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The phase diagram of the penetrable square-well fluid is investigated through Monte Carlo simulations of various
nature. This model was proposed as the simplest possibility of combining bounded repulsions at short scale and
short-range attractions. We prove that the model is thermodynamically stable for sufficiently low values of the
penetrability parameter, and in this case the system behaves similarly to the square-well model. For larger
penetration, there exists an intermediate region where the system is metastable, with well-defined fluid–fluid and
fluid–solid transitions, at finite size, but eventually it becomes unstable in the thermodynamic limit. We
characterize the unstable non-extensive phase appearing at high penetrability, where the system collapses into an
isolated blob of a few clusters of many overlapping particles each.

Keywords: penetrable square-well model; thermodynamic stability; phase diagram; Monte Carlo simulations;
Gibbs ensemble

1. Introduction

Unlike simple fluids, complex fluids are typically
characterized by a significant reduction in the
number of degrees of freedom, in view of the hierarchy
of different length and energy scales involved. As a
result, coarse-grained potentials accounting for effec-
tive interactions between a pair of the complex fluid

units adopt analytical forms that are often quite
different from those considered paradigmatic for
simple fluids [1].

An important example of this class of potentials is
given by those bounded at small separations, thus

indicating the possibility of a partial (or even total)
interpenetration. This possibility, completely unphysi-
cal in the framework of simple fluids, becomes on the
contrary very realistic in the context of complex fluids.
While the true two-body interactions always include a
hard-core part, accounting for the fact that energies
close to contact raise several orders of magnitude,
effective interactions obtained upon averaging micro-
scopical degrees of freedom may or may not present
this feature, depending on the considered particular
system.

Interesting examples with no hard-core part are
given by polymer solutions, where effective polymer–
polymer interactions can be argued to be of the

Gaussian form [2–4], and star polymers and dendri-

mers where the so-called penetrable sphere (PS) model

is frequently employed [5–7].
In spite of their markedly different phase behav-

iours [7], both these effective interactions have the

common attributes of being bounded at zero separa-

tion and lacking an attractive part. The latter feature,

however, appears to be particularly limiting in view of

the several sources of attractive interactions typical of

polymer solution, such as, for instance, depletion

forces [4], that are typically accounted through simple

attractive square-well (SW) tails.
A tentative combining of both the penetrability at

small separation and the attraction at slightly larger

scale, led to the introduction of the penetrable square-

well (PSW) potential [8–12]. This can be obtained

either by starting from the PS model and adding an

attractive well, or by starting from the SW model and

reducing the infinite repulsive energy to a finite one.

In this way, the model is characterized by two length

scales (the soft core and the width of the well) and by

two energy scales, the height �r of the repulsive barrier
and the depth �a of the attractive well.

The ratio �a/�r, hereafter simply referred to as

‘penetrability’, is a measure of the accessibility of the

repulsive barrier and, as we shall see, plays a very
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important role in the equilibrium properties of the

fluid. When �a/�r¼ 0, the PSW model reduces to the PS

model (if kBT/�r¼ finite, where T is the temperature) or

to the SW model (if kBT/�a¼ finite). In the latter case,

the model exhibits a fluid–fluid phase transition for

any width of the attractive square well [13–17], this

transition becoming metastable against the formation

of the solid for a sufficiently narrow well [17].

As penetrability �a/�r increases, different particles

tend to interpenetrate more and more because {this

becomes} energetically favourable (the precise degree

depending on the �a/�r ratio). As a result, the total

energy {may grow} boundlessly to negative values and

the system can no longer be thermodynamically stable.

The next question to be addressed is whether this

instability occurs for any infinitesimally small value �a/
�r40 or, conversely, whether there exists a particular

value where the transition from stable to unstable

regime occurs.
As early as the late 1960s, the concept of a well-

behaved thermodynamic limit was translated into a

simple rule, known as Ruelle’s criterion [18,19], for the

sufficient condition for a system to be stable. In a

previous paper [8], we have discussed the validity of

Ruelle’s criterion for the one-dimensional PSW case

and found that, indeed, there is a well-defined value of

penetrability �a/�r, that depends upon the range of the

attractive tail, below which the system is definitely

stable. Within this region, the phase behaviour of the

fluid is very similar to that of the SW fluid counterpart.

More recently [20], we have tackled the same issue in

the three-dimensional fluid. Here we build upon this

work by presenting a detailed Monte Carlo study of

the phase diagram for different values of penetrability

and well width. In this case the PSW fluid is proven to

satisfy Ruelle’s criterion below a well-defined value of

penetrability that is essentially related to the number of

interacting particles for a specific range of attractive

interaction. For higher values of penetrability, we find

an intermediate region where, although the system is

thermodynamically unstable (non-extensive) in the

limit N!1, it displays a ‘normal’ behaviour, with

both fluid–fluid and fluid–solid transitions, for finite

number of particles N. The actual limit of this

intermediate region depends critically upon the con-

sidered temperatures, densities, and size of the system.

Here the phase diagram is similar to that of the SW

counterpart, although the details of the critical lines

and point location depend upon the actual penetrabil-

ity value. For even higher penetrability, the system

becomes unstable at any studied value of N and the

fluid evolves into clusters of overlapping particles

arranged into an ordered phase at high concentration,

with a phenomenology reminiscent of that displayed
by the PS model, but with non-extensive properties.

The remainder of the paper is organized as follows.
In Section 2 we define the PSW model and in Section 3
we set the conditions for Ruelle’s criterion to be valid.
The behaviour of the system outside those conditions is
studied in Section 4, where we also determine the fluid–
fluid coexistence curves for the PSW model just below
the threshold line found before; in Section 5 we
determine the instability line, in the temperature–
density plane, separating the metastable normal phase
from the unstable blob phase. Section 6 is devoted to
the fluid–solid transition and in Section 7 we draw
some conclusive remarks and perspectives.

2. The penetrable square-well model

The PSW model is defined by the following pair
potential

�ðrÞ ¼

�r, r � �,

��a, �5 r � � þ D,

0, r4 � þ D,

8><
>: ð1Þ

where �r and �a are two positive constants accounting
for the repulsive and attractive parts of the potential,
respectively, D is the width of the attractive square
well, and � is diameter of the repulsive core.

As discussed above, this model encompasses both
the possibility of a partial interpenetration, with an
energy cost typical of the soft-matter interactions given
by �r, and a short-range attraction typical of both
simple and complex fluids given by �a. Both descrip-
tions can be clearly recovered as limiting cases of the
PSW potential: for �r!1 it reduces to the SW model,
while for D¼ 0 or �a¼ 0 one recovers the PS model
[21,22]. Figure 1 displays the characteristics of the
PSW potential (c), along with the two particular cases,
SW (a) and PS (b). The interplay between the two
energy scales �r and �a gives rise to a number of rather
unusual and peculiar features that are the main topic of
this paper.

