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We study through a computer experiment, using the restricted path integral Monte Carlo

method, a one-component fermion plasma on a sphere at ¯nite, nonzero, temperature. We extract

thermodynamic properties like the kinetic and internal energy per particle and structural prop-
erties like the radial distribution function. This study could be relevant for the characterization

and better understanding of the electronic properties of hollow graphene spheres.
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1. Introduction

We want to study the one-component fermion plasma on the surface of a sphere of

radius a at ¯nite, nonzero, temperature, as an evolution of the Thomson problem. The

plasma is an ensemble of point-wise electrons which interact through the Coulomb

potential assuming that the electric ¯eld lines can permeate the tridimensional space

where the sphere is embedded. The system of particles is thermodynamically stable

even if the pair-potential is purely repulsive because the particles are con¯ned to the

compact surface of the sphere, and we do not need to add a uniform neutralizing

background as in the Wigner Jellium model. Therefore, our spherical plasma made of

N spinless indistinguishable electrons of charge �e and mass m will carry a total

negative charge �Ne, a total mass Nm, and will have a radius a.

Note that in the limit a ! 1 with a ¯xed surface density � ¼ N=4�a2 our system

becomes thermodynamically unstable since all the particles tend to escape to in¯nity.

In order to prevent this pathological scenario one would have to add a uniform

neutralizing background on the spherical surface of positive surface charge density

þ�e. This amounts to replacing the Coulomb potential e2=r with the corrected one
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e2=r�B with B ¼
R
sphere

ðe2=rÞdA=ð4�a2Þ ¼ e2, where the integral is over the sur-

face of the sphere dA ¼ a2 sin � d�d’ and r ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos �

p
is the Euclidean distance

between the north pole and another point on the sphere, with polar angle �. The

constant D is chosen to make sure that the average value of the interaction is zero

and must be subtracted from the self-energy which would otherwise be zero. We

would then obtain the Wigner Jellium system on the sphere which has received much

attention from the point of view of path integral Monte Carlo recently in the Eu-

clidean tridimensional space.1–8

We want to study the structural and thermodynamic properties at ¯nite, nonzero,

temperature of the spherical fermion plasma through restricted path integral Monte

Carlo. In particular, we will calculate the radial distribution function of the particles

on the surface of the sphere and their kinetic and internal energy per particle.

Even if impenetrable identical particles on the surface of a sphere admit a frac-

tional anyonic statistics,9 we will just study their fermionic nature, leaving the im-

plementation of the anyonic statistics to a subsequent work. This amounts to

distinguishing only among even and odd permutations rather than among the larger

elements of the braid group. We will then consider the union of all the topologically

disjoint portions of the particles con¯guration space belonging just to each of the two

fermionic sections. This simpli¯es the problem considerably since the braid group is

much larger and complex than the permutation group.9

A quantum °uid on a Riemannian surface has been studied before in relation to the

quantum Hall e®ect.10–12 A generalized stochastic method has also been implemented

for the many-body ground state.13,14 We are not aware of any path integral Monte

Carlo attempt in the spirit of our work. We expect our work to be relevant for the

characterization of the electronic properties of hollow graphene spheres15,16 con-

structed in the laboratory and for their implementation as electrodes for super-

capacitors and batteries, as superparamagnetic materials, as electrocatalysts for

oxygen reduction, as drug deliverers, and as a conductive catalyst for photovoltaic

applications.17–25 Our numerical experiments, albeit idealized, are capable of exploring

the properties of these systems under the most various thermodynamic conditions,

even extreme conditions otherwise not accessible in the laboratory. Therefore we are

able to explore and characterize the phenomenology of these systems with cost-free

computer experiments that can later be used as guides for the laboratory set up.

The paper is organized as follows: in Sec. 2, we describe the problem we want to

solve and the method used for its resolution, in Sec. 3, we present our numerical

results, and Sec. 4 is for the concluding discussion.

