 + dβ(�2) − r1 − dα(�1), (24)

is the vector connecting site α on particle 1 with site β on
particle 2. Here, dα is the vector from the particle centre
to site α with dα < σ /2. The site–site interactions ψαβ ≤
0 are assumed to be purely attractive. The Mayer functions
introduced in Section 3.1 are then defined as fαβ(12) = exp [
− βψαβ (rαβ)] − 1.

Wertheim theory depends on the specific form of the
site–site potential only through the quantity �αβ of Equa-
tion (6), as long as the three conditions of a single bond per
site, no more than one bond between any two particles, and
no closed loop of bonds, are satisfied. A common choice,
for example, is a SW form

ψαβ(r) =
{−εαβ r ≤ dαβ

0 r > dαβ
, (25)

where εαβ > 0 are site–site energy scales, the wells depths,
and dαβ are the wells widths. In this case, we must have dα

+ dβ > σ − dαβ, moreover we will have

�αβ = Kαβ(σ, dαβ, η)(eβεαβ − 1). (26)

We will also call limρ→0 Kαβ = K0
αβ some purely geometric

factors. Remember that limρ → 0g0(r) = �(r − σ ) with �

the Heaviside step function.
Another common choice is the Kern–Frenkel patch–

patch pair-potential model [39].

4. Structural stability of Wertheim theory

There has recently been some relevant progress on the study
of several complex associating fluids through MC simula-

tions and theoretically through the Wertheim theory out-
lined above. The comparison between the two approaches
shows semi-quantitative agreement, between the exact MC
results and the approximated theoretical results, at the level
of description of clusters concentrations and of gas–liquid
binodal. We will here return on some of the systems studied
from Bianchi et al. [3–5], Russo et al. [6,7], and Rovigatti
et al. [8,9] from a unified perspective, and concentrating
ourselves on the structural stability of the Wertheim theory,
i.e. we will show that all the qualitative non-standard fea-
tures of the phase diagrams at a large extent do not depend
on the accuracy of description of the reference system.

4.1. Identical sites

The case of HSs with a number M of identical attractive
sites in various geometries on the surface of the spheri-
cal particle has been studied by Bianchi et al. [3–5]. They
showed that the properties of the resulting fluid are largely
independent from the sites geometry [5]. And the gas–
liquid binodal has a liquid branch moving at lower densi-
ties as M decreases. In particular, the binodal vanishes for
M → 2, a scenario that they called ‘empty liquid’: the
critical temperature Tc(M) and critical density ρc(M) are
such that limM→2 Tc = T̄c > 0 and limM → 2ρc = 0. There
is then the formation of a homogeneous disordered mate-
rial at small densities below T̄c, i.e. a stable equilibrium gel.
Moreover, in their fluid with M = 2, Bianchi et al. observed
linear ‘chains’ formation: ‘chaining’.

This is quite different from what happens in fluids of
Kern and Frenkel patchy HSs varying the patches surface
coverages [40]. In Ref. [40], a study of criticality similar to
the one of Bianchi was made varying the attractive patch
surface coverage χ . As the surface coverage χ vanishes,
limχ → 0Tc = limχ → 0ρc = 0 was found in such cases.

Liu et al. [35] repeated Bianchi study for a system of
SWs, instead of HSs as in the Bianchi case, with a number
M of identical attractive sites. In their study, the gas–liquid
coexistence remains also for M → 0, as expected in view
of the comments of Section 3.2.1.

4.1.1. Gas–liquid binodal

With M identical sites of kind A, we have in the site–site
interaction εAA = ε which we take as unit of energy and
again we take σ as unit of length.

We now choose a = a0 + abond with the association
part given by the Wertheim theory Equation (4) with M
identical sites (see Section 3.1.2).

