
An introduction to quantum spin liquids:
fermions and gauge fields from bosons

Federico Becca

CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA)

Königstein School, 6 April 2014

Federico Becca (CNR and SISSA) Quantum Spin Liquids Königstein 1 / 29



1 Mean-field approaches to spin liquids
Why standard mean-field approaches fail to describe spin liquids
Fermionic representation of a spin-1/2
Non-standard mean-field approaches for spin liquids
Beyond mean field: “low-energy” gauge fluctuations

2 The Kitaev compass model on the honeycomb lattice
Definition of the model
Majorana fermions
Representing the Kitaev model with Majorana fermions
Solving the Kitaev model

Federico Becca (CNR and SISSA) Quantum Spin Liquids Königstein 2 / 29



Standard mean-field approach

Consider the spin-1/2 Heisenberg model on a generic lattice

H =
X

ij

JijSi · Sj

In a standard mean-field approach, each spin couples to an effective field generated by
the surrounding spins:

HMF =
X

ij

Jij {〈Si 〉 · Sj + Si · 〈Sj〉 − 〈Si 〉 · 〈Sj〉}

However, by definition, spin liquids have a zero magnetization:

〈Si 〉 = 0

How can we construct a mean-field approach for such disordered states?

We need to construct a theory in which all classical order parameters are vanishing
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Halving the spin operator

• The first step is to decompose the spin operator in terms of spin-1/2 quasi-particles
creation and annihilation operators.

• One possibility is to write:

S
µ
i = 1

2
c
†
i,ασµ

α,βci,β

σµ
α,β are the Pauli matrices

σx =

„

0 1
1 0

«

σy =

„

0 −i

i 0

«

σz =

„

1 0
0 −1

«

c
†
i,α (ci,β) creates (destroys) a quasi-particle with spin-1/2

These may have various statistics, e.g., bosonic or fermionic

At this stage, splitting the original spin operator in two pieces is just a formal trick.
Whether or not these quasi-particles are true elementary excitations is THE question
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Fermionic representation of a spin-1/2

• A faithful representation of spin-1/2 is given by:

S
z
i =

1

2

“

c
†
i,↑ci,↑ − c

†
i,↓ci,↓

”

S
+
i = c

†
i,↑ci,↓

S
−
i = c

†
i,↓ci,↑

{ci,α, c†
j,β} = δijδαβ

{ci,α, cj,β} = 0

c
†
i,↑ (or c

†
i,↓) changes Sz

i by 1/2 (or −1/2)
and creates a “spinon”

• For a model with one spin per site, we must impose the constraints:

c
†
i,↑ci,↑+c

†
i,↓ci,↓ = 1 ci,↑ci,↓ = 0

• Compact notation by using a 2 × 2 matrix:

Ψi =

"

ci,↑ c
†
i,↓

ci,↓ −c
†
i,↑

#

S
µ
i = −

1

4
Tr

h

σµΨi Ψ
†
i

i

G
µ
i =

1

4
Tr

h

σµΨ†
i Ψi

i

= 0
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Local redundancy and “gauge” transformations

S
µ
i = −

1

4
Tr

h

σµΨi Ψ
†
i

i

Si · Sj =
1

16

X

µ

Tr

h

σµΨi Ψ
†
i

i

Tr

h

σµΨj Ψ
†
j

i

=
1

8
Tr

h

Ψi Ψ
†
i Ψj Ψ

†
j

i

• Spin rotations are left rotations:

Ψi → Ri Ψi

The Heisenberg Hamiltonian is invariant under global rotations

• The spin operator is invariant upon local SU(2) “gauge” transformations, right
rotations:

Ψi → Ψi Wi

Si → Si

There is a huge redundancy in this representation

Affleck, Zou, Hsu, and Anderson, Phys. Rev. B 38, 745 (1988)
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Mean-field approximation

• We transformed a spin model into a model of interacting fermions
(subject to the constraint of one-fermion per site)

