An introduction to quantum spin liquids: definitions and examples

Federico Becca

CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA)

Current Trends in Frustrated Magnetism Jawaharlal Nehru University (JNU), 8 February 2015

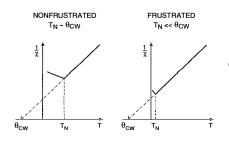
- Introduction
 - Bird's eye view of spin liquids
- One-dimensional systems
 - Absence of magnetic order in one dimension
 - Ground state and excitations
 - Fractionalization
 - Dimerization in one dimension
- Two-dimensional systems
 - From one to two (and three) spatial dimensions
 - The semi-classical approach: large-S
 - Mechanisms to destroy the long-range order
- 4 Quantum spin liquids: general definitions and properties
 - A first definition for spin liquids
 - Valence-bond crystals
 - A second definition for spin liquids
 - Quantum paramagnets
 - The Lieb-Schultz-Mattis (LSM) et al. theorem
 - Topological order and fractionalization in two dimensions
 - A third definition for spin liquids

Searching for non-magnetic ground states

• In a spin model, magnetic order is expected at (mean field):

$$k_B T_N \propto z S(S+1)|J|$$

z is the coordination number, S is the spin and J is the super-exchange coupling



$$\chi = \frac{C}{T - \theta_{cw}} \qquad T \gg T_N$$

 θ_{CW} is the Curie-Weiss temperature

$$f = \frac{|\theta_{cw}|}{T_N}$$

• Can quantum fluctuations prevent magnetic order down to T=0?

 \implies Look for low spin S, low coordination z, competing interactions:

Pomeranchuk, Zh. Eksp. Teor. Fiz. 11, 226 (1941)

Looking for a magnetically disordered ground state

• Many theoretical suggestions since P.W. Anderson (1973)

Anderson, Mater. Res. Bull. 8, 153 (1973)

Fazekas and Anderson, Phil. Mag. 30, 423 (1974)

"Resonating valence-bond" (RVB) states

Idea: the best state for two spin-1/2 spins is a valence bond (a spin singlet):

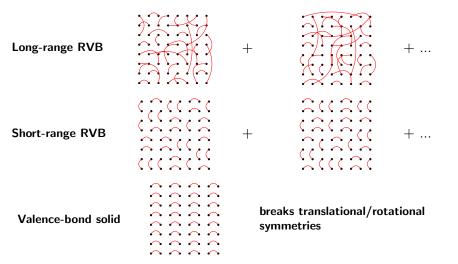
$$|VB\rangle_{\mathbf{R},\mathbf{R}'} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{\mathbf{R}}|\downarrow\rangle_{\mathbf{R}'} - |\downarrow\rangle_{\mathbf{R}}|\uparrow\rangle_{\mathbf{R}'} \right)$$

Every spin of the lattice is coupled to a partner

Then, take a superposition of different valence bond configurations

$$\Psi = \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

Valence-bond states: liquids and solids



RVB states are typical examples of spin liquids

- The formation of a valence bond implies a gap to excite those two spins
- Long-range valence bonds are more weakly bound: a gapless spectrum is possible

 The projected Fermi sea can be seen as a long-range valence bond state:

$$|\Psi
angle = \mathcal{P}_G \prod_{k<|k_F|} c_{k,\uparrow}^\dagger c_{k,\downarrow}^\dagger |0
angle$$

 It is now clear that the number of distinct quantum spin liquids is also huge hundreds of different quantum spin liquids have been classified (all with the same symmetry => topological order)

Wen, Phys. Rev. B 65, 165113 (2002)

 It is usually believed that such states may be described by gauge theories (at least at low energies/temperatures)

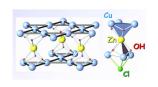
Baskaran and Anderson, Phys. Rev. B 37, 580 (1988)

⇒ Gauge excitations should be visible in the spectrum!

