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Abstract. Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid have revealed
that in the vapour phase there is the formation of preferred clusters made up of a well-defined number of
particles: the micelles and the vesicles. A cluster theory is developed to approximate the exact clustering
properties stemming from the simulations. It is shown that the theory is able to reproduce the micellisation
phenomenon.

1 Introduction

In the statistical mechanics of fluids [1] the liquid state [2]
is a particularly fascinating one. A liquid is neither a gas
nor a solid, but the state where correlations really play an
important role. The pioneering work of Alder [3] showed
that, because of the absence of attractive forces, the hard-
sphere fluid admits only a single fluid phase. In order
to find the liquid phase it is sufficient to add an attrac-
tive square-well to the pair-potential of the hard-spheres.
The resulting hard-sphere square-well fluid admits a bell-
shaped gas-liquid coexistence curve [4,5] with the critical
point moving at low temperatures and high densities as
the attractive well width diminishes. Recently Kern and
Frenkel [6] studied, through computer experiments, a new
fluid model made of hard-spheres with patchy square-well
attractions. In its simplest version, the single patch case,
the model only depends on the surface coverage χ of the
patch and the attraction range. Between the two extreme
cases χ = 0, the hard-sphere model, and χ = 1, the
hard-sphere square-well model, where the particles pair-
potential is isotropic, the particles interaction is direc-
tional. The χ = 1/2 model is known as the Janus case,
as the particle, like the roman God, has two faces of dif-
ferent functionalities.

Another important process, which may lead to the
manifestation of macroscopic phenomena, in certain flu-
ids, is the clustering or association. In 1956, for example,
Cooper [7] found that the stable state of the degenerate
electron fluid in a metal is one in which particles of oppo-
site spin and opposite momentum form pairs. It was then
understood that whereas the electrons in a metal form
pairs with relative angular momentum zero, in 3He this
would be prevented by the hard core repulsion, and that
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therefore Cooper pairing had to occur in a state of finite
angular momentum. In 1961 Lenard [8] proved analyti-
cally that a two-component plasma living in one dimen-
sion undergoes a transition from the conducting to the
insulating state by the formation of neutral dimers made
of a positive and a negative charge. A two-component
plasma living in two dimensions is only stable at suf-
ficiently high temperatures [9]. But if one adds a hard
core to the charges it remains stable even at low temper-
atures where it undergoes the same transition [10]. The
hard core gives rise to anyonic statistics for the quantum
fluid living in two dimensions [11]. In three dimensions
the two-component plasma with a hard core, the so called
restricted-primitive model, also undergoes the clustering
transition at low temperature and low densities [12]. An
example of a one-component Janus fluid undergoing asso-
ciation is the dipolar hard-sphere fluid. Here a particle can
be viewed as the superposition of two uniformly charged
spheres: a positive one and a negative one [13].

In their study of the Kern and Frenkel single patch
χ = 1/2 Janus case, Sciortino et al. [14] found that the
gas branch of the coexistence curve bends at high den-
sities at low temperatures. Below the critical point, the
fluid tends to remain in the gas phase for a larger interval
of densities respect to the χ = 1 case. This behaviour is
due to the tendency of particles to associate due to the di-
rectional attractive component in the pair-potential and
form clusters. At low temperatures, these clusters inter-
act weakly amongst themselves because the particles of
which they are composed tend to expose the hard-sphere
hemisphere on the outside of the collapsed cluster.

By studying the clustering properties of the gas phase
of the Janus fluid, Sciortino et al. discovered that below
the critical temperature there is a range of temperatures
where there is formation of two kinds of preferred clusters:
the micelles and the vesicles. In the former the particles
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tend to arrange themselves into a spherical shell and in the
latter they tend to arrange themselves as two concentric
spherical shells.

It is important to confront existing cluster theories
with these new findings based on computer experiments.
In this work the Bjerrum cluster theory for electrolytes,
later extended by Tani and Henderson [15] to include
trimers, has been employed (preliminary results appeared
in Ref. [16]) for the description of the exact equilibrium
cluster concentrations found in the computer experiment
of Sciortino et al. The theory is extended to clusters of
up to 12 particles in an attempt to reproduce the micel-
lisation phenomenon observed in the simulations around
a reduced temperature of 0.27. A different determination
of the intra-cluster configurational partition function has
been devised in place of the one used by Lee et al. [17].

The Kern and Frenkel fluid has been used to describe
soft matter [18] biological and non-biological materials like
globular proteins in solution [6,19,20] and colloidal suspen-
sions [6,21], or molecular liquids [22]. Recently there has
been a tremendous development in the techniques for the
synthesis of patchy colloidal particles [23,24] in the labo-
ratory. These are particles with dimensions of 10–104 Å
in diameter, which obey to Boltzmann statistics1. From
the realm of patchy colloidal particles stems the family of
Janus particles for their simplicity [25,26]. It is possible
to create Janus particles in the laboratory in large quan-
tities [27] and to study their clustering properties [28,29].

The micelles and the vesicles are complex structures
observed in the chemistry of surfactant molecules analo-
gous to those which may be found in the physical biology
of the cell [30].

The paper is organized as follows: in Section 2 we de-
scribe the fluid model, in Section 3 we present the clus-
tering properties of the fluid found in the Monte Carlo
simulations of Sciortino et al., the cluster theory is pre-
sented and developed in Sections 4 and 5, in Section 6 we
compare the numerical results from our approximation to
the exact results of Sciortino et al., and Section 7 is for
final remarks.

