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The insulating state within PBCs
m A2 in band insulators



Wannier functions, one dimension, single band

m L — o0, g continuous:

a i
ngﬁa |Wg>:27T/BqueqXé |7/Jq>

m L = Ma finite, q; discrete:

we) = Mze'w o)

m Caveat: Gauge arbitrariness in [¢g;)



Invariance of the many-body ground state

m So far, we have written |Wg) an N-particle Slater determinant
of Bloch orbitals.

m Any determinant is invariant for unitary transformation of the
vectors (orbitals) within the occupied manifold.

m We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.

m In the insulating case:

m The occupied manifold is the whole band:
|Wo) is invariant by such unitary transformation.

m |Vg) can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.



Invariance of the many-body ground state

m So far, we have written |Wg) an N-particle Slater determinant
of Bloch orbitals.

m Any determinant is invariant for unitary transformation of the
vectors (orbitals) within the occupied manifold.
m We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
m In the insulating case:
m The occupied manifold is the whole band:
|Wo) is invariant by such unitary transformation.

m |Wy) can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

m What about the metallic case?



Invariance of the many-body ground state (cont'd)

,\//
m Finite L TR T T
m In this drawing, again L = Ma, with M = 14:
m Slater determinant built with M occupied
Wannier orbitals w;,(x).




Invariance of the many-body ground state (cont'd)

,\//
m Finite L TR T T
m In this drawing, again L = Ma, with M = 14:
m Slater determinant built with M occupied
Wannier orbitals w;,(x).

m Infinite L (M — o0)
— a qug
|wy) = oy - dge Wq)

oo
/ dx|(xjwg)[? =1 finite!

—00



Maximally localized Wannier functions

m With the optimal choice of the gauge:
|(x{we)| — 0 exponentially for x — +oo

<Wn’X2|Wn> — [{wa|X| Wn>|2 minimum



Maximally localized Wannier functions

m With the optimal choice of the gauge:
|(x{we)| — 0 exponentially for x — +oo
(Wl 52| W) — [(wp|x|wn)|? minimum
m The minimum “quadratic spread” is equal to the RS \?

m The spread diverges in the metallic case.

m Caveat: In 3d there are some complications:
Marzari-Vanderbilt MLWFs (1997).
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The insulating state within PBCs

m Mott metal-insulator transition



Implementation: Mott transition in Hy chains

Stella, Attaccalite, Sorella & Rubio, PRB 2011

Ay /a

Izl

5 6 7
Interatomic distance, a (a.u.)

localization length
(tensor in 3d)

1/L\?
Ay = N <2W> In [3n]?

Transition: ~ 3.5 bohr
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The insulating state within PBCs

m Insulator-insulator transition (Mott-like)



Model 1d ionic crystal
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m Zy-odd: P=¢e/2 mod e



Model 1d ionic crystal

® ® ®
= ImIn (Wole'T (e ZXe25%) o) = (mod 2r)
m Zp-odd: P=¢/2 mod e
m Tight-binding Hamiltonian:
H= Z[ YA = tli+ 10 - )G +1]]

m In second quantization notations:

H=> [(-1YAgg—tdc—tdq]

k) = i\/Az + 42 cos? ka/2



Model 1d ionic crystal

m Band structure:

e(k) = j:\/Az + 412 cos? ka/2

m Insulator at half filling
m Density of states D(e)de :  Red plot




Tight binding 1d binary crystal again

m Introducing spin:

H= Z[ (—1)jA CJTUCJ'J — t(CJTJCjJrlcr +Hc)]
Jjo

m Introducing Hubbard on-site repulsion:

H= Z[ (-1YA c}facja - t(cJT.achU +H.c)] + UZ npnj.
Jo J



Monitoring the insulator-insulator transition

m Plot of A\? at half filling:

m Metallic only for a special U value

m On the left it is a band-like insulator
m On the right it is a Mott-like insulator
m What happens for t = 07
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Conductivity and Drude weight



Longitudinal conductivity (zero T)

O'c(y—;)(w) = Dag {5( )+} 4 (r;gular)(w)