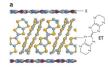
Candidate materials for S = 1/2 spin liquids

• Many experimental efforts to synthetize new materials

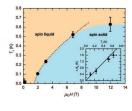
Two-dimensional Kagome lattice: Herbertsmithite and Volborthite ZnCu₃(OH)₆Cl₂ and Cu₃V₂O₇(OH)₂ 2H₂O

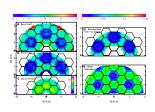


Two-dimensional anisotropic lattice: organic materials κ -(BEDT-TTF)₂Cu₂(CN)₃ and EtMe₃Sb[Pd(dmit)₂]₂

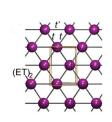


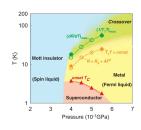
Candidate materials for S = 1/2 spin liquids

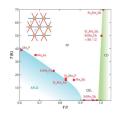




Jeong et al., Phys. Rev. Lett. **107**, 237201 (2011) de Vries et al., Phys. Rev. Lett. **103**, 237201 (2009) Han et al., Nature **492**, 407 (2012)







Kanoda and Kato, Annu. Rev. Condens. Matter Phys. 2, 167 (2011) Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003)

Candidate materials for S = 1/2 spin liquids

Material	Lattice	$ heta_{cw} $	f
κ -(BEDT-TTF) ₂ Cu ₂ (CN) ₃	≈ triangular	375K	> 10 ³
EtMe ₃ Sb[Pd(dmit) ₂] ₂	pprox triangular	350K	> 10 ³
ZnCu ₃ (OH) ₆ Cl ₂	kagome	240K	> 10 ³
Cu ₃ V ₂ O ₇ (OH) ₂ · 2H ₂ O	pprox kagome	120K	≈ 100
BaCu ₃ V ₂ O ₈ (OH) ₂	pprox kagome	80K	> 10 ²
Cs ₂ CuCl ₄	quasi one-dimensional	4K	≈ 10

Microscopic Heisenberg models

Here, I will discuss spin models (frozen charge degrees of freedom)

- Quantum spins on the lattice
- Zero temperature, i.e., ground-state properties
- Mainly with SU(2) spin symmetry:

$$\mathcal{H} = \sum_{i,j} J_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j$$

• ...but in some case also with a lower spin symmetry $U(1) \times Z_2$:

$$\mathcal{H} = \sum_{i,j} J_{i,j}^z S_i^z S_j^z + \sum_{i,j} J_{i,j}^{xy} \left(S_i^x S_j^x + S_i^y S_j^y \right)$$

• I will not discuss the effect of an external magnetic field (magnetization plateaux)

Absence of magnetic order in one dimension

In D=1 many exactly solvable models (e.g., Heisenberg and Haldane-Shastry)

Bethe, Z. Phys. 71, 205 (1931)

Haldane, Phys. Rev. Lett. 60, 635 (1988); Shastry, Phys. Rev. Lett. 60, 639 (1988)

Simple example: the one-dimensional XY model:

$$\mathcal{H} = J \sum_{i} (S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y}) = \frac{J}{2} \sum_{i} (S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+})$$

• Representing spin operators via hard-core bosons

$$S_i^+ = b_i^{\dagger}$$
 $S_i^- = b_i$ $S_i^z = b_i^{\dagger} b_i - \frac{1}{2}$

• Perform a Jordan-Wigner transformation

Jordan and Wigner, Z. Phys. 47, 631 (1928)

$$b_j = c_j e^{i\pi \sum_{n < j} c_n^{\dagger} c_n} \iff \text{String}$$

c_i are (spinless) fermionic operators

$$\mathcal{H} = rac{J}{2}\sum_i (c_i^{\dagger}c_{i+1} + h.c.)$$

Free fermions with gapless excitations

Ground state and excitations

$$\mathcal{H} = rac{J}{2} \sum_i (c_i^\dagger c_{i+1} + h.c.)$$

Boundary conditions depend upon the number N of fermions (or bosons):

 $N \text{ odd} \Longrightarrow \text{periodic boundary conditions}$

N even \Longrightarrow anti-periodic boundary conditions

• Ground state (always unique because of the boundary conditions)

$$|\Psi_0
angle = \prod_{|k|>k_F} c_k^\dagger |0
angle$$

Single-particle excitations

$$|\Psi_k\rangle = c_k |\Psi_0\rangle \qquad |k| > k_F$$

does not live in the correct (bosonic) Hilbert space:

One must also change boundary conditions: non-local operator

- $\implies S_{k}^{+}$ or S_{k}^{-} do not create elementary excitations
- Particle-hole excitations

$$|\Psi_{k,q}\rangle = c_{k+\sigma}^{\dagger} c_k |\Psi_0\rangle \quad |k| > k_F \text{ and } |k+q| < k_F$$

They are terribly complicated in terms of bosons (because of the string)!

