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Abstract—In a recent publications I proposed a new statistical theory of gravity [Riccardo Fantoni,
Quantum Reports 6, 706 (2024)], which describes fluctuations of the space-time metric through a virial
temperature. In a succeeding publication I discussed the foundations [Riccardo Fantoni, Stats 8, 23
(2025)] of such a theory. Here, I propose a possible way to render numerically accessible the path integral
Monte Carlo computations required in the Statistical Gravity theory. This requires the use of the Arnowitt—
Deser—Misner (ADM) splitting and of the Affine Quantization (AQ) method.
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1. INTRODUCTION

The idea to realize a quantum theory of gravity has
a long history [1, 2]. Recently we proposed a theory
for Statistical Gravity [3], the FEBB. Leaving aside
the feasible experimental confirmations for it, it is
yet important to prove that it gives rise to quantities
(observables thermal averages) that are mathemati-
cally well defined and can therefore be computed (at
least numerically). We are thinking, for example, on
the problems that one may encounter in computing a
constrained quantum field theory [4—17], even such
a simplest one as the scalar (relativistic Euclidean)
theory. In these cases we could experience how im-
portant it was to use the method of Affine Quantiza-
tion (AQ) (as opposed to the canonical quantization)
in order to render a particular theory nontrivial. But
even before worrying about renormalizability of a par-
ticular quantum field theory, it makes sense to worry
about the soundness of the place it occupies in the
underlying Hilbert space.

With this in mind, in this short paper, following the
idea already put forward in [12] for a construction of
a well-defined Quantum Gravity, we propose to use
the method of AQ also to construct a well-defined
Statistical Gravity.

In these complex tensorial quantum field theories,
even the determination of the relevant semiclassical
action can become a formidable task due to the in-
tertwining of the tensorial calculus and the commu-
tation calculus. Here we will not carry out any such
necessary complex calculus explicitly, but we will just
lay down the problem showing that it is a well-defined
one.

This work is the last of a trilogy on our novel
statistical theory of gravity [3, 18].

E-mail: riccardo.fantoni@scuola.istruzione.it

2. EINSTEIN’'S FIELD EQUATIONS
FROM A VARIATIONAL PRINCIPLE

Sempre caro mi fu quest’ermo colle,
e questa siepe, che da tanta parte
dell’ultimo orizzonte il guardo esclude.

Giacomo Leopardi
L’ Infinito

The Einstein—Hilbert action in general relativity
is the action that yields the Einstein field equations
through the stationary action principle. With the
(— + ++) metric signature, the action is given as
[19, 20]

S:/<iR+£F>\/—_gd4x, (1)

where g = det(g,, ) is the determinant of the metric
tensor matrix, \/—g is a scalar density, =z = (ct,x)
is an event with t = 2°/c time and x = (2!, 22, 2?)
a point in space, \/—g d*z is the invariant “volume”
element, R is the Ricci scalar, k = 87Ge* is the
Einstein gravitational constant (G is the gravitational
constant and ¢ is the speed of light in vacuum),
and /—g L is a Lagrangian density of “interaction”
containing the contribution from matter, electromag-
netic, or other gauge boson fields to the action. If it
converges, the integral is taken over the whole space-
time. If it does not converge, S is no longer well-
defined, but a modified definition where one integrates
over arbitrarily large, relatively compact domains, still
yields the Einstein equation as the Euler—Lagrange
equation of the Einstein—Hilbert action.
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The action was proposed [19] by David Hilbert in
1915 as part of his application of the variational prin-
ciple 65 = 0 to a combination of gravity and matter,
electromagnetism, or other gauge boson fields. Note
that in the variation of the Ricci scalar one needs to
assume that the Gibbons—Hawking—York boundary
term [21—23] gives no contribution to the variation
of the action, which is justified at events not in the
closure of the boundary, when variation of the metric
vanishes in a neighborhood of the boundary or when
there is no boundary.

The equations of motion coming from the station-

ary action principle then read (see the second section
of [3])

1
Guw = Ry — EQWR = KT}, (2)
which are the Einstein field equations, where
=2 6(/—9LF) OLF

is the stress-energy tensor, and k = 87G /c* has been
chosen such that the nonrelativistic limit yields the
usual form of Newton’s gravity law.

3. ADM 3+ 1 FOLIATION OF SPACE-TIME

Ma sedendo e mirando, interminati
spazi di 1a da quella, e sovrumani
silenzi, e profondissima quiete
io nel pensier mi fingo, ove per poco
il cor non si spaura.

