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Introduction

More than thirty years after the historical discovery of Cuprate high-temperature super-
conductors (Bednorz and Miiller 1986), understanding their underlying pairing mecha-
nism remains one of the biggest challenges in condensed matter physics. The more recent
discovery of Iron-based superconductors (Kamihara, Watanabe, Hirano, and Hosono
2008) provides a great opportunity to identify the important ingredients that are com-
mon to both families of high-temperature superconductor materials and to test the
theoretical approaches that have been formulated for Cuprates.

Both in Iron-based compounds and in Cuprates, the low-energy properties are deter-
mined by the electrons in d orbitals, in which the competition between kinetic energy
and electron-electron repulsion plays a central role in determining the ultimate physical
properties. The simplest model that describes this behavior is the single-band Hubbard
model (Hubbard 1963). Despite its simplicity, the Hubbard model shows the occurrence
of a variety of phenomena, such as Mott metal-insulator transition, magnetic order and
possibly superconductivity. It is widely recognized that the one-band Hubbard model or
its strong coupling version (namely the t—.J model) can capture the main features of the
superconductive pairing of Cuprates (Lee, Nagaosa, and Wen 2006). By contrast, keep-
ing a single orbital is not adequate for describing generic transition-metal compounds in
which d shell multiplets are partially filled and, therefore, orbital fluctuations cannot be
neglected. For instance, in Iron-based superconductors, all five d orbitals are expected to
play an important role in conducting properties and only the inclusion of multi-orbital
effects can correctly characterize their nature (Fernandes and Chubukov 2016).

The particular aspects of the band structure, including the symmetry properties of
the d orbitals, are certainly important to obtain a detailed description of these materials;
however, their main features at low temperatures should be triggered by the existence of
strong electron-electron correlations, e.g., the on-site Coulomb potential and the Hund
coupling. In this regard, it is important to understand the interplay between kinetic and

potential terms in a simplified model, in which the kinetic part is the same for all the
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orbitals. Therefore, we will concentrate on a multi-orbital model with degenerate bands.
Besides being interesting per se as natural and simple extension of the one-band model,
the two-band Hubbard model is the minimal model that can capture various forms of
collective fluctuations among spin, charge, and orbital degrees of freedom. In particular,
in this thesis we show that the presence of more than one electronic band, together with
the non-trivial effects of Hund coupling, brings to a scenario that is different from the
one emerging from the one-band model.

Our investigations are based on the Variational Monte Carlo method. Nowadays,

drastic improvements of computer facilities gave us the opportunity to use Quantum
Monte Carlo approaches with great numerical accuracy. An important part of this the-
sis is devoted to the definition of the Jastrow-Slater variational wave function and the
technical details on how to optimize the variational parameters in order to better ap-
proximate the ground state properties. By varying the variational wave function, we are
able to assess the zero-temperature properties in different physical regimes, also includ-
ing the case where no magnetic/orbital order is present, in order to compare our findings
with previous Dynamical Mean-Field Theory calculations.
The starting point is the theoretical understanding of the Mott metal-insulator transi-
tion, which takes place when increasing the Coulomb interaction U. Here, the presence
of the Hund coupling J has some important consequences that manifest in different ways
when changing the electron density. For example, in the paramagnetic sector, while J
clearly favors the Mott insulator at half filling, by lowering the critical value Upsrr, for
other integer fillings the critical Uy is pushed towards higher values. When includ-
ing magnetic/orbital order, the Mott insulator acquires antiferromagnetic order at half
filling, whereas for quarter filling (i.e., one electron per site) it turns out to have ferro-
magnetic and antiferro-orbital orders.

