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Outline

Faraday laws of electrolysis



First law of electrolysis, 1832

(Modern formulation, from Wikipedia)

Cathode

The mass of a substance altered at an electrode during
electrolysis is directly proportional to the quantity of electricity
transferred at that electrode. Quantity of electricity refers to the
quantity of electrical charge.



Faraday verbatim

§ 7. On the absolute quantity of Electricity associated with
the particles or atoms of Matter

T T T AL R B e e LR e VAR TS ey T

not to reason upon the subject. Although we know nothmg
of what an atom is, yet we cannot resist forming some idea of
a small particle, which represents it to the mind; and though
we are in equal, if not greater, ignorance of electricity, so as
to be unable to say whether it is a particular matter or matters,
or mere motion of ordinary matter, or some third kind of power
or agent, yet there is an immensity of facts which justify us
in believing that the atoms of matter are in some way endowed
or associated with electrical powers, to which they owe their



Faraday’s "equivalent numbers" (1832)

(Notice: in 1832 Mendeleev was not yet born!

Oxygen . v B
Chlorine......... 35.5
lodine . .. 126
Bromine ........78.3
Fluorine . Y
Cyvanogen .......26
Sulphuric acid . ..40
Hydrogen ...... 1
Potassium 39.2
Sodium ........ 2%.3
Lithium ....... 10
Barium ........ 68.7
Strontium ..... 43.8
Calcium . 20.5
Magnesium ..... 12.7
Manganess ..... 27.7
Zinc . 32.5
TEVd e 50 vuins i B
EO0hi0 o 00 consa BB
B s cincie viv UE
Copper 31.6

Anions.
Selenic acid ..... 64
Nitric acid ......54
Chloric acid ..... 75.5
Phosphoric acid ..35.7

Carbonic acid ....22

| Boracie acid . ....24

Acetic acid ......51

Cations,
Cadmium...... 55.8
| Cerium ...... 46
Cobalt ........ 20.5
Nickel . 20.5
Antimony ..... 64.67
Bismuth ...... 71
Mercury ...... 200
Sllver .. e <200
Platina........ 98.6?
Gold . (?)
Ammonia ..... 17
Potassa ....... 47.2

Tartaric acid ..... 66
Citric acid . .58
Oxalic acid ......36
Sulphur (?) ......16

Selenium (7) .....
Sulpho-cyanogen ..

SOU8 ...ce000:. 31.3
RS 73 cvess O 20
| Baryta ......... 76.2
| Strontia ........ 51.8

Lime s <

Magnesia ....... 20.7

Alumina ... (?)
| Protoxides gens r:cll)
| Quinia .... .171.6

Cmchon: .......l()o

orphia .. .. .290

ﬁtto—.xlkuhes pzencr-



Electrolytic solutions vs. molten salts

S

e Anode®® Cathode




Electrolytic solutions vs. molten salts

Cathode

What about molten metals?



Outline

Modern view of a liquid



Electrolyte or molten salt

m An assembly of:
m Point-like nuclei
m Electronic charge
density




Electrolyte or molten salt

m An assembly of:
m Point-like nuclei
m Electronic charge
density g

m Electron density all over T
the place

m How much charge
“belongs” to each nucleus?

Cathode

Molten NaCl



Electrolyte or molten salt

m An assembly of:
m Point-like nuclei
m Electronic charge
density g

m Electron density all over T
the place

m How much charge
“belongs” to each nucleus?

Cathode

m lonic charges arbitrary &
noninteger

Molten NaCl



The ultimate solution

PHYSICAL REVIEW B VOLUME 27, NUMBER 10 15 MAY 1983

Quantization of particle transport

D. J. Thouless
Department of Physics, FM-135, University of Washing
(Received 4 February 1983)

Seattle, Washi 98195

m Faraday’s law is reconciled with QM owing to topology
m The transported charge is a topological invariant

m Historical perspective:
Q: Why did this paper appear in 19837



The ultimate solution

PHYSICAL REVIEW B VOLUME 27, NUMBER 10 15 MAY 1983

Quantization of particle transport

D. J. Thouless
Department of Physics, FM-135, University of Washing Seattle, Washii 98195
(Received 4 February 1983)

m Faraday’s law is reconciled with QM owing to topology
m The transported charge is a topological invariant
m Historical perspective:
Q: Why did this paper appear in 19837
A: Topology entered the theory of quantum Hall effect in
1982 (the famous TKNN invariant).