Elementary excitations: the spinons

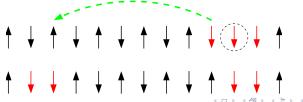
ullet In D=1 systems, elementary excitations are spinons carrying S=1/2 Faddeev and Takhtajan, Phys. Lett. **85A**, 375 (1981)

$$\mathcal{H} = J^{z} \sum_{i} S_{i}^{z} S_{i+1}^{z} + J^{xy} \sum_{i} (S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y})$$

- A spinon is a neutral spin-1/2 excitation, "one-half" of a S=1 spin flip.
- Spinons can only be created by pairs in finite systems
 They can propagate at large distances, as two elementary particles

FRACTIONALIZATION

Simple picture for $J^z\gg J^{xy}$ ($J^{xy}=0$ corresponds to the Ising model)



Elementary excitations: the spinons

ullet In D=1 systems, elementary excitations are spinons carrying S=1/2 Faddeev and Takhtajan, Phys. Lett. **85A**, 375 (1981)

$$S(q,\omega) = \int dt \langle \Psi_0 | S_{-q}^z(t) S_q^z(0) | \Psi_0 \rangle e^{i\omega t} = \sum_{n
eq 0} |\langle \Psi_n | S_q^z | \Psi_0 \rangle|^2 \delta(\omega - \Delta \omega_{n0})$$

 $S(q,\omega)$ has only the incoherent part No delta function Singularity at the bottom of the spectrum

 $S(q,\omega)$ can be computed exactly also in the Haldane-Shastry model:

$$\mathcal{H} = J \sum_{m < n} [d(m-n)]^2 \mathbf{S}_m \cdot \mathbf{S}_n \qquad d(n) = \frac{N}{\pi} \sin(\frac{\pi n}{N})$$

• The exact ground state is $|\Psi_0\rangle = \mathcal{P}_G \prod_{k<|k_F|} c_{k,\uparrow}^\dagger c_{k,\downarrow}^\dagger |0\rangle$ Haldane, Phys. Rev. Lett. **60**, 635 (1988); Shastry, Phys. Rev. Lett. **60**, 639 (1988)

 \mathbb{X}

• The S=1 state $S^{\alpha}_n |\Psi_0\rangle$ is completely expressible in terms of two spinons Haldane and Zirnbauer, Phys. Rev. Lett. 71, 4055 (1993)

Dimerization in one dimension

Majumdar-Ghosh point for the frustrated J_1-J_2 Heisenberg model:

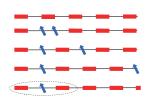
$$\mathcal{H} = J \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \frac{J}{2} \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2}$$

• The exact ground state is known (two-fold degenerate): perfect dimerization

$$\mathcal{H} = \frac{3J}{4} \sum_{i} \mathcal{P}_{3/2}^{(i-1,i,i+1)} - \frac{3J}{8} N$$

$$\mathcal{P}_{3/2}^{(i-1,i,i+1)} = \frac{1}{3} \left[(\mathbf{S}_{i-1} + \mathbf{S}_i + \mathbf{S}_{i+1})^2 - \frac{3}{4} \right]$$

Majumdar and Ghosh, J. Math. Phys. 10, 1388 (1969)



$$=$$
 $=$ $\frac{1}{\sqrt{2}}$ $\left(\uparrow\downarrow\right)$ $-\left|\downarrow\uparrow\right\rangle$ $\right)$ Singlet, total spin S=0

The "initial" S=1 excitation can decay into ${\color{blue}two}$ spatially separated spin-1/2 excitations

From one to two (and three) spatial dimensions

In D = 1 there is:
 No magnetic order, given the Mermin-Wagner theorem
 (not possible to break a continuous symmetry in D = 1, even at T = 0)

 Pitaevskii and Stringari, J. Low Temp. Phys. 85, 377 (1991)

Fractionalization, e.g., S=1 excitations decay into S=1/2 particles

- In D = 2 it is possible to break a continuous symmetry at T = 0:
 Is it still possible to have a magnetically disordered ground state?
 Is it still possible to have fractionalization?
- In D = 3 it is possible to break a continuous symmetry even at finite temperature:
 Is it still possible to have a magnetically disordered ground state?
 Phase transition between two different paramagnetic phases at low temperature?

