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Standard mean-field approach

Consider the spin-1/2 Heisenberg model on a generic lattice

H =
X

ij

JijSi · Sj

In a standard mean-field approach, each spin couples to an effective field generated by
the surrounding spins:

HMF =
X

ij

Jij {〈Si 〉 · Sj + Si · 〈Sj〉 − 〈Si 〉 · 〈Sj〉}

However, by definition, spin liquids have a zero magnetization:

〈Si 〉 = 0

How can we construct a mean-field approach for such disordered states?

We need to construct a theory in which all classical order parameters are vanishing
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Halving the spin operator

• The first step is to decompose the spin operator in terms of spin-1/2 quasi-particles
creation and annihilation operators.

• One possibility is to write:

S
µ
i = 1

2
c
†
i,ασµ

α,βci,β

σµ
α,β are the Pauli matrices

σx =

„

0 1
1 0

«

σy =

„

0 −i

i 0

«

σz =

„

1 0
0 −1

«

c
†
i,α (ci,β) creates (destroys) a quasi-particle with spin-1/2

These may have various statistics, e.g., bosonic or fermionic

At this stage, splitting the original spin operator in two pieces is just a formal trick.
Whether or not these quasi-particles are true elementary excitations is THE question
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Fermionic representation of a spin-1/2

• A faithful representation of spin-1/2 is given by:

S
z
i =

1

2

“

c
†
i,↑ci,↑ − c

†
i,↓ci,↓

”

S
+
i = c

†
i,↑ci,↓

S
−
i = c

†
i,↓ci,↑

{ci,α, c†
j,β} = δijδαβ

{ci,α, cj,β} = 0

c
†
i,↑ (or c

†
i,↓) changes Sz

i by 1/2 (or −1/2)
and creates a “spinon”

• For a model with one spin per site, we must impose the constraints:

c
†
i,↑ci,↑+c

†
i,↓ci,↓ = 1 ci,↑ci,↓ = 0

• Compact notation by using a 2 × 2 matrix:

Ψi =

"

ci,↑ c
†
i,↓

ci,↓ −c
†
i,↑

#

S
µ
i = −

1

4
Tr

h

σµΨi Ψ
†
i

i

G
µ
i =

1

4
Tr

h

σµΨ†
i Ψi

i

= 0
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Local redundancy and “gauge” transformations

S
µ
i = −

1

4
Tr

h

σµΨi Ψ
†
i

i

Si · Sj =
1

16

X

µ

Tr

h

σµΨi Ψ
†
i

i

Tr

h

σµΨj Ψ
†
j

i

=
1

8
Tr

h

Ψi Ψ
†
i Ψj Ψ

†
j

i

• Spin rotations are left rotations:

Ψi → Ri Ψi

The Heisenberg Hamiltonian is invariant under global rotations

• The spin operator is invariant upon local SU(2) “gauge” transformations,
right rotations:

Ψi → Ψi Wi

Si → Si

There is a huge redundancy in this representation

Affleck, Zou, Hsu, and Anderson, Phys. Rev. B 38, 745 (1988)
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Mean-field approximation

• We transformed a spin model into a model of interacting fermions
(subject to the constraint of one-fermion per site)

• The first approximation to treat this problem is to consider a mean-field decoupling:

Ψ†
i Ψj Ψ

†
j Ψi → 〈Ψ†

i Ψj 〉Ψ
†
j Ψi + Ψ†

i Ψj 〈Ψ
†
j Ψi 〉 − 〈Ψ†

i Ψj 〉〈Ψ
†
j Ψi 〉

We define the mean-field 2 × 2 matrix

U
0
ij =

Jij

4
〈Ψ†

i Ψj 〉 =
Jij

4

"

〈c†
i,↑cj,↑ + c

†
i,↓cj,↓〉 〈c†

i,↑c
†
j,↓ + c

†
j,↑c

†
i,↓〉

〈ci,↓cj,↑ + cj,↓ci,↑〉 −〈c†
j,↓ci,↓ + c

†
j,↑ci,↓〉

#

=

"

χij η∗
ij

ηij −χ∗
ij

#

• χij = χ∗
ji is the spinon hopping

• ηij = ηji is the spinon pairing
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Mean-field approximation

The mean-field Hamiltonian has a BCS-like form:

HMF =
X

ij

χij(c
†
j,↑ci,↑ + c

†
j,↓ci,↓) + ηij(c

†
j,↑c

†
i,↓ + c

†
i,↑c

†
j,↓) + h.c.

+
X

i

µi (c
†
i,↑ci,↑ + c

†
i,↓ci,↓ − 1) +

X

i

ζi c
†
i,↑c

†
i,↓ + h.c.