Following Ref. [4], we choose the identical sites dis-
tributed on the surface of the spherical particle and

dAA = d =
(√

5 − 2
√

3 − 1

)
σ/2 ≈ 0.120σ, (27)

which guarantees that each site is engaged at most in one
bond. Moreover, we approximate the radial distribution
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6 R. Fantoni and G. Pastore

function of the reference system with its zero density limit
taking �AA = � = K0[eβε − 1] and using, in Equation (26),
the following expressions

〈fAA(12)〉 = (eβε − 1)mAA(r12) r12 > σ, (28)

mAA(r) =
⎧⎨
⎩

(d + σ − r)2(2d − σ + r)

6rσ 2
σ < r < σ + d

0 r > σ + d
,

(29)

K0
AA = K0 = 4π

∫ σ+d

σ

mAA(r)r2dr

= πd4(15σ + 4d)/30σ 2 (30)

≈ 0.332 × 10−3σ 3.

In Figure 2, we show the evolution of the gas–liquid bin-
odal as a function of M, the only free parameter in Wertheim
thermodynamic perturbation theory. Compared with Figure
4 of Bianchi et al. [3], we see how the qualitative behaviour
stays the same even if the two figures differ slightly quanti-
tatively due to our further approximation of taking the radial
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0.09

0.10

0.11
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0.0 0.1 0.2 0.3 0.4
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ρ*

M=5.0
M=4.0
M=3.0
M=2.8
M=2.6
M=2.4

0.000

0.002

0.004

0.006

0.008

0.010
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βP
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3
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M=2.4

Figure 2. Top panel: evolution of the gas–liquid binodal as a
function of M. The continuous thick black line is the locus of the
critical points for M ∈ ]2, 5]. Bottom panel: pressure–temperature
diagram.

distribution of the reference system equal to one in the range
where bonding occurs. This shows how the Wertheim the-
ory is robust in its qualitative phase diagram predictions.
The binodal appears to be always a standard one. And, as
we can see from the figure, upon approaching M → 2, the
coexistence disappears. Bianchi et al. [3] called this phe-
nomenon the empty liquid scenario. It in particular tells us
that the fluid with M = 2, with the two sites chosen at the
spherical particle poles in order to avoid the formations of
rings (closed loops of bonds), is made only by chains and
does not admit a gas–liquid coexistence. The non-integer
M cases can be realised through a binary mixture [3,41,42].

From the point of view of Wertheim theory, the reason
for this scenario can be explained simply by looking at
the low-temperature limit for the bond contribution to the
pressure

βpW
bond = ρzW

bond = ρ2 ∂βaW
bond

∂ρ

= − 2M2�ρ2(
1 + √

1 + 4M�ρ
)2 �→∞−→ −M

2
ρ. (31)

From which immediately follows that for M > 2, the pres-
sure as a function of density on a low-temperature isotherm
shows a van der Waals loop at low densities, which implies
the occurrence of a gas–liquid coexistence region.

4.2. Sites of two kinds

Tavares et al. [43,44] studied the case of HS with three
sites, two identical A sites at the poles and a third B one.
In addition to chaining, here they observe the formation
of ‘junctions’: ‘branching’; rings formation is inhibited in
these cases since the A sites at the poles have very small
well widths and the B site position is chosen so as to avoid
small bond loops, i.e. triangular and square arrangements
of bonded particles. Two types of junctions are possible in
models where AA bonds are responsible for the chaining: X-
shaped junctions, due to BB bonds, and Y-shaped junctions,
due to AB bonds. They found that when two of the three
interaction strengths vanish simultaneously, there can be no
liquid–vapour coexistence. These correspond to the limits
of non-interacting linear chains (εAA 	= 0, εBB = εAB = 0),
dimers (εBB 	= 0, εAA = εAB = 0), and hyperbranched poly-
mers (εAB 	= 0, εAA = εBB = 0) of Equation (13). They
also showed that the phase transition always disappears as
εAA → 0. Moreover, they showed that whereas ‘X-junctions’
only yield a critical point if their formation is energetically
favourable, fluids with ‘Y-junctions’ will exhibit a critical
point, even if forming them raises the energy, provided this
increase is below a certain threshold.

Russo et al. [6,7] extended Tavares study to the case of
two identical small A sites at the poles and nine equispaced
identical big B sites on the equator. Killing the interaction
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Molecular Physics 7

between two B sites (εBB = 0), they observed the forma-
tion of chains and Y-junctions (and possibly hyperbranched
polymers for εAB/εAA large enough) and eventually a re-
entrant behaviour of the liquid branch of the gas–liquid
binodal pinched at low temperatures.

