An introduction to quantum spin liquids: fermions and gauge fields from bosons

Federico Becca

CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA)

Königstein School, 6 April 2014

Sar

・ロト ・ 同ト ・ ヨト ・

1 Mean-field approaches to spin liquids

- Why standard mean-field approaches fail to describe spin liquids
- Fermionic representation of a spin-1/2
- Non-standard mean-field approaches for spin liquids
- Beyond mean field: "low-energy" gauge fluctuations

2 The Kitaev compass model on the honeycomb lattice

- Definition of the model
- Majorana fermions
- Representing the Kitaev model with Majorana fermions
- Solving the Kitaev model

naa

イロト イポト イヨト イヨト

Consider the spin-1/2 Heisenberg model on a generic lattice

$$\mathcal{H} = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

In a standard mean-field approach, each spin couples to an effective field generated by the surrounding spins:

$$\mathcal{H}_{\mathrm{MF}} = \sum_{ij} J_{ij} \left\{ \langle \mathbf{S}_i
angle \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \langle \mathbf{S}_j
angle - \langle \mathbf{S}_i
angle \cdot \langle \mathbf{S}_j
angle
ight\}$$

However, by definition, spin liquids have a zero magnetization:

$$\langle \mathbf{S}_i \rangle = 0$$

How can we construct a mean-field approach for such disordered states? We need to construct a theory in which all classical order parameters are vanishing

Federico Becca (CNR and SISSA)

naa

イロト イポト イヨト イヨ

Halving the spin operator

- The first step is to decompose the spin operator in terms of spin-1/2 quasi-particles creation and annihilation operators.
- One possibility is to write:

$$S_i^{\mu} = rac{1}{2} c_{i,\alpha}^{\dagger} \sigma_{\alpha,\beta}^{\mu} c_{i,\beta}$$

 $\sigma^{\mu}_{\alpha,\beta}$ are the Pauli matrices

$$\sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $c_{i,\alpha}^{\dagger}$ ($c_{i,\beta}$) creates (destroys) a quasi-particle with spin-1/2 These may have various statistics, e.g., bosonic or fermionic

At this stage, splitting the original spin operator in two pieces is just a formal trick. Whether or not these quasi-particles are true elementary excitations is THE question

Federico Becca (CNR and SISSA)

(日)

Fermionic representation of a spin-1/2

• A faithful representation of spin-1/2 is given by:

• For a model with one spin per site, we must impose the constraints:

$$c_{i,\uparrow}^{\dagger}c_{i,\uparrow}+c_{i,\downarrow}^{\dagger}c_{i,\downarrow}=1$$

• Compact notation by using a 2×2 matrix:

$$\Psi_{i} = \begin{bmatrix} c_{i,\uparrow} & c_{i,\downarrow}^{\dagger} \\ c_{i,\downarrow} & -c_{i,\uparrow}^{\dagger} \end{bmatrix} \qquad S_{i}^{\mu} = -\frac{1}{4} \operatorname{Tr} \left[\sigma^{\mu} \Psi_{i} \Psi_{i}^{\dagger} \right] \qquad G_{i}^{\mu} = \frac{1}{4} \operatorname{Tr} \left[\sigma^{\mu} \Psi_{i}^{\dagger} \Psi_{i} \right] = 0$$

990

< □ > < □ > < □ > < □ > < □ > < □ >

Local redundancy and "gauge" transformations

$$S_{i}^{\mu} = -\frac{1}{4} \operatorname{Tr} \left[\sigma^{\mu} \Psi_{i} \Psi_{i}^{\dagger} \right]$$
$$\mathbf{S}_{i} \cdot \mathbf{S}_{j} = \frac{1}{16} \sum_{\mu} \operatorname{Tr} \left[\sigma^{\mu} \Psi_{i} \Psi_{i}^{\dagger} \right] \operatorname{Tr} \left[\sigma^{\mu} \Psi_{j} \Psi_{j}^{\dagger} \right] = \frac{1}{8} \operatorname{Tr} \left[\Psi_{i} \Psi_{i}^{\dagger} \Psi_{j} \Psi_{j}^{\dagger} \right]$$

