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1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences
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Back to basics: Macroscopics

B = H + 4πM
M = Mspin + Morbital

Mspin and Morbital separately measurable (really?)

Spontaneous M (in B = 0) in ferromagnetic materials,
orbital & spin, due to spin-orbit interaction.
Induced M by a time-reversal-symmetry breaking
perturbation (e.g. a macroscopic B field).
M is purely orbital in a nonmagnetic insulator.
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Electric-magnetic analogies in continuous media

B = H + 4πM E = D − 4πP

∇× M = j/c ∇ · P = −ρ

A dissipationless current circulates at the surface of a
uniformly magnetized sample:

Ksurface = cM × n

A surface charge piles up at the surface of a uniformly
polarized sample:

σsurface = −P · n



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Electric-magnetic analogies in continuous media

B = H + 4πM E = D − 4πP

∇× M = j/c ∇ · P = −ρ

A dissipationless current circulates at the surface of a
uniformly magnetized sample:

Ksurface = cM × n

A surface charge piles up at the surface of a uniformly
polarized sample:

σsurface = −P · n



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Electric-magnetic analogies in continuous media

B = H + 4πM E = D − 4πP

∇× M = j/c ∇ · P = −ρ

A dissipationless current circulates at the surface of a
uniformly magnetized sample:

Ksurface = cM × n

A surface charge piles up at the surface of a uniformly
polarized sample:

σsurface = −P · n



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Common drawback: The position operator r

M =
m
V

=
1

2cV

∫
dr r × j(r)

P =
d
V

=
1
V

∫
dr r ρ(r)

Surface terms contribute extensively to the dipole:
so M and P are apparently surface properties

Not bulk ones!
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The theoretical framework of CM physics:
periodic (Born-von Kármán) boundary conditions
(for both crystalline and disordered systems)

The system has no surface by construction.
Any quantity defined or computed within PBC is by
definition “bulk”.
However... The position operator r is incompatible with
Born-von Kármán PBCs.
The matrix elements of r over Bloch orbitals are ill defined.
Because of this, the problem of macroscopic electric
polarization remained unsolved until the early 1990s.
Breakthrough (1992 –): “Modern theory of polarization”.
Magnetic analogue (2005 –) “Modern theory of orbital
magnetization”.
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Outline

1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences
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Heuristically, by analogy with the electrical case

For an insulator, in absence of inversion symmetry, in zero
E field, we have

Pelectronic = − 2e
Vcell

∑
n∈ occupied

⟨wn|r|wn⟩

By analogy, in absence of time-reversal symmetry, in zero
B field, it is tempting to write:

M = − 2e
2cVcell

∑
n∈ occupied

⟨wn|r × v|wn⟩

Question: Is this the correct formula for the bulk
magnetization
Answer: No!
There is an additional term, having no electrical analogue.
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From Wannier back to Bloch

v =
i
ℏ
[H, r] ; ψnk(r) = eik·runk(r) ; H(k) = e−ik·rHeik·r

M = − e
2cVcell

∑
n∈ occupied

⟨wn|r × v|wn⟩

= − ie
ℏ2cVcell

∑
n∈ occupied

⟨wn|r × Hr|wn⟩

= − ie
ℏ2c(2π)3

∑
n∈ occupied

∫
BZ

dk ⟨∂kunk| × H(k)|∂kunk⟩,

Electrical analogy once more:

Pelectronic = − 2ie
(2π)3

∑
n∈ occupied

∫
BZ

dk ⟨unk|∂kunk⟩
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The Haldanium model material
(Haldane, PRL 1988)

Honeycomb lattice in 2d , breaks time-reversal symmetry.

Insulator at half-filling (only the lowest band occupied).

Zero flux through the unit cell:
The macroscopic B field is zero;
The Hamiltonian is lattice-periodical;
Bloch & Wannier orbitals exist.
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(Haldane, PRL 1988)

Honeycomb lattice in 2d , breaks time-reversal symmetry.

Insulator at half-filling (only the lowest band occupied).