Rovigatti et al. [8,9] extended Russo model selecting an
off-pole position of the A sites, thus adding the possibility
of ‘rings’ formation, and observed re-entrance both in the
gas and in the liquid branch of the binodal with a second
lower critical point where the coexistence curves close itself
at low temperatures without the pinch. They needed to relax
assumption (3) in Wertheim theory [45–47].

4.2.1. Gas–liquid binodal

Russo et al. [6] studied the case of sites of two different
kinds when the site–site interaction is restricted to εBB = 0
(no X-junctions). Then, choosing as unit of energy εAA and
again σ as the unit of length, the Wertheim theory depends
on only five parameters: r = εAB/εAA > 0 and MA, MB, KAA,
KAB.

We now choose a = a0 + abond with the association
part given by the Wertheim theory Equation (4) with sites
of two different kinds (see Section 3.1.3). In particular with
the condition εBB = 0, Equations (9) and (10) admit just a
set of three different solutions for (xA, xB) from which it is
necessary to single out the real physically relevant one such
that limρ → 0xA = limρ → 0xB = 1.

Following Ref. [6], we choose MA = 2, MB = 9 (see Fig-
ure 3) and K0

AA = 1.80 × 10−4σ 3,K0
AB = 1.56 × 10−2σ 3.

In order to fulfil the Wertheim condition [(1), of a single
bond per site, the small A sites are meant to reside at the
particle poles and the big B sites equispaced on the particle
equator. The choice of K0

AA � K0
AB and the large MB make

Figure 3. (color online) Pictorial view of a colloidal particle with
attractive sites of two different kinds: two A sites on the poles and
nine B sites on the equator.

branching entropically favourable. We then approximate
�AA = K0

AA(eβεAA − 1) and �AB = K0
AB(eβεAB − 1).

In Figure 4, we show the evolution of the gas–liquid
binodal as a function of r. Once again, comparing with Fig-
ure 3 of Russo et al. [6], we observe a complete qualitative
agreement, even if in our calculation we further approxi-
mated the radial distribution of the reference system equal
to one independently of density. We see that for r < 1/2, we
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Figure 4. Top panel: evolution of the gas–liquid binodal as a
function of r. The continuous thick black line is the locus of
the critical points for r ∈ ]1/3, 1/2]. Middle panel: pressure–
temperature diagram. Bottom panel: binodals of Russo et al. [7]
Figure 4 as obtained from their analysis (lines) of the Wertheim
theory and from their MC simulations (points); the big circles are
their predicted critical points.
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8 R. Fantoni and G. Pastore

have a non-standard binodal with a re-entrant liquid branch
and a ‘pinched’ shape evidence that indeed the topologi-
cal phase separation of Tlusty and Safran [48] is observed.
Russo et al. [6] were able to provide a qualitative expla-
nation for this behaviour by analysing the energetic of the
junction formation process: since the energy cost of form-
ing a chain end is εchain = εAA/2 > 0 and the energy cost
of forming a Y-junction is εY − junction = −εAB + εAA/2 =
εAA(1/2 − r), for r < 1/2 we have εY − junction < 0, and at
low temperatures only chains, which we already saw that
do not phase separate, are present.

They are also able to conclude that phase separation oc-
curs only if r > 1/3. For r < 1/3, the energy cost of forming
junctions being too high or, alternatively, the entropy gain
being too small to offset the loss of translational entropy of
chains in the liquid phase.

This behaviour can be understood by look-
ing at f (T , ρ; r) = dβp/dρ = dβ(p0 + pW

bond)/dρ. Dif-
ferently from Bianchi et al. case, now we have
limρ→0 dβpW

bond/dρ = 0. The zeroes of f are two lines in
the (ρ, T) plane, one for the minima of the pressure and
one for the maxima. The union of the two lines is called the
spinodal line for the coexistence. The equal area construc-
tion tells us that the binodal line encloses the spinodal line
and the two lines are tangent at the critical point. In Figure
5, we show a tridimensional plot of f for r = 0.36, 2/5, 1/2
as a function of temperature and density. Clearly, the three
different scenarios do not depend on the specific values of
KAA, KAB, MA, MB which only influence the region in the
phase diagram (ρ, T) where we have the van der Waals loop.