-

• Spin rotations are left rotations:

$$\Psi_i \rightarrow R_i \Psi_i$$

The Heisenberg Hamiltonian is invariant under global rotations

• The spin operator is invariant upon local SU(2) "gauge" transformations, right rotations:

$$\Psi_i
ightarrow \Psi_i W_i$$

 $\mathbf{S}_i
ightarrow \mathbf{S}_i$

There is a huge redundancy in this representation

Affleck, Zou, Hsu, and Anderson, Phys. Rev. B 38, 745 (1988)

Federico Becca (CNR and SISSA)

SQA

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- We transformed a spin model into a model of interacting fermions (subject to the constraint of one-fermion per site)
- The first approximation to treat this problem is to consider a mean-field decoupling:

$$\Psi_{i}^{\dagger}\Psi_{j}\Psi_{j}^{\dagger}\Psi_{i} \rightarrow \langle \Psi_{i}^{\dagger}\Psi_{j} \rangle \Psi_{j}^{\dagger}\Psi_{i} + \Psi_{i}^{\dagger}\Psi_{j} \langle \Psi_{j}^{\dagger}\Psi_{i} \rangle - \langle \Psi_{i}^{\dagger}\Psi_{j} \rangle \langle \Psi_{j}^{\dagger}\Psi_{i} \rangle$$

We define the mean-field 2×2 matrix

$$U_{ij}^{0} = \frac{J_{ij}}{4} \langle \Psi_{j}^{\dagger} \Psi_{j} \rangle = \frac{J_{ij}}{4} \begin{bmatrix} \langle c_{i,\uparrow}^{\dagger} c_{j,\uparrow} + c_{i,\downarrow}^{\dagger} c_{j,\downarrow} \rangle & \langle c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} + c_{j,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} \rangle \\ \langle c_{i,\downarrow} c_{j,\uparrow} + c_{j,\downarrow} c_{i,\uparrow} \rangle & - \langle c_{j,\downarrow}^{\dagger} c_{i,\downarrow} + c_{j,\uparrow}^{\dagger} c_{i,\downarrow} \rangle \end{bmatrix} = \begin{bmatrix} \chi_{ij} & \eta_{ij}^{*} \\ \eta_{ij} & -\chi_{ij}^{*} \end{bmatrix}$$

- $\chi_{ij} = \chi^*_{ji}$ is the spinon hopping
- $\eta_{ij} = \eta_{ji}$ is the spinon pairing

200

ヘロト ヘ部ト ヘヨト ヘヨト

Mean-field approximation

The mean-field Hamiltonian has a BCS-like form:

$$egin{aligned} \mathcal{H}_{MF} &= \sum_{ij} \chi_{ij} (c^{\dagger}_{j,\uparrow} c_{i,\uparrow} + c^{\dagger}_{j,\downarrow} c_{i,\downarrow}) + \eta_{ij} (c^{\dagger}_{j,\uparrow} c^{\dagger}_{i,\downarrow} + c^{\dagger}_{i,\uparrow} c^{\dagger}_{j,\downarrow}) + h.c. \ &+ \sum_{i} \mu_{i} (c^{\dagger}_{i,\uparrow} c_{i,\uparrow} + c^{\dagger}_{i,\downarrow} c_{i,\downarrow} - 1) + \sum_{i} \zeta_{i} c^{\dagger}_{i,\uparrow} c^{\dagger}_{i,\downarrow} + h.c. \end{aligned}$$

- $\{\chi_{ij},\eta_{ij},\mu_i,\zeta_i\}$ define the mean-field Ansatz
- At the mean-field level:
 - χ_{ii} and η_{ii} are fixed numbers
 - Constraints are satisfied only in average