Another remarkable difference with respect to the one-band model concerns the su-
perconductive pairing state. When more than one band is present, several distinct
channels (symmetries) can be realized, including intra- and inter-orbital pairing, with
singlet or triplet character. Our results show that the on-site spin-triplet superconduc-
tivity is predominant in a large part of the phase diagram. This kind of pairing can
be easily understood in the presence of the ferromagnetic Hund coupling that favors
high-spin states. Moreover, unlike in the one-band Hubbard model, a nearest-neighbor
intra~orbital singlet pairing cannot be stabilized away from half-filling. The interplay
among various degrees of freedom that are present when more than one orbital is taken
into account, brings to a fascinating phase diagram where superconductivity, magnetic,

and orbital orders are present.
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The outline of the thesis will be as follows:

e in Chapter I we will review the basic ideas behind the physics of Mott insulators,
stressing the underling concept of electron-electron correlation. We will elucidate
the peculiarities of the two families of high temperature superconductors, Cuprates
and Iron-based superconductors, exposing also the basics of BCS theory. Finally

we will present our model.

e in Chapter II we will analyze the computational method we used, Variational
Monte Carlo. After having clarified the variational principle and the Metropolis
algorithm, we will explain the details of minimization algorithm. We will conclude

the chapter by examining the Jastrow-Slater variational wavefunction.

e in Chapter III we will present our results on the two degenerate band Hubbard
model, focusing on the case when the Hund coupling is present. We will also
demonstrate that, for some particular cases, the addition of another degenerate
band, does not change the general conclusions we draw for the two-band case.
We will show how the phase diagram changes when orbital or magnetic orders
are allowed in the wave function and which kind of superconductive pairing arises
upon doping the Mott insulating state. Finally, we will summarize the obtained

results in two phase diagrams.
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Chapter 1

Mott insulators and
high-temperature
superconductivity: models and

materials

Band theory was the first successful theoretical description of metals and insulators.
Indeed, it was able to predict the metallic or insulating character of a given material by
simple inspection of the electronic spectrum. The solution of the Schrodinger equation,
in the presence of the periodic potential, generated by the lattice, gives rise to a band
structure, namely a set of electronic states specified by F,(q) (where q is the momen-
tum and n is an integer that labels the band) (Ashcroft and Mermin 2011). At zero
temperature, the many-body ground state is obtained by populating the lowest-energy
levels, in accordance with the Pauli principle. Then, the distinction between metals
and insulators is determined by the filling of the electronic bands: whenever the highest
occupied band is completely filled and there is a finite gap to the lowest unoccupied one,
the system is an insulator; otherwise, in the presence of partially filled electronic bands,

the system is a metal.

The foundations of the band theory rely on a strong approximation in which elec-
trons behave as independent particles. Here, the Coulomb interaction is replaced by an
effective single-particle potential that represents the average (mean-field) interaction felt
by each electrons and generated by all the other ones. In the early years of quantum me-

chanics the band picture was already well established, however, a few transition-metal

1



2 CHAPTER 1. MOTT INSULATORS AND HIGH-Tc SUPERCONDUCTIVITY

oxides with partially-filled d-electron bands were reported as insulators. As already
pointed out by Mott and Peierls 1937, the missing ingredient of the band theory is the
lack of a proper description of electronic interaction. These observations set off the long

and continuing history of strongly-correlated electron systems.

1.1 Metal-insulator transition

A milestone in the field of strongly-correlated electron systems was reached by the defi-
nition of the Mott insulator (Mott 1949), which describes a situation where a material
should be metallic according to band theory, but instead it is insulating due to a strong
electron-electron repulsion that dominates over the kinetic energy. The paradigm of a
Mott insulator can be pictured by considering a lattice made by Hydrogen atoms. For
concreteness, we can consider a three-dimensional cubic lattice with N sites; whenever
only the lowest-energy 1s orbital is included in the calculation, there is a single band,
hosting at most 2NV electrons (here, the factor 2 is due to the spin degeneracy). When the
total number of electrons is N the band is half filled and, according to band theory, the
ground state should be a metal. However, the bandwidth decreases exponentially with
the distance between neighboring atoms and, at large distances, the Coulomb repulsion
prevails over the kinetic energy. As a consequence, it is natural to expect that electrons
localize on different sites, in order to minimize the potential energy. Notice that the
insulating behavior is not accompanied by any symmetry breaking phenomenon, such
as the appearence of charge or spin density waves. In this respect, the Mott insulator is
genuinely different from what can be obtained within the band theory by breaking some
symmetry. For instance, within the previous example with N electrons on N sites, an in-
sulator can be obtained by allowing antiferromagnetic order, which leads to an enlarged
unit cell with two atoms. In this case, there will be two electronic bands separated by a
finite gap: the lowest band would be completely filled, while the highest one would be
empty, thus leading to a band insulator.

