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Theory of the insulating state: Part 2

Raffaele Resta

Trieste, 2020
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Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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Wannier functions, one dimension, single band

L → ∞, q continuous:

Xℓ = ℓa |wℓ⟩ =
a

2π

∫
BZ

dq eiqXℓ |ψq⟩

L = Ma finite, qj discrete:

|wℓ⟩ =
1
M

M∑
j=1

eiqjXℓ |ψqj⟩

Caveat: Gauge arbitrariness in |ψqj⟩
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Invariance of the many-body ground state

So far, we have written |Ψ0⟩ an N-particle Slater determinant
of Bloch orbitals.
Any determinant is invariant for unitary transformation of the
vectors (orbitals) within the occupied manifold.
We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
In the insulating case:

The occupied manifold is the whole band:
|Ψ0⟩ is invariant by such unitary transformation.
|Ψ0⟩ can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

What about the metallic case?
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Invariance of the many-body ground state

So far, we have written |Ψ0⟩ an N-particle Slater determinant
of Bloch orbitals.
Any determinant is invariant for unitary transformation of the
vectors (orbitals) within the occupied manifold.
We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
In the insulating case:

The occupied manifold is the whole band:
|Ψ0⟩ is invariant by such unitary transformation.
|Ψ0⟩ can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

What about the metallic case?
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Invariance of the many-body ground state (cont’d)

Finite L
In this drawing, again L = Ma, with M = 14:
Slater determinant built with M occupied
Wannier orbitals wn(x).

Infinite L (M → ∞)

|wℓ⟩ =
a

2π

∫
BZ

dq eiqXℓ |ψq⟩∫ ∞

−∞
dx |⟨x|wℓ⟩|2 = 1 finite!
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Invariance of the many-body ground state (cont’d)

Finite L
In this drawing, again L = Ma, with M = 14:
Slater determinant built with M occupied
Wannier orbitals wn(x).

Infinite L (M → ∞)

|wℓ⟩ =
a

2π

∫
BZ

dq eiqXℓ |ψq⟩∫ ∞

−∞
dx |⟨x|wℓ⟩|2 = 1 finite!
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Maximally localized Wannier functions

With the optimal choice of the gauge:

|⟨x|wℓ⟩| → 0 exponentially for x → ±∞

⟨wn|x2|wn⟩ − |⟨wn|x|wn⟩|2 minimum

The minimum “quadratic spread” is equal to the RS λ2

The spread diverges in the metallic case.
Caveat: In 3d there are some complications:
Marzari-Vanderbilt MLWFs (1997).
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Maximally localized Wannier functions

With the optimal choice of the gauge:

|⟨x|wℓ⟩| → 0 exponentially for x → ±∞

⟨wn|x2|wn⟩ − |⟨wn|x|wn⟩|2 minimum

The minimum “quadratic spread” is equal to the RS λ2

The spread diverges in the metallic case.
Caveat: In 3d there are some complications:
Marzari-Vanderbilt MLWFs (1997).
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Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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Implementation: Mott transition in HN chains
Stella, Attaccalite, Sorella & Rubio, PRB 2011

STRONG ELECTRONIC CORRELATION IN THE HYDROGEN . . . PHYSICAL REVIEW B 84, 245117 (2011)
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FIG. 1. (Color online) (a) Total energy per atom as a function
of the interatomic distance from VMC calculations of periodic
chains with 18, 34, 50, and 66 H atoms in the supercell. (Data are
almost superimposed at the scale of this figure; see also Table I.)
(b) Comparison between the total energy per atom of a finite H50

chain obtained by VMC and DMRG (Ref. 3).

III. RESULTS

In Fig. 1(a), we show the convergence of the total energy
per atom by increasing the number of H atoms per supercell
for several interatomic distances. We note that the H50 periodic
H chain is already well converged at the scale of this figure.
To follow the fine detail of the convergence, the values of the
total energy per atom details have been also listed in Table I.

In Fig. 1(b), a direct comparison between the VMC total
energy for the H50 finite chain and the benchmark DMRG
results obtained by using a STO-6G basis set3 demonstrates the
accuracy of our optimized JAGP variational wave function.27

In this case, to have a fair comparison against the DMRG
data, PBCs have not been employed to obtain the VMC results
showed in Fig. 1(b). The difference between the total energy
of H50 chains with and without PBCs and the same interatomic
distance is of the order of few mHa per atom.

