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Abstract. In our previous work (Fantoni 2018 Int. J. Mod. Phys. C 29
1850064) we studied, through a computer experiment, a one-component fermion
plasma on a sphere at finite, non-zero temperature. We extracted thermodynamic
properties, such as the kinetic and internal energy per particle, and structural
properties, such as the radial distribution function, and produced some snap-
shots of the paths to study their shapes. Here, we revisit this study, giving more
theoretical details explaining the path shape anisotropic conformation due to the
inhomogeneity in the polar angle of the variance of the random walk diffusion
from the kinetic action.
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1. Introduction

In our work in [1] we studied, through restricted path integral Monte Carlo, a one-
component fermion plasma on a sphere of radius a at finite, non-zero, absolute temper-
ature T. We extracted thermodynamic properties like the kinetic and internal energy
per particle and structural properties like the radial distribution function, and produced
some snapshots of the paths to study their shapes.

Our results extend to the quantum regime the previous non-quantum results
obtained for the analytically exactly solvable plasma on curved surfaces [2–7] and for
its numerical Monte Carlo experiment [8]. In particular, we show how the configuration
space (see figure 1 of [1]) appears much more complicated than in the classical case (see
figures 5 and 6 of [8]). The first notable phenomenon is the fact that whereas the particle
distribution is certainly isotropic, the path conformation is not. Some paths tend to wind
around the sphere running along the parallels in proximity to the poles, while others
run along the meridians in proximity to the equator. This is a direct consequence of
the coordinate dependence of the variance of the diffusion. At high temperatures, the
paths tend to be localized, whereas at low temperatures, they tend to be delocalized
and distributed over a larger part of the surface with long links between the beads.

The plasma is an ensemble of point-wise electrons that interact through the Coulomb
potential, assuming that the electric field lines can permeate the three-dimensional space
where the sphere is embedded. The system of particles is thermodynamically stable even
if the pair-potential is purely repulsive because the particles are confined to the compact
surface of the sphere, and we do not need to add a uniform neutralizing background as
in the Wigner Jellium model [9–13]. Therefore, our spherical plasma made of N spinless
indistinguishable electrons of charge −e and mass m will carry a total negative charge
−Ne, a total mass Nm, and will have a radius a.

In this work, we conduct a thought computer experiment such as the one carried
out in [1] in order to extract some theoretical conclusions on the path shape and con-
formation and try to explain the results found in [1].

Our study can be used to predict the properties of a metallic spherical shell, such as a
spherical shell of graphene. Today, we assisted to a rapid development of the laboratory
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realization of graphene hollow spheres [14, 15] with many technological interests. These
are used as electrodes for supercapacitors and batteries, as superparamagnetic materials,
as electrocatalysts for oxygen reduction, in drug delivery, and as a conductive catalyst
for photovoltaic applications [16–24]. Of course, with simulation we can access the more
various and extreme conditions otherwise not accessible in a laboratory.

A possible further study would be the simulation of the neutral sphere, where we
model the plasma of electrons embedded in a spherical shell that is uniformly positively
charged in such a way that the system is globally neutrally charged. This could easily
be done by changing the Coulomb pair-potential into e2/r→ e2(1/r− 1). In the a→∞
limit, this would reduce to the Wigner Jellium model that has received much attention
lately, from the point of view of a path integral Monte Carlo simulation [1, 25–33].
Alternatively, we could study the two-component plasma on the sphere, as has recently
been done in the tridimensional Euclidean space [33]. Another possible extension of our
work is the realization of the simulation of the full anyonic plasma on the sphere, taking
appropriate care of the fractional statistics and the phase factors to append to each
disconnected region of the path integral expression for the partition function [1]. This
could become important in a study of the quantum Hall effect by placing a magnetic
Dirac monopole at the center of the sphere [34, 35]. In addition, the adaptation of our
simulation to a fully relativistic Hamiltonian could be of some interest in the study of
graphinos.

The paper is organized as follows: in section 2 we describe the thought system
and the method used for its study, in section 3 we present our theoretical study and
predictions, and section 4 contains the concluding discussion.

