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First law of electrolysis, 1832
(Modern formulation, from Wikipedia)
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Electrolytic Cell

1. Figure above shows an electrolytic cell.
2. There are 2 electrodes in an electrolytic cell:

a. The electrode connected to the positive terminal of the cell is positive
electrode and is given a name, anode.

b. The electrode connected to the negative terminal of the cell is negative
electrode and is called the cathode.

Electrolysis is a process where a compound is separated into its constituent
elements when electric current passes through an electrolyte.

Explanation:

1. All electrolytes are ionic, which means they are composed of positively and
negatively charged ions.

2. On passing an electric current through the electrolyte, these ions move
towards the oppositely charged electrode.

3. During electrolysis, negatively charged ions move towards the positive
electrode(anode). The negative ions lose their electron(s) to the anode, which
is positively charged.

4. The electron(s) is then move to the cathode through the external circuit (the
wire).

5. The positively charged ions move towards the negative electrode(cathode).
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Portrait of Faraday in his late thirties

apprenticeship he read many books, including Isaac Watts' The Improvement of the Mind, and he
enthusiastically implemented the principles and suggestions contained therein. At this time he also
developed an interest in science, especially in electricity. Faraday was particularly inspired by the book
Conversations on Chemistry by Jane Marcet.[11][12]

Adult life

In 1812, at the age of twenty, and at the end of his apprenticeship,
Faraday attended lectures by the eminent English chemist Humphry
Davy of the Royal Institution and Royal Society, and John Tatum,
founder of the City Philosophical Society. Many of the tickets for
these lectures were given to Faraday by William Dance, who was one
of the founders of the Royal Philharmonic Society. Faraday
subsequently sent Davy a three-hundred-page book based on notes
that he had taken during these lectures. Davy's reply was immediate,
kind, and favourable. In 1813, when Davy damaged his eyesight in
an accident with nitrogen trichloride, he decided to employ Faraday
as an assistant. Coincidentally one of the Royal Institution's
assistants, John Payne, was sacked, and Sir Humphry Davy was
asked to find a replacement; thus he appointed Faraday as Chemical
Assistant at the Royal Institution on 1 March 1813.[1] Very soon
Davy entrusted Faraday with preparation of nitrogen trichloride
samples, and they both became injured in an explosion of this very
sensitive substance.[13]

In the class-based English society of the time, Faraday was not considered a gentleman. When Davy set out
on a long tour of the continent in 1813–15, his valet did not wish to go. Instead, Faraday went as Davy's
scientific assistant, and was asked to act as Davy's valet until a replacement could be found in Paris. Faraday
was forced to fill the role of valet as well as assistant throughout the trip. Davy's wife, Jane Apreece, refused
to treat Faraday as an equal (making him travel outside the coach, eat with the servants, etc.), and made
Faraday so miserable that he contemplated returning to England alone and giving up science altogether. The
trip did, however, give him access to the scientific elite of Europe and exposed him to a host of stimulating
ideas.[1]

Faraday married Sarah Barnard (1800–1879) on 12 June 1821.[14] They met through their families at the
Sandemanian church, and he confessed his faith to the Sandemanian congregation the month after they were
married. They had no children.[6]

Faraday was a devout Christian; his Sandemanian denomination was an offshoot of the Church of Scotland.
Well after his marriage, he served as deacon and for two terms as an elder in the meeting house of his youth.
His church was located at Paul's Alley in the Barbican. This meeting house was relocated in 1862 to
Barnsbury Grove, Islington; this North London location was where Faraday served the final two years of his
second term as elder prior to his resignation from that post.[15][16] Biographers have noted that "a strong
sense of the unity of God and nature pervaded Faraday's life and work."[17]

Later life

The mass of a substance altered at an electrode during
electrolysis is directly proportional to the quantity of electricity
transferred at that electrode. Quantity of electricity refers to the
quantity of electrical charge.
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Faraday verbatim
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sion, the equivalent number or atomic weight of oxygen is 8,
of chlorine 36, of bromine 78.4, of lead 103.5, f tin 59? etc ->

notwithstanding that a very high authority doubles several of
these numbers.

7. On the absolute quantity of Electricity associated with
the -particles or atoms of Matter

587. The theory of definite electrolytical or electro-chemical
action appears to me to touch immediately upon the absolute

quantity of electricity or electric power belonging to different
bodies. It is impossible, perhaps, to speak on this point with-
out committing oneself beyond what present facts will sustain;
and yet it is equally impossible, and perhaps would be impolitic,
not to reason upon the subject. Although we know nothing
of what an atom is, yet we cannot resist forming some idea of
a small particle, which represents it to the mind; and though
we are in equal, if not greater, ignorance of electricity, so as
to be unable to say whether it is a particular matter or matters,
or mere motion of ordinary matter, or some third kind of power
or agent, yet there is an immensity of facts which justify us
in believing that the atoms of matter are in some way endowed
or associated with electrical powers, to which they owe their
most striking qualities, and amongst them their mutual chemical
affinity. As soon as we perceive, through the teaching of
Dalton, that chemical powers are, however varied the circum-
stances in which they are exerted, definite for each body, we
learn to estimate the relative degree of force which resides in
such bodies; and when upon that knowledge comes the fact,
that the electricity, which we appear to be capable of loosening
from its habitation for a while, and conveying from place to

place, whilst it retains its chemical force, can be measured out,
and being so measured is found to be as definite in its action
as any of those portions which, remaining associated with the
particles of matter, give them their chemical relation ; we seem
to have found the link which connects the proportion of that
we have evolved to the proportion of that belonging to the
particles in their natural state.

588. Now it is wonderful to observe how small a quantity of a
compound body is decomposed by a certain portion of electricity.
Let us, for instance, consider this and a few other points in
relation to water. One grain of water, acidulated to facilitate

conduction, will require an electric current to be continued fcr
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Faraday’s "equivalent numbers" (1832)
(Notice: in 1832 Mendeleev was not yet born!
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Electrolytic solutions vs. molten salts
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Electrolytic Cell

1. Figure above shows an electrolytic cell.
2. There are 2 electrodes in an electrolytic cell:

a. The electrode connected to the positive terminal of the cell is positive
electrode and is given a name, anode.

b. The electrode connected to the negative terminal of the cell is negative
electrode and is called the cathode.

Electrolysis is a process where a compound is separated into its constituent
elements when electric current passes through an electrolyte.

Explanation:

1. All electrolytes are ionic, which means they are composed of positively and
negatively charged ions.

2. On passing an electric current through the electrolyte, these ions move
towards the oppositely charged electrode.

3. During electrolysis, negatively charged ions move towards the positive
electrode(anode). The negative ions lose their electron(s) to the anode, which
is positively charged.

4. The electron(s) is then move to the cathode through the external circuit (the
wire).

5. The positively charged ions move towards the negative electrode(cathode).
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1. Figure above shows an electrolytic cell.
2. There are 2 electrodes in an electrolytic cell:

a. The electrode connected to the positive terminal of the cell is positive
electrode and is given a name, anode.

b. The electrode connected to the negative terminal of the cell is negative
electrode and is called the cathode.

Electrolysis is a process where a compound is separated into its constituent
elements when electric current passes through an electrolyte.

Explanation:

1. All electrolytes are ionic, which means they are composed of positively and
negatively charged ions.

2. On passing an electric current through the electrolyte, these ions move
towards the oppositely charged electrode.

3. During electrolysis, negatively charged ions move towards the positive
electrode(anode). The negative ions lose their electron(s) to the anode, which
is positively charged.

4. The electron(s) is then move to the cathode through the external circuit (the
wire).

5. The positively charged ions move towards the negative electrode(cathode).
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The ultimate solution

PHYSICAL REVIEW B VOLUME 27, NUMBER 10 15 MAY 1983

Quantization of particle transport

D. J. Thouless
Department of Physics, FM-15, University of Washington, Seattle, Washington 98195

(Received 4 February 1983)

The integrated particle current produced by a slow periodic variation of the potential of a
Schrodinger equation is evaluated. It is shown that in a finite torus the integral of the
current over a period can vary continuously, but in an infinite periodic system with full
bands it must have an integer value. This quantization of particle transport is used to clas-
sify the energy gaps in a one-dimensional system with competing or incommensurate
periods. It is also used to rederive Prange's results for the fractional charge of a soliton.

I. INTRODUCTION

In this paper the effect of an adiabatic change of
the potential on an electron or a system of electrons
is considered. The question that is posed is "If the
potential is changed slowly in such a way that it re-
turns to its starting value in time T, is the integrated
current of eltx:trons across a boundary quantized?"
This question, which is formulated in Sec. II, is
answered negatively for electrons in a finite torus in
Sec. III. In Sec. IV it is shown that for electrons in
filled bands in an infinite periodic system the parti-
cle transport is quantized. This result is closely re-
lated to our earlier work on the quantized Hall ef-
fect in a periodic potential. ' The result may be
applicable to problems of sliding charge-density
waves in a solid, but that application is not con-
sidered here. In Sec. V the result is used to classify
the gaps in a system with competing or incommens-
urate periodicities. In Sec. VI the problem of one-
dimensional solitons is considered. ' It is shown
how the quantization of charge transport leads to
Prange's theorem for soliton charge.

II. ADIABATIC TRANSPORT
BYA POTENTIAL

In this paper the motion of particles which satisfy
the Schrodinger equation with a slowly varying
time-dependent potential V(r, t) is considered. The
potential is taken to be periodic both in time t with
period T and in one of the space variables x with

I

period L. For example, we could consider a poten-
tial of the form

V(r, t)= Vp(r)+ Vi(x vt y—,z), (2.l)

g(x +L,y,z) =P(x,y,z) (2.2)

for all times, while in the second case the system is
taken to be infinite in x. In both cases the potential
is taken to confine the particles close to the x axis,
so the first case is equivalent to a torus of cir-
cumference L, while the second case gives an infin-
ite one-dimensional periodic system whose unit cell
is of length L
Since the potential is slowly varying the adiabatic

approximation is used for the wave functions —in
fact the validity of the adiabatic approximation is
the criterion for how slow the potential variation
must be. Expansion of the wave functions in terms
of the instantaneous normalized eigenfunctions
g~(t), with eigenvalues a1(t), gives the solution close
to Pp(t) as'

where V0 and V~ have the common period L and v
is small. In this case L Iv must be a multiple of T.
The particle current integrated over the period T
gives the total number of particles transported in a
period.
Two versions of the problem are examined. In the

first case the system is supposed to have periodic
boundary conditions in x, so that the solutions satis-
fy

t
I P(t)&=exp —(i/fi) f 6p(t )dt I Vp(t) &+'&g I PJ(t) &(&q—&p) '&l(tJ'(t) I fp(t) &

j+0
(2.3)

to first order in the time derivatives, where the phase of l(p(t) is chosen in such a way that its time derivative gp
is orthogonal to gp. To the same order the particle current density produced by the moving potential is

27 6083 1983 The American Physical Society

Faraday’s law is reconciled with QM owing to topology
The transported charge is a topological invariant
Historical perspective:
Q: Why did this paper appear in 1983?
A: Topology entered the theory of quantum Hall effect in
1982 (the famous TKNN invariant).
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The integrated particle current produced by a slow periodic variation of the potential of a
Schrodinger equation is evaluated. It is shown that in a finite torus the integral of the
current over a period can vary continuously, but in an infinite periodic system with full
bands it must have an integer value. This quantization of particle transport is used to clas-
sify the energy gaps in a one-dimensional system with competing or incommensurate
periods. It is also used to rederive Prange's results for the fractional charge of a soliton.