At the mean-field level, spinons are free. Beyond this approximation, they will interact with each other Do they remain asymptotically free (at low energies)?

nar

イロト イポト イヨト イヨト

Redundancy of the mean-field approximation

- Let $|\Phi_{MF}(U_{ij}^0)\rangle$ be the ground state of the mean-field Hamiltonian (with a given Ansatz for the mean-field U_{ij}^0)
- |Φ_{MF}(U⁰_{ij}) > cannot be a valid wave function for the spin model (its Hilbert space is wrong, it has not one fermion per site!)
- Let us consider an arbitrary *site-dependent* SU(2) matrix W_i (gauge transformation)

$$\Psi_i \rightarrow \Psi_i W_i$$

It leaves the spin unchanged $\mathbf{S}_i \rightarrow \mathbf{S}_i$.

$$U^0_{ij}
ightarrow W^\dagger_i \, U^0_{ij} \, W_j$$

 Therefore, U⁰_{ij} and W[†]_iU⁰_{ij}W_j define the same physical state (the same physical state can be represented by many different Ansätze U⁰_{ii})

$$\langle 0|\prod_{i}c_{i,\alpha_{i}}|\Phi_{MF}(U_{ij}^{0})
angle = \langle 0|\prod_{i}c_{i,\alpha_{i}}|\Phi_{MF}(W_{i}^{\dagger}U_{ij}^{0}W_{j})
angle$$

Federico Becca (CNR and SISSA)

・ロト ・ 戸 ト ・ ヨ ト ・

An example of the redundancy on the square lattice

• The staggered flux state is defined by

Affleck and Marston, Phys. Rev. B 37, 3774 (1988)

$$j \in A \begin{cases} \chi_{j,j+x} = e^{i\Phi_0/4} \\ \chi_{j,j+y} = e^{-i\Phi_0/4} \end{cases}$$
$$j \in B \begin{cases} \chi_{j,j+x} = e^{-i\Phi_0/4} \\ \chi_{j,j+y} = e^{i\Phi_0/4} \end{cases}$$

• The d-wave "superconductor" state is defined by

Baskaran, Zou, and Anderson, Solid State Commun. 63, 973 (1987)

$$\left\{ \begin{array}{l} \chi_{j,j+x}=1\\ \chi_{j,j+y}=1\\ \eta_{j,j+x}=\Delta\\ \eta_{j,j+y}=-\Delta \end{array} \right.$$

- For $\Delta = tan(\Phi_0/4)$, these two mean-field states become the same state after projection
- The mean-field spectrum is the same for the two states

SQA

Beyond mean field: "low-energy" gauge fluctuations

• Beyond mean field we can consider fluctuations of U_{ii}^{0}

$$U_{ij}^{0} = \frac{J_{ij}}{4} \langle \Psi_{i}^{\dagger} \Psi_{j} \rangle \Longrightarrow U_{ij}^{0} + \delta U_{ij}$$

• Wen's conjecture:

Amplitude fluctuations have a finite energy gap and are not essential Phase fluctuations instead are important: $U_{ij}^0 \Longrightarrow U_{ij}^0 e^{iA_{ij}}$ In particular, all A_{ij} that leave U_{ij}^0 invariant: $\mathcal{G}_i^{\dagger} U_{ij}^0 \mathcal{G}_j = U_{ij}^0$ A_{ij} plays the role of a gauge field coupled to spinons Wen, Phys. Rev. B **65**, 165113 (2002)

By adding "low-energy" fluctuations on top of the mean field Ansatz, we obtain a theory of matter (spinons) coupled to gauge fields

The structure of the "low-energy" gauge fluctuations may be different from the original "high-energy" one, we can have Z_2 , U(1), SU(2)... spin liquids

イロト イポト イヨト イヨ

Fluctuations above the mean field and gauge fields

- Some results about lattice gauge theory (coupled to matter, i.e., spinons) may be used to discuss the stability/instability of a given mean-field Ansatz
- What is known about U(1) gauge theories? Monopoles proliferate → confinement
 Polyakov, Nucl. Phys. B 120, 429 (1977)