2. The problem

A point q on the sphere of radius a, the surface of constant positive curvature, is
given by

r/a= sinθ cosφx̂+ sinθ sinφŷ+ cosθẑ, (2.1)

where θ is the polar angle and φ is the azimuthal angle. The N particle positions are
at R= (r1,r2, . . . ,rN ). The surface density of the plasma will then be σ =N/4πa2. On
the sphere we have the following metric:

ds2 = gµνdqµdqν = a2
[
dθ2+ sin2 θdφ2

]
, (2.2)

where Einstein summation convention on repeated indices is assumed. We will use
Greek indices for either the surface components or the surface components of each
particle coordinate and Roman indices for either the particle index or the time-slice
index, q1 = θ ∈ [0,π), q2 = φ ∈ [−π,π), and the positive definite and symmetric metric
tensor is given by

gµν =

(
a2 0
0 a2 sin2 θ

)
. (2.3)
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We have periodic boundary conditions in θ+π = θ and in φ+2π = φ. We will also
define Q= (q1,q2, . . . ,qN ). The geodesic distance between two infinitesimally close

points Q and Q ′ is ds2(Q,Q ′) =
∑N

i=1ds2(qi,q
′
i), where the geodesic distance between

the points q and q ′ on the sphere is

s(q,q ′) = aarccos
[
cos(q1)cos(q1 ′)+ sin(q1)sin(q1 ′)cos(q2− q2

′
)
]
.

(2.4)

The Hamiltonian of the N non-relativistic indistinguishable particles of the one-
component spinless fermion plasma is given by

H= T +V =−λ
N∑
i=1

∆i+
∑
i<j

vij, (2.5)

with λ= h̄2/2m, where m is the electron mass, and ∆i = g
−1/2
i ∂(g

1/2
i gµνi ∂/∂qνi )/∂q

µ
i the

Laplace–Beltrami operator for the ith particle on the sphere of radius a in local coordin-
ates, where gµαg

αν = δνµ and gi = det ||gµν(qi)||. We have assumed that H in curved space
has the same form as in flat space. For the pair-potential, v, we will choose

vij = e2/rij, (2.6)

where e is the electron charge and r ij is the Euclidean distance between two particles
at qi and qj , which is given by

rij = a
√
2− 2r̂i · r̂j = 2asin[arccos(r̂i · r̂j)/2], (2.7)

where r̂i = ri/a is the versor that from the center of the sphere points toward the center
of the ith particle. So, the electrons move on a spherical shell with the electric field
lines permeating the surrounding three-dimensional space, but they do not live in the
shell.

Given the antisymmetrization operator A=
∑

P /N !, where the sum runs over
all particle permutations P, and the inverse temperature β = 1/kBT , where kB is
Boltzmann’s constant, the one-component fermion plasma density matrix, ρF =Ae−βH,
in the coordinate representation, on a generic Riemannian manifold of metric g
[5, 36], is

ρF(Q
′,Q;β) =

ˆ
ρF(Q

′,Q((M − 1)τ);τ) · · ·ρF(Q(τ),Q;τ)
M−1∏
j=1

√
g̃( j)

N∏
i=1

dq1i (jτ)∧dq2i (jτ) , (2.8)

where as usual we discretize the imaginary thermal time in bits τ = h̄β/M . We will often

use the following shorthand notation for the path integral measure:
∏M−1

j=1

√
g̃(j)

∏N
i=1

dq1i (jτ)∧ dq2i (jτ)→DQ as M →∞. The path of the ith particle is given by {qi(t)|t ∈
[0, h̄β]} with t the imaginary thermal time. Each qi(jτ) with i = 1, . . . ,N and j =
1, . . . ,M represents the various beads forming the discretized path. The N particle path
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is given by {Q(t)|t ∈ [0, h̄β]}. Moreover,

g̃(j) = det ||g̃µν(Q(jτ))||, j = 1,2, . . . ,M − 1, (2.9)

g̃µν(Q) = gα1β1(q1)⊗ . . .⊗ gαNβN (qN ), (2.10)

In the small τ limit, we have

ρF(Q(2τ),Q(τ);τ)∝A
[
g̃
−1/4
(2)

√
D(Q(2τ),Q(τ);τ)g̃

−1/4
(1) eλτR(Q(τ))/6h̄e− 1

h̄
S(Q(2τ),Q(τ);τ)