The semi-classical approach: large-S

$$\mathcal{H} = \sum_{i,j} J_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j$$

• Suppose that the classical limit $(S \to \infty)$ is described by

$$\mathbf{S}_{i} = \frac{1}{\sqrt{N}} \left(\mathbf{S}_{k_0} e^{ik_0 r_i} + h.c. \right) = \left\{ \cos(k_0 r_i), \sin(k_0 r_i), 0 \right\}$$

- ullet In order to include the quantum fluctuations, perform a 1/S expansion
 - Let us denote by $\theta_i = k_0 r_i$
 - Make a rotation around the z axis

$$\left\{ \begin{array}{l} \tilde{S}_{j}^{x} = \cos\theta_{j}S_{j}^{x} + \sin\theta_{j}S_{j}^{y} \\ \tilde{S}_{j}^{y} = -\sin\theta_{j}S_{j}^{x} + \cos\theta_{j}S_{j}^{y} \\ \tilde{S}_{i}^{z} = S_{i}^{z} \end{array} \right.$$

Perform the Holstein-Primakoff transformation:

$$\left\{\begin{array}{l} \tilde{S}^{\times}_{j} = S - a^{\dagger}_{j} a_{j} \\ \tilde{S}^{y}_{j} \simeq \sqrt{\frac{s}{2}} \left(a^{\dagger}_{j} + a_{j} \right) \\ \tilde{S}^{z}_{j} \simeq i \sqrt{\frac{s}{2}} \left(a^{\dagger}_{j} - a_{j} \right) \end{array}\right.$$
Quantum Spin Liquids

The semi-classical approach: large-S

At the leading order in 1/S, we obtain:

$$\mathcal{H}_{\mathrm{sw}} = \mathrm{E}_{\mathrm{cl}} + rac{\mathcal{S}}{2} \sum_{k} \left\{ A_{k} a_{k}^{\dagger} a_{k} + rac{B_{k}}{2} \left(a_{k}^{\dagger} a_{-k}^{\dagger} + a_{-k} a_{k}
ight)
ight\}$$

Where:

$$E_{c1} = \frac{1}{2} NS^{2} J_{k_{0}}$$

$$\begin{cases} A_{k} = J_{k} + \frac{1}{2} (J_{k+k_{0}} + J_{k-k_{0}}) - 2J_{k_{0}} \\ B_{k} = \frac{1}{2} (J_{k+k_{0}} + J_{k-k_{0}}) - J_{k} \end{cases}$$

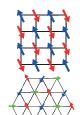
By performing a Bogoliubov transformation:

$$\mathcal{H}_{\sf sw} = \mathrm{E}_{
m cl} + \sum_{\it k} \omega_{\it k} (lpha_{\it k}^\dagger lpha_{\it k} + rac{1}{2})$$

- Leading-order corrections to the magnetization $\langle \tilde{S}_i^x \rangle = S \langle a_i^{\dagger} a_i \rangle$
- Excitations are called magnons (analog of phonons for lattice waves)
- Presence of gapless excitations for broken SU(2) systems (Goldstone mode)

Renormalization of the classical state

The classical ground state is "dressed" by quantum fluctuations



- The lattice breaks up into sublattices
- Each sublattice keeps an extensive magnetization

$$S(q) = rac{1}{N} \langle \Psi_0 | \left| \sum_j \mathbf{S}_j e^{iqr_j}
ight|^2 |\Psi_0
angle = rac{1}{N} \sum_{j,k} \langle \Psi_0 | \mathbf{S}_j \cdot \mathbf{S}_k | \Psi_0
angle e^{iq(r_j - r_k)}$$

$$S(q) = \left\{ egin{array}{ll} O(1) & ext{for all q's} & o ext{short-range correlations} \ S(q_0) \propto N & ext{for} q = q_0 & o ext{long-range order} \end{array}
ight.$$

Fingerprints in finite clusters

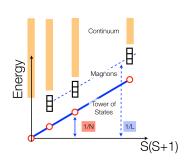
- Spontaneous symmetry breaking is only possible in the thermodynamic limit Spontaneously broken SU(2) symmetry ⇒ Gapless spin waves
- How can we detect it on finite lattices (e.g., by exact diagonalizations)?

 \Longrightarrow Tower of states

Anderson, Phys. Rev. 86, 694 (1952)

Bernu, Lhuillier, and Pierre, Phys. Rev. Lett. 69, 2590 (1992)

Bernu, Lecheminant, Lhuillier, and Pierre, Phys. Rev. B 50, 10048 (1994)



A family of states with S up to $O(\sqrt{N})$ collapse to the ground state with $\Delta E_S \propto S(S+1)/N$

In the thermodynamic limit $\Delta E_S \rightarrow 0$ Linear combinations of states with different S \Longrightarrow broken SU(2) symmetry

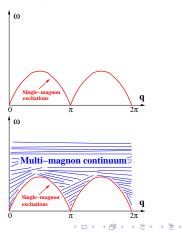
Inelastic Neutron scattering: magnon excitations and continuum

The inelastic Neutron scattering is a probe for the dynamical structure factor

$$S(q,\omega) = \int dt \langle \Psi_0 | S_{-q}^{lpha}(t) S_q^{lpha}(0) | \Psi_0
angle e^{i\omega t} = \sum_{n
eq 0} |\langle \Psi_n | S_q^{lpha} | \Psi_0
angle|^2 \delta(\omega - \Delta \omega_{n0})$$

Within the harmonic approximation there is only a single branch of excitations (magnons)

In reality, a continuum of multi-magnon excitations exists above the threshold. Single magnon excitations are well defined $S(q,\omega) = Z_q \delta(\omega - \omega_q) + \text{incoherent part}$



Mechanisms to destroy the long-range order

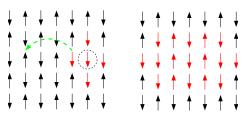
- Small value of the spin S, e.g., S = 1/2 or S = 1Stay away from the classical limit, e.g., large S
- Frustration of the super-exchange interactions
 Not all terms of the energy can be optimized simultaneously:
 Even at the classical level, many competing low-energy states

- Low spatial dimensionality: D = 2 is the "best" choice
 Zero-point quantum fluctuations are huge
- Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)

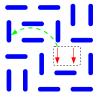
Arovas and Auerbach, Phys. Rev. B 38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988) Read and Sachdev. Phys. Rev. Lett. 66, 1773 (1991); Read and Sachdev. Nucl. Phys. B316, 609 (1989)

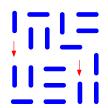
Fractionalization in two dimensions?

Fractionalization is not compatible with magnetic order



Fractionalization may exist in RVB liquids





A first definition for spin liquids

A spin liquid is a state without magnetic order

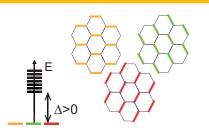
$$S(q) = \frac{1}{N} \langle \Psi_0 | \left| \sum_j \mathbf{S}_j e^{iqr_j} \right|^2 |\Psi_0\rangle = \frac{1}{N} \sum_{j,k} \langle \Psi_0 | \mathbf{S}_j \cdot \mathbf{S}_k | \Psi_0 \rangle e^{iq(r_j - r_k)}$$

$$S(q) = \left\{ egin{array}{ll} \emph{O}(1) & \mbox{for all q's} &
ightarrow \mbox{short-range correlations} \ S(q_0) \propto \emph{N} & \mbox{for} q = q_0 &
ightarrow \mbox{long-range order} \end{array}
ight.$$

The structure factor S(q) does not diverge, whatever the q is

- It can be checked by using Neutron scattering
- ullet The Mermin-Wagner theorem implies that any 2D Heisenberg model at T>0 is a spin liquid according to this definition

Valence-bond crystals



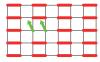
 $=\frac{1}{\sqrt{2}}(\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)$ Singlet, total spin S=0

$J_1 - J_2$ Heisenberg model on the hexagonal lattice

Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

Properties:

- Short-range spin-spin correlations
- \bullet Spontaneous breakdown of some lattice symmetries \rightarrow ground-state degeneracy
- ullet Gapped S=1 excitations ("magnons" or "triplons")