Spinons are glued in pairs by strong gauge fluctuations and are not physical excitations

• Deconfinement may be possible in presence of gapless matter field The so-called U(1) spin liquid

Hermele et al., Phys. Rev. B 70, 214437 (2004)

• In presence of a charge-2 field (i.e., spinon pairing) the U(1) symmetry can be lowered to $Z_2 \to deconfinement$

Fradkin and Shenker, Phys. Rev. D 19, 3682 (1979)

- For example in D=2:

 - U(1) gauge field (gapless) + gapped spinons should lead to an instability towards confinement and valence-bond order Read and Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

SQC

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- The spin operator is written in terms of "more fundamental" objects: spinons
- The Hilbert space is artificially enlarged
- A constraint must be introduced to go back to the original Hilbert space of spins \implies A gauge redundancy appears
- At the mean-field level, there are free particles (spinons)
- Beyond mean field, spinons interact with gauge fluctuations
- Is the "low-energy" picture stable and valid to describe the original spin model? Arguments suggest that a (gapped) Z_2 gauge field may preserve the mean-field results Here, gauge excitations are called visons

A vison is a quantized (magnetic) flux threading an elementary plaquette Senthil and Fisher, Phys. Rev. B 62, 7850 (2000)

I DOG

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

How can a purely bosonic model have an effective theory described by gauge fields and fermions? This is incredible

Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press 2004)

- There are many attempts to define *ad hoc* bosonic models having fermions and gauge fields as elementary excitations
- One class of these models are based upon string-net theories

Wen, Phys. Rev. Lett. 90, 016803 (2003)

Kitaev, Ann. Phys. 303, 2 (2003)

In the following, I will consider a spin model that is exactly described by fermions and gauge fields

イロト イポト イヨト イヨト

The Kitaev compass model on the honeycomb lattice

- Rather artificial spin model breaking SU(2) symmetry
- Possible physical realization in Iridates with strong spin-orbit coupling Jackeli and Khaliullin, Phys. Rev. Lett. **102**, 017205 (2009)

 J_x , J_y , and J_z are model parameters

 σ_j^x , σ_j^y , and σ_j^z are Pauli matrices on site *j* Kitaev, Ann. Phys. **321**, 2 (2006)

Properties of the Kitaev model

- Take a cluster with 2N sites $\implies N$ plaquettes
- There are N-1 integrals of motion W_p :

• All operators K_{jk} commute with

$$W_{\rho} = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z = K_{12} K_{23} K_{34} K_{45} K_{56} K_{61}.$$

- Different operators W_p commute with each other
- "Only" N-1 independent W_p because $\prod_p W_p = 1$
- Each operator W_p has eigenvalues +1 and -1

590

- The existence of N-1 operators commuting with ${\mathcal H}$ simplifies the problem
- $\bullet \Longrightarrow$ The Hamiltonian can be diagonalized in each sector separately
- The total Hilbert space is 2^{2N}
- \implies The dimension of each sector is $2^{2N}/2^{N-1} = 2^{N+1}$
- The problem is still exponentially hard
- However, the degrees of freedom in each sector can be described by free Majorana fermions
- Solution in terms of free particles in presence of Z_2 magnetic fluxes, i.e., visons (values of W_p for each plaquette)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへで

What is a Majorana fermion?