• {χij , ηij , µi , ζi } define the mean-field Ansatz

• At the mean-field level:

• χij and ηij are fixed numbers

• Constraints are satisfied only in average

At the mean-field level, spinons are free.
Beyond this approximation, they will interact with each other

Do they remain asymptotically free (at low energies)?
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Redundancy of the mean-field approximation

• Let |ΦMF (U0
ij )〉 be the ground state of the mean-field Hamiltonian

(with a given Ansatz for the mean-field U0
ij )

• |ΦMF (U0
ij )〉 cannot be a valid wave function for the spin model

(its Hilbert space is wrong, it has not one fermion per site!)

• Let us consider an arbitrary site-dependent SU(2) matrix Wi

(gauge transformation)

Ψi → Ψi Wi

Leaves the spin unchanged Si → Si .

U
0
ij → W

†
i U

0
ijWj

• Therefore, U0
ij and W

†
i U0

ijWj define the same physical state

(the same physical state can be represented by many different Ansätze U0
ij )

〈0|
Q

i
ci,αi

|ΦMF (U0
ij )〉 = 〈0|

Q

i
ci,αi

|ΦMF (W †
i U0

ijWj )〉
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An example of the redundancy on the square lattice

• The staggered flux state is defined by
Affleck and Marston, Phys. Rev. B 37, 3774 (1988)

j ∈ A

(

χj,j+x = e iΦ0/4

χj,j+y = e−iΦ0/4

j ∈ B

(

χj,j+x = e−iΦ0/4

χj,j+y = e iΦ0/4

• The d-wave “superconductor” state is defined by
Baskaran, Zou, and Anderson, Solid State Commun. 63, 973 (1987)

8

>

>

>

<

>

>

>

:

χj,j+x = 1

χj,j+y = 1

ηj,j+x = ∆

ηj,j+y = −∆

• For ∆ = tan(Φ0/4), these two mean-field states become the same state after projection

• The mean-field spectrum is the same for the two states
(it is invariant under SU(2) transformations)
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Projective symmetry group (PSG)

• Ansätze that differ by a gauge transformation describe the same physical state

• This redundancy has important consequences on the structure of the fluctuations
above the mean-field Ansatz

• A non-fully-symmetric mean-field Ansatz U0
ij (that e.g. breaks translational symmetry)

may correspond to a fully-symmetric physical state

Let us define a generic lattice symmetry (translations, rotations, reflections) by T :

TU
0
ij = U

0
T (i)T (j) 6= U

0
ij

but still the physical state may have all lattice symmetries.
Indeed, we can still play with gauge transformations.

• To have a fully-symmetric physical state, a gauge transformation Gi must exist,
such that

G
†
i TU0

ijGj = G
†
i U0

T (i)T (j)Gj ≡ U0
ij

{T , G} define the PSG:
for each lattice symmetry T , there is an associated gauge symmetry G
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Wen’s conjecture on quantum order

• In general, the PSG is not trivial
(the set of gauge transformations G associated to lattice symmetries T is non-trivial)

• Distinct spin liquids have the same lattice symmetries (i.e., they are totally symmetric),
but different PSGs

• Wen proposed to use the PSG to characterize quantum order in spin liquids

• As in the Landau’s theory for classical orders, where symmetries define various phases,
the PSG can be used to classify spin liquids
(the PSG of an Ansatz is a universal property of the Ansatz)

Although Ansätze for different spin liquids have the same symmetry,
the Ansätze are invariant under different PSG. Namely different sets of

gauge transformations associated to lattice symmetries

Wen, Phys. Rev. B 65, 165113 (2002)
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“Low-energy” gauge fluctuations

• The SU(2) gauge structure

Ψi → Ψi Wi

is a “high-energy” gauge structure that only depends upon our choice on how
to represent the spin operator [e.g., for the bosonic representation, it is U(1)]

• What are the “relevant” gauge fluctuations above a given mean-field Ansatz U0
ij?