Zero flux through the unit cell:
The macroscopic B field is zero;
The Hamiltonian is lattice-periodical;
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Formula assessed via computer experiments
(2d, single occupancy, single band, atomic units)

(A) Periodic “bulk” system:

M = − i
2c(2π)2

∫
BZ

dk ⟨∂kuk| × H(k)|∂kuk⟩

(B) Finite system of area L2 cut from the bulk
(so-called “open” boundary conditions)

M =
1

2cL2

∫
dr r × j(r) =

1
2cL2

∑
n∈ occupied

⟨φn|r × v|φn⟩

(A) numerically evaluated on a dense k-point mesh;
(B) evaluated for large L values (up to 2048 sites).
Do they converge to the same limit?
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1
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∫
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dk ⟨∂kuk| × H(k)|∂kuk⟩

(B) Finite system of area L2 cut from the bulk
(so-called “open” boundary conditions)

M =
1

2cL2

∫
dr r × j(r) =

1
2cL2

∑
n∈ occupied

⟨φn|r × v|φn⟩

(A) numerically evaluated on a dense k-point mesh;
(B) evaluated for large L values (up to 2048 sites).
Do they converge to the same limit?
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M = − i
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(B) Finite system of area L2 cut from the bulk
(so-called “open” boundary conditions)

M =
1
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∫
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1
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(A) numerically evaluated on a dense k-point mesh;
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M = − i
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∫
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(so-called “open” boundary conditions)
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1
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(A) Periodic “bulk” system:

M = − i
2c(2π)2

∫
BZ

dk ⟨∂kuk| × H(k)|∂kuk⟩

(B) Finite system of area L2 cut from the bulk
(so-called “open” boundary conditions)

M =
1

2cL2

∫
dr r × j(r) =

1
2cL2

∑
n∈ occupied

⟨φn|r × v|φn⟩

(A) numerically evaluated on a dense k-point mesh;
(B) evaluated for large L values (up to 2048 sites).
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Chasing the missing term:
Localized-orbital (Boys/Wannier) analysis

The Boys/Wannier localized orbitals at the sample edge
carry a net current and contribute to M.
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Chasing the missing term:
Localized-orbital (Boys/Wannier) analysis

The Boys/Wannier localized orbitals at the sample edge
carry a net current and contribute to M.
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The historical derivation

Even the additional edge contribution can be computed
using Bloch states and PBCs, where the system has no
edge.

This is possible only in trivial insulators:
no Chern insulators, no metals

Formulated in this way in Vanderbilt’s textbook
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The historical derivation

Even the additional edge contribution can be computed
using Bloch states and PBCs, where the system has no
edge.

This is possible only in trivial insulators:
no Chern insulators, no metals

Formulated in this way in Vanderbilt’s textbook
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The very first calculation for real materials
(D. Ceresoli, U. Gertsmann, A.P. Seitsonen, & F. Mauri, 2010)

Caveat: Role of the core electrons in a pseudopotential framework
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Outline

1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences
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The textbook formulæ

M =
m
V

=
1

2cV

∫
dr r × j(r)

P =
d
V

=
1
V

∫
dr r ρ(r)
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The textbook formulæ

M =
m
V

=
1

2cV

∫
dr r × j(r)

P =
d
V

=
1
V

∫
dr r ρ(r)
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P and M as reciprocal-space integrals

1992: Polarization (insulators)

Pα = − 2ie
(2π)d

nb∑
j=1

∫
BZ

dk ⟨ujk|∂αujk⟩+ P(nuclei)
α

2005-06: Orbital magnetization (including metals)

Mγ = − ie
2ℏc

εγαβ
∑

j

∫
ϵjk≤µ

dk
(2π)d ⟨∂αujk| (Hk+ϵjk−2µ) |∂βujk⟩

Do they have anything in common?
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P and M as reciprocal-space integrals

1992: Polarization (insulators)

Pα = − 2ie
(2π)d

nb∑
j=1

∫
BZ

dk ⟨ujk|∂αujk⟩+ P(nuclei)
α

2005-06: Orbital magnetization (including metals)

Mγ = − ie
2ℏc

εγαβ
∑

j

∫
ϵjk≤µ

dk
(2π)d ⟨∂αujk| (Hk+ϵjk−2µ) |∂βujk⟩

Do they have anything in common?
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They could not be more different!
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Similar problems vs. similar solutions

P(el)
α = −2ie

nb∑

j=1

∫

BZ

dk
(2π)d ⟨ujk|∂kαujk⟩ = −2e

∫

BZ

dk
(2π)d Aα(k)

