Condensed Matter Physics I final written test academic year 2012/2013 January 28, 2013

(Time: 3 hours)

NOTE: Give all the steps necessary to understand in detail the solution procedure. Answers with the final result only or with insufficient details will not be considered valid.

Exercise 1: Crystalline structures

Consider a 2D solid with primitive lattice vectors $\vec{a}_1 = a(1,0)$ and $\vec{a}_2 = a\left(\frac{1}{2},1\right)$.

- 1. Calculate the area of the primitive cell.
- 2. Find the primitive vectors of the reciprocal lattice \vec{b}_1 and \vec{b}_2 .
- 3. Make a *precise* drawing in the reciprocal space of the first and second Brillouin zones, and calculate their areas.
- 4. Consider now to have a Bravais lattice with the primitive lattice vectors as above and a basis of two atoms within the primitive cell, with $\vec{d_1} = (0,0)$ and $\vec{d_2} = \left(\frac{a}{2},0\right)$ and atomic form factors f_1 and f_2 respectively. Calculate explicitly the structure factor $S(\vec{K})$.
- 5. In case of $f_1 = f_2$, on which reciprocal lattice vectors \vec{K} the structure factor is not vanishing? (Give the expression of such \vec{K} vectors)
- 6. To which structure in the direct space do they correspond? Comment the result.

Exercise 2: Band structure of a 1D solid

Consider a 1D band whose energy is given by $E(k) = E_0 - t \cos(ak)$.

- 1. Calculate explicitly the density of states g(E) and make a plot. Check whether (and, in case, where) g(E) has the expected van Hove singularities.
- 2. Calculate explicitly the group velocity v(k). Calculate the effective mass $m^*(k)$ as a function of k in the above model and in particular find the values of m^* at the extrema of the band and discuss the character of the corresponding charge carriers.
- 3. Suppose the band is 1/3 occupied. What is v_F , the group velocity at the Fermi level?
- 4. Calculate the Fermi energy for 0.5, 1, and 2 electrons per unit cell.
- 5. For one electron per unit cell, calculate the low-temperature specific heat (per cell)!
- 6. Consider always a 1D solid, but well described by a free electron picture. Calculate the Fermi energy in case of 1 and 2 electrons per unit cell. Comment his behaviour in terms of conductivity, justifying your answer.