Spin liquid: a second definition

A spin liquid is a state without any spontaneously broken (local) symmetry

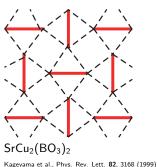
- It rules out magnetically ordered states that break spin SU(2) symmetry (including states with quadrupolar order)
- It rules out valence-bond crystals that break some lattice symmetries
- It rules out chiral spin liquids that break time-reversal symmetries

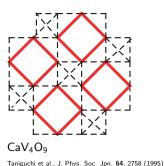
 Wen, Wilczek, and Zee, Phys. Rev. B 39, 11413 (1989)

Notice: local means that there is a physical order parameter that can be measured by some local probe

Quantum paramagnets

There are few examples of magnetic insulators without any broken symmetry



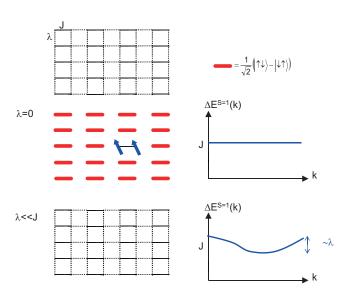




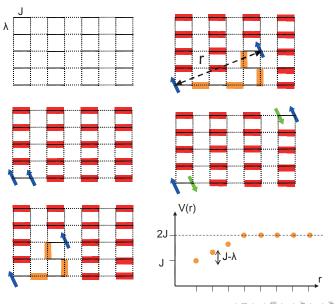
Properties:

- No broken symmetries
- Even number of spin-1/2 in the unit cell
- Adiabatically connected to the (trivial) limit of decoupled blocks
- ullet No phase transition between T=0 and $\infty\Longrightarrow$ "simple" quantum paramagnet

Quantum paramagnets:excitation spectrum



Quantum paramagnets and VBCs are not fractionalized



The Lieb-Schultz-Mattis (LSM) et al. theorem

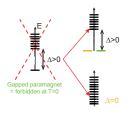
A system with half-odd-integer spin in the unit cell cannot have a gap and a unique ground state

Valid in the thermodynamic limit for periodic boundary conditions and $L_1 \times L_2 \times \cdots L_D = odd$

Lieb, Schultz, Mattis, Ann. Phys. (N.Y.) 16, 407 (1961); Affleck and Lieb, Lett. Math. Phys. 12, 57 (1986)

• Since then, several attempts to generalize it in 2D

Affleck, Phys. Rev. B **37**, 5186 (1988); Bonesteel, Phys. Rev. B **40**, 8954 (1989); Oshikawa, Phys. Rev. Lett. **84**, 1535 (2000); Hastings, Phys. Rev. B **69**, 104431 (2004)



Case 1) Ground-state degeneracy

- a) Valence-bond crystal
- b) Resonating-valence bond spin liquid (gapped but with a topological degeneracy)
- Case 2) Gapless spectrum
- a) Continuous broken symmetry (magnetic order)
- b) Resonating-valence bond spin liquid (gapless, i.e., critical state)

Implications of the LSM theorem

- ullet Let us consider a two-dimensional system with $L_x imes L_y$ and L_y odd with periodic boundary conditions
- Let us consider the case with S = 1/2

If we assume that a gapped state is realized then its ground state must be degenerate

- Usually, ground-state degeneracies imply some spontaneous symmetry breaking There exists a local operator such that $\langle \Psi_1|\mathcal{O}|\Psi_2\rangle \neq 0$
- If the system does not break any symmetry, still the ground state must be degenerate. The LSM degeneracy cannot be understood from a symmetry-breaking picture. For all local operators $\langle \Psi_1 | \mathcal{O} | \Psi_2 \rangle = 0$

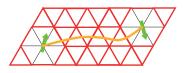
The degeneracy is related to **TOPOLOGICAL** properties

TOPOLOGICAL ORDER

Wen, Phys. Rev. B 40, 7387 (1989); Phys. Rev. B 44, 2664 (1991)

Topological order and fractionalization

No dimer order → deconfined spinons:



• Spinon fractionalization and topological degeneracy go hand in hand

Ground states that are not connected by any local operator

Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)

 A particularly insightful example is given by the Toric Code Kitaev. Annals Phys. 303. 2 (2003)