2 The Kern and Frenkel model

As in the work of Sciortino et al. [14] we use the Kern and
Frenkel [6] single patch hard-sphere model of the Janus
fluid. Two spherical particles attract via a square-well po-
tential only if the line joining the centers of the two spheres
intercepts the patch on the surfaces of both particles. The
pair-potential is separated as follows:

Φ(1, 2) = φ(r12)Ψ(n̂1, n̂2, r̂12), (1)

1 The quantum effects start playing a role when the
de Broglie thermal wavelength Λ =

√
2π�2/(kBTm) becomes

comparable to the particle diameter σ. At room temperature
this means that the nanoparticles should have a mass of the
order of 10−26 kg whereas the microparticles should have a
mass of the order of 10−32 kg.

where

φ(r) =

⎧
⎨

⎩

+∞ r < σ
−ε σ < r < λσ
0 λσ < r

(2)

and

Ψ(n̂1, n̂2, r̂12) =

⎧
⎨

⎩

1 if n̂1 · r̂12 ≥ cos θ0

and −n̂2 · r̂12 ≥ cos θ0

0 otherwise
(3)

where θ0 is the angular semi-amplitude of the patch. Here
n̂i(ωi) are versors pointing from the center of sphere i
to the center of the attractive patch, with ωi their solid
angles and r̂12(Ω) is the versor pointing from the center of
sphere 1 to the center of sphere 2, with Ω its solid angle.
We denote with σ the hard core diameter and λ = 1+Δ/σ
with Δ the width of the attractive well.

A particle configuration is determined by its position
and its orientation.

We will use σ as the unit of length and ε as the unit
of energy.

One can determine the fraction of the particle surface
covered by the attractive patch as follows

χ = 〈Ψ(n̂1, n̂2, r̂12)〉1/2
ω1,ω2

= sin2

(
θ0

2

)
, (4)

where 〈. . .〉ω =
∫

. . . dω/(4π).
As in the work of Sciortino et al. [14] we limit ourselves

to the Janus case χ = 1/2.

3 Clustering properties

The Janus fluid just described will undergo clustering as
there is a directional attractive component in the interac-
tion between its particles. Moreover at low temperatures
the collapsed clusters are expected to interact weakly with
each other. This is responsible for the bending at high den-
sity of the low temperature gas branch of the gas-liquid
binodal curve recently determined in reference [14]. Below
the critical temperature, in the vapour phase, the appear-
ance of weakly interacting clusters destabilizes the liquid
phase in favour of the gas phase. Sciortino et al. during
their canonical ensemble (at fixed number of particles N ,
volume V , and temperature T , with ρ = N/V the den-
sity) Monte Carlo simulations of the fluid also studied its
clustering properties. In particular they used the following
topological definition of a cluster: an ensemble of n par-
ticles form a cluster when, starting from one particle, is
possible to reach all other particles through a path. The
path being allowed to move from one particle to another
if there is attraction between the two particles. During
the simulation of the fluid they counted the number Nn of
clusters of n particles, which depends on the particles con-
figurations, and took a statistical average of this number.

We show in Figure 1 the results they obtained for Δ =
σ/2 at a reduced density ρσ3 = 0.01 and various reduced
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Fig. 1. Exact cluster concentrations of the Janus fluid with
Δ = σ/2 at a reduced density ρσ3 = 0.01 and various re-
duced temperatures kBT/ε, from the Monte Carlo simulation
of Sciortino et al. [14].

temperatures kBT/ε. From the figure we can see how at a
reduced temperature of 0.27, in the vapour phase, there is
the formation of two kinds of preferred clusters: one made
up of around 10 particles and one made up of around
40 particles.

In their collapsed shape, expected at low temperatures,
the particles in the clusters tend to expose their inactive
hemisphere on the outside of the cluster, resulting in a
weak interaction between pairs of clusters.

In the clusters of around 10 particles the particles tend
to arrange themselves into a spherical shell, forming a mi-
cellar structure. In the clusters of around 40 particles the
particles are arranged into two concentric spherical shells,
forming a vesicular structure.

The aim of the present work is to see if we can approx-
imate the exact equilibrium cluster concentrations found
in the simulation using a cluster theory. We will restrict
ourselves to clusters made of up to 12 particles to see if the
theory is able to reproduce the micellisation phenomenon.
The theory is described next.

4 A cluster theory for Janus particles

Following reference [15], we describe the fluid of N par-
ticles undergoing clustering as a mixture of N species of
clusters. Clusters of species n = 1, . . . , N , which we call
n-clusters, are made up of n particles. We denote with Nn

the number of clusters of species n and with ρn = Nn/V
their density. We assume that the chemical potentials of
all the cluster species are zero (there is no cost in energy in
the formation or destruction of a cluster). Then the grand-
canonical partition function of the fluid can be written as

Qtot =
′∑

{Nn}

N∏

n=1

1
Nn!

(
qintra
n

)Nn
Qinter ({Nn}, V, T ) , (5)

where one separates the coordinates and momenta rela-
tive to the center of mass of a cluster from the ones of
the center of mass so that qintra

n will be the intra-cluster
partition function of the cluster of species n and Qinter

the inter-cluster partition function where we consider the
clusters as non identical. The prime indicates that the sum
is restricted by the condition that the number of particles
of the fluid is N ,

N∑

n=1

nNn = N. (6)

We approximate Qtot assuming that the sum can be re-
placed by its largest dominant contribution. Using the
Stirling approximation N ! ≈ (N/e)N one then obtains

ln Qtot ≈
N∑

n=1

[
Nn ln qintra

n − (Nn ln Nn − Nn)
]
+ ln Qinter.