Having verified the quality of the variational wave function,
in Fig. 2(a) we plot the electronic localization length λN in
units of the interatomic distance a as a function of a. For all

TABLE I. Total energy per atom as a function of the interatomic
distance a for the same periodic chains of Fig. 1(a). The VMC error
on the last digit is indicated in parentheses.

a H18 H34 H50 H66

1.0 −0.40751(4) −0.41639(3) −0.41380(3) −0.41358(2)
1.5 −0.55402(2) −0.55156(1) −0.55099(1) −0.55070(1)
2.0 −0.56480(2) −0.56329(1) −0.56296(1) −0.56284(1)
2.5 −0.54747(2) −0.54699(1) −0.54639(1) −0.54682(1)
3.0 −0.52796(2) −0.52770(2) −0.52717(1) −0.52727(1)
3.5 −0.51263(3) −0.51308(2) −0.51459(2) −0.51508(1)
4.0 −0.50458(3) −0.50556(4) −0.50599(2) −0.50626(1)
4.5 −0.50080(3) −0.50206(1) −0.50222(1) −0.50237(1)
5.0 −0.50014(2) −0.50029(1) −0.50047(1) −0.50063(1)
6.0 −0.49962(1) −0.49971(1) −0.49972(1) −0.49965(1)
7.0 −0.49980(1) −0.49981(1) −0.49979(1) −0.49972(1)

 0

 1
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 5

λ N
 /a

(a)

VMC H18 
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FIG. 2. (Color online) (a) Electronic localization length λN

divided by the interatomic distance a as a function of a, for the
same chains of Fig. 1(a). (d) Modulus of the complex polarization
|zN | as a function of the interatomic distance for the same chains
of (c).

the supercells considered, we find that

λN/a ∝
{ |a − ac|η if a < ac,

a−1 if a > ac,
(6)

where η ≃ 0.5 and ac ≃ 3.5 (a.u.). This critical behavior is also
in agreement with the sudden switch from |z| ≃ 0 to |z| ≃ 1
visible in Fig. 2(b), i.e., to the crossover between a (finite-size)
metal and an insulator, namely a Mott-Hubbard insulator.1

To further characterize the nature of the weakly and strongly
correlated regimes of the H chain, we have investigated the
spin-spin,

fss(i − j ) = ⟨#N |Ŝ(i)
z Ŝ(j )

z |#N ⟩, (7)

and the dimer-dimer,

fdd (i − j ) = ⟨#N |Ŝ(i)
z Ŝ(i+1)

z Ŝ(j )
z Ŝ(j+1)

z |#N ⟩, (8)

correlation functions, where Ŝ(i)
z measures the transverse

component of the electronic spin about the ith H atom of the
chain. By neglecting logarithmic corrections, we have fitted
these functions by28

fss(i − j ) = ass

(i − j )2
+ bss

cos[π (i − j )]
(i − j )Kss

, (9)

fdd (i − j ) = add + bdd

cos[π (i − j )]
(i − j )Kdd

(10)

245117-3

localization length
(tensor in 3d)

λ2
N = − 1

N

(
L

2π

)2
ln |zN|2

Transition: ≃ 3.5 bohr
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Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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Model 1d ionic crystal

γ = Im ln ⟨Ψ0|ei 2π
L (

∑
ℓ ZℓXℓ−2

∑
j xj)|Ψ0⟩ = π (mod 2π)

Z2-odd: P = e/2 mod e

Tight-binding Hamiltonian:

H =
∑

j
[ (−1)j∆ |j⟩⟨j| − t |j + 1⟩⟨j| − t |j⟩⟨j + 1| ]

In second quantization notations:

H =
∑

j
[ (−1)j∆ c†j cj − t c†j cj+1 − t c†j+1cj ]

ϵ(k) = ±
√

∆2 + 4t2 cos2 ka/2
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Model 1d ionic crystal

γ = Im ln ⟨Ψ0|ei 2π
L (

∑
ℓ ZℓXℓ−2

∑
j xj)|Ψ0⟩ = π (mod 2π)

Z2-odd: P = e/2 mod e

Tight-binding Hamiltonian:

H =
∑

j
[ (−1)j∆ |j⟩⟨j| − t |j + 1⟩⟨j| − t |j⟩⟨j + 1| ]