I. INTRODUCTION

In this paper the effect of an adiabatic change of
the potential on an electron or a system of electrons
is considered. The question that is posed is "If the
potential is changed slowly in such a way that it re-
turns to its starting value in time T, is the integrated
current of eltx:trons across a boundary quantized?"
This question, which is formulated in Sec. II, is
answered negatively for electrons in a finite torus in
Sec. III. In Sec. IV it is shown that for electrons in
filled bands in an infinite periodic system the parti-
cle transport is quantized. This result is closely re-
lated to our earlier work on the quantized Hall ef-
fect in a periodic potential. ' The result may be
applicable to problems of sliding charge-density
waves in a solid, but that application is not con-
sidered here. In Sec. V the result is used to classify
the gaps in a system with competing or incommens-
urate periodicities. In Sec. VI the problem of one-
dimensional solitons is considered. ' It is shown
how the quantization of charge transport leads to
Prange's theorem for soliton charge.

II. ADIABATIC TRANSPORT
BYA POTENTIAL

In this paper the motion of particles which satisfy
the Schrodinger equation with a slowly varying
time-dependent potential V(r, t) is considered. The
potential is taken to be periodic both in time t with
period T and in one of the space variables x with

I

period L. For example, we could consider a poten-
tial of the form

V(r, t)= Vp(r)+ Vi(x vt y—,z), (2.l)

g(x +L,y,z) =P(x,y,z) (2.2)

for all times, while in the second case the system is
taken to be infinite in x. In both cases the potential
is taken to confine the particles close to the x axis,
so the first case is equivalent to a torus of cir-
cumference L, while the second case gives an infin-
ite one-dimensional periodic system whose unit cell
is of length L
Since the potential is slowly varying the adiabatic

approximation is used for the wave functions —in
fact the validity of the adiabatic approximation is
the criterion for how slow the potential variation
must be. Expansion of the wave functions in terms
of the instantaneous normalized eigenfunctions
g~(t), with eigenvalues a1(t), gives the solution close
to Pp(t) as'

where V0 and V~ have the common period L and v
is small. In this case L Iv must be a multiple of T.
The particle current integrated over the period T
gives the total number of particles transported in a
period.
Two versions of the problem are examined. In the

first case the system is supposed to have periodic
boundary conditions in x, so that the solutions satis-
fy

t
I P(t)&=exp —(i/fi) f 6p(t )dt I Vp(t) &+'&g I PJ(t) &(&q—&p) '&l(tJ'(t) I fp(t) &

j+0
(2.3)

to first order in the time derivatives, where the phase of l(p(t) is chosen in such a way that its time derivative gp
is orthogonal to gp. To the same order the particle current density produced by the moving potential is
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Faraday’s law is reconciled with QM owing to topology
The transported charge is a topological invariant
Historical perspective:
Q: Why did this paper appear in 1983?
A: Topology entered the theory of quantum Hall effect in
1982 (the famous TKNN invariant).
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A few months afterwards
(Pendry & Hodges, J. Phys. C 1984)

Verbatim:

“. . . in condensed matter there is no way of extracting
integer charges for the ions from a charge-density map.”

“. . . in insulating systems atoms or ions diffusing through
the system carry with them charges which are integral
multiples of e.”

“In a static configuration no evidence is found for integral
charges, the existence of which is manifested by the
transport properties alone.”
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Outline

1 Faraday laws of electrolysis

2 Modern view of a liquid

3 A flavor of topology

4 The adiabatic current

5 The “electron-in-broth” formula (one electron)

6 Many electrons in broth: transport and conductivity

7 Infrared spectra

8 Insulators vs. metals

9 Polarization

10 A Z2 topological invariant
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Gauss-Bonnet-Chern theorem

Parametric Hamiltonian
on a closed surface (a torus) :

H(ϑ, φ) = H(ϑ+ 2π, φ) = H(ϑ, φ+ 2π)

Ground nondegenerate eigenstate |ψ0(ϑ, φ)⟩
Berry curvature Ω(ϑ, φ) = i (⟨ ∂

∂ϑψ0| ∂
∂φψ0⟩ − ⟨ ∂

∂φψ0| ∂
∂ϑψ0⟩)

Chern number:

1
2π

∫ 2π

0
dϑ

∫ 2π

0
dφ Ω(ϑ, φ) = C ∈ Z
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Gauss-Bonnet-Chern theorem

Parametric Hamiltonian
on a closed surface (a torus) :

H(ϑ, φ) = H(ϑ+ 2π, φ) = H(ϑ, φ+ 2π)

Ground nondegenerate eigenstate |ψ0(ϑ, φ)⟩
Berry curvature Ω(ϑ, φ) = i (⟨ ∂

∂ϑψ0| ∂
∂φψ0⟩ − ⟨ ∂

∂φψ0| ∂
∂ϑψ0⟩)

Chern number:

1
2π

∫ 2π

0
dϑ

∫ 2π

0
dφ Ω(ϑ, φ) = C ∈ Z
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Thouless’ “angles”

ϑ → k (inverse length)
φ → t (time)
H(k , t) periodic over (2π

L ,T )

Thouless theorem:
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1 Faraday laws of electrolysis

2 Modern view of a liquid

3 A flavor of topology

4 The adiabatic current

5 The “electron-in-broth” formula (one electron)

6 Many electrons in broth: transport and conductivity
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Dipolar polarization of an atom

Electric field interaction with an atom under the classical dielectric
model.

That is, the polarization is a convolution of the electric field at previous times with time-dependent
susceptibility given by . The upper limit of this integral can be extended to infinity as well if one
defines  for . An instantaneous response corresponds to Dirac delta function
susceptibility .

It is more convenient in a linear system to take the Fourier transform and write this relationship as a function
of frequency. Due to the convolution theorem, the integral becomes a simple product,

Note the simple frequency dependence of the susceptibility, or equivalently the permittivity. The shape of
the susceptibility with respect to frequency characterizes the dispersion properties of the material.

Moreover, the fact that the polarization can only depend on the electric field at previous times (i.e., 
 for ), a consequence of causality, imposes Kramers–Kronig constraints on the real

and imaginary parts of the susceptibility .

Dielectric polarization

Basic atomic model

In the classical approach to the dielectric
model, a material is made up of atoms.
Each atom consists of a cloud of
negative charge (electrons) bound to and
surrounding a positive point charge at its
center. In the presence of an electric field
the charge cloud is distorted, as shown in
the top right of the figure.

This can be reduced to a simple dipole
using the superposition principle. A
dipole is characterized by its dipole
moment, a vector quantity shown in the
figure as the blue arrow labeled M. It is
the relationship between the electric field
and the dipole moment that gives rise to
the behavior of the dielectric. (Note that
the dipole moment points in the same
direction as the electric field in the
figure. This isn't always the case, and is a major simplification, but is true for many materials.)

When the electric field is removed the atom returns to its original state. The time required to do so is the so-
called relaxation time; an exponential decay.

Think of polarization in a time-dependent (adiabatic) way:
E = E(t)

H(t) varies slowly in time
Adiabatic limit: ∆t ≫ ℏ/(ε1 − ε0)

|ψ0(t)⟩ instantaneous ground eigenstate

∂ρ(r)
∂t

= −e
∂

∂t
|ψ0(r)|2 = −e [ ψ̇∗

0(r)ψ0(r) + ψ∗
0(r) ˙ψ0(r) ] ̸= 0
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Dipolar polarization of an atom

Electric field interaction with an atom under the classical dielectric
model.

That is, the polarization is a convolution of the electric field at previous times with time-dependent
susceptibility given by . The upper limit of this integral can be extended to infinity as well if one
defines  for . An instantaneous response corresponds to Dirac delta function
susceptibility .

It is more convenient in a linear system to take the Fourier transform and write this relationship as a function
of frequency. Due to the convolution theorem, the integral becomes a simple product,

Note the simple frequency dependence of the susceptibility, or equivalently the permittivity. The shape of
the susceptibility with respect to frequency characterizes the dispersion properties of the material.

Moreover, the fact that the polarization can only depend on the electric field at previous times (i.e., 
 for ), a consequence of causality, imposes Kramers–Kronig constraints on the real

and imaginary parts of the susceptibility .

Dielectric polarization

Basic atomic model

In the classical approach to the dielectric
model, a material is made up of atoms.
Each atom consists of a cloud of
negative charge (electrons) bound to and
surrounding a positive point charge at its
center. In the presence of an electric field
the charge cloud is distorted, as shown in
the top right of the figure.

This can be reduced to a simple dipole
using the superposition principle. A
dipole is characterized by its dipole
moment, a vector quantity shown in the
figure as the blue arrow labeled M. It is
the relationship between the electric field
and the dipole moment that gives rise to
the behavior of the dielectric. (Note that
the dipole moment points in the same
direction as the electric field in the
figure. This isn't always the case, and is a major simplification, but is true for many materials.)

When the electric field is removed the atom returns to its original state. The time required to do so is the so-
called relaxation time; an exponential decay.

Think of polarization in a time-dependent (adiabatic) way:
E = E(t)

H(t) varies slowly in time
Adiabatic limit: ∆t ≫ ℏ/(ε1 − ε0)

|ψ0(t)⟩ instantaneous ground eigenstate

∂ρ(r)
∂t

= −e
∂

∂t
|ψ0(r)|2 = −e [ ψ̇∗

0(r)ψ0(r) + ψ∗
0(r) ˙ψ0(r) ] ̸= 0
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Dipolar polarization of an atom

Electric field interaction with an atom under the classical dielectric
model.

That is, the polarization is a convolution of the electric field at previous times with time-dependent
susceptibility given by . The upper limit of this integral can be extended to infinity as well if one
defines  for . An instantaneous response corresponds to Dirac delta function
susceptibility .

It is more convenient in a linear system to take the Fourier transform and write this relationship as a function
of frequency. Due to the convolution theorem, the integral becomes a simple product,

Note the simple frequency dependence of the susceptibility, or equivalently the permittivity. The shape of
the susceptibility with respect to frequency characterizes the dispersion properties of the material.

Moreover, the fact that the polarization can only depend on the electric field at previous times (i.e., 
 for ), a consequence of causality, imposes Kramers–Kronig constraints on the real

and imaginary parts of the susceptibility .

Dielectric polarization

Basic atomic model

In the classical approach to the dielectric
model, a material is made up of atoms.
Each atom consists of a cloud of
negative charge (electrons) bound to and
surrounding a positive point charge at its
center. In the presence of an electric field
the charge cloud is distorted, as shown in
the top right of the figure.

This can be reduced to a simple dipole
using the superposition principle. A
dipole is characterized by its dipole
moment, a vector quantity shown in the
figure as the blue arrow labeled M. It is
the relationship between the electric field
and the dipole moment that gives rise to
the behavior of the dielectric. (Note that
the dipole moment points in the same
direction as the electric field in the
figure. This isn't always the case, and is a major simplification, but is true for many materials.)

When the electric field is removed the atom returns to its original state. The time required to do so is the so-
called relaxation time; an exponential decay.

Think of polarization in a time-dependent (adiabatic) way:
E = E(t)

H(t) varies slowly in time
Adiabatic limit: ∆t ≫ ℏ/(ε1 − ε0)

|ψ0(t)⟩ instantaneous ground eigenstate

∂ρ(r)
∂t

= −e
∂

∂t
|ψ0(r)|2 = −e [ ψ̇∗

0(r)ψ0(r) + ψ∗
0(r) ˙ψ0(r) ] ̸= 0
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Induced dipole

Electric field interaction with an atom under the classical dielectric
model.

