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1 Introduction - Electronic transport - generalities

Up to here, we have applied the semiclassical model of electron dynamics to the cases of :
- static electric fields
- uniform and static magnetic fields
- uniform and static electric and magnetic crossed fields

From now on we will treat a more general case (presence of E, H, ∇T , functions of r
and t) but always considering:

- Independent electrons
- semiclassical motion between collisions
- no interband transition (conservation of band index n)
- no spin change (conservation of spin).

2 Sources of electronic scattering (collisions)

Ch 16 §I

• Perfect periodic crystal =⇒ NO COLLISIONS

• INDEPENDENT ELECTRON PICTURE (here!): two kinds of collisions:

1. point defects, impurities, vacancies

2. thermal effects =⇒ vibrations (small!) of electrons around their equilibrium
positions (amplitude of vibrations depending on T : important scattering source
in DC and main responsible of the T dependence of conductivity around R.T.;
as T → 0K, defects dominate)

• BEYOND INDEPENDENT ELECTRON APPROXIMATION:
e−–e− scattering (e−–e− interactions) that are however:
<< T -dependent lattice vibrations effects at hight T ;
<< impurity effects at low T

3 Non-equilibrium distribution function

A&M Ch. 13 §Introduction p 244 + Ch. 16 §IV p 319 + CH. 16 §I p 315



3.1 Generalities

We consider a non equilibrium distribution function g(r,k, t) in phase space
(in general, due to applied fields or temperature gradients), Is the occupancy of state k at
position r and time dt.
External forces act to drive the distribution function away from equilibrium.
The limiting case at equilibrium, with NO applied fields, NO T gradients), corresponds
to:

g0(k) = f(E(k)) =
1

e(E(k)−µ)/kBT + 1
(1)

AIM: derive a closed expression for g(r,k, t) (when possible!) using:
- assumption of semiclassical equations of motion between collisions
- simple treatment of collisions

GENERALIZATION (the simplest possible!) OF THE RELAXATION TIME:
We continue to assume that an e− experiences a collision in a time interval dtwith
probability dt/τ , but τ is in general τ(r,k).
This sounds reasonable, since –even in the independent electron approximation– collisions
are not simply random and uncorrelated. They depend on the distribution of the other
e−, at least as far as occupation of levels is concerned with!

3.2 Differential equation for g(r,k, t)

We construct in general g(r,k, t) at time t from its value at time t′ = t− dt
a) first assuming NO collision during the infinitesimal time interval dt
b) consider r and k evolving according to the semiclassical equations of motion:

ṙ = v(k) (2)

h̄k̇ = −e(E +
1

c
v ×H) = F(r,k). (3)

We consider explicitly the time evolution of r and k from t′ to t (linear expansion in dt):

t′ = t− dt −→ t (4)

r′ = r− v(k)dt −→ r (5)

k′ = k− F

h̄
dt −→ k (6)

The number of e− that occupy the volume of phase space ∆r∆k centered in r and k at
the time t is:

∆r∆k

8π3
g(r,k, t). (7)

(we do not consider spin degeneracy, since we focus on a precise spin channel and we
remain in that one). Analogously, the number of e− occupying the volume of phase space



∆r′∆k′ centered in r’ and k’ at the time t′ is:

∆r′∆k′

8π3
g(r′,k′, t′) =

∆r′∆k′

8π3
g

(
r− v(k)dt,k− F

h̄
dt, t− dt

)
. (8)

If there are no collisions (no scattering), the trajectory of the e− in phase space is
such that all the e− that are in the volume of phase space ∆r′∆k′ centered in r’ and k’ at
the time t′, are also in the volume of phase space ∆r∆k centered in r and k at the time
t, therefore:

∆r∆k

8π3
g(r,k, t) =

∆r′∆k′

8π3
g

(
r− v(k)dt,k− F

h̄
dt, t− dt

)
. (9)

For the Liouville theorem:
∆r∆k

8π3
=

∆r′∆k′

8π3
(10)

therefore in absence of scattering:

g(r,k, t)− g
(

r− v(k)dt,k− F

h̄
dt, t− dt

)
= 0. (11)