Spin liquid: a third definition

A spin liquid is a state without any spontaneously broken (local) symmetry, with a half-odd-integer spin in the unit cell

- It rules out magnetically ordered states that break spin SU(2) symmetry (including states with quadrupolar order)
- It rules out valence-bond crystals that break some lattice symmetries
- It rules out chiral spin liquids that break time-reversal symmetries
 Wen, Wilczek, and Zee, Phys. Rev. B 39, 11413 (1989)
- It rules out quantum paramagnets that have an even number of spin-half per unit cell

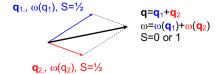
A spin liquid sustains fractional (spin-1/2) excitations

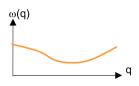
Inelastic Neutron scattering: spinon continuum

The inelastic Neutron scattering is a probe for the dynamical structure factor

$$S(q,\omega)=\int dt \langle \Psi_0|S^lpha_{-q}(t)S^lpha_q(0)|\Psi_0
angle \mathrm{e}^{i\omega t}$$

- ullet The elementary excitations are spin-1 magnons: $S(q,\omega)$ has a single-particle pole at $\omega=\omega(q)$
- ullet The spin-flip decays into two spin-1/2 excitations $S(q,\omega)$ exhibits a two-particle continuum

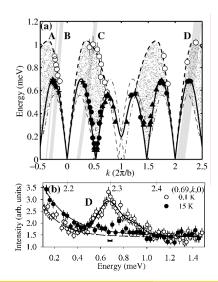




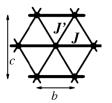
Inelastic Neutron scattering: spinon continuum

Neutron scattering on Cs₂CuCl₄

Coldea, Tennant, Tsvelik, and Tylczynski , Phys. Rev. Lett. 86, 1335 (2001)



Almost decoupled layers Strongly-anisotropic triangular lattice



 $J' \simeq 0.33J$: quasi-1D

Proof of the Lieb-Shultz-Mattis theorem in 1D

• Consider the Heisenberg model on a chain:

$$\mathcal{H} = \sum_{i=1}^{N} \mathbf{S}_i \cdot \mathbf{S}_{i+1}$$

with periodic boundary conditions ($S_{N+1} \equiv S_1$), even N, and half-odd integer spins

Theorem:

There exists an excited state with an energy that vanishes as $N \to \infty$

- $|\Psi_0\rangle$ is the ground state of \mathcal{H} with energy E_0 .
- Assume that $|\Psi_0\rangle$ is a singlet ("almost" always the case)
- Consider the twist operator $\mathcal{O} = \exp\{\frac{2\pi i}{N} \sum_{i=1}^{N} jS_i^z\}$
- Denote $|\Psi_1\rangle = \mathcal{O}|\Psi_0\rangle$

Then:

(1)
$$\langle \Psi_1 | \Psi_0 \rangle = 0$$

(2)
$$\lim_{N\to\infty} [\langle \Psi_1 | \mathcal{H} | \Psi_1 \rangle - E_0] = 0$$

Proof of the Lieb-Shultz-Mattis theorem in 1D

Consider the translation operator \mathcal{T} :

$$\mathcal{T}\mathbf{S}_{j}\mathcal{T}^{-1} = \mathbf{S}_{j+1}$$
 $\mathcal{T}\mathbf{S}_{N}\mathcal{T}^{-1} = \mathbf{S}_{1}$ $[\mathcal{H}, \mathcal{T}] = 0$ $\mathcal{T}|\Psi_{0}\rangle = e^{ik_{0}}|\Psi_{0}\rangle$

$$\langle \Psi_0 | \Psi_1 \rangle = \langle \Psi_0 | \mathcal{O} | \Psi_0 \rangle = \langle \Psi_0 | \mathcal{T} \mathcal{O} \mathcal{T}^{-1} | \Psi_0 \rangle$$

$$\mathcal{T}\mathcal{O}\mathcal{T}^{-1} = \mathcal{O}\exp\left(2\pi i S_1^z
ight) \exp\left(-rac{2\pi i}{N}S_{\mathrm{tot}}^z
ight)$$

