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Other textbooks

Kittel, Introduction to Solid State Physics:
A ferroelectric crystal exhibits an electric dipole moment
even in the absence of an external electric field. In the
ferroelectric state the center of positive charge does not
coincide with the center of negative charge.

Ashcroft & Mermin, Solid State Physics:
Crystal whose natural primitive cells have a
nonvanishing dipole moment p0 are called pyroelectric.
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Ferroelectrics and Related Materials (1977):

If and when good electron-density maps become
available for ferroelectrics, expressing charge density ρ(r)
as a function of position vector r throughout the unit cell,
more quantitative estimates of spontaneous polarization
might be envisaged as

Ps =
1
V

∫
V

rρ(r) dr. (6.1.19)

Focus invariably on the charge density
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The dipole of a unit cell

E field
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With hindsight:

Dipole disturbingly nonunique
Dipole by far too small
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Silicon (pseudo)charge density, unperturbed
Silicon (pseudo) charge density, unperturbed

min max
The creative role of computationsto understand the polarization of solids – p. 24/??
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Dielectric inside a capacitor
K. Kunc & R. Resta, Phys. Rev. Lett. 51, 686 (1983)DIELECTRIC INSIDE A CAPACITOR

silicon valence charge density

polarization density (times 50)

min max

Dielectric inside a capacitor
Silicon induced charge density

(technically: a supercell calculation)



. . . . . .

Dielectric inside a capacitor
K. Kunc & R. Resta, Phys. Rev. Lett. 51, 686 (1983)

DIELECTRIC INSIDE A CAPACITOR
silicon valence charge density

polarization density (times 50)

min max

DIELECTRIC INSIDE A CAPACITOR
silicon valence charge density

polarization density (times 50)

min max



. . . . . .

How is polarization retrieved?
DIELECTRIC INSIDE A CAPACITOR

silicon polarization density

planar average

min max
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constant

What we really have measured is only the polarization
difference between two slabs of the same material (polarized in
opposite directions)
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The charge in a uniformly polarized dielectric has nothing to do
with macroscopic polarization P.

The charge is the square modulus of the wavefunction.

From charge to current......

So far: induced polarization. What about spontaneous
polarization in zero E field?
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Wurtzite vs. zincblende

Zincblende vs. Wurtzite

ZB: Cubic, hence no vector property (such as P) is allowed.
W: The simplest crystal structure where a vector property is allowed.

The creative role of computationsto understand the polarization of solids – p. 30/??

Zincblende:
Cubic, hence no vector
property, such as P, is al-
lowed

Wurtzite:
The simplest crystal
structure where a vector
property is allowed
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The basic idea
M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, Phys Rev Lett 1990

The basic idea

• The basic equation∇ · P = −ρ

implies ∆P · n = −σ

• Since P(ZB) is zero, by measuring σ we infer the value of P(W) .

The creative role of computationsto understand the polarization of solids – p. 31/??

The basic equation ∇ · P = −ρ
implies ∆P · n = −σ

Since P(ZB) is zero, by measuring σ we infer
the value of P(W)



. . . . . .

The first calculation ever of spontaneous polarization
M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, Phys Rev Lett 1990

The computer experiment

Macroscopic (electric) polarization,Part I – p. 23/25
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Seymour Cray Prize (Switzerland) 1990

Flash (EPFL weekly journal), February 12th, 1991
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Prophetic conclusion
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What about the experiments?

We have not computed the “absolute” polarization of the
W material; instead, we have computed a polarization
difference: W minus ZB.
It is only an additional symmetry argument which allows
us to infer the value of P from the calculation.
In our material (wurtzite BeO) how is spontaneous
polarization measured?
We discovered (after our computer experiment) that it is
not really measured! Reading the experimental literature
we only found some estimates of the spontaneous
polarization in BeO.
Slowly, we came to the idea that the concept of
“polarization itself” doesn’t make sense, and we must
content ourselves of addressing polarization differences
(or derivatives).
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dynamics: Derivatives of P with respect to zone-center
phonon amplitudes.
Permittivity, a.k.a. macroscopic dielectric constant (or
tensor): Derivative of P with respect to an external applied
field.
Piezoelectricity: Derivative of P with respect to
macroscopic strain.
Pyroelectricity: Derivative of P with respect to temperature.
“Spontaneous” P in ferroelectrics:
What is actually measured?
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A prototypical material: KNbO3A typical material: KNbO3

-1 0 1 !

