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m Very simple concept, nonetheless missed by the founding
fathers of QM in the 1920s and 1930s

m Nowadays in any modern elementary QM textbook



Sakurai QM textbook, p. 464

SUPPLEMENT I

Adiabatic Change and Geometrical Phase

When the author died in 1982, this book was left in manuscript form:
subsequently, there have been some new developments in quantum me-
chanics. The most important development is a definitive formulation of
geometrical phases, introduced by M. V. Berry in 1983. The phase factors
accompanying adiabatic changes are expressed in concise and elegant forms
and have found universal applications in various fields of physics, thus
giving a new viewpoint to quantum theory. We review here the physical
consequences of these phases, which have in fact been used unconsciously
in some cases already, by adding a supplement to the Japanese version of
the text. (Here in the new English edition of Modern Quantum Mechanics
we are providing a translation from Japanese of this supplement, prepared
by Professor Akio Sakurai of Kyoto Sangyo University for the Japanese
version of the book. The Editor deeply appreciates Professor Akio Sak-
urai’s guidance on an initial translation provided by his student, Yasunaga
Suzuki, as a term paper for the graduate quantum mechanics course here
at the Universitv of Hawaii—Manoa.)
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Basics

Parametric Hamiltonian, non degenerate ground state

H(&)|y(€)) = E(€)]4(&)) parameter ¢: “slow variable”
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W(E)
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Ap12 = —Imlog ((&4)[w(€2))

1

v = Apiz2 + Apaz + Apza + Apa
= —1Imlog (¥ (&;)v(&2)) (¥ (€2)11(&3)) (¥ (€)1 (€4)) (¥ (€a)10(&1))

Gauge-invariant!



From discrete “geometry” to differential geometry

A smooth closed curve C in £ space
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From discrete “geometry” to differential geometry

A smooth closed curve C in £ space

g _ (D(O)V(E+AE)

[((§)|¥(£+A8))]

If we choose a differentiable gauge:

—iDp ~ (Y(8)[Veh(€)) - AE

M
¥ = ZAQDS,S‘F‘I — f;d@
s=1

dip = A(€) - d€ = i ((€)|V¢u(€)) - ¢

dy linear differential form, i(w(s)]V£¢(£)> vector field



Berry connection & Berry curvature

m Domain S: ¢£e ScR?

m Berry connection
A(E) = 1 (1(€)IVe(€))

m real, nonconservative vector field
m gauge-dependent

m “geometrical” vector potential

m a.k.a. “gauge potential”

m Berry curvature (¢ € R®)
Q&) = Ve x A(€) = i (Veu(€)] x [Vgih(€))
B gauge-invariant (hence observable)
m geometric analog of a magnetic field
m a.k.a. “gauge field”
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The Berry connection is real

W) =1 V¢

VeW(©(©) = o
= (Ved(€)[9(&) + ((E)Veu(©))
= 2Re (1(€)|V¢u(©))

(W(©)Ve(€))  purely imaginary
AE) =i (WE)Vev(e)  real (1)

Last but not least:
What about time-reversal invariant systems?



Berry connection vs. perturbation theory
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Berry connection vs. perturbation theory

[¥0(& + AL)) — |1ho(£))
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n#0

00(6)) = 3 wi(e)) rEN O Vo(6)

< Eol&) — En€)

Aa(§) = i($0(£)|9atho(£)) = 0

“parallel transport” gauge



Parallel transport

_ (EI[H(E + AE) H(&)11v0(€))
[vo(€ + AE)) = [¥o(§)) + [Avo(£))

|Ayo(€)) orthogonal to |¢(£))

Differential Geometry:
Gaussian curvature of the
spherical surface Q = 1/R?

J5 Qdo = angular mismatch

Connection?



Berry connection vs. perturbation theory, better
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Berry connection vs. perturbation theory, better

o (¥n(§)[ [H(E + AE) — H(£)][¥0(£))
[vo(€§ +AL)) = [¢o(€)) + |Avo(£))

Better:

o€+ A8) = [[to(€)) + [Ao(€))] e~ A4E)
~ 1 =i Bp(€) ] [o(€)) + |Beko(€))

A€)-dE = ilun(&)|Vto(€)) - dé
= 0 4+ dyp



Berry curvature: perturbation theory is OK

The Berry curvature is gauge invariant
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Berry curvature: perturbation theory is OK

The Berry curvature is gauge invariant

Q) = VexAl) (£eRY)
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Q(&) singular at degeneracy points