(7)
The maximum of lnQtot as a function of {Nn} on the con-
straint of equation (6) is given by the point {Nn} where
the gradients of lnQtot and of the constraint have the
same direction. Introducing a Lagrange multiplier λ the
equilibrium cluster distribution {Nn} is then found from
the conditions

∂

∂Nn
ln Qtot

∣∣
∣
∣
{Nn=Nn}

+ ln λn = 0, n = 1, 2, 3, . . . (8)

The resulting Helmholtz free energy, βFtot = − ln Qtot,
can then be written in terms of the intra-cluster free en-
ergy, βf intra

n = − ln qintra
n , and the inter-cluster partition

function as follows

βFtot

V
=

N∑

n=1

[ρn ln ρn − ρn]

+
N∑

n=1

ρnβf intra
n +

N∑

n=1

ρn ln V − 1
V

ln Qinter, (9)

where β = 1/kBT with kB Boltzmann constant and ρn =
Nn/V .

We expect the equilibrium cluster concentrations,
Nn/N , to approximate the ones measured in the simu-
lation, 〈Nn〉/N .

5 Relationship between the configurational
partition functions

We will assume that equation (5) also holds at the level
of the configurational partition functions Z, as follows

Ztot =
′∑

{Nn}

N∏

n=1

1
Nn!

(
zintra

n

)Nn
Zinter ({Nn}, V, T ) . (10)

In the calculation we only work at the level of the config-
urational partition functions.
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Since we expect the clusters to be weakly interact-
ing amongst themselves we will approximate the inter-
clusters configurational partition function with: (i) the
ideal gas approximation for pointwise clusters and (ii) the
Carnahan-Starling approximation [31] for clusters of di-
ameter σ0. A third possibility, that we have not inves-
tigated, would be to use the Boubĺık et al. approxima-
tion [32,33] for clusters of different diameters σn.

We will only work with a limited number nc of dif-
ferent cluster species. Since we are investigating whether
the cluster theory is able to reproduce the micellisation
phenomenon we will only consider the first nc clusters:
n = 1, 2, 3, . . . , nc. And choosing nc = 12.

We will describe next the two approximations used for
the inter-cluster configurational partition function.

5.1 Ideal gas approximation

The simplest possibility is to approximate the mixture of
clusters as an ideal one so that

Zinter = V Nt , (11)

where Nt =
∑

n Nn is the total number of clusters.
The equations for the equilibrium numbers of clusters

are

Nn = λnV zintra
n , n = 1, 2, 3, . . . , nc (12)

N =
∑

n

nNn, (13)

from which we can determine all the concentrations Nn/N
and the Lagrange multiplier by solving the resulting alge-
braic equation of order nc. The case nc = 2 is described
in Appendix A.

5.2 Carnahan-Starling approximation

A better approximation is found if we use as the inter-
cluster configurational partition function the Carnahan-
Starling expression [31] for hard-spheres of diameter σ0,

ln Zinter = Nt ln V − Nt
ηt(4 − 3ηt)
(1 − ηt)2

, (14)

where ηt = (π/6)ρtσ
3
0 is the clusters packing fraction and

ρt = Nt/V their density.
In this case one needs to solve a system of nc + 1 cou-

pled transcendental equations,

Nn = λnV zintra
n G(ηt), i = 1, 2, 3, . . . , nc (15)

N =
∑

n

nNn, (16)

with ηt = (π/6)ρtσ
3
0 , ρt = N t/V , N t =

∑
n Nn, and

G(x) = exp
[
−x(8 − 9x + 3x2)

(1 − x)3

]
. (17)

In order to search for the correct root of this system of
equations it is important to choose the one that is contin-
uously obtained from the physical solution of the ideal gas
approximation as σ0 → 0. Giving a volume to the clus-
ters we introduce correlations between them which will
prove to be essential for a qualitative reproduction of the
micellisation phenomenon though the cluster theory. The
Carnahan-Starling approximation amounts to choosing for
the sequence of virial coefficients of the hard-spheres, a
general term which is a particular second order polynomial
and to determine the polynomial coefficients that approx-
imate the third virial coefficient by its closest integer [31].
It could be interesting to repeat the calculation using for
the inter-cluster partition function the hard-spheres one
choosing all but the first virial coefficient equal to zero,
to see if that is sufficient to reproduce the micellisation
phenomena.

Note that in order to study the vesicles we would have
to solve a system of around 40 coupled equations.

We will describe next how do we determine the intra-
cluster configurational partition function zintra

n .

5.3 The intra-cluster configurational partition function

To estimate the intra-cluster configurational partition
function we performed Monte Carlo simulations of an iso-
lated topological cluster.

We determined the reduced excess internal energy
per particle of the n-cluster uex

n = 〈∑n
i<j Φ(i, j)〉/(nε)

(uex
1 = 0 by definition) as a function of the temperature,

and then used thermodynamic integration to determine
the intra-cluster configurational partition function.