In general, the band theory predicts a metallic behavior for all cases with an odd
number of electrons per unit cell, while an insulator is only possible for an even number
of particles in the unit cell (in the previous example with antiferromagnetic order at half
filling, we have two electrons per unit cell). By contrast, a Mott insulator is possible
for an odd number of particles per unit cell, because they can localize thanks to the
(strong) electron-electron repulsion. Indeed, the band theory fails to predict the nature
of materials like the transition-metal oxides (e.g., CoO, V503, NiO) that have an odd

number of electrons per unit cell and, therefore, cannot be insulating when only the band
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filling is considered. The breakdown of the band theory becomes clear when the electron-

electron interaction is not negligible. Let us consider a single atom with an electron in the

1s orbital with energy e,;. When adding a second electron, the total energy turns out to

be 2€,t + U where U is the Coulomb interaction between the two electrons (see Fig. 1.1).

These energy levels are fundamentally different from the usual single-electron spectrum.

Indeed, the upper level at €, + U exists only be-
cause there is already an electron occupying the
lower level at e,;. When a lattice is considered
instead of a single atom, electrons become delocal-
ized; then, the energy levels at e, and 2e, + U
acquire some broadening (see Fig. 1.2), giving rise
to the concept of the Hubbard “bands”, which are
related to the incoherent part of the one-particle
spectral function. Notice that the Hubbard bands
should not be confused with standard electronic
bands, which give rise to a coherent peak in the

spectral weight. By increasing the Coulomb in-

I

eat+U

€at

Figure 1.1: Single site spectrum
in the presence of the electron-
electron interaction.

teraction U, a gap is developing between the lower and upper Hubbard bands, thus

switching the system from a metal to a Mott insulator: this is the so-called Mott metal-

insulator transition (MIT).
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Hubbard
Band

................................................ Er

lower
Hubbard
Band

U

Figure 1.2: Sketch of a Mott transition: due to the increase of the Coulomb interaction
U, the metallic band separates into the lower Hubbard band and the upper Hubbard

band.
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1.2 The Hubbard model

A clear prototype of a Mott transition is described by the Hubbard model, which gives a
simplified descrition of interacting electrons on a lattice. The Hubbard Hamiltonian was
written down by Hubbard 1964, Gutzwiller 1963 and Kanamori 1963. Its form arises
quite naturally from considering a lattice of L atoms (sites) on which the fermions move.
Let us derive the Hubbard Hamiltonian from general principles. Our starting point is the
many-body Hamiltonian for N interacting electrons in a periodic potential provided by
the ions in a lattice within the Born-Oppenheimer approximation (Giuliani and Vignale
2005):

H :Hkin + Hel—ion + Hint =

_ h22v2+22v1 £ Wl - )

n=1i=1 n;én’

(1.1)

where x,, is the positions of the n — th electron, while R; indicates the position of the
i-th ion on the lattice. Vi and V5, are the electron-ion potential and electron-electron
interaction, respectively.

In order to obtain the Hamiltonian in second quantization formalism, we introduce a
basis set of single-particle wave functions for every site R of the lattice, xo,r(x,0). Since
the Hamiltonian (1.1) is spin-independent we can work with factorized wave functions,
ie., Xa,R(X,0) = Xa,R(X)ws. The spatial part is given by localized Wannier orbitals,

satisfying the following conditions:

/ dX Xa,Ry (X) X8R, (X) = 00,50R, R,

(1.2)
Zxa X) XaR(Y) = 0(x — )
Then, the Fermi fields for the electrons whit spin ¢ in real space read:
=Y XaR(X) CaRo:  PL(X) = (o(x)) (1.3)

where ¢ p (CLR ,) are the annihilation (creation) operators that destroy (create) a

fermion in the Wannier state xqo,Rr(X).

