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B = H+4nrM
M = Mgpin +Mgppital

m Mgpin and Mopita) separately measurable (really?)

m Spontaneous M (in B = 0) in ferromagnetic materials,
orbital & spin, due to spin-orbit interaction.

m Induced M by a time-reversal-symmetry breaking

perturbation (e.g. a macroscopic B field).
M is purely orbital in a nonmagnetic insulator.
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B=H+4rM E=D - 47P
VxM=j/c V-P=—p

m A dissipationless current circulates at the surface of a
uniformly magnetized sample:

K =cM xn

surface

m A surface charge piles up at the surface of a uniformly
polarized sample:

Tsurface = PN
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1 .
ZZC‘//derI(r)

= ://dr rp(r)

Surface terms contribute extensively to the dipole:
so M and P are apparently surface properties

<le <|3

Not bulk ones!
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The theoretical framework of CM physics:

periodic (Born-von Karman) boundary conditions

(for both crystalline and disordered systems)

m The system has no surface by construction.

m Any quantity defined or computed within PBC is by
definition “bulk”.

m However... The position operator r is incompatible with
Born-von Karman PBCs.

m The matrix elements of r over Bloch orbitals are ill defined.

m Because of this, the problem of macroscopic electric
polarization remained unsolved until the early 1990s.

m Breakthrough (1992 —): “Modern theory of polarization”.

m Magnetic analogue (2005 —-) “Modern theory of orbital
magnetization”.
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m For an insulator, in absence of inversion symmetry, in zero
E field, we have

2e

electronic =~/
cell n € occupied

P (Wnlr|wp)

m By analogy, in absence of time-reversal symmetry, in zero
B field, it is tempting to write:
2e
M= > (walr x v|wy)

- 2¢cV
cell pe occupied

m Question: Is this the correct formula for the bulk
magnetization

m Answer: No!
There is an additional term, having no electrical analogue.
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From Wannier back to Bloch

V=AU = ()i H(K) = T HERT

e
M = “Bovy > (walr x v|wp)

n € occupied

ie
= ———— Y (wylrx Hr|wp)
hZCvce” n € occupied
ie /
= ———= dk 8ku,,k\ X H(k)\&kunk>
hZC(Zﬂ-) n € occupied

m Electrical analogy once more:

2ie
I:’electronic:_(‘;_»ﬂ Z / dk (Upk|OkUnk)

n € occupied
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The Haldanium model material
(Haldane, PRL 1988)

m Honeycomb lattice in 2d, breaks time-reversal symmetry.
m Insulator at half-filling (only the lowest band occupied).

m Zero flux through the unit cell:
The macroscopic B field is zero;
The Hamiltonian is lattice-periodical;
Bloch & Wannier orbitals exist.
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(2d, single occupancy, single band, atomic units)

m (A) Periodic “bulk” system:
i
M= —W/Bzdk (Ot % H(K)| O

m (B) Finite system of area L? cut from the bulk
(so-called “open” boundary conditions)

1 : 1
/\/lzchz/drrxl(r)_QCL2 > {enlr x Ven)

n € occupied

m (A) numerically evaluated on a dense k-point mesh;
(B) evaluated for large L values (up to 2048 sites).
Do they converge to the same limit?
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Chasing the missing term:

Localized-orbital (Boys/Wannier) analysis

o
e S ioS I
o
.

m The Boys/Wannier localized orbitals at the sample edge
carry a net current and contribute to M.
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The historical derivation

m Even the additional edge contribution can be computed
using Bloch states and PBCs, where the system has no
edge.

m This is possible only in trivial insulators:
no Chern insulators, no metals

m Formulated in this way in Vanderbilt’s textbook



The very first calculation for real materials

(D. Ceresoli, U. Gertsmann, A.P. Seitsonen, & F. Mauri, 2010)

Metal e  Expt.  FLAFW This method

LDA PEE LDA FEE
Bee-Fe [O01] D081 0053 0051 00640 0.0558
bec-Fe  [111] - - - 0.0633 0.0660
hep-Co [001] 0133 0069 0073 0.0924 0.0957
hep-Ca [100] - - - 0.0BST 0.0BGT
feeWi [111] 0088 0088 0.087  0.0315 0.0519
foe-Wi [0 - - - 0.0308 00356

TABLE IIT: Crhital magnetization M=) in g per atom of
Fermomagnetic metals parallel to the spin, for different spin ori-
entations e, L'he easy axis for e, Co and 1 are, respectively.
[001], |001] and [11l]. Experimental results from Ref 24
FLAPW results from Red, 5.

Caveat: Role of the core electrons in a pseudopotential framework
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P and M as reciprocal-space integrals

m 1992: Polarization (insulators)

2ie

POZ - (271‘ d Z/ dk U]k‘a Ujk> + P(nuclel)

m 2005-06: Orbital magnetization (including metals)

M, = wﬁz 5g Oaljk| (Hktex—21) [0pUjk)
k<H

m Do they have anything in common?
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Insulators, metals, and more

m Magnetization in a “normal” (zero-Chern-number) insulator
proof obtained via WFs:

M:—hc(i;)s > [ o O XM +(06) e

n € occupied

m Magnetization in metals & Chern insulators:

- wz 0k {cine| X [H(K)+=(0) 2] [Oind

en(k)<p
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Relationship to Hall conductivity

m Magnetization in a metal & in a Chern insulator

- wZ / llc Ot (H()-+2(0) 20 hag

Y dK i{OkUnk| x |OkUnk)
n Jen(K)<p

m This is the intrinsic part of the AHE (in metals)

m In 2d, integrated over the BZ, it gives the quantized Hall
conductivity in a Chern insulator

m What has dM/d . to do with the Hall conductivity?
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