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(3) Other Courses concerning computational Physics�
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(1) Computational Physics�



Computers in physics �

•  control of instruments, data collection 
and analysis �

• visualization �

• symbolic manipulation �

• . . . �



"……�

• numerical analysis: to solve equations which 
could not be tackled by analytical methods. 
This allows to measure theories, in a similar 
way as natural phenomena are measured by 
experiments, the ultimate goal of science 
being the insight and understanding gained 
from the comparison of these two kinds of 
measures. �

• simulations: to model and study physical 
phenomena with numerical techniques. This 
means doing virtual experiments in which our 
representation of the physical reality, though 
necessarily schematic and simplified, can be 
tuned and varied at will. �



The birth of �
computational physics�

PROBLEM: Fermi-Pasta-Ulam-Tsingou  1955�
�
�

A chain of N particles linked by springs�
(one-dimensional analogue of atoms in a crystal)�

�
�
�
�

Linear interaction (Hooke’s law): �
analytical solution �

�
there are N 'normal' modes �

(i.e., patterns of motion in which all parts of the system oscillate with the same 
frequency and with a fixed phase relation)�
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.



Example with 2 oscillators: �
'normal' modes �

More in: http://fisicaondemusica.unimore.it/Catena_di_Fermi_Pasta_Ulam.html�

http://fisicaondemusica.unimore.it/Oscillatori_accoppiati.html�



The birth of �
computational physics�

PROBLEM: Fermi-Pasta-Ulam-Tsingou  1955�
�
�

A chain of N particles linked by springs�
(one-dimensional analogue of atoms in a crystal)�

�
�
�
�

Linear interaction (Hooke’s law): �
analytical solution �

�
The energy given to a single 'normal' mode �

always remains in that mode.�
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.



The birth of �
computational physics�

PROBLEM: Fermi-Pasta-Ulam-Tsingou  1955�
�
�

in presence of a weak non linear coupling 
(quadratic or cubic correction to the linear term), 

which modes will be excited after a long 
enough time? �

�
Expected behavior based on the equipartition theorem: 
the energy will be equally distributed among all the 

degrees of freedom of the system.�
However: analytical solution impossible�
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.



The birth of �
computational physics�

PROBLEM: Fermi-Pasta-Ulam-Tsingou  1955�
Numerical solution (originally: calculations for N=5) �

Pictures from: Thierry Dauxois and Stefano Ruffo (2008), Scholarpedia, 3(8):5538. doi:10.4249/scholarpedia.5538 �
http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations and other web sites �

After initial 
excitation of the 
mode k=1 and 
157 periods, 

almost all the 
energy is back 
to this mode !!! �

Energy vs. time 
for the first 
three modes: �

K= 1 � 2� 3�

time�



Simulations as �
“virtual experiments” �

A few similarities between experiments: �



Simulations as �
“virtual experiments” �

A few similarities between experiments: �

With errors!!!�



•  Importance of simulations: “what–if” 
experiments (large flexibility in varying 
parameters; e.g. material properties can be 
studied also under conditions not accessible in 
real labs) ; predictions, not just description.�

•  Use of simulations: not “final goal”, but 
“instruments” to study and shed light on 
complex phenomena and/or systems with 
many degrees of freedom or many variables 
and parameters �

•  in the last ~4 decades simulation has 
emerged as the third fundamental paradigm 
of science, beside theory and experiment �



experience theory 

simulation 



•  “The computer is a tool for clear 
thinking” (Freeman J. Dyson) �

•  “. . . whose [of the calculations] purpose 
is insight, not numbers” (V. Hamming) �

The purposes �
of the scientific calculus�



• deterministic �
Info can be obtained both on the equilibrium 
properties and on the dynamics of the system �
�
• stochastic (Monte Carlo, MC) �
Typically to simulate random processes, �
and/or sampling of most likely events �

TWO different approaches 
for numerical simulations�



The deterministic approach�
We can write the equations of motion �

(Classical => Newton; Quantum => Schroedinger)�
�

and we know the initial condition �
�

the problem is related to the �
numerical integration of differential equations�
(or integral-differential in quantum problems)�

�
(like the FPUT problem)�

�



The deterministic approach�
Numerical integration of the eqs. of motion: �

discretization and iteration�
�

Different algorithms according whether�
the equation is 1st , 2nd order…�

(the equation for the velocity is 1st order), �
whether the force is dependent or not on the 

velocity, �
to which order…�

�
Example (classical): �



The deterministic approach�

x(1) v(1) F(1) � x(2) v(2) F(2)� x(3) v(3) F(3)� ... ... …�

F1�
F2�

F3�
F4�

Discretization of the equation of motion and iteration: �

v1�
v2�

v3� v4�



The stochastic approach�

1) Some physical processes which are 
inherently probabilistic.�

2) Many large classical systems which 
have so many variables, or degrees of 
freedom, that an exact treatment is 
intractable and not useful. �

Useful to model:�



Probabilistic physical processes�
We attempt to follow the `time dependence’ 
of a model for which change, or growth, does 
not proceed in some rigorously predefined 
fashion (e.g. according to Newton’s 
equations of motion) but rather in a 
stochastic manner which depends on a 
sequence of random numbers which is 
generated during the simulation. 