The second-quantization form of the non-interacting part of the Hamiltonian be-
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comes:

h2
Hyin + Hel—ion = Z / dx (I)L(X) [—mv2 + Z Vl(X - Rl)] (I)J(X) =

(1.4)
—ZZ > R R, Ry CBRe0
g anB R17R2
where the matrix elements tR’B R, are given by:
B h? 2
(0%
IRIRy = /dx Xa.R, (X) —%V + Z Vi(x — Ri)| X8,R2(X) (1.5)

B B,
with t§ g, = (tRy R, )™
Upon Fourier transforming the fermion operators, the non-interacting Hamiltonian (1.4)

becomes:

1 _
Hin + Hotcn = L5 5 Y ettt e )

o o, R1,Re 91,92

Within a regular lattice structure, the hopping matrix t%’i R, depends upon the relative
distance |R; — Rg|, so that:

1 ; _
i, = TR a

q

Therefore, Eq. (1.6) becomes:

Hyin + Hel—ion = Z Z Z tgﬂ CL,q,G'cﬁ7q7o' (18)

g 0475 q

Similarly, the interaction part can be written as:

a,B3,7,0 T T
Hint = Z Y Y URIRIRaR: ChRioChRa o CyRe o CoRee (1.9)
oo’ a,B,7,0 RiIR2R3R4y

where
R 0 *
Up R ram, = / dxdy xR, (X)X R, (Y) V2(X = ¥) X9,Rs (¥) X6,R4 (X) (1.10)

So far everything is exact. The Hubbard model was proposed for the description
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of electrons in narrow bands, where Wannier orbitals have a noticeable local character.
Here, the first approximation consists in considering only one orbital (with s character for
simplicity) on each site (atom); this fact can be justified whenever inter-orbital processes
can be neglected because of large energy gaps among the d levels, like in the Cuprates
where the relevant charge fluctuations involve only the dg2_,2 orbital. Therefore, in the
following, we will drop the orbital indices and keep only the ones related to the atomic
position. The second important approximation is given by neglecting all the interaction
terms but the local one with R = R; = Ry = R3 = Ry4. This defines the Hubbard
U interaction U = Ur R R,R, Which triggers the electronic repulsion when two particles
reside on the same atom (with opposite spins). Finally, in the simplest version of the
model, only nearest-neighbor hoppings are kept, i.e., ¢ = —tRr, R, for nearest-neighbor
sites R1 and Ry and zero otherwise. The hopping parameter is negative, in order to have
the minimum of energy in the totally symmetric I' point. Thus, the Hubbard model is
described by two parameters, the electron correlation strength U and the hopping (or
tunneling) ¢:

H=—t Z c}:acjﬂ +h.c + UZni7¢ni7¢ (1.11)

(i,j)o d

where (7, j) indicates that ¢ and j are nearest-neighbor sites and n;, = c}i +Cio 18 the
electronic density per spin ¢ on site .

The Mott insulator can be realized at half filling, namely when the number of elec-
trons N equals the number of sites L. How does the Mott insulator come out of the
Hubbard model? Let us analyze the two dimensional case at half filling for U > ¢. In
this case we should start from the configuration which minimizes the Coulomb repulsion
U and treats the kinetic term by perturbation theory. The lowest energy configuration
is the one in which each site is singly occupied. Indeed, the energy cost of having just
an empty site and a doubly occupied one instead of two singly occupied sites is given
by:

E2)+ E(0)—-2E(1)=U (1.12)

which is much larger than the energy gain due to the kinetic term, which is of order ¢.
Therefore, there is a finite energy gap to create charge excitations. Still, the configuration
with one electron per site is largely degenerate, since there are 2° degenerate states with
one electron per site due to the spin of every electron. The hopping term is able to
split the degeneracy within second order in perturbation theory, giving rise to a large-U
effective Hamiltonian describing localized spins coupled together by the super-exchange

