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Searching for non-magnetic ground states

• In a spin model, magnetic order is expected at (mean field):

kBTN ∝ zS(S + 1)|J|

z is the coordination number, S is the spin and J is the super-exchange coupling

χ =
C

T − θcw
T ≫ TN

θCW is the Curie-Weiss temperature

f =
|θcw |
TN

• Can quantum fluctuations prevent magnetic order down to T = 0?
=⇒ Look for low spin S , low coordination z , competing interactions:
Pomeranchuk, Zh. Eksp. Teor. Fiz. 11, 226 (1941)
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Ultimate frustration?

Looking for a magnetically disordered ground state

• Many theoretical suggestions since P.W. Anderson (1973)
Anderson, Mater. Res. Bull. 8, 153 (1973)

Fazekas and Anderson, Phil. Mag. 30, 423 (1974)

“Resonating valence-bond” (RVB) states

Idea: the best state for two spin-1/2 spins is a valence bond (a spin singlet):

|VB〉R,R′ =
1√
2
(| ↑〉R| ↓〉R′ − | ↓〉R| ↑〉R′)

Every spin of the lattice is coupled to a partner
Then, take a superposition of different valence bond configurations

Ψ = + + + ...

Federico Becca (CNR and SISSA) Quantum Spin Liquids JNU 4 / 40



Valence-bond states: liquids and solids

Long-range RVB + + ...

Short-range RVB + + ...

Valence-bond solid
breaks translational/rotational
symmetries
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General properties of valence-bond states

RVB states are typical examples of spin liquids

• The formation of a valence bond implies a gap to excite those two spins

• Long-range valence bonds are more weakly bound: a gapless spectrum is possible

The projected Fermi sea can be seen as a long-range valence bond state:

|Ψ〉 = PG

∏

k<|kF |
c
†
k,↑c

†
k,↓|0〉
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• It is now clear that the number of distinct quantum spin liquids is also huge
hundreds of different quantum spin liquids have been classified
(all with the same symmetry =⇒ topological order)
Wen, Phys. Rev. B 65, 165113 (2002)

• It is usually believed that such states may be described by gauge theories
(at least at low energies/temperatures)
Baskaran and Anderson, Phys. Rev. B 37, 580 (1988)

=⇒ Gauge excitations should be visible in the spectrum!
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Candidate materials for S = 1/2 spin liquids

• Many experimental efforts to synthetize new materials

Two-dimensional Kagome lattice: Herbertsmithite and Volborthite

ZnCu3(OH)6Cl2 and Cu3V2O7(OH)2 2H2O

Two-dimensional anisotropic lattice: organic materials

κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2
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Candidate materials for S = 1/2 spin liquids
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Jeong et al., Phys. Rev. Lett. 107, 237201 (2011)

de Vries et al., Phys. Rev. Lett. 103, 237201 (2009)

Han et al., Nature 492, 407 (2012)

Kanoda and Kato, Annu. Rev. Condens. Matter Phys. 2, 167 (2011)

Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003)
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Candidate materials for S = 1/2 spin liquids

Material Lattice |θcw | f

κ-(BEDT-TTF)2Cu2(CN)3 ≈ triangular 375K > 103

EtMe3Sb[Pd(dmit)2]2 ≈ triangular 350K > 103

ZnCu3(OH)6Cl2 kagome 240K > 103

Cu3V2O7(OH)2 · 2H2O ≈ kagome 120K ≈ 100

BaCu3V2O8(OH)2 ≈ kagome 80K > 102

Cs2CuCl4 quasi one-dimensional 4K ≈ 10
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Microscopic Heisenberg models

Here, I will discuss spin models (frozen charge degrees of freedom)

• Quantum spins on the lattice

• Zero temperature, i.e., ground-state properties

• Mainly with SU(2) spin symmetry:

H =
∑

i,j

Ji,jSi · Sj

• ...but in some case also with a lower spin symmetry U(1)× Z2:

H =
∑

i,j

J
z
i,jS

z
i S

z
j +

∑

i,j

J
xy
i,j

(

S
x
i S

x
j + S

y
i S

y
j

)