2. The Problem

A point q on the sphere of radius a, the surface of constant positive curvature, is

given by

r=a ¼ sin � cos’x̂ þ sin � sin’ŷ þ cos �ẑ; ð1Þ
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with � the polar angle and ’ the azimuthal angle. The N particles positions are at

R ¼ ðr1; r2; . . . ; rNÞ. The surface density of the plasma will then be � ¼ N=4�a2. On

the sphere we have the following metric:

ds2 ¼ g��dq
�dq� ¼ a2 d�2 þ sin2 �d’2

� �
; ð2Þ

where Einstein summation convention on repeated indices is assumed, we will use

Greek indices for either the surface components or the surface components of each

particle coordinate and roman indices for either the particle index or the time-slice

index, q1 ¼ � 2 ½0; �Þ, q2 ¼ ’ 2 ½��; �Þ, and the positive de¯nite and symmetric

metric tensor is given by

g�� ¼
a2 0

0 a2sin2�

� �
: ð3Þ

We have periodic boundary conditions in �þ � ¼ � and in ’þ 2� ¼ ’. We will not

need to implement explicitly the periodic boundary conditions as all that is needed in

the simulation is the geodesic and the Euclidean distance which are expressed in

terms of trigonometric functions which are periodic in the coordinates � and ’. We

will also de¯ne Q ¼ ðq1;q2; . . . ;qNÞ which will be the coordinates used in the code.

The geodesic distance between two in¯nitesimally close points Q and Q0 is

ds2ðQ;Q0Þ ¼
PN

i¼1 ds
2ðqi;q

0
iÞ, where the geodesic distance between the points q and

q0 on the sphere is

sðq;q0Þ ¼ a arccos½cosðq1Þ cosðq10Þ ð4Þ
þ sinðq1Þ sinðq10Þ cosðq2 � q20Þ�: ð5Þ

On a computer the haversine formula is numerically better conditioned for small

distances. Moreover, to avoid rounding errors for the special case of antipodal points

the Vincenty formula for an ellipsoid with equal major and minor axes may be used.

The Hamiltonian of the N nonrelativistic indistinguishable particles of the one-

component spinless fermion plasma is given by

H ¼ T þ V ¼ ��
XN
i¼1

�i þ
X
i<j

vij; ð6Þ

with � ¼ }2=2m, where m is the electron mass, and �i ¼ g
�1=2
i @ðg1=2

i g��
i @=@q�i Þ=@q�i

the Laplace–Beltrami operator for the ith particle on the sphere of radius a in local

coordinates, where g��g
�� ¼ � �� and gi ¼ det jjg��ðqiÞjj. We have assumed that H in

curved space has the same form as in °at space. For the pair-potential, v, we will

choose

vij ¼ e2=rij; ð7Þ

where e is the electron charge and rij is the Euclidean distance between two particles

at qi and qj, which is given by

rij ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2r̂i � r̂j

q
¼ 2a sin½arccosðr̂i � r̂jÞ=2�; ð8Þ
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where r̂i ¼ ri=a is the versor that from the center of the sphere points towards the

center of the ith particle.

Given the antisymmetrization operator A, and the inverse temperature 	 ¼
1=kBT , with kB Boltzmann's constant, the one-component fermion plasma density

matrix, 
F ¼ Ae�	H, in the coordinate representation, on a generic Riemannian

manifold of metric g,26,27 is


F ðQ0;Q;	Þ ¼
Z


F ðQ0;QððM � 1Þ�Þ; �Þ � � � 
F ðQð�Þ;Q; �Þ

�
YM�1

j¼1

ffiffiffiffiffiffiffi
~gðjÞ

q YN
i¼1

dq1iðj�Þ ^ dq2i ðj�Þ; ð9Þ

where as usual we discretize the imaginary thermal time in bits � ¼ }	=M . We will

often use the following shorthand notation for the path integral measure:
QM�1

j¼1ffiffiffiffiffiffiffi
~gðjÞ

p QN
i¼1 dq1i ðj�Þ ^ dq2i ðj�Þ ! DQ as M ! 1. The path of the ith particle is

given by fqiðtÞjt 2 ½0; }	�g with t the imaginary thermal time. Each qiðj�Þ with

i ¼ 1; . . . ;N and j ¼ 1; . . . ;M represents the various beads forming the discretized

