STRUTTURA DELLA MATERIA 1

Corso di Laurea Specialistica in Fisica Computazionale Facolta' di Scienze, Universita' di Udine Anno Accademico 2003/04

II homework

1. Coesione della molecola di H₂

Si consideri la molecola di H_2 in stato fondamentale, alla sua separazione interatomica di equilibrio che è 0.74 Å. Si calcoli la quantità di carica elettronica che, in uno schema classico, si può pensare si trovi al centro dell'asse molecolare per giustificare l'energia di legame di $4.5~\rm eV$.

2. Potenziali adiabatici

Considerare una molecola biatomica con potenziale adiabatico approssimato dall'espressione analitica:

$$V(R) = -2V_0 \left(rac{1}{
ho} - rac{1}{2
ho^2}
ight)$$

dove $\rho = r/a$ (a lunghezza caratteristica e V_0 energia caratteristica, note).

Descrivere analiticamente in funzione di a e V_0 lo spettro rotovibrazionale della molecola in approssimazione di rotatore rigido.

3. Energia di dissociazione

L'energia di dissociazione della molecola di idrogeno H_2 è di 4.46 eV, mentre quella della molecola di deuterio D_2 è di 4.54 eV. Determinare l'energia di punto zero della molecola di idrogeno. (Indicazioni: il deutone ha un nucleo costituito da un protone e da un neutrone; considerare uguale la massa del protone e neutrone)

4. Stati elettronici

Si consideri la molecola $(\text{LiH})^{2+}$ (cioè LiH doppiamente ionizzata) che consiste in due elettroni in presenza di un protone e di un nucleo di Li separati dalla distanza internucleare R

- (i) qual e' la configurazione elettronica di stato fondamentale?
- (ii) Considerare il limite di nuclei separati (grandi valori di R). Scrivere l'orbitale molecolare di energia più bassa.