• I will not discuss the effect of an external magnetic field (magnetization plateaux)
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Absence of magnetic order in one dimension

In D=1 many exactly solvable models (e.g., Heisenberg and Haldane-Shastry)
Bethe, Z. Phys. 71, 205 (1931)

Haldane, Phys. Rev. Lett. 60, 635 (1988); Shastry, Phys. Rev. Lett. 60, 639 (1988)

Simple example: the one-dimensional XY model:

H = J
∑

i

(Sx
i S

x
i+1 + S

y
i S

y
i+1) =

J

2

∑

i

(S+
i S

−
i+1 + S

−
i S

+
i+1)

• Representing spin operators via hard-core bosons

S
+
i = b

†
i S

−
i = bi S

z
i = b

†
i bi −

1

2

• Perform a Jordan-Wigner transformation
Jordan and Wigner, Z. Phys. 47, 631 (1928)

bj = cje
iπ

∑
n<j c

†
n cn ⇐= String

ci are (spinless) fermionic operators

H =
J

2

∑

i

(c†i ci+1 + h.c.)

Free fermions with gapless excitations
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Ground state and excitations

H =
J

2

∑

i

(c†i ci+1 + h.c.)

Boundary conditions depend upon the number N of fermions (or bosons):
N odd =⇒ periodic boundary conditions
N even =⇒ anti-periodic boundary conditions
• Ground state (always unique because of the boundary conditions)

|Ψ0〉 =
∏

|k|>kF

c
†
k |0〉

• Single-particle excitations

|Ψk〉 = ck |Ψ0〉 |k| > kF

does not live in the correct (bosonic) Hilbert space:
One must also change boundary conditions: non-local operator
=⇒ S+

k or S−
k do not create elementary excitations

• Particle-hole excitations

|Ψk,q〉 = c
†
k+qck |Ψ0〉 |k| > kF and |k + q| < kF

They are terribly complicated in terms of bosons (because of the string)!
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Elementary excitations: the spinons

• In D = 1 systems, elementary excitations are spinons carrying S = 1/2
Faddeev and Takhtajan, Phys. Lett. 85A, 375 (1981)

H = J
z
∑

i

S
z
i S

z
i+1 + J

xy
∑

i

(Sx
i S

x
i+1 + S

y
i S

y
i+1)

• A spinon is a neutral spin-1/2 excitation, “one-half” of a S = 1 spin flip.

• Spinons can only be created by pairs in finite systems
They can propagate at large distances, as two elementary particles

FRACTIONALIZATION

Simple picture for Jz ≫ Jxy (Jxy = 0 corresponds to the Ising model)
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Elementary excitations: the spinons

• In D = 1 systems, elementary excitations are spinons carrying S = 1/2
Faddeev and Takhtajan, Phys. Lett. 85A, 375 (1981)

S(q, ω) =

∫

dt〈Ψ0|Sz
−q(t)S

z
q (0)|Ψ0〉e iωt =

∑

n 6=0

|〈Ψn|Sz
q |Ψ0〉|2δ(ω −∆ωn0)

S(q, ω) has only the incoherent part
No delta function
Singularity at the bottom of the spectrum

π 2π0

q

ω

Spinon continuum

S(q, ω) can be computed exactly also in the Haldane-Shastry model:

H = J
∑

m<n

[d(m − n)]2Sm · Sn d(n) =
N

π
sin(

πn

N
)

• The exact ground state is |Ψ0〉 = PG

∏

k<|kF |
c
†
k,↑c

†
k,↓|0〉
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Haldane, Phys. Rev. Lett. 60, 635 (1988); Shastry, Phys. Rev. Lett. 60, 639 (1988)

• The S = 1 state Sα
n |Ψ0〉 is completely expressible in terms of two spinons

Haldane and Zirnbauer, Phys. Rev. Lett. 71, 4055 (1993)
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Dimerization in one dimension

Majumdar-Ghosh point for the frustrated J1−J2 Heisenberg model:

H = J
∑

i

Si · Si+1 +
J

2

∑

i

Si · Si+2

• The exact ground state is known (two-fold degenerate): perfect dimerization

H =
3J

4

∑

i

P (i−1,i,i+1)