The cluster populations for the chain ends, 2xA, and Y-
junctions, 9(1 − xB), along the binodal were studied in Ref.
[6] and are shown in their Figure 4. From Figure 9 of Ref.
[7], we see how the mean value of the number of bonds
per particle (the valence), 2(1 − xA) + 9(1 − xB), tends
to 2 at low temperatures, i.e. the fluid tends to be formed
essentially by chains which, in agreement with Bianchi et al.
analysis, are unable to sustain the gas–liquid coexistence.

The study of Russo et al. differs substantially from the
Janus fluid case [22–24,49] where it is found a re-entrant
gas branch for the gas–liquid binodal.

Rovigatti et al. [9] extended Russo study to take ac-
count of rings formation. In this case, the expression for the
Wertheim bond free energy per particle of Equation (14)
with MA = 2 should be corrected as follows:

βaW
bond = ln

(
yx

MB

B

)
− xA − MB

2
xB

+ 1 + MB

2
− G0

ρ
, (32)

where Gn is the nth moment of the rings size distribution

Gn =
∞∑

i=imin

inWi(2ρ�AAy)i , (33)

Figure 5. Tridimensional plots of f(T, ρ; r) = dβp/dρ (green
surface) for r = 0.36, 2/5, 1/2 from top to bottom. Also, shown
is the plane f = 0 (blue surface). For r = 1/3, the two surfaces
become tangent at small temperatures and small densities. For
r > 1/2, the minimum in the pressure moves at larger densities at
smaller temperatures.
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Molecular Physics 9

here imin is the minimum ring size, y is the fraction of par-
ticles with the two A sites unbonded, and Wi is the number
of configurations of a ring of size i. Assuming for the rings
the freely jointed chain level of description, we can approx-
imate [45]

(i + 1)Wi+1 = i(i − 1)

8π

l∑
j=0

(−1)j

j !(i − j )!

(
i − 1 − 2j

2

)i−2

,

(34)

for l the smallest integer which satisfies l ≥ (i − 1)/2 −
1. Expression (34) is due to Treloar [50] and is the value
of the end-to-end distribution function for a freely jointed
chain of i links, when the end links are the length of one link
apart (the link length is equal to the diameter of a sphere
which we take to be our unit of length). For i � 1, it has
the following asymptotic behaviour [50]

(i + 1)Wi+1 ≈
(

3

2πi

)3/2

e−3/2i , i � 1, (35)

The laws of mass action of Equations (9) and (10), for εBB

= 0, should now be corrected to take into account of the
Gn 	= 0 as follows:

x2
A = y(1 − G1/ρ), (36)

1 − xA = MBρ�ABxBxA + 2ρ�AAx2
A + G1/ρ, (37)

1 − xB = 2ρ�ABxAxB. (38)

Note that solving for xA Equation (36) and for xB Equation
(38) and substituting into Equation (37), one finds an equa-
tion in y only, which always admits just one solution ȳ with
the properties 0 ≤ ȳ ≤ 1 and limT →0 ȳ = 0.

In Figure 6, we show our theoretical numerical results
for the gas–liquid binodal of the ring forming fluid. A com-
parison with Figure 1 of Rovigatti et al. [9] shows again a
good qualitative agreement between the two calculations.
In our calculation, we retained the first 50 terms in the con-
vergent series of Equation (33) and chose MB = 9 and �AA,
�AB as before. As we can see, the rings formation is respon-
sible for the re-entrance in both the gas and liquid branches
of the binodal and for the appearance of a second lower
critical point. At r = 0.37, we could not find a coexistence
line, leaving a system for which self-assembly is the only
mechanism for aggregation.