Finally, we consider the expansion of g
(
r− v(k)dt,k− F

h̄
dt, t− dt

)
in terms of g(r,k, t)

up to the linear term in dt and we get:

g

(
r− v(k)dt,k− F

h̄
dt, t− dt

)
= g(r,k, t)− ∂

∂r
g ·v(k)dt−− ∂

∂k
g · F
h̄
dt−− ∂

∂t
g dt (12)

therefore in absence of scattering we get:

∂

∂r
g · v(k) +

∂

∂k
g · F

h̄
+
∂

∂t
g = 0 (13)

Introducing collisions, i.e., generalizing in presence of scattering, the right hand
side of the previous equation is no longer zero, but it is the contribution due to scattered
electrons:

∂

∂r
g · v(k) +

∂

∂k
g · F

h̄
+
∂

∂t
g︸ ︷︷ ︸ =

(
∂g

∂t

)
coll︸ ︷︷ ︸ (14)

where the left side is the DRIFT term and the right side is the COLLISION term.

This is the celebrated BOLTZMANN EQUATION.

If we specify the forces and the collision term, we have an initial value problem to deter-
mine g(r,k, t). The difficult part now is related to the explicit knowledge of the collision
term, that in general could be very complicate.
The simplest possible approximation is the relaxation time approximation to replace the
right hand side term with something much more simple, but this will come later on.



3.3 Change of g(r,k, t) due to collisions

A&M CH. 16 §IV

We assume that the collisions are very well localized in space and time, so that
those occurring to electrons in r at time t are totally determined by the properties of
the system in the neighborhoods of r and close to time t =⇒ for simplicity, we drop the
explicit dependence of g(r,k, t) on r and t in what follows.

We consider therefore collisions that change istantaneously the crystal momentum from
a volume ∆k centered in k to a volume ∆k’ centered in k’. We distinguish scattering
events that increase the occupancy of electronic states at k and those that decrease it:

(
∂g

∂t

)IN
coll

> 0,

(
∂g

∂t

)OUT
coll

< 0. (15)

We do not need to specify which is the scattering mechanism; it will be described in any
case by some scattering matrix Wkk′ for one electron suffering a scattering from a state k
to k’.

OUT: The e− that are scattered OUT from the volume ∆k centered in k will go somewhere
else in phase space, in volumes ∆k’ centered in all the possible k’, provided that
the states are available (not already occupied, because the Pauli principle must be
satisfied). Therefore, the contribution of such scattering events to the variation of
g(r,k, t) is:

(
∂g

∂t

)OUT
coll

= −g(k)
∫ ∆k′

8π3
Wkk′ (1− g(k′)) (16)

where we have also introduced a weighting factor g(k) which is the occupancy of
the states in the volume ∆k centered in k and the sign − since it is a reduction in
the occupancy.

IN: The e− that are scattered IN the volume ∆k centered in k come from somewhere
else in phase space, from volumes ∆k’ centered in all the possible k’, provided that
those states are filled. Therefore, the contribution of such scattering events to the
variation of g(r,k, t) is:

(
∂g

∂t

)IN
coll

= (1− g(k))
∫ ∆k′

8π3
Wk′kg(k′) (17)

where we have also introduced a weighting factor (1-g(k)) which is the availability
of the states in the volume ∆k centered in k (they should not be already occupied,
because the Pauli principle must be satisfied).

Keep in mind that these scattering events are supposed to be LOCALIZED (depending
only on r and t, not on r’ and t’). The total balance of the scattering events gives:



(
∂g

∂t

)
coll

= −
∫ ∆k′

8π3
{Wkk′g(k) [1− g(k′)]−Wk′kg(k′)[1− g(k)]} (18)

4 Relaxation time approximation

If we consider now that the scattering OUT events depend only locally on the distribution
g(k) around k, and that the scattering IN events depend only on the local equilibrium
distribution function g0(k) (local equilibrium prior to the collisions), we can dramatically
simplify the IN and OUT collisions terms as follows:

(
∂g

∂t

)OUT
coll

= −g(k)

τ(k)
(19)

(
∂g

∂t

)IN
coll

=
g0(k)

τ(k)
(20)

where τ(k) is some relaxation time. The final result:

(
∂g

∂t

)
coll

≈ −g(k)− g0(k)

τ(k)
(21)

which gives the Boltzmann equation in this form:

∂

∂t
g +

∂

∂r
g · v(k) +

∂

∂k
g · F

h̄
= − δg

τ(k)
(22)

suggests that collisions tend to restore the equilibrium, balancing the effect of the drift
terms.