3/2 − 3J

8
N P (i−1,i,i+1)

3/2 =
1

3

[

(Si−1 + Si + Si+1)
2 − 3

4

]

Majumdar and Ghosh, J. Math. Phys. 10, 1388 (1969)

The “initial” S = 1 excitation can decay into two spatially separated spin-1/2 excitations

Finite-energy state with an isolated spinon (the other is far apart)
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From one to two (and three) spatial dimensions

• In D = 1 there is:
No magnetic order, given the Mermin-Wagner theorem
(not possible to break a continuous symmetry in D = 1, even at T = 0)
Pitaevskii and Stringari, J. Low Temp. Phys. 85, 377 (1991)

Fractionalization, e.g., S = 1 excitations decay into S = 1/2 particles

• In D = 2 it is possible to break a continuous symmetry at T = 0:

Is it still possible to have a magnetically disordered ground state?

Is it still possible to have fractionalization?

• In D = 3 it is possible to break a continuous symmetry even at finite temperature:

Is it still possible to have a magnetically disordered ground state?

Phase transition between two different paramagnetic phases at low temperature?
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The semi-classical approach: large-S

H =
∑

i,j

Ji,jSi · Sj

• Suppose that the classical limit (S → ∞) is described by

Si =
1√
N

(

Sk0e
ik0ri + h.c.

)

= {cos(k0ri ), sin(k0ri ), 0}

• In order to include the quantum fluctuations, perform a 1/S expansion

Let us denote by θj = k0rj

Make a rotation around the z axis







S̃x
j = cos θjS

x
j + sin θjS

y
j

S̃
y
j = − sin θjS

x
j + cos θjS

y
j

S̃z
j = Sz

j

Perform the Holstein-Primakoff transformation:















S̃x
j = S − a

†
j aj

S̃
y
j ≃

√

S
2

(

a
†
j + aj

)

S̃z
j ≃ i

√

S
2

(

a
†
j − aj

)
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The semi-classical approach: large-S

At the leading order in 1/S , we obtain:

Hsw = Ecl +
S

2

∑

k

{

Aka
†
kak +

Bk

2

(

a
†
ka

†
−k + a−kak

)

}

Where:

Ecl =
1

2
NS

2
Jk0

{

Ak = Jk +
1
2
(Jk+k0 + Jk−k0)− 2Jk0

Bk = 1
2
(Jk+k0 + Jk−k0)− Jk

By performing a Bogoliubov transformation:

Hsw = Ecl +
∑

k ωk(α
†
kαk +

1
2
)

• Leading-order corrections to the magnetization 〈S̃x
j 〉 = S−〈a†j aj〉

• Excitations are called magnons (analog of phonons for lattice waves)
• Presence of gapless excitations for broken SU(2) systems (Goldstone mode)
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Renormalization of the classical state

The classical ground state is “dressed” by quantum fluctuations

~NNN

• The lattice breaks up into sublattices
• Each sublattice keeps an
extensive magnetization

S(q) =
1

N
〈Ψ0|

∣

∣

∣

∣

∣

∑

j

Sje
iqrj

∣

∣

∣

∣

∣

2

|Ψ0〉 =
1

N

∑

j,k

〈Ψ0|Sj · Sk |Ψ0〉e iq(rj−rk )

S(q) =

{

O(1) for all q’s → short-range correlations
S(q0) ∝ N forq = q0 → long-range order
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Fingerprints in finite clusters

• Spontaneous symmetry breaking is only possible in the thermodynamic limit
Spontaneously broken SU(2) symmetry =⇒ Gapless spin waves

• How can we detect it on finite lattices (e.g., by exact diagonalizations)?
=⇒ Tower of states
Anderson, Phys. Rev. 86, 694 (1952)

Bernu, Lhuillier, and Pierre, Phys. Rev. Lett. 69, 2590 (1992)

Bernu, Lecheminant, Lhuillier, and Pierre, Phys. Rev. B 50, 10048 (1994)