O_((lllgrude) (w) + U&r;gular) (w)

m Both terms obtain from Kubo formulas
(may include disorder & correlation, but not dissipation)
m The Drude weight D, is actually a ground-state property:

it measures the (inverse) inertia of the many-electron system
in the adiabatic limit



Longitudinal conductivity (zero T)

ac(y;)(w) = Dag {5( )+} 4 (r;gular)(w)

O_((lllgrude) (w) + U&r;gular) (w)

m Both terms obtain from Kubo formulas
(may include disorder & correlation, but not dissipation)

m The Drude weight D, is actually a ground-state property:
it measures the (inverse) inertia of the many-electron system
in the adiabatic limit

m The insulating state requires both:
| Daﬂ =0

m Re Jgggular) (w) goes to zero for w — 0



Drude weight according to Kohn (1964)

m Hamiltonian with a “flux” (a gauge transformation):

A(k) = Z|p.—|—hn|2—|—v

m Thermodynamic limit after taking derivatives

m PBCs violate gauge invariance in the conventional sense:
Ep does depend on k.



Drude weight according to Kohn (1964)

m Hamiltonian with a “flux” (a gauge transformation):

A(k) = Z|p.—|—hn|2—|—v

m Thermodynamic limit after taking derivatives

m PBCs violate gauge invariance in the conventional sense:
Ep does depend on k.

m Drude weight

7T€2 82E0(h',)

Dop =
O W2l Ora0kg |,



Why RS discriminate insulators from metals

H(k) = Z|p.+hn\2+v ?:Zri

m [Uy(k)) = e F|Wo(0)) obeys Schrédinger Eq.
m It does not obey PBCs



Why RS discriminate insulators from metals

H(k) = Z|p.+7’m\2+v ?:Zri
|Wo(k)) = e ™ F|Wy(0)) obeys Schrodinger Eq.
It does not obey PBCs

Except for a commensurate kg

Does |Wq(ko)) coincide with the genuine |Wo(kq))?

m Yes (modulo a phase) if D=10
m No (it is orthogonal to it) if D# 0



Why RS discriminate insulators from metals (cont'd)

(Wo(ko)|Wo(ko)) = (Wo(0)l e"%'f |Wo(ko)) =0, D#0
(Wo(ko)|Wo(ko)) = (Wo(0)| ™07 |Wo(ko)) =€, D=0



Why RS discriminate insulators from metals (cont'd)

(Wo(ko)|Wo(ko)) = (Wo(0)l e"%'f |Wo(ko)) =0, D#0
(Wo(ko)|Wo(ko)) = (Wo(0)| ™07 |Wo(ko)) =€, D=0

To lowest order in 1/L:

lanl - = \<Wo(0)\e':”°'f!‘uo(0)>!20, D#0
sl = [(Wo(0)| ™7 [Wo(0))[ ~1, D=0
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Quantum geometry within OBCs
m )\? in bounded samples



Kohn's Hamiltonian within OBCs

m Same Hamiltonian with a “flux”, but now within OBCs:
H(k) = Z|p.+hl<a\2+v

m Within OBCs:
m The operator ¥ = Zir,- is well defined
m |Uy(k)) = e F|Wy(0)) obeys Schrodinger Eq.
m It also obeys OBCs



Kohn's Hamiltonian within OBCs

m Same Hamiltonian with a “flux”, but now within OBCs:
H(k) = Z|p.+hl<a\2+v

m Within OBCs:

m The operator ¥ = Zir,- is well defined
m |Uy(k)) = e F|Wy(0)) obeys Schrodinger Eq.
m It also obeys OBCs

m Ergo e " 7|Wy(0)) is the ground eigenstate of H(k)
with eigenvalue Ey(0), k-independent:

’aHQ\UO(O» = i?a‘w0(0)>



Many-body quantum metric within OBCs

m Quantum metric tensor (derivatives taken at kK = 0))

- 1
Bap = 1j(Re (9, W0l0i; Vo) — (O, Wo|Wo)(Wo|Or, Vo) )

m Intensive ground state property, gauge-invariant
(dimensions: squared length)

m Basic tenet of the modern theory:
The OBCs metric g, in the thermodynamic limit
m Diverges in all metals
m Converges in all insulators
m In the isotropic case g, converges to \2.