path. The N particle path is given by fQðtÞjt 2 ½0; }	�g. Moreover,

~gðjÞ ¼ det jj~g��ðQðj�ÞÞjj; j ¼ 1; 2; . . . ;M � 1; ð10Þ

~g��ðQÞ ¼ g�1	1
ðq1Þ � . . .� g�N	N

ðqNÞ: ð11Þ

In the small � limit we have


F ðQð2�Þ;Qð�Þ; �Þ ¼ ð2�}Þ�NA½~g�1=4
ð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðQð2�Þ;Qð�Þ; �Þ

p
~g
�1=4
ð1Þ

� e��RðQð�ÞÞ=6}e�
1
}
SðQð2�Þ;Qð�Þ;�Þ�; ð12Þ

where A can act on the ¯rst, or on the second, or on both time slices, RðQÞ the scalar
curvature of the curved manifold, S the action and D the van Vleck's determinant

D�� ¼ � @2SðQð2�Þ;Qð�Þ; �Þ
@Q�ð2�Þ@Q�ð�Þ ; ð13Þ

det jjD�� jj ¼ DðQð2�Þ;Qð�Þ; �Þ; ð14Þ

where the Greek index denotes the two components of each particle coordinate.

For the action and the kinetic-action we have

SðQ0;QÞ ¼ KðQ0;QÞ þ UðQ0;QÞ; ð15Þ

KðQ0;QÞ ¼ 3N}

2
lnð4���=}Þ þ }2s2ðQ0;QÞ

4��
; ð16Þ

where in the primitive approximation28 we ¯nd the following expression for the inter-

action,

UðQ0;QÞ ¼ �

2
½V ðQ0Þ þ V ðQÞ�; ð17Þ
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V ðQÞ ¼
X
i<j

vij: ð18Þ

In particular, the kinetic-action is responsible for a di®usion of the random walk with

a variance of 2��g��=}.

On the sphere we have R ¼ NR with R ¼ 2=a2, the scalar curvature of the

sphere of radius a, and in the M ! 1 limit sðQ0;QÞ ! dsðQ0;QÞ and ~g
�1=4
ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðQð2�Þ;Qð�Þ; �Þ
p

~g
�1=4
ð1Þ ! ð}2=2��ÞN . We recover the Feynman–Kac path inte-

gral formula on the sphere in the � ! 0 limit. In a computer experiment calculation it

is enough to take M su±ciently large, of the order of 100 or 1000,28 so to keep

� � 0:01, recalling the primitive approximation error scales as � ��2. We will then

have to deal with 2NM multidimensional integrals for which Monte Carlo is a

suitable computational method. For example to measure an observable O we need to

calculate the following quantity:

hOi ¼
R
OðQ;Q0Þ
F ðQ0;Q;	ÞdQdQ0R


F ðQ;Q;	ÞdQ ; ð19Þ

where
ffiffiffi
~g

p QN
i¼1 dq

1
i ^ dq 2i � dQ. Note that most of the properties that we will

measure are diagonal in coordinate representation, requiring then just the diagonal

density matrix, 
F ðQ;Q;	Þ. For example, for the radial distribution function,

gðrÞ ¼ hOi with r the Euclidean distance between points q and q0, r ¼
2a sin½arccosðq̂ �q̂0Þ=2�, we have the following histogram estimator:

OðQ; rÞ ¼
X
i6¼j

1½r��=2;rþ�=2½ðqijÞ
NnidðrÞ

; ð20Þ

where � is the histogram bin, 1½a;b½ðxÞ ¼ 1 if x 2 ½a; b½ and 0 otherwise, and

nidðrÞ ¼ N
rþ�=2

2a

� �
2

� r��=2

2a

� �
2

� �
; ð21Þ

is the average number of particles on the spherical crown ½r��=2; rþ�=2½ for the
ideal gas of density �. We have that �2gðrÞ gives the probability that sitting on a

particle at q one has to ¯nd another particle at q0.

Fermions' properties cannot be calculated exactly with path integral Monte Carlo

because of the fermions sign problem.29,30 We then have to resort to an approximated

calculation. The one we chose was the restricted path integral approximation29,30

with a \free fermions restriction". The trial density matrix used in the restriction is

chosen as the one reducing to the ideal density matrix in the limit of t � 1 and is

given by


0ðQ0;Q; tÞ / A e�
}s2ðq 0

i
;qjÞ

4�t

����
����

����
����: ð22Þ
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The restricted path integral identity that we will use states29,30


F ðQ0;Q;	Þ /
Z ffiffiffiffiffi

~g00
p

dQ00
F ðQ00;Q; 0Þ ð23Þ

�
I
Q00!Q02�0ðQÞ

DQ000e�S½Q000 �=};

where S is the Feynman–Kac action.