In particular, upon approaching the upper critical point,
at T = T u

c , if we make a reversible transformation going
from the liquid phase to the vapour phase on an isotherm,
at T < T u

c , we will have, as usual

�S =
∫

δQ

T
= λvm

T
> 0, (39)
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Figure 6. Top panel: evolution of the gas–liquid binodal as a
function of r. The thin lines are the binodals of Figure 4. The thick
lines are the results obtained for the rings forming fluid. Bottom
panel: pressure–temperature diagram.

with �S the change in entropy S = −(∂A/∂T)N, V, δQ the
infinitesimal heat exchanges along the path of the transfor-
mation, λv the ‘latent’ heat of vaporisation, and m the mass
of the fluid. Whereas Rovigatti et al. [9] show that upon
approaching the lower critical point, at T = T l

c , in the same
transformation at T > T l

c , one finds

∫
δQ

T
= λvm

T
= �S < 0, (40)

so that the ‘latent’ heat of vaporisation changes sign as
T varies from T u

c to T l
c . This can be seen directly from

our pressure–temperature diagram of Figure 6 using the
Clapeyron–Causius formula [51].

Rovigatti analysis neglects the rings with AB bonds. We
think that their inclusions may have dramatic effects on the
phase diagram.

4.2.2. A possible extension

It is possible to extend Russo et al. [6,7] results allowing
for the εBB 	= 0 condition, responsible for the X-junctions
formation [31]. The analysis for just three sites, two of kind
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10 R. Fantoni and G. Pastore

A and one of kind B, can be found in Refs. [43,44] were,
interestingly enough, it is found the disappearance of crit-
icality as εAA → 0. In our extension, we can introduce an
additional parameter s = εBB/εAA > 0. One immediately
verifies that the law of mass action of Equations (9) and
(10) admits now four solutions (xA, xB) from which one has
to determine the physical one such that xA, xB ∈ [0, 1] and
limρ → 0xA = limρ → 0xB = 1. Clearly, in the limit r → 0, the
problem is similar to the one of Bianchi et al. [3] (compare
Equations (11) and (12) and Equation (7)) and in the limit
s → 0, we fall back to Russo et al. [6,7] case. We are inter-
ested in the non-trivial case: �AA 	= �BB or MA 	= MB. We
will choose for MA,MB,K0

AA, and K0
AB , the same values of

the Russo’s case of Section 4.2.1. Moreover, we will choose
K0

BB = K0
AA. Again, one has limρ→0 dβpW

bond/dρ = 0. For
s small, we are still able to see the re-entrant liquid scenario
contrary to the predictions of Ref. [44]. In other words, we
are able to observe a re-entrant liquid branch even in the
presence of X-junctions in the fluid, as long as the energy
cost for their formation, εX − junction = εAA(1 − s), is posi-
tive and big enough. This is shown in Figure 7. The figure
also shows how an ‘R’-shaped spinodal is possible in these
cases with a majority of Y-junctions in correspondence of
the coexistence region at high temperature, a majority of
X-junctions in correspondence of the coexistence region at
low temperature, and a majority of chains in between in
correspondence of the bottleneck in the ‘R’, in agreement
with the study of Tavares et al. [31]. Moreover, we find
gas–liquid coexistence also for r < 1/3 as long as s is large
enough. This is shown in Figure 8 from which it is also
apparent the existence of a gas–liquid coexistence with a
critical point at extremely low densities and temperatures,
unpredicted by the study of Tavares et al. [31]. As a matter
of fact, the critical temperature can be made small at will
by a proper choice of the control parameters s; the spinodal
being essentially independent from r.

5. Break-down of the theory

Apart from the necessity to fulfil the steric incompatibility
conditions, the Wertheim theory will break-down in the
following cases:

5.1. Low temperature limit

Both the Wertheim theory and the canonical MC simula-
tion break-down at low temperatures. The Wertheim theory
is a high-temperature perturbation theory. The first-order
version that we have been using until now clearly breaks-
down at low temperature when from the mass action law (5)
follows that xα → 0 which in turn produces an undefined
bond free energy (4). Also, the usual MC simulation will
break-down at very low temperatures. In fact, imagine we
have to break a bond with a single particle move. Then,
the total energy difference between the final configuration

Figure 7. Tridimensional plots of f(T, ρ; r, s) = dβp/dρ (green
surface) and of the plane f = 0 (blue surface) for (r, s) = (2/5,
1/5). We show two plots one at high temperature and one at low
temperature because the (xA, xB) physical solution determination
changes in the two regions of the phase diagram. The negative f
in the high temperature and high density corner of the lowest plot
is due to another change in the physical solution determination.