Many-body quantum metric within OBCs

. 1
Bap = N(Re (Oka V0|0 Vo) — (Oka Vol W0) (Vo |0k, Vo) )

1 - 5 5
= y((VolfaTsWo) — (Wol7a|Wo) (Wol75Wo) )

= %/ drdr’ (r— r,)a(l’ _ r’)ﬁ[ n(r)n(r’) . n(z)(r’ I’/)]

m Exchange-correlation hole (integrates to —1):
nee(r,¥') = n®(r,¥') — n(r)n(r)

m g.3 is the second moment of the XC hole,
averaged over the sample



Special case: independent electrons

m Isotropic system in dimension d:

Boc= N2 = 55 [ v e = ¢ PLa(0)n(r) ~ 0¥



Special case: independent electrons

m Isotropic system in dimension d:

Boc= N2 = 55 [ v e = ¢ PLa(0)n(r) ~ 0¥

m Independent electrons: n(®(r,v) is a function of (r| P |r):

n(r)n() — i (e,¥) = 2| PIF)  (spinful)
[(rf|P|¥)]>  (spinless)
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Quantum geometry within OBCs

m Model Anderson insulator in 1d



Tight binding 1d binary crystal

H=> (Ul —thi+ 1) —th)(i+1])
J
Diagonal disorder: t fixed, €, — €, = 2A fixed

Crystalline case: ¢; = (—1YA
ABABABABABABABABABABABABABABABABABAB

Disordered case: random choice of +1 factors
ABAABABBABABBAABABABBABAABABBABABBAA

Random choice with equal probability, average over many replicas.



Density of states

m At half filling both (crystalline and disordered) are insulating
m At any other filling the crystalline is conducting and the
disordered is insulating.



Density of states

800 T

T T T T T T T T
700 cris

dis -
600 - /

100 F

m At half filling both (crystalline and disordered) are insulating

m At any other filling the crystalline is conducting and the
disordered is insulating.

m What about & (a.k.a. A\?)?



Results of the simulations

(5000 sites, 1000 replicas, 1/2 & 1/4 filling)

2 N
g= = [ dedd (x— XPRUAP )2 = 2 S PR (- 0

m In the crystalline case g converges to a finite limit for 1/2
filling, diverges for 1/4 (as expected).

m In the disordered case g always converge (to a very similar
value for the two cases).

m The disordered case g is about 20 times larger than the
crystalline one. Why?

m The insulating mechanism (band vs. Anderson) is quite
different, despite the very similar Hamiltonian.
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Quantum geometry within OBCs

m Anderson metal-insulator transition in 3d



The benchmark model 3d system

m Need a 3d system to observe the M-I transition

m A standard 3d tight-binding Hamiltonian is known from
previous literature to undergo the transition at W, = 8.25
(W'is the amount of tunable disorder, in appropriate units)

In our (and others’) simulations:

m Computational samples are long rods of square section
m Results are averaged over several disorder realizations

The novelty here: use our marker to detect the transition
in the ground state



Anderson transition as a ground-state property

T. Olsen, R. Resta, and |. Souza, Phys. Rev. B 95, 045109 (2017)

1 w=10 W=5.0

o 20 40 60 80 o 20 a0 60 80

Localization length A = /g, as a function of rod length L
(average over 100 disorder realizations)



A smarter way to estimate W, (by Thomas Olsen)

CPol / CE:cp

w

Our best estimate: W, = 8.5
We are probing “the organization” of the electrons in their ground state



Summary

m Phenomenology:

m Insulators differ from conductors in their dc conductivity;
m But also: insulators and metals polarize in a different way.

m Kohn's (1964) vision:
m Even before any probe is applied to the system, the
ground-state organization of the electrons is different in
insulators and metals (localized vs. delocalized)

m Quantitative sampling of Kohn's localization:

m Resta-Sorella within PBCs
m Relationship to Drude weight & conductivity
m Quantum metric within OBCs
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