S½Q� ¼
Z

}	

0

dt
}2

4�
Q
:

�Q
: � þ V ðQÞ

� �
: ð24Þ

Here, the dot indicates a total derivative with respect to the imaginary thermal time,

and the subscript in the path integral of Eq. (2) means that we restrict the path

integration to paths starting atQ00, ending atQ0 and avoiding the nodes of 
0, that is

the reach of Q. The nodes are on the reach boundary @�0. The weight of the walk is


F ðQ00;Q; 0Þ ¼ A�ðQ00 �QÞ ¼ ðN !Þ�1
P

Pð�ÞP�ðQ00 � PQÞ, where the sum is over

all the permutations P of the N fermions, ð�ÞP is the permutation sign, positive for

an even permutation and negative for an odd permutation, and the Dirac's delta

function is on the sphere. It is clear that the contribution of all the paths for a single

element of the density matrix will be of the same sign, thus solving the sign problem;

positive if 
F ðQ00;Q; 0Þ > 0, negative otherwise. On the diagonal the density matrix

is positive and on the path restriction 
F ðQ0;Q;	Þ > 0, then only even permutations

are allowed since 
F ðQ;PQ;	Þ ¼ ð�ÞP
F ðQ;Q;	Þ. It is then possible to use a bosons

calculation to get the fermions case. Clearly the restricted path integral identity with

the free fermions restriction becomes exact if we simulate free fermions, but otherwise

is just an approximation. The approximation is expected to become better at low

density and high temperature, i.e. when correlation e®ects are weak. The imple-

mentation of the restricted, ¯xed nodes, path integral identity within the worm

algorithm has been the subject of a recent study on the tridimensional Euclidean

Jellium.

We will use the worm algorithm31,32 to generate spontaneously the needed

permutations for the antisymmetrization operator A. The permutations on the

sphere will generate paths with di®erent braiding properties. Identical impene-

trable (scalar) particles on a sphere are, in general, anyons with fractional statis-

tics.9 Here we will just project out the fermionic component of the broader braid

group by just looking at the sign of the trial free fermions density matrix. The

object of study is still the realization of the simulation of the anyonic system. The

worm algorithm is able to sample the necessary permutations of the indistin-

guishable particles without the need of explicitly sampling the permutations

space treating the paths as \worms" with a tail (Masha) and a head (Ira) in the

	-periodic imaginary time, which can be attached one with the other in di®erent

ways or swap some of their portions.

We will work in the grand canonical ensemble with ¯xed chemical potential �,

surface area A ¼ 4�a2, and absolute temperature T . At a higher value of the
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chemical potential we will have a higher number of particles on the surface and a

higher density. On the other hand, increasing the radius of the sphere at constant

chemical potential will produce a plasma with lower surface density. The Coulomb

coupling constant is � ¼ 	e2=a0rs with a0 ¼ }2=me2 the Bohr radius and

rs ¼ ð4��Þ�1=2=a0. At weak coupling, � � 1, the plasma becomes weakly correlated

and approaches the ideal gas limit. This will occur at high temperature and/or low

density. The electron degeneracy parameter is � ¼ T=TD; where the degeneracy

temperature TD ¼ �}2=mkB. For temperatures higher than TD, � 	 1, quantum

e®ects are less relevant.

3. Results

Choosing length in Wigner–Seitz's radius, a0rs, units and energies in Rydberg's,

Ry ¼ }2=2ma2
0, units we have � ¼ Ry=r2s, � ¼ 	ð2=rsÞ, and � ¼ ð2�r2sÞ=	. We then

see immediately that when quantum e®ects are relevant, at �. 1, and at low density

or high rs the potential energy dominates in the Hamiltonian (6) and the electron

plasma tends to crystallize in a Wigner's crystal. On the other hand at � 	 1, in the

classical regime, the system tends to crystallize at high density. In our grand ca-

nonical simulation it is rather convenient to choose the length unit to be just the

Bohr radius since rs is not an input parameter.