That is, the polarization is a convolution of the electric field at previous times with time-dependent
susceptibility given by . The upper limit of this integral can be extended to infinity as well if one
defines  for . An instantaneous response corresponds to Dirac delta function
susceptibility .

It is more convenient in a linear system to take the Fourier transform and write this relationship as a function
of frequency. Due to the convolution theorem, the integral becomes a simple product,

Note the simple frequency dependence of the susceptibility, or equivalently the permittivity. The shape of
the susceptibility with respect to frequency characterizes the dispersion properties of the material.

Moreover, the fact that the polarization can only depend on the electric field at previous times (i.e., 
 for ), a consequence of causality, imposes Kramers–Kronig constraints on the real

and imaginary parts of the susceptibility .

Dielectric polarization

Basic atomic model

In the classical approach to the dielectric
model, a material is made up of atoms.
Each atom consists of a cloud of
negative charge (electrons) bound to and
surrounding a positive point charge at its
center. In the presence of an electric field
the charge cloud is distorted, as shown in
the top right of the figure.

This can be reduced to a simple dipole
using the superposition principle. A
dipole is characterized by its dipole
moment, a vector quantity shown in the
figure as the blue arrow labeled M. It is
the relationship between the electric field
and the dipole moment that gives rise to
the behavior of the dielectric. (Note that
the dipole moment points in the same
direction as the electric field in the
figure. This isn't always the case, and is a major simplification, but is true for many materials.)

When the electric field is removed the atom returns to its original state. The time required to do so is the so-
called relaxation time; an exponential decay.

Continuity equation:
∂ρ(r)
∂t

= −∇ · j(r)

d =

∫ ∆t

0
dt

∫
dr r

∂ρ(r)
∂t

= −
∫ ∆t

0
dt

∫
dr r ∇ · j(r)
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Improved adiabatic approximation

Continuity equation:
∂ρ(r)
∂t

= −∇ · j(r)

j(r) = −e
2
[ −iψ∗

0(r)∇ψ0(r) + c.c. ]

Simple case H(t): time-reversal-invariant
Instantaneous ground eigenstate |ψ0(t)⟩ real
j(r) vanishes (any r, any t)
Need a better formula for the adiabatic current!

Thouless formula:

|ψ⟩ ≃ |ψ0⟩+ iℏ
∑
n ̸=0

|ψn⟩
⟨ψn|ψ̇0⟩
ε0 − εn
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Infinite system with periodic boundary conditions

Switch to 1d from now on:
∂ρ(x , t)
∂t

= −∂j(x , t)
∂x

A macroscopic current j(macro)(t) constant in x is
divergenceless

j(x , t) → j(x , t) + j(macro)(t) does not affect ρ(x , t)

j(macro)(t) is due to a source at −∞ and a drain at +∞.

Thouless formula yields the adiabatic current, including
the divergenceless term
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Macroscopic polarization of a solid
(Resta 1992, King-Smith & Vanderbilt 1993)

Polarization is the dipole per unit volume

P =
1
V

d =
1

Vsample

∫
sample

dr rρ(r) ̸= 1
Vcell

∫
cell

dr rρ(r)

Meaningless for a lattice-periodical ρ(r)

The modern theory:
P has nothing to do with the periodic distribution ρ(r)
contrary to what most textbooks pretend!

∂P/∂t = j(macro)(t) =⇒

P =

∫ ∆t

0
dt j(macro)(t), evaluated via Thouless formula
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Outline

1 Faraday laws of electrolysis

2 Modern view of a liquid

3 A flavor of topology

4 The adiabatic current

5 The “electron-in-broth” formula (one electron)

6 Many electrons in broth: transport and conductivity

7 Infrared spectra

8 Insulators vs. metals

9 Polarization

10 A Z2 topological invariant
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F-center in a molten salt
(Selloni, Carnevali, Car, & Parrinello 1987)

VOLUME 59, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AUGUST 1987

The matrix multiplication in (3) is performed by a fast-
Fourier-transform method. " Equation (2) is instead
solved by standard means. ' The diAerence in time scale
between ions and electrons requires the use of a rather
small ht. We found that a h, t of 2.4X10 ' s, while con-
serving the total energy to better than 10 over ex-
tremely long integration times (=10 hr), still allows
averages over several typical ionic periods to be per-
formed.
The present calculation was performed on a periodi-

cally repeated system of 1 electron, 31 Cl anions, and
32 K+ cation s. The electronic wave function was
represented on a mesh of 16 points. V,I and VII were
the same as those of Ref. 3, except for some additional
smoothing of the electron-ion pseudopotentials. We have
explicitly checked that the average static properties cal-
culated by the PI and present approaches do not
significantly diA'er within statistical errors.
Several computations were performed with diff'erent

initial conditions. A typical run was as follows. First a
well equilibrated liquid of 32 K+ and 31 Cl in a neu-
tralizing uniform negative background was generated at
a temperature of about 1300 K and a density of 1.52
g/cm . A typical liquid configuration was stored, and for
such a fixed ionic configuration the background removed
and replaced by a quantum electron. The ground state
po of the electron was determined and used together with
the stored ionic configuration as the initial condition for
the run.
Initially the electronic energy E =(y

~ H,I ~ y) de-
creased steadily. This was found to correspond to an
adiabatic localization of the electron from an initial fair-
ly delocalized state into an F-center-like state, structur-
ally very similar to the one described in Ref. 3. The
amount of localization can be measured via the partici-
pation ratio, ' which decreased from =0.25 for an ini-
tial state to =0.06 for a typical localized state. In some
of our runs we found departures from adiabaticity. This
was indicated by a sudden change in the probability
~ co ~

of finding the electron in the instantaneous ground
state po. In the worst case ~ co ~

dropped from 1 to 0.76
in about 6006,t. After such events the calculations were
stopped and resumed with y=po. The details of this
operation were similar to what is done in the surface
hopping model in order to preserve the relevant conser-
vation laws. In all the cases we have studied, with a
variety of initial conditions, at most one such manipula-
tion was needed since the electronic motion remained
adiabatic (in the worst case 1 —~co~ =0.01) over all
the remaining part of our rather long calculations
(10 dt). From this we infer that the behavior of the
system is ground-state dominated in agreement with PI
calculations, and that nonadiabatic events occur with low
probability. Hence we believe that for the calculation of
most physical properties the neglect of these nonadiabat-
ic efrects is justified.

In Fig. 1 we show a typical electronic configuration
which exhibits the localized s-like nature of the ground
state po. In the same picture the electronic density of the
first excited state p~ is presented. In this case p~ is p
type. However, po and p~ can fluctuate substantially,
leading to configurations where the s or p character is
temporarily destroyed. Also shown in Fig. 1 is the imag-
inary part of the dielectric function, which was calculat-
ed from the Fourier transform of the velocity-velocity
correlation function. The gap in energy between po and
tl)~ is typically =1.2 eV, all the higher excited states be-
ing more closely spaced in energy. Correspondingly the
optical spectrum shows a peak at about 1.6 eV, since
transitions to higher states shift the maximum to higher
energies, and lead to an asymmetric curve. This is in

~ ~ ~ ~

~ ) ~ ~ ~ ) ~ ~

~ ~
g pl+ ~

~ ~ ~ ~
~ ~

c0

~~

C

I
j \

I 1
I 1
I 1
I
I

E (eV)
FIG. 1. Top panel: Contour plots of the electronic density

(integrated along the sight line) of a typical F-center state &0
(left), together with the corresponding excited state p~ (right).
The dots are the projections of the ionic positions. Bottom
panel: Optical spectrum for the F center in liquid (solid line)
and crystalline (dashed line) KCl. These spectra have been
calculated by division of the Fourier transform of Eq. (5) by
co and use of 45 and 18 ionic configurations for the statistical
average for the liquid and crystal, respectively. A Gaussian
broadening (FWHM =0.3 eV) has been used in both cases.
Curves have been normalized to the same area.

824

Mixed quantum-classical simulation
31 Cl− and 32 K+ ions, plus one electron
Both Newton & Schrödinger eqs. with PBCs

Diffusion: asymptotically ⟨|re(t)|2⟩ = 6Det
How to evaluate ⟨re(t)⟩ within PBCs?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

F-center in a molten salt
(Selloni, Carnevali, Car, & Parrinello 1987)

VOLUME 59, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AUGUST 1987

The matrix multiplication in (3) is performed by a fast-
Fourier-transform method. " Equation (2) is instead
solved by standard means. ' The diAerence in time scale
between ions and electrons requires the use of a rather
small ht. We found that a h, t of 2.4X10 ' s, while con-
serving the total energy to better than 10 over ex-
tremely long integration times (=10 hr), still allows
averages over several typical ionic periods to be per-
formed.
The present calculation was performed on a periodi-

cally repeated system of 1 electron, 31 Cl anions, and
32 K+ cation s. The electronic wave function was
represented on a mesh of 16 points. V,I and VII were
the same as those of Ref. 3, except for some additional
smoothing of the electron-ion pseudopotentials. We have
explicitly checked that the average static properties cal-
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a temperature of about 1300 K and a density of 1.52
g/cm . A typical liquid configuration was stored, and for
such a fixed ionic configuration the background removed
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variety of initial conditions, at most one such manipula-
tion was needed since the electronic motion remained
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How to evaluate ⟨re(t)⟩ within PBCs?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The position operator: fundamentals

It is the simple multiplicative operator which maps (1d):
ψ(x) → x ψ(x)

Its expectation value is:
⟨x⟩ =

∫
dx x |ψ(x)|2

The multiplicative operator x is not a legitimate operator
when adopting periodic boundary conditions (as we do in
condensed matter physics)

A different definition of the position operator has to be
adopted
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How does one define the electron-distribution center?

Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

⟨x⟩ =
∫

dx x |ψ0(x)|2 is nonsense
⟨x⟩ must be defined modulo L
The electron-in-broth formula:

⟨x⟩ = L
2π

Im ln
∫ L

0
dx ei 2π

L x |ψ0(x)|2

Notice the occurrence of a phase (“Im ln”)
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The adiabatic current
Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

⟨x⟩ = L
2π

Im ln
∫ L

0
dx ei 2π

L x |ψ0(x)|2

ψ0(x , t) adiabatic instantaneous eigenstate
Macroscopic current:

j(macro)(t) = −e
L

d⟨x⟩
dt

= − e
2π

d
dt

Im ln
∫ L

0
dx ei 2π

L x |ψ0(x , t)|2

Coincides with Thouless formula for L → ∞
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Quantization of transport
Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

⟨x⟩ = L
2π

Im ln z, z =

∫ L

0
dx ei 2π

L x |ψ0(x)|2 = ⟨ψ0|ei 2π
L x |ψ0⟩

z a complex number, with |z| ≤ 1
z(t) traces a path in the complex plane
Suppose that H(T ) = H(0) for some T , then z(T ) = z(0)
How much charge has been transported?
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Winding number

An object traveling along the red curve makes two
counterclockwise turns around the person at the
origin.

            

−2 −1 0

            

1 2 3

Formal definition
A curve in the xy plane can be defined by parametric
equations:

If we think of the parameter t as time, then these equations specify the motion of an object in the plane
between t = 0 and t = 1. The path of this motion is a curve as long as the functions x(t) and y(t) are
continuous. This curve is closed as long as the position of the object is the same at t = 0 and t = 1.