A few months afterwards

(Pendry & Hodges, J. Phys. C 1984)

Verbatim:

m “...in condensed matter there is no way of extracting
integer charges for the ions from a charge-density map.”

m “...ininsulating systems atoms or ions diffusing through
the system carry with them charges which are integral
multiples of e.”

m “In a static configuration no evidence is found for integral
charges, the existence of which is manifested by the
transport properties alone.”



Outline

A flavor of topology



Gauss-Bonnet-Chern theorem

Parametric Hamiltonian
on a closed surface (a torus) :

H(9, @) = H(Y + 2m, ) = H(Y, ¢ + 27)



Gauss-Bonnet-Chern theorem

Parametric Hamiltonian
on a closed surface (a torus) :

H(9, ) = H(Y + 27, ¢) = H(9, ¢ + 2m)

m Ground nondegenerate eigenstate |yo (¥, ¢))

m Berry curvature Q(4, ) = i ({50l asv0) — (5 %0l 45%0))
m Chern number:

1 2 2
/ 49 [ de Qd,0)=C cz
27'[' 0 0



Thouless’ “angles”

m ¢ — k (inverse length)
mp —t (time)

m H(k, t) periodic over (2%, T)
m Thouless theorem: Motten Nact

)
o:/dumzec
0

T

1 27 /L
C= / dk [ at k. 1)
27T 0 0
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The adiabatic current



Dipolar polarization of an atom




Dipolar polarization of an atom

m Think of polarization in a time-dependent (adiabatic) way:
E = E(t)

m H(t) varies slowly in time

m Adiabatic limit: At > h/(e1 — £0)

m |¢)o(t)) instantaneous ground eigenstate



Dipolar polarization of an atom

m Think of polarization in a time-dependent (adiabatic) way:
E = E(t)

m H(t) varies slowly in time

m Adiabatic limit: At > h/(e1 — £0)

m |¢)o(t)) instantaneous ground eigenstate

apa(tr) e gt [o(r)[2 = —e [43(r)io(r) +w3(r)uo(r) ] # O




Induced dipole

9p(r)
ot

At At
d:/ dt/drrap(r):—/ dt/drrV-j(r)
0 ot 0

Continuity equation: =—-V-j(r)



Improved adiabatic approximation

ap(r)
ot

j(r) = —g [ — i (1) Vo (r) + c.c. ]

Continuity equation: =—-V-j(r)



Improved adiabatic approximation

ap(r)
ot

j(r) = —g [ — i (1) Vo (r) + c.c. ]

Continuity equation:

==V-j(r)

m Simple case H(t): time-reversal-invariant

m Instantaneous ground eigenstate [iy(t)) real
m j(r) vanishes (any r, any f)

m Need a better formula for the adiabatic current!

) =~ [¢o) +



Improved adiabatic approximation

ap(r)
ot

j(r) = —g [ — i (1) Vo (r) + c.c. ]

Continuity equation: =—-V-j(r)

m Simple case H(t): time-reversal-invariant

m Instantaneous ground eigenstate [iy(t)) real
m j(r) vanishes (any r, any f)

m Need a better formula for the adiabatic current!

m Thouless formula:

[0) = |tho) + ih>_ ibn)
n#0

<¢nw0>

€0 —€n




Infinite system with periodic boundary conditions

Switch to 1d from now on: Op(x, 1) _ _9j(x, 1)
ot X

m A macroscopic current j(2)(t) constant in x is
divergenceless

m j(x, 1) = j(x,t) + j(me)(t) does not affect p(x, t)

m j(mer)(1) is due to a source at —oo and a drain at +oo.