]
,

(2.11)

where A can act on the first, the second, or on both time slices. R(Q) is the scalar
curvature of the curved manifold, S is the action and D is van Vleck’s determinant

Dµν =
∂2S(Q(2τ),Q(τ);τ)

∂Qµ(2τ)∂Qν(τ)
, (2.12)

det ||Dµν ||=D(Q(2τ),Q(τ);τ), (2.13)

where here the Greek index denotes the two components of each particle coordinate.
For the action and the kinetic action, we have

S(Q ′,Q) =K(Q ′,Q)+U(Q ′,Q), (2.14)

K(Q ′,Q) =Nh̄ ln(4πλτ/h̄)+ h̄2s2(Q ′,Q)

4λτ
, (2.15)

where in the primitive approximation [37] we find the following expression for the inter-
action,

U(Q ′,Q) =
τ

2
[V (Q ′)+V (Q)], (2.16)

V (Q) =
∑
i<j

vij. (2.17)

In particular, the kinetic action is responsible for the diffusion of the random walk with
a variance of 2λτgµν/h̄.

On the sphere, we have R=NR with R= 2/a2, the scalar curvature of the

sphere of radius a, and in the M →∞ limit s2(Q ′,Q)→ ds2(Q ′,Q) and g̃
−1/4
(2)√

D(Q(2τ),Q(τ);τ) g̃
−1/4
(1) →

(
h̄2/2λτ

)N
[38]. We recover the Feynman–Kac path integ-

ral formula on the sphere in the τ → 0 limit. We will then have to deal with 2NM mul-
tidimensional integrals for which Monte Carlo [39] is a suitable computational method.
For example, to measure an observable O we need to calculate the following quantity:

⟨O⟩=
´
O(Q,Q ′)ρF (Q

′,Q;β)dQdQ ′´
ρF(Q,Q;β)dQ , (2.18)
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where
√
g̃
∏N

i=1 dq1i ∧ dq2i ≡ dQ. Notice that most of the properties that we will meas-
ure are diagonal in coordinate representation, requiring then just the diagonal density
matrix, ρF(Q,Q;β).

For example, for the density ρ(q) = ⟨O⟩ with

O(Q;q) =
N∑
i=1

δ(2)(q− qi), (2.19)

where δ(2)(q) = δ(q1)δ(q2) and δ is the Dirac delta function. Clearly
´
σ(q)

√
g(q)dq =N

and a uniform distribution of electrons is signaled by a constant density throughout the
surface of the sphere.

Fermion properties cannot be calculated exactly with the path integral Monte Carlo
because of the fermion sign problem [40, 41]. We then have to resort to an approximated
calculation. The one we chose in [1] was the restricted path integral approximation [40,
41] with a ‘free fermion restriction’. The trial density matrix used in the restriction is
chosen as the one reducing to the ideal density matrix in the limit of t≪ 1, and is given
by

ρ0(Q
′,Q; t)∝A

∣∣∣∣∣∣∣∣e− h̄s2(q ′i ,qj )
4λt

∣∣∣∣∣∣∣∣ . (2.20)

The restricted path integral identity that can be used [40, 41] is as follows: mathindent0pt

ρF(Q
′,Q;β)∝

ˆ √
g̃ ′ ′dQ ′ ′ρF(Q

′ ′,Q;0)

˛
Q ′ ′→Q ′∈γ0(Q)

DQ ′ ′ ′ e−S[Q ′ ′ ′]/h̄,

(2.21)

where S is the Feynman–Kac action

S[Q] =

ˆ h̄β

0

dt
[
h̄2

4λ
Q̇µQ̇

µ
+V (Q)

]
, (2.22)

where the dot indicates a total derivative with respect to the imaginary thermal time,
and the subscript in the path integral of equation (2.21) means that we restrict the
path integration to paths starting at Q ′ ′, ending at Q ′ and avoiding the nodes of ρ0,
that is to the reach of Q, γ0. The nodes are on the reach boundary ∂γ0. The weight
of the walk is ρF(Q

