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We study the effects of size polydispersity on the gas-liquid phase behavior of mixtures of sticky
hard spheres. To achieve this, the system of coupled quadratic equations for the contact values of the
partial cavity functions of the Percus-Yevick solution [R. J. Baxter, J. Chem. Phys. 49, 2770 (1968)]
is solved within a perturbation expansion in the polydispersity, i.e., the normalized width of the size
distribution. This allows us to make predictions for various thermodynamic quantities which can be
tested against numerical simulations and experiments. In particular, we determine the leading order
effects of size polydispersity on the cloud curve delimiting the region of two-phase coexistence and
on the associated shadow curve; we also study the extent of size fractionation between the
coexisting phases. Different choices for the size dependence of the adhesion strengths are examined
carefully; the Asakura-Oosawa model [J. Chem. Phys. 22, 1255 (1954)] of a mixture of
polydisperse colloids and small polymers is studied as a specific example. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2358136]

I. INTRODUCTION

In the context of soft matter, a number of systems are
known to display a combination of a very steep repulsion
and a short ranged attraction. This includes, for instance,
polymer-coated colloids,' globular proteins,3 and
microemulsions.” In spite of the notable differences in the
details of the interactions among these systems, most of the
common essential features are captured by a paradigmatic
model known as the adhesive or sticky hard sphere model.
Sticky hard spheres are impenetrable particles of diameters
{o;} with adhesive surfaces. The simplest way of describing
the adhesion properties, in the framework of atomic fluids,
was originally proposed by Baxter’ in terms of a potential
where energy and length scales were combined into a single
parameter, thus defining the so-called sticky hard sphere
(SHS) potential. Baxter showed that for this model the
Ornstein-Zernike integral equation determining the correla-
tion functions in the liquid state admitted an analytic solution
within the Percus-Yevick (PY) approximation. Together with
his collaborators, he predicted from this solution (via both
the compressibility and the energy routes of liquid state
theory) that the model displays a gas-liquid transition.*” This
PY solution was soon extended to mixtures® "' and has since
found a number of interesting applications in the area of
colloidal suspensions.l’z’lz_15 When studying the phase be-
havior of such fluids an important issue to deal with is the
fact that colloidal particles are generally not identical but
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may have different characteristics (size, charge, chemical
species, etc). Often, the distribution of the relevant parameter
is effectively continuous, and the fluid is then referred to as
polydisperse. We will focus in this paper on size polydisper-
sity, i.e., a fluid with a distribution of particle diameters. (A
small degree of size polydispersity is, in fact, required to
resolve thermodynamic pathologies which occur in the case
of strictly equal-sized, i.e., monodisperse, sticky hard
spheres.lﬁ) The particle size distribution is fixed when the
particles are synthesized. Thereafter, only the overall density
can be modified by adding or removing a solvent, while
keeping constant all ratios of densities of particles of differ-
ent sizes; this traces out a so-called “dilution line” in the
phase diagram.

Given the success of the PY closure for the monodis-
perse SHS model, it is natural to try to extend it to the poly-
disperse case. Unfortunately, the PY approximation is trac-
table only for mixtures of a small number of particle species:
the case of a binary mixture can be solved analytically,11 and
for mixtures with a limited number of components (ten or
fewer) a numerical solution is feasible.'> The polydisperse
case requires one to keep track of an effectively infinite num-
ber of particles species, one for each size, and cannot be
tackled directly. An alternative, which we have explored in
previous work, is to use simpler integral equation theories
such as the modified mean spherical approximation (mMSA
or C0). Between this and the PY approximation5 lies a set of
increasingly accurate approximations denoted as Cn, with
n=1,2,.... They are based on a density expansion of the
direct correlation function outside the hard core and can be
shown to improve, order by order, the various virial
coefficients.'” These Cn approximations can be extended to
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FIG. 1. Equation of state, from the energy route, for a one-component fluid
of SHS. From left to right and top to bottom the four panels refer to a
reduced temperature of 7=1.00, 0.50, 0.20, and 0.15, respectively. The con-
tinuous line corresponds to the MSA approximation, the dotted line to the
mMSA approximation, the short dashed line to the C1 approximation, the
long dashed line to the PY approximation, the dot-dashed line to the WCA
first order perturbation theory, squares to the WCA second order perturba-
tion theory (with error bars indicating the range where the true value should
lie with probability of 99.7%), and triangles to the MC simulations of Miller
and Frenkel (Ref. 20). In all cases the HS component of the pressure was
chosen to be the one obtained from the compressibility route of the PY
approximation (Ref. 39).

the polydisperse case with relative ease, provided a particular
factorization holds for the matrices appearing in the solution
of Baxter’s equations. This has allowed us to perform a com-
prehensive analysis of polydispersity effects on the gas-
liquid phase separation.

The tractability of the Cn approximations for the poly-
disperse SHS model does, however, come at the price of
lower accuracy. Indeed, for the monodisperse case accurate
Monte Carlo simulation data recently published by Miller
and Frenkel'”' show that the equation of state of the fluid
lies very close to the one derived from the energy route of
the PY closure. Both the CO and C1 approximations, on the
other hand, yield precise results only within a rather limited
region of the phase diagram, corresponding to high tempera-
tures or low densities'’ (see Fig. 1 below).

The above considerations show that another attack on
the PY closure for polydisperse SHS fluids is worthwhile in
order to get accurate predictions for the gas-liquid phase be-
havior. Rather than try to tackle the most general case of a
fluid with a potentially wide distribution of particle sizes,
which for now remains out of reach, we exploit the idea of
Evans® to treat size polydispersity as a perturbation to the
monodisperse phase behavior. For this method to apply, the
size distribution only has to be sufficiently narrow, but its
shape is otherwise arbitrary. Our approach is also of suffi-
cient generality to consider arbitrary dependences of the ad-
hesion strengths on the particle sizes, including those consid-
ered in previous work on the Cn approximations.lg’23
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Throughout, we consider gas-liquid phase coexistence only.
It has been argued24 that even in the presence of polydisper-
sity this is metastable with respect to phase separation into
colloidal gas and solid. However, the latter may be unobserv-
able on realistic time scales when formation of the polydis-
perse solid is hindered by large nucleation barriers™ or an
intervening kinetic glass transition;’® the gas-liquid phase
splits we calculate will then control the physically observ-
able behavior. Even where the kinetics does allow formation
of solid phases, the metastable gas-liquid phase behavior can
play a role, e.g., in determining phase ordering pathways.27

This paper is organized as follows. In Sec. I we describe
the polydisperse SHS model and discuss various routes for
predicting the thermodynamics of this system, comparing
their accuracy for the better understood monodisperse case.
In the polydisperse setting one needs to model how the
strength of the adhesion between two particles depends on
their size; we discuss some possible choices for this in Sec.
III. Section IV describes our perturbation expansion of the
PY closure for the weakly polydisperse SHS model. We first
define the perturbation expansion of the free energy used by
Evans (Sec. IV A) and summarize the relevant consequences
for two-phase coexistence and the attendant size fraction-
ation effects. The basic equations that need to be solved in
order to determine thermodynamic properties within the PY
approximation are then described and solved perturbatively
in Sec. IV B, while Sec. IV C derives from this, via the en-
ergy route, the excess Helmholtz free energy. In Sec. V we
evaluate numerically the consequences of polydispersity for
two-phase coexistence and fractionation for a number of ex-
ample scenarios, and compare the results with those of alter-
native approximation schemes. Section VI gives concluding
remarks.

Il. THE SHS MODEL

The p-component SHS mixture model is made up of
hard spheres (HSs) of different diameters o;, where i
=1,2,...,p, interacting through a particular pair potential
defined via the following limit procedure. One starts with a
pair interaction potential ¢,;;(r) with a hard core extending
out to distance r=0;;=(0;+0;)/2, followed by a square well

potential of width R;;— a7y,

+ o, 0o<r< O-I'j
R.:
L. =y-1In _l';>, O'i-$r$R,~ 1
O, r> R”
Here the dimensionless parameter

1 €;;

—==0 )

Tij T

measures the surface adhesion strength or “stickiness” be-
tween particles of species i and j. In Eq. (2) the reduced
temperature 7 is an unspecified increasing function of the
physical temperature T; the coefficients €; specify how
stickiness depends on which particle species are in contact
and are discussed more fully in the next section. The proce-
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dure which defines the SHS model then consists in taking the
“sticky limit” R;;— o;;. The logarithm in the initial square
well potential (1) is chosen to give a simple expression for
the Boltzmann factor exp[—d;;(r)], which is reduced to a
combination of a Heaviside step function and a Dirac delta
function in the sticky limit. Here and in the following we
measure all energies in units of kzT to simplify the notation.