In second quantization notations:

H =
∑

j
[ (−1)j∆ c†j cj − t c†j cj+1 − t c†j+1cj ]

ϵ(k) = ±
√

∆2 + 4t2 cos2 ka/2
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Model 1d ionic crystal

Band structure:

ϵ(k) = ±
√
∆2 + 4t2 cos2 ka/2

Insulator at half filling
Density of states D(ϵ)dϵ : Red plot
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Tight binding 1d binary crystal again

Introducing spin:

H =
∑
jσ

[ (−1)j∆ c†jσcjσ − t(c†jσcj+1σ + H.c.) ]

Introducing Hubbard on-site repulsion:

H =
∑
jσ

[ (−1)j∆ c†jσcjσ − t(c†jσcj+1σ + H.c.)] + U
∑

j
nj↑nj↓.
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Monitoring the insulator-insulator transition

Plot of λ2 at half filling:

⟨x2⟩c measures the localization of the many–body

wavefunction as a whole (no single–particle orbitals

exist for U ≠ 0).

Wavefunction localized in the band regime and in

the Mott regime; delocalized at the transition.

U

⟨x2⟩c

R. Resta – Insulators and metals – 27Metallic only for a special U value
On the left it is a band-like insulator
On the right it is a Mott-like insulator
What happens for t = 0?
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Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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Longitudinal conductivity (zero T)

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i
πω

]
+ σ

(regular)
αβ (ω)

= σ
(Drude)
αβ (ω) + σ

(regular)
αβ (ω)

Both terms obtain from Kubo formulas
(may include disorder & correlation, but not dissipation)
The Drude weight Dαβ is actually a ground-state property:
it measures the (inverse) inertia of the many-electron system
in the adiabatic limit

The insulating state requires both:
Dαβ = 0
Re σ(regular)

αβ (ω) goes to zero for ω → 0
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αβ (ω) = Dαβ

[
δ(ω) +
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(regular)
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(Drude)
αβ (ω) + σ

(regular)
αβ (ω)

Both terms obtain from Kubo formulas
(may include disorder & correlation, but not dissipation)
The Drude weight Dαβ is actually a ground-state property:
it measures the (inverse) inertia of the many-electron system
in the adiabatic limit

The insulating state requires both:
Dαβ = 0
Re σ(regular)

αβ (ω) goes to zero for ω → 0
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Drude weight according to Kohn (1964)

Hamiltonian with a “flux” (a gauge transformation):

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

Thermodynamic limit after taking derivatives
PBCs violate gauge invariance in the conventional sense:
E0 does depend on κ.

Drude weight

Dαβ =
πe2

ℏ2Ld
∂2E0(κ)

∂κα∂κβ

∣∣∣∣
κ=0
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Drude weight according to Kohn (1964)

Hamiltonian with a “flux” (a gauge transformation):

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

Thermodynamic limit after taking derivatives
PBCs violate gauge invariance in the conventional sense:
E0 does depend on κ.

Drude weight

Dαβ =
πe2

ℏ2Ld
∂2E0(κ)

∂κα∂κβ

∣∣∣∣
κ=0
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Why RS discriminate insulators from metals

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂, r̂ =
∑

i
ri

|Ψ̃0(κ)⟩ = e−iκ·̂r|Ψ0(0)⟩ obeys Schrödinger Eq.
It does not obey PBCs
Except for a commensurate κ0

Does |Ψ̃0(κ0)⟩ coincide with the genuine |Ψ0(κ0)⟩?
Yes (modulo a phase) if D = 0
No (it is orthogonal to it) if D ̸= 0
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Why RS discriminate insulators from metals

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂, r̂ =
∑

i
ri

|Ψ̃0(κ)⟩ = e−iκ·̂r|Ψ0(0)⟩ obeys Schrödinger Eq.
It does not obey PBCs
Except for a commensurate κ0

Does |Ψ̃0(κ0)⟩ coincide with the genuine |Ψ0(κ0)⟩?
Yes (modulo a phase) if D = 0
No (it is orthogonal to it) if D ̸= 0
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Why RS discriminate insulators from metals (cont’d)

⟨Ψ̃0(κ0)|Ψ0(κ0)⟩ = ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(κ0)⟩ = 0, D ̸= 0
⟨Ψ̃0(κ0)|Ψ0(κ0)⟩ = ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(κ0)⟩ = eiγ , D = 0