Berry curvature: perturbation theory is OK

The Berry curvature is gauge invariant

Q) = VexAl) (£eRY)

_ ,-Z/ (Yo(E)IVH(&)|¥n(£)) < (¥n(€)[VH(E)[P0(£))
[Eo(£)—En(§)1?
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Berry phase

m Loop integral of the Berry connection on a closed path:
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m corresponds to measurable effects



Berry phase

m Loop integral of the Berry connection on a closed path:

v:ch(s)-ds

m Berry phase, gauge invariant modulo 27
m corresponds to measurable effects

Main message of Berry’s 1984 paper:

m In quantum mechanics, any gauge-invariant quantity is
potentially a physical observable
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m + cannot be cast as the expectation value of any Hermitian
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m The quantum system is not isolated:
the parameter £ summarizes the effect of “the rest of the
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m Slow variables: £ (e.g., a nuclear coordinate).
Fast variables: here, the electronic coordinates

m For a genuinely isolated system, no Berry phase occurs
and all observable effects are indeed expectation values of
some operators



Coupling to “the rest of the Universe”

m + cannot be cast as the expectation value of any Hermitian
operator: instead, it is a gauge-invariant phase of the
wavefunction

m The quantum system is not isolated:
the parameter £ summarizes the effect of “the rest of the
Universe”

m Slow variables: £ (e.g., a nuclear coordinate).
Fast variables: here, the electronic coordinates

m For a genuinely isolated system, no Berry phase occurs
and all observable effects are indeed expectation values of
some operators

m What about classical mechanics?
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Semantics: why “Geometric”?

So far, everything time-independent.
Suppose instead that:

m The parameter moves-adiabatically on'the closed path in
time t: & — &(t), with &



Semantics: why “Geometric”?

So far, everything time-independent.
Suppose instead that:

m The energy of [(&)) i

m The parameter moves-a the closed path in
time t: & — &(t), with &

Then the state acquires a total phasg factor e/7e/(T)

m The phase ~ is independent of the details of motion: hence
“geometric”

m The additional phase is the “dynamical phase’, and does
depend on the motion:  a(T) = —1 [T dt E(¢(1))
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m Loop integral of the Berry connection on a closed path:
1= Ao

m Berry phase, gauge invariant only modulo 27
m corresponds to measurable effects

m |f C = 0% is the boundary of ¥, then (Stokes th.):
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B requires X to be simply connected
m requires .A to be regular on ©
®m no longer arbitrary mod 27



Berry phase

m Loop integral of the Berry connection on a closed path:
1= Ao

m Berry phase, gauge invariant only modulo 27
m corresponds to measurable effects

m |f C = 0% is the boundary of ¥, then (Stokes th.):

'yzfizA(E)-dgz/zdo—Q(g)-ﬁ

B requires X to be simply connected
m requires .A to be regular on ©
®m no longer arbitrary mod 27

m What about integrating the curvature on a closed surface?



A simple example: Two level system

HE = €7 nondegenerate for £ # 0
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Q = 9yA, —9pAy = 5sind
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A simple example: Two level system

HE = €7 nondegenerate for £ # 0
= £ (sindcosp oy +sindsinp o, + cost o)

lowest eigenvalue — ¢

. sin Ye—i¥
lowest eigenvector |¢(¥, )) = 27
— COS 5

Ay = i(W|ogy) =0
9
Ay = i{W|0p0) =sin® 3
Q = aﬁAw—agpAﬁ:%sinﬁ

m Q gauge invariant
m What about .A? Obstruction!
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Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):
1
271 Je
m Integrating (v, ¢) over [0, 7] x [0, 27]:

Q(&) - n do = topological integer € Z

1 / dddy 1 sing =1 Chern number C;
2r 2

m Measures the singularity at £ = 0 (monopole)

f&\/

f—



Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):
1

— Q(&) - n do = topological integer € Z
27T S2

m Integrating (v, ) over [0, 7] x [0, 27]:
1 / dddy 1 sing =1 Chern number C;
2r 2

m Measures the singularity at £ = 0 (monopole)

m Berry phase on any closed curve C on the sphere:

T: o]
N \\_,, v = ]{CA(ﬁ)-dﬁ
e = % x (solid angle spanned)

-



The sphere as the sum of two half spheres

2rCy = Q&) -ndo
s?