We can define the winding number of such a curve using the polar coordinate system. Assuming the curve
does not pass through the origin, we can rewrite the parametric equations in polar form:

The functions r(t) and θ(t) are required to be continuous, with r > 0. Because the initial and final positions
are the same, θ(0) and θ(1) must differ by an integer multiple of 2π. This integer is the winding number:

This defines the winding number of a curve around the origin in the xy plane. By translating the coordinate
system, we can extend this definition to include winding numbers around any point p.

Alternative definitions
Winding number is often defined in different ways in various parts of mathematics. All of the definitions
below are equivalent to the one given above:

Differential geometry

In differential geometry, parametric equations are usually assumed to be differentiable (or at least piecewise
differentiable). In this case, the polar coordinate θ is related to the rectangular coordinates x and y by the
equation:

The transported charge is the winding number (times −e)
plus the charge transported by the classical ions
Winding number ill defined if z(t) = 0 along the path!
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Localization vs. delocalization
Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

z =

∫ L

0
dx ei 2π

L x |ψ0(x)|2

Extremely localized distribution:

|ψ0(x)|2 =
∞∑

m=−∞
δ(x − x0 − mL) ⇒ z = ei 2π

L x0

Extremely delocalized distribution:

|ψ0(x)|2 =
1
L

⇒ z = 0
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Current of the classical charges (1d)
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The matrix multiplication in (3) is performed by a fast-
Fourier-transform method. " Equation (2) is instead
solved by standard means. ' The diAerence in time scale
between ions and electrons requires the use of a rather
small ht. We found that a h, t of 2.4X10 ' s, while con-
serving the total energy to better than 10 over ex-
tremely long integration times (=10 hr), still allows
averages over several typical ionic periods to be per-
formed.
The present calculation was performed on a periodi-

cally repeated system of 1 electron, 31 Cl anions, and
32 K+ cation s. The electronic wave function was
represented on a mesh of 16 points. V,I and VII were
the same as those of Ref. 3, except for some additional
smoothing of the electron-ion pseudopotentials. We have
explicitly checked that the average static properties cal-
culated by the PI and present approaches do not
significantly diA'er within statistical errors.
Several computations were performed with diff'erent

initial conditions. A typical run was as follows. First a
well equilibrated liquid of 32 K+ and 31 Cl in a neu-
tralizing uniform negative background was generated at
a temperature of about 1300 K and a density of 1.52
g/cm . A typical liquid configuration was stored, and for
such a fixed ionic configuration the background removed
and replaced by a quantum electron. The ground state
po of the electron was determined and used together with
the stored ionic configuration as the initial condition for
the run.
Initially the electronic energy E =(y

~ H,I ~ y) de-
creased steadily. This was found to correspond to an
adiabatic localization of the electron from an initial fair-
ly delocalized state into an F-center-like state, structur-
ally very similar to the one described in Ref. 3. The
amount of localization can be measured via the partici-
pation ratio, ' which decreased from =0.25 for an ini-
tial state to =0.06 for a typical localized state. In some
of our runs we found departures from adiabaticity. This
was indicated by a sudden change in the probability
~ co ~

of finding the electron in the instantaneous ground
state po. In the worst case ~ co ~

dropped from 1 to 0.76
in about 6006,t. After such events the calculations were
stopped and resumed with y=po. The details of this
operation were similar to what is done in the surface
hopping model in order to preserve the relevant conser-
vation laws. In all the cases we have studied, with a
variety of initial conditions, at most one such manipula-
tion was needed since the electronic motion remained
adiabatic (in the worst case 1 —~co~ =0.01) over all
the remaining part of our rather long calculations
(10 dt). From this we infer that the behavior of the
system is ground-state dominated in agreement with PI
calculations, and that nonadiabatic events occur with low
probability. Hence we believe that for the calculation of
most physical properties the neglect of these nonadiabat-
ic efrects is justified.

In Fig. 1 we show a typical electronic configuration
which exhibits the localized s-like nature of the ground
state po. In the same picture the electronic density of the
first excited state p~ is presented. In this case p~ is p
type. However, po and p~ can fluctuate substantially,
leading to configurations where the s or p character is
temporarily destroyed. Also shown in Fig. 1 is the imag-
inary part of the dielectric function, which was calculat-
ed from the Fourier transform of the velocity-velocity
correlation function. The gap in energy between po and
tl)~ is typically =1.2 eV, all the higher excited states be-
ing more closely spaced in energy. Correspondingly the
optical spectrum shows a peak at about 1.6 eV, since
transitions to higher states shift the maximum to higher
energies, and lead to an asymmetric curve. This is in

~ ~ ~ ~

~ ) ~ ~ ~ ) ~ ~

~ ~
g pl+ ~

~ ~ ~ ~
~ ~

c0

~~

C

I
j \

I 1
I 1
I 1
I
I

E (eV)
FIG. 1. Top panel: Contour plots of the electronic density

(integrated along the sight line) of a typical F-center state &0
(left), together with the corresponding excited state p~ (right).
The dots are the projections of the ionic positions. Bottom
panel: Optical spectrum for the F center in liquid (solid line)
and crystalline (dashed line) KCl. These spectra have been
calculated by division of the Fourier transform of Eq. (5) by
co and use of 45 and 18 ionic configurations for the statistical
average for the liquid and crystal, respectively. A Gaussian
broadening (FWHM =0.3 eV) has been used in both cases.
Curves have been normalized to the same area.
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Charges Qℓ = ±e at sites Xℓ:

Dipole d =
∑
ℓ

QℓXℓ ill-defined within PBCs

Dipole defined modulo L:

d =
eL
2π

Im ln ei 2π
eL

∑
ℓ QℓXℓ
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Total current: one electron + classical charges
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The matrix multiplication in (3) is performed by a fast-
Fourier-transform method. " Equation (2) is instead
solved by standard means. ' The diAerence in time scale
between ions and electrons requires the use of a rather
small ht. We found that a h, t of 2.4X10 ' s, while con-
serving the total energy to better than 10 over ex-
tremely long integration times (=10 hr), still allows
averages over several typical ionic periods to be per-
formed.
The present calculation was performed on a periodi-

cally repeated system of 1 electron, 31 Cl anions, and
32 K+ cation s. The electronic wave function was
represented on a mesh of 16 points. V,I and VII were
the same as those of Ref. 3, except for some additional
smoothing of the electron-ion pseudopotentials. We have
explicitly checked that the average static properties cal-
culated by the PI and present approaches do not
significantly diA'er within statistical errors.
Several computations were performed with diff'erent

initial conditions. A typical run was as follows. First a
well equilibrated liquid of 32 K+ and 31 Cl in a neu-
tralizing uniform negative background was generated at
a temperature of about 1300 K and a density of 1.52
g/cm . A typical liquid configuration was stored, and for
such a fixed ionic configuration the background removed
and replaced by a quantum electron. The ground state
po of the electron was determined and used together with
the stored ionic configuration as the initial condition for
the run.
Initially the electronic energy E =(y

~ H,I ~ y) de-
creased steadily. This was found to correspond to an
adiabatic localization of the electron from an initial fair-
ly delocalized state into an F-center-like state, structur-
ally very similar to the one described in Ref. 3. The
amount of localization can be measured via the partici-
pation ratio, ' which decreased from =0.25 for an ini-
tial state to =0.06 for a typical localized state. In some
of our runs we found departures from adiabaticity. This
was indicated by a sudden change in the probability
~ co ~

of finding the electron in the instantaneous ground
state po. In the worst case ~ co ~

dropped from 1 to 0.76
in about 6006,t. After such events the calculations were
stopped and resumed with y=po. The details of this
operation were similar to what is done in the surface
hopping model in order to preserve the relevant conser-
vation laws. In all the cases we have studied, with a
variety of initial conditions, at most one such manipula-
tion was needed since the electronic motion remained
adiabatic (in the worst case 1 —~co~ =0.01) over all
the remaining part of our rather long calculations
(10 dt). From this we infer that the behavior of the
system is ground-state dominated in agreement with PI
calculations, and that nonadiabatic events occur with low
probability. Hence we believe that for the calculation of
most physical properties the neglect of these nonadiabat-
ic efrects is justified.

In Fig. 1 we show a typical electronic configuration
which exhibits the localized s-like nature of the ground
state po. In the same picture the electronic density of the
first excited state p~ is presented. In this case p~ is p
type. However, po and p~ can fluctuate substantially,
leading to configurations where the s or p character is
temporarily destroyed. Also shown in Fig. 1 is the imag-
inary part of the dielectric function, which was calculat-
ed from the Fourier transform of the velocity-velocity
correlation function. The gap in energy between po and
tl)~ is typically =1.2 eV, all the higher excited states be-
ing more closely spaced in energy. Correspondingly the
optical spectrum shows a peak at about 1.6 eV, since
transitions to higher states shift the maximum to higher
energies, and lead to an asymmetric curve. This is in
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FIG. 1. Top panel: Contour plots of the electronic density

(integrated along the sight line) of a typical F-center state &0
(left), together with the corresponding excited state p~ (right).
The dots are the projections of the ionic positions. Bottom
panel: Optical spectrum for the F center in liquid (solid line)
and crystalline (dashed line) KCl. These spectra have been
calculated by division of the Fourier transform of Eq. (5) by
co and use of 45 and 18 ionic configurations for the statistical
average for the liquid and crystal, respectively. A Gaussian
broadening (FWHM =0.3 eV) has been used in both cases.
Curves have been normalized to the same area.
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j(macro)
x =

e
2π

d
dt

(
−Im ln ⟨ψ0|ei 2π

L x |ψ0⟩+ Im ln ei 2π
eL

∑
ℓ QℓXℓ

)
=

e
2π

d
dt

Im ln ⟨ψ0|e
i 2π

L

(
−x+

∑
ℓ

Qℓ
e Xℓ

)
|ψ0⟩

For a periodic evolution:
Transported charge = winding number of z(t) (times e)

zx(t) = ⟨ψ0|e
i 2π

L

(
−x+

∑
ℓ

Qℓ
e Xℓ

)
|ψ0⟩
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Outline

1 Faraday laws of electrolysis

2 Modern view of a liquid

3 A flavor of topology

4 The adiabatic current

5 The “electron-in-broth” formula (one electron)

6 Many electrons in broth: transport and conductivity

7 Infrared spectra

8 Insulators vs. metals

9 Polarization

10 A Z2 topological invariant
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N electrons within PBCs

Condensed system in 1d: N spinless electrons in a
segment of lenght L:

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN),

L large with respect to atomic dimensions.
Thermodynamic limit:
N → ∞, L → ∞, N/L = n0 constant.
Ψ0 periodic over each electronic variable xj separately:

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN) = Ψ0(x1, x2, . . . xj+L, . . . xN)
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The ultimate solution
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Quantum-Mechanical Position Operator in Extended Systems

Raffaele Resta
INFM-Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy

and Department of Physics, The Catholic University of America, Washington, D.C. 20064
(Received 15 September 1997)

The position operator (defined within the Schrödinger representation in the standard way) becomes
meaningless when periodic boundary conditions are adopted for the wave function, as usual in
condensed matter physics. I show how to define the position expectation value by means of a simple
many-body operator acting on the wave function of the extended system. The relationships of the
present findings to the Berry-phase theory of polarization are discussed. [S0031-9007(98)05419-2]