To lowest order in 1/L:

|zN| = | ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(0)⟩ | ≃ 0, D ̸= 0
|zN| = | ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(0)⟩ | ≃ 1, D = 0
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Why RS discriminate insulators from metals (cont’d)

⟨Ψ̃0(κ0)|Ψ0(κ0)⟩ = ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(κ0)⟩ = 0, D ̸= 0
⟨Ψ̃0(κ0)|Ψ0(κ0)⟩ = ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(κ0)⟩ = eiγ , D = 0

To lowest order in 1/L:

|zN| = | ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(0)⟩ | ≃ 0, D ̸= 0
|zN| = | ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(0)⟩ | ≃ 1, D = 0



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 The insulating state within PBCs
λ2 in band insulators
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Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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Kohn’s Hamiltonian within OBCs

Same Hamiltonian with a “flux”, but now within OBCs:

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

Within OBCs:
The operator r̂ =

∑
i ri is well defined

|Ψ̃0(κ)⟩ = e−iκ·̂r|Ψ0(0)⟩ obeys Schrödinger Eq.
It also obeys OBCs

Ergo e−iκ·̂r|Ψ0(0)⟩ is the ground eigenstate of Ĥ(κ)
with eigenvalue E0(0), κ-independent:

|∂καΨ0(0)⟩ = i r̂α|Ψ0(0)⟩
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Same Hamiltonian with a “flux”, but now within OBCs:

Ĥ(κ) =
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2m

N∑
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|pi + ℏκ|2 + V̂

Within OBCs:
The operator r̂ =

∑
i ri is well defined

|Ψ̃0(κ)⟩ = e−iκ·̂r|Ψ0(0)⟩ obeys Schrödinger Eq.
It also obeys OBCs

Ergo e−iκ·̂r|Ψ0(0)⟩ is the ground eigenstate of Ĥ(κ)
with eigenvalue E0(0), κ-independent:
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Many-body quantum metric within OBCs

Quantum metric tensor (derivatives taken at κ = 0))

g̃αβ =
1
N(Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ )

Intensive ground state property, gauge-invariant
(dimensions: squared length)

Basic tenet of the modern theory:
The OBCs metric g̃αβ in the thermodynamic limit

Diverges in all metals
Converges in all insulators
In the isotropic case g̃xx converges to λ2.
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Many-body quantum metric within OBCs

g̃αβ =
1
N(Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ )

=
1
N( ⟨Ψ0 |̂rαr̂βΨ0⟩ − ⟨Ψ0 |̂rα|Ψ0⟩⟨Ψ0 |̂rβΨ0⟩ )

=
1

2N

∫
drdr′ (r − r′)α(r − r′)β[ n(r)n(r′)− n(2)(r, r′) ]

Exchange-correlation hole (integrates to −1):

nxc(r, r′) = n(2)(r, r′)− n(r)n(r′)

g̃αβ is the second moment of the XC hole,
averaged over the sample
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Special case: independent electrons

Isotropic system in dimension d:

g̃xx = λ2 =
1

2Nd

∫
drdr′ |r − r′|2[ n(r)n(r′)− n(2)(r, r′) ]

Independent electrons: n(2)(r, r′) is a function of ⟨r| P |r′⟩:

n(r)n(r′)− n(2)(r, r′) = 2 |⟨r| P |r′⟩|2 (spinful)
= |⟨r| P |r′⟩|2 (spinless)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special case: independent electrons

Isotropic system in dimension d:
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= |⟨r| P |r′⟩|2 (spinless)
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Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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Tight binding 1d binary crystal

H =
∑

j
( ϵj |j⟩⟨j| − t |j + 1⟩⟨j| − t |j⟩⟨j + 1| )

Diagonal disorder: t fixed, ϵb − ϵa = 2∆ fixed

Crystalline case: ϵj = (−1)j∆
ABABABABABABABABABABABABABABABABABAB.............