A fully polydisperse system is obtained from the above
discrete mixture by replacing the molar fractions x;=N;/N,
where N; is the number of particles of species i and N the
total number of particles, with a normalized size distribution
function p(o),

x;— p(o)do.

Here p(o) do is the fraction of spheres with diameters in the
interval (o,0+do). Similarly, given a quantity a; that de-
pends on the species index, one replaces

a;— a(0),

(a)= 2 xa;— f xa(a)p(a)da.
i 0

We next consider the possible methods for predicting the
thermodynamic behavior of SHS fluids. As pointed out in the
Introduction, a good approximation to the effectively exact
Monte Carlo (MC) equation of state®® of the monodisperse
SHS model is obtained by calculating the pressure from the
energy route within the PY approximation.7 In the case of
mixtures no comparable Monte Carlo data exists, nor is a
direct solution of the PY closure feasible, so that finding a
reliable approximation to the equation of state remains an
important open challenge. As described in the Introduction,
we have tackled this in previous work within an approximate
theory based on a density expansion of the direct correlation
function around the MSA solution.'”'®* Another possible
route is thermodynamic perturbation theory. For the Baxter
SHS model it is easy to convince oneself that only the
scheme proposed by Weeks, Chandler, and Anderson”®
(WCA) can be applied. We have explored this possibility in
the monodisperse case, where Monte Carlo simulations pro-
vide reliable reference data. In Fig. 1 we compare the simu-
lation data with the predictions of the MSA, the mMSA, and
the C1 approximation [as discussed in (Ref. 17)]; the results
from the first and second order WCA (Ref. 28) perturbation
theory are also shown. It is clear that the mMSA and the C1
approximation are fairly reliable for low and intermediate
densities, even at low reduced temperatures, while the
second-order WCA approximation breaks down already at
temperatures significantly above the critical point (7.=0.11,
depending on the approximation used). The WCA method
therefore offers little hope of providing the basis for an ac-
curate equation of state for mixtures. One also sees readily
from Fig. 1 that the PY closure provides by far the most
accurate of all the approximation methods. This is why we
return to the problem of solving the PY approximation for
SHS mixtures in this paper.

A major challenge in calculating phase equilibria in
polydisperse SHS, or indeed any polydisperse fluid, arises
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from the fact that its Helmholtz free energy is a functional of
the distribution p(o) of the polydisperse attribute.” How-
ever, in simple systems or approximations this functional de-
pendence is reduced, for the excess free energy, to one on a
finite number of moments of the distribution. In these cases
the free energy is called truncatable,”*>" and the phase coex-
istence problem is reduced to the solution of a finite number
of coupled nonlinear equations. For example, for the size-
polydisperse SHS mixture the mMSA and the C1 approxi-
mation yield such a truncatable form for the excess free en-
ergy involving only three moments, p;, p,, and ps3, and the
two-phase coexistence problem can easily be solved
nume:rically.18 The relevant moments are defined here, in-
cluding factors of density, as

P = pf o"'p(o)do (3)
0

for m=1,2,3; for later reference we note that p; is propor-
tional to the hard sphere volume fraction.

When the more accurate PY approximation is used, the
presence of polydispersity renders an analytical calculation
of the free energy impossible (see Sec. IV B). In addition,
even if the free energy could be calculated in closed form, it
would almost certainly not have a truncatable form, and so
predictions for the phase behavior would remain difficult to
extract. We therefore propose to consider a small degree of
polydispersity as a pertulrbation22 around the well-understood
monodisperse reference system (see Ref. 29 for an overview
of earlier work in this perturbative spirit). We denote by o a
characteristic sphere diameter, which will be taken as the
mean diameter of the overall or “parent” size distribution
p9(0) in the system. We then focus on fluids with a narrow
size distribution centered on oy, for which the relative par-
ticle size deviations

g — 0y

(4)
o

are small for all particle sizes o. Following Evans, we will
expand up to second order in these size deviations.”> The
leading order phase boundary shifts and fractionation effects
then turn out to be proportional to s>, where s=[{5*)*]"? is
the normalized standard deviation—also referred to simply
as polydispersity—of the parent distribution. Before pro-
ceeding to the calculation, we address in the next section the
choice of the stickiness coefficients €; from Eq. (2). These
are irrelevant for monodisperse SHS but can have important
effects on the behavior of mixtures, as we will see.

lll. THE STICKINESS COEFFICIENTS ¢
A. General arguments

At a reduced temperature 7 the Boltzmann factor
exp[—¢;;(r)] for the interaction of two SHS particles depends
only on the ratio €;;/ 7 (and, of course, on o). Physically, the
stickiness coefficients €; represent dimensionless adhesion
energies between pairs of particles identified by the species
indices i and j. (We revert to the notation for the discrete
mixture here; the same considerations obviously apply to the
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polydisperse system.) The ¢; have no analog in the mono-
disperse case, where only the reduced temperature 7 features
and € can be set to unity. For (discrete or polydisperse) mix-
tures, on the other hand, one needs to make an appropriate
choice for the dependence, €;=7(0;,0;), of the stickiness
coefficients on the particle sizes. We discuss possibilities for
this choice in this section.

Clearly the appropriate form of the function F(o;,0;)
will depend on the kind of physical problem one is studying.
Nevertheless, it should satisfy some general requirements: (i)
Adhesion should be a purely pairwise property, and so F
should depend only on g; and o as anticipated by our nota-
tion; F must clearly also be symmetric under interchange of
0; and 0. (ii) Since the ¢; are dimensionless, so must F be.
If it does not contain a separate length scale, it is therefore a
homogeneous function of degree zero in (o;,0;). The latter
case is interesting because it can be seen as the sticky limit of
a scalable (i.e., purely size-polydisperse) interaction,*
where, by definition, ¢;;(r) remains unchanged when r, o,
and o; are all scaled by a common factor. (The square well
potential of Eq. (1) can be put into this form by choosing
R;=0,[1+1/(A€;—1)]; the sticky limit is obtained by let-
ting A—.) The presence of pure size polydispersity has
important simplifying effects on the phase behavior’ >
which we discuss further in Sec. V below. (iii) If the adhe-
sion depends on the surface area of the spheres, one might
expect F to depend on ratios of homogeneous functions of
degree 2 in (0;,0;). (iv) If the adhesive interaction vanishes
when at least one of the two particles i and j degenerates to
a point, we need to require lim(,iﬁof(a,-,oj)zo; the limit for
0;— 0 is then also zero, by the symmetry of F.

In Ref. 18 plausibility and convenience arguments were
adduced to suggest the following choices for the quantities

eij:

0'20/0'?1» case |
0,007 case II
gj=Fo,o)=y """ 5
! ( ) case IV ®)
gy/o;;  case V.

Here oy is a characteristic reference length for the sizes,
taken, as mentioned above, to be the parental mean diameter.
In the forms originally suggested,18 this length was chosen as
a moment of the size distribution, (¢")"/" with either n=1 or
2. (Case I here corresponds to cases I and III in Ref. 18; we
have kept the original numbering for the remaining cases II,
IV, and V for ease of reference.) However, this identification
has the drawback of introducing many-body effects into the
pair potential, as the moments (¢o™) depend on the thermody-
namic state of the fluid and, in particular, on the concentra-
tions of all particle species. This is why we have chosen the
fixed reference length oy above, consistent with the notion of
a purely pairwise interaction. Numerically, the actual choice
of oy turns out to have only very minor effects; this can be
shown by calculations (not reproduced here) comparing case
I (with fixed op) with case III from Ref. 18, obtained by
replacing o, — (o>)!2.

The form of the llafj denominator for cases I and II in
Eq. (5) is forced by technical constraints detailed in Ref. 18,
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TABLE 1. Coefficient of the perturbative expansion (6) of the adhesion
parameters ¢; for the four cases listed in Eq. (5).