E.g.: radioactive decay 



Systems�
with many degrees of freedom �

 E.g.: Thermodynamic properties of gases�
�
Impossible and not useful to know the exact positions and 
velocities of all molecules.�
�
Useful properties are statistical averages: average energy 
of particles (temperature), average momentum change 
from collisions with walls of container (pressure), etc.�
�
The error in the averages decreases as the number of 
particles increases. Macroscopic volume of gas has 
O(10^23) molecules. Thus a statistical approach works very 
well! �



Monte Carlo 

Monte Carlo refers to any procedure which 
makes use of random numbers (*)�

Monte Carlo is used in: �
- Numerical analysis �
- Statistical Mechanics Simulation �

(*) a sequence of random numbers is a set 
of numbers which looks unpredictable but 
with well defined statistical properties�



Monte Carlo Methods:  
to calculate integrals 

“Hit or Miss” Method: Ηοw much is π ? 

A 1 

C B 

y 

x 0 

1 

Algorithm: 
 

• Generate uniform, random  
     x and y between 0 and 1 
 
• Calculate the distance from  
     the origin: d=(x2+y2)1/2 
 

• If d ≤ 1, τhit = τhit + 1 

• Repeat for τtot trials tot

hit

τ
τ

π

4    

OABC Square of Area
CA Curve Under Area x 4 

=

≈

.�
.�.� .�

.�
.�

.�

.�

.�
.�.�



A few selected examples�
of applications�

�
(here: atomistic simulations �

in condensed matter…)�



From “normal” scales…�

SIMULATION �
of the Brownian motion �
�
Sedimentation of hard spheres in a 2D 
system with walls.�
Included interactions with smaller 
particles (not shown here) representing 
the thermohydrodynamic solvent �
�
(deterministic, classical 
simulation) �

(classical) �



... colloidal systems growth on a 
substrate... �

REAL IMAGE (by �
Atomic Field Microscopy) of a 
gold colloid of about 15 nm on 
a mica substrate�

SIMULATION �
of a diffusion-limited �
auto-aggregation model 
(fractal)�

(stochastic, classical simulation) �



with organic molecules 
(thiols)�
Au 
S 

... to the nanoscale: �
passivation of nanoparticles�

Credits: J. Olmos-Asar �



… to the atomic scale �

(In collaboration �
with Surf Sci �

Reactivity Group �
of TASC)�

 Exp Low T - �
STM images�

Simulated�
STM images�

Best models�

CO2@Ni(110)�



G/Ni(111) flakes: edges passivation 

stable structure with rk reconstruction and one H atom bound to each terminal C atom 

exp DFT exp DFT

comparison exp / DFT : 
stable z structure with one H atom bound to each terminal C atom 

L. L. Patera, F. Bianchini, G. Troiano, C. Dri, C. Cepek, M. Peressi, C. Africh, G. Comelli, Nano Lett. 15, 56 (2015)

constant-height mode constant-current mode

… another example �

(In collaboration �
With TASC)�

Grafene�
@Ni(111)�



CO2 + H -> HCOO  @ Ni(110)�
(deterministic, quantum mechanical simulation)�

…including chemical reactions�



even within the condensed matter: �

• wide range of length scales: ≈12 orders of magnitude 
(nuclei/electrons/atoms/chemical bonds ~ 10−12 m, 
fracture/macroscopic mechanical phenomena ~ 100 m; 
nano / micro / meso / macroscopic scales) �

• wide range of time scales: ≈12 orders of magnitude 
(nuclei/electrons/atoms/chemical bonds ~ 10−12 s, 
fracture/macroscopic mechanical phenomena ~ year)�

• wide range of chemical-physical properties: 
structural, elastic, vibrational, electronic, dielectric, 
magnetic, optical, thermal . . . �

• wide range of materials: different phases, traditional 
materials (crystalline / amorphous , metals/ 
semiconductors / insulators . . .), new materials. . . �



different kind of 
interactions�

•  Classic�

• Quantum �

different approaches �
•  Deterministic�

•  Stochastic�



…and also different specific 
techniques �

corresponding to different size/time scales: �

• continuous models (for macroscopic systems) �

• atomistic simulations �

-  ab - initio techniques (or “first-principles”): up to 
~10^3 atoms, 10 ps �

-  Semiempirical techniques: up to 10~7 atoms, 1 ms�

-  models at different levels�



Some techniques and systems are 
not computationally very demanding �
(our experiments will be quite small and simple)�

�
others, they are…�

…and different computational 
workload�



1) Tianhe-2 (MilkyWay-2)  NUDT	

(National Super Computer Center in Guangzhou) 
16,000 nodes, with 3,120,000 cores with CPU+GPU 
(each node: different Intel Xeon types of processors 
and GPU, like those for videogames!!!) 
Peak performances: up to 34 PFlop 
(peta = 1015) 
 
 
(1 Flop = “floating-point” operation / second) 

High performance computing 
 

Dated: November 2015 



163.840 computing cores and 
peak performace of 2,1 PFlops 

Dated: November 2015 

High performance computing 
 

37) FERMI - BlueGene/Q IBM, CPU+GPU 
�
(usage with grants; agreement also with UniTS)�



(2) This course �



This course �
•  IS NOT a course on Information 

Technology, Computer Science, 
Programming languages…�

•  BUT a PHYSICS LAB. �

•  focusing on modeling, problem 
solving and algorithms �

•  Not exhaustive, of course…�



This course �
•  Stochastic approach,       
classical interactions       
(mainly) �

•  + basic ingredients of the 
deterministic approach     
(Molecular Dynamics) and          
quantum mechanics       
(Variational Monte Carlo)             
(1 week each topic)�



Web page of the course�
http://www-dft.ts.infn.it/̃peressi/comp-phys.html�

�
With:�

-  Important announcements�
-  Detailed contents of each lecture�
-  Lectures notes �
-  Exercises�
-  Info about textbooks �
-  links, tutorials (for surviving with Linux/Unix, 

Fortran90, gnuplot…)�
-  Info about exams�

Use it! �



Properties and generation of Random Numbers with different distributions.･�

Monte Carlo simulation of Random Walks.･ �

Numerical integration in 1 dimension: deterministic and stocastic algorithms;･ �

Monte Carlo algorithms.･ �

Error estimate and reduction of the variance methods.･ �

Metropolis algorithm for arbitrary random number generation.･ �

Metropolis method in the canonical ensamble.･ �

Ising model and Metropolis-Monte Carlo simulation.･ �

Classical fluids: Monte Carlo and Molecular Dynamics simulation of hard spheres and Lennard-Jones fluids.･�

Microstates and macrostates: efficient algorithm for the numerical calculation of entropy.･ �

Variational Monte Carlo in quantum mechanics (basics).･ �

Lattice gas: vacancy diffusion in a solid.･ �

Caos and determinism: classical billiards and caotic billiards, logistic maps; Lyapunov exponents.･ �

Fractals: diffusion and aggregation, models for surface growth simulation. Percolation. 



Available computational 
resources: INFIS�

http://df2.units.it/?q=it/modulistica �
Or: �
http://df2.units.it/?q=it/node/2919/  �
(DIDATTICA => SERVIZI AGLI STUDENTI �

Remote connection: �
$ssh username@w01.infis.units.it �
�
Your address at INFIS: �
username@infis.univ.trieste.it �
nome.cognome@infis.univ.trieste.it �
�



Where are the examples�
•  You can copy the source codes lecture by lecture (wait for 

updates!!! Do not copy everything today!!!) from: �

http://www.infis.units.it/~peressi/  (PUBLIC ACCESS) �

•  on INFIS, you find the source codes in the directory (you 
need to have an account on INFIS): �

$/home/peressi/comp-phys �

and subdirectories (I-basic, etc. etc….)�

From your directory, do: �

$ cp /home/peressi/comp-phys/I-basics/* .�

(this last “.” means: here, with the same name)�

�



fortran compilers on INFIS�
•  g95 or gfortran (free):  ([] for optional) �

  $ g95 [-o test.o] test.f90             or �

  $ gfortran [–std=f95] [-o test.o] test.f90 �

•  OTHERS (NOT SUPPORTED ON INFIS): �

   ifort (Fortran Intel compiler, NOT free)   �

   F (free; useful options: -ieee=full for floating point 
exception manipulation)�

•  executables (e.g. test.o or a.out by default):    �

   $ ./a.out  (or $bash a.out)�



A few useful �
UNIX (Linux, MacOSx,…) commands: �

Check your space! �

$ quota   �

or “du” (displays disk usage statistics): �

$ du ~ | more�

(if “-k” flag is specified, the number of 1024-byte 
blocks used by the file is displayed): �

$ du -k ~ | more    (Last line shows the total)�

$ find . -size +20000 –print (to identify big files)�

�



3) Other Courses concerning 
computational Physics�

 in our Physics training track �
�

•  complementary to “Classical simulations 
of many body systems” (E. Smargiassi, II 
semester I year) (deterministic, classical)�

•  complementary to “Numerical Methods 
of Quantum Mechanics” (P. Giannozzi, II 
semester I year) (deterministic, quantum)�


