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Gaussian (a.k.a. CGS) units

m Permittivity of free space g = ;-

m Permeability of free space pg = 4n
m InvacuoD=EandH=B

m All fields have the same dimensions

m Newtonian & Hamiltonian mechanics:

dv 1

_

H 51 <p — C(fA(r))2 + Qo(r)



Atomic Gaussian units

1 1 2
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Atomic Gaussian units

1 1 2
H = o (p — CA(r)) + Qo(r)
m Schrddinger Hamiltonian for the electron

H =

o (~inv + iA(r))z — ed(r)

mm.=1, h=1 e=1, (c=137)
1 a.u. of energy = 1 hartree = 2 rydberg = 27.21 eV

H = % (—iv + lA(r)>2 —o(n)

Warning: Other “atomic units” with e = v/2



Outline

Classical Hall effect



Figure from Kittel ISSP, Ch. 6
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Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular
cross-section is placed in a magnetic field B., as in (a). An electric field E, applied across the end
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the
negatively-charged electrons immediately after the electric field is applied as shown in (b). The
deflection in the —y direction is caused by the magnetic field. Electrons accumulate on one face
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans-
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.



Hall effect (1879)
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Drude-Zener theory

In 2d, set E, = 0; cyclotron frequency w. = ,%@

er
Vy = —EEX — WeT Vy

V,V = WCT VX



Hall conductivity

Current j= —nev (ncarrier density)

2
, ne-t .
Ix = m Ex — weTjx
jy = Wchx
In zero B field
. ne?r
jX — UOEXa UO = m
In a B field
. a0
Ix 1+ (wcT)2 X OxxEx
, WeTO
jy = 0705)( = oyxEx

1+ (wer)?



Conductivity vs. resistivity (classical & quantum)

Jy
R > _
p=(a)"
P Oxx pry = Oyx
XX — 2 2 Xy — 2 2
Oxx + Oyx O%x T Oyx



Conductivity vs. resistivity (classical & quantum)
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Conductivity vs. resistivity (classical & quantum)

ny

) Pxy = 5 P
O%x T Oyx

Pox = —5— 5~
Oxx + Oyx

m AtB=0 pxx:1/0'XX
m In the nondissipative regime (j- E = 0)

O'XX:o and pXXZO

ny:1/<7yx



Nondissipative limit (7 — oo, classical Drude-Zener)

ne*r oo WeTOQ
og = — o = g = —
0 T4 (weT)? 714 (weT)?
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Nondissipative limit (7 — oo, classical Drude-Zener)

ne*r oo WeTOQ
g0 = o = o - -
7 Tm T (wer)? T (wer)?

m AtB=0 oxx = oo diverges

mAtB#0 for 7>1/w.

oxx = 0, pxx =0 (longitudinal resistivity)
muw, m eB
P = 10 =g = ez mo
= 1 B (Hall resistivity)

nec



Multiplying and dividing by A

m In 2d resistance/resistivity and conductance/conductivity
have the same dimensions:
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Multiplying and dividing by A

m In 2d resistance/resistivity and conductance/conductivity
have the same dimensions: do they coincide?

m n=N/A (number of carrriers per unit area)

1 AB o} 1h
P = hec = Nec ~ Nec  ve?
m ® magnetic flux through area A
h/€? ~ 25813 Q (natural resistance unit)

v dimensionless

V= Ni’o filling factor, &g = h: flux quantum

v = (number of electrons)/(number of flux quanta)



Experiment (von Klitzing 1980, Nobel prize 1985)

VoruME 45, NUMBER 6 PHYSICAL REVIEW LETTERS 11 Aucust 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance

K. v. Klitzing
Physdmlzsches Institut dev Uni: it Wi , D-8700 Wi , Federal Republic of Germany, and
Hochfe des Max-Planck-Tnstituts fiir Festkirp g, F-38042 ble, France

and

G. Dorda
Forschungslaboratorien der Siemens AG, D-8000 Miinchen, Federal Republic of Germany
and

. Pepper
Cavendish Laboratory, Cambridge CB3OHE, United Kingdom
(Received 30 May 1980)

Measurements of the Hall voltage of a two-dlmensmnal electron gas, realized with a
silicon metal-oxi show that the Hall resistance
at particular, experimentally well-defined surface carrier concentrations has fixed values
which depend only on the fine-structure constant and speed of light, and is insensitive to
the geometry of the device. Preliminary data are reported.

h/e? = 25812.807557(18) Q = 1 Klitzing
Since 1990 a new metrology standard
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FIG. 2. Hall resistance Ry, and device resistance,
R,,, between the potential probes as a function of the
gate voltage V, in a region of gate voltage correspond-
ing to a fully occupied, lowest (z=0) Landau level. The
plateau in Ry has a value of 6453.3%0.1 @. The geom-
etry of the device was L =400 um, W=50 um, and L,,
=130 ym; B=13 T.
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the geometry of the device. Preliminary data are reported. =130 ym; B=13 T.
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Since 1990 a new metrology standard
In the original experiment (MOSFET): v =4



More recent experiments
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GaAs-GaAlAs heterojunction, at 30mK



Outline

2d noninteracting electrons in a magnetic field



Hamiltonian in B field (flat substrate potential)

N noninteracting (& spin-polarized) electrons in zero potential:

Gaussian units

m. electron mass

—e electron charge

L (pi + SA(r;)) velocity
p;=—ihV, canonical momentum
B =V x A(r)



Landau gauge

Everything in 2d; B uniform, along z.