Disordered case: random choice of ±1 factors
ABAABABBABABBAABABABBABAABABBABABBAA ............
Random choice with equal probability, average over many replicas.
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Density of states
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At half filling both (crystalline and disordered) are insulating
At any other filling the crystalline is conducting and the
disordered is insulating.
What about g̃ (a.k.a. λ2)?
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disordered is insulating.
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Results of the simulations
(5000 sites, 1000 replicas, 1/2 & 1/4 filling)

g̃ =
1

2N

∫
dxdx′ (x − x′)2|⟨x| P |x′⟩2 =

a2

2N

N∑
ℓ,ℓ′=1

P2
ℓℓ′(ℓ− ℓ′)2

In the crystalline case g̃ converges to a finite limit for 1/2
filling, diverges for 1/4 (as expected).
In the disordered case g̃ always converge (to a very similar
value for the two cases).
The disordered case g̃ is about 20 times larger than the
crystalline one. Why?
The insulating mechanism (band vs. Anderson) is quite
different, despite the very similar Hamiltonian.
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Outline

1 The insulating state within PBCs
λ2 in band insulators
Mott metal-insulator transition
Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
λ2 in bounded samples
Model Anderson insulator in 1d
Anderson metal-insulator transition in 3d
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The benchmark model 3d system

Need a 3d system to observe the M-I transition

A standard 3d tight-binding Hamiltonian is known from
previous literature to undergo the transition at Wc = 8.25
(W is the amount of tunable disorder, in appropriate units)

In our (and others’) simulations:
Computational samples are long rods of square section
Results are averaged over several disorder realizations

The novelty here: use our marker to detect the transition
in the ground state
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Anderson transition as a ground-state property
T. Olsen, R. Resta, and I. Souza, Phys. Rev. B 95, 045109 (2017)

3

FIG. 1. (Color online). Localization length as a function of
rod length. The localization length diverges for small values
of W and saturates to a finite value for large values of W .

III. RESULTS

We consider the half-filled 3-dimensional tight-binding
model

H = t
X

<ij>

c†i cj +H.C.+W
X

i

"ic
†
i ci, (18)

where i, j denote sites on a simple cubic lattice, < ij >
are pairs of nearest neighbor sites and the onsite energies
"i are randomly picked from the interval [�1, 1]. W is
the disorder strength and the model has previously been
shown to exhibit an Anderson transition at Wc = W/t =
8.25.4–7

We have calculated the localization length within open
boundary conditions using Eq. (12) for various values of
W using rods of dimension L⇥ d⇥ d where L = 100 and
d = 3, 5, 7. To obtain the configurational average we cal-
culated 100 configurations and for each configuration the
long component of the localization tensor was obtained
by averaging the two short dimensions. In the following
we have put t = 1. The results for various values of W
are shown in Fig. 1 for di↵erent rod thicknesses d. We
clearly observe a tendency for the localization length to
saturate when W becomes large. In contrast, for small
W the localization length appears to be growing mono-
tonically with increasing rod length L. In the present
context the Anderson transition would emerge as a tran-
sition from a divergent to a finite localization length in
the limit of large L. While it seems plausible that this
may happen in the range of Wc = 8.25 it is very di�-
cult to extract a quantitative estimate of Wc from the
localization length alone. For example, for W = 10, the
localization length appears to be saturated at a finite
value for L ⇠ 100, but it is hard to verify if this is really
the case or if the localization length is merely increasing
too slowly to be observable on the present scale.

Instead, we will analyze the density matrix directly

FIG. 2. (Color online). Configurational averaged density
matrix. Top: density matrix with W = 5.0 with a double
logarithmic scale to the left and a semi-logarithmic scale to
the right. Bottom: same as top, but with W = 15.0. The
norm-squared density matrix is seen to be well approximated
by polynomial decay for W = 5.0 and exponential decay for
W = 15.0.

and show that the Anderson transition can be extracted
from the long range behavior of the configurational av-
eraged norm-squared density matrix. In Fig. 2 we
show the density matrix for W = 5 and for W = 15
on semi-logarithmic and double logarithmic scales calcu-
lated from 300 random disorder configurations. It should
be noted that when discussing the density matrix for dis-
ordered systems, one is usually referring to the configura-
tional average of the density matrix h⇢ic. The expression
for the localization length involves the norm square of the
density matrix and for disordered systems this should be
replaced by h|⇢|2ic which will be di↵erent from |h⇢ic|2.
In general it is therefore not possible to calculate the lo-
calization length in disordered systems from knowledge
of the density matrix alone. In fact, the density matrix
may exhibit exponential decay even though the localiza-
tion length is diverging. In Fig. 2 we display both h|⇢|2ic
and |h⇢ic|2 and while the two quantities seem to follow
similar scalings, h|⇢|2ic is a much smoother function and