In order to put the PSW model in perspective, let us
briefly summarize the main features of the SW and PS
potentials.

The SW model has a standard phase diagram
typical of a simple fluid, with fluid–fluid and fluid–
solid transitions in the intermediate range between the
triple and the critical points in the temperature–density
plane. The fluid–fluid transition becomes metastable,
against crystallization, if the width of the well goes
below a certain value that has been estimated to be
D� 0.25� [17].

2 R. Fantoni et al.
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The PS fluid, on the other hand, does not display
any fluid–fluid coexistence, in view of the lack of any
attractive interactions. The fluid–solid transition is,
however, possible and highly unconventional with the
formation of multiple occupancy crystals coupled with

possible reentrant melting in the presence of a

smoother repulsive interaction, such as a Gaussian

form [7,23].
The PSW fluid combines features belonging to both

limiting cases within a very subtle interplay between

the repulsive and attractive energy scale that affects its

thermodynamic stability [8–10].

3. Ruelle’s stability criterion

The issue of thermodynamic stability has a long and

venerable history, dating back to the late 1960s [18],

and it is nicely summarized in Ruelle’s textbook which

is a standard reference for this problem [19].
A system is defined to be (Ruelle) thermodynam-

ically stable [18,19] if there exists a positive number B,

such that for the total potential energy FN for a system

of N particles it holds

FN ��NB: ð2Þ

The physical rationale behind this mathematical state-

ment is that the ratio �FN/N cannot grow unboundly

as N increases if the system is to be well behaved, but

must converge to a well-defined limit. This is usually

referred to as Ruelle’s stability criterion.
Consider the PSW fluid. As density increases and

temperature decreases, particles tend to lump together

into clusters (‘blobs’) as they pay some energetic price

set by �r but they gain a (typically larger) advantage

due to the attraction �a. Therefore, as the ratio �a/�r
increases, one might expect to reach an unstable regime

with very few clusters including a large number of

significantly overlapping particles, so that FN is no

longer proportional to N.
The ratio �a/�r (‘penetrability’) plays in PSW fluids

a very important role, as we shall see in the following

sections. In [10] we proved that the one-dimensional

(1D) PSW fluid satisfies Ruelle’s criterion if �a/�r�
1/2(‘þ 1), where ‘ is the integer part of D/�. In this
case, we are then guaranteed to have a well-defined

equilibrium state.
Here we show that this result can be extended to a

three-dimensional (3D) PSW fluid in that Ruelle’s

criterion is satisfied if �a/�r� 1/fD, where fD is the

maximum number of non-overlapping particles that

can be geometrically arranged around a given one

within a distance between � and �þD. Of course, fD
depends on the width of the attractive interaction D.
For D/�521/2� 1, for instance, one has fD¼ 12,

corresponding to a HCP closed-packed configuration.

In the following, we will use a generic d-dimensional

notation and consider d¼ 3 at the end.

s+ D
− a

r
s

φ

/2s

Ds+( ) /2

(a)

/2s

s + D

r

r
s

f(b)

/2s

Ds +( ) /2

s + D
a

r

r
s

f(c)

–

Figure 1. Sketch of the PSW potential used in the present
work (c). This potential interpolates between the SW
potential (a) and of the PS potential (b). In the SW case
(a), spherical particles have a perfect steric hindrance of size
� (the particle diameter) and attractive interactions of range
�þD highlighted as a halo in the picture. In the PS case (b),
nearest-neighbour particles can partially interpenetrate, with
some energy cost �r, but have no attractive tail. In the PSW
there is both the possibility of partial interpenetration (with
cost �r) and short-range SW attraction (with energy gain �a).
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The total potential energy of a PSW fluid formed
by particles at positions r1,. . ., rN can be written in
general as

FN r1, . . . , rNð Þ ¼
1

2

XN
i¼1

XN
j 6¼i

� ri � rj
�� ��� �

: ð3Þ

Consider now such a configuration where particles
are distributed in M clusters along each direction, each
made of s perfectly overlapped particles, and with
different clusters arranged in the close-packed config-
uration. In the Appendix we prove that indeed this is
the lowest possible energy configuration in the two-
dimensional (2D) case.

The total number of particles is N¼Mds. As
clusters are in a close-packed configuration, particles
of a given cluster interact attractively with all the
particles of those fD clusters within a distance smaller
than �þD. Consequently, the potential energy has the
form

FNðMÞ ¼
1

2
Mds s� 1ð Þ�r �

Md

2
fD � bDðMÞ½ �s2�a: ð4Þ

The first term represents the repulsive energy between
all possible pairs of particles in a given s-cluster, while
the second term represents the attractive energy
between clusters. Here bD(M) accounts for a reduction
of the actual number of clusters interacting attrac-
tively, due to boundary effects. This quantity clearly
depends upon the chosen value of D/� but we can infer
the following general properties

bDð1Þ ¼ fD, bDðM4 2Þ5 fD, lim
M!1

bDðMÞ ¼ 0: ð5Þ

In the 1D (with D/�51) and 2D (with D/�531/2� 1)
cases, FN(M) is given by Equations (16) and (23),
respectively, so that bD(M)¼ 2M�1 (1D) and bD(M)¼
2(4M�1�M�2) (2D). In general, bD(M) must be a
positive definite polynomial of degree d inM�1 with no
independent term}, its form becoming more compli-
cated as d increases. However, we need not specify the
actual form of bD(M) for our argument, but only the
properties given in Equation (5).

Eliminating s¼N/Md in favour of M in
Equation (4) one easily gets

FNðMÞ

N
¼ �

�r
2
þ
N

2
�aM

�dFðMÞ, ð6Þ

where we have introduced the function

FðMÞ � bDðMÞ � fD �
�r
�a

� �
: ð7Þ

Note that F(M) is independent of N. If �a/�r51/fD,
F(M) is positive definite and so FN/N has a lower

bound (��r/2) and the system is stable in the thermo-

dynamic limit. Let us suppose now that �a/�r41/fD. In

that case, F(1)¼ �r/�a40 but limM!1F(M)¼

� (fD� �r/�a)50. Therefore, there must exist a certain

finite value M¼M0 such that F(M)50 for M4M0.

In the 1D (with D/�51) and 2D (with D/�531/2� 1)

cases the values of M0 can be explicitly computed:

M0 ¼ 1�
�r
2�a

� ��1
, ðd ¼ 1Þ, ð8Þ

M0 ¼
2þ ð1þ �r=2�aÞ

1=2

3
1�

�r
6�a

� ��1
, ðd ¼ 2Þ: ð9Þ

In general, it is reasonable to expect that M0�

(1� �r/fD�a)
�1. Regardless of the precise value of M0,

we have that limN!1[�FN(M)]/N¼1 for M4M0

and thus the criterion (2) is violated.
This completes the proof that, if �a/�r51/fD, the

system is thermodynamically stable as it satisfies

Ruelle’s stability criterion, Equation (2).