We found that the results for uex
n (T �) can be fitted by

a Gaussian as follows

uex
n (T �) = ane−bnT �2

+ cn, (18)

with T � = kBT/ε the reduced temperature.
Given the excess free energy of the n-cluster F ex,intra

n ,
we can then determine f ex,intra

n = βF ex,intra
n /n as follows

f ex,intra
n (β�) =

∫ β�

0

uex
n (1/x) dx

= cnβ� + an

√
bn

⎧
⎨

⎩
e−bn/β�2

√
bn/β�2

+
√

π

[
erf

(√
bn/β�2

)
− 1

]
⎫
⎬

⎭
, (19)

with β� = 1/T � and v0 = πσ3
0/6 the volume of the

n-cluster. Then the intra-cluster configurational partition
function is given by zintra

n = vn
0 exp(−nf ex,intra

n ) with
zintra
1 = v0.

We studied only the first 10 clusters with n = 3, . . . , 12.
The dimer being trivial. To this end we started with an
initial configuration of two pentagons with particles at
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Fig. 2. Reduced excess internal energy per particle as a func-
tion of temperature for the 6-, 9-, and 12-cluster. The results
from the isolated (I) cluster calculation are compared with the
results of Sciortino (S) for the Janus fluid with Δ = σ/2 at a
reduced density ρσ3 = 0.01. Also shown is the Gaussian fit of
equation (18).

their vertexes juxtaposed one above the other. The two
pentagons are parallel to the (x, y) plane, have the z axis
passing through their centers, and are placed one at z =
+σ/2 and the other at z = −σ/2. The particles patches
all point towards the origin. We formed the clusters with a
lower number of particles by simply deleting particles and
the clusters with 11 and 12 particles by adding a particle
on the z axis just above the upper pentagon and just below
the lower one.

We performed the simulations of the isolated cluster
at a fictitious reduced density of ρσ3 = 0.05 which en-
sured a simulation box big enough that the cluster did
not percolate through the periodic boundary conditions.
We also compared our results for the excess internal en-
ergy calculation for the isolated cluster with the results of
Sciortino et al. for the low density Janus fluid, from which
one extracts cluster information by taking all the clusters
found with the same number of particles and averaging
their properties, as shown in Figure 2.

At high temperatures the limiting value for the ex-
cess internal energy per particle of the isolated n-cluster
is −ε(n − 1)/n corresponding to the stretched cluster. At
low temperature (T � < 0.15) the cluster tends to freeze
into certain energy minima. So in order to reach the abso-
lute minimum we used the following smoothing procedure.
We smoothed the Kern and Frenkel potential by choosing

Ψ(n̂1, n̂2, r̂12) = {tanh[l(n̂1 · r̂12 − cos θ0)] + 1}
× {tanh[l(−n̂2 · r̂12 − cos θ0)] + 1}/4.

(20)

We then gradually changed the parameter l, during the
simulation, starting from 1/2 and increasing up to values
where there is no actual difference between the smoothed
potential and the original stepwise one. The reduced ex-
cess internal energy per particle and gyration radii for such
minimum energy configurations are shown in Table 1.

Table 1. The low temperature reduced excess internal energy
per particle 〈U〉/(εn) (U is the potential energy of the cluster)
of the clusters with up to 12 particles when Δ = σ/2. Also
shown is the gyration radius R2

g =
∑n

i=1 |ri − rcm|2/n with
rcm =

∑n
i=1 ri/n, ri being the position of the ith particle in

the cluster.

n 〈U〉/(εn) 〈U〉/ε Rg

1 0 0 0
2 –0.5 –1 ∼1/2

3 –1 –3 ∼1/
√

3
4 –1.5 –6 0.83
5 –2.0 –10 0.76
6 –2.50 –15 0.75
7 –2.71 –19 0.91
8 –2.88 –23 0.93
9 –3.10 –28 0.96
10 –3.20 –32 1.00
11 –3.36 –37 1.04
12 –3.42 –41 1.08

In the Metropolis algorithm [34] used to sample the
probability distribution function proportional to e−βU ,
where U is the potential energy of the cluster, the ran-
dom walk moves through the configuration space of the
particles forming the cluster through two kinds of moves:
a displacement of the particle position and a rotation of
the particle (through the Marsaglia algorithm [35]). We
followed two different strategies in the simulations: (i) we
averaged only over the particles configurations that form
a cluster and (ii) we explicitly modified the acceptance
probability by rejecting moves that break the cluster. So
in the second strategy all the moves are counted in the
averages. The two strategies turned out to give the same
results, as they should. The second strategy is preferable
to simulate the bigger clusters at high temperature and
for small well widths because there is no loss of statistics.

In Appendix B we present the results for the reduced
excess internal energy of the isolated clusters as a function
of temperature and their fit of equation (18).

5.4 Thermodynamic quantities

Once the equilibrium cluster distribution {Nn} has been
determined (within the ideal gas or the Carnahan-Starling
approximation for the inter-cluster partition function) the
configurational partition function Ztot is known. Then the
excess free energy is

βF ex = − ln
(

Ztot

V N

)
, (21)

the reduced internal energy per particle of the fluid is

u =
3

2β�
+

1
N

∂(βF ex)
∂β�

=
3

2β�
−

∑

n

Nn

N

∂ ln zintra
n

∂β�

=
3

2β�
+

∑

n

n
Nn

N
uex

n , (22)
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and its compressibility factor, in the Carnahan-Starling
approximation for the inter-cluster configurational parti-
tion function, is

βP

ρ
=

1
ρ

∂ ln Ztot

∂V
≈ 1

ρt

∂ ln Zinter

∂V
=

1 + ηt + η2
t − η3

t

(1 − ηt)3
.

