Condensed Matter Physics I II written test academic year 2009/2010 January 12, 2011

(Time: 3 hours)

NOTE: Give all the steps necessary to understand in detail the solution procedure. Answers with the final result only or with insufficient details will not be considered valid.

Exercise 1: Electrons in periodic structures

- 1. Consider free electrons ("empty lattice") in a 2D square lattice. Write the expression and plot the energy bands along a path from Γ to the midpoint X of a side of the first Brillouin zone, to the corner (L) and back to Γ . Give in particular the value of the band at the high symmetry points listed above. Show that E(L) is higher than E(X) by a factor of 2.
- 2. Consider a 2D square lattice solid made of divalent atoms. Calculate the Fermi energy E_F , and report it in the plot obtained in (1) and draw the corresponding Fermi surface (circle) in (k_x, k_y) space with respect to the Brillouin zones.
- 3. Consider now a 3D simple cubic lattice. Which is the ratio between the value of the first energy band (i) at a corner (R) of the first Brillouin zone and (ii) at the midpoint of a side or (iii) of a face of the zone in this case?
- 4. Write the expression and a *detailed* plot (*) the *first two* bands along a path from Γ to the corner (R) of the first Brillouin zone. Give in particular the value of the bands at Γ and R. (* *show where is the minimum of each band*)
- 5. Consider a 3D cubic lattice solid made of divalent atoms. Calculate the Fermi energy E_F , and discuss the occupation of the first two bands. (Note that the studying the bands along Γ -R is not enough...)
- 6. If we now consider a non zero crystalline potential which opens a gap at the Bragg plane, is it possible for a solid in (5) to be an insulator? In case of positive answer, which is the condition?

Exercise 2: Weak potential

Consider a square lattice in 2D with the crystal potential

$$U(x,y) = -2U_0 \left[\cos\left(\frac{2\pi}{a}x\right) \cos\left(\frac{2\pi}{a}y\right) \right].$$

- 1. Calculate the Fourier transform $U_{\mathbf{G}}$ for a generic \mathbf{G} of the reciprocal lattice (*Hint: write trigonometric functions in terms of exponentials*).
- 2. Which is to the first order in U_0 the effect on the energy bands at $\mathbf{G_1}/2$, where $\mathbf{G_1}$ (one of the star of) the shortest reciprocal lattice vectors?
- 3. What can you say about the effect of this potential at the corner of the Brillouin zone?

Exercise 3: Tight-binding model

1. Consider a FCC lattice with a s-band given by:

$$E(k) = E_s - \beta - 4\gamma \left(\cos \frac{k_x a}{2} \cos \frac{k_y a}{2} + \cos \frac{k_y a}{2} \cos \frac{k_z a}{2} + \cos \frac{k_z a}{2} \cos \frac{k_z a}{2} \right)$$

- 2. Write the expression of the Bloch velocity for this band.
- 3. Show explicitly that the velocity for **k** lying on the face of the Brillouin zone containing $X = \frac{2\pi}{a}(1,0,0)$ is parallel on such face (the answer will be considered valid only if fully justified by calculations)