Infinite system with periodic boundary conditions

Switch to 1d from now on: Op(x, 1) _ _9j(x, 1)
ot X

m A macroscopic current j(2)(t) constant in x is
divergenceless

m j(x, 1) = j(x,t) + j(me)(t) does not affect p(x, t)

m j(mer)(1) is due to a source at —oo and a drain at +oo.

m Thouless formula yields the adiabatic current, including
the divergenceless term



Macroscopic polarization of a solid

(Resta 1992, King-Smith & Vanderbilt 1993)

m Polarization is the dipole per unit volume

1 1

1
P=—-d= / drrp(r drrp(r
v Vsample sample p( ) 7£ VCe]] Jcell p( )

m Meaningless for a lattice-periodical p(r)




Macroscopic polarization of a solid

(Resta 1992, King-Smith & Vanderbilt 1993)

m Polarization is the dipole per unit volume

1 1

1
P=—-d= / drrp(r drrp(r
v Vsample sample p( ) 7£ VCe]] Jcell p( )

m Meaningless for a lattice-periodical p(r)

m The modern theory:

m P has nothing to do with the periodic distribution p(r)
contrary to what most textbooks pretend!

m OP/0t = j(maer)(f)  —

At
P= dt j(mar)(¢), evaluated via Thouless formula
0



Outline

The “electron-in-broth” formula (one electron)



F-center in a molten salt

(Selloni, Carnevali, Car, & Parrinello 1987)

m Mixed quantum-classical simulation
m 31 Cl~ and 32 K™ ions, plus one electron
m Both Newton & Schrédinger egs. with PBCs



F-center in a molten salt

(Selloni, Carnevali, Car, & Parrinello 1987)

m Mixed quantum-classical simulation
m 31 Cl~ and 32 K™ ions, plus one electron
m Both Newton & Schrédinger egs. with PBCs

m Diffusion: asymptotically (|re(t)|?) = 6Det
m How to evaluate (rg(t)) within PBCs?



The position operator: fundamentals

m [t is the simple multiplicative operator which maps (1d):

P(x) = x (x)

m |ts expectation value is:
(x) = [ dx x[p(x)]?

m The multiplicative operator x is not a legitimate operator
when adopting periodic boundary conditions (as we do in
condensed matter physics)



The position operator: fundamentals

m [t is the simple multiplicative operator which maps (1d):

P(x) = x (x)

m |ts expectation value is:

(x) = [ ax x [p(x)[?

m The multiplicative operator x is not a legitimate operator
when adopting periodic boundary conditions (as we do in
condensed matter physics)

m A different definition of the position operator has to be
adopted



How does one define the electron-distribution center?

(z)

(x) = [ dx x |[vo(x)[? is nonsense

]
m (x) must be defined modulo L



How does one define the electron-distribution center?

(z)

= [ dx x |1po(x)[? is nonsense
m (x) must be defined modulo L
m The electron-in-broth formula:

(x) = —Im In / dx e T =X 4o (x)[?

m Notice the occurrence of a phase (“Im In”)



The adiabatic current

()

Imln/dxeL 1o (x)[?

m ¢Yo(x, t) adiabatic instantaneous eigenstate
m Macroscopic current:

j(macro) () — _edx) _ ~Z % imin [ dxeTX [Yo(x, 1)[2



The adiabatic current

()

Imln/dxe TX oo (x)?

m ¢Yo(x, t) adiabatic instantaneous eigenstate
m Macroscopic current:

(macro)(yy _ _ € (x) __¢ega j2m 2
Ji (1) TR o dtlm In A dx e' T |yo(x, )]

m Coincides with Thouless formula for L — oo



Quantization of transport

(z)

L L j2m j2m
o) =gomins, 5= [ a0 = (ol T

m ; a complex number, with [3] < 1

m ;(t) traces a path in the complex plane

m Suppose that H(T) = H(0) for some T, then 3(T) = 3(0)
m How much charge has been transported?



Winding number

OJORS
o8

m The transported charge is the winding number (times —e)
plus the charge transported by the classical ions



Winding number

OJORS
o8

m The transported charge is the winding number (times —e)
plus the charge transported by the classical ions

m Winding number ill defined if 3(¢) = 0 along the path!