PACS numbers: 03.65.Ca, 03.65.Bz, 71.10.–w, 77.84.–s

The position operator within the Schrödinger represen-
tation acts multiplying the wave function by the space co-
ordinate. This is trivial, but applies only to the bound
eigenstates of a finite system, which belong to the class
of square-integrable wave functions. This is not the way
condensed matter theory works: almost invariably, one
considers a large system within periodic boundary con-
ditions (PBC), and the position operator (defined as usual)
becomes then meaningless. For the sake of simplicity,
most of this Letter will deal with the one-dimensional
case. The Hilbert space of the single-particle wave
functions is defined by the condition csx 1 Ld ≠ csxd,
where L is the imposed periodicity, chosen to be large
with respect to atomic dimensions. An operator maps any
vector of the given space into another vector belonging to
the same space: the multiplicative position operator x is
not a legitimate operator when PBC are adopted for the
state vectors, since x csxd is not a periodic function when-
ever csxd is such. Of course, any periodic function of x is
a legitimate multiplicative operator: this is the case, e.g.,
of the nuclear potential acting on the electrons. Since
the position operator is ill defined, so is its expectation
value, whose observable effects in condensed matter are
related to macroscopic polarization. For the crystalline
case, the long-standing problem of dielectric polarization
has been solved a few years ago [1–3]: polarization is a
manifestation of the Berry phase [4,5], i.e., it is an ob-
servable which cannot be cast as the expectation value of
any operator, being instead a gauge-invariant phase of the
wave function. Here we find a different, and more funda-
mental, solution: we arrive indeed at defining the expecta-
tion value of the position in an extended quantum system
within PBC, where the operator entering this definition
is simple but rather peculiar. Among the most relevant
features, the expectation value is defined modulo L, and
the operator is no longer one body: it acts as a genuine
many-body operator on the periodic wave function of N
electrons.
The present result can be related to a discretized Berry

phase, and sheds new light into the physical meaning of
the latter. Our compact and general expression for the

macroscopic polarization, Eq. (4) below, applies on the
same footing to correlated systems and to independent-
electron systems, as well as to crystalline and to disor-
dered systems. At variance with present understanding
[1–3], lattice periodicity and integration in reciprocal
space are not needed in order to define what polarization
is. In the case of a correlated electron system, polariza-
tion was previously defined by means of a peculiar kind of
“ensemble average,” integrating over a set of many-body
wave functions [3,5]: this is correct, but unnecessary. The
present advance allows defining polarization by means of
a “pure state” expectation value.
We study a system of N electrons in a segment of

length L, and eventually the thermodynamic limit is taken:
L ! `, N ! `, and NyL ≠ n0 constant. At any finite
L the ground eigenfunction obeys PBC in each electronic
variable separately:

C0sx1, . . . , xi , . . . , xN d ≠ C0sx1, . . . , xi 1 L, . . . , xN d .

(1)
We assume the ground state nondegenerate, and we deal
with insulating systems only: This means that the gap
between the ground eigenvalue and the excited ones
remains finite for L ! `. Since the spin variable is
irrelevant to this problem, we omit it altogether, and
we deal with a system of spinless electrons. Our major
goal is defining the expectation value of the electronic
position kXl, and to prove that our definition provides
in the thermodynamic limit the physical macroscopic
polarization of the sample.
Before attacking the main problem, let us discuss the

much simpler case where PBC are not chosen, and the
N-particle wave function (called F0 in this case) goes to
zero exponentially outside a bounded region of space. We
may safely use the operator X̂ ≠

PN
i≠1 xi, and define the

position expectation value as usual:

kXl ≠ kF0jX̂jF0l ≠
Z

dx x nsxd , (2)

where nsxd is the one-particle density. The value of kXl
scales with the system size, and the quantity of interest
is indeed the dipole per unit length, which coincides

1800 0031-9007y98y80(9)y1800(4)$15.00 © 1998 The American Physical Society

Nuclei (charge eZℓ) & electrons (charge −e) altogether:

z = ⟨Ψ0|ei 2π
L (−

∑
j xj+

∑
ℓ ZℓXℓ)|Ψ0⟩

Adiabatic current & macroscopic polarization (1d):

j(macro) =
e

2π
d
dt

Im ln z P =
e

2π
Im ln z =

e
2π
γ
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A molten salt

Electrons and nuclei in a cubic periodic cell of side L

zx(t) = ⟨Ψ0|ei 2π
L (

∑
j xj−

∑
ℓ ZℓXℓ)|Ψ0⟩ γx(t) = Im ln zx(t)

Polarization and charge flux across the cell:

Px(t) = − e
2πL2γx(t) Ix(t) = − e

2π
d
dt
γx(t)

Transported charge in time T :

Q =

∫ T

0
dt Ix(t) = − e

2π

∫ T

0
dt

d
dt
γx(t) = − e

2π
[γx(T )−γx(0)]

Suppose that H(T ) = H(0) for some T , then zx(T ) = zx(0)
How much charge has been transported?
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Thouless quantization of charge transport

An object traveling along the red curve makes two
counterclockwise turns around the person at the
origin.

            

−2 −1 0

            

1 2 3

Formal definition
A curve in the xy plane can be defined by parametric
equations:

If we think of the parameter t as time, then these equations specify the motion of an object in the plane
between t = 0 and t = 1. The path of this motion is a curve as long as the functions x(t) and y(t) are
continuous. This curve is closed as long as the position of the object is the same at t = 0 and t = 1.

We can define the winding number of such a curve using the polar coordinate system. Assuming the curve
does not pass through the origin, we can rewrite the parametric equations in polar form:

The functions r(t) and θ(t) are required to be continuous, with r > 0. Because the initial and final positions
are the same, θ(0) and θ(1) must differ by an integer multiple of 2π. This integer is the winding number:

This defines the winding number of a curve around the origin in the xy plane. By translating the coordinate
system, we can extend this definition to include winding numbers around any point p.

Alternative definitions
Winding number is often defined in different ways in various parts of mathematics. All of the definitions
below are equivalent to the one given above:

Differential geometry

In differential geometry, parametric equations are usually assumed to be differentiable (or at least piecewise
differentiable). In this case, the polar coordinate θ is related to the rectangular coordinates x and y by the
equation:

zx(t) traces a path in the complex plane, with |zx(t)| ≤ 1
The transported charge is the winding number (times −e)
Topological nature of Faraday’s law!
Winding number ill defined if zx(t) = 0 along the path!
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We can define the winding number of such a curve using the polar coordinate system. Assuming the curve
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The functions r(t) and θ(t) are required to be continuous, with r > 0. Because the initial and final positions
are the same, θ(0) and θ(1) must differ by an integer multiple of 2π. This integer is the winding number:

This defines the winding number of a curve around the origin in the xy plane. By translating the coordinate
system, we can extend this definition to include winding numbers around any point p.

Alternative definitions
Winding number is often defined in different ways in various parts of mathematics. All of the definitions
below are equivalent to the one given above:

Differential geometry
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differentiable). In this case, the polar coordinate θ is related to the rectangular coordinates x and y by the
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Alternative formulations of the current density

CP simulations yield adiabatic wavefunctions & trajectories

Numerical derivative: single-point Berry phase

jx(t) = − e
2πL2

d
dt
γx(t)

≃ − e
2πL2

γx(t +∆t)− γx(t)
∆t

Analytical derivative: linear response

jα(t) =
e
L3

N∑
ℓ=1

Z ∗
ℓ,αβ(t) vℓ,β(t)

Born effective charge tensors
↔
Z ∗
ℓ from DFPT
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Z ∗ tensors in partially dissociated water

54 O atoms and 108 H atoms in a PBCs simulation cell in zero E field

Distribution of the
↔
Z ∗
ℓ tensors: diagonal (solid) & off-diagonal (dashed)

is lacking for the electrons. But as long as the system is
nonmetallic, all electronic contributions can theoretically
be allocated to ions, which then carry screened effective
charges instead of their bare nuclear charges.

The remaining task is now to determine the effective
charge of each ion in a consistent way. The literature offers
several methods to obtain effective charges from a popu-
lation analysis of their surrounding electronic states [30],
e.g., with a Bader analysis [31]. However, since in a MD
simulation all ions are in motion, it is much more reason-
able to ask which fraction of its electronic screening cloud
remains attached to an ion as it is displaced from its current
position. This question is adequately answered by polar-
ization theory [15,16], which allows us to calculate the
Born effective charge tensor !Z via the determination of the
change in the electronic polarization induced by a dis-
placed ion. The numerical procedure involves a self-
consistent perturbative DFT scheme [16,32]. For instance,
this method reproduces the measured mean effective
charge of þ0:53 of hydrogen in liquid water [33] very
well [10].

We employ VASP 5.2.8 to calculate the Born effective
charge tensor !ZðtÞof every ion at each time step of a MD
run. We used a plane-wave cutoff of 400 eV and the
Baldereschi point [34] in these particular calculations.
This is sufficient to fulfill the charge neutrality condition
2hZHi ¼ %hZOi for the diagonal elements within 1%. It
also results in acceptable numerical costs that amount to
about 3 times of the respective MD simulation. In all
calculations the time-averaged charge tensors of both ion
species are, within the statistical uncertainties, diagonal
and contain the same values in any direction. This is
consistent with the symmetry of the isotropic and cubic
systems that we consider here.

First we examine water at a temperature of 2000 K and a
density of 2 g=cm3. Under these conditions the system still
retains its molecular structure but already contains about
20% of dissociated water molecules [10] so that frequent
proton jumps occur. Figure 1 displays typical fluctuations
of the Born effective charge of an arbitrary hydrogen and
oxygen ion. Most interestingly, a hydrogen ion can carry an
effective charge greater than þ1 for short times. Such
anomalous (anti-) screening can often be correlated with
events at which the hydrogen ion changes its nearest oxy-
gen ion, thus performing a Grotthuss-like proton jump into
the respective direction. An explanation for temporarily
antiscreened hydrogen ions is given by the breaking of
the proton’s bond to its oxygen and a jump to the next
oxygen ion to form another bond again. During such a
process the initial bonding electrons pull back to its oxygen
ion while electronic charge density from the second oxy-
gen ion is attracted by the incoming proton to form the new
bond. This effectively creates an additional negative cur-
rent that is directed oppositely to the motion of the proton.
Nevertheless, effective charges of þ2 can occur also

without a proton jump; see Fig. 1 near time step 200. We
then relate this effect to protons that have already large
vibrational amplitudes but do not yet have enough kinetic
energy to break their already weakened bond.
Additional simulations show that effective proton

charges greater than þ1 occur also in other phases of
water. Figure 2 shows distributions of the Born effective
charges distinguished by diagonal and off-diagonal com-
ponents for both ion species in fluid and superionic water.
The diagonal components are distributed over relatively
broad intervals and have pronounced non-Gaussian tails to
high charge values. The off-diagonal components accumu-
late around zero. To analyze and understand the micro-
physics that generates such charge distributions in greater
detail would go well beyond the scope of this work.
Instead, we aim to put the key aspect here on the calcu-
lation of the ionic conductivity in the respective systems.
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FIG. 1 (color online). Fluctuations in the diagonal Born effec-
tive charges for a hydrogen and an oxygen ion. The triangles
indicate Grotthuss-like proton jumps (changes of the proton’s
nearest oxygen neighbor, detectable with a geometric analysis).
One time step amounts to 0.3 fs.