Reciprocally, if �a/�r41/fD there exists a class of blob

configurations violating Equation (2). In those config-

urations the N particles are concentrated on a finite

(i.e. independent of N) number of clusters, each with a

number of particles proportional to N. For large N the

potential energy scales with N2 and thus the system

exhibits non-extensive properties.
In three dimensions, fD¼ 12, 18, and 42 if D/�5

21/2� 1, 21/2� 15D/�531/2� 1, and 31/2� 15D/�51,

respectively, and so the threshold values are �a/�r¼ 1/12,

1/18, and 1/42, respectively. There might (and do) exist

local configurations with higher coordination numbers,

but only those filling the whole space have to be

considered in the thermodynamic limit.
In general, Ruelle’s criterion (2) is a sufficient but

not necessary condition for thermodynamic stability.

Therefore, in principle, if �a/�r41/fD the system may or

may not be stable, depending on the physical state

(density � and temperature T). However, compelling

arguments discussed in [19] show that the PSW system

with �a/�r41/fD is indeed unstable (i.e. non-extensive)

in the thermodynamic limit for any � and T.

Notwithstanding this, even if �a/�r41/fD, the system

may exhibit ‘normal’ (i.e. extensive) properties at

finite N, provided the temperature is sufficiently high

and/or the density is sufficiently low. It is therefore

interesting to investigate this regime with the specific

goals of (i) defining the stability boundary (if any) and

(ii) outlining the fate of the SW-like fluid–fluid and

fluid–solid lines as penetrability increases. This will be

discussed in the next section, starting from the fluid–

fluid coexistence lines.

4 R. Fantoni et al.
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4. Effect of penetrability on the fluid–fluid

coexistence

We have performed an extensive analysis of the fluid–
fluid phase transition of the three-dimensional PSW
fluid by Gibbs Ensemble Monte Carlo (GEMC)

simulations [24–28]. In all cases we have started with
the SW fluid (�a/�r¼ 0) and gradually increased pen-
etrability �a/�r until disappearance of the transition.
Following standard prescriptions [24–28], we construct

the fluid–fluid coexistence lines using two systems (the
gas and the liquid) that can exchange both volume and
particles in such a way that the total volume V and the
total number of particles N are fixed and the pressure

and chemical potential coincide in both systems.
N¼ 512 particles were used. By denoting with Li and
Vi (i¼ v, l) the respective sizes and volumes of the
vapour and liquid boxes, we used 2N particle random

displacements of magnitude 0.15Li, N/10 random
volume changes of magnitude 0.1 in ln[Vi/(V�Vi)],
and N particle swaps between the gas and the liquid
boxes, on average per cycle.

Our code fully reproduces the results of Vega et al.
[14] for the SW fluid, as further discussed below.

Figure 2 depicts some representative examples of the
effect of penetrability on the SW results at different
well widths D/�. As D/� increases, the upper limit set
by Ruelle’s stability condition �a/�r� 1/fD decreases,

and lower penetrability values �a/�r have to be used to
ensure the existence of the transition line. In Figure 2,
values �a/�r¼ 1/6, 1/8, 1/11 were used for D/�¼ 0.25,
0.5, 1, respectively. Figure 2 also includes an estimate

of the critical points for the PSW fluid obtained from
the law of rectilinear diameters, as discussed in [14],
that is

�l þ �v
2
¼ �c þ AðTc � TÞ, ð10Þ

where �l (�v) is the density of the liquid (vapour) phase,
�c is the critical density and Tc is the critical temper-

ature. Furthermore, the temperature dependence of the
density difference of the coexisting phases is fitted to
the following scaling form

�l � �g ¼ BðTc � TÞ�, ð11Þ

where the critical exponent for the three-dimensional

Ising model �¼ 0.32 was used to match the universal
fluctuations. Amplitudes A and B where determined
from the fit.

A detailed collection of the results corresponding to
Figures 2(a), (b) and (c) is reported in Table 1.

Note that seemingly stable transition curves are
found in all representative cases depicted in Figure 2,

thus suggesting a ‘normal’ fluid behaviour for the

SW
a/  r = 1/6

 a/  r = 1/8

a/  r = 1/11

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k B
T

/  
a

rs3

(a)

SW

1.00

1.05

1.10

1.15

1.20

1.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rs3

(b)

SW

2.30

2.40

2.50

2.60

2.70

2.80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rs3

(c)

k B
T

/  
a

k B
T

/  
a

Figure 2. Fluid–fluid coexistence lines for different well
widths D/� and penetrabilities �a/�r. The SW results are those
by Vega et al. [14] for the same value of D/�. Circles and
boxes represent the estimated critical points for the PSW
and the SW fluids, respectively, and the dotted lines represent
the coexistence curves for the PSW case. (a) D/�¼ 0.25
and �a/�r¼ 1/6; (b) D/�¼ 0.5 and �a/�r¼ 1/8; (c) D/�¼ 1 and
�a/�r¼ 1/11.
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finite-size system studied. Increasing penetrability �a/�r
at fixed D/� progressively destabilize the transition,
until a threshold value (�a/�r)th is reached where no
fluid–fluid transition is observed. Upon changing D/�,
one can then draw a line of this values in the �a/�r and
D/� plane. This is depicted in Figure 3, where the
instability line (�a/�r)th is found to decrease as D/�
increases, thus gradually reducing the region where the
fluid–fluid transition can be observed, as expected. The
shadowed stepwise region identifies the thermodynam-
ically stable region, as guaranteed by Ruelle’s criterion
�a/�r� 1/fD discussed above. Note that points
(D/�¼ 0.25, �a/�r¼ 1/6), (D/�¼ 0.5, �a/�r¼ 1/8), and
(D/�¼ 1, �a/�r¼ 1/11), corresponding to the values
used in Figure 2 and highlighted by circles, lie in the
1/fD� �a/�r� (�a/�r)th region, that is, outside the stable
range guaranteed by Ruelle’s criterion.