Localization vs. delocalization

L 2T
(@) 5= /0 o /T o (x)

m Extremely localized distribution:

[o(x)? = Z d(x—=x—mL) = 5:3"2%)(0

m=—oo

m Extremely delocalized distribution:

1
UofE=] = 3=0



Current of the classical charges (1d)

m Charges Q, = te atsites X;:

Dipole d= Z Q X, ill-defined within PBCs
¢

m Dipole defined modulo L:

L 2m
d=imin el 3 20X
2m



Total current: one electron + classical charges

j(macro) . ig
X 2w dt
e d jor (. 9 x,

= 2 Timin (uole T () g
m For a periodic evolution:

Transported charge = winding number of 3(t) (times e)

(—Imn (ol *[yo) + Im In e/ & = @X)

3e(t) = (ole’ T (2 5%) 1y



Outline

B Many electrons in broth: transport and conductivity



N electrons within PBCs

m Condensed system in 1d: N spinless electrons in a
segment of lenght L:

Wy :Wo(X1,X2,...Xj,...XN),

m L large with respect to atomic dimensions.

m Thermodynamic limit:
N — oo, L = 0o, N/L = ng constant.

m Y, periodic over each electronic variable x; separately:

Wy :Wo(X1,X2,...Xj,...XN) :‘Uo(X1,X2,...Xj+L,...XN)



The ultimate solution

VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MARCH 1998

Quantum-Mechanical Position Operator in Extended Systems

Raffaele Resta

INFM-Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste, Italy
and Department of Physics, The Catholic University of America, Washington, D.C. 20064
(Received 15 September 1997)

The position operator (defined within the Schrodinger representation in the standard way) becomes
meaningless when periodic boundary conditions are adopted for the wave function, as usual in
condensed matter physics. I show how to define the position expectation value by means of a simple
many-body operator acting on the wave function of the extended system. The relationships of the
present findings to the Berry-phase theory of polarization are discussed. [S0031-9007(98)05419-2]

m Nuclei (charge eZ;) & electrons (charge —e) altogether:
5= (Wole! T (7323220 )
m Adiabatic current & macroscopic polarization (1d):

j(macro):7d|m |n3 p:£|m |n3:£7
2r 27



A molten salt

m Electrons and nuclei in a cubic periodic cell of side L

3x() = (Wole/ T (2 22X wg) (1) = Im In (1)
m Polarization and charge flux across the cell:

Pt) = 5l b0 =~ Gt

m Transported charge in time T:

T e
o= [ty =2 [ at Sty = - L b(T) (0

m Suppose that H(T) = H(0) for some T, then 3,(T) = 3x(0)
How much charge has been transported?



Thouless quantization of charge transport

OJORS
LO©

B ;4(t) traces a path in the complex plane, with |3x(t)] < 1
m The transported charge is the winding number (times —e)
m Topological nature of Faraday’s law!



Thouless quantization of charge transport

OJORS
LO©

B ;4(t) traces a path in the complex plane, with |3x(t)] < 1

m The transported charge is the winding number (times —e)
m Topological nature of Faraday’s law!

m Winding number ill defined if () = 0 along the path!



Alternative formulations of the current density

CP simulations yield adiabatic wavefunctions & trajectories

m Numerical derivative: single-point Berry phase

. e d

Jx(t) = —Wa%{(t)

e (AN ()
2rl? At

m Analytical derivative: linear response

N

. e *

Ja(t) = 3 > Zias(t) ves(t)
=1

g
m Born effective charge tensors Z; from DFPT



Z* tensors in partially dissociated water

54 O atoms and 108 H atoms in a PBCs simulation cell in zero E field

<>
Distribution of the Z; tensors: diagonal (solid) & off-diagonal (dashed)

T T T T T T T T T
| 2000 K, 2 g/cm? (part. dissociated)l r
@y N Ney
1\
. / ] R . .
-3 -2 -1 0 1 2 3