Case 1 Case 11 Case IV Case V
€ 1 1 1 1
€14 -1 0 0 -1/2
€, 3/2 1/2 0 1/2
€ 3/4 -1/4 0 174

but these still leave some flexibility in the choice of numera-
tor; cases I and II assume mean-field-like and decoupled de-
pendences, respectively, on stickiness and size. Case IV cor-
responds to the choice of constant coefficients (independent
of particle sizes), while case V is selected in Ref. 18 specifi-
cally to permit analytical solution within the CI closure.
Note that not all four cases have all of the properties [(ii)—
(iv)] listed above as possible requirements. For example,
only cases II and IV are homogeneous functions of (a;,0;) as
required by (ii) when no additional length scale such as oy is
involved; they are therefore purely size polydisperse. The
properties (iii) and (iv) hold only for case II. It can be
argued34 that the dependence on o,0;/ o-lzj assumed in case II
is quite generic for solutions of colloids, micelles, or globu-
lar proteins, at least in the high-temperature regime where a
linearized approximation for the Boltzmann factor is suffi-
cient. While this favors case II, for phase coexistence we are
interested in lower temperatures where it is less clear which
case is physically more appropriate; we will therefore in-
clude all four cases in our analysis.

For our perturbative analysis we only need to know the
coefficients in the expansion of the €; around the typical
particle size 0;=0;=0y, up to quadratic order in the relative
particle size deviations 8,=(o;— o)/ 0y,

€;=¢€+ €]L¢(C$i+(5]')+62a5i5j+62b(6i2+ 5?).,. . (6)

The coefficients ¢,, €,, €, and €, of this expansion are
given in Table I for the four cases listed above. Note that
€=1 always so that in the monodisperse limit the ¢; are
irrelevant, as they should be.

B. Stickiness coefficients for the Asakura-Oosawa
model

So far we have considered choices for the stickiness co-
efficients suggested by rather general arguments. One may
wonder whether the €; can be derived more directly from a
physical picture. We shall pursue this here for the well-
known Asakura-Oosawa model of colloid-polymer mixtures,
which for small polymers leads to a short ranged attractive
depletion potential acting between the colloids.”> We shall
show that, while a formal sticky limit cannot be taken in
general when colloids of different sizes are present, an effec-
tive SHS model can still be derived when the polymer size is
small but kept as nonzero. This is then simplified further in
the perturbative approach for weak polydispersity adopted
here.

Consider two colloidal particles represented by impen-
etrable spheres of diameters o; and o; immersed in a solution
of noninteracting polymers. Within the Asakura-Oosawa
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FIG. 2. The overlap volume V,,(r) of the two exclusion zones around col-
loid particles of diameter o; and o; which cannot be accessed by polymers
of diameter &.

model, the polymers are simplified to spheres of diameter &
which can fully penetrate each other but have a hard sphere
interaction with the colloids. It is well known that such a
system develops an entropically driven effective attraction
between the colloidal particles. This arises due to a reduction
in the volume from which the polymers are excluded when
the exclusion zones around the colloids overlap (see Fig. 2).
This overlap volume as a function of the distance r between
the sphere centers is

1
Vo(r) = 1—7; P = 6(R + R)r+ 8(R] + R}) = 3(R} ~ R})~
X 0o+ E-1), (7)

where R;=(0y+£)/2 and only distances r>0;; are allowed
because of the hard colloid-colloid repulsion. The effective
colloid-colloid attraction induced by the presence of the
polymers is then just the overlap volume times the polymer
osmotic pressure,35’36 giving the overall Asakura-Oosawa
(AO) interaction potential

+ 0, 0<r<0’,j

B0(r) =1~ P Vou(1) sr<

ij r)= PpVoull), ojj=Tr O'ij+§ (8)
O, rBO'ij'Ff

This expression can be obtained formally by integrating out
the polymer degrees of freedom from the partition function
at fixed polymer chemical potential. The latter is conve-
niently parameterized by the density p, of polymers in a
reservoir connected to the system; because the polymers are
taken as ideal, their osmotic pressure is then kzTp, and the
kgT is absorbed by our choice of units. The effective colloid-
colloid interaction will, in general, also contain many-body
terms, but these vanish in the limit of small polymers (for
monodisperse colloids the condition is £<<0.1547¢) that we
are interested in.

To map to an equivalent SHS potential, which should be
physically reasonable for a small polymer-to-colloid size ra-
tio &/ 0y, one equates the corresponding second virial coeffi-
cients. The hard core makes the same contribution (Bg,HS
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:2770*3/3) in the SHS and the original AO potential, so one
can focus on the normalized deviation of the second virial
coefficient from this HS value,

3

i _pi o+
ABY o= Bano=Bims _ if "= e 02y
’ B s i d o

For the SHS potential this quantity equals —1/(47;), so the

stickiness parameters in the mapped SHS system are as-

signed as
1

1 (it AO
=— [e%i = 1] dr. 9)
Oij Tij

We now proceed to simplify this expression for small &; in
the limit £— 0, the original AO model should become fully
equivalent to the mapped SHS system. We will see that for
mixtures of colloids of different sizes this strict mathematical
limit cannot be taken consistently; nevertheless, as long as
&/ oy is small, we expect the SHS mixture to give a reason-
ably accurate description of the underlying AO model.

To simplify Eq. (9) we change the integration variable
from r to z=(r—o0;;)/&, expand the attractive tail of the AO
potential in ¢ as

™

- ¢°() = 4

Pl a= 174 0(8), (10)
ij

and retain only the leading term. Similarly, approximating
r2=((rij+ §z)2=crfj+ 0(¢) yields

1
L€ (Mo
127 030
1 T
=f{§\/y—erfi(v%)—l}, (11)
ij ij
where
_ T 200
71_1_ 4pp§ 0',']'

is the value of the attractive potential at contact and erfi(z)
=erf(iz)/i is the imaginary error function. Because of the
prefactor &/0; in Eq. (11), v,; has to grow as ¢ decreases if
we want to keep 7;; finite. For large argument the error func-
tion behaves as erfi(z)=e12[1/z+0(1/z3)]/\*“’7'r, and so

1 & e 2

2
8(77/4)pp§ (O’l-(Tj/O'l-j) .

A nonzero limit value of 7; for §—0 thus requires that v;;
grows logarithmically as y,;=In(c;;/§) to leading order. The
corresponding polymer reservoir density, likewise to leading
order, goes as

_ 4 oy In(oy/d)

- T 0,0; &

o (12)

The dominant dependence p, & 2 in this expression arises
because the value of the AO potential at contact scales as
p,,§2; the additional logarithmic factor increases this interac-
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tion strength to compensate for the decreasing range of the
attraction as é— 0. Note that even though the polymer den-
sity diverges, the polymers do in fact become very dilute, as
one sees from the (reservoir) volume fraction 7,
=(1/6)p,& ~ &In(0y/ &) occupied by the polymer spheres.

For monodisperse colloids, the above procedure pro-
duces an unambiguous sticky limit for £—0. The explicit
form of Eq. (12) shows, however, that this limit cannot be
taken straightforwardly for mixtures: the prefactors
0,/ (0,0)) of the required leading order divergences of the
polymer density are incompatible with each other for differ-
ent pairs of particle species. In other words, if the & depen-
dence of the polymer density is chosen to keep one specific
Tij finite and nonzero, then the others would either tend to
zero or grow to infinity in the sticky limit. The example of a
binary mixture illustrates this. Suppose that oy > o, and that
the polymer density is tuned to keep the 7y; finite. Then
1/ 7, would both tend to zero for £&—0 so that all interac-
tions involving particles of species 2 become purely HS-like,
without any attractive contributions (this is system B studied
in Ref. 23).

In the absence of a strict sticky limit, we will content
ourselves with applying the mapping (11) for small but non-
zero polymer-to-colloid size ratios &/oy. The properties of
the resulting SHS mixture should then still give a good ap-
proximation to those of the original AO model. In the per-
turbative setting of this paper we can then expand Eq. (11) in
the small relative deviations &=(o;—0y)/ 0 of the particle
sizes from the parental mean. In the decomposition 1/7;
=¢;/ 7 of Eq. (2) we fix the scale of the ¢; by requiring, as
was done before, that €;=1 for particles of the reference size
o;=0;=0y. This gives

1 12¢[ 1 ~ 6£e
—=—§{—\/Eerfi(\’y)—l} L (13)
T opl2Vy oy ¥

for the reduced temperature, where
T
Y= 4 ppg g9-

The second, approximate equality in Eq. (13) holds for large
v as before. To find the perturbative expansion of the sticki-
ness coefficients €;, we note first that the potentials at con-
tact expand as

1 1 1
Y= 1+ 500+ 8) +208- (5 +8) |-
Since the erfi in Eq. (11) grows at most as exp(7;;), a second
order Taylor expansion will give an accurate approximation
as long as the perturbations in 7;; are <I1. This requires &;
<1/, which then automatically enforces J;<1 since we
expect y to be at least of order unity for the mapping to a
SHS mixture to make sense. Under these conditions one then
has a valid perturbation expansion of the €;. The coefficients
defined in Eq. (6) are found as €,=1 (by our choice of 7) and

—1+g1

1+g2
61— 2 N =

1-2g,+g
€= 2 s

€= 4 >

where
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e’-1

1
g =’,_———,
! Narly erfi(\r’q/) -2 2

[3+e"2y-3)]/4 3
_ L2

g = .
2" Vmiyerfily) -2 8

From Eq. (13) one sees that the reduced temperature is set by
the contact potential y, which itself is proportional to the
polymer reservoir density. Unlike the more ad hoc choices of
Eq. (5), the expansion of the ¢;; in terms of the &; depends on
the reduced temperature 7 via . For large y one can use the
leading order approximations g,~7y-1 and g,~(y*-2y
+1)/2 to evaluate this dependence. However, since typical
values of y are only logarithmically large in o/ &, it is gen-
erally safer to work with the full expressions.