A family of states with S up to O(
√
N)

collapse to the ground state with
∆ES ∝ S(S + 1)/N

In the thermodynamic limit ∆ES → 0
Linear combinations of states with
different S =⇒ broken SU(2) symmetry
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Inelastic Neutron scattering: magnon excitations and continuum

The inelastic Neutron scattering is a probe for the dynamical structure factor

S(q, ω) =

∫

dt〈Ψ0|Sα
−q(t)S

α
q (0)|Ψ0〉e iωt =

∑

n 6=0

|〈Ψn|Sα
q |Ψ0〉|2δ(ω −∆ωn0)

Within the harmonic approximation
there is only a single branch of
excitations (magnons)

π 2π0

q

ω

Single−magnon
excitations

In reality, a continuum of multi-magnon
excitations exists above the threshold.
Single magnon excitations are well defined
S(q, ω) = Zqδ(ω − ωq)+ incoherent part

π 2π0

Multi−magnon continuum

q

ω

Single−magnon
excitations

Federico Becca (CNR and SISSA) Quantum Spin Liquids JNU 21 / 40



Mechanisms to destroy the long-range order

• Small value of the spin S , e.g., S = 1/2 or S = 1

Stay away from the classical limit, e.g., large S

• Frustration of the super-exchange interactions

Not all terms of the energy can be optimized simultaneously:

Even at the classical level, many competing low-energy states

?

• Low spatial dimensionality: D = 2 is the “best” choice

Zero-point quantum fluctuations are huge

• Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)

Arovas and Auerbach, Phys. Rev. B 38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988)

Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991); Read and Sachdev, Nucl. Phys. B316, 609 (1989)
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Fractionalization in two dimensions?

• Fractionalization is not compatible with magnetic order

• Fractionalization may exist in RVB liquids

Federico Becca (CNR and SISSA) Quantum Spin Liquids JNU 23 / 40



A first definition for spin liquids

A spin liquid is a state without magnetic order

S(q) =
1

N
〈Ψ0|

∣

∣

∣

∣

∣

∑

j

Sje
iqrj

∣

∣

∣

∣

∣

2

|Ψ0〉 =
1

N

∑

j,k

〈Ψ0|Sj · Sk |Ψ0〉e iq(rj−rk )

S(q) =

{

O(1) for all q’s → short-range correlations
S(q0) ∝ N forq = q0 → long-range order

The structure factor S(q) does not diverge, whatever the q is

• It can be checked by using Neutron scattering

• The Mermin-Wagner theorem implies that any 2D Heisenberg model at T > 0 is a
spin liquid according to this definition
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Valence-bond crystals

∆>0

E

J1−J2 Heisenberg model on the hexagonal lattice
Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

Properties:

• Short-range spin-spin correlations

• Spontaneous breakdown of some lattice symmetries → ground-state degeneracy

• Gapped S = 1 excitations (“magnons” or “triplons”)
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Spin liquid: a second definition

A spin liquid is a state without any spontaneously broken (local) symmetry

• It rules out magnetically ordered states that break spin SU(2) symmetry
(including states with quadrupolar order)

• It rules out valence-bond crystals that break some lattice symmetries

• It rules out chiral spin liquids that break time-reversal symmetries
Wen, Wilczek, and Zee, Phys. Rev. B 39, 11413 (1989)

Notice: local means that there is a physical order parameter
that can be measured by some local probe
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Quantum paramagnets

There are few examples of magnetic insulators without any broken symmetry

SrCu2(BO3)2
Kageyama et al., Phys. Rev. Lett. 82, 3168 (1999)

CaV4O9

Taniguchi et al., J. Phys. Soc. Jpn. 64, 2758 (1995)

E

∆>0

Non-degenerate
ground state

Properties:

• No broken symmetries

• Even number of spin-1/2 in the unit cell

• Adiabatically connected to the (trivial) limit of decoupled blocks

• No phase transition between T = 0 and ∞ =⇒ “simple” quantum paramagnet
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Quantum paramagnets:excitation spectrum

λ=0

λ<<J

k

∆ES=1(k)

( )↓↑−↑↓=
2

1

J

k

∆ES=1(k)