French, Hamel, & Redmer, Phys. Rev. Lett. 107, 185901 (2011)



lonic conductivity

Fluctuation-dissipation theorem (Green-Kubo) for ionic
conductivity:

3 0
=gt [ @n-0)

T T T T T T T

- | —— with constant Z=1 and Z0=-2
X — — — with constant Z;;=0.69 and ZO=—1.37 L
3 i with time-dependent Born effective charges 5

. 1 . 1 . 1 . E|
0 50 100 150 200 250
T T T T T T T

C(1) [A/fs?]
(=]
[NV G N N

time integral [A%/fs]




Topological quantization

- with constant ZH=1 and ZO=—2 1
- — — with constant Z;=0.69 and Z =-1.37 1
with time-dependent Born effective charges B

C(t) [A¥fs?]
o
O T = Do

1 . 1
150 200 250

:\‘2 . ; . ; —

oﬁ -
':—‘;3 -
g ]
3 ]
k=i —— ]
o Tt e 5
=) . 1 . 1 .

R 150 200 250

t [fs]

The integer values Z3 = —2 and Z; = 1 work much better than the
actual (Z3) and (Z3) values!



Topological quantization

- with constant ZH=1 and ZO=—2
- — — with constant Z;=0.69 and Z =-1.37
with time-dependent Born effective charges B

C(t) [A¥fs?]
o
O T = Do

1 n 1 n 3
- 150 200 250
:\_4 T T T T
oﬂ -
':—‘;3 -
on
3 ]
i ——
So2f Tt~ T T - -
=) 1 1
B 150 200 250

t [fs]
The integer values Z3 = —2 and Z; = 1 work much better than the
actual (Z3) and (Z3) values!

Topological explanation:
F. Grasselli & S. Baroni, Nature Phys. 15, 967 (2019)



Outline

Infrared spectra



Classical fluctuation-dissipation formula

m Imaginary part (absorptive) of the dielectric constant:

2T w
() = 4me) = 5T s / dit ¢! (d(1) - d(0))

m d(t) = L3P(t) extensive dipole of the simulation cell

71.3
) = szLT / dt et (P,(f) Py(0))

_ 2:13L;w<27rL2> /_ e (1) 1(0))



Car-Parrinello (ab-initio MD) simulation for water

(W. Chen, M. Sharma, R. Resta, G. Galli,& R. Car, PRB 2008)

15}

10}

15}

10}

_— DZO water, expt

N

_— DZO water, HA

0 1 600 2000

wavenumber [cm’]

3000

rogen bonding
betl:l'evedn water molecules.

.
w. H bond

«

Peaks:
m translations
m librations
m bond bending
m bond stretching
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Bl Insulators vs. metals



Phase, distance, localization (one electron in 1d)

0 L
(z)
g 2 x 2 2 x
= o B ) = (wle T
my=Imin; — (xo) center of the electron distribution
m The center is ill-defined when 3 =0

m Extremely localized vs. extremely delocalized
P27
[Wo(X) 2 = 6(x—x0) — 3 =¢"1%, |ho(X)P=]—3=0




Phase, distance, localization (one electron in 1d)

0 L
(z)
g 2 x 2 2 x
= o B ) = (wle T
my=Imin; — (xo) center of the electron distribution
m The center is ill-defined when 3 =0

m Extremely localized vs. extremely delocalized
P27
[Wo(X) 2 = 6(x—x0) — 3 =¢"1%, |ho(X)P=]—3=0

m Quadratic spread: — (ﬁ)z In |32,
m Quantum pseudodistance: D5, = — In |{1)1]¢0) 2



Theory of the insulating state

3N = (Wole T X% |wo)
m Electronic term in polarization
e
P = ~Imlog Ii
2 °9 NTOOQ,N
m |t is impossible to define polarization whenever

li =0
NinooéN

all insulators: lim |35 =1 all metals: |lim 3y =0
N—oo N—oo



Resta-Sorella localization length
R. Resta & S. Sorella, Phys. Rev. Lett. 82, 370 (1999)

m Intensive quantity (tensor in 3d)
m ) is finite in all insulators
m )\ diverges in all metals

m Very general: all kinds of insulators:

m Correlated insulator

m Independent electrons, crystalline
a.k.a. “band insulator”

m Independent electrons, disordered

m Quantum Hall insulator



Band insulators vs. band metals

Insulator Metal

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.