5 Scattering from isotropic materials

In case of isotropic materials and stationary state and keeping the relaxation time
approximation, it is convenient to focus on the variation of g(k), by defining:

δg(k) = g(k)− g0(k) (23)

In this case the equilibrium distribution function g0(k) is dependent neither on r nor on
t, but only on k. Therefore, since:

∂δg

∂t
=

∂g

∂t
(24)

∂δg

∂r
=

∂g

∂r
(25)

∂δg

∂k
=

∂(g − g0)

∂k
(26)



we finally get that the Boltzmann equation reduces to:

∂

∂t
δg +

∂

∂r
δg · v(k) +

∂

∂k
(g0 + δg) · F

h̄
= − δg

τ(k)
(27)

6 Applications and examples

Remaining within the assumption of SMALL FIELDS, we will discuss the following cases:

• Isotropic perturbations =⇒ we can use Eq. 27

– D.C., static and uniform E (stationary state)

– A.C., using Linear Response Theory

• Materials with ∇rT 6= 0 and µ = µ(r) =⇒ we must use Eq. 22

– D.C., static and uniform E (stationary state)

– ∇T = 0 but µ = µ(r); applied static and uniform E and H

6.1 Isotropic perturbation:
static and uniform E applied (stationary state)

In case of stationary state with static and uniform E applied, Eq. 27 further simplifies,
since ∂

∂t
δg=0 (stationary state) and ∂

∂r
δg=0 (deviations from the equilibrium cannot

depend on the spatial point). Furthermore, ∂
∂k
δg ·E must be neglected, being infinitesimal

of second order in E, so that the gradient in k contains only the contribution:

∂

∂k
g0 = ∇kE(k)

∂g0

∂E
= h̄v(k)

∂g0

∂E
(28)

Therefore we get:

δg = eE · v(k)τ(k)
∂g0

∂E
(29)

The equation that relates current and electron velocity, which is j = −nev in the Drude
model, becomes:

j = −e
∑
k

δg(k)v(k) = −e2
∫ dk

(2π)3
(E · v(k)) v(k)τ(k)

∂g0

∂E
(30)

We can see from the previous eq. the tensorial character of the conductivity:

ji =
∑
j

σijEj (31)

with

σij = e2
∫ dk

(2π)3
τ(k)vi(k)vj(k)

[
− ∂g0

∂E(k)

]
(32)



Note:

• Anisotropy: in general j is NOT parallel to E, at variance with free electron case.
In case of cubic materials, however, the expression of σ is simplified: σij = δijσ.

• Filled bands are inert: only deviations from full filling are important

• Importance of Fermi surfaces: Although the integral seems to be done over the

whole BZ, the term

[
∂g0

∂E(k)

]
under the integral is non zero only around the Fermi

surface (since it is basically ∝ δ(E − EF )). The conductivity is determined by the
conduction band in an interval of size kBT around EF .

• Particular case: parabolic band and effective mass. Considering that: (i)

− ∂g0

∂E(k)
= δ(E − EF ); (ii) averaging over all the electrons, 〈vivj〉 = 〈v2

i 〉δij = 1
3
v2δij;

(iii) accounting for a spin factor of 2 if the two spin channels equally contribute to
the current; we have:

σ = 2e2
∫ dk

(2π)3
τ(k)

1

3
v2(k)δ(E − EF )

=
e2

12π3

∫
Fermi
surf

τ(k)v2(k)
dS

|∇kE(k)|

=
e2

12π3

∫
Fermi
surf

τ(k)v(k)
1

h̄
dS (33)

Furthermore, considering that in case of parabolic and isotropic band, the Fermi surface
is a Fermi sphere with radius kF and the integral of dS over such surface simply gives the
surface area, we finally get:

σ =
e2

12π3
τFvF

1

h̄
4πk2

F =
ne2τF
m∗

(34)

which resembles the well known result for free electrons, BUT with m→ m∗ and τ → τF .
Attention: in the final result, the fact that ONLY the electrons around EF do contribute
to the current is hidden, but it is clear by following the derivation!