and the initial one would be ε and we would need around
1/e−βε single particle moves. So, at low temperatures, we
would need a very long simulation in order to fully explore
configuration space. Depending from the computational re-
sources at one disposal, the range of inaccessible tempera-
tures, before the solidification at zero temperature where the
fluid chooses spontaneously the minimum potential energy
configuration, may vary. Even if it is possible that patchy
fluids, with short-ranged and tunable pair-interactions and
with limited valence, will not crystallise at zero temperature
[52] remaining a liquid in that limit.

5.2. Infinite number of attractive sites

The Wertheim theory will not be applicable anymore to
particles decorated with too many attractive sites. In the
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Molecular Physics 11

Figure 8. Tridimensional plots of f(T, ρ; r, s) = dβp/dρ (green
surface) for (r, s) = (1/4, 1/4), (1/4, 1/2), (1/8, 1/2). Also shown is
the plane f = 0 (blue surface). As we can see, the spinodals of the
two cases (r, s) = (1/4, 1/2), (1/8, 1/2) look essentially the same.

limit of an infinite number of sites uniformly distributed
over the particle surface, one recovers the SW fluid or the
mean-field solution of Section 3.2.1.

6. The radial distribution function

Using the fact that the angular average of the functional
derivative of the free energy per particle respect to the angle
dependent pair-potential is equal to ρ/2V times the radial
distribution function of colloid centres, we can write

g(r) = g0(r) + 2V

ρ

〈 δaW
bond

δφ(1, 2)

〉
(41)

= g0(r) + 2

ρ

1

4πr2

∑
γ∈	

(
1

xγ

− 1

2

)

×
〈

δxγ

δ
[∑

α,β∈	 βψαβ (rαβ)
]
〉
, (42)

where we denote with 〈. . .〉 the orientational average, and
in the second equality, we used Equations (4) and (21).

To make some progress, we use the following property

〈δ〈fαβ〉
δβψαβ

〉
= −mαβ(r)eβεαβ = −mαβ(r) − 〈fαβ〉 (43)

where in the last equality, we used Equations (28) and (29).
From Equation (6) follows

δ�αβ/δ〈fαβ (12)〉 = 4πr2
12g0(r12)Iαβ(r12), (44)

where Iαβ(r) is equal to one on the support of 〈fαβ〉 and zero
otherwise. Next, we observe that

〈
δxγ

δ
[∑

α,β∈	 βψαβ

]
〉

=
〈 1

M2

∑
α,β∈	

δxγ

δβψαβ

〉

= −4πr2g0(r)
1

M2

∑
α,β∈	

mαβ(r)eβεαβ
∂xγ

∂�αβ

, (45)

where M is the total number of sites per particle and in the
last equality, we used the chain rule. So, we obtain

g(r)

= g0(r)

⎡
⎣1 + 1

M2ρ

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

mαβ (r)eβεαβ

⎤
⎦ ,

(46)

where the terms ∂xγ

∂�αβ
can be determined from the law of

mass action, Equation (5). In particular, using the symmetry
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12 R. Fantoni and G. Pastore

�αβ = �βα , it follows

1

ρ

∑
γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

= xαxβ. (47)

From Equation (46), we can extract the contact value for
the radial distribution function

g(σ+) = g0(σ+)

×
⎡
⎣1 + 1

M2ρ

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

mαβ (σ )eβεαβ

⎤
⎦ ,

(48)

where mαβ(σ ) is the product of the two solid angle fractions
for the αβ bond when two particles are located at relative
centre-to-centre distance σ . For example, for the Kern and
Frenkel pair-potential [39], we would have mαβ = χαχβ

with χpatch the patch surface coverage. In the Bianchi et al.
case [4] of Section 4.1, we have instead mαα(σ ) = (d/σ )3/3,
from Equation (29). For g0(σ + ), we can use the analytic
solution to the Percus–Yevick approximation for the HS
fluid [34], namely

g0(σ+) = (1 + η/2)/(1 − η)2. (49)