IV. PERTURBATION THEORY FOR THE
POLYDISPERSE PY CLOSURE

In this section we come to the core of our analysis. We
first review Evans’ perturbative framework for slightly poly-
disperse systems. To apply this to the PY approximation for
SHS mixtures we will need the perturbative expansion of
certain correlation function values at contact; from these we
can then finally find the excess free energy.

A. Evans’ perturbative expansion

The starting point for an analysis of the phase behavior
of polydisperse systems is the excess free energy density. In
general this is a functional of the size distribution p(o) in the
system. It is also a function of the particle density p and of
temperature; we do not write the latter explicitly below. For
slightly polydisperse systems it is expedient to switch from o
to the relative deviations ¢ from the reference size ;. By the
fundamental assumption of a narrow size distribution, the &
are small quantities, and one can expand the excess free en-
ergy density f**, measured again in units of kg7, in terms of
moments of p(é),22

IX(p.[p(8)]) = 15%(p) + pa(p){(S) + pb(p){&*) + pc(p)(5)*
oo (14)

Here terms up to second order in 6 have been retained; these
give the leading effects on the phase boundaries.** Our func-
tions a, b, and ¢ differ by factors of p from those defined in
Ref. 22, so that, e.g., a equals Evans’ A/ p; this simplifies the
statement of Eqgs. (15)—(17) below. The leading term f{* is
the excess free energy density of the monodisperse reference
system where all particles have 6=0.

Given the above expansion of the excess free energy, the
conditions for two-phase equilibria of the near-monodisperse
fluid can be solved perturb::1tive1y.22 We briefly recall the
main results. The fluid is initially in a parent phase of density
p©, with a parent size distribution function p*)(8), where
(8)©=0 by our choice of the reference size o as the paren-
tal mean. In order to lower its free energy, the fluid can split
into two daughter phases of densities p") and p®, with dis-
tribution functions p'"(8) and p®(8) which are, in general,
different from the parent distribution, a phenomenon referred
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164504-7 Phase behavior of sticky hard spheres

to as fractionation.zg The densities and size distributions can
be worked out perturbatively at any point inside the coexist-
ence region;22 we focus on the properties at the onset of
phase coexistence, which are most easily accessible experi-
mentally.

Suppose the system is just starting to phase separate,
with all of the volume except for an infinitesimal fraction
still occupied by phase 1, with density p'"). Conservation of
particle number then requires that p((8)=p?(4); i.e., the
size distribution in this cloud phase equals the parent. The
coexisting shadow phase 2, on the other hand, will generally
have p®(8) #p(d). Evans showed that the cloud and
shadow densities, p'! )—p +5p(') and pz)—p2)+ 8p?, re-
spectlvely, are shifted from their monodisperse values Po)
and pO by

(Aa)?+2Ab
5p = — 2ol (27 (o)) 4 2+ =80
Y Nyl K(P ) (Po ) (Po )+ 2A(1/p) s
(15)
(Aa)? +2Ab
50 = - 2P i(p? 27 (o) 4 2+ =20
P spi k(pg)| (p§)%0" () + 22 (1/p)
+ <p<02>>2a'<p<02’)Aa} : (16)
Here  a’'=daldp, b'=blap, and k(p)=1/[p

+p%(9/3p)*f5*(p)], which is the isothermal compressibility of
the monodisperse reference system. The shorthand A indi-
cates differences between the two monodisperse reference
phases, e.g., Aa= a(p(l)) a(p(z)) Finally, recall that s is the
parent polydispersity: the phase boundary shifts are, to lead-
ing order, quadratic in s.

It is worth noting that Egs. (15) and (16) are not sym-
metric in pél) and péz); by interchanging the two densities one
therefore obtains a different cloud-shadow pair. Physically,
this corresponds to approaching the onset of phase separation
from low or high densities; in a polydisperse system the
coexisting phases are different in the two situations since
only the respective majority (cloud) phase has the parental
size distribution. The size distribution in the corresponding
shadow reads, to leading order in 5,22

P29 =p (I +(Aa)d]. (17)

Overall, the monodisperse binodal delimiting the coexistence
region splits into separate cloud and shadow curves, which
intersect in the critical point.zg Quantitative information
about the critical region is not accessible within the pertur-
bative expansion of Egs. (15) and (16), however, since the
compressibility « diverges as the critical point is approached.

The above summary shows that knowledge of the func-
tions a, b, and c is sufficient to calculate the leading order
phase boundary shifts and fractionation effects for weakly
polydisperse systems. In the next two subsections we calcu-
late these functions for the SHS mixture within the PY ap-
proximation.

J. Chem. Phys. 125, 164504 (2006)

B. Perturbative analysis of the PY closure

To lighten the notation in the rest of the paper, we make
all densities dimensionless by measuring them in units of
vgl, where

vy = (77/6)08

is the volume of a particle with the reference diameter. The
third moment p; defined in Eq. (3) is then identical to the
hard sphere volume fraction 7. We also measure all particle
sizes o in terms of oy, so that the relation between o and the
fractional deviation from the parental mean diameter be-
comes simply o=1+46. In the monodisperse case, where all
particles have §=0, all moments (3) are then identical and
equal to the density p (which also equals the volume fraction
7). Finally, for notational simplicity we again revert tempo-
rarily to the case of a discrete p-component SHS mixture; the
final results will be expressed in terms of averages over the
size distribution and so will be generalized immediately to
fully polydisperse systems.

In order to extract the desired thermodynamic quantities
from the PY closure, the following set of p(p+1)/2 coupled
quadratic equations needs to be solved first:

1 1
Lij=a;+ ,BijE Xin ELiijm - E(Limd)mj + ijd)mi) )
m

iL,j=1,2,...,p, (18)
where the unknowns are
o) o%e;

y{ i/ i i
Lij: T .

Here y;;(0;;) is the partial cavity function at contact which is
proportional to the probability of finding a particle of species
J touching any given particle of species i. In Eq. (18) the
coefficients «;;, B;;, and ¢;; are given by

a:]=)’ij o )(r €l T (19)
Bij=po;€;lT, (20)

Here the quantities
(22)

are the PY partial cavity functions at contact for the HS fluid
(to which the SHS fluid is reduced at infinite reduced tem-
perature 7), and we abbreviate A=1- 7, with 7= p; the HS
packing fraction as before. Notice that all four sets of coef-
ficients L;;, @;;, B;j, and ¢;; are symmetric under exchange of
the species indices i and j.