Giacomo Leopardi
L’ Infinito

Arnowitt, Deser, and Misner (ADM) proposed in
1962 the following 3 + 1 foliation of space-time [24]:
ds* = —N%dt*

+ gij(da’ + N'dt)(dz? + NYdt), (4)

where now Latin indexes run over the three spatial
components 1, 2, 3. They called N the [apse and
N; the shift. To split the time component from the
3 spatial components, they chose the following:

—(N? — N'N;) N;
HQWH = ( ( ) ) ) (5)
N;

9ij
y —1/N2 NZ'/N2
lg™“Il=1{ g - , (6)
NZ/N2 g“—NZNJ/N2

which are inverse by sight. Note also that \/—%g =
N+/3g, where 3g =det{g;;}, ‘g =det{gu}, and
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we indicate with a presuperscript 4 the full four-
dimensional tensor and with a presuperscript 3 the
spatial 3 x 3 tensor, when it is strictly necessary to
avoid confusion. Therefore, we will raise (or lower)
Greek indices with the full metric tensor g"** and Latin

indices with the spatial metric tensor g/, which also
satisfies gixg" = &7 .

ADM showed that if one chooses as the general-
ized coordinate g;; and as the conjugated momentum

= /=g, = 9pgl+0s0")g ", (7)
then the space-time metric Lagrangian is
,C =\ —4g4R = —gijﬂ'ijp — NRO — NZRZ
g 1 ,
—2<7T”Nj—§7rNZ—|—N|J\/3g> : (8)

where we denote with a bar (|) a spatial covariant
derivative, and

R =—\/3 [3R+ % <1712 — 7Tij77ij>:| ;o (9)

2
R' = —27rij|j, (10)
T =k (11)

Equation (9) is the Hamiltonian constraint, whereas
Eq. (10) is the momentum constraint. In fact, since
the last term in Eq. (8) only contributes a “surface”
term to the metric action S o< [ £ d*z, if space-time
extends to infinity, it can be taken as giving a negligi-
ble contribution.

Taking variations with respect to the lapse and
shift provides the constraint equations R® =0 and
R = 0, and then the lapse and shift themselves can
be freely specified, reflecting the fact that coordinates
systems can be freely specified in both space and time.

Since g;; is a strictly positive-definite tensor, in our
recent paper [12] we proposed to use affine variables
in place of the canonical variables g;; and 7% in order
to cure such an unholonomous constraint. We then
introduce a “dilation” conjugate variable 7 = grimE.
This classical momentric (a name that is a combina-
tion of momentum and metric and was invented by
John Klauder) tensor and the spatial metric tensor
become the new basic canonical affine variables. By
doing so and recalling that g/, = 0, we reach the
following classical Lagrangian:

L =—g;m7 g~ NR— N;R, (12)
R' = —2¢"m ;, (13)
1 [, 1
RO = —3g |:7T;-7Tg - §7T2:| —/3¢°R, (14)
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where we dropped the gradient term in the La-
grangian since it gives no contribution to the classical
action,

S://{—gijﬁijp—NRo—NiRi}
0 Q

x d(ct) d*x, (15)

where  is the region of space and time that starts
from the beginning att = 0.

In Affine Quantization (AQ) we promote the two
canonical affine variables g;; and 7r§ to operators g;;
and fr; and write the corresponding affine semiclas-
sical (including just terms up to order /& in the A — 0
limit) Lagrangian £’ using the commutation relations
between the spatial metric operator and the momen-
tric operator (given, for example, in [12] and derived
again in the Appendix).

4. PATH INTEGRAL FORMULATION
OF STATISTICAL GRAVITY

E come il vento
odo stormir tra queste piante, io quello
infinito silenzio a questa voce
vo comparando: e mi sovvien 'eterno,
e le morte stagioni, e la presente
e viva, e il suon di lei.

Giacomo Leopardi
L’ Infinito

Then the action for Einstein’s theory of general
relativity is one for a particular field theory where the
field is the metric tensor g, (), a symmetric tensor
with 10 independent components, each of which is a
smooth function of 4 variables. We will indicate all
these components with the notation {g}(z). We will
also work in Euclidean time z° = ¢t — ict, so that the
metric signature becomes (+ + + +). This amounts
to a Wick rotation, which brings from quantum to
statistical theory.