Next, we observe that, since ρg(r)4πr2dr gives the number
of particles in the spherical shell [r, r + dr] around a
particle fixed on the origin, the coordination number can be
estimated as follows:

Cn = ρ

∫ σ+d

σ

4πr2g0(r)

×
⎡
⎣1 + 1

M2ρ

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

mαβ (r)eβεαβ

⎤
⎦ dr,

(50)

where d = min {dαβ}. The mean number of bonds per
particle (the valence), vT = ∑α ∈ 	(1 − xα), can be also
estimated from the structure as follows:

vS = Cn − lim
T →∞

Cn

= 1

M2

∑
α,β,γ∈	

(
1 − 2

xγ

)
∂xγ

∂�αβ

�αβ. (51)

Then, using Equation (47) we immediately find

vS = ρ

M2

∑
α,β∈	

xαxβ�αβ = 1

M2

∑
α∈	

(1 − xα), (52)

where the last equality follows from the law of mass action,
Equation (5). The sought for consistency between the va-
lence calculated from the thermodynamics and the valence

calculated from the structure only holds in the single site
per particle case, M = 1.

For example, for M identical sites, we find vT = M(1 − x)
and, choosing Kern–Frenkel patches for which d represents
the width of the attractive SW of each patch and χ the patch
surface coverage, from Equation (47) follows

Cn = ρ

∫ σ+d

σ

4πr2g0(r)
[
1 + x2χ2eβε

]
dr. (53)

7. The structure factor

We then determined the structure factor S(k) = 1 + ρĥ(k)
with h(r) = g(r) − 1 the total correlation function and the
hat denotes the Fourier transform.

7.1. Identical sites

For the case of Bianchi et al. of Section 4.1, we find

S(k) = 1 + 4πρ

∫ ∞

0

{
g0(r)

[
1 + x2m(r)eβε

]− 1
}

× sin(kr)

k
r dr, (54)

where x is given by Equation (7) and m(r) is given by
Equation (29). Choosing for g0(r) = �(r − σ ), the one
obtained from the zero density limit of the HS fluid, we find
the ‘triangular’ approximation result of Equation (A1) of
Appendix. From this result follows immediately

lim
k→0

S(k) = 1

+ 20η

[ (
eβε − 8Mη(eβε − 1)

)
(15d4 + 4d5)

− 4
(

5 +
√

5
√

5 + 4d4Mη(eβε − 1)(15 + 4d)
) ]/

(
5 +

√
5
√

5 + 4d4Mη(eβε − 1)(15 + 4d)
)2

. (55)

Moreover, we find

lim
T →0

S(0) = 1 − 8η + 1

M
, (56)

lim
T →∞

S(0) = 1 − 8η +
(

3d4 + 4

5
d5

)
η, (57)

whereas for the structure factor of the reference system, we
have S0(0) = 1 − 8η.

In Figure 9, we show the structure factor of Equation
(A1) for M = 4 and T∗ = 0.1, η = 0.1.

A comparison with the simulation results of Sciortino
et al. [4] (see their Figure 13) at M = 2 and T∗ = 0.055
shows that approximation (55) breaks-down at high densi-
ties. This is shown in Figure 10 where the data of Sciortino
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Figure 9. Structure factor for M = 4 and T∗ = 0.1, η = 0.1 in
the Bianchi et al. case using for the radial distribution function of
the reference system, g0, the zero density limit of the hard-sphere
fluid. Also shown, for comparison, is the structure factor of the
reference system, S0(k) = 1 + 24η(kcos (k) − sin (k))/k3.

et al. simulations are compared with the isothermal com-
pressibility sum rule,

S(0) =
[

∂

∂ρ

(
ρ2 ∂βa

∂ρ

)]−1

, (58)

and the relationship between the activity �−3eβμ and the
density is obtained through Equation (16). We think that the
fact that the structure as determined by the Equation (54)
does not satisfy the isothermal compressibility sum rule
of Equation (58) is a thermodynamical inconsistency not
universally recognised for the Wertheim theory. In order to
find accurate results for the structure, one needs to solve the

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005

S(
0)

ρσ3

Sciortino et al.
T
S

S PY

Figure 10. Structure factor at zero wave-number as a function
of density for M = 2 and T∗ = 0.055 in the Sciortino et al.
simulations of Ref. [4], from the thermodynamic route (T) of the
isothermal compressibility of Equation (58), from the structure
route (S) of Equation (55), and from the zero wave-number limit
of Equation (54) taking as a reference system the Percus–Yevick
analytic solution for hard-spheres (S PY).