Mγ = − ie
2!c

εγαβ
∑

εjk<µ

∫

BZ

dk
(2π)d ⟨∂kαujk| (Hk + ϵjk − 2µ) |∂kβujk⟩

Polarization
Gauge-dependent integrand
Integral of a 1-form
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization
Gauge-invariant integrand
Integral fo a 2-form
M is single-valued
Tinkering with the boundaries cannot alter M

Polarization

Insulators only
Gauge-dependent integrand
Integral of a 1-form
At bare bones, P is 1-dimensional
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization

Insulators and metals
Gauge-invariant integrand
Integral of a 2-form
At bare bones, M is 2-dimensional
M is single-valued
Tinkering with the boundaries cannot alter M
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Similar problems vs. similar solutions

P(el)
α = −2ie

nb∑

j=1

∫

BZ

dk
(2π)d ⟨ujk|∂kαujk⟩ = −2e

∫

BZ

dk
(2π)d Aα(k)

Mγ = − ie
2!c

εγαβ
∑

εjk<µ

∫

BZ

dk
(2π)d ⟨∂kαujk| (Hk + ϵjk − 2µ) |∂kβujk⟩

Polarization
Gauge-dependent integrand
Integral of a 1-form
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization
Gauge-invariant integrand
Integral fo a 2-form
M is single-valued
Tinkering with the boundaries cannot alter M

Polarization: prototype of class I observables

Insulators only
Gauge-dependent integrand
Integral of a 1-form
At bare bones, P is 1-dimensional
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization: prototype of class II observables

Insulators and metals
Gauge-invariant integrand
Integral of a 2-form
At bare bones, M is 2-dimensional
M is single-valued
Tinkering with the boundaries cannot alter M
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Insulators, metals, and more

Magnetization in a “normal” (zero-Chern-number) insulator
proof obtained via WFs:

M = − ie
ℏc(2π)3

∑
n∈ occupied

∫
BZ

dk ⟨∂kunk|×[H(k)+ε(k) ]|∂kunk⟩

Magnetization in metals & Chern insulators:

M = − ie
ℏc(2π)3

∑
n

∫
εn(k)<µ

dk ⟨∂kunk|×[H(k)+ε(k)−2µ] |∂kunk⟩
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Relationship to Hall conductivity

Magnetization in a metal & in a Chern insulator

M = − ie
ℏc(2π)3

∑
n

∫
εn(k)<µ

dk ⟨∂kunk|×[H(k)+ε(k)−2µ] |∂kunk⟩

dM
dµ

∝
∑

n

∫
εn(k)<µ

dk i⟨∂kunk| × |∂kunk⟩

This is the intrinsic part of the AHE (in metals)
In 2d, integrated over the BZ, it gives the quantized Hall
conductivity in a Chern insulator
What has dM/dµ to do with the Hall conductivity?
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Magnetization in a metal & in a Chern insulator
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∝
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εn(k)<µ
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This is the intrinsic part of the AHE (in metals)
In 2d, integrated over the BZ, it gives the quantized Hall
conductivity in a Chern insulator
What has dM/dµ to do with the Hall conductivity?
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Magnetization in a metal & in a Chern insulator

M = − ie
ℏc(2π)3

∑
n

∫
εn(k)<µ

dk ⟨∂kunk|×[H(k)+ε(k)−2µ] |∂kunk⟩

dM
dµ

∝
∑

n

∫
εn(k)<µ

dk i⟨∂kunk| × |∂kunk⟩

This is the intrinsic part of the AHE (in metals)
In 2d, integrated over the BZ, it gives the quantized Hall
conductivity in a Chern insulator
What has dM/dµ to do with the Hall conductivity?
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Magnetization in a metal & in a Chern insulator

M = − ie
ℏc(2π)3

∑
n

∫
εn(k)<µ

dk ⟨∂kunk|×[H(k)+ε(k)−2µ] |∂kunk⟩

dM
dµ

∝
∑

n

∫
εn(k)<µ
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This is the intrinsic part of the AHE (in metals)
In 2d, integrated over the BZ, it gives the quantized Hall
conductivity in a Chern insulator
What has dM/dµ to do with the Hall conductivity?
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