For one-component fluids, the system (18) is reduced to
a single quadratic equation. Baxter’ showed that only the
smaller of the two real solutions (provided such solutions
exist at all) is physically significant; it is given explicitly in
Eq. (24) below. For true mixtures (p > 1), an explicit solution
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164504-8 Fantoni et al.

of the rather complicated system (18) of algebraic equations
is feasible at best numerically (except for special cases'>?)
and is the computational bottleneck of the PY solution. For
large p, and certainly for the polydisperse limit p — 0, it is
impossible in practice. However, progress can be made for
near-monodisperse fluids by solving (18) perturbatively. The
L;; will generically depend on the reduced temperature 7, the
overall number density p, the sizes o; and o; of the particles
at contact, and all the molar fractions x; [or their polydisperse
analog, the size distribution p(8)]. For small &§; we can there-
fore expand to quadratic order as

Lij=Lo+L1,(8;+ 8) + L1() + Ly, 8,5, + Ly (8, + 5_,2~)
+ L) (O)(5;+ ) + Lo 8)* + Ly {&). (23)

The idea now is to insert this expansion, and the analogous
expansions of the known coefficients a;;, B;;, and ¢, into
the right-hand side of Eq. (18). Having done this, one reex-
pands to quadratic order in &;, &, J,, and (), and to linear
order in (&%). Finally, one replaces ¥,x,=1 and =,x,3",
=(§8"), for n=1,2. Comparing terms of the same form on the
left and right of Eq. (18), one then finds a relatively simple
set of equations for the coefficients Ly, ... ,L,,, as outlined in
the Appendix. To order zero in polydispersity one, of course,
retrieves Baxter’s original quadratic equation [Eq. (A5)],
whose physically relevant solution is

Ly= 1 | = 5 > (24)

L1+ Bo/Ag + V(1 + Bo/Ag)” = Boa/3]

where Ag=1—-p is the value of A in a monodisperse system
with density p. Since we are perturbing around the physical
solution (24) for the monodisperse case, the results we find
for slightly polydisperse mixtures will automatically have the
correct physical behavior. In a nonperturbative solution, one
would need to check separately that the solution branch with
the correct low-density limit Lj— a'l.zj/ 7ij has been selected;
this condition arises since y;j(0;;) — 1 at low density.

The conditions imposed by Eq. (18) for the higher order
expansion coefficients Ly, ...,L,, turn out to be linear and
can be straightforwardly solved order by order (see the Ap-
pendix). The region in the density-temperature plane where
Eq. (18) has no physical solution therefore remains as in the
monodisperse case, being delimited by p_<p<p, with

_1-6(7- 2) £\l =127+ 187
P== 5_127+67

(25)

for 7< (2—\6)/ 6. This is clearly an artifact of our finite-
order perturbation theory, given that we know from numeri-
cal solutions of Eq. (18) that the region where solutions exist
does change with increasing polydispersity.12 To reproduce
this effect within our approach, a resummation of the pertur-
bation theory to all orders would be needed.

C. Excess free energy

Given the perturbative expansion for L;;, we can deter-

mine the free energy of weakly polydisperse SHS mixtures

J. Chem. Phys. 125, 164504 (2006)

in the PY approximation. There are three known thermody-
namic routes (via the energy, compressibility, and virial) that
could potentially be used.'" We focus on the one that gives
the most reliable equation of state for the monodisperse sys-
tem (see Fig. 1), i.e., the energy route. It predicts, in general,
for the 7 derivative of the excess free energy density

YOS ot
ﬁT T lj ! j lj lj

Inserting the expansion (23) of L;; and reexpanding to qua-
dratic order yields

(9 X 2
O Ty 4 T (8 + T3 + Ty,
or T
where
FO = Lo,

Fl =L0+2L1a+L1b9
Fo=Lig+Liy+Log+2Lo+ Loy,

F3 =L1a+2L2b+LZe'

We can then integrate from the desired value of 7 to the hard
sphere limit 7— o to find

A = 1= i = A5+ AP + AfS(OP + ASN),
where

7’

)
TI

Aﬁx:—pzf T(7) i=0,1,2,3.

T

and fj is the excess free energy density of the HS fluid. For
the latter we use the standard Boublﬂ<,37 Mansoori, Carna-
han, Starling, and Leland’® (BMCSL) explression.39 Ex-
panded to second order in polydispersity, this reads

Jiis = fuso + fhs,i1(0) +f§(s,2<5>2 +f§;(s,3<52>’

where
fex _ p2(4 - 3P)
HS,0 A(z) ,
fex _ 6p2(2 B P)
HS,1 AS >
< p(1+2p)(3+p-p?)
f?—IS,Z = 31{ A4 +In4y |,
0
. p(1+3p—2p%)
Juss= 3P{T —In4,|.
0

Altogether we therefore have, for the perturbative expansion
(14) of the excess free energy density of the SHS mixture,
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FIG. 3. Phase diagram of the monodisperse SHS fluid obtained with the PY
closure and the energy route to thermodynamics. Shown are the binodal and
spinodal curves and the region where the PY equation has no solution [see
Eq. (25)].

fo =faso+Afo s
aP=ﬁ;(s,1 +AfT,
bp =ﬁ;{s,3 +Af5,

cp=fso+ AL (26)

With these results we can now proceed to apply Evans’ gen-
eral results to study cloud and shadow curves and fraction-
ation effects in polydisperse SHS mixtures.

Inspection of the lengthy explicit expressions for a—c
shows that the dependence on the stickiness expansion coef-
ficients €,, €,, and €, is, in fact, rather simple. For a one
finds the form

a=ag+ €44, (27)

with ay and a; as functions of p and 7 only. This is reason-
able since a is the coefficient of a first order (in 8) term in the
excess free energy and should therefore only depend on the
expansion of the €; to the same order. Function b involves,
in addition, terms proportional to efa and €,,, while the re-
maining coefficient €,, occurs only in function c. Since ¢
does not feature in the expressions for the phase boundary
shifts or fractionation effects to O(s?), all results we show
below are therefore independent of e,,,.

V. PHASE BEHAVIOR

In this section we show our results for the phase behav-
ior of polydisperse SHS mixtures. We will explore the vari-
ous choices of stickiness coefficients discussed in Sec. 111,
i.e., cases [-V as well as the AO model for small values of
the polymer-to-colloid size ratio. Section V A has the main
results from our perturbation theory in polydispersity for the
PY closure in Sec. VB we then compare these predictions
with those from other approximation schemes.

A. PY closure

We start by recalling in Fig. 3 the phase diagram of the
monodisperse SHS fluid as obtained within the PY approxi-
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FIG. 4. Pressure from the energy route of the PY approximation for a single
(parent) phase with case IV stickiness coefficients, plotted against volume
fraction. Results are shown for several small values of the polydispersity s
(see legend) and well above, just above, and below (from left to right) the
critical point of the monodisperse system. The pressure was determined
using Eq. 9 of Ref. 22.

mation and by using the energy route to thermodynamics.
Along with the binodal we show the spinodal, where the
curvature of the free energy vanishes and a homogeneous
phase becomes unstable to local density fluctuations, and the
region (25) where Baxter’s PY equation has no physical so-
Iution. Here and in the following we use on the x axis the
volume fraction # rather than the density p. In our units,
these two quantities are identical for monodisperse systems,
but differ to order s* in the presence of size polydispersity.
For parent phases specifically, Eq. (A4) gives 7 =p@(1
+3s?) to quadratic order. Cloud phases, which share the pa-
rental size distribution, have similar p(V= p(()l)(l +352)+8p\,
while for shadow phases one finds using Eq. (17) that p®
=p82)[1 +3(1+Aa)s]+ 5p@ 2

To get some initial intuition for the effects of polydisper-
sity, it is useful to consider first the single-phase equation of
state. Figure 4 shows plots of the dimensionless pressure
against volume fraction at several values of the polydisper-
sity and for three choices of the reduced temperature 7. We
consider here constant stickiness coefficients (case IV) to
allow a comparison with numerical work for discrete
mixtures.'? It is gratifying that we find qualitatively the same
trend, with the pressure decreasing with increasing polydis-
persity. Quantitatively, however, the results are not directly
comparable because in Ref. 12 the less accurate compress-
ibility (rather than energy) route was used to evaluate the
pressure.

To interpret physically why the pressure decreases with
polydispersity s at fixed packing fraction 7, we note first that
such a decrease is found also in the absence of adhesion (i.e.,
for HS). This has been established in simulations* and is
reproduced qualitatively by the BMCSL equation of state;
the intuitive reason is that in a fluid (gas or liquid) phase a
spread of sizes allows for a more efficient packing of the
particles. In such a less “jammed” particle arrangement one
expects to find fewer interparticle contacts and so, in the
presence of adhesion, fewer particle pairs interacting attrac-
tively. This will increase the pressure, counteracting the re-
duction, that one would expect for HS, resulting from the
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FIG. 5. Cloud and shadow curves for SHS mixtures with polydispersity s
=0.3, as obtained within the PY approximation and the energy route to
thermodynamics, for coefficients €; chosen according to cases II and IV
from Eq. (5). The shifts from the binodal of the monodisperse system (la-
beled “mono”) were calculated using Eq. (15) and give the leading [O(s%)]
corrections in a perturbative treatment of polydispersity. Note the collapse of
the cloud and shadow curves, as expected from this order of the perturbation
theory for purely size-polydisperse models (Refs. 32 and 33), and the diver-
gence of the perturbation theory at the monodisperse critical point.

more efficient packing. Our results are quite consistent with
this: at finite 7, we find that the pressure decreases less with
polydispersity than in the HS limit 7— o°.