• The first approximation to treat this problem is to consider a mean-field decoupling:

Ψ†
i Ψj Ψ

†
j Ψi → 〈Ψ†

i Ψj 〉Ψ
†
j Ψi + Ψ†

i Ψj 〈Ψ
†
j Ψi 〉 − 〈Ψ†

i Ψj 〉〈Ψ
†
j Ψi 〉

We define the mean-field 2 × 2 matrix

U
0
ij =

Jij

4
〈Ψ†

i Ψj 〉 =
Jij

4

"

〈c†
i,↑cj,↑ + c

†
i,↓cj,↓〉 〈c†

i,↑c
†
j,↓ + c

†
j,↑c

†
i,↓〉

〈ci,↓cj,↑ + cj,↓ci,↑〉 −〈c†
j,↓ci,↓ + c

†
j,↑ci,↓〉

#

=

"

χij η∗
ij

ηij −χ∗
ij

#

• χij = χ∗
ji is the spinon hopping

• ηij = ηji is the spinon pairing
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Mean-field approximation

The mean-field Hamiltonian has a BCS-like form:

HMF =
X

ij

χij(c
†
j,↑ci,↑ + c

†
j,↓ci,↓) + ηij(c

†
j,↑c

†
i,↓ + c

†
i,↑c

†
j,↓) + h.c.

+
X

i

µi (c
†
i,↑ci,↑ + c

†
i,↓ci,↓ − 1) +

X

i

ζi c
†
i,↑c

†
i,↓ + h.c.

• {χij , ηij , µi , ζi } define the mean-field Ansatz

• At the mean-field level:

• χij and ηij are fixed numbers

• Constraints are satisfied only in average

At the mean-field level, spinons are free.
Beyond this approximation, they will interact with each other

Do they remain asymptotically free (at low energies)?
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Redundancy of the mean-field approximation

• Let |ΦMF (U0
ij )〉 be the ground state of the mean-field Hamiltonian

(with a given Ansatz for the mean-field U0
ij )

• |ΦMF (U0
ij )〉 cannot be a valid wave function for the spin model

(its Hilbert space is wrong, it has not one fermion per site!)

• Let us consider an arbitrary site-dependent SU(2) matrix Wi

(gauge transformation)

Ψi → Ψi Wi

It leaves the spin unchanged Si → Si .

U
0
ij → W

†
i U

0
ijWj

• Therefore, U0
ij and W

†
i U0

ijWj define the same physical state

(the same physical state can be represented by many different Ansätze U0
ij )

〈0|
Q

i ci,αi
|ΦMF (U0

ij )〉 = 〈0|
Q

i ci,αi
|ΦMF (W †

i U0
ijWj )〉
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An example of the redundancy on the square lattice

• The staggered flux state is defined by
Affleck and Marston, Phys. Rev. B 37, 3774 (1988)

j ∈ A

(

χj,j+x = e iΦ0/4

χj,j+y = e−iΦ0/4

j ∈ B

(

χj,j+x = e−iΦ0/4

χj,j+y = e iΦ0/4

• The d-wave “superconductor” state is defined by
Baskaran, Zou, and Anderson, Solid State Commun. 63, 973 (1987)

8

>

>

>

<

>

>

>

:

χj,j+x = 1

χj,j+y = 1

ηj,j+x = ∆

ηj,j+y = −∆

• For ∆ = tan(Φ0/4), these two mean-field states become the same state after projection

• The mean-field spectrum is the same for the two states

Federico Becca (CNR and SISSA) Quantum Spin Liquids Königstein 10 / 29



Beyond mean field: “low-energy” gauge fluctuations

• Beyond mean field we can consider fluctuations of U0
ij

U
0
ij =

Jij

4
〈Ψ†

i Ψj 〉 =⇒ U
0
ij + δUij

• Wen’s conjecture:

Amplitude fluctuations have a finite energy gap and are not essential

Phase fluctuations instead are important: U0
ij =⇒ U0

ije
iAij

In particular, all Aij that leave U0
ij invariant: G†

i U0
ijGj = U0

ij

Aij plays the role of a gauge field coupled to spinons
Wen, Phys. Rev. B 65, 165113 (2002)

By adding “low-energy” fluctuations on top of the mean field Ansatz,
we obtain a theory of matter (spinons) coupled to gauge fields

The structure of the “low-energy” gauge fluctuations may be different from
the original “high-energy” one, we can have Z2, U(1), SU(2)... spin liquids
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Fluctuations above the mean field and gauge fields

• Some results about lattice gauge theory (coupled to matter, i.e., spinons)
may be used to discuss the stability/instability of a given mean-field Ansatz

• What is known about U(1) gauge theories?
Monopoles proliferate → confinement
Polyakov, Nucl. Phys. B 120, 429 (1977)

Spinons are glued in pairs by strong gauge fluctuations and are not physical excitations

• Deconfinement may be possible in presence of gapless matter field
The so-called U(1) spin liquid
Hermele et al., Phys. Rev. B 70, 214437 (2004)

• In presence of a charge-2 field (i.e., spinon pairing) the U(1) symmetry
can be lowered to Z2 → deconfinement
Fradkin and Shenker, Phys. Rev. D 19, 3682 (1979)

• For example in D=2:

• Z2 gauge field (gapped) + gapped spinons may be a stable deconfined phase
short-range RVB physics Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

• U(1) gauge field (gapless) + gapped spinons should lead to an instability
towards confinement and valence-bond order Read and Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
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Summary of “low-energy” gauge theories

• The spin operator is written in terms of “more fundamental” objects: spinons

• The Hilbert space is artificially enlarged

• A constraint must be introduced to go back to the original Hilbert space of spins

=⇒ A gauge redundancy appears

• At the mean-field level, there are free particles (spinons)

• Beyond mean field, spinons interact with gauge fluctuations

• Is the “low-energy” picture stable and valid to describe the original spin model?

Arguments suggest that a (gapped) Z2 gauge field may preserve the mean-field results

Here, gauge excitations are called visons

A vison is a quantized (magnetic) flux threading an elementary plaquette
Senthil and Fisher, Phys. Rev. B 62, 7850 (2000)
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“To believe or not to believe”

How can a purely bosonic model have an effective theory
described by gauge fields and fermions? This is incredible

Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press 2004)

• There are many attempts to define ad hoc bosonic models having fermions

and gauge fields as elementary excitations

• One class of these models are based upon string-net theories

Wen, Phys. Rev. Lett. 90, 016803 (2003)

Kitaev, Ann. Phys. 303, 2 (2003)

In the following, I will consider a spin model that
is exactly described by fermions and gauge fields
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The Kitaev compass model on the honeycomb lattice

• Rather artificial spin model breaking SU(2) symmetry

• Possible physical realization in Iridates with strong spin-orbit coupling
Jackeli and Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

y

y y y y y y

y y y y y

y y y y y y

y y y y y y

x

x

x

x

x x x x x

x x x x x

x x x x x

x x x x x

z z z z z z z

z

z z z z z z

z z z z z

z

H = −Jx

X

x-links

σx
j σx

k−Jy

X

y -links

σy
j σy

k−Jz

X

z-links

σz
j σ

z
k

Jx , Jy , and Jz are model parameters

σx
j , σy

j , and σz
j are Pauli matrices on site j

Kitaev, Ann. Phys. 321, 2 (2006)
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Properties of the Kitaev model

• Take a cluster with 2N sites =⇒ N plaquettes

• There are N − 1 integrals of motion Wp:

3
2

1
6

5

4
p

z

z

x

x y

y

Kjk =

8

<

:

σx
j σx

k , if (j , k) is an x-link;
σx

j σy
k , if (j , k) is an y -link;

σx
j σz

k , if (j , k) is an z-link.