We use a free fermion trial density matrix restriction for the ¯xed nodes path

integral calculation from the worm algorithm32,33 to the reach of the reference point

in moves ending in the Z sector: remove, close, wiggle, and displace. We will use the

primitive approximation of Eq. (17). Our algorithm has been recently described in

Ref. 34. Here we do not randomize the reference point time slice and we do not

restrict the G sector. We choose the probability of being in the G sector (/ C0 in

Ref. 32) so as to have Z sector's acceptance ratio close to 8/10. The restriction

implementation is rather simple: we just reject the move whenever the proposed path

is such that the ideal fermion density matrix (22) calculated between the reference

point and any of the time slices subject to newly generated particles positions has a

negative value. The algorithm will spontaneously choose the optimal needed � , in the

sense that for bigger � it will not be able to come back and forth between the Z and

the G sector remaining stuck in the G sector.

The restricted worm algorithm simulations length was n� 103 blocks, with n 2
½0; 10� an integer. Each block was made of 500 steps during which 100 moves were

made and measures and averages taken. The moves were of nine kinds: advance,

recede, insert, open and swap ending in the G sector; remove, close, wiggle and

displace ending in the Z sector.35 Each move involved no more than 20 time

slices. And they were chosen from a menu with equal probabilities. The integration

measures factors
ffiffiffi
~g

p
were only used in the acceptance probabilities of the self-com-

plementary moves: wiggle, swap and displace.

In Table 1 we show the cases studied in our simulations. The ¯rst case A is at a

temperature of about 3946K below the graphene melting temperature.36 From the
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table we see how the potential energy per particle diminishes as the density of the

system decreases.

In Fig. 1 we show a snapshot of the macroscopic path during an equilibrated

simulation of cases B and C of Table 1. We see how the particles tend to cover the

sphere surface isotropically. As it should be since there is nothing able to break the

symmetry. Regarding the paths con¯guration we see immediately that the ones in

case B, at lower temperature, are more extended than the ones in case C, at higher

temperature, in agreement with the fact that the de Broglie thermal wavelength, the

size of a path in absence of interactions, is bigger in case B. We can distinguish

between several kinds of conformations. There are the localized paths and the un-

localized path covering a large portion of the sphere surface. Paths tend to avoid the

poles at low temperature. They tend to wind around the sphere running along the

parallels in proximity of the poles and to run along the meridians in proximity of

the equator. This is because these are the paths favored by the kinetic-action which is

expressed in terms of the square of the geodesic distance of Eq. (4) which, unlike the

Euclidean distance, is homogeneous only in the azimuthal angle, the q2 local coor-

dinate, but not in the polar angle, the q1 local coordinate. At lower temperature,

when the path size increases, the worm di®uses more and we can have paths covering

a larger part of the sphere with longer links between two beads. If we rotate the

sphere moving its ẑ axis, the paths con¯guration will also rotate.

In Fig. 2 we show the radial distribution function for the cases shown in Table 1.

Note that here we are plotting against the Euclidean distance instead of the geodesic

one so the value of gðrÞ on the diameter is at r ¼ a
ffiffiffi
2

p
, the top value is at r ¼ 0, and

the antipodal value is at r ¼ 2a. We then see the e®ect of curvature on the Coulomb

and Fermi hole near contact as they evolve by increasing the temperature. The

extent of the Coulomb and Fermi hole at the lowest temperature amounts to roughly

2.5 Bohr's radii. In the limit of very high temperature, the radial distribution

Table 1. Thermodynamic states treated in our simulations: � ðRyÞ chemical potential, 	 ðRy�1Þ inverse
temperature, N average number of particles, rs average value of rs, eK ðRyÞ kinetic energy per particle

from the thermodynamic estimator as explained in Ref. 28, and eV ðRyÞ potential energy per particle. The
other quantities were introduced in the main text. We chose length in Bohr radius' units and energy in

Rydberg's units. We chose M such as to have � ¼ 0:01 or less in all cases except case A where we have

� ¼ 0:02.