• Wen’s conjecture: the relevant “low-energy” gauge fluctuations are determined
completely from the PSG

• There is an important subgroup of the PSG: the invariant gauge group (IGG).
The IGG of a mean-field Ansatz is defined by the set of all pure gauge
transformations that leaves the mean-field Ansatz U0

ij invariant:

G†
i U

0
ijGj = U

0
ij

The IGG determines the “low-energy” gauge fluctuations above the mean-field state
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“Low-energy” gauge fluctuations

• Consider an Ansatz U0
ij for the mean-field state

• Assume that the IGG is U(1):

Gj = e
iθj σ

z

G†
i U

0
ijGj = U

0
ij

• Consider now some fluctuations above the mean field:

Uij = U
0
ije

iAij σ
z

• It is possible to show that Aij is a gauge field:

Ψj → Ψje
iθj σ

z

Aij → Aij + θi − θj

According to the symmetry of the IGG, we can have Z2, U(1), SU(2)... spin liquids

• In U(1) spin liquids, the spinon pairing can be gauged away
the mean-field Ansatz U0

ij
may contain spinon hopping only

• In Z2 spin liquids, the spinon pairing cannot be gauged away
the SU(2) or U(1) gauge structure is lowered to Z2 through the Anderson-Higgs mechanism
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The PSG + IGG allow us to classify spin liquid phases

• Consider the square lattice and a Z2 IGG, e.g. Gi = ±I

• Consider the case where only translations Tx and Ty are considered
Only two Z2 spin liquids are possible:



Gi (Tx) = I Gi (Ty ) = I → U0
i,i+m = U0

m

Gi (Tx) = (−1)iy I Gi (Ty ) = I → U0
i,i+m = (−1)my ix U0

m

• The case with also point-group and time-reversal symmetries is much more complicated
Two classes of Z2 spin liquids are possible:

Gi (Tx) = I Gi (Ty ) = I

Gi (Px) = ǫix
xpxǫ

iy
xpygPx Gi (Py ) = ǫix

xpy ǫ
iy
xpxgPy

Gi (Pxy ) = gPxy Gi (T ) = ǫi
tgT

Gi (Tx) = (−1)iy I Gi (Ty ) = I

Gi (Px) = ǫix
xpxǫ

iy
xpygPx Gi (Py ) = ǫix

xpy ǫ
iy
xpxgPy

Gi (Pxy ) = (−1)ix iy gPxy Gi (T ) = ǫi
tgT

In total, 272 possibilities
At most 196 different Z2 spin liquids!
Wen, Phys. Rev. B 65, 165113 (2002)
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Fluctuations above the mean field and gauge fields

• Some results about lattice gauge theory (coupled to matter)
may be used to discuss the stability/instability of a given mean-field Ansatz

• What is known about U(1) gauge theories?
Monopoles proliferate → confinement
Polyakov, Nucl. Phys. B 120, 429 (1977)

Spinons are glued in pairs by strong gauge fluctuations and are not physical excitations

• Deconfinement may be possible in presence of gapless matter field
The so-called U(1) spin liquid
Hermele et al., Phys. Rev. B 70, 214437 (2004)

• In presence of a charge-2 field (i.e., spinon pairing) the U(1) symmetry
can be lowered to Z2 → deconfinement
Fradkin and Shenker, Phys. Rev. D 19, 3682 (1979)

• For example in D=2:

• Z2 gauge field (gapped) + gapped spinons may be a stable deconfined phase
short-range RVB physics Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

• U(1) gauge field (gapless) + gapped spinons should lead to an instability
towards confinement and valence-bond order Read and Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
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Variational Monte Carlo for fermions

• The exact projection on the subspace with one spin per site can be treated within the
variational Monte Carlo approach (part of the gauge fluctuations are considered!)

|Φ〉 = P|ΦMF (U0
ij )〉

• The variational energy

E(Φ) =
〈Φ|H|Φ〉

〈Φ|Φ〉
=

X

x

P(x)
〈x |H|Φ〉

〈x |Φ〉

P(x) ∝ |〈x |Φ〉|2 and |x〉 is the (Ising) basis in which spins are distributed in the lattice

• E(Φ) can be sampled by using “classical” Monte Carlo, since P(x) ≥ 0

• 〈x |Φ〉 is a determinant

• The ratio of to determinants (needed in the Metropolis acceptance ratio) can be
computed very efficiently, i.e., O(N), when few spins are updated

• The algorithm scales polinomially, i.e., O(N3) to have almost independent spin
configurations
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The projected wave function

• The mean-field wave function has a BCS-like form

|ΦMF 〉 = exp
n

1
2

P

i,j fi,jc
†
i,↑c

†
j,↓

o

|0〉

It is a linear superposition of all singlet configurations (that may overlap)

+ ...

• After projection, only non-overlapping singlets survive:
the resonating valence-bond (RVB) wave function Anderson, Science 235, 1196 (1987)

+ ...
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The projected wave function

• The mean-field wave function has a BCS-like form

|ΦMF 〉 = exp
n

1
2

P

i,j fi,jc
†
i,↑c

†
j,↓

o

|0〉

• Depending on the pairing function fi,j , different RVB states may be obtained...

+ ...

• ...even with valence-bond order (valence-bond crystals)
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