Stokes: Q(¢)-ndo = :|:7{C-Ai(€) . d¢

St

Szﬂ(ﬁ)-ndoz;im(g)-ds—ﬁA_(s)‘ds



The sphere as the sum of two half spheres

2rCy = | Q(¢)-ndo
S2

Stokes: Q(¢)-ndo = :|:7{C-Ai(€) . d¢

St

Szﬂ(ﬁ)-ndoz;im(g)-ds—ﬁA_(s)‘ds

Gauge choice: A_(&) regular in the lower hemisphere:
hence it has an obstruction in the upper hemisphere

27Ci = [ Q)-n do——fA_(g) o
St C



Bloch orbitals (noninteracting electrons in this talk)

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hik) = exlvx)

Helu) = exlti) luk) = e ®Ty)  Hk = e *THe*r



Bloch orbitals (noninteracting electrons in this talk)

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hik) = exlvx)

Heluk) = ex|uk) luk) = e ®Tyy)  Hk = e KT Hekr
m Berry connection and curvature (& — k):
A(k) = I'<Uk’VkUk>
Q(k) = i(Vkuk\ X ‘VkUk> =-2Im (6kxuk|8kyuk)

m BZ (or reciprocal cell) is a closed surface: 2d torus
Topological invariant:

Ci = 1 dk (k) Chern number
271' BZ



Computing the Chern number

Discretized reciprocal cell
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Computing the Chern number

© )
Discretized reciprocal cell ¢ o000 0 0 0
e 6 o o o o o o
Periodic gauge choice: ¢ o0 00 0 0 0
where is the obstruction? ¢ o000 0 0 0
® 6 o o o o o o
e 6 o o o o o o
® 6 o o o o o o

—0—0—0—0—0 00—




Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—@&
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Curvature = Berry phase per unit (reciprocal) area
Berry phase on a small square:
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Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—@&
®—0—0—6—0—6—6
*—0—0—0—0—0—@&

Curvature = Berry phase per unit (reciprocal) area
Berry phase on a small square:

v = —Im log (Uk, |Uk,) Uk, |Uks) { Uks | Uk, ) { Uk, | Uk, )

Which branch of Im log?



Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—&
®o—0—0—6—0—6—6
*—0—0—0—0—0—&

NonAbelian (many-band):
v = —Imlog det S(ki, k2)S(kz, k3)S(ks, ks)S(ks, k1)

Snr (Ks, Ks') = <Unks‘Unks,>



Outline

Appendix: Metric and curvature



The simplest geometrical property: Distance

Two state vectors |W4) and |V,) in the same Hilbert space

D%, = —log |(W|Wp)|?

m D?, =0 if the two quantum states coincide
apart for an irrelevant phase: gauge-invariant

m DZ, = oo if the two states are orthogonal



A second geometrical property: Connection

D2, = —log |(W1|W2)|? = — log(V1|W3) — log(Wa|Wy)

m The two terms are not gauge-invariant
m Each of the two terms is a complex number
m What is the meaning of Im log (V{|Wy) ?
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A second geometrical property: Connection

D2, = —log |(W1|W2)|? = — log(V1|W3) — log(Wa|Wy)

m The two terms are not gauge-invariant
m Each of the two terms is a complex number
m What is the meaning of Im log (V{|Wy) ?

(Wy W) = [(Wy|Wo) ez
—Imlog (V1|V2) = p12, P21 = —P12

m The connection fixes the phase difference
m The connection is arbitrary
m Given that it is arbitrary, why bother?



Differential quantities in quantum geometry

The state vector |W ) depends on the continuous parameter

m Quantum metric g,3:
d D? = D}, oy gr = Japdradss
m Berry connection A, :
dyp = A,dkq,
m Berry curvature Q.5 = 0, Ap — 0y, Aa

d x dp =Q.pdk.drg
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Differential quantities in quantum geometry

The state vector |W ) depends on the continuous parameter

m Quantum metric :
d D? = D}, oy gr = Japdradss
m Berry connection :
dyp = Ay,dk,
m Berry curvature

d x dp =Q.pdr.drg

m All of the above depend on the state vector only



A more general geometrical quantity

m Beside the state vectors, even the Hamiltonian is involved:

H Vo) = Eo|Wo)
G=(Vg|(H-Ey)|Vk)

m G vanishes when WV = Vg
m G is invariant by translation of the energy zero

m Differential of G
(when |V ) is varied in a neighborhood of |Wy))
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(Oka VI (H — Eg ) [0k, V) dkadrg
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