J ∼λ 

λ
J
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Quantum paramagnets and VBCs are not fractionalized

r

J

λ

V(r)

r

J

2J

J-λJ
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The Lieb-Schultz-Mattis (LSM) et al. theorem

A system with half-odd-integer spin in the unit cell
cannot have a gap and a unique ground state

Valid in the thermodynamic limit for periodic boundary conditions and
L1 × L2 × · · · LD = odd

• The original theorem by Lieb, Schultz, and Mattis refers to 1D
Lieb, Schultz, Mattis, Ann. Phys. (N.Y.) 16, 407 (1961); Affleck and Lieb, Lett. Math. Phys. 12, 57 (1986)

• Since then, several attempts to generalize it in 2D
Affleck, Phys. Rev. B 37, 5186 (1988); Bonesteel, Phys. Rev. B 40, 8954 (1989);

Oshikawa, Phys. Rev. Lett. 84, 1535 (2000); Hastings, Phys. Rev. B 69, 104431 (2004)

∆>0

∆=0

E

∆>0

Gapped paramagnet

= forbidden at T=0

Case 1) Ground-state degeneracy
a) Valence-bond crystal
b) Resonating-valence bond spin liquid
(gapped but with a topological degeneracy)
Case 2) Gapless spectrum
a) Continuous broken symmetry (magnetic order)
b) Resonating-valence bond spin liquid
(gapless, i.e., critical state)
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Implications of the LSM theorem

• Let us consider a two-dimensional system with Lx × Ly and Ly odd

with periodic boundary conditions

• Let us consider the case with S = 1/2

If we assume that a gapped state is realized

then its ground state must be degenerate

• Usually, ground-state degeneracies imply some spontaneous symmetry breaking

There exists a local operator such that 〈Ψ1|O|Ψ2〉 6= 0

• If the system does not break any symmetry, still the ground state must be degenerate

The LSM degeneracy cannot be understood from a symmetry-breaking picture

For all local operators 〈Ψ1|O|Ψ2〉 = 0

The degeneracy is related to
TOPOLOGICAL properties

TOPOLOGICAL ORDER

Wen, Phys. Rev. B 40, 7387 (1989); Phys. Rev. B 44, 2664 (1991)
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Topological order and fractionalization

• No dimer order → deconfined spinons:

• Spinon fractionalization and topological degeneracy go hand in hand

Ground states that are not connected by any local operator

Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)

• A particularly insightful example is given by the Toric Code
Kitaev, Annals Phys. 303, 2 (2003)
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Spin liquid: a third definition

A spin liquid is a state without any spontaneously broken (local) symmetry,
with a half-odd-integer spin in the unit cell

• It rules out magnetically ordered states that break spin SU(2) symmetry
(including states with quadrupolar order)

• It rules out valence-bond crystals that break some lattice symmetries

• It rules out chiral spin liquids that break time-reversal symmetries
Wen, Wilczek, and Zee, Phys. Rev. B 39, 11413 (1989)

• It rules out quantum paramagnets that have an even number of spin-half per unit cell

A spin liquid sustains fractional (spin-1/2) excitations
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Inelastic Neutron scattering: spinon continuum

The inelastic Neutron scattering is a probe for the dynamical structure factor

S(q, ω) =

∫

dt〈Ψ0|Sα
−q(t)S

α
q (0)|Ψ0〉e iωt

• The elementary excitations are spin-1 magnons:
S(q, ω) has a single-particle pole at ω = ω(q)

• The spin-flip decays into two spin-1/2 excitations
S(q, ω) exhibits a two-particle continuum
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Inelastic Neutron scattering: spinon continuum

Neutron scattering on Cs2CuCl4
Coldea, Tennant, Tsvelik, and Tylczynski , Phys. Rev. Lett. 86, 1335 (2001)

Almost decoupled layers

Strongly-anisotropic triangular lattice

J ′ ≃ 0.33J: quasi-1D
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Proof of the Lieb-Shultz-Mattis theorem in 1D

• Consider the Heisenberg model on a chain:

H =
N
∑

i=1

Si · Si+1

with periodic boundary conditions (SN+1 ≡ S1), even N, and half-odd integer spins

Theorem:

There exists an excited state with an energy that vanishes as N → ∞

• |Ψ0〉 is the ground state of H with energy E0.