Localization length λ =
√

g̃αα as a function of rod length L
(average over 100 disorder realizations)
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A smarter way to estimate Wc (by Thomas Olsen)

4

FIG. 3. (Color online). Cost functions calculated from a least
squares fit in the polynomial and exponentially decaying mod-
els. The displayed values of � are the fitted powers in the poly-
nomial model. The vertical red line in the value of W

c

= 8.25
obtained by di↵erent methods.4–7 The best estimate of the
metal insulator transition from the present method is where
C
Pol

/C
Exp

becomes unity. This happens at W ⇡ 8.5.

therefore easier to fit to a model. For W = 5, h|⇢|2ic ap-
pears to decay polynomially, whereas for W = 15, h|⇢|2ic
appears to decay exponentially. This is consistent with
Fig. 1, where it is seen that hx2ic appears diverging for
W = 5 and finite for W = 15. It should be noted, how-
ever, that exponential decay is a su�cient, but not a
necessary condition for a finite localization length. For
example, in a homogeneous system it can be seen from
Eq. (17) that the trace of the localization tensor will be
finite if h|⇢|2ic ⇠ r�� and � > 5.

In order to get a quantitative estimate for the Ander-
son transition, we consider two models for the long range
behavior of y = h|⇢|2ic representing polynomial and ex-
ponential decay:

ỹExp(r) = ae�br, (19)

ỹPol(r) = ↵r�� . (20)

Assuming Gaussian noise, the probability of obtaining
the data displayed in Fig. 2 within a model is given by

PModel ⇠ e�C
Model (21)

where CModel is the cost function

CModel =
X

i

(ỹModel(xi)� yi)2

2�2
i

. (22)

Here the index i represents lattice sites along the long
direction and yi are thus configurational averaged values
of h|⇢(xi)|2ic. We can then obtain the parameters in the
two models by a least squares fit and calculate the cost
function of either model. In Fig. 3 we show the fraction
of cost functions CPol/CExp obtained from a fit to the two

models and observe a very steep descent (two orders of
magnitude) between W = 8 and W = 9. Thus in the
limited model space of exponential and polynomial de-
cay, the probability of the norm squared density matrix
being exponentially decaying makes a transition from be-
ing nearly vanishing to being close to one in the vicinity
of the Anderson transition. It should also be noted that
the fitted powers in the region where polynomial decay is
most likely satisfy � < 5 such that the polynomial model
will yield a divergent localization tensor, whenever this
model is most likely.
In the present approach the critical disorder param-

eter Wc, where the Anderson transition occurs can be
estimated from the point where CPol/CExp = 1. From
the present simulations we get Wc ⇡ 8.5.

IV. CONCLUSIONS

This method could perhaps be used for ab initio pur-
poses ...
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Appendix A: Vertex corrections and the density
matrix

The evaluation of the localization tensor, can be for-
mulated either in terms of the conductivity tensor or the
density matrix. In this appendix we show that for the
localization tensor, the inclusion of vertex corrections
in the conductivity corresponds exactly to performing
the configurational average of the norm-squared density
h|⇢|2ic, whereas the quantity |h⇢ic|2 corresponds to ne-
glecting vertex corrections in the conductivity. For this
purpose we start by reviewing the Streda formula for
the dynamic conductivity. The result then follows im-
mediately by recasting the localization tensor in terms of
Greens functions.

1. Streda formula

The Kubo formula for the conductivity is straightfor-
ward to derive from time-dependent perturbation theory.
For non-interacting particles it reads

�ij(!) =
ie2

!⌦

X

mn

fm � fn
("n � "m � ~! + i⌘)

hm|v̂j |nihn|v̂i|mi,

(A1)

where the limit of ⌘ ! 0 is understood. We now write
this as

Our best estimate: Wc = 8.5
We are probing “the organization” of the electrons in their ground state
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Summary

Phenomenology:
Insulators differ from conductors in their dc conductivity;
But also: insulators and metals polarize in a different way.

Kohn’s (1964) vision:
Even before any probe is applied to the system, the
ground-state organization of the electrons is different in
insulators and metals (localized vs. delocalized)

Quantitative sampling of Kohn’s localization:
Resta-Sorella within PBCs
Relationship to Drude weight & conductivity
Quantum metric within OBCs
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