Then, $\exp\left(-\frac{2\pi i}{N}S_{\mathrm{tot}}^{z}\right)|\Psi_{0}\rangle=|\Psi_{0}\rangle$, since $|\Psi_{0}\rangle$ is a singlet.

$$\exp(2\pi i S_1^z) = \begin{cases} +1 & S = 0, 1, 2, \cdots \\ -1 & S = 1/2, 3/2, 5/2, \cdots \end{cases}$$

• Therefore, for half-odd integer spin: $\langle \Psi_0 | \Psi_1 \rangle = -\langle \Psi_0 | \Psi_1 \rangle$

$$\begin{array}{l} \langle \Psi_{1}|\mathcal{H}|\Psi_{1}\rangle = E_{0} + \langle \Psi_{0}|\{\cos(\frac{2\pi}{N}) - 1\} \sum_{j=1}^{N} (S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y})|\Psi_{0}\rangle \\ \langle \Psi_{0}|(S_{i}^{x} S_{i+1}^{x} + S_{j}^{y} S_{j+1}^{y})|\Psi_{0}\rangle < S^{2} \end{array}$$

• We obtain an upper-bound for the energy: $\langle \Psi_1 | \mathcal{H} | \Psi_1 \rangle - E_0 \leq \frac{2\pi^2 J S^2}{N} + O(N^{-3})$

Generalization by Affleck in 2D

 The previous argument can be easily generalized for odd L_y (odd-leg ladders L_x × L_y)

Affleck, Phys. Rev. B 37, 5186 (1988)

As before, it is possible to show that:

$$\langle \Psi_0 | \Psi_1 \rangle = - \langle \Psi_0 | \Psi_1 \rangle$$

$$\langle \Psi_1 | \mathcal{H} | \Psi_1
angle - \textit{E}_0 \leq rac{2\pi^2 \textit{JS}^2 \frac{\textit{L}_y}{\textit{L}_x}}$$

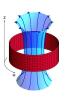
It works whenever $L_x \gg L_y$

Generalization by Oshikawa in 2D

 A further generalization that does not require a strong anisotropy is possible (Related to the Laughlin argument for the the quantum Hall effect)
 Laughlin, Phys. Rev. B 23, 5632 (1981)

• Insert a twist in the spin Hamiltonian

$$\mathcal{H}(\theta) = \sum_{m,n} J_{m,n} S_m^z S_n^z + \frac{1}{2} \sum_{m,n} J_{m,n} e^{i\theta(\mathbf{x}_m - \mathbf{x}_n)/\mathbf{L}_x} S_m^+ S_n^- + h.c.$$



ullet The spectra of $\mathcal{H}(2\pi)$ and $\mathcal{H}(0)$ are the same: $\mathcal{UH}(0)\mathcal{U}^{-1}=\mathcal{H}(2\pi)$

$$\mathcal{U} = \prod_{m} \exp\left(2\pi i \frac{x_{m}}{L_{x}} S_{m}^{z}\right)$$

$$|\Psi_0(2\pi)\rangle = \mathcal{U}|\Psi_0(0)\rangle$$

ullet The operator ${\mathcal U}$ does not commute with translations along x

$$\mathcal{T}\mathcal{U}\mathcal{T}^{-1} = \mathcal{U}\exp\left(2\pi i \mathcal{L}_{y}S\right)\exp\left(-\frac{2\pi i}{\mathcal{L}_{x}}S_{\mathrm{tot}}^{z}\right)$$

Generalization by Oshikawa in 2D

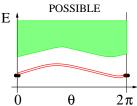
- ullet Given a gapped $\mathcal{H}(0)$, assume that $\mathcal{H}(heta)$ remains gapped for all fluxes $0 \leq heta \leq 2\pi$
- \bullet Imagine that we adiabatically insert a flux θ from 0 to 2π

Then
$$|\Psi_0(0)
angle$$
 evolves into $|\Psi(2\pi)
angle=\mathcal{U}|\Psi_0(0)
angle$

However, whenever L_yS is an half-odd integer (e.g., L_y odd and S=1/2) $|\Psi_0(0)\rangle$ and $\mathcal{U}|\Psi_0(0)\rangle$ have different quantum numbers

Therefore, the ground state must be degenerate





It works whenever L_y is odd

On finite systems, a small gap between these states is possible

Federico Becca (CNR and SISSA)