• All operators Kjk commute with

Wp = σx
1σy

2σz
3σ

x
4σy

5σz
6 = K12K23K34K45K56K61.

• Different operators Wp commute with each other

• “Only” N − 1 independent Wp because
Q

p Wp = 1

• Each operator Wp has eigenvalues +1 and −1
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Properties of the Kitaev model

• The existence of N − 1 operators commuting with H simplifies the problem

• =⇒ The Hamiltonian can be diagonalized in each sector separately

• The total Hilbert space is 22N

• =⇒ The dimension of each sector is 22N/2N−1 = 2N+1

• The problem is still exponentially hard

• However, the degrees of freedom in each sector can be described by
free Majorana fermions

• Solution in terms of free particles in presence of Z2 magnetic fluxes, i.e., visons
(values of Wp for each plaquette)
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What is a Majorana fermion?

Let us consider a system with L fermionic modes

• This is usually described by annihilation and creation operators ak and a
†
k

with k = 1, . . . , L

{ak , ap} = {a†
k , a

†
p} = 0 and {ak , a

†
p} = δk,p

• Instead, one can use linear combinations

c2k−1 = a
†
k + ak

c2k = i(a†
k − ak)

• They are called Majorana operators
The operators cj (j = 1, . . . , 2L) are Hermitian and obey the following relations:

c2
j = 1

cicj = −cjci i 6= j
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Representing spin operators by Majorana fermions

• Let us represent the spin operator by 4 Majorana fermions

σx = ibxc σy = ibyc σz = ibzc

b
y

b
x

b
z

c

• =⇒ We enlarge the Hilbert space

2 physical spin states versus 4 unphysical fermionic states

σxσyσz = ibxbybzc = iD

• The physical Hilbert space is defined by states |ξ〉 that satisfy

D|ξ〉 = |ξ〉

• The operator D may be thought of as a gauge transformation for the group Z2
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Representing the Kitaev model with Majorana fermions

H = −Jx

X

x-links

σx
j σx

k − Jy

X

y -links

σy
j σy

k − Jz

X

z-links

σz
j σ

z
k

Kjk =

8

<

:

σx
j σx

k , if (j , k) is an x-link;
σx

j σy
k , if (j , k) is an y -link;

σx
j σz

k , if (j , k) is an z-link.

• By using the Majorana fermions

Kjk = (ibα
j cj)(ib

α
k ck) = −i (ibα

j b
α
k ) cjck

• We define the Hermitian operator ujk = ibα
j bα

k , associated to each link (j , k)
The index α takes values x , y or z depending on the direction of the link

• The Hamiltonian becomes:

H =
i

4

X

j,k

Ajkcjck , Ajk =



2Jαjk
ujk if j and k are connected

0 otherwise

ujk = −ukj
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Representing the Kitaev model with Majorana fermions

H =
i

4

X

j,k

Ajkcjck , Ajk =



2Jαjk
ujk if j and k are connected

0 otherwise

spins

Majorana operators

cj

bj
z

ujk
bk

z

ck

Now, the great simplification!

• All operators ujk commute with the Hamiltonian and with each other

• =⇒ The Hilbert space splits into eigenspaces with fixed ujk

labeled by the eigenvalues ujk = ±1

• =⇒ The Hamiltonian is quadratic in the c operators
The set {u} determine static magnetic fluxes through the plaquettes

• =⇒ All eigenfunctions |Ψu〉 with a fixed set {u} can be found exactly
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Remarks on the new representation

• The Hamiltonian commutes with all operators ujk : [H, ujk ] = 0

• The Hamiltonian commutes with all constraints Di : [H, Di ] = 0

• However, the link operators ujk do not commute with the constraints Di

In particular, Djujk = −ujkDj

Applying Dj changes the values of ujk on the links connecting j with the neighbors

Di

• =⇒ The subspace with fixed ujk is not gauge invariant
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Remarks on the new representation

• The gauge-invariant objects are the fluxes through each plaquette
Wp = −u12u23u34u45u56u61