(23)
Here we have used the approximation N ≈ N t which turns
out to be reasonable at the chosen value of the cluster
diameter, as shown in Figure 4.

In Figure 6 we show the results for the compressibility
factor and the reduced excess internal energy per particle.
The reduced excess internal energy is compared with the
Monte Carlo data of Sciortino et al. (Fig. 1 in Ref. [14]).

6 Results

We present here the numerical results from the cluster
theory and compare them with the results of Sciortino
et al. from the simulation of the Janus (χ = 1/2) fluid
with Δ = σ/2.

We studied three different attraction ranges: Δ = σ/2,
Δ = σ/4, and Δ = 0.15σ. To the best of our knowledge
there are no Monte Carlo results available for the two
smaller ranges.

We only present the results obtained from the
Carnahan-Starling approximation for the inter-cluster
partition function as the ideal gas approximation turned
out to be too crude an approximation even for a qualita-
tive description of the exact clustering properties.

6.1 Δ = σ/2

For Δ = σ/2 we found the following results.

6.1.1 Equilibrium cluster concentrations

In Figure 3 we compare the Monte Carlo data of Sciortino
et al. (the results reported in Fig. 1) and our results
from the cluster theory. From the figure one can see that
the ideal gas approximation for the inter-cluster partition
function is not appropriate even at high temperatures in
the single fluid phase above the critical point. In order to
find agreement with the Monte Carlo data at high tem-
peratures it is sufficient to give a volume to the clusters,
treating them as hard-spheres of a diameter σ0. In the
Carnahan-Starling approximation we gradually increased
σ0 from zero and found that for σ0 = 2.64σ the results
of the cluster theory were in good agreement with the
Monte Carlo data at kBT/ε = 0.5. Using the same clus-
ter diameter at all other temperatures, we saw that the
theory is able to qualitatively reproduce the micellisa-
tion phenomenon observed in the simulation of Sciortino
et al.

The results also suggest that with a temperature-
dependent cluster diameter, or more generally with a clus-
ter diameter dependent on the thermodynamic state of the
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Fig. 3. Comparison between the Monte Carlo (MC) data
(points) and the Carnahan-Starling (CS) approximation with
σ0 = 2.64σ (lines) for the cluster concentrations 〈Nn〉/N ,
n = 1, 2, 3, . . . , 12, as a function of the cluster size n at
ρσ3 = 0.01 and various temperatures. Also shown is the ideal
gas (IG) approximation at the same density and the highest
temperature kBT/ε = 0.5.

-6

-4

-2

0

2

4

6

8

0 1 2 3 4 5 6 7 8
σ0/σ

βP/ρ
u

(ln Ztot)/N
(ln Ztot)/N

-
t
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a function of the clusters diameter σ0 at the thermodynamic
state ρσ3 = 0.01 and kBT/ε = 0.5 for Δ = 0.5σ.

fluid, we could achieve better agreement between our ap-
proximation and the exact results. Our topological def-
inition of a cluster has no direct geometrical interpre-
tation. Other definitions with a geometrical nature are
possible. For example Lee et al. in their studies of nu-
cleation define an assembly of particles to be a cluster if
they all lie within a sphere of radius σ0 centered on one
of the particles. In our simulations of the isolated clus-
ters these have a globular shape at low temperature and
a necklace shape at high temperature. The optimal clus-
ter diameter σ0 = 2.64σ (found to give good agreement
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Fig. 5. The equilibrium cluster concentrations Nn/N , n = 1, 2, 3, . . . , 12, as a function of density for kBT/ε = 0.27 (top panel)
and kBT/ε = 0.5 (bottom panel) as obtained from the CS approximation with σ0 = 2.64σ. Here Δ = σ/2.
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MC kBT/ε=0.3 1.0
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5.5

0.001 0.01 0.1

βP
/ρ

ρσ3

kBT/ε=0.5
kBT/ε=0.4
kBT/ε=0.3

Fig. 6. The top panel shows the reduced excess internal energy per particle for three different values of temperature as a
function of density. The results from the Carnahan-Starling (CS) approximation are compared with the Monte Carlo (MC)
results of Sciortino et al. [14]. The bottom panel shows the compressibility factor for the same values of temperature as a
function of density from the CS approximation (no MC data is available).

between the exact and approximate clusters concentra-
tions at high temperature) suggests necklace clusters made
up of around 3 particles or globular clusters made up of
around 2π(σ0/σ)2/

√
3 ≈ 25 particles placed on a spherical

shell. Since σ0 is the only free parameter of the theory, it
is important to estimate how thermodynamic quantities
like the compressibility factor βP/ρ, the reduced inter-
nal energy per particle u, and the logarithm of the total
configurational partition function per number of particles,
ln Ztot/N , or per number of clusters, lnZtot/N t, are sensi-

ble to variations in σ0. From Figure 4 we can see that for
the thermodynamic state ρσ3 = 0.01 and kBT/ε = 0.5,
the thermodynamic quantities are roughly independent of
σ0 for σ0 � 3σ.

In Figure 5 we show the behaviour of the equilibrium
cluster concentrations, from the Carnahan-Starling ap-
proximation with σ0 = 2.64σ, as a function of density
at kBT/ε = 0.27.