14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).



Crystalline system of independent electrons

Before the thermodynamic limit: N and L finite

m |Vy) is written as a determinant of occupied Bloch orbitals,
in both the insulating and the metallic case.

m Key difference:
The whole band is used to build the insulating |Wy), while
only one half of the band is used for the metallic |W).



Insulators vs. metal

Oo0oo0cocoo o
OCoo0cocomEoo
ococoocoomooo
cocoomEoooo
comEooooo
O ococoocoooo
Boocoooooo
cocoococoocoon

m Zero determinant in the metallic case!
m In a band metal A2 = 0o even at finite N
m In a band insulator A2 « /6WM) & WFs quadratic spread



Wannier functions, one dimension, single band

mL— oo, k continuous:
a ikX
Xe=ta |wy) =5 | dke™" [iy)

m L = Mafinite, k; discrete:

(we) = Z WX )

<

m Caveat: Gauge arbitrariness in [t



Invariance of the many-body ground state

m So far, we have written |W) an N-particle Slater
determinant of Bloch orbitals.
m Any determinant is invariant for unitary transformation of
the vectors (orbitals) within the occupied manifold.
m We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
m In the insulating case:
m The occupied manifold is the whole band:
|Wy) is invariant by such unitary transformation.

m |V;,) can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.



Invariance of the many-body ground state

m So far, we have written |W) an N-particle Slater
determinant of Bloch orbitals.
m Any determinant is invariant for unitary transformation of
the vectors (orbitals) within the occupied manifold.
m We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
m In the insulating case:
m The occupied manifold is the whole band:
|Wy) is invariant by such unitary transformation.

m |V;,) can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

m What about the metallic case?



Invariance of the many-body ground state (cont’d)

VA v/
. Flnlte L 1 1 1 1 1 1 1 1 1 1 1 1 1
m In this drawing, again L = Ma, with M = 14:
m Slater determinant built with M occupied
Wannier orbitals w,(x).




Invariance of the many-body ground state (cont’d)

VA v/
. Flnlte L 1 1 1 1 1 1 1 1 1 1 1 1 1
m In this drawing, again L = Ma, with M = 14:
m Slater determinant built with M occupied
Wannier orbitals w,(x).

m Infinite L (M — o)

\wy) = / dk ™ 4y

/dx|<x|Wg>]2:1 finite!



Maximally localized Wannier functions

m With the optimal choice of the gauge:
|(x|wg)| — 0 exponentially for x — +oo

(W X2 | W) — [(Wn|X|wp)?2  minimum



Maximally localized Wannier functions

m With the optimal choice of the gauge:
|(x|wg)| — 0 exponentially for x — +oo
(W X2 | W) — [(Wn|X|wp)?2  minimum
m The minimum “quadratic spread” is equal to the RS )\?

m The spread diverges in the metallic case.

m Caveat: In 3d there are some complications:
Marzari-Vanderbilt MLWFs (1997).



Outline

Kl Polarization



Spontaneous polarization of a ferroelectric

R. Resta, Ferroelectrics 136, 51 (1992)

The physical observable is the integrated transient current:

At

1
Ps = l(t) at = / di iPelectronic + APnycear
0 o dA



Spontaneous polarization of a ferroelectric

R. Resta, Ferroelectrics 136, 51 (1992)

The physical observable is the integrated transient current:

At

1
Ps = l(t) at = / di iPelectronic + APnycear
0 o dA

Any current is mostly related to the phase of the wavefunction
(not to the square modulus!)