• Assume that |Ψ0〉 is a singlet (“almost” always the case)

• Consider the twist operator O = exp{ 2πi
N

∑N

j=1 jS
z
j }

• Denote |Ψ1〉 = O|Ψ0〉
Then:

(1) 〈Ψ1|Ψ0〉 = 0
(2) limN→∞[〈Ψ1|H|Ψ1〉 − E0] = 0
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Proof of the Lieb-Shultz-Mattis theorem in 1D

Consider the translation operator T :

T SjT −1 = Sj+1 T SNT −1 = S1

[H, T ] = 0 T |Ψ0〉 = e
ik0 |Ψ0〉

〈Ψ0|Ψ1〉 = 〈Ψ0|O|Ψ0〉 = 〈Ψ0|T OT −1|Ψ0〉
T OT −1 = O exp (2πiSz

1 ) exp
(

− 2πi
N
Sz
tot

)

Then, exp
(

− 2πi
N
Sz
tot

)

|Ψ0〉 = |Ψ0〉, since |Ψ0〉 is a singlet.

exp (2πiSz
1 ) =

{

+1 S = 0, 1, 2, · · ·
−1 S = 1/2, 3/2, 5/2, · · ·

• Therefore, for half-odd integer spin: 〈Ψ0|Ψ1〉 = −〈Ψ0|Ψ1〉

〈Ψ1|H|Ψ1〉 = E0 + 〈Ψ0|{cos( 2πN )− 1}∑N

j=1(S
x
j S

x
j+1 + S

y
j S

y
j+1)|Ψ0〉

〈Ψ0|(Sx
j S

x
j+1 + S

y
j S

y
j+1)|Ψ0〉 ≤ S2

• We obtain an upper-bound for the energy: 〈Ψ1|H|Ψ1〉 − E0 ≤ 2π2JS2

N
+ O(N−3)
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Generalization by Affleck in 2D

• The previous argument can be easily generalized for odd Ly

(odd-leg ladders Lx × Ly )
Affleck, Phys. Rev. B 37, 5186 (1988)

As before, it is possible to show that:

〈Ψ0|Ψ1〉 = −〈Ψ0|Ψ1〉

〈Ψ1|H|Ψ1〉 − E0 ≤ 2π2JS2Ly
Lx

It works whenever Lx ≫ Ly
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Generalization by Oshikawa in 2D

• A further generalization that does not require a strong anisotropy is possible
(Related to the Laughlin argument for the the quantum Hall effect)
Laughlin, Phys. Rev. B 23, 5632 (1981)

Insert a twist in the spin Hamiltonian

H(θ) =
∑

m,n Jm,nS
z
mS

z
n + 1

2

∑

m,n Jm,ne
iθ(xm−xn)/LxS+

mS
−
n + h.c.

The spectra of H(2π) and H(0) are the same: UH(0)U−1 = H(2π)

U =
∏

m

exp

(

2πi
xm

Lx

S
z
m

)

|Ψ0(2π)〉 = U|Ψ0(0)〉
The operator U does not commute with translations along x

T UT −1 = U exp (2πiLyS) exp

(

−2πi

Lx

S
z
tot

)
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Generalization by Oshikawa in 2D

• Given a gapped H(0), assume that H(θ) remains gapped for all fluxes 0 ≤ θ ≤ 2π

• Imagine that we adiabatically insert a flux θ from 0 to 2π

Then |Ψ0(0)〉 evolves into |Ψ(2π)〉 = U|Ψ0(0)〉
However, whenever LyS is an half-odd integer (e.g., Ly odd and S = 1/2)
|Ψ0(0)〉 and U|Ψ0(0)〉 have different quantum numbers

Therefore, the ground state must be degenerate

E

0 2πθ

NOT POSSIBLE
E

0 2πθ

POSSIBLE

It works whenever Ly is odd

On finite systems, a small gap between these states is possible
Oshikawa, Phys. Rev. Lett. 84, 1535 (2000)
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