From the figure we can see that at very low densi-
ties there are essentially no clusters. But as the density
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Fig. 7. Same as Figure 5 for Δ = σ/4.

increases, clusters of an increasing number of particles ap-
pear in the fluid. In particular, at kBT/ε = 0.27 there is
an interval of densities where clusters of 11 particles are
preferred.

6.1.2 Thermodynamic quantities

Following Section 5.4 we now use the cluster theory within
the Carnahan-Starling approximation with σ0 = 2.64σ to
extract thermodynamic information for the Janus fluid. In
Figure 6 we show the results obtained for the excess re-
duced internal energy per particle and the compressibility
factor.

From the figure we see that there is a qualitative agree-
ment between the results of the cluster theory and the
Monte Carlo results. No Monte Carlo results are available
for the compressibility factor.

6.2 Δ = σ/4

Decreasing the width of the attractive well to Δ = σ/4
yielded the results shown in Figure 7. We see that now, at
the reduced temperature 0.27, the preferred clusters are
the ones made up of 10 particles.

6.3 Δ = 0.15σ

Decreasing the width of the attractive well even further to
Δ = 0.15σ, we obtained the results of Figure 8. Now, at
the reduced temperature 0.27, there is a range of densities

around ρσ3 = 0.1 where the preferred clusters are made
up of 7 or 8 particles.

7 Conclusions

We constructed a cluster theory for a fluid undergoing
clustering and showed that it is able to reproduce the
micellisation phenomena recently observed in the simu-
lation of the vapour phase of Kern and Frenkel Janus
particles [14]. A topological definition of the cluster is
used. We determined the intra-cluster configurational par-
tition function through thermodynamic integration of the
excess internal energy of the cluster, estimated through
Monte Carlo simulations of an isolated cluster. In the sim-
ulation we restricted the random walk through the con-
figurations of the particles that compose the cluster by
rejecting the moves that break the cluster. Due to the
geometrical characteristics of the pair-potential it is ex-
pected that the clusters, when in their collapsed shape,
will be very weakly interacting amongst themselves as the
Janus particles will expose the hard-sphere hemisphere on
the outside of the cluster. We thus used for the estimation
of the inter-cluster configurational partition function first
the simple ideal gas approximation for pointwise clusters
and then the Carnahan-Starling approximation for clus-
ters seen as hard-spheres of diameter σ0. The equilibrium
cluster concentrations obtained with the ideal gas approx-
imation turned out to disagree, even at high tempera-
tures, with the ones obtained from the simulation of the
fluid [14] and were not able to reproduce the micellisa-
tion phenomenon in the vapour phase. We then gradually
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Fig. 8. Same as Figure 5 for Δ = 0.15σ.

increased σ0 from zero until we found good agreement
between the equilibrium cluster concentrations obtained
with the Carnahan-Starling approximation and the con-
centrations from the simulation of the fluid [14] at high
temperature (above the critical point). Using the same
value of σ0 for lower temperatures (below the critical
point) we were able to qualitatively reproduce the mi-
cellisation phenomenon observed in the simulation of the
fluid [14] around a reduced temperature of 0.27 and a re-
duced density of 0.01. This result is important for two
reasons. Firstly it shows that the clustering fundamentally
arising from the canonical ensemble description of the fluid
of particles can be approximated by a grand canonical en-
semble description of a particular clustered fluid. Secondly
the second description, which assumes from the start a
clustered structure of the fluid, is much less computa-
tionally costly than the first. Unlike most previous works
on cluster theories where the aim is usually to avoid the
Monte Carlo simulation [15,36], our approach is a hybrid
one where we still use the Monte Carlo experiment to de-
termine the intra-cluster properties. Of course our goal can
only be a qualitative description of the fluid as we specifi-
cally prescribe a particular description of the clusters and
this is the source of our approximation.

Studying the behaviour of the equilibrium cluster con-
centrations as a function of density and temperature, we
saw that the micellisation phenomenon only takes place
within a particular range of temperatures (below the crit-
ical point) and densities (in the vapour phase).

Once the equilibrium concentrations have been found
it is possible to determine how the cluster theory approxi-

mates the thermodynamic quantities of the fluid. We find
qualitative agreement between the Monte Carlo data of
Sciortino et al. [14] and our approximation for the excess
internal energy of the vapour phase. For the compressibil-
ity factor no Monte Carlo data is available so our results
remain a theoretical prediction.

We studied three different values of the attractive
square-well width: Δ = σ/2, Δ = σ/4, and Δ = 0.15σ.
Monte Carlo results [14] are available only for the largest
width. Our study shows that as the range of the attraction
diminishes the micelles tend to be made up of a smaller
number of particles.

A related interesting problem to that just discussed
is the one of trying to give a definition of a liquid drop
expected to form in the coexistence region as a result of
the condensation instability.

I would like to acknowledge the support of the National Insti-
tute for Theoretical Physics of South Africa.