The thermal average of an observable O[{g}(z)]
will then be given by the following expression [3]:

_ JOl{g}(@)]exp(—vS') D{g} ()
[ exp(—vS) D{g}(x) ’
so that (1) = 1. Here S’ is the affine action

B
5’://{%&4&%1\7\/@} d(ct) d®x, (17)
0 Q

(0)

(16)

where 1/v is a positive constant of dimension of
energy times length, ¢t € [0, 8], where 8 =1/kpT,
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kg is the Boltzmann constant of dimensions of one
divided by length and by Kelvin degree, and 7" an
effective temperature in Kelvin degree (which can be
made a field [3], T'(x)).

Since the thermal average involves taking a trace,
we must have g, (ct + 3,x) = gu(ct,x). We will
also require periodic spatial boundary conditions on
the finite volume Q C R3, which is the closest thing

to a formal thermodynamic limit. As usual, we will
use

D{g}(x) = [] d"{g}(x).

xT

and the functional integrals will be calculated on a
lattice using the path integral Monte Carlo (PIMC)
method [25]. Moreover, we will choose

d"{g}(x) = [ dg" (),

p<v

where the 10-dimensional space of the 10 indepen-
dent components of the symmetric metric tensor is
assumed to be flat.

The determination of £’ looks like a formidable
task that needs to take care of the commutation re-
lations among the spatial metric and the momentric
operators, but it seems to be necessary to overcome
the numerical singularities that may arise from the
geometrical unholonomous constraint of having a
strictly positive-definite spatial metric. Here we are
thinking of a possible loss of ergodicity in the PIMC
as its paths wander through and explore the accessi-
ble region delimited by sharp constraints which can
be variously intricate. We see AQ as a way to smooth
out the geometric constraints so as to recover ergod-
icity and be able to sample the whole relevant region
efficiently.

5. CONCLUSIONS
Cosi tra questa
immensita s’annega il pensier mio:
e il naufragar m’e dolce in questo mare.

Giacomo Leopardi
L’ Infinito

In this short paper we present a plausible rep-
resentation (realization) of the FEBB defined in [3].
This requires the use of ADM 3 + 1 splitting and the
AQ procedure. We just lay down the representation
but without finding its explicit form which would re-
quire rather a formidable calculus, where one needs
to deal with commutation relations among tensorial
objects. We believe that a Monte Carlo algorithm may
lose ergodicity in the presence of sharp constraints,
which AQ can otherwise smooth out.
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Alternative ways to reach a statistical theory of
gravity have been proposed in the past [26—29], but,
for example, the use of the Ashtekar canonical vari-
ables [26] seems unable to deal with zeroes and in-
finities as our affine quantization does [30].

Appendix

COMMUTATORS BETWEEN THE SPATIAL
METRIC AND THE MOMENTRIC

We start from the Poisson brackets (at fixed time)
between the two canonical variables g;; and 7%

{9ij(), gra(2)} = 0, (A.1)
ny _ Ogij(z)  onM(a!)
{gij(x)vﬂkl(x )} - 5gmi(x//) (57Tm"(m‘”)
- %53(95 — 2"\’ — )6k 5L (678 + 5]
_ %(53(x —x)oka ot (A2)
{ﬂ-ij(x)7 ﬂkl(xl)} =0, (AB)

where in the second equation we used the symmetry
of the metric tensor to write g;; = [gij + g;i] /2, and §3
is the three-dimensional Dirac delta function.

We then find the Poisson brackets between the two
canonical affine variables g;; and 7 = gy 7%

{gi(x), m(2")} = {gij(2), g (2" )™ (2")}
= grn(2){gi5(2), Wnl(xl)}
= 850 — )8 gui(e) + Blgns ()
{ml (@), 7, (@)} = {gin(2)7" (), grm (/)™ (')}
= gkm’n—nj{gm (33)7 7Tml (xl)}
- ginﬂ'ml {gkm(m/)a " (.T)}

_ %53@( — x!) [0l () — Gl k().

(A.4)

(A.5)

And in the end we pass to operator commutators,
promoted from the Poisson brackets,

{iey.. = ..,...]/@h).
After being smeared with suitable test functions, the
result is that both the metric and the momentric ten-
sors can be made self-adjoint operators (for example,
choosing for the momentric (g, #7% + #7%§;.) /2), and
the metric operators will satisfy the necessary positiv-
ity requirements.
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