′ ′,Q;0) =Aδ(Q ′ ′ −Q) = (N !)−1
∑

P(−)P δ(2N)(Q ′ ′ −PQ), where
the sum is over all the permutations P of the N fermions, (−)P is the permutation
sign, positive for an even permutation and negative for an odd permutation, and δ
is a Dirac delta function. It is clear that the contribution of all the paths for a single
element of the density matrix will be of the same sign, thus solving the sign problem; it is
positive if ρF(Q

′ ′,Q;0)> 0, and negative otherwise. On the diagonal, the density matrix
is positive and on the path restriction ρF(Q

′,Q;β)> 0 then only even permutations
are allowed since ρF(Q,PQ;β) = (−)PρF(Q,Q;β). It is then possible to use a boson
calculation to get the fermion case. Clearly, the restricted path integral identity with
the free fermion restriction becomes exact if we simulate free fermions, but otherwise is
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just an approximation. The approximation is expected to improve at low density and
high temperature, i.e. when correlation effects are weak. The implementation of the
restricted, fixed-node, path integral identity within the worm algorithm was also the
subject of our previous study on the three-dimensional Euclidean Jellium [11].

In [1] we worked in the grand canonical ensemble with fixed chemical potential µ,
surface area A= 4πa2, and absolute temperature T. At a higher value of the chem-
ical potential we will have a higher number of particles on the surface and a higher
density. On the other hand, increasing the radius of the sphere at constant chemical
potential will produce a plasma with lower surface density. The Coulomb coupling con-
stant is Γ = βe2/a0rs with a0 = h̄2/me2 the Bohr radius and rs = (4πσ)−1/2/a0. At weak
coupling, Γ≪ 1, the plasma becomes weakly correlated and approaches the ideal gas
limit. This will occur at high temperatures and/or low densities. The electron degen-
eracy parameter is Θ = T/TD, where the degeneracy temperature TD = σh̄2/mkB. For
temperatures higher than TD, Θ≫ 1, the quantum effects are less relevant.

3. Theoretical study

In order to understand the anisotropic conformation of the path snapshots and their
dependence on the azimuthal angle φ and polar angle θ, we observe that in the primitive
approximation we have in the path integral a weight factor ∝ exp(−h̄ds2/4λτ) stemming
from the kinetic part of the action, where ds2 is given by equation (2.2). In particular,
we see that if we are near the poles, θ≈ 0 or π, then ds2 ≈ a2dθ2 and we see that it
costs nothing to change the azimuthal angle. This explains the paths winding along the
parallels in proximity to the poles. On the other hand, near the equator, at θ ≈ π/2, we
find ds2 ≈ a2(dθ2+ dφ2) so that the paths will tend to wander around the equator in
no particular direction.

The same can be seen when studying the behavior of the finite geodesic distance
of equation (2.5). In figure 1 we show a three-dimensional plot for θ ′ = 0.2 and φ ′ = 0.
Again, we see that around the pole at θ≈ 0 it costs nothing to change φ, that is, to
go along a parallel, while a path traveling along a meridian will be unfavored since we
need to increase θ. In figure 2 we show a three-dimensional plot for θ ′ = π/2 and φ ′ = 0.
We now see that around the equator at θ ≈ π/2 a path wandering around the initial
position is favored, with no preferred direction along the parallels or the meridians.

Clearly, if we rotate the sphere, the path shape will simply rotate following the rota-
tion of its poles. This anisotropy of the path conformations is rather counter-intuitive
since the sphere is notoriously isotropic, but it reflects the inhomogeneity of the metric
with respect to the polar angle.

It is important to distinguish the effect that we just described due to the weight
factor ∝ exp(−h̄ds2/4λτ) stemming from the kinetic part of the primitive action from

the measure factor
∏M

j=1

√
g̃(j) also entering the path integral. This last factor, being

also independent of the azimuthal angles, will produce the same local density ρ(q) under
a rotation of the sphere around its axis through the poles. As a result, by isotropy, we
conclude that the density must be a constant under any rotation, which means that the
plasma must be uniform [5].
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Figure 1. Three-dimensional plot of the geodesic distance of equation (2.5) for
θ ′ = 0.2 and φ ′ = 0. From the surface graph we see how in the proximity of the
poles the geodesic distance between points moving along parallels is small, while it
increases rapidly if one moves along the meridians.