The second Vanderbilt & King-Smith paper

PHYSICAL REVIEW B VOLUME 48, NUMBER 7 15 AUGUST 1993-1

Electric polarization as a bulk quantity and its relation to surface charge

David Vanderbilt and R. D. King-Smith
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 26 January 1993)

A definition of the electric polarization of an insulating crystalline solid is given in terms of the
centers of charge of the Wannier functions of the occupied bands. The change of this quantity under
an adiabatic evolution of the Hamiltonian has previously been shown to correspond to the physical
change in polarization. Here, we show that the polarization as defined above also has a direct and
predictive relationship to the surface charge which accumulates at an insulating surface or interface.

m Instead of addressing AP, it is possible to define P “itself”



The second Vanderbilt & King-Smith paper

PHYSICAL REVIEW B VOLUME 48, NUMBER 7 15 AUGUST 1993-1

Electric polarization as a bulk quantity and its relation to surface charge

David Vanderbilt and R. D. King-Smith
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 26 January 1993)
A definition of the electric polarization of an insulating crystalline solid is given in terms of the
centers of charge of the Wannier functions of the occupied bands. The change of this quantity under
an adiabatic evolution of the Hamiltonian has previously been shown to correspond to the physical

change in polarization. Here, we show that the polarization as defined above also has a direct and
predictive relationship to the surface charge which accumulates at an insulating surface or interface.

m Instead of addressing AP, it is possible to define P “itself”

m However....
P is not a vector, it is a lattice!

m P is only defined modulo a “quantum”



Center of charge (1d & quasi-1d systems)

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the
center of negative charge”



Center of charge (1d & quasi-1d systems)

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the
center of negative charge”

m N spinless electrons in a segment of lenght L:
Vg = Wo(X1,X2,... X}, ... XN),
m Periodic boundary conditions:
Vo = Vo(Xy,X2,... X}, ... Xn) = Vo(X1, X2, ... Xj+L, ... XN)

m Nuclei of charge eZ; at sites X;
m Centers of charge:

20X — (W] D x| Wo)
¢ j



Center of charge, better

m Within PBCs coordinates are actually angles
m The two “centers” must be defined modulo L
m Their difference must be origin-invariant

D ZiXe— (Wl Y % |Wo)
L J

L o L . .
— 5—ImIn el T LeZXe 4 5-Imin (Wole ™" Zi%|wy)



Center of charge, better

m Within PBCs coordinates are actually angles
m The two “centers” must be defined modulo L
m Their difference must be origin-invariant

D ZiXe— (Wl Y % |Wo)
L J

L o L . .
— 5—ImIn el T LeZXe 4 5-Imin (Wole ™" Zi%|wy)

m Polarizationin 1d  (R. Resta, PRL 1998):

P = Zilm I (Wole!E (30 Z6X=5) |y
T



Berry phase & the “quantum”

v o= Imin (Wl (Ze2X-%) |y

P, = e—_  defined modulo e
21

m ~ is the Berry phase in disguise
m ~ includes the nuclear contribution



Outline

A Z, topological invariant



A 1d insulator (polyacetylene), different terminations

ﬂfx,x,gi,gﬁ
@ » 9 w » w

: 9
9 9 © 9 9 ¥
(b)

Guess for a centrosymmetric polymer: P = 0. Is this right?



Dipole per monomer

(Kudin, Car, & Resta, JCP 2007)
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Z» classification of centrosymmetric polymers

Zo-even: P=0 mode
Alternant polyacetylene, model molecular crystal.....

Zo-0dd: P=e/2 mod e
Model ionic crystal.....




Z» classification of centrosymmetric polymers

Zo-even: P=0 mode
Alternant polyacetylene, model molecular crystal.....

Zo-0dd: P=e/2 mod e
Model ionic crystal.....

m 7, invariant topological:
m Independent e.g. of ionicity difference
m Independent of the theory level
(tight-binding, first-principle...)
m Robust by continuous deformation of the wavefunction



Simple tight-binding Hamiltonians

Zo-even: Onsite ¢; constant, alternating hoppings t and t/

Zo-0dd: Constant hopping t, alternating e;

m Z, invariant protected by centrosymmetry

m When joining the two with a
continuous & centrosymmetric deformation of the
Hamiltonian the gap closes!
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