5. Stable, unstable, and metastable phases

Interestingly, in Ruelle’s textbook [19], the three-
dimensional PSW model corresponding to point
(D/�¼ 1, �a/�r¼ 1/11) is exploited as an example of
‘catastrophic’ fluid (see especially Figure 4 and prop-
osition 3.2.2 both in [19]). This is clearly because this
state point lies outside the stable region identified by
Ruelle’s criterion, as discussed. As already remarked,
however, this criterion does not necessarily imply that

Table 1. Vapour–liquid coexistence data from GEMC of N¼ 512 PSW particles with D/�¼ 0.25 and �a/�r¼ 1/6 (top table),
D/�¼ 0.5 and �a/�r¼ 1/8 (central table) and D/�¼ 1.0 and �a/�r¼ 1/11 (bottom table). We used 107 MC steps. T, �i, ui, �i are,
respectively, the temperature, the density, the internal energy per particle, and the chemical potential of the vapour (i¼ v) or
liquid (i¼ l) phase (L being the thermal de Broglie wavelength). Numbers in parentheses correspond to the error on the last
digits. The estimated critical points are kBTc/�a¼ 0.762 and �c�

3
¼ 0.307 (top table), kBTc/�a¼ 1.241 and �c�

3
¼ 0.307 (central

table) and kBTc/�a¼ 2.803 and �c�
3
¼ 0.292 (bottom table).

kBT/�a �v�
3 �l�

3 uv/�a ul/�a �v/�a� kBT/�a lnL
3 �l/�a� kBT/�a lnL

3

D/�¼ 0.25, �a/�r¼ 1/6
0.66 0.0377(6) 0.5634(6) �0.343(8) �3.441(13) �2.410(7) �2.51(12)
0.70 0.0724(15) 0.5256(15) �0.614(16) �3.100(13) �2.253(5) �2.27(6)
0.73 0.1093(45) 0.4805(42) �0.862(38) �2.920(45) �2.157(12) �2.29(8)
0.75 0.1684(95) 0.4368(95) �1.204(67) �2.682(27) �2.211(8) �2.01(2)

D/�¼ 0.5, �a/�r¼ 1/8
1.00 0.0194(4) 0.5900(7) �0.254(7) �4.687(9) �4.19(2) �4.16(5)
1.05 0.0319(5) 0.5841(17) �0.400(9) �4.603(14) �4.00(1) �4.01(3)
1.10 0.0529(8) 0.5557(8) �0.651(14) �4.365(6) �3.832(6) �3.83(4)
1.15 0.0799(15) 0.5173(17) �0.934(18) �4.087(15) �3.726(7) �3.76(4)
1.20 0.1342(37) 0.4728(40) �1.464(40) �3.777(26) �3.642(6) �3.64(2)

D/�¼ 1.0, �a/�r¼ 1/11
2.35 0.0327(4) 0.5920(11) �0.693(8) �8.931(12) �8.90(2) �8.87(6)
2.45 0.0476(5) 0.5593(16) �1.004(11) �8.439(21) �8.66(1) �8.61(3)
2.50 0.0577(8) 0.5844(12) �1.201(17) �8.653(17) �8.54(2) �8.59(5)
2.54 0.0670(12) 0.5511(37) �1.377(25) �8.231(42) �8.48(2) �8.51(2)
2.58 0.0769(9) 0.5361(19) �1.556(20) �8.030(22) �8.41(1) �8.38(3)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.25 0.50 0.75 1.00

a/
  r

D/s

Fluid-Fluid transition

SW

1/15
1/11

1/8
1/7
1/6

1/4

( a/  r)th

Stable

No Fluid-Fluid transition

Figure 3. Plot of penetrability �a/�r as a function of D/�. The
displayed (�a/�r)th line separates the parameter region where
the PSW model, with N¼ 512, admits a fluid–fluid phase
transition (below this line) from that where it does not. The
shadowed stepwise line highlights the region (�a/�r� 1/12 for
D/�521/2� 1, �a/�r� 1/18 for 21/2� 15D/�531/2� 1, and
�a/�r� 1/42 for 31/2� 15D/�51) where the model is
guaranteed to be thermodynamically stable for any thermo-
dynamic state by Ruelle’s criterion. The SW model falls on
the �a/�r¼ 0 axis (with finite kBT/�a). The vertical dashed
arrow points to the SW value D/� & 0.25 below which the
fluid–fluid transition becomes metastable against the freezing
transition [17]. The circles are the points chosen for the
calculation of the coexistence lines (Figures 2 and 9), while
the crosses are the points chosen for the determination of the
boundary phases discussed in Figures 5 and 6.
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outside this region the system has to be unstable, but
only that it is ‘likely’ to be so. There are then two
possibilities. First, that in the intermediate region
1/fD� �a/�r� (�a/�r)th the system is indeed stable in the
thermodynamic limit, a case that is not covered by
Ruelle’s criterion. Numerical results reported in
Figures 2 and 3 appear to support this possibility.
The second possibility is that, even in this region, the
system is strictly unstable, in the thermodynamic limit,
but it appears to be a ‘normal’ fluid when considered at
finite N. This possibility cannot be ruled out by any
simulation at finite N, and would be more plausible as
hinted by Ruelle’s arguments.

In order to illustrate the fact that, at finite N, the

system in the intermediate region 1/fD� �a/�r� (�a/�r)th
behaves as a normal fluid, in Figure 4 we show two

representative snapshots of the gas and the liquid

phases at the point (D/�¼ 0.5, �a/�r¼ 1/8) that lies just

below the (�a/�r)th line (see Figure 3). In both the gas

and the liquid phases, the structure of the fluid presents

the typical features of a standard SW fluid, with no

significant overlap among different particles.
On the other hand, we have observed that above

the threshold line (�a/�r)th of Figure 3, at a temperature

close to the critical temperature of the corresponding

SW system, the GEMC simulation evolves towards an

empty box and a collapsed configuration in the

liquid box.
The second scenario described above can be

supported or disproved by a finite-size study of the

N-dependence of the transition, as described below.
Assume that at any finite N, the absolute minimum

of the internal energy corresponds to the ‘collapsed’

non-extensive configurations, referred to as ‘blob

phase’ in the following. As discussed in Section 3, the

internal energy of these configurations scales with N2

for large N. However, the system presumably also

includes a large number of ‘normal’ configurations

with an internal energy that scales linearly with N. This

will be referred to as ‘normal phase’.
There is then an energy gap between the total

energy associated with the normal and the collapsed

configurations with an energy ratio of order N. For

finite N and sufficiently high temperature, the

Boltzmann statistical factor exp(�FN/kBT) of the

collapsed configurations (in spite of the gap) might

not be sufficiently large to compensate for the fact that

the volume in phase space corresponding to normal

configurations has a much larger measure (and hence

entropy) than that corresponding to collapsed config-

urations. As a consequence, the physical properties

look normal and one observes a normal phase. Normal

configurations have a higher internal energy but also

may have a larger entropy. If N is sufficiently small

and/or T is high enough, normal configurations might

then have a smaller free energy than collapsed config-

urations. On the other hand, the situation is reversed at

larger N and finite temperature, where the statistical

weight (i.e. the interplay between the Boltzmann factor

and the measure of the phase space volume) of the

collapsed configurations becomes comparable to (or

even larger than) that of the normal configurations and

physical properties become anomalous. This effect

could be avoided only if T grows (roughly proportional

to N) as N increases, since entropy increases more

slowly with N than FN.