Figure 2. Three-dimensional plot of the geodesic distance of equation (2.5) for
θ ′ = π/2 and φ ′ = 0. From the surface graph we see how in the proximity of the
equator the geodesic distance between points moving in circles in the (θ,φ) plane
is small, while it increases rapidly if one moves along the parallels.

The temperature dependence can also be easily explained. At high temperature, β
is small, Θ≫ 1, and the path extending from t =0 to t= h̄β will be localized, of a
small size, and quantum effects will be less relevant. Meanwhile, at low temperature,
β is large, Θ≪ 1, and the path will be delocalized, increased in size, it diffuses more
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Figure 3. Snapshot of the macroscopic path during a simulation. The different
paths have different colors. The simulation parameters specifying the thermody-
namic conditions are as follows: a= 5,λ= 1,β = 5,µ= 8.

on the surface, and quantum effects are more relevant. Usually, we are interested in
measuring observables that are diagonal so that when dealing with the diagonal density
matrix ρF(Q,Q;β) we will observe ring paths, such that Q(0) =Q(h̄β). Moreover, at
high temperature, the diagonal density matrix will involve almost straight localized
ring paths closing themselves on the identity permutation. At low temperatures, the
delocalized paths will eventually wind through the h̄β periodicity by means of several
different permutations P, so that Q(0) = PQ(h̄β) and so on. Any permutation can be
broken into a product of cyclic permutations. Each cycle corresponds to several paths
‘cross-linking’ and forming a larger ring path. Quantum mechanically, the plasma does
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this to lower its kinetic energy. According to Feynman’s 1953 theory [37], the super-
conductor transition is represented by the formation of macroscopic paths, i.e. those
stretching across the whole sphere and involving on the order of N electrons. In other
words, the ring paths percolate through the periodic boundary conditions θ = θ+π and
φ = φ+2π by means of permutations.

In figure 3 we show a snapshot of the macroscopic path during a simulation of [1].

4. Conclusions

In this work we revised our restricted path integral Monte Carlo simulation [1] of a
one-component spinless fermion plasma at finite, non-zero temperature on the surface
of a sphere. The Coulomb interaction is e2/r with r the Euclidean distance between two
electrons of elementary charge e (we could also have chosen instead of r the geodesic
distance, s, within the sphere). This gives us an approximated numerical solution of
the many-body problem. The exact solution cannot be accessed due to the fermion sign
catastrophe. Impenetrable indistinguishable particles on the surface of a sphere admit,
in general, anyonic statistics [42]. Here, we just project the larger braid group onto the
permutation group and choose the fermion sector for our study.

The path integral Monte Carlo method chosen in [1] used the primitive approxima-
tion for the action, which can be improved, for example, by the use of the pair-product
action [37]. The restriction was carried out choosing as guiding trial density matrix the
one of ideal free fermions. This choice would of course return an exact solution for the
simulation of ideal fermions, but it furnishes just an approximation for the interacting
coulombic plasma.

In this work we showed how the conformation anisotropy of the paths observed in
the simulations of [1] can be explained through the inhomogeneous nature of the metric
in the polar angle, or equivalently, from the inhomogeneous nature of the geodesic
distance on the surface of the sphere. This is ultimately due to the fact that the metric
enters with the negative sign in the exponent of the primitive approximation of the
density matrix. We should not confuse the anisotropy in the path conformation with
the fact that the plasma will always be homogeneous (with a constant local density
ρ) on the sphere. In the degenerate regime (low T ) the observed strong anisotropy in
the path conformation near the poles or the equator of the sphere should also be due
to a peculiar behavior in the properties of the N -particle off-diagonal density matrix.
This, as is well known, is directly related to a number of physical properties, such as
the quasi-particle excitation spectrum and the momentum distribution. Therefore, the
system properties can deviate significantly from just a pure homogeneous 2D system,
and the inhomogeneous nature of the space metric is of particular importance.

We also suggest the possibility to observe a superconducting plasma at low tem-
perature when we observe ring paths percolating through the periodic boundary con-
ditions θ = θ+π and φ = φ+2π by means of permutations, even if some care has to
be addressed to take into account the peculiar asymptotic behavior of the one-particle
density matrix.
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