Metodi Matematici della Fisica

Prova III A.A. 2015-2016

- 1. Usando la successione $D_n(x) := n D(nx)$ che approssima la delta di Dirac $\delta(x)$, con $D(x) = \frac{1}{\sqrt{\pi}} \mathrm{e}^{-x^2}$, si provi che la trasformata di Fourier $\hat{\delta}(p)$ è la funzione costante $\frac{1}{\sqrt{2\pi}}$.
- 2. Sia \hat{p} l'operatore sulle funzioni $\psi(x)$ a quadrato sommabile su \mathbb{R} , con derivate $\psi^{(k)}(x)$, $k \geq 1$, anche a quadrato sommabile, tale che $(\hat{p}\psi)(x) = -i\psi'(x)$. Usando la trasformata di Fourier,

$$\mathcal{F}[\psi](p) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathrm{d}x \,\mathrm{e}^{-ipx} \,\psi(x) ,$$

e l'anti-trasformata di Fourier,

$$\mathcal{F}^{-1}\left[\mathcal{F}[\psi]\right](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathrm{d}p \,\mathrm{e}^{ipx} \,\mathcal{F}[\psi](p) = \psi(x) ,$$

si provi che

$$\left(e^{i\alpha\hat{p}}\psi\right)(x) = \psi(x+\alpha) \qquad \forall \alpha \in \mathbb{R} .$$