Appendix A: Connection with Wertheim
association theory

At small χ, allowing only clusters of one (monomers) and
two (dimers) particles, we get

N1 = λV zintra
1 , (A.1)

N2 = λ2V zintra
2 , (A.2)

N = N1 + 2N2, (A.3)
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Table B.1. The tables refer from left to right to clusters made up of n = 3, 4, . . . , 12 particles. U is the potential energy of a
cluster of n particles. Below kBT/ε = 0.1 the reduced excess internal energy per particle remains roughly constant in all cases:
the smoothing procedure described in Section 5.3 was used. The data was obtained with a Monte Carlo simulation over 5 million
steps where one step consists of n particles moves. The strategy (i) described in Section 5.3 was used in the simulations.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.8 –0.724 0.001

0.6 –0.747 0.001

0.5 –0.769 0.002

0.4 –0.807 0.001

0.3 –0.877 0.001

0.2 –0.9663 0.0008

0.1 –1 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.8 –0.849 0.004

0.6 –0.898 0.004

0.5 –0.961 0.005

0.4 –1.081 0.004

0.3 –1.278 0.003

0.2 –1.460 0.002

0.1 –1.5 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.8 0

0.8 –0.942 0.009

0.6 –0.995 0.008

0.5 –1.085 0.008

0.4 –1.322 0.007

0.3 –1.606 0.004

0.2 –1.792 0.003

0.1 –2.0 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.833 0

0.8 –1.01 0.03

0.6 –1.10 0.02

0.5 –1.19 0.01

0.4 –1.49 0.01

0.3 –1.899 0.009

0.2 –2.16 0.01

0.1 –2.5 0

kBT/ε 〈U〉/(εn) Error

∞ –0.857 0

0.8 –1.04 0.04

0.6 –1.12 0.02

0.5 –1.28 0.02

0.4 –1.68 0.02

0.3 –2.11 0.04

0.2 –2.39 0.03

0.1 –2.7 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.875 0

0.8 –1.06 0.05

0.6 –1.25 0.05

0.5 –1.27 0.02

0.4 –1.82 0.02

0.3 –2.26 0.01

0.2 –2.60 0.02

0.1 –2.9 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.888 0

0.8 – –

0.6 –1.12 0.03

0.5 –1.39 0.03

0.4 –1.87 0.02

0.3 –2.38 0.01

0.2 –2.85 0.02

0.1 –3.1 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.8 – –

0.6 – –

0.5 –1.36 0.04

0.4 –1.88 0.02

0.3 –2.46 0.02

0.2 –2.94 0.03

0.1 –3.2 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.8 – –

0.6 – –

0.5 –1.35 0.03

0.4 –1.96 0.03

0.3 –2.55 0.02

0.2 –3.09 0.09

0.1 –3.36 ≈0

kBT/ε 〈U〉/(εn) Error

∞ –0.916 0

0.8 – –

0.6 – –

0.5 –1.28 0.04

0.4 –1.92 0.04

0.3 –2.57 0.02

0.2 –3.00 0.02

0.1 –3.42 ≈0

which is a quadratic equation in λ. The solution for
the fraction of patches that are not bonded (fraction of
monomers) is

ρ1

ρ
=

2

1 +
√

1 + 8ρΔ
, (A.4)

with Δ = zintra
2 /[zintra

1 ]2 and ρ = N/V the density of
the fluid, in accord, at low T , with the recent analysis of
Sciortino et al. [37] (compare their X of Eq. (10) with
our ρ1/ρ and their Δ with our Δ), based on Wertheim
association theory [38–41]. Our theory, contrary to the
one of Wertheim, allows to consider the case of multiple
bonding of the patch.

At high temperature our Δ differs from the Δ of refer-
ence [37] but in this limit the clusters begin to dissociate.

Appendix B: Tables for the excess internal
energy per particle of the clusters

We present here the results for the reduced excess internal
energy per particle as a function of temperature of the

isolated n-cluster with n = 2, 3, . . . , 12 as obtained from
our Monte Carlo simulations.

In Table B.1 we show the results at Δ = 0.5σ ob-
tained with the strategy (i) described in Section 5.3. The
smoothing procedure described in Section 5.3 was used
at the lowest temperature. The excess internal energy per
particle of the n = 2 cluster is always −ε/2 given our
topological definition of a cluster.

In Table B.2 we show the results at Δ = 0.5σ obtained
with strategy (ii) described in Section 5.3. The smoothing
procedure described in Section 5.3 was not used at the
lowest temperature. Comparing Tables B.1 and B.2 we
can see that the two strategies lead to the same results.

In Table B.3 we show the results at Δ = 0.25σ ob-
tained with strategy (i) described in Section 5.3. The
smoothing procedure described in Section 5.3 was not used
at the lowest temperature.

In Table B.4 we show the results at Δ = 0.15σ ob-
tained with strategy (ii) described in Section 5.3. The
smoothing procedure described in Section 5.3 was not used
at the lowest temperature.

In Table B.5 we give the fit to the Gaussian of equa-
tion (18) of the reduced excess internal energy per particle
as a function of the temperature.
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Table B.2. The tables refer, from left to right, to clusters made up of n = 3, 4, 10, 11 particles. U is the potential energy of a
cluster of n particles. The smoothing procedure described in Section 5.3 was not used at the lowest temperature. The strategy
(ii) described in Section 5.3 was used in the simulations.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.8 –0.7211 0.0002

0.6 –0.7437 0.0003

0.5 –0.7659 0.0004

0.4 –0.8052 0.0005

0.3 –0.8723 0.0007

0.2 –0.9647 0.0005

0.1 –0.99881 0.00005

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.8 –0.8466 0.0005

0.6 –0.8995 0.0009

0.5 –0.959 0.001

0.4 –1.073 0.002

0.3 –1.280 0.002

0.2 –1.4597 0.0009

0.1 –1.49871 0.00006

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.8 –1.066 0.001

0.6 –1.200 0.003

0.5 –1.418 0.009

0.4 –1.884 0.009

0.3 –2.46 0.01

0.2 –2.96 0.03

0.1 –3.1982 0.0006

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.8 –1.078 0.002

0.6 –1.215 0.003

0.5 –1.423 0.008

0.4 –1.90 0.01

0.3 –2.52 0.02

0.2 –3.13 0.04

0.1 –3.16 0.01

Table B.3. Same as Table B.1 but with Δ = 0.25σ. The smoothing procedure described in Section 5.3 was not used at the
lowest temperature.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.7 –0.705 0.002

