Condensed Matter Physics I (M. Peressi) Exercises - Drude Model

Hint: normally the Ashcroft-Mermin book uses CGS units; however, it can be convenient to use MKS(SI) units in presence of eqs. containing the resistivity (use ρ in Ω -meters, m in Kg, n in electrons/m³, e in Coulomb.

Exercise 1

1. Consider typical values of the magnetic field (H(Earth) ≈ 0.5 Gauss; H(lab) $\approx 1-10$ T). Evaluate the product $\omega_c \tau$, where ω_c is the cyclotron frequency and τ the electron relaxation time. On average, can an electron in a metal make many revolutions between collisions or not?

Exercise 2

1. Give a numerical estimate of the mean electronic velocity in case of a current density of 0.1 A/mm² flowing in a copper wire (n_{el} = 8.47 10²² cm⁻³). [v=0.007 cm/s]

Exercise 3

Consider Al at room temperature. Its electron density is $n = 18.1 \cdot 10^{22}/cm^3$ and its electrical resistivity is $\rho = 2.45 \ \mu\Omega \cdot cm$.

- 1. Find its electron relaxation time τ and electron mean free path ℓ in the Drude model. [τ =8.01 10⁻¹⁵ s; ℓ = 13 Å]
- 2. Consider AC conductivity. At which frequency w the real part of the conductivity $\sigma(\omega)$ will be 1/10 of its zero-frequency value? [$\nu = \omega/2\pi = 59.7 \ 10^{12} \text{ THz}$]

Exercise 4

Sodium (Na) in standard temperature and pressure conditions is a metal with BCC structure, density of about 0.97 g cm⁻³ and mass number = 23.

- 1. Calculate the atomic density (number of atoms per unit volume) of solid sodium. [$n_{at}{=}2.54~10^{22}~{\rm cm}^{-3}$]
- 2. Calculate the electron density. $[n_{el}=n_{at}]$
- 3. Calculate the plasma frequency. [$\omega_p = 8.99 \ 10^{15} \ \mathrm{s}^{-1}$]
- 4. If the electron gas is treated as a classical one, which is the kinetic energy at T=0° K? and at room temperature?
- 5. Given the resistivity in DC at room temperature, $\rho = 4.2 \ \mu\Omega$ cm, calculate the relaxation time τ . [$\tau = 3.3 \ 10^{-14}$ s]

Other exercises

Ex. 2 and 3 of Chapter 1 of A&M