AX:o7 Ay:BX

For each electron the Hamiltonian is

I 0 e _\?
AV = om, [_6)(2 y <_Ic'9y * thX>
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Landau gauge

Everything in 2d; B uniform, along z.

AX:o7 Ay:BX

For each electron the Hamiltonian is

ol P o e\
H(x,y) = A (R .
(x,¥) o [ o T < 5y + thX)
Landau ansatz (X, y) = e ok(x)

K2 R2 eB \?
_2m SDZ(X) + om (k + X> gOk(X) = €k QOK(X).

he

Harmonic oscillator in 1d



Landau oscillator

o, K2 eB \? B
_Qme k(X) + 271776 <k + %X gOk(X) = &k gOk(X)
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Harmonic oscillator
m Centerin x, = — 28k = —(2k
¢ = (he/eB)!/? “magnetic length”
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o, K2 eB \? B
_Qme k(X) + 271776 <k + %X gOk(X) = &k gOk(X)

R, 1 eB \? he  \2 B
k00 gme (22 ) (x4 Sok) 0 = s

Harmonic oscillator
m Centerin x, = — 28k = —(2k
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m Frequency w. =




Landau oscillator

R, K2 eB \? B
gk + g (K4 20x) ) = e

R, 1 eB \? he \? B
04 pm (o) (3 25K) wr0 = =)

Harmonic oscillator
m Centerin x, = — 28k = —(2k
¢ = (hc/eB)'/2 “magnetic length” (diverges for B — 0)

m Frequency w. = ,fTBc cyclotron frequency

(classical, Gaussian units)



Eigenvalues and eigenvectors

m Spectrum independent of k1 e, = (n+ 3)we
m Ground-state orbitals (LLL):

iky

Yr(x,y) = e pr(x)
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m Electron confined in a vertical strip centered at 2k



Eigenvalues and eigenvectors

m Spectrum independent of k1 e, = (n+ 3)we
m Ground-state orbitals (LLL):

Ur(X,y) = " or(x) = ™ x(x + (Pk)

1 1/4 —X2/(2€2)
xX(x) = <7T£2) e

m Infinite degeneracy: one orbital for each k
m Electron confined in a vertical strip centered at 2k
m What about the current?

m Any unitary transformation of the LLL orbitals is an
eigenfunction



Counting the states (discretize k)

i 1 1/4
Uk(x,y) = x(x — £2k) x(x):<7rz2> e—x*/(2)

m Periodic boundary conditions in y: ki1 — ki = 2F

m Horizontal distance between neighboring orbitals: QLL‘”Z

m Area covered by one state:  27/?
A
2

Number of states in each LL: N = 5o



Counting the states (discretize k)

P 1/4
) == 2 )= () e e

N
m Periodic boundary conditions in y: ki1 — ki = 2F
m Horizontal distance between neighboring orbitals: QLL‘”Z

m Area covered by one state:  27/?

Number of states in each LL: ' = 4,
m Magnetic flux:

® = AB=N2r2B = N&he = Nhe = N,
m Flux quantum: & = ¢ (®o = 2 in Sl units)
m &y a universal constant



Density of states

A
ez B=0
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m AtB=0: D(e) = constant = 222:A




Density of states

ek
' <> ’
A & INEESEENNPEE
m AtB=0: D(e)=constant = 212:A

mAtB#0: &/, statesineachLL

D(e) = q‘fo S (e _(n+ ;)fw)
n=1

maximum filling for each LL is v = 1.



Density of states

EEErn

=D
,7, 7S - a\
wl v |

m How many states in the hatched region?

et 2rm, A ©
"D = hwe—— = —
: de' D(e') = hw, 12 g



Outline

Quantum Hall Effect



What the experiment shows
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In modern jargon: The plateaus are “topologically protected”



Wavefunction “knotted” or “twisted”

m Knotted in reciprocal space in nontrivial ways

m The famous TKNN paper:
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

m Integer numbers are very “robust”



Role of disorder

Oxx  Oyx [e¥h]

1

-l +

| N

P(EF)

delocalized  localized

Current carried by delocalized states only



Varying the “inaccessible flux”

~/

2
m In aflat potential: e,(¢) = 2 (‘QT’T)2 <n+ %)

- 2m

m Hellmann-Feynman theorem (in any potential):

_ 10H 1 d€n( )
- ﬁ% <¢n’ "‘/’n> - dr

m Next: N noninteracting electrons in an arbltrary potential




Topological robustness of the current

_/

10U
U: Z €n I:—E%

né&occupied

m Independent of the substrate potential
Independent on the number N of current carrying states

m Variation of a full flux quantum:

_ %ol

AU = U(p+ @) — Ulp) = ——



Laughlin’s Gedankenexperiment (1981)

m The insertion of a flux quantum &y maps the system into
itself: how can the energy vary?



Laughlin’s Gedankenexperiment (1981)

m The insertion of a flux quantum &y maps the system into
itself: how can the energy vary?

m Answer: an integer number v of electrons is transferred
from one edge to the other

m If the edges are kept at voltage V), then

¢ R=Wihk=c =T
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