2000 K, 2 g/cm³ (part. dissociated) 

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Z

3000 K, 3 g/cm³ (superionic)

〈Z H〉〈Z O〉

〈Z O〉 〈Z H〉

FIG. 2 (color online). Distribution of Born effective charges in
partially dissociated (top) and superionic water (bottom) in
arbitrary units. Solid lines represent diagonal components,
dashed lines off-diagonal components. Protons are displayed in
black, oxygen ions in red (gray in print version). The average
values of the diagonal components are indicated as well.
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Ionic conductivity

Fluctuation-dissipation theorem (Green-Kubo) for ionic
conductivity:

σ =
L3

3kBT

∫ ∞

0
dt ⟨ j(t) · j(0) ⟩

The total current ~JðtÞin Eq. (1) is expressed as a time
derivative of the polarization, and is thus given by the time-
dependent Born effective charge tensor via

~JðtÞ¼ e
XN

i¼1

!ZiðtÞ$ ~viðtÞ; (2)

where ~vi is the velocity of the ith ion and N is the
total number of ions. For a simulation of 15 ps duration
(50 000 time steps) at 2000 K and 2 g=cm3 we calculate
the current-current correlation function CðtÞ¼
h ~JðtÞ$ ~Jð0Þi=3e2 and the respective time integral and
display the results in Fig. 3. Depending on how the time-
dependent charges are treated, significantly different re-
sults are obtained. In particular, the complex mechanism of
charge transfer in water does not allow us to use only
constant average values of the Born effective charges,
ZH ¼ hZHi ¼ 0:69 and ZO ¼ hZOi ¼ %1:37 (dashed black
line). It is necessary to include their full time dependence
into the correlation function to obtain converged results
(full black line). Interestingly, the use of predefined con-
stant charges can yield the same conductivity as is found
with the fully time-dependent charge tensors, but only if
they have values of ZH ¼ 1 and ZO ¼ %2 (blue line, gray
in print version). The usually assumed picture of protons
transporting their unscreened charges is thus not in contrast
to our findings. Nevertheless, this work shows that the
processes of charge transport in water involve a complex
interplay of ionic movements and changes in the electronic
polarization of their surrounding.

In a second simulation of 60 000 time steps we examine
superionic water [26,35] at 3000 K and 3 g=cm3 and found
the correlation functions to behave similarly to those
shown in Fig. 3. In the sameway as above, constant charges
of ZH ¼ 1 and ZO ¼ %2 yield the same conductivity as the
time-dependent ones.

In general, the time correlations in the current-current
correlation function fade on the same time scale as they do
in velocity autocorrelation functions. Thereafter the time
integral is stable for a certain period before statistical
fluctuations take over at long times. Several 10 000 time
steps are necessary to obtain converged conductivities with
this method.
Furthermore, the Green-Kubo formula (1) can be de-

composed into autocorrelation and crosscorrelation terms.
When constant charges are assigned to all particles, the
contributions from autocorrelations can be expressed by
diffusion coefficients which leads to the Nernst-Einstein
relation. The crosscorrelation terms contain contributions
from the formation of associated species, such as
water molecules, and are usually negative. Mattsson and
Desjarlais [9] introduced a simple but well-motivated ap-
proximation scheme for this term (originally neglecting the
relatively small contribution of the oxygen ions [10]). This
leads to

!0 ¼ e2NHDH

VkBT
þð2eÞ2NODO

VkBT

!
1% 3

2
"
"
; (3)

where Di are diffusion coefficients, which can be obtained
with much less numerical effort than a reasonably con-
verged current-current correlation function. The factor "
denotes the fraction of hydrogen ions bound to oxygen ions
and has to be approximated. The term proportional to "
represents the deviation from the Nernst-Einstein relation
in Eq. (3).
With such a model most of the experimental ionic con-

ductivities [5,7,8] in warm dense water can be reproduced
well [10]. Nevertheless, the performance of Eq. (3) can
now be checked against our more general approach. For
our simulations in partially dissociated and superionic
water we display the results of both methods in Table I.
The agreement is very good in fluid water but not in
superionic water where the model of Mattsson and
Desjarlais reduces to an Einstein equation for the protons
(DO ¼ 0). Therefore all crosscorrelations are omitted
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FIG. 3 (color online). Upper: current-current correlation func-
tion for water at 2000 K and 2 g=cm3. Depending on the treat-
ment of the effective charges, different results are obtained, see
text for further explanations. Lower: the respective time integrals
of the functions from the upper figure.

TABLE I. Electrical conductivities from the current-current
autocorrelation function (1) calculated with time-dependent
Born effective charges, !, and with constant charges of þ1 for
hydrogen and %2 for oxygen, !þ1;%2. These are compared with
those derived from Eq. (3), !0 (" is taken from Ref. [10]). For
additional comparison, the conductivity using Eqs. (1) and (2)
with time-dependent Bader charges, !B, instead of Born effec-
tive charges is given as well. Bader charges [31] do not capture
electronic polarization effects and should not be used to calcu-
late conductivities. All conductivities along with estimated er-
rors are given in 1=" cm.

T (K) % (g=cm3) ! !þ1;%2 !0 !B

2000 2.0 30' 3 30' 3 28' 2 11' 1
3000 3.0 140' 15 140' 15 91' 3 55' 5
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Topological quantization

The total current ~JðtÞin Eq. (1) is expressed as a time
derivative of the polarization, and is thus given by the time-
dependent Born effective charge tensor via

~JðtÞ¼ e
XN

i¼1

!ZiðtÞ$ ~viðtÞ; (2)

where ~vi is the velocity of the ith ion and N is the
total number of ions. For a simulation of 15 ps duration
(50 000 time steps) at 2000 K and 2 g=cm3 we calculate
the current-current correlation function CðtÞ¼
h ~JðtÞ$ ~Jð0Þi=3e2 and the respective time integral and
display the results in Fig. 3. Depending on how the time-
dependent charges are treated, significantly different re-
sults are obtained. In particular, the complex mechanism of
charge transfer in water does not allow us to use only
constant average values of the Born effective charges,
ZH ¼ hZHi ¼ 0:69 and ZO ¼ hZOi ¼ %1:37 (dashed black
line). It is necessary to include their full time dependence
into the correlation function to obtain converged results
(full black line). Interestingly, the use of predefined con-
stant charges can yield the same conductivity as is found
with the fully time-dependent charge tensors, but only if
they have values of ZH ¼ 1 and ZO ¼ %2 (blue line, gray
in print version). The usually assumed picture of protons
transporting their unscreened charges is thus not in contrast
to our findings. Nevertheless, this work shows that the
processes of charge transport in water involve a complex
interplay of ionic movements and changes in the electronic
polarization of their surrounding.

In a second simulation of 60 000 time steps we examine
superionic water [26,35] at 3000 K and 3 g=cm3 and found
the correlation functions to behave similarly to those
shown in Fig. 3. In the sameway as above, constant charges
of ZH ¼ 1 and ZO ¼ %2 yield the same conductivity as the
time-dependent ones.

In general, the time correlations in the current-current
correlation function fade on the same time scale as they do
in velocity autocorrelation functions. Thereafter the time
integral is stable for a certain period before statistical
fluctuations take over at long times. Several 10 000 time
steps are necessary to obtain converged conductivities with
this method.
Furthermore, the Green-Kubo formula (1) can be de-

composed into autocorrelation and crosscorrelation terms.
When constant charges are assigned to all particles, the
contributions from autocorrelations can be expressed by
diffusion coefficients which leads to the Nernst-Einstein
relation. The crosscorrelation terms contain contributions
from the formation of associated species, such as
water molecules, and are usually negative. Mattsson and
Desjarlais [9] introduced a simple but well-motivated ap-
proximation scheme for this term (originally neglecting the
relatively small contribution of the oxygen ions [10]). This
leads to

!0 ¼ e2NHDH

VkBT
þð2eÞ2NODO

VkBT

!
1% 3

2
"
"
; (3)

where Di are diffusion coefficients, which can be obtained
with much less numerical effort than a reasonably con-
verged current-current correlation function. The factor "
denotes the fraction of hydrogen ions bound to oxygen ions
and has to be approximated. The term proportional to "
represents the deviation from the Nernst-Einstein relation
in Eq. (3).
With such a model most of the experimental ionic con-

ductivities [5,7,8] in warm dense water can be reproduced
well [10]. Nevertheless, the performance of Eq. (3) can
now be checked against our more general approach. For
our simulations in partially dissociated and superionic
water we display the results of both methods in Table I.
The agreement is very good in fluid water but not in
superionic water where the model of Mattsson and
Desjarlais reduces to an Einstein equation for the protons
(DO ¼ 0). Therefore all crosscorrelations are omitted

0 50 100 150 200 250

0
0.05
0.1

0.15
0.2

0.25

C
(t

) [
Å

²/f
s²

]

with constant ZH=1 and ZO=-2
with constant ZH=0.69 and ZO=-1.37
with time-dependent Born effective charges

0 50 100 150 200 250
t [fs]

0
0.2
0.4
0.6
0.8

1

tim
e 

in
te

gr
al

 [Å
²/f

s]

FIG. 3 (color online). Upper: current-current correlation func-
tion for water at 2000 K and 2 g=cm3. Depending on the treat-
ment of the effective charges, different results are obtained, see
text for further explanations. Lower: the respective time integrals
of the functions from the upper figure.

TABLE I. Electrical conductivities from the current-current
autocorrelation function (1) calculated with time-dependent
Born effective charges, !, and with constant charges of þ1 for
hydrogen and %2 for oxygen, !þ1;%2. These are compared with
those derived from Eq. (3), !0 (" is taken from Ref. [10]). For
additional comparison, the conductivity using Eqs. (1) and (2)
with time-dependent Bader charges, !B, instead of Born effec-
tive charges is given as well. Bader charges [31] do not capture
electronic polarization effects and should not be used to calcu-
late conductivities. All conductivities along with estimated er-
rors are given in 1=" cm.

T (K) % (g=cm3) ! !þ1;%2 !0 !B

2000 2.0 30' 3 30' 3 28' 2 11' 1
3000 3.0 140' 15 140' 15 91' 3 55' 5
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The integer values Z ∗
O = −2 and Z ∗

H = 1 work much better than the
actual ⟨Z ∗

O⟩ and ⟨Z ∗
H⟩ values!

Topological explanation:
F. Grasselli & S. Baroni, Nature Phys. 15, 967 (2019)
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Topological quantization

The total current ~JðtÞin Eq. (1) is expressed as a time
derivative of the polarization, and is thus given by the time-
dependent Born effective charge tensor via

~JðtÞ¼ e
XN

i¼1

!ZiðtÞ$ ~viðtÞ; (2)

where ~vi is the velocity of the ith ion and N is the
total number of ions. For a simulation of 15 ps duration
(50 000 time steps) at 2000 K and 2 g=cm3 we calculate
the current-current correlation function CðtÞ¼
h ~JðtÞ$ ~Jð0Þi=3e2 and the respective time integral and
display the results in Fig. 3. Depending on how the time-
dependent charges are treated, significantly different re-
sults are obtained. In particular, the complex mechanism of
charge transfer in water does not allow us to use only
constant average values of the Born effective charges,
ZH ¼ hZHi ¼ 0:69 and ZO ¼ hZOi ¼ %1:37 (dashed black
line). It is necessary to include their full time dependence
into the correlation function to obtain converged results
(full black line). Interestingly, the use of predefined con-
stant charges can yield the same conductivity as is found
with the fully time-dependent charge tensors, but only if
they have values of ZH ¼ 1 and ZO ¼ %2 (blue line, gray
in print version). The usually assumed picture of protons
transporting their unscreened charges is thus not in contrast
to our findings. Nevertheless, this work shows that the
processes of charge transport in water involve a complex
interplay of ionic movements and changes in the electronic
polarization of their surrounding.