Figure 4. Two GEMC simulation snapshots (N¼ 512) at
D/�¼ 0.5, �a/�r¼ 1/8 (below the threshold value) and
kBT/�a¼ 1.20. The one on the top panel corresponds to the
gas phase (�v�

3
¼ 0.1342), and the one on the bottom to the

liquid phase (�l�
3
¼ 0.4728).
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In a PSW fluid above the stable region (�a/�r4
1/fD), we have then to discriminate whether the system
is truly stable in the thermodynamic limit N!1, or it
is metastable, evolving into an unstable blob phase at a
given value of N depending on temperature and
density.

In order to shed some more light onto this dual
metastable/unstable scenario, we performed NVT
Monte Carlo simulations using N¼ 512 particles ini-
tially distributed uniformly within the simulation box
(‘regular’ initial condition). We carefully monitored the
total potential energy of the fluid during the simulation
and found that, at any given density, there exists
a certain temperature Tins(�), such that the sys-
tem behaves normally after 107N single particle
moves (normal phase) if T4Tins and collapses to
a few clusters of overlapped particles (blob phase)
for T5Tins.

This is shown in Figure 5 for D/�¼ 0.5 and two
different penetrability values: �a/�r¼ 1/4 (upper dashed
line) and �a/�r¼ 1/7 (lower solid line). The first value
lies deeply in the instability region above the threshold
(�a/�r)th value of Figure 3, while the second is sitting
right on its top, for this value D/�¼ 0.5 of the well
width. Also depicted are two snapshots of two repre-
sentative configurations found under these conditions.
While the particles in the normal phase, T4Tins, are
arranged in a disordered configuration that spans the
whole box (see upper snapshot of Figure 5), one can
clearly see that for T5Tins a ‘blob’ structure has
nucleated around a certain point within the simulation

box with a few droplets of several particles each (see
lower snapshot of Figure 5).

The three fluid–fluid coexistence phase diagrams
displayed in Figure 2 are then representative of a
metastable normal phase that persists, for a given N,
up to (�a/�r)th as long as the corresponding critical
point (�c, Tc) is such that Tc4Tins(�c), as in the cases
reported in Figure 2. Below this instability line, the
fluid becomes unstable at any density and a blob
phase, where a few large clusters nucleate around
certain points and occupy only a part of the simula-
tion, is found. The number of clusters decreases (and
the number of particles per cluster increases) as one
moves away from the boundary line found in Figure 5
towards lower temperatures. Here a cluster is defined
topologically as follows. Two particles belong to the
same cluster if there is a path connecting them, where
we are allowed to move on a path going from one
particle to another if the centers of the two particles are
at a distance less than �.

These results, while not definitive, are strongly
suggestive of the fact that even the normal phase is in
fact metastable and becomes eventually unstable in the
N!1 limit.

This can be further supported by a finite size
scaling analysis at increasing N, as reported in Figure 6
in the higher penetrability (and hence most demanding)
case �a/�r¼ 1/4. In obtaining these results, we used
NVT simulations with 1010 single particle moves in all
cases.

As expected, the instability temperature line Tins(�)
moves to higher values as N increases, at fixed density
��3, from N¼ 100 to N¼ 2000, and the normal phase

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0

k B
T

/ a

Ds3

Blob phase

Normal phase

( a/  r) = 1/7( a/  r) = 1/4

Figure 5. Regions of the phase diagram where the PSW
fluid, with D/�¼ 0.5 and two different values of �a/�r, is
expected to exhibit a normal phase (above the instability line)
or a blob phase (below the instability line) for N¼ 512
particles. Note that the instability line corresponding to the
higher penetrability case (�a/�r¼ 1/4, dashed line) lies above
the one corresponding to the lower penetrability (�a/�r¼ 1/7,
solid line). The two insets depict representative snapshots of
respective typical configurations.

1.5

2.0

2.5

3.0

3.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

k B
T

/ a

rs3

Normal phase

N = 100
N = 200
N = 512

N = 2000

Figure 6. Size dependence of the instability line of Figure 5
for the system �a/�r¼ 1/4 and D/�¼ 0.5.
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region significantly shrinks accordingly, being expected
to vanish in the thermodynamic limit N!1.

As said before, in all the above computations we
started with a regular initial condition having all
particles randomly distributed in the entire available
simulation box. Under these circumstances, for
T5Tins (where all particles are confined into a blob
of a few clusters) a large number of MC steps is
required in order to find the true equilibrium distribu-
tion. On the other hand, if we have a clustered
configuration to start with, a much higher ‘melting’
temperature Tins, above which one recovers a normal
phase, is expected. This ‘hysteresis’ effect is indeed
observed, as detailed below.

For �a/�r¼ 1/7, D/�¼ 0.5, and ��3¼ 1.0 the
normal-to-blob transition occurs upon cooling at
kBT/�a� 2.75. Inserting the obtained configuration
back in the MC simulation as an initial condition,
and increasing the temperature, we find the blob phase
to persist up to much higher temperatures kBT/�a� 4.
The hysteresis is also found to be strongly size
dependent. With the same system �a/�r¼ 1/7,
D/�¼ 0.5, but for ��3¼ 0.6, we found the blob-to-
normal melting temperatures to be kBT/�a¼ 2–3 for
N¼ 256, kBT/�a¼ 4–5 for N¼ 512, and kBT/�a¼ 6–7
for N¼ 1024. Analogously, in the state �a/�r¼ 1/4,
D/�¼ 0.5, and ��3¼ 0.3, the results are kBT/�a¼
2.1–2.2, kBT/�a¼ 3.7–3.8, kBT/�a¼ 9.0–9.1, and
kBT/�a¼ 31–32 for N¼ 100, N¼ 200, N¼ 512, and
N¼ 2000, respectively.

In the interpretation of the size dependence of the
hysteresis in the melting, one should also consider the
fact that the blob occupies only part of the simulation
box and therefore a surface term has a rather high
impact on the melting temperature.

Additional insights on the sudden structural change
occurring on the fluid upon crossing the threshold line
(�a/�r)th can be obtained by considering the radial
distribution function (RDF) g(r) [29] on two state
points above and below this line. We consider a state
point at D/�¼ 0.5, kBT/�a¼ 1.20, and ��3¼ 0.7 and
evaluate the RDF at �a/�r¼ 1/8 (slightly below the
threshold line, see Figure 3) and at �a/�r¼ 1/7. The
latter case is sitting right on the top of the threshold
line, according to Figure 3. The results are depicted in
Figure 7.