K

Nb

O

KNbO3

How a series of computationschanged our viewof the polarization of solids – p. 38/61



. . . . . .

What is actually measured?

What is the measured observable?

P

E

B

A

A B

How a series of computationschanged our viewof the polarization of solids – p. 41/61

The physical observable is the integrated transient current:

Ps =

∫ ∆t

0
j(t) dt
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What must be computed?

Valence charge density in KNbO3

Electron–density map (valence only)

ideal ferroelectric

How a series of computationschanged our viewof the polarization of solids – p. 40/61

centrosymmetric broken-symmetry (ferroelectric)
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Spontaneous polarization of a ferroelectric
R. Resta, Ferroelectrics 136, 51 (1992)

What is the measured observable?
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0
dλ

d
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Pelectronic + ∆Pnuclear

Any current is mostly related to the phase of the wavefunction
(not to the square modulus!)
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The Berry phase
R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)

The (by now famous) King-Smith & Vanderbilt formula.

Electronic term only, one dimension, one band:

P(1) − P(0) =

∫ 1

0

dP
dλ

dλ = −e
π

[ γ(1) − γ(0) ]

The Berry phase:

γ = i
∫

BZ
⟨uk |

d
dk

uk ⟩ dk

uk (x) = e−ikxψk (x) is the periodic part of the Bloch function
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20 years on........

Most electronic-structure computer codes on the market
implement the Berry phase as a standard option:
CRYSTAL, QUANTUM-ESPRESSO, ABINIT, VASP,
SIESTA, CPMD...

Textbooks are slow to catch: most of them give a flawed
definition of what polarization is

In 2006 David Vanderbilt was awarded the world’s most
prestigious prize in computational physics
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2006 Aneesur Rahman APS Prize
for Computational PhysicsKing-Smith & Vanderbilt: The Berry phase

The creative role of computationsto understand the polarization of solids – p. 47/60
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The ultimate development: “single-point Berry phase”

VOLUME 80, NUMBER 9 P HY S I CA L REV I EW LE T T ER S 2 MARCH 1998

Quantum-Mechanical Position Operator in Extended Systems

Raffaele Resta
INFM-Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy

and Department of Physics, The Catholic University of America, Washington, D.C. 20064
(Received 15 September 1997)

The position operator (defined within the Schrödinger representation in the standard way) becomes
meaningless when periodic boundary conditions are adopted for the wave function, as usual in
condensed matter physics. I show how to define the position expectation value by means of a simple
many-body operator acting on the wave function of the extended system. The relationships of the
present findings to the Berry-phase theory of polarization are discussed. [S0031-9007(98)05419-2]

PACS numbers: 03.65.Ca, 03.65.Bz, 71.10.–w, 77.84.–s

The position operator within the Schrödinger represen-
tation acts multiplying the wave function by the space co-
ordinate. This is trivial, but applies only to the bound
eigenstates of a finite system, which belong to the class
of square-integrable wave functions. This is not the way
condensed matter theory works: almost invariably, one
considers a large system within periodic boundary con-
ditions (PBC), and the position operator (defined as usual)
becomes then meaningless. For the sake of simplicity,
most of this Letter will deal with the one-dimensional
case. The Hilbert space of the single-particle wave
functions is defined by the condition c�x 1 L� � c�x�,
where L is the imposed periodicity, chosen to be large
with respect to atomic dimensions. An operator maps any
vector of the given space into another vector belonging to
the same space: the multiplicative position operator x is
not a legitimate operator when PBC are adopted for the
state vectors, since x c�x� is not a periodic function when-
ever c�x� is such. Of course, any periodic function of x is
a legitimate multiplicative operator: this is the case, e.g.,
of the nuclear potential acting on the electrons. Since
the position operator is ill defined, so is its expectation
value, whose observable effects in condensed matter are
related to macroscopic polarization. For the crystalline
case, the long-standing problem of dielectric polarization
has been solved a few years ago [1–3]: polarization is a
manifestation of the Berry phase [4,5], i.e., it is an ob-
servable which cannot be cast as the expectation value of
any operator, being instead a gauge-invariant phase of the
wave function. Here we find a different, and more funda-
mental, solution: we arrive indeed at defining the expecta-
tion value of the position in an extended quantum system
within PBC, where the operator entering this definition
is simple but rather peculiar. Among the most relevant
features, the expectation value is defined modulo L, and
the operator is no longer one body: it acts as a genuine
many-body operator on the periodic wave function of N
electrons.
The present result can be related to a discretized Berry