Wertheim Ornstein–Zernike equation with an appropriate
closure [53].

8. Conclusions

We have critically analysed some recent applications of
the Wertheim perturbation theory to classes of associating
fluids of with non-standard phase diagrams and increasing
complexity which can be today engineered in the laboratory
[1]. In particular, we have illustrated the strong structural
stability of the theory, which allows to get a first correct
qualitative understanding of the resulting phase diagrams,
even at the simplest level where all correlations of the ref-
erence system are neglected.

For fluids of HSs with M identical bonding sites, Bianchi
et al. [3–5] discovered the ‘empty liquid’ scenario as M
approaches two, i.e. in the presence of ‘chains’ only. The
phenomenology when there are sites of two different kinds
is more rich [6,7] and one can have ‘junctions’, responsible
for a re-entrance of the liquid branch of the binodal, and
‘rings’ [8,9], responsible for a re-entrance also in the gas
branch and the appearance of a second lower critical point.

In our detailed analysis of these results, we show that
all the important conclusions on the qualitative behaviour
of the phase diagrams can be derived uniquely from theo-
retical analytical considerations without the need of inputs
from simulation results. For example, for the case of rings
forming fluids we used as the partition function of an iso-
lated ring the Treloar analytic expression for a freely jointed
chain, unlike Rovigatti et al. [8,9] who use a fit of the MC
data. This approximation makes immediately available a
useful tool of analysis of complex phase diagrams even in
the absence of more accurate but heavy numerical results.

Also, in the case of the more demanding condition of
the presence of X-junctions we find that, when the energy
gain for an X-junction formation, s, is low enough, we
still observe a re-entrant liquid branch for r < 1/2 in the
fluid, eventually with an ‘R’-shaped spinodal in agreement
with the study of Tavares et al. [31]. When s is sufficiently
large, we observe gas–liquid coexistence also at r < 1/3 in
agreement with the predictions of Ref. [44]. In these latter
cases, a gas–liquid coexistence with a critical point at an
extremely low density and temperature, unpredicted by the
work of Tavares et al. [31], can be observed.

Moreover, we have discussed in detail the consistency
between structural and thermodynamic description within
Wertheim perturbation theory and in particular, the valence
as obtained from the thermodynamics and from the struc-
ture. We can conclude that while the overall structural in-
formation underlying the first order perturbative level is
not accurate, the theory provides a consistency condition
on the estimate of bonded particles, which is satisfied only
in the one-site case. An analytical expression for the radial
distribution function and the structure factor has also been
proposed.
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Appendix. The structure factor in the ‘triangular’
approximation

Choosing g0(r) = �(r − σ ) in Equation (54) with m(r) defined as
in Equation (29), we find

S(k) = 1 + 80η
[
(15k3 − 90d4k3Mη − 24d5k3Mη) cos(k)

+ (90d4k3Mη + 24d5k3Mη + 10d3k3)eβε cos(k)

+ 3
√

5k3
√

5 + 4d4Mη(eβε − 1)(15 + 4d) cos(k)

+ (−15k2 + 90d4k2Mη + 24d5k2Mη) sin(k)

+ (−90d4k2Mη − 24d5k2Mη)eβε sin(k)
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+ (15d2k2 + 30)eβε sin(k)

+ − 3
√

5k2
√

5 + 4d4Mη(eβε − 1)(15 + 4d) sin(k)

+ 30(dk cos(k(1 + d)) − sin(k(1 + d)))eβε
]/

[
k5
(

5 +
√

5
√

5 + 4d4Mη(eβε − 1)(15 + 4d)
)2
]

.

(A1)

From this expression, one immediately sees that the high-
temperature limit, β → 0, of the structure factor is independent
from the number of sites, M.
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