Drastic changes in the structural properties of the
PSW liquid are clearly noticeable. While in the normal
phase (�a/�r¼ 1/8) the RDF presents the typical
features of a standard fluid for a soft-potential and,
in particular, converges to unity, in the blob phase
(�a/�r¼ 1/7), the RDF presents a huge peak (note the
log-scale) at r¼ 0 and decays to zero after the first few
peaks, a behaviour that is suggestive of clustering and

confinement of the system. The amplitude of the first

maximum in the structure factor grows past the value

of 2.85, which is typically reckoned as an indication for

a freezing occurring in the system, according to [30].
As a further characterization of the structural

ordering of the system, we have also investigated a

set of rotationally invariant local order indicators that

have been exploited often to quantify order in crystal-

line solids, liquids, and colloidal gels [29]:

Ql ¼
4p

2lþ 1

Xl
m¼�l

�Qlm

�� ��2 !1=2

, ð12Þ

where �Qlm is defined as

�Qlm ¼

PNc

i¼1 NbðiÞ �qlmðiÞPNc

i¼1 NbðiÞ
, ð13Þ

where Nc is the number of clusters and

�qlm ið Þ ¼
1

Nb ið Þ

XNb ið Þ

j¼1

Ylm r̂ij
� �

: ð14Þ

Here Nb(i) is the set of bonded neighbours of the ith

cluster, the unit vector r̂ij specifies the orientation of

the bond between clusters i and j, and Ylmðr̂ijÞ are the

corresponding spherical harmonics.
A particularly useful probe of the possible crystal

structure of the system is a value ofQ6 close to unity (see

Appendix A of [29]). Results for Q6 from the PSW

10–2

10–1

100

100

101

102

102

103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

g(
r)

r/s

a/ r = 1/7

a/ r = 1/8

Figure 7. Radial distribution function for the PSW model at
D/�¼ 0.5, kBT/�a¼ 1.20, and ��3¼ 0.7 for two different
values of the penetrability parameter �a/�r: �a/�r¼ 1/8 (lying
below the threshold line given in Figure 3) and �a/�r¼ 1/7
(that is on the top of it). The g(r) axis is in a log scale.
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model are reported in Table 2 for the two values of
penetrability considered in Figure 5 (�a/�r¼ 1/4 and �a/
�r¼ 1/7). In order to compute Q6, the center of mass of
each cluster (as topologically defined before) is
identified. Then, the cutoff distance for the nearest-
neighbours ‘bonds’ is selected to be approximately
equal to the second minimum of g(r)(r� 1.5�). As
detailed in Table 2, we find 0.03�Q6� 0.1 for �a/�r¼
1/4 (top table) and 0.05�Q6� 0.12 for �a/�r¼ 1/7
(bottom table), depending on the considered values of
temperature and density. These values have been
computed with N¼ 512 particles but an increase up to
N¼ 1024 yields only a slight increase of Q6. Besides Q6,
in Table 2 we report other properties of the blob phases
found with D/�¼ 0.5 and �a/�r¼ 1/4 and �a/�r¼ 1/7,
such as the number of clusters and the internal energy
per particle u/�a. We observe that the number of clusters
is rather constant (typically 40–60) for penetrability
�a/�r¼ 1/7. For the higher penetrability �a/�r¼ 1/4 the
number of clusters is generally larger, as expected, but is
quite sensitive to the specific density and temperature
values. As for the internal energy per particle, we
observe that its magnitude is always more than four
times larger than the kinetic contribution 3

2 kBT.

No conclusive pattern appears from the analysis of

results of Table 2, as there seems to be no well-defined

behaviour in any of the probes as functions of

temperature and density, and this irregular behaviour

can be also checked by an explicit observation of the

corresponding snapshots. Nonetheless, these results

give no indications of the formation of any regular

structure.
The final conclusion of the analysis of the fluid–

fluid phase diagram region of the PSW model is that

the system is strictly thermodynamically stable for
�a/�r51/fD and strictly thermodynamically unstable

above it, as dictated by Ruelle’s stability criterion.

However, if �a/�r41/fD there exists an intermediate

region where the system looks stable for finite N and

becomes increasingly unstable upon approaching the

thermodynamic limit.
The next question we would like to address is

whether this scenario persists in the fluid–solid tran-

sition, where already the PS model displays novel and

interesting features. This is discussed in the next
section.

6. The fluid–solid transition

It is instructive to contrast the expected phase diagram

for the SW model with that of the PSW model.
Consider the SW system with a width D/�¼ 0.5

that is a well-studied intermediate case where both a

fluid–fluid and a fluid–solid transition have been

observed [17]. The corresponding schematic phase
diagram is displayed in Figure 8 (top panel), where

the critical point is (kBTc/�a¼ 1.23, �c�
3
¼ 0.309) in the

temperature–density plane, and its triple point is (kBTt/

�a¼ 0.508, Pt�
3/�a¼ 0.00003) in the temperature–pres-

sure plane, with �l�
3
¼ 0.835 and �s�

3
¼ 1.28 [17].

In [17] no solid stable phase was found for tempera-

tures above the triple point, meaning that the melting

curve in the pressure–temperature phase diagram is

nearly vertical (see Figure 8, top panel). Motivated by

previous findings in the fluid–fluid phase diagram,

we consider the PSW model with D/�¼ 0.5 and
two different penetrability values �a/�r¼ 1/15 and

�a/�r¼ 1/8 in the intermediate region 1/fD� �a/�r�
(�a/�r)th (see Figure 3), where one expects a normal

behaviour for finite N, but with different details

depending on the chosen penetrability. In the present

case, the first chosen value (�a/�r¼ 1/15) lies very close

to the boundary (�a/�r¼ 1/fD) of the stability region

predicted by Ruelle’s criterion, whereas the second

chosen value lies, quite on the contrary, close to the

threshold curve (�a/�r)th.

Table 2. Number of clusters, Q6 parameter, and internal
energy per particle for the non-extensive phases found in the
case D/�¼ 0.5 and �a/�r¼ 1/4 (top table) and �a/�r¼ 1/7
(bottom table), just below the curves of Figure 5. The
parameter Q6 was calculated on the final equilibrated particle
configuration only, with a neighbour distance of 1.5� in all
cases.