phase, and sheds new light into the physical meaning of
the latter. Our compact and general expression for the

macroscopic polarization, Eq. (4) below, applies on the
same footing to correlated systems and to independent-
electron systems, as well as to crystalline and to disor-
dered systems. At variance with present understanding
[1–3], lattice periodicity and integration in reciprocal
space are not needed in order to define what polarization
is. In the case of a correlated electron system, polariza-
tion was previously defined by means of a peculiar kind of
“ensemble average,” integrating over a set of many-body
wave functions [3,5]: this is correct, but unnecessary. The
present advance allows defining polarization by means of
a “pure state” expectation value.
We study a system of N electrons in a segment of

length L, and eventually the thermodynamic limit is taken:
L ! `, N ! `, and N�L � n0 constant. At any finite
L the ground eigenfunction obeys PBC in each electronic
variable separately:

C0�x1, . . . , xi , . . . , xN � � C0�x1, . . . , xi 1 L, . . . , xN � .

(1)
We assume the ground state nondegenerate, and we deal
with insulating systems only: This means that the gap
between the ground eigenvalue and the excited ones
remains finite for L ! `. Since the spin variable is
irrelevant to this problem, we omit it altogether, and
we deal with a system of spinless electrons. Our major
goal is defining the expectation value of the electronic
position �X�, and to prove that our definition provides
in the thermodynamic limit the physical macroscopic
polarization of the sample.
Before attacking the main problem, let us discuss the

much simpler case where PBC are not chosen, and the
N-particle wave function (called F0 in this case) goes to
zero exponentially outside a bounded region of space. We
may safely use the operator X̂ �

PN
i�1 xi, and define the

position expectation value as usual:

�X� � �F0jX̂jF0� �
Z

dx x n�x� , (2)

where n�x� is the one-particle density. The value of �X�
scales with the system size, and the quantity of interest
is indeed the dipole per unit length, which coincides
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Why addressing the position operator?

It is the simple multiplicative operator which maps (1d):
ψ(x) → x ψ(x)

Its expectation value is:
⟨x⟩ =

∫
dx x |ψ(x)|2

The multiplicative operator x is not a legitimate operator
when adopting periodic boundary conditions (as we do in
condensed matter physics)

A different definition of the position operator has to be
adopted
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A flavor of the “new” position operator (1d)

Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

⟨x⟩ =
∫

dx x |ψ(x)|2 is nonsense
⟨x⟩ must be defined modulo L
Solution:

⟨x⟩ =
L

2π
Im ln

∫ L

0
dx ei 2π

L x |ψ(x)|2

Notice the occurrence of a phase (“Im ln”)



. . . . . .

A flavor of the “new” position operator (1d)

Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

⟨x⟩ =
∫

dx x |ψ(x)|2 is nonsense
⟨x⟩ must be defined modulo L
Solution:

⟨x⟩ =
L

2π
Im ln

∫ L

0
dx ei 2π

L x |ψ(x)|2

Notice the occurrence of a phase (“Im ln”)



. . . . . .

Conclusions

A series of computations changed our view of what the
polarization of solids really is
Analytical formulas and “theorems” discovered after the
computations

P has nothing to do with the periodic charge of a polarized
dielectric
Instead, ∆P is the transient (integrated) current flow during
an adiabatic switching process
The charge is the square modulus of the wavefunction;
the current is instead related to a gauge-invariant phase of
the wave function (Berry phase)
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