0.5 –0.732 0.002

0.3 –0.832 0.002

0.1 –0.99872 0.00008

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.7 – –

0.5 –0.866 0.007

0.3 –1.138 0.005

0.1 –1.4987 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.8 0

0.7 –0.87 0.02

0.5 –1.00 0.03

0.3 –1.427 0.008

0.1 –1.7984 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.833 0

0.7 – –

0.5 –0.95 0.01

0.3 –1.63 0.01

0.1 –2.1656 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.857 0

0.7 – –

0.5 –0.95 0.01

0.3 –1.79 0.01

0.1 –2.22 0.02

kBT/ε 〈U〉/(εn) Error

∞ –0.875 0

0.7 – –

0.5 – –

0.3 –1.91 0.03

0.1 –2.3706 0.0009

kBT/ε 〈U〉/(εn) Error

∞ –0.888 0

0.7 – –

0.5 – –

0.3 –1.95 0.02

0.1 –2.4416 0.0005

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.7 – –

0.5 – –

0.3 –2.07 0.04

0.1 –2.5969 0.0006

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.7 – –

0.5 – –

0.3 –2.10 0.04

0.1 –2.721 0.002

kBT/ε 〈U〉/(εn) Error

∞ –0.916 0

0.7 – –

0.5 – –

0.3 –2.01 0.03

0.1 –2.730 0.008

Table B.4. Same as Table B.1 but with Δ = 0.15σ. The smoothing procedure described in Section 5.3 was not used at the
lowest temperature. The strategy (ii) described in Section 5.3 was used in the simulation.

kBT/ε 〈U〉/(εn) Error

∞ –0.666 0

0.7 –0.6914 0.0003

0.5 –0.7114 0.0004

0.3 –0.792 0.001

0.1 –0.9987 0.0002

kBT/ε 〈U〉/(εn) Error

∞ –0.75 0

0.7 –0.7903 0.0007

0.5 –0.826 0.002

0.3 –1.138 0.005

0.1 –1.49871 0.00006

kBT/ε 〈U〉/(εn) Error

∞ –0.8 0

0.7 –0.8473 0.0009

0.5 –0.895 0.002

0.3 –1.230 0.008

0.1 –1.7989 0.0001

kBT/ε 〈U〉/(εn) Error

∞ –0.833 0

0.7 –0.884 0.001

0.5 –0.936 0.002

0.3 –1.35 0.01

0.1 –1.9985 0.0004

kBT/ε 〈U〉/(εn) Error

∞ –0.857 0

0.7 –0.913 0.001

0.5 –0.955 0.002

0.3 –1.61 0.03

0.1 –2.2848 0.0001

kBT/ε 〈U〉/(εn) Error

∞ –0.875 0

0.7 –0.928 0.001

0.5 –0.980 0.003

0.3 –1.63 0.03

0.1 –2.371 0.001

kBT/ε 〈U〉/(εn) Error

∞ –0.888 0

0.7 –0.945 0.001

0.5 –1.000 0.003

0.3 –1.55 0.06

0.1 –2.51 0.04

kBT/ε 〈U〉/(εn) Error

∞ –0.9 0

0.7 –0.956 0.001

0.5 –1.013 0.004

0.3 –1.56 0.05

0.1 –2.396 0.001

kBT/ε 〈U〉/(εn) Error

∞ –0.909 0

0.7 –0.9655 0.0009

0.5 –1.022 0.004

0.3 –1.61 0.03

0.1 –2.5427 0.0004

kBT/ε 〈U〉/(εn) Error

∞ –0.916 0

0.7 –0.973 0.001

0.5 –1.033 0.002

0.3 –1.59 0.02

0.1 –2.66 0.004
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Table B.5. Fit to the Gaussian of equation (18) of the reduced excess internal energy per particle of the first eleven n-clusters
as a function of temperature.

Δ = 0.5σ Δ = 0.25σ Δ = 0.15σ

n an bn an bn an bn cn = −(n − 1)/n

2 0 1 0 1 0 1 –0.5

3 –0.337525 3.88039 –0.33890 6.9050 –0.345587 10.7799 –0.66666

4 –0.778556 4.66976 –0.77059 7.5017 –0.773523 7.97531 –0.75

5 –1.22587 5.16189 –1.0248 5.8901 –1.03428 9.36621 –0.8

6 –1.69844 5.59919 –1.3810 7.3613 –1.20676 9.21365 –0.83333

7 –1.89814 5.26287 –1.4235 6.7666 –1.47964 8.27638 –0.85714

8 –2.06452 5.07916 –1.5201 4.1792 –1.55091 8.50313 –0.875

9 –2.30070 5.47737 –1.5793 4.3672 –1.68144 10.1592 –0.88888

10 –2.39363 5.50909 –1.7253 4.2708 –1.55096 9.41914 –0.9

11 –2.55636 5.64409 –1.8464 4.8294 –1.69591 9.75528 –0.90909

12 –2.59747 6.07744 –1.8541 5.7234 –1.81374 10.5661 –0.91666
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