The curves shown for the polydisperse cases in Fig. 4
cannot be used to infer phase coexistence properties directly
by, e.g., a Maxwell construction: fractionation means that
two coexisting phases do not have properties represented by
a single relation between pressure and volume fraction. This
remark holds true quite generally for single-phase equations
of state in polydisperse systems, including, e.g., the results
obtained in Ref. 12 within the PY compressibility route to
the equation of state. However, some more limited informa-
tion on single-phase stability can be deduced. Specifically, a
single phase cannot be stable where the pressure decreases
with volume fraction. In the middle graph of Fig. 4, for ex-
ample, where 7=0.1186 is just above the monodisperse criti-
cal point and so a monodisperse system is still stable at all
densities, the polydisperse mixtures with s=0.2 and 0.3 are
already unstable in some range of densities. This means that
the region where phase separation occurs must extend to
larger values of 7 for polydisperse than for monodisperse
SHS, a result which—for case IV, as considered here—we
will find confirmed very shortly.

We next turn to explicit results for the phase behavior,
starting in Fig. 5 with cases II and IV for the stickiness
coefficients, illustrated here for parent polydispersity s=0.3.
The cloud curve gives the boundary of the region where
phase coexistence occurs. The shadow curve, which records
the density of the coexisting phase at each point of incipient
phase separation, is normally distinct from this. However, for
the purely size-polydisperse cases considered here it is
known on general grounds that when represented in terms of
volume fraction rather than density the cloud and shadow
curves coincide to O(s%). > It is reassuring that, as Fig. 5
shows, this property is preserved by the PY approximation.

Turning to more detailed features of Fig. 5, we observe
that in case IV the coexistence region is broadened towards
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FIG. 6. Cloud and shadow curves for the SHS model with polydispersity
s=0.2 and case V stickiness coefficients. The binodal of the monodisperse
system is shown for comparison.

both lower and higher volume fractions. As the monodis-
perse critical point is approached, the perturbation expansion
breaks down as expected and the cloud/shadow curves di-
verge. No quantitative information can then be extracted in
this regime, but the fact that the divergence is outwards still
tells us that the coexistence region in the polydisperse case
extends to larger values of 7 than for monodisperse SHS.
This is consistent with our inference from the single-phase
equation of state above.

Comparing cases II and IV in Fig. 5 one sees first that
the phase boundary shifts are rather smaller in the former
than in the latter. Also the (slight) broadening of the phase
separation region towards lower 7 is now restricted to 7 be-
low around 0.093, while above this value the opposite trend
is observed. The divergence of the curves at the monodis-
perse critical point is now inwards so that phase coexistence
must terminate at values of 7 below the monodisperse 7.

Figure 6 shows the cloud and shadow curves for case V.
We find that the shifts away from the monodisperse binodal
are rather larger than in the previous two cases, and therefore
show results for a smaller polydispersity s=0.2 rather than
for s=0.3. Cloud and shadow curves no longer collapse, con-
sistent with expectation as case V is not purely size polydis-
perse. The cloud curve shows that the coexistence region
narrows in this case, except on the high-density branch for 7
below =0.085. The inward divergence of the cloud curve
shows that the coexistence region also shrinks towards lower
7. The shadow phases are more dense throughout than the
phases on the same branch of the cloud curve. Except for the
last point, these trends agree with the nonperturbative results
of Ref. 18 derived within the CO closure.

Case I, shown in Fig. 7, has even stronger polydispersity
effects, and we show predictions for a correspondingly
smaller polydispersity s=0.1. For 7 not too far below the
critical point the behavior is otherwise qualitatively similar
to case V; for lower 7 the coexistence region is displaced
towards lower rather than, as in case V, higher volume frac-
tions. The shrinking of the coexistence region towards lower
T1s again in qualitative agreement with results from the sim-
pler CO closure.'®

Finally, we turn to the phase behavior predicted for the
AO model with a small polymer-to-colloid size ratio &/ oy
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FIG. 7. Cloud and shadow curves for the SHS model with polydispersity
s=0.1 and case I stickiness coefficients. The binodal of the monodisperse
system is shown for comparison.

=0.1 and polydispersity s=0.07, as shown in Fig. 8. For this
choice of ¢ we have y=3.97 at the critical point of the
monodisperse system, and the condition &;~s<<1/vy for the
validity of the expansion in particle size of the stickiness
coefficients €; is reasonably well obeyed. Here the coexist-
ence region is broadened in all directions by the introduction
of polydispersity: towards low and high densities, and also
towards larger values of 7. The shadow phases are again
more densely packed than the analogous cloud phases.

We conclude this section by considering fractionation
effects. These are illustrated in Fig. 9 for cases II and I, for a
parent distribution of the Schulz form and with values of the
polydispersity s as in the corresponding Figs. 5 and 7. When
phase separation is approached from low densities, a gas
cloud phase with the parental size distribution coexists with
an infinitesimal amount of a liquid shadow phase with a
different size distribution. At the high-density boundary of
the coexistence region, a liquid cloud phase similarly coex-
ists with a distinct gas shadow phase. Figure 9 shows that for
case II the liquid phase contains more larger particles than
the coexisting gas in both of these situations (and therefore
presumably throughout the whole coexistence range of par-
ent densities at the chosen 7). Case I exhibits the opposite
behavior: here the liquid phases contain more smaller par-
ticles than their coexisting gas counterparts.

0.12 T———
011 a
0.1+ —
ool f 0.07 ]
i F s=U. .
0.09 ,'l f
3 — mono ’
0.08{7f —— cloud AQ -
----- shadow AO 1
0.07 -
.

FIG. 8. Cloud and shadow curves for the AO model with polymer-to-colloid
size ratio ¢/ ay=0.1 and (colloid) polydispersity s=0.07. The binodal of the
monodisperse system is shown for comparison.
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FIG. 9. Fractionation in SHS mixtures with stickiness coefficients chosen
according to cases II and I, at 7=0.11 and for polydispersities s as in the
corresponding Figs. 5 and 7. Shown are the cloud (parent) size distribution
p(0), taken to be of the Schulz form, and the size distributions in the liquid
shadow and gas shadow phases that form when coexistence is approached
from low densities (gas cloud phase) and high densities (liquid cloud phase),
respectively. For case II (main graph) the larger particles tend to accumulate
in the liquid phase, while for case I (inset) the opposite is true.

To understand this difference between cases I and II, we
return to Eq. (17). Consider the gas cloud point, where pgl)
and pgz) are the densities of coexisting gas and liquid in the
monodisperse system; Aa then is the difference in the values
of a between gas and liquid. If this is positive, then Eq. (17)
says that the liquid shadow has an enhanced concentration of
larger particles. By reversing the role of the two densities
one then sees easily that also at the liquid cloud point the
liquid phase will contain more of the larger particles than the
gas (shadow) phase. In summary, the liquid contains pre-
dominantly the larger particles if Aa>0, and the smaller
particles if Aa<<0. But from Eq. (27), Aa=Aay+€;,Aa; so
that different choices of stickiness coefficients affect the di-
rection and strength of fractionation only via €;,. The func-
tions Ag, and Aa; are shown in Fig. 10 and are both posi-
tive; as a result, Aa is positive when €,,>-Aay/Aa, and
negative otherwise. The ratio occurring on the right-hand
side is almost constant and remains close to 1/3 over a large
range of 7, as the inset of Fig. 10 demonstrates. We can now

0.12

0.11

0.1

0.09

0.08

0.07

FIG. 10. Decomposition Aa=Aa,+€,,Aa; of the difference in a between
gas and liquid phases. The two contributions Aa, and Aa, are plotted sepa-
rately against 7; the latter quantity is graphed on the vertical rather than the
horizontal axis for ease of comparison with Figs. 5-8. Inset: ratio of
Aay/Aa,.
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rationalize the difference between cases I and II observed
above: for case I, €;,=—1<<-1/3, hence Aa <0 and fraction-
ation will enrich the liquid in small particles; for case II,
€,,=0>-1/3 and one has the opposite situation. Referring
to Table I we also conclude that case IV will have the same
fractionation behavior as case II, while case V will produce
the same “direction” of fractionation (smaller particles in the
liquid) as case I but with quantitatively weaker effects. In the
AO case €, depends on 7 as discussed in Sec. III B, but this
effect turns out to be weak quantitatively, with (for &/ o
=0.1) €, ranging from =0.95 at the critical point to ~1.24
at 7=0.065. Taking for simplicity €;,~ 1 one infers that frac-
tionation effects will be qualitatively similar to cases II and
IV, but quantitatively Aa will be larger by a factor of around
4. All of these conclusions can be confirmed by detailed
examination of the explicit results for the various cases.

B. Other approximation schemes

Once one accepts the PY closure, the results shown
above are exact in their treatment of polydispersity, certainly
within the perturbative setting of weakly polydisperse mix-
tures. However, the PY closure itself—while more accurate
than its competitors—does remain an approximation. It is
therefore useful to compare with the predictions of other ap-
proximation schemes to assess the robustness of our predic-
tions. We do this first for case II, where an approximate free
energy of BMCSL type can be constructed, and then for the
AO model, which can be analyzed using the free volume
theory of Refs. 41 and 42.

To construct the alternative approximation for case II
one starts from a virial expansion of the excess free energy
density up to the third virial coefficient. This is easily found
as

F = pps+ (3= 120p,ps + 3[pp5 + 3(1 = 121 + 4872
—326%)p3 + 6(1 = 41)p paps ). (28)

where r=1/(127); the terms of second order in density agree
with the energy route of the CO approximation.18 The inter-
esting feature of this result is that the fourth order moment p,
does not appear, in contrast to the analogous expansions for
the other cases I, IV, and V that we have considered. Further-
more, the only modification compared to the pure HS case is
in the ¢ dependence of the coefficients. These observations
suggest that it should be possible to construct a modified free
energy expression of BMCSL type which matches the above
virial expansion to third order in density. Remarkably, if the
desired modified BMCSL form is parametrized in a fairly
general manner as

3Bp1p,

3

X P
7= (Al_i —A2p>[ln(1 —Dp3) +E] + 1
—Dp;

P3
Cp;
+—,
p3(1=Dp3)
then by expanding to third order in density and matching to

the expansion (28) one finds a unique solution for the coef-
ficients,

(29)
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FIG. 11. Cloud and shadow curves for case II stickiness coefficients and
with polydispersity s=0.3, calculated using the BCMSL-type free energy
[Eq. (29)] rather than the PY approximation, as in Fig. 5. The binodal of the
monodisperse system, which differs from the PY result, is shown for com-
parison. Main graph: region around the critical point. Inset: global view of
the results on the same scale as in Fig. 5.

E=0, D=A,=1, B=1-4t, C=A,=B+32F.

The presence of polydispersity is crucial here: for a mono-
disperse system, the matching conditions to third order in
density would not constrain the coefficients sufficiently.

One can now apply the perturbative scheme used
throughout this paper to obtain from the excess free energy
of Eq. (29) the functions a and b, and hence the cloud and
shadow curves. [Note that the perturbative approach is used
here mainly for ease of comparison with our other results;
since the free energy (29) is truncatable, a full solution of the
phase equilibrium conditions would be fairly straightfor-
ward.] The results are shown in Fig. 11; note that not just the
polydisperse cloud/shadow curves but also the monodispere
binodal are different from the ones obtained from the PY
approximation. Looking at the polydispersity-induced shifts,
one sees that on the high-density branch of the cloud/shadow
curve these are quite comparable to those from the PY ap-
proximation (Fig. 5), even semiquantitatively. Polydispersity
effects on the low-density branch are rather smaller, again as
found within the PY closure. Near the critical point, how-
ever, the trends are reversed: the BMCSL-type approxima-
tion predicts an extension of the coexistence region towards
larger 7 and smaller 7, whereas the PY approximation leads
to the opposite result.

The second case where we have an alternative approxi-
mation scheme available for comparison is the AO model.
The free volume theory of Ref. 11 effectively linearizes the
excess free energy in the polymer (reservoir) potential p,,
and the same is true for its generalization to polydisperse
colloids.*” Tt is therefore most accurate when the depletion
interaction between the colloids, which is proportional to Pps
is small (in units of kgT). In order to still get gas-liquid phase
separation, the polymer size & must then not be too small.
This is the opposite limit as for our SHS mapping, which
will work best when £<<oy and the depletion attraction is
large at contact. If anything, one therefore expects the best
agreement between the two approximations for intermediate
values of & a suitable choice is §/0y=0.1, as investigated
above. Figure 12 compares the two sets of cloud and shadow
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FIG. 12. Comparison of predictions for the AO model with polymer-to-
colloid size ratio &/0y=0.1. Left: results of SHS mapping analyzed within
the PY approximation; as in Fig. 8 cloud and shadow curves are shown for
colloid polydispersity s=0.07, along with the monodisperse binodal for
comparison. The vertical axis now shows the polymer volume fraction
rather than the reduced temperature 7. Right: analogous results obtained
from free volume theory. Inset, right: fractionation coefficient Aa for the
two approximation schemes.

curves predicted. On the vertical axis we plot the polymer
(reservoir) volume fraction 7,. This equals p,& in our di-
mensionless units and is the conventional variable used in
phase diagrams of colloid-polymer mixtures.”*! Comparison
of the two panels of Fig. 12 reveals that the qualitative agree-
ment between the two theories is surprisingly good. In par-
ticular, the qualitative changes caused by the presence of
polydispersity (broadening of coexistence region to lower
and higher colloid volume fractions, and lower polymer vol-
ume fraction) are in full agreement. For the relevant range of
polymer volume fractions there is an even quite good quan-
titative agreement (but note the slightly different axis ranges
on left and right), and the shifts of cloud and shadow curves
away from the monodisperse binodal are also quite compa-
rable. Even the predicted fractionation effects agree well: as
the inset on the right of Fig. 12 demonstrates, the calculated
values of Aa are, apart from the slight shift in the critical
point values of the polymer volume fraction, quite consistent
with each other.

We note briefly that in order to calculate the free volume
theory data shown in Fig. 12 we took the excess free energy
for fully polydisperse colloids (at fixed polymer chemical
potential) derived in Ref. 42 and then found the functions a
and b by expanding explicitly, as in Eq. (14). This gives for
a the same result as obtained by Evans,22 while b differs
from his expression in terms of approximate correlation
functions.”* One might expect that our approach of deriving
a and b from one unified polydisperse excess free energy
would be somewhat more accurate than Evans’ procedure of
finding a and b by quite different routes. We have checked
that for larger polymer sizes &/03=0.4 our method predicts
similar trends to those reported in Ref. 22, but quantitatively
the effects of polydispersity are less pronounced.

VI. CONCLUSIONS

We have presented a perturbative approach to the deter-
mination of the gas-liquid phase behavior of polydisperse
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sticky hard spheres (SHS), studied within the Percus-Yevick
(PY) integral equation theory. For arbitrary size polydisper-
sity, the calculation of phase diagrams analogous to those
reported here would normally require the solution of a large
(or infinite) system of quadratic coupled equations, a task
which in practice can be accomplished neither analytically
nor numerically. To get around this bottleneck of the PY
closure we focused on weakly polydisperse mixtures, where
the overall size distribution is narrow in the sense that its
normalized (by the mean) standard deviation s is small com-
pared to unity. This allowed us to calculate in closed form
the leading order [O(s?)] shifts of cloud and shadow curves
away from the monodisperse binodal, and the corresponding
fractionation effects. The thermodynamics was derived from
the PY solution via the energy route because in the monodis-
perse case this method gives the best match to Monte Carlo
simulation results, even for low reduced temperatures 7
around and below the critical point.

In order to specify the properties of a SHS mixture one
needs to know how the stickiness coefficients €; depend on
the sizes of the two interacting particles. We discussed a
number of plausible constraints on this size dependence. In
obtaining explicit results we considered specifically cases
I-V (excluding III which, with our now more appropriate
choice of reference length, becomes identical to I) previously
suggested within exact solutions of simpler closures such as
CO0 and C1. Of these, cases II and IV are special since they
can be seen as the sticky limit of purely size-polydisperse
interactions, in which scaling of both particle sizes by a com-
mon factor only changes the range but not the strength of the
interaction. We have also considered the AO model of a mix-
ture of polydisperse colloids and polymers, which for small
polymer size can be mapped to a good approximation onto a
SHS model. The stickiness coefficients can be derived in this
case rather than postulated; in contrast to the simpler ad hoc
prescriptions of cases /—V, they are functions of 7.