3
2

1
6

5

4
p

z

z

x

x y

y

Dj acts as a gauge transformation:
it changes ujk but not the fluxes Wp (every plaquette changes 2 links)

• The eigenfunctions |Ψu〉 with a fixed set of {u} do not belong to the physical subspace

• To obtain a physical wave function, we must symmetrize over all gauge transformations

|Φw 〉 = P|Ψu〉 =
Y

j

„

1 + Dj

2

«

|Ψu〉

w denotes the equivalence class of u under the gauge transformations

Since [P,H] = 0, |Φw 〉 has the same eigenvalue as |Ψu〉
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Diagonalizing the Kitaev model

H =
i

4

X

j,k

Ajkcjck , A is a skew-symmetric matrix of size 2N

• Diagonalize the Hamiltonian by considering the canonical form

Hcanonical =
i

2

N
X

k=1

ǫkb
′
kb

′′
k =

N
X

k=1

ǫk

„

a
†
kak −

1

2

«

ǫk ≥ 0

where b′
k , b′′

k are normal modes

(b′
1, b

′′
1 , . . . , b′

N , b′′
N) = (c1, c2, . . . , c2N−1, c2N)Q

A = Q

0

B

B

B

B

B

@

0 ǫ1

−ǫ1 0
. . .

0 ǫN

−ǫN 0

1

C

C

C

C

C

A

Q
T

a
†
k and ak are the corresponding creation and annihilation operators

a
†
k =

1

2
(b′

k − ib
′′
k ) ak =

1

2
(b′

k + ib
′′
k )
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The Vortex-free subspace

• The energy minimum is obtained by the vortex-free configuration (no visons)

Wp = 1 for all plaquettes

• =⇒ We may assume ujk = 1 for all links (j , k)

• =⇒ Translational symmetry =⇒ the spectrum can be found by the Fourier transform

We take n1 = ( 1
2
,
√

3
2

) and n2 = (− 1
2
,
√

3
2

)

n1n2

unit cell
iA(q) =

„

0 if (q)
−if (q)∗ 0

«

ǫ(q) = ±|f (q)|

f (q) = 2(Jxe
iq·n1 + Jye

iq·n2 + Jz)
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The phase diagram

The spectrum may be gapless or gapped

f (q) = 2(Jxe
iq·n1 + Jye

iq·n2 + Jz) = 0

has solutions only if |Jx | ≤ |Jy | + |Jz | |Jy | ≤ |Jx | + |Jz | |Jz | ≤ |Jx | + |Jy |

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

• In the gapless phase B, there are 2 gapless points at q = ±q∗

• The gapped phases Ax , Ay , and Az are distinct (but related by rotational symmetry)
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Excitations in the gapless phase

• In the symmetric case Jx = Jy = Jz the zeros of the spectrum are given by

q
2

q
1

*q *q− +q∗ = 1
3
q1 + 2

3
q2

−q∗ = 2
3
q1 + 1

3
q2

qδ y

qδ x

ε(q)

• Gapless excitations with relativistic dispersion (Dirac cones)

• If |Jx | and |Jy | decrease (with constant |Jz |), ±q∗ move toward each other

until they fuse and disappear
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Phase diagram: discussion

Gapless B phase

• In presence of a finite number of vortices (visons) the problem is still easy

(diagonalization of a 2N × 2N matrix)

• States with a finite number of visons are gapped

Remark: In this model visons are static

• A full gap opens when adding perturbations that break time reversal symmetry

Gapped A phase

• The A phases are gapped but show non-trivial structure

• By using perturbation theory for |Jx |, |Jy | ≪ |Jz | =⇒ The Toric Code

Kitaev, Ann. Phys. 303, 2 (2003)

Topological order (four-fold degeneracy of the ground state)

Abelian anyons (non-trivial braiding rules between e and m excitations)
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Conclusions

A purely bosonic model can have an effective
theory described by gauge fields and fermions.
This is incredible, but it is true
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