Let us consider a system with L fermionic modes

- This is usually described by annihilation and creation operators a_k and a[†]_k with k = 1,..., L
 {a_k, a_p} = {a[†]_k, a[†]_p} = 0 and {a_k, a[†]_p} = δ_{k,p}
- Instead, one can use linear combinations

$$c_{2k-1} = a_k^{\dagger} + a_k$$

 $c_{2k} = i(a_k^{\dagger} - a_k)$

• They are called Majorana operators The operators c_j (j = 1, ..., 2L) are Hermitian and obey the following relations:

$$c_j^2 = 1$$
$$c_i c_j = -c_j c_i \qquad i \neq j$$

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Representing spin operators by Majorana fermions

• Let us represent the spin operator by 4 Majorana fermions

$$\sigma^{x} = ib^{x}c \qquad \sigma^{y} = ib^{y}c \qquad \sigma^{z} = ib^{z}c$$

$$b^{z}$$

$$b^{x} \qquad b^{y}$$

• \implies We enlarge the Hilbert space

2 physical spin states versus 4 unphysical fermionic states

$$\sigma^x \sigma^y \sigma^z = ib^x b^y b^z c = iD$$

ullet The physical Hilbert space is defined by states $|\xi\rangle$ that satisfy

$$D|\xi\rangle = |\xi\rangle$$

• The operator D may be thought of as a gauge transformation for the group Z_2

Representing the Kitaev model with Majorana fermions

$$\mathcal{H} = -J_x \sum_{x-\text{links}} \sigma_j^x \sigma_k^x - J_y \sum_{y-\text{links}} \sigma_j^y \sigma_k^y - J_z \sum_{z-\text{links}} \sigma_j^z \sigma_k^z$$
$$\mathcal{K}_{jk} = \begin{cases} \sigma_j^x \sigma_k^x, & \text{if } (j,k) \text{ is an } x-\text{link}; \\ \sigma_j^x \sigma_k^y, & \text{if } (j,k) \text{ is an } y-\text{link}; \\ \sigma_i^x \sigma_k^z, & \text{if } (j,k) \text{ is an } z-\text{link}. \end{cases}$$

• By using the Majorana fermions

$$K_{jk} = (ib_j^{\alpha}c_j)(ib_k^{\alpha}c_k) = -i(ib_j^{\alpha}b_k^{\alpha})c_jc_k$$

- We define the Hermitian operator $u_{jk} = ib_j^{\alpha} b_k^{\alpha}$, associated to each link (j, k)The index α takes values x, y or z depending on the direction of the link
- The Hamiltonian becomes:

$$\mathcal{H} = \frac{i}{4} \sum_{j,k} A_{jk} c_j c_k, \qquad A_{jk} = \begin{cases} 2J_{\alpha_{jk}} u_{jk} & \text{if } j \text{ and } k \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

 $u_{ik} = -u_{ki}$

SQA

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Representing the Kitaev model with Majorana fermions

Now, the great simplification!

- All operators u_{ik} commute with the Hamiltonian and with each other
- \implies The Hilbert space splits into eigenspaces with fixed u_{jk} labeled by the eigenvalues $u_{jk} = \pm 1$
- → The Hamiltonian is quadratic in the *c* operators
 The set {*u*} determine static magnetic fluxes through the plaquettes
- \implies All eigenfunctions $|\Psi_u\rangle$ with a fixed set $\{u\}$ can be found exactly

nar

ヘロト ヘヨト ヘヨト ヘヨト

- The Hamiltonian commutes with all operators u_{jk} : $[\mathcal{H}, u_{jk}] = 0$
- The Hamiltonian commutes with all constraints D_i : $[\mathcal{H}, D_i] = 0$
- However, the link operators u_{jk} do not commute with the constraints D_i In particular, $D_j u_{jk} = -u_{jk} D_j$

Applying D_j changes the values of u_{jk} on the links connecting j with the neighbors

• \implies The subspace with fixed u_{jk} is not gauge invariant

nac

(日) (四) (注) (注)

• The gauge-invariant objects are the fluxes through each plaquette $W_p = -u_{12}u_{23}u_{34}u_{45}u_{56}u_{61}$

 D_j acts as a gauge transformation:

it changes u_{jk} but not the fluxes W_p (every plaquette changes 2 links)