��3 kBT/�a Nc Q6 u/�a

�a/�r¼ 1/4
0.1 1.0 13 0.04 �60
0.2 1.5 24 0.10 �57
0.3 1.7 115 0.03 �21
0.4 1.9 132 0.05 �19
0.5 2.1 116 0.05 �18
0.6 2.4 98 0.07 �19
0.7 2.6 84 0.04 �18
0.8 2.9 98 0.11 �19
0.9 3.2 74 0.09 �22
1.0 3.6 67 0.05 �23

�a/�r¼ 1/7
0.1 1.0 51 0.12 �25
0.2 1.0 39 0.06 �37
0.3 1.0 41 0.05 �37
0.4 1.0 42 0.07 �33
0.5 1.1 50 0.29 �24
0.6 1.0 38 0.07 �36
0.7 1.7 55 0.05 �22
0.8 2.1 58 0.11 �22
0.9 2.4 60 0.06 �21
1.0 2.8 62 0.06 �21
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We have studied the system by isothermal–isobaric
(NPT ) MC simulations, with a typical run consisting of
108 MC steps (particle or volume moves) with an
equilibration time of 107 steps. We considered N¼ 108
particles and adjusted the particle moves to have
acceptance ratios of approximately 0.5 and volume
changes to have acceptance ratios of approximately 0.1.
Note that the typical relaxation time in the solid region
is an order of magnitude higher than that of the
liquid region.

Consider the case �a/�r¼ 1/8 first. The result for the
isotherm kBT/�a¼ 1 is reported in Figure 9,
this temperature being smaller than the critical one
kBTc/�a¼ 1.241. From this figure we can clearly see the
jumps in the density corresponding to the gas–liquid
coexistence region and to the liquid–solid coexistence
region. On the basis of the obtained results, we can
foresee a phase diagram of the PSW system for this
particular value of penetrability to be the one sketched
in Figure 8 (bottom panel). In particular, the melting
curve has a positive slope in the pressure–temperature
phase diagram, unlike the almost vertical slope of
the SW counterpart, as discussed. This implies that
penetrability allows for a ‘softening’ of the liquid–solid

transition, so the liquid and the solid can coexist at a

temperature higher than the triple one without the

need for a huge increase of pressure.
Next we also consider a fluid with �a/�r¼ 1/15, just

outside the Ruelle stability region, at the same

temperature as before. The results are also reported

in Figure 8 and show no indications of a stable solid in

the considered range of pressures, in agreement with

the fact that at this very low value of penetrability the

behaviour of the system is very close to the SW

counterpart.
A specific interesting peculiarity of the PSW system

in the intermediate region 1/fD� �a/�r� (�a/�r)th of

Figure 3 is a lack of full consistency with known

thermodynamic relations. In this case, in fact, unlike

the SW counterpart, we were unable to trace the

coexistence curve between the liquid and the solid

using Kofke’s method [31,32], which is equivalent to

the numerical integration of the Clausius–Clapeyron

equation

d lnP

d�

� �
c

¼ �
Dh
�PDv

, � �
1

kBT
, ð15Þ

with Dh¼ hl� hs and Dv¼ vl� vs, where hi and vi
denote, respectively, the molar enthalpy and volume of

phase i (i¼ l for the liquid phase and i¼ s for the solid

phase); the subscript c indicates that the derivative is

taken along the coexistence line. Once a single point on

the coexistence curve between the two phases is known

one can use a trapezoid integration scheme [32] to

integrate Equation (15).
In our calculation, we have selected a penetrability

�a/�r¼ 1/8 and the isotherm of Figure 8, kBT/�a¼ 1,
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Figure 8. Schematic phase diagram of the SW fluid for
D/�¼ 0.5 (top panel) and phase diagram of the PSW fluid for
D/�¼ 0.5 and �a/�r¼ 1/8 (bottom panel).
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Figure 9. Isotherm kBT/�a¼ 1 for the PSW system with D/
�¼ 0.5 and �a/�r¼ 1/8 and �a/�r¼ 1/15, as obtained from
NPT MC simulations with N¼ 108 particles. The pressure
axis is in logarithmic scale. Three views of the same snapshot
of the centers of mass of the clusters in the solid are shown on
the right-hand side.
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as a reference point. The coexistence pressure at that
temperature is P�3/�a� 0.475 and the molar volume
jump is Dv/�3� 1/0.775� 1/1.313� 0.529. We have
then calculated themolar enthalpy in theNPT ensemble
by computing hPVþUi/N (whereU is the total internal
energy of the system) with the result
Dh/�a��5.042� (�7.593)¼ 2.551. Choosing a spacing
in � of �0.05/�a we get from Equation (15) a predicted
coexistence pressure P�3/�a� 0.789 at kBT/�a¼
1/0.95. 1.053. Instead, however, at the latter temper-
ature we found the coexistence pressure between 0.5 and
0.6. Despite this quantitative discrepancy, Equation
(15) is useful to understand that the relatively mild slope
of the PSW liquid–solid coexistence line in the pressure–
temperature phase diagram is essentially due to the fact
that the internal energies of the coexisting liquid and
solid phases are not too disparate.

A close inspection of several snapshots of the
obtained solid phase suggests that, in the intermediate
penetrability case, the obtained crystal is made of
clusters of overlapping particles located at the sites of a
regular crystal lattice with Q6� 0.35 [29] and a triclinic
structure characterized by a unit cell of sides
a¼ b¼ c¼ � and angles �¼ �¼	/3 and 
¼ cos�1(1/4)
(see three views of a common snapshot in Figure 9).

It is worth stressing that the additional degree of
penetrability, not present in the SW counterpart, is
responsible for the coexistence of the liquid and the
solid at not excessively large pressures. Clearly, we
cannot rule out the possibility of other additional
solid–solid coexistence regions at higher pressures.

7. Conclusions

In this paper, we have studied the phase diagram of the
three-dimensional PSW model. This model combines
penetrability, a feature typical of effective potential in
complex fluids, with a square-well attractive tail,
accounting for typical effective attractive interactions
that are ubiquitous in soft matter. It can then be
regarded as the simplest possible model smoothly
interpolating between PS (�a/�r! 0, kBT/�r¼ finite)
and SW (�a/�r! 0, kBT/�a¼ finite) fluids, as one
changes penetrability �a/�r and temperature.

We have proved that the model is thermodynam-
ically stable when �a/�r51/fD, as it satisfies Ruelle’s
stability criterion [19]. Above this value, the fluid is,
strictly speaking, unstable in the thermodynamic limit,
exhibiting non-extensive properties. For finite N,
however, it displays a rather rich and interesting
phenomenology. In particular, there exists an interme-
diate region 1/fD� �a/�r� (�a/�r)th in the penetrability-
width plane (see Figure 3) where the fluid displays

normal or anomalous behaviour depending on the
considered temperatures and densities. For sufficiently
large temperatures (T4Tins(�)) the fluid presents a
metastable normal behaviour with (apparently) stable
liquid–liquid and liquid–solid transitions, provided the
relative critical temperatures are above the instability
line T¼Tins. In this case, we have studied the effect of
penetrability on the fluid–fluid transition (see Figure 2)
close to the threshold line (�a/�r)th and found that in
general the transition has a higher critical temperature
than the SW counterpart. We have attributed this
result to the additional degree of freedom given by
penetrability that tends to oppose the formation of a
crystal until a sufficient large density is achieved.