Case M � a=a0 	 N rs � � eK eV

A 2000 4 5 40 15.03(3) 1.29 62.0 0.261 24.9(3) 2.67(3)
B 500 8 5 5 20.80(8) 1.10 9.12 1.51 48.97(4) 3.857(6)

C 100 10 5 1 29.2(2) 0.925 2.16 5.38 48.5(2) 6.08(5)

D 50 8 5 1/2 31.0(1) 0.898 1.11 10.1 47.84(6) 6.43(3)
E 10 �13 5 1/10 61.8(3) 0.636 0.314 25.4 51(1) 12.83(6)

F 2 �300 5 2/100 58.9(1) 0.651 6.14� 10�2 133 61(4) 11.86(2)

G 2 �250 5 0.015 48.00(3) 0.722 4.16� 10�2 218 �9(4) 9.412(5)

H 100 4 10 1 35.3(2) 1.68 1.19 17.8 �38(36) 3.90(2)
I 100 0 20 1 50.5(4) 2.81 0.711 49.8 42(3) 3.02(3)

L 100 �8 200 1 17.7(2) 47.5 4.21� 10�2 1.42� 104 45(3) 0.118(1)
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(a)

(b)

Fig. 1. (Color online) Snapshot of the macroscopic path during the simulation of case C in Table 1 in the

top panel and case B in Table 1 in the bottom panel. The di®erent worms have di®erent colors. Some paths

penetrate through the surface of the sphere and appear as broken links.
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function tends to the constant function everywhere equal to unity (see case G of

Table 1). Another feature of the radial distribution function is the ¯rst peak which is

produced due to the Pauli exclusion principle, responsible for the Fermi hole, for the

Coulomb repulsion, responsible for the Coulomb hole, and for the temperature e®ect

which tends to make particles bump one on the other. From Fig. 2 we clearly see how

at small �, when the Pauli exclusion becomes strong, the peak tends to shift at larger

distances. At very high �, the Pauli exclusion becomes very weak and the Fermi hole

tends to disappear. Curiously enough the height of the ¯rst peak, the probability that

sitting on a particle we ¯nd one in its neighborhood, is lower than the antipodal

value, probability of ¯nding a particle to the particle antipodes. The ¯rst peak height

and the antipodal value have a nonmonotonic behavior with temperature. Since

there are no attractions in the pair-potential, we only observe oscillations in the

radial distribution function at very low temperature.

In Fig. 3 we show the radial distribution function of the plasma at the inverse

temperature 	 ¼ 1 Ry�1 on spheres of di®erent diameters and with roughly equal

average number of particles, as shown in Table 1 for cases C, H, I and L. Case L

corresponds to a sphere of the diameter of 20 nanometers and still presents the

Coulomb and Fermi hole. We can see that, as the diameter increases and the density

decreases, the ¯rst peak height increases. This had to be expected in view of the fact

that the system in the semi-quantal regime will tend to crystallize as the density

decreases. The peak height tends to become bigger than the antipodal value.

We always worked with no more than 65 electrons which could correspond to the

� conduction electrons of the carbon atoms in the graphene sphere. So, the spheres

should be made by 10–100 C atoms. The same order of magnitude as in fullerenes

where the smallest buckyball cluster is C20 and the most common is the buckmin-

sterfullerene C60. Here we are not taking care of the fact that, in graphene, at the

Dirac point, electrons have zero e®ective mass. These graphinos should have a rel-

ativistic Hamiltonian rather than the nonrelativistic one we used in Eq. (6).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9 10

g(
r)

r/a0

A
B
C
D
E
F
G

Fig. 2. (Color online) The radial distribution function for the spinless fermion plasma on the sphere
of radius a ¼ 5a0 at an inverse temperature 	 and a chemical potential � for the cases A-G shown in

Table 1.
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4. Conclusions

We simulated a one-component spinless fermion plasma at ¯nite, nonzero, temper-

ature on the surface of a sphere. The Coulomb interaction is e2=r with r the Eu-

clidean distance between the two electrons of elementary charge e. Here we could as

well have chosen instead of r the geodesic distance, s, within the sphere. We used a

new implementation of the restricted ¯xed nodes path integral identity within the

worm Monte Carlo algorithm. This gives us an approximated numerical solution of

the many-body problem. The exact solution cannot be accessed due to the fermion

sign catastrophe. Impenetrable indistinguishable particles on the surface of a sphere

admit, in general, anyonic statistics. Here we just project the larger bride group onto

the permutation group and choose the fermion sector for our study.