6.2 Isotropic perturbation:
A.C. conductivity, using Linear Response Theory

A&M, Ch 13, p. 252

We start again from the linearized eq. 27 for δg, but since now E is time dependent, we

must keep all the terms in
∂

∂t
. As in the previous case, ∂

∂k
δg ·E must be neglected, being

infinitesimal of second order in E, so that we get:



∂

∂t
δg +

∂

∂r
δg · v(k)− eE

h̄
· ∂g

0

∂k
= − δg

τ(k)
(35)

Consider E(r, t) = E0e
i(q·r−wt). In case of linear response regime, we have: δg(r,k, t) =

Φ(k)ei(q·r−wt). Substituting in eq. 35, we get:

−iwΦ + v · iqΦ− e

h̄
E0

∂g0

∂k
= −Φ

τ
(36)

from which, using eq. 28, we obtain:

Φ(k) =
eτE0 · v

1− iτ(w − q · v)

∂g0

∂E
(37)

Considering the expression for the current in terms of the electron velocity (always remind
the analogous in the Drude model, j = −nev):

j = −e
∫ dk

(2π)3
δg(k)v(k)

= −e
∫ dk

(2π)3
Φ(k)ei(q·r−wt)v(k)

= −e
∫ dk

(2π)3

eτE · v
1− iτ(w − q · v)

∂g0

∂E
v(k) (38)

and the expression for the current in terms of conductivity and electric field (eq. 31), we
get:

σij = e2
∫ dk

(2π)3

τ(k)vi(k)vj(k)

1− iτ(k) (w − q · v(k))

[
− ∂g0

∂E(k)

]
(39)

which reduces to the static case previously discussed (eq. 32) when q → 0 (long
wavelengths, field uniform in space) and w → 0 (static limit).

6.3 Anisotropic material (∇T 6= 0, µ = µ(r))
static and uniform E (stationary state)

In this case also g0 depends on r, so that we must use eq. 22. We have:

∂g

∂r
=
∂g

∂µ
· ∇µ+

∂g

∂T
· ∇T (40)

and since, being consistent with the linear expansion in the perturbative terms:

∂g

∂µ
≈ ∂g0

∂µ
=

g0

kBT
e
E−µ
kBT

∂g

∂T
≈ ∂g0

∂T
=
E − µ

(kBT )2
(g0)2kBe

E−µ
kBT (41)



Then, since
∂g

∂E
≈ ∂g0

∂E
= −(g0)2

kBT
e
E−µ
kBT , we can express the right-hand side terms of eq. 41

in terms of
∂g0

∂E
, obtaining:

∂g

∂µ
≈ −∂g

0

∂E
∂g

∂T
≈ −E − µ

T

∂g0

∂E
(42)

Similarly, also
∂g

∂k
can be expressed in terms of

∂g0

∂E
, obtaining:

∂g

∂k
=
∂g

∂E
∂E
∂k
≈ ∂g0

∂E
∂E
∂k

=
∂g0

∂E
h̄v(k). (43)

Substituting in eq. 22 and considering the stationary regime

(
∂g

∂t
= 0

)
, we get, a part

from terms of higher order in ∇rT and E:

τ(E(k)) v(k) ·
(
∇rµ+

E − µ
T
∇rT + eE

)(
−∂g

0

∂E

)
= g0(k)− g(k) (44)

which is eq. (13.43) of A&M book (Ch. 13.2).

6.4 Anisotropic material (∇T = 0 but µ = µ(r))
static and uniform E and H (stationary state)

For the sake of simplicity, we consider now ∇T = 0. We can start from the last eq. 44.

The external force term, eE, must be substituted with eE +
1

c
v ×H. It is interesting to

notice that v · v ×H = 0, so that the external applied magnetic field has NO EFFECT!
Furthermore, if we consider the case of a parabolic and isotropic band, so that

E(k) =
h̄2k2

2m∗
, we have that v =

h̄k

m∗
(note that only in this approximation v is parallel to

k!), and eq. 44 becomes:

τ(E(k))

(
−∂g

0

∂E

)
(∇rµ+ eE)

h̄

m∗︸ ︷︷ ︸ ·k = g0(k)− g(k). (45)

The part ︸︷︷︸ in the left-hand side term is dependent only on E , so that we can rewrite

the last equation in a very simplified form:

a(E) · k = g0(k)− g(k). (46)

which is eq. (16.26) of A&M book.