In the simplest case (case IV) of constant stickiness co-
efficients we first investigated the single-phase equation of
state, finding qualitative agreement with a numerical solution
of the compressibility equation of state for a small number of
components by Robertus et al.”? Moving on to phase coex-
istence proper, we found for cases II and IV that cloud and
shadow curves coincide in the volume fraction representation
and to O(s?), as expected on general grounds; less obviously,
our results also show that in these two cases the deviations of
the polydisperse cloud/shadow curves away from the mono-
disperse binodal are quantitatively small. In all the other
cases considered the shadow curves are located at higher
volume fractions than the cloud curves, a trend observed in
many other polydisperse systems.zz’29

Summarizing our findings regarding the effect of poly-
dispersity on the extent of the coexistence region as delim-
ited by the cloud curve, it is simplest initially to group the
different scenarios according to their behavior near the criti-
cal point. For case IV and the AO model (with a polymer-
to-colloid size ratio of 0.1) the coexistence region is shifted
to higher reduced temperatures 7; conversely, at fixed 7 it
covers a wider range of parent volume fractions 7. Cases I,
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I, and V, on the other hand, show the opposite behavior,
with the coexistence region shrinking towards lower 7.

The trends in case IV and AO remain unchanged as one
moves to lower values of 7, with the coexistence region con-
tinuing to broaden towards lower and higher values of # at
the two ends (gas and liquid). In the other cases the shrinking
trend near the critical point can be reversed at lower 7. For
example, for case II one also eventually sees a broadening to
lower (gas branch) and higher (liquid branch) 7. For case V
the coexistence region is shifted to higher 7 at both ends (gas
and liquid) at low ; case I shows the opposite behavior.

We have analyzed also the fractionation effects that ac-
company polydisperse phase separation, where coexisting
phases have different particle size distributions. Depending
on the stickiness coefficients considered, the liquid phase
contains predominantly the larger (as in cases II and IV and
AO) or the smaller particles (as in cases I and V). We ratio-
nalized this result by showing that the fractionation effects
depend on the stickiness coefficients only via the expansion
coefficient €;,; where this is above =~—1/3, the larger par-
ticles accumulate in the liquid phase; otherwise, they accu-
mulate in the gas phase.

Finally, we have compared our results with the predic-
tions from other available approximation schemes to check
their robustness. Case II is important here because a variety
of simple but realistic interaction potentials, used in the lit-
erature to model short ranged attractions in real solutions of
colloids, reverse micelles, or globular proteins, can be
mapped onto this model.** We constructed an approximate
excess free energy by allowing various coefficients within
the BMCSL free energy for hard spheres to become 7 depen-
dent and to match the (for case II, particularly simple) third
order virial expansion. The resulting binodal in the monodis-
perse limit is rather different from the one obtained from the
PY closure with the energy route. The polydispersity-induced
shifts of the (coincident) cloud/shadow curves are neverthe-
less comparable to those predicted by our PY analysis, but
only sufficiently far below the critical point. Near the critical
point the BMCSL-type excess free energy predicts an en-
largement of the coexistence region towards higher 7, while
the PY closure gives the opposite result. Given that in the
monodisperse case the PY binodal is rather closer to simula-
tion results than the BMCSL-type one, we would expect that
the PY predictions are more accurate also for the polydisper-
sity effects.

The second model for which we considered an alterna-
tive approximation scheme was the AO model. Here a direct
comparison with free volume theory is straightforward since
for the latter a generalization to polydisperse colloids has
recently been derived.** Even though one expects the two
approaches to be valid in complementary regions (small
polymer size & for the SHS mapping and larger ¢ for free
volume theory), we found very good qualitative and even
semiquantitative agreement of the predictions from the two
routes for an intermediate value (0.1) of the polymer-to-
colloid size ratio.

In future work, direct simulations of polydisperse SHS
mixtures would obviously be of interest to test our predic-
tions and resolve any differences with other approximation
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schemes, e.g., in case II. Simulations would be ideal here
since in contrast to experiment they would allow one to
probe directly different choices for the stickiness coeffi-
cients. Because of the presence of polydispersity, a grand
canonical Monte Carlo app1r0a<:h32’43_45 may be the simula-
tion method of choice, possibly supplemented by specific
cluster algorithms tailored to sticky interactions.'*' For the
physically more realistic AO model, our predictions should
be more accurate than those of free volume theory for small
polymer-to-colloid size ratios. Detailed experimental or
simulation tests in this regime would be welcome. In simu-
lations one could work directly with the AO depletion poten-
tial for the colloids, without ever representing the polymers
explicitly. For comparison with experiment one would need
to work out the actual volume fraction of polymer in the
system rather than in a reservoir; this should, in principle, be
a straightforward exercise once our excess free energy has
been rewritten as a function of polymer chemical potential.
On the experimental side one would require that the colloids
are sufficiently polydisperse (beyond a terminal polydisper-
sity around s=0.07; see the discussion and bibliography in
Ref. 46) to suppress kinetically any solid phases, thus allow-
ing stable observation of the gas-liquid phase splits we have
calculated.

APPENDIX: PERTURBATIVE EXPANSION OF L;

For the perturbative expansion of Eq. (18) one needs the

expansions of «;;, B;;, and ¢;;. These involve the trivial ex-

pansions
og=1+7;, (A1)
o;=1+ %(51"*' 3)s (A2)

One also needs the expansions to quadratic order of the mo-
ments

= p(1+ 8" = p(1 +m(8) + sm(m — 1)+ ---),
(A4)

giving in particular p,=p(1+2(&+(5)) and A=1-7=1
—p3=Ay=3p(8-3p(8), with Ay=1-p as defined in the
main text. The final ingredient is the expansion (6) for the ¢;;,
which is left in general form to allow different possible
choices of the stickiness coefficients to be considered to-
gether. Altogether one gets the following expansion coeffi-
cients for the a;;:

_L. 3
TN, T 242
(1+¢,) ! +<9+3 )p
= €,)—+|— €.,
a7 la AO 4 2 la A(z)
2
p p
aT=6— +9—,
15 A(% A(3)
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1 1 9 3 p
@, T= 5+261a+62a —+ 3+561a+—62a -

A, 2 Ay
<1+ . )1+<3+9 +3 )p
={—+e€ €y | — —+—€ —6 |5,
QT 4 lat €2 A, 272 la B 2b (2)
15 27 2
a267'=(—+661a>%+(—+9ela>p—3,
2 Ag 2 A
2 81 3
Ct’2dT—27p_3+_p_4,
Ay 2 A
9p P
T ——2+9—3.
2A; Ap

Similarly one has for the B;;

Bot=p,

BiaT= (% + Ela)p7
Bip7=0,

BoaT= (€14 + €24)p,

BopT= (%Ela + fzb)P,

:8207-20’
Bra7=0,
ﬁZeT=0’
and for the ¢;;
do= -
0— Ao,
oL
la — A(),
3p
¢lb_ A%?
oo L
2a — AO’
¢, =0,
3p
¢2L’ A(Q)’
9p?
bra= A(3)7
3p
¢2€_ A(Q)
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One now inserts these expansions into Eq. (18) and pro-
ceeds as explained in the main text to obtain the desired
conditions on the expansion coefficients L,...,L,, of the
L;;. To state these, it is helpful to define the quantities

1 1
Myp=—LLg—~(L,pg+Lgd,),
12 2
where Greek indices stand for the labels O, 1a, 1b, 2a, 2c,

2d, and 2e of the coefficients of the perturbative expansions.
The desired conditions are then

Lo=ay+ BoMy . (AS)
Lyy=a+ BiraMoo+ BoMo, 14> (A6)
Liy=ay+ BiyMoo+2Bo(Mo 14+ Mo 13) (A7)
Loy =0, + BaaMoo+2B1aMo 10+ BoM 14,145 (A8)
Loy = agy + BapMoo + BraMo.1a + BoMo b (A9)

Lye= e+ BocMo o+ 281,(Mo 14+ Mo 1p) + BisMo 14
+ Bo(M 1410+ Mg 15+ Moo, +Mose), (A10)

Log= arq+ BoaMoo+2B15(Mo 14+ Mo 1) + Bo(2M 5,
+2Mo o+ 2M g 15+ My ), (A11)

Ly =y, + BocMo o+ Bo(M g 14+ 2Mo o, +2M 5,).
(A12)

The first of these determines L, and leads back to Baxter’s
solution (24) for the monodisperse case. All other equations
involve the desired coefficient on the left at most linearly on
the right hand side and so are trivial to solve; e.g., Eq. (A6)
has L, , on the left and implicitly via My, on the right.
Running through the equations in order, all expansion coef-
ficients can then be found.
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