The path integral Monte Carlo method chosen uses the primitive approximation

for the action which could be improved for example by the use of the pair-product

action.28 The restriction is carried on choosing as the trial density matrix the one of

ideal free fermion. This choice would return an exact solution for the simulation of

ideal fermions but it furnishes just an approximation for the interacting coulombic

plasma.

Our results extend to the quantum regime the previous nonquantum results

obtained for the analytically exactly solvable plasma on curved surfaces37–42 and for

its numerical Monte Carlo experiment.43 Here we just study the geometry of the

sphere leaving the more complex surfaces with a nonconstant curvature to a further

study. As is shown by the snapshot of the macroscopic path, the con¯guration space

appears much more complicated than in the classical case (see Figs. 5 and 6 of

Ref. 43). A ¯rst notable phenomena is that whereas the particles distribution is

certainly isotropic the paths conformation is not, with beads distributed in such way

to avoid the poles at low temperature. Some paths tend to wind around the sphere
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Fig. 3. (Color online) The radial distribution function for the spinless fermion plasma on the sphere of

di®erent radii at an inverse temperature 	 ¼ 1 Ry�1 and a chemical potential � for the cases shown in

Table 1.
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running along the parallels in proximity of the poles, others to run along the mer-

idians in proximity of the equator. This is a direct consequence of the coordinate

dependence of the variance of the di®usion. If we rotate the sphere the path con-

¯guration will also rotate with the sphere. We have several kinds of worms con-

formations. At high and low temperature: the localized ones, those winding around

the sphere along parallels, and those penetrating through the surface of the sphere, at

low temperature, the unlocalized ones distributed over a larger part of the surface

with long links between the beads of the path.

The structure of the plasma on the sphere reveals how the curvature in°uences

the Coulomb and Fermi holes as they evolve in temperature and density. In par-

ticular we observe a monotonic increase of the extent of the Fermi hole as the

temperature diminishes. Our analysis shows how the probability of ¯nding a particle

nearby another particle is lower than the probability of ¯nding a particle at the

antipodes unless for spheres of large diameter. At a higher degeneracy parameter the

Pauli exclusion e®ect becomes less important and the Fermi hole tends to disappear.

In the high temperature limit the particles will tend to cover the sphere more uni-

formly. Decreasing the surface density at ¯xed low temperature the ¯rst peak of the

radial distribution function grows monotonically in height, tends to become bigger

than its antipodal value, and shifts at smaller distances.

Our computer experiment could be used to predict the properties of a metallic

spherical shell, as for example a spherical shell of graphene. Today we assisted the

rapid development of the laboratory realization of graphene hollow spheres with

many technological interests like the employment as electrodes for supercapacitors

and batteries, as superparamagnetic materials, as electrocatalysts for oxygen re-

duction, as drug deliverers, as a conductive catalyst for photovoltaic applications. Of

course, with simulation we can access the more various and extreme conditions

otherwise not accessible in a laboratory.

A possible further study would be the simulation of the neutral sphere where we

model the plasma of electrons as embedded in a spherical shell that is uniformly

positively charged in such a way that the system is globally neutrally charged. This

can easily be done by changing the Coulomb pair-potential into e2=r ! e2

ð1=r� 1Þ. In the a ! 1 limit, this would reduce to the Wigner Jellium model

which has been receiving much attention lately, from the point of view of a path

integral Monte Carlo simulation.1–8 Alternatively, we could study the two-com-

ponent plasma on the sphere as has recently been done in the tridimensional Eu-

clidean space.44 Another possible extension of our work is the realization of the

simulation of the full anyonic plasma on the sphere taking care appropriately of the

fractional statistics and the phase factors to append to each disconnected region of

the path integral expression for the partition function. This could become impor-

tant in a study of the quantum Hall e®ect by placing a magnetic Dirac monopole at

the center of the sphere.13,14 Also the adaptation of our study to a fully relativistic

Hamiltonian could be of some interest for the treatment of the Dirac points

graphinos.
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