In a second simulation of 60 000 time steps we examine
superionic water [26,35] at 3000 K and 3 g=cm3 and found
the correlation functions to behave similarly to those
shown in Fig. 3. In the sameway as above, constant charges
of ZH ¼ 1 and ZO ¼ %2 yield the same conductivity as the
time-dependent ones.

In general, the time correlations in the current-current
correlation function fade on the same time scale as they do
in velocity autocorrelation functions. Thereafter the time
integral is stable for a certain period before statistical
fluctuations take over at long times. Several 10 000 time
steps are necessary to obtain converged conductivities with
this method.
Furthermore, the Green-Kubo formula (1) can be de-

composed into autocorrelation and crosscorrelation terms.
When constant charges are assigned to all particles, the
contributions from autocorrelations can be expressed by
diffusion coefficients which leads to the Nernst-Einstein
relation. The crosscorrelation terms contain contributions
from the formation of associated species, such as
water molecules, and are usually negative. Mattsson and
Desjarlais [9] introduced a simple but well-motivated ap-
proximation scheme for this term (originally neglecting the
relatively small contribution of the oxygen ions [10]). This
leads to

!0 ¼ e2NHDH

VkBT
þð2eÞ2NODO

VkBT

!
1% 3

2
"
"
; (3)

where Di are diffusion coefficients, which can be obtained
with much less numerical effort than a reasonably con-
verged current-current correlation function. The factor "
denotes the fraction of hydrogen ions bound to oxygen ions
and has to be approximated. The term proportional to "
represents the deviation from the Nernst-Einstein relation
in Eq. (3).
With such a model most of the experimental ionic con-

ductivities [5,7,8] in warm dense water can be reproduced
well [10]. Nevertheless, the performance of Eq. (3) can
now be checked against our more general approach. For
our simulations in partially dissociated and superionic
water we display the results of both methods in Table I.
The agreement is very good in fluid water but not in
superionic water where the model of Mattsson and
Desjarlais reduces to an Einstein equation for the protons
(DO ¼ 0). Therefore all crosscorrelations are omitted
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FIG. 3 (color online). Upper: current-current correlation func-
tion for water at 2000 K and 2 g=cm3. Depending on the treat-
ment of the effective charges, different results are obtained, see
text for further explanations. Lower: the respective time integrals
of the functions from the upper figure.

TABLE I. Electrical conductivities from the current-current
autocorrelation function (1) calculated with time-dependent
Born effective charges, !, and with constant charges of þ1 for
hydrogen and %2 for oxygen, !þ1;%2. These are compared with
those derived from Eq. (3), !0 (" is taken from Ref. [10]). For
additional comparison, the conductivity using Eqs. (1) and (2)
with time-dependent Bader charges, !B, instead of Born effec-
tive charges is given as well. Bader charges [31] do not capture
electronic polarization effects and should not be used to calcu-
late conductivities. All conductivities along with estimated er-
rors are given in 1=" cm.

T (K) % (g=cm3) ! !þ1;%2 !0 !B

2000 2.0 30' 3 30' 3 28' 2 11' 1
3000 3.0 140' 15 140' 15 91' 3 55' 5
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Classical fluctuation-dissipation formula

Imaginary part (absorptive) of the dielectric constant:

ε′′(ω) = 4πχ(ω) =
2π ω

3kBT L3

∫ ∞

−∞
dt eiωt⟨d(t) · d(0)⟩

d(t) = L3P(t) extensive dipole of the simulation cell

ε′′(ω) =
2πL3ω

kBT

∫ ∞

−∞
dt eiωt ⟨Px(t) Px(0)⟩

=
2πL3ω

kBT

(
1

2πL2

)2 ∫ ∞

−∞
dt eiωt ⟨γx(t) γx(0)⟩
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Car-Parrinello (ab-initio MD) simulation for water
(W. Chen, M. Sharma, R. Resta, G. Galli,& R. Car, PRB 2008)

coupling the nuclei to a single Nosé thermostat19 with mass,
QN=1!106 a.u. In this way the average temperatures of the
system are set to 330 K in water and to 268 K in ice.

At each time step we assign a dipole, !i=rD1

i +rD2

i +6rO
i

−2!l=1,4rWl

i , to the ith molecule in the cell. Here rX
i are the

positions of the nuclei "X=D1,D2,O# and of the four MLWF
centers "X=Wl, with l=1,4# associated to the eight valence
electrons of a water molecule.1,7,20 The ith dipole is conven-
tionally located at the molecular center of mass ri and de-
pends on the local environment. The total dipole moment is
M=!i=1,N!i "Refs. 21 and 22# and the IR spectra are com-
puted with Eq. "1#. The time-correlation functions are aver-
aged over equilibrated molecular dynamics trajectory of 10
ps in ice and of 23 ps in water. A Gaussian window
function23 is used in the discrete Fourier transform.

III. RESULTS AND DISCUSSION

A. Calculated infrared spectra

The calculated spectra are compared to experiment in Fig.
1.27 As in previous HA calculations7,8 the overall agreement
between theory and experiment is good. For ice, the posi-
tions of the band maxima corresponding to H-bond stretch-
ing, libration, bending, combination, and oxygen-deuterium
"OD# stretching are 200 "222#, 660 "640#, 1140 "1210#, 1660
"1650#, and 2120 "2425#cm−1, respectively "wave numbers in
parentheses are experimental values from Ref. 28#. For wa-
ter, the corresponding values are 200 "187#, 510 "505#, 1140
"1215#, 1550 "1555#, and 2160 "2450#cm−1, respectively. The
details of the experimental features are well reproduced, e.g.,
the asymmetric shape of the OD stretching bands, the
skewed ice libration band, and even the small combination
bands. The good performance of the harmonic approximation
may appear somewhat surprising given the large shifts and

broadenings of the vibrational frequencies of an isolated
molecule, which arise in condensed phase. Furthermore, sig-
nificant anharmonicity has been detected in the excited hy-
drogen stretching modes in liquid water.29 IR absorption,
however, probes equilibrium properties which are dominated
by the vibrational ground state in the hydrogen stretching
region. Then, the overall similarity between calculated and
observed spectra suggests that the main effects of anharmo-
nicity are sufficiently well captured by classical dynamics.

The largest discrepancy between simulation and experi-
ment occurs in the hydrogen stretching modes, which are
redshifted compared to experiment by $300 cm−1. Part of
this error originates from our choice of the mass " for the
fictitious dynamics of the electrons. We can quantify this
effect by calculating the IR stretching band in ice from
Born–Oppenheimer "BO# molecular dynamics simulations,
in which the electrons are kept in the instantaneous ground
state by minimizing the energy functional at each time step.
In CP simulations this condition is enforced dynamically and
the outcome depends on the choice of ". BO calculations
show that a redshift of up to $80 cm−1 in the IR stretching
band of ice can be attributed to our choice of ".30 However,
even when the BO separation is strictly enforced, the IR
stretching band in ice is more than 200 cm−1 below experi-
ment. The adopted DFT approximation is a likely cause of
this error. For instance, in the H2O water monomer, PBE
yields stretching frequencies that are $140 cm−1 lower than
the corresponding experimental values.31 Taking the isotopic
mass effect into account, we should expect a redshift of
$100 cm−1 for the stretching band of D2O in gas phase. The
actual effect that we observe in condensed phase,
$200 cm−1, is larger than that and is consistent with the
known H-bond over binding present in PBE water. Other
sources of inaccuracy in the calculated spectra include the
finite basis set, the cell size, and the effect of temperature.
Quantum anharmonic corrections are beyond our approach.

FIG. 1. "Color online# Experimental "upper panels# and calculated IR spectra "lower panels#. Experimental data are from Ref. 24 for H2O
ice at 100 K and from Ref. 25 for D2O ice at 150 K. D2O water data are from Ref. 26 at 295 K and from Ref. 9 at 293 K. Experimental data
for D2O ice are not available over the entire range.

CHEN et al. PHYSICAL REVIEW B 77, 245114 "2008#

245114-2

Peaks:
translations
librations
bond bending
bond stretching
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Phase, distance, localization (one electron in 1d)

Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

z =

∫ L

0
dx ei 2π

L x |ψ0(x)|2 = ⟨ψ0|ei 2π
L x |ψ0⟩

γ = Im ln z −→ ⟨x0⟩ center of the electron distribution
The center is ill-defined when z = 0
Extremely localized vs. extremely delocalized
|ψ0(x)|2 = δ(x−x0) −→ z = ei 2π

L x0 , |ψ0(x)|2 = 1
L −→ z = 0

Quadratic spread: −
( L

2π

)2
ln |z|2,

Quantum pseudodistance: D2
12 = − ln |⟨ψ1|ψ2⟩|2



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Phase, distance, localization (one electron in 1d)

Position defined modulo L

0 L

〈x〉

How a series of computationschanged our viewof the polarization of solids – p. 24/30

z =

∫ L

0
dx ei 2π

L x |ψ0(x)|2 = ⟨ψ0|ei 2π
L x |ψ0⟩

γ = Im ln z −→ ⟨x0⟩ center of the electron distribution
The center is ill-defined when z = 0
Extremely localized vs. extremely delocalized
|ψ0(x)|2 = δ(x−x0) −→ z = ei 2π

L x0 , |ψ0(x)|2 = 1
L −→ z = 0

Quadratic spread: −
( L

2π

)2
ln |z|2,

Quantum pseudodistance: D2
12 = − ln |⟨ψ1|ψ2⟩|2
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Theory of the insulating state

zN = ⟨Ψ0|e−i 2π
L

∑
j xj |Ψ0⟩

Electronic term in polarization

P(el) =
e

2π
Im log lim

N→∞
zN

It is impossible to define polarization whenever

lim
N→∞

zN = 0

all insulators: lim
N→∞

|zN | = 1 all metals: lim
N→∞

zN = 0
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Resta-Sorella localization length
R. Resta & S. Sorella, Phys. Rev. Lett. 82, 370 (1999)

λ2 = − lim
N→∞

1
N

(
L

2π

)2

ln |zN |2

Intensive quantity (tensor in 3d)
λ is finite in all insulators
λ diverges in all metals

Very general: all kinds of insulators:

Correlated insulator
Independent electrons, crystalline
a.k.a. “band insulator”
Independent electrons, disordered
Quantum Hall insulator
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Band insulators vs. band metals

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

|Ψ0⟩ is written as a determinant of occupied Bloch orbitals,
in both the insulating and the metallic case.