- \bullet The eigenfunctions $|\Psi_u\rangle$ with a fixed set of $\{u\}$ do not belong to the physical subspace
- To obtain a physical wave function, we must symmetrize over all gauge transformations

$$|\Phi_w\rangle = \mathcal{P}|\Psi_u\rangle = \prod_j \left(rac{1+D_j}{2}
ight)|\Psi_u
angle$$

w denotes the equivalence class of u under the gauge transformations

Since $[\mathcal{P},\mathcal{H}]=$ 0, $|\Phi_w
angle$ has the same eigenvalue as $|\Psi_u
angle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Diagonalizing the Kitaev model

$$\mathcal{H} = \frac{i}{4} \sum_{j,k} A_{jk} c_j c_k, \qquad A \text{ is a skew-symmetric matrix of size } 2N$$

• Diagonalize the Hamiltonian by considering the canonical form

$$\mathcal{H}_{\text{canonical}} = \frac{i}{2} \sum_{k=1}^{N} \epsilon_k b'_k b''_k = \sum_{k=1}^{N} \epsilon_k \left(a^{\dagger}_k a_k - \frac{1}{2} \right) \qquad \epsilon_k \ge 0$$

where b'_k , b''_k are normal modes

$$(b'_1, b''_1, \ldots, b'_N, b''_N) = (c_1, c_2, \ldots, c_{2N-1}, c_{2N})Q$$

$$A = Q \begin{pmatrix} 0 & \epsilon_{1} & & & \\ -\epsilon_{1} & 0 & & & \\ & & \ddots & & \\ & & 0 & \epsilon_{N} \\ & & & -\epsilon_{N} & 0 \end{pmatrix} Q^{T}$$

 a_k^{\dagger} and a_k are the corresponding creation and annihilation operators

$$a_k^{\dagger} = rac{1}{2}(b_k' - ib_k'')$$
 $a_k = rac{1}{2}(b_k' + ib_k'')$

Federico Becca (CNR and SISSA)

- The energy minimum is obtained by the vortex-free configuration (no visons) $W_p = 1$ for all plaquettes
- \implies We may assume $u_{jk} = 1$ for all links (j, k)
- \implies Translational symmetry \implies the spectrum can be found by the Fourier transform We take $\mathbf{n}_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $\mathbf{n}_2 = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The spectrum may be gapless or gapped

$$f(\mathbf{q}) = 2(J_x e^{i\mathbf{q}\cdot\mathbf{n}_1} + J_y e^{i\mathbf{q}\cdot\mathbf{n}_2} + J_z) = 0$$

has solutions only if $|J_x| \leq |J_y| + |J_z| \quad |J_y| \leq |J_x| + |J_z| \quad |J_z| \leq |J_x| + |J_y|$

- In the gapless phase B, there are 2 gapless points at $\mathbf{q} = \pm \mathbf{q}_*$
- The gapped phases A_x , A_y , and A_z are distinct (but related by rotational symmetry)

DQC

• In the symmetric case $J_x = J_y = J_z$ the zeros of the spectrum are given by

- Gapless excitations with relativistic dispersion (Dirac cones)
- If |J_x| and |J_y| decrease (with constant |J_z|), ±q* move toward each other until they fuse and disappear

SQA

・ロト ・ 日 ト ・ モ ト ・ モ ト

Gapless B phase

- In presence of a finite number of vortices (visons) the problem is still easy (diagonalization of a $2N \times 2N$ matrix)
- States with a finite number of visons are gapped Remark: In this model visons are static
- A full gap opens when adding perturbations that break time reversal symmetry

Gapped A phase

- The A phases are gapped but show non-trivial structure
- By using perturbation theory for $|J_x|$, $|J_y| \ll |J_z| \Longrightarrow$ The Toric Code

```
Kitaev, Ann. Phys. 303, 2 (2003)
```

Topological order (four-fold degeneracy of the ground state) Abelian anyons (non-trivial braiding rules between e and m excitations)

SQC

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

A purely bosonic model can have an effective theory described by gauge fields and fermions. This is incredible, but it is true

Sac

<ロト < 団ト < 巨ト < 巨ト