Below the instability line Tins(�), however, different
particles tend to overlap into a few isolated clusters
(blobs) confined in a small portion of the available
volume and the total energy no longer scales linearly
with the number of particles N. As a consequence, the
fluid becomes thermodynamically unstable and its
properties very anomalous (Figure 5). The metastable
region shrinks as either �a/�r or N increase (Figure 6).

Above the threshold line (�a/�r)th (see Figure 3) the
fluid–fluid coexistence disappears, since in this case
Tins is too high to allow any phase-separation (for a
given N).

An additional interesting feature of the metastable/
unstable dualism is included in the hysteresis depen-
dence on the initial condition. When the initial
configuration is an unstable one (i.e. a blob) the
system melts back to a normal phase at temperatures
that are in generally significantly higher than those
where the transition normal-to-blob is achieved upon
cooling. We have attributed this behaviour to the small
statistical weight of the blob configuration in the
Boltzmann sampling, in spite of its significantly larger
energetic contribution.

We have also studied the fluid–solid transition in
the intermediate metastable region 1/fD� �a/�r�
(�a/�r)th. We find that the solid density typically
increases with respect to the corresponding SW case,
due to the formation of clusters of overlapping
particles in the crystal sites, as expected on physical
grounds. The melting curve is found to have a
relatively smooth positive slope, unlike the SW coun-
terpart, and this anomalous behaviour is also reflected
in the thermodynamic inconsistency present in the
Clausius–Clapeyron thermodynamic equation, thus
confirming the metastable character of the phase.
When penetrability is sufficiently low to be close to the
Ruelle stable region, the system behaves as the
corresponding SW system.

One might rightfully wonder whether the finite N
metastable phase presented here should have any
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experimental consequence at all. We believe the answer
to be positive. Imagine being able to craft, through a
clever chemical synthesis process, a fluid that may be
described by an effective interaction of the PSW form.
Our work has then set the boundary for observing a
very intriguing normal-to-collapsed phase by either
tuning the temperature/density parameters, or by
increasing the number of particles in the fluid. In this
case, it is the finite N state, rather than the true
thermodynamic limit N!1, the relevant one.
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Appendix 1. Ruelle’s stability criterion in d^ 2

Let us consider the two-dimensional PSW model character-
ized by �a/�r and D/�531/2� 1. The latter condition implies
that in a hexagonal close-packed configuration a particle can
interact attractively only with its nearest neighbours, so that
fD¼ 6.

Given the number of particles N, we want to get the
configuration with the minimum potential energy FN. We
assume that such a configuration belongs to the class of
configurations described by m rows, each row made of M
clusters, each cluster made of s perfectly overlapped particles.
The centers of two adjacent clusters (in the same row or in
adjacent rows) are separated a distance �. The total number
of particles is N¼mMs. Figure 10 shows a sketch of a
configuration with m¼ 4 rows and M¼ 6 clusters per row.
The potential energy of an individual row is the same as that
of the one-dimensional case [8], namely

Frow ¼Ms
s� 1

2
�r � M� 1ð Þs2�a: ð16Þ

The first term accounts for the repulsive energy between all
possible pairs of particles in a given s-cluster, while the
second term accounts for attractions that are limited to
nearest neighbours if D/�531/2� 1 in d¼ 2. The potential
energy of the whole system is mFrow plus the attractive
energy of nearest-neighbour clusters sitting on adjacent rows
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(and taking into account the special case of boundary rows).
The result is

FNðm, sÞ ¼ m Ms
s� 1

2
�r � M� 1ð Þs2�a

� �
� ðm� 1Þ 1þ 2ðM� 1Þ½ �s2�a

¼ N
s� 1

2
�r �

3m� 2

m
N� ð2m� 1Þs

� �
s�a: ð17Þ

For a given number of rows m, the value of s that minimizes
FN(m, s) is found to be

s	ðmÞ ¼ N
3m� 2

2mð2m� 1Þ
1�

m

2ð3m� 2Þ

�r
�a

� �
, ð18Þ

which is meaningful only if �a/�r4m/2(3m� 2)41/6.
Otherwise, s	(m)¼ 1. Therefore, the corresponding minimum
value is

F	NðmÞ � FNðm, s	ðmÞÞ

¼ �
N

2
�r

1þN
ð3m� 2Þ2

2m2ð2m� 1Þ

�a
�r

1�
m

2ð3m� 2Þ

�r
�a

� �2
,

�a
�r

4
m

2ð3m� 2Þ
,

2
3m� 2

m
�
2m� 1

N

� �
�a
�r
,

�a
�r

5
m

2ð3m� 2Þ
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

Let us first suppose that �a/�r51/6. In that case, �a/�r5
m/2(3m� 2) regardless of the value of m� 1 and, according
to Equation (19), the minimization of F	NðmÞ is achieved with
m¼M¼N1/2. As a consequence, Ruelle’s stability criterion
(2) is satisfied in the thermodynamic limit with B¼ 3�a.

Let us now minimize F	NðmÞ with respect to m if �a/�r4
m/2(3m� 2). This yields the quadratic equation (6� �r/�a)

m2
� 12mþ 4¼ 0, whose solution is

m		 ¼
2

3� ð3þ �r=�aÞ
1=2
: ð20Þ

The condition �a/�r4m		/2(3m		� 2) is easily seen to be
equivalent to the condition �a/�r41/6. Therefore, the abso-
lute minimum of the potential energy in that case is

F		N �F	Nðm		Þ

¼�
N

2
�r 1þ

N

8

�a
�r

3�ð3þ �r=�aÞ
1=2

� �3
1þð3þ �r=�aÞ

1=2
� �� �

:

ð21Þ

The corresponding value of s	 is

s		 � s	ðm		Þ ¼
N

4
3� ð3þ �r=�aÞ

1=2
� �2

: ð22Þ

Comparison between Equations (20) and (22) shows that
N ¼ m2

		s		, i.e. the number of clusters per row equals the
number of rows, M		¼m		, as might have been anticipated
by symmetry arguments.

Equation (21) shows that, if �a/�r41/6,
limN!1ð�F		N Þ=N ¼ 1 and thus Ruelle’s stability condition
(2) is not fulfilled.

We could have restricted to a symmetric arrangement
from the very beginning, i.e. m¼M and N¼M2s, in which
case Equation (17) yields

FNðM,s¼N=M2Þ ¼M2s
s�1

2
�r� 3M2�4Mþ1

� �
s2�a

¼
N

2

N

M2
�1

� �
�r� 3M2�4Mþ1

� �N2

M4
�a:

ð23Þ

The minimum value (if �a/�r41/6) corresponds to the value
M¼m		 given by Equation (20), as expected.

Figure 10. Sketch of a configuration with m¼ 4 rows and
M¼ 6 clusters per row.
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