Key difference:
The whole band is used to build the insulating |Ψ0⟩, while
only one half of the band is used for the metallic |Ψ0⟩.
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Insulators vs. metal

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0



Zero determinant in the metallic case!
In a band metal λ2 = ∞ even at finite N
In a band insulator λ2 ∝ I(SWM) ∝ WFs quadratic spread
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Wannier functions, one dimension, single band

L → ∞, k continuous:

Xℓ = ℓa |wℓ⟩ =
a

2π

∫
BZ

dk eikXℓ |ψk ⟩

L = Ma finite, kj discrete:

|wℓ⟩ =
1
M

M∑
j=1

eikj Xℓ |ψkj ⟩

Caveat: Gauge arbitrariness in |ψkj ⟩
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Invariance of the many-body ground state

So far, we have written |Ψ0⟩ an N-particle Slater
determinant of Bloch orbitals.
Any determinant is invariant for unitary transformation of
the vectors (orbitals) within the occupied manifold.
We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
In the insulating case:

The occupied manifold is the whole band:
|Ψ0⟩ is invariant by such unitary transformation.
|Ψ0⟩ can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

What about the metallic case?
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Invariance of the many-body ground state

So far, we have written |Ψ0⟩ an N-particle Slater
determinant of Bloch orbitals.
Any determinant is invariant for unitary transformation of
the vectors (orbitals) within the occupied manifold.
We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
In the insulating case:

The occupied manifold is the whole band:
|Ψ0⟩ is invariant by such unitary transformation.
|Ψ0⟩ can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

What about the metallic case?
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Invariance of the many-body ground state (cont’d)

Finite L
In this drawing, again L = Ma, with M = 14:
Slater determinant built with M occupied
Wannier orbitals wn(x).

Infinite L (M → ∞)

|wℓ⟩ =
a

2π

∫
BZ

dk eikXℓ |ψk ⟩∫ ∞

−∞
dx |⟨x |wℓ⟩|2 = 1 finite!
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Invariance of the many-body ground state (cont’d)

Finite L
In this drawing, again L = Ma, with M = 14:
Slater determinant built with M occupied
Wannier orbitals wn(x).

Infinite L (M → ∞)

|wℓ⟩ =
a

2π

∫
BZ

dk eikXℓ |ψk ⟩∫ ∞

−∞
dx |⟨x |wℓ⟩|2 = 1 finite!
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Maximally localized Wannier functions

With the optimal choice of the gauge:

|⟨x |wℓ⟩| → 0 exponentially for x → ±∞

⟨wn|x2|wn⟩ − |⟨wn|x |wn⟩|2 minimum

The minimum “quadratic spread” is equal to the RS λ2

The spread diverges in the metallic case.
Caveat: In 3d there are some complications:
Marzari-Vanderbilt MLWFs (1997).
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Maximally localized Wannier functions

With the optimal choice of the gauge:

|⟨x |wℓ⟩| → 0 exponentially for x → ±∞

⟨wn|x2|wn⟩ − |⟨wn|x |wn⟩|2 minimum

The minimum “quadratic spread” is equal to the RS λ2

The spread diverges in the metallic case.
Caveat: In 3d there are some complications:
Marzari-Vanderbilt MLWFs (1997).
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Outline

1 Faraday laws of electrolysis

2 Modern view of a liquid

3 A flavor of topology

4 The adiabatic current

5 The “electron-in-broth” formula (one electron)

6 Many electrons in broth: transport and conductivity

7 Infrared spectra

8 Insulators vs. metals

9 Polarization

10 A Z2 topological invariant
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Spontaneous polarization of a ferroelectric
R. Resta, Ferroelectrics 136, 51 (1992)

What is the measured observable?

P

E

B

A

A B

The creative role of computationsto understand the polarization of solids – p. 43/??

The physical observable is the integrated transient current:

Ps =

∫ ∆t

0
j(t) dt =

∫ 1

0
dλ

d
dλ

Pelectronic +∆Pnuclear

Any current is mostly related to the phase of the wavefunction
(not to the square modulus!)
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Spontaneous polarization of a ferroelectric
R. Resta, Ferroelectrics 136, 51 (1992)

What is the measured observable?

P

E

B

A

A B

The creative role of computationsto understand the polarization of solids – p. 43/??

The physical observable is the integrated transient current:

Ps =

∫ ∆t

0
j(t) dt =

∫ 1

0
dλ

d
dλ

Pelectronic +∆Pnuclear

Any current is mostly related to the phase of the wavefunction
(not to the square modulus!)
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The second Vanderbilt & King-Smith paper

PHYSICAL REVIEW B VOLUME 48, NUMBER 7 15 AUGUST 1993-I

Electric polarization as a bulk quantity and its relation to surface charge

David Vanderbilt and R. D. King-Smith
Department of Physics and Astronomy, Rutgers University, Piscataivay, Neur Jersey 08858-08$g

(Received 26 January 1993)

A definition of the electric polarization of an insulating crystalline solid is given in terms of the
centers of charge of the Wannier functions of the occupied bands. The change of this quantity under
an adiabatic evolution of the Hamiltonian has previously been shown to correspond to the physical
change in polarization. Here, we show that the polarization as defined above also has a direct and
predictive relationship to the surface charge which accumulates at an insulating surface or interface.

I. INTRODUCTION
There has been considerable controversy over the years

as to whether electric polarization efI'ects in crystalline
solids are well defined in terms of bulk properties. An
early controversy over the piezoelectric response (i.e., the
strain derivative of the polarization) has been resolved

I

in favor of the view that the piezoelectric coefIicients are
indeed well-defined bulk quantities, independent of sur-
face termination. In fact, Resta has argued that any
first derivative of the bulk polarization with respect to
a parameter A of the Hamiltonian is well defined and is
given by

BP,
BA (x) (x) 2

+ c.c.
n=1 m=M+1 k k

'dA
OA (2)

where the scalar A is to be thought of as parametrizing
a path in the space of Kohn-Sham Hamiltonians. Of
course it is required that the system remain insulating
everywhere along the path.
However, the previous work is still ambiguous as to

whether the polarization P, itself is well defined as a bulk
quantity. An obvious but ultimately fruitless approach is
to define

where p is the electronic charge density and 0 represents

where rn, and —e are the electron mass and charge (e )
0), % is the number of unit cells in the crystal, 0 is the
volume of a unit cell, M is the number of occupied bands
(counting spin), and p is the rnornentum operator. We
limit ourselves here to an independent-electron descrip-
tion of the solid within Kohn-Sham density-functional
theory, so that V( ) is to be interpreted as the Kohn-
Sham potential VKs . (Typically, A parametrizes dis-
placements of atoms in the unit cell. ) Equation (1) can
be regarded as expressing the current which is induced
in the solid by a slow variation of A, and can be derived
from the adiabatic limit of a Kubo formula. By the same
token, Resta points out, the change in the polarization
under a jinite adiabatic change of the Hamiltoiuan is well
defi. ned and is given by

o. =P n (4)
where 0 is the "bound charge" which accumulates at a
surface or interface of orientation n. Turning this idea
around, Posternak et al. recently reported ab initio cal-
culations of the interface charge arising at wurtzite —zinc-
blende boundaries in BeO using a supercell technique,
and interpreted the result as a calculation of P for the
wurtzite crystal. However, the justification for such an
interpretation is not immediately clear, and has recently
been challenged. '

In this paper, we show that it i8 possible to give pre-
cise defi.nitions of the polarization P, and of the surface
"bound charge" cr such that an equation of the form (4) is
satisfied. We take as our definition of the "bound charge"
the excess areal surface charge present when the surface
is insulating, i.e., when the Fermi level lies in a gap com-
mon to both the bulk and surface, and all surface bands
are completely full or completely empty. The starting
point of our definition of P, is Eq. (2), which is there-

I

some particular choice of unit cell. The total polarization
P(O), defined similarly in terms of the total (electronic
plus ionic) charge density, is then independent of choice
of origin. However, it is not independent of the choice of
unit-cell boundaries [hence the notation P(Q)], and can
be made to take on any value by a sufIiciently patholog-
ical choice of cell. For this reason, Eq. (3) is not a useful
definition.
In searching for an alternative definition, it is desirable

that the polarization should obey an equation of the form

0163-1829/93/48(7)/" ~~2(14)/$06.00 48 AAA2 1993 The American Physical Society

Instead of addressing ∆P, it is possible to define P “itself”
However....
P is not a vector, it is a lattice!
P is only defined modulo a “quantum”
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where 0 is the "bound charge" which accumulates at a
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blende boundaries in BeO using a supercell technique,
and interpreted the result as a calculation of P for the
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cise defi.nitions of the polarization P, and of the surface
"bound charge" cr such that an equation of the form (4) is
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is insulating, i.e., when the Fermi level lies in a gap com-
mon to both the bulk and surface, and all surface bands
are completely full or completely empty. The starting
point of our definition of P, is Eq. (2), which is there-
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Center of charge (1d & quasi-1d systems)

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the
center of negative charge”

N spinless electrons in a segment of lenght L:

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN),

Periodic boundary conditions:

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN) = Ψ0(x1, x2, . . . xj+L, . . . xN)

Nuclei of charge eZℓ at sites Xℓ

Centers of charge:∑
ℓ

ZℓXℓ − ⟨Ψ0|
∑

j

xj |Ψ0⟩
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Center of charge, better

Within PBCs coordinates are actually angles
The two “centers” must be defined modulo L
Their difference must be origin-invariant∑

ℓ

ZℓXℓ − ⟨Ψ0|
∑

j

xj |Ψ0⟩

−→ L
2π

Im ln ei 2π
L

∑
ℓ ZℓXℓ +

L
2π

Im ln ⟨Ψ0|e−i 2π
L

∑
j xj |Ψ0⟩

Polarization in 1d (R. Resta, PRL 1998):

P =
e

2π
Im ln ⟨Ψ0|ei 2π

L (
∑

ℓ ZℓXℓ−
∑

j xj)|Ψ0⟩
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L (
∑

ℓ ZℓXℓ−
∑

j xj)|Ψ0⟩
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Berry phase & the “quantum”

γ = Im ln ⟨Ψ0|ei 2π
L (

∑
ℓ ZℓXℓ−

∑
j xj)|Ψ0⟩

Px = e
γ

2π
defined modulo e

γ is the Berry phase in disguise
γ includes the nuclear contribution
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A 1d insulator (polyacetylene), different terminations

Quantization of the dipole moment and of the end charges
in push-pull polymers

Konstantin N. Kudina! and Roberto Car
Department of Chemistry and Princeton Institute for Science, and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

Raffaele Resta
CNR-INFM DEMOCRITOS National Simulation Center, Via Beirut 2, I-34014 Trieste, Italy
and Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy

!Received 18 June 2007; accepted 24 September 2007; published online 15 November 2007"

A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.

THE JOURNAL OF CHEMICAL PHYSICS 127, 194902 !2007"

0021-9606/2007/127"19!/194902/9/$23.00 © 2007 American Institute of Physics127, 194902-1

Downloaded 16 Nov 2007 to 147.122.10.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Guess for a centrosymmetric polymer: P = 0. Is this right?
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Dipole per monomer
(Kudin, Car, & Resta, JCP 2007)

final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.

194902-7 Dipole moment quantization in polymers J. Chem. Phys. 127, 194902 !2007"

Downloaded 16 Nov 2007 to 147.122.10.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Z2 classification of centrosymmetric polymers

Z2-even: P = 0 mod e
Alternant polyacetylene, model molecular crystal.....

Z2-odd: P = e/2 mod e
Model ionic crystal.....

Z2 invariant topological:
Independent e.g. of ionicity difference
Independent of the theory level
(tight-binding, first-principle...)
Robust by continuous deformation of the wavefunction
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Z2 invariant topological:
Independent e.g. of ionicity difference
Independent of the theory level
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Robust by continuous deformation of the wavefunction
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Simple tight-binding Hamiltonians

Z2-even: Onsite ϵi constant, alternating hoppings t and t ′

Z2-odd: Constant hopping t , alternating ϵi

Z2 invariant protected by centrosymmetry
When joining the two with a
continuous & centrosymmetric deformation of the
Hamiltonian the gap closes!
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