Electrons in crystals Final written test academic year 2012/13 June 11, 2013

(Time: 3 hours)

Exercise 1: Free electrons - Sommerfeld model

Copper (Cu) in normal temperature and pressure conditions is a metal with FCC structure and mass density of about 8.96 g cm⁻³. It has an average mass number of 63.55 and Fermi energy of 7.00 eV.

- 1. From the Fermi energy, derive the density n of the free electrons.
- 2. Using the Sommerfeld expansion, calculate the electronic contribution to the specific heat at room temperature.
- 3. Using now its mass density and its mass number, calculate the *atomic* density n_{at} . Using this result and the result in (1), calculate the average number of free electrons per atom. Is it what you would expect?

Exercise 2: Crystal lattices; Diffraction

- 1. The lattice parameter of a cubic crystal is $a_0=2.62$ Å. Determine the Bragg angle correspondent to the reflection from planes (100), (110), (200) and (211) when the wavelength of the incoming beam is $\lambda=1.54$ Å.
- 2. Knowing that, for the same wavelength, the Bragg reflection angle from (110) planes of Iron (BCC structure) is 22°, calculate the lattice parameter of Iron.
- 3. Consider the 2D lattice in the figure below, made of 3 different atomic species A, B, and C, occupying the sites of a triangular lattice. Let d be the nearest neighbour distance. Write the formula unit $(A_n B_m C_\ell \text{ with } m, n, \ell = ...?)$, describe the unit cell, sketch it in the figure, giving a possible choice of the primitive translation vectors $\{\mathbf{a}_i\}$ and the basis vectors $\{\mathbf{d}_i\}$ and calculate its area.

	В		С		А		В		С	
С		A		В		С		A		В
	В		С		A		В		С	
С		A		В		С		A		В
	В		С		A		В		С	

Exercise 3: Electrons in 2d: Fermi surfaces, weak potential

- 1. Consider a two-dimensional metal with rectangular Bravais lattice with basis vectors $\mathbf{a_1} = (a,0)$ and $\mathbf{a_2} = (0,b)$, with a=4Å and a=2b. Give the basis vectors $\mathbf{b_1}$ and $\mathbf{b_2}$ of the reciprocal lattice (using cm^{-1}) and sketch the first Brillouin zone.
- 2. Consider free electrons, give the general expression of the Fermi "sphere" (or better, "circle", in 2d) as a function of the electron density; then, calculate explicitly the numerical value of its radius in the present case, considering one electron per unit cell.
- 3. Draw such free-electron Fermi "sphere" in the same (k_x, k_y) plot of the first Brillouin zone, showing and specifying whether it is totally within the first Brillouin zone or not. If not, make a sketch concerning *where* and *how* it would be modified by the presence of a weak periodic potential, and a sketch of a possible second band within the first Brillouin zone.

Exercise 4: Tight-binding model

Consider s-type electrons in a 1D lattice with lattice spacing a. Use a tight binding model with first and second neighbor hopping and no overlap. With reference to the definition $\gamma(\mathbf{R})$ in the texbook, consider: $\gamma(\mathbf{R}_{NN})=t$ where \mathbf{R}_{NN} is between two nearest beighbors, $\gamma(\mathbf{R}_{NNN})=t'$ where \mathbf{R}_{NNN} is between two next- nearest beighbors, otherwise $\gamma(\mathbf{R})=0$.

1. Show that the explicit expression for the energy band (using $E_s - \beta \equiv E_0$ (see again the textbook for the definition of β) is:

$$E(k) = E_0 - 2[t \cos(ka) + t' \cos(2ka)]$$

- 2. Consider t' = -t and make a plot in the first Brillouin zone, identifying and writing the maxima and minima points.
- 3. Calculate the effective mass in those points.

NOTE:

- Give all the steps necessary to understand in detail the solution procedure. Answers with the final result only or with insufficient details will not be considered valid.
- When required, numerical evaluations should be given exactly with 3 significant figures, if not otherwise indicated.