J = 4t2/U. Indeed, for a given pair of neighbouring sites the four ground states in the
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atomic limit are

Singlet state Triplet state
It
= (14 = 1) )

= (14 + )

When the hopping ¢ is introduced perturbatively, there is a virtual transition from

the singlet state to intermediate (doubly-occupied) configurations:

(61 = 114)

(11.) = [1.1) oy S

V2 v N (10— b))
V2

Instead, the triplet states cannot give rise to such virtual transitions, because of the
Pauli principle. This process results in an energy gain of the order 4¢2/U.
The effective Hamiltonian that is obtained within this perturbation approach is called

Heisenberg or super-exchange model.

H=J) 8i-S;=J> (sgs; +SSY+ st;) (1.13)
(@) @)

where S; = (S¥, 57, 57) denotes the spin operator on the site 4.

Therefore, an effective antiferromagnetic super-exchange coupling J = 4t2/U is gen-
erated within the insulating regime. This fact can lead to magnetic order, thus spoiling
the nature of the Mott insulator, which would become an ordinary band insulator with
magnetic order. For example, on the square lattice, the quantum fluctuations generated
by (Sfo + 57 Sg) terms only marginally affect the classical state, which is obtained by
minimizing the SfS; terms. In this case, the ground state of the Heisenberg model has
a finite magnetization at zero temperature, being described as a “dressed” (by quantum
fluctuations) classical antiferromagnet. In order to enhance quantum fluctuations and
drive the system into a pure Mott insulator with no broken symmetries down to zero

temperature, it is important to consider frustrated lattices, where the classical ground
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state is not unique. Another option, is to increase quantum fluctuations by incorporating
more than one orbital per site, thus generating orbital fluctuations that may destabilize
the classical order. In this context, Anderson 1973 and Fazekas and Anderson 1974
gave a milestone contribution to define a wave function that may capture the essence
of Mott insulators. This is the so-called resonating-valence-bond (RVB) state, which
is constructed by considering a superposition of singlets formed by electrons on differ-
ent sites (in the simplest version, we can consider the case where electrons reside on
nearest-neighbor sites). Notice that the number of these configurations is exponentially
large with the system size. Like in the benzene molecule, where singlets “resonate” be-
tween the two different Kekulé configurations, in the RVB state all the possible singlet
configurations resonate through a tunneling procedure; nowadays, we know that differ-
ent superpositions of singlet configurations give RVB states with different topological
properties (Wen 2004). At half filling, the strong electron-electron repulsion prevents an
electric current and, therefore, the RVB state describes a Mott insulator. Although this
kind of wave function may be not adequate to describe the correct ground state of the
microscopic model (which may possess magnetic long-range order), it may be eventually
stabilized when few electrons are removed, leaving empty sites (holes). In this context,
superconductivity emerges naturally from the Mott insulator, since electrons are already
paired together to form singlets; when holes are present in the system, they can move
around without any penalty due to the strong correlation, giving rise to superconductiv-
ity. We would like to notice that this kind of RVB state, with coherent mobile carriers,
is indistinguishable, in terms of symmetry, from a standard superconductor (Lee, Na-
gaosa, and Wen 2006). Anderson a suggested practical way to describe the RVB state
by considering a BCS wave function where all configurations with one or more doubly
occupied sites are eliminated. Soon after the original Anderson’s suggestion, intensive
numerical calculations based on his idea, enlightened the importance of the RVB theory

in the understanding of high-temperature superconductors.

1.3 The origin of attractive interaction

At the beginning of the 20th century, the Dutch physicist Kamerlingh Onnes made a
groundbreaking step forward in low-temperature physics: he succeeded to liquify helium
(Van Delft and Kes 2010). At that time, it was known that the electric conductance was
due to the motion of electrons while the resistivity to their scattering by the ions. There-
fore, the question of greatest importance was: upon approach 0K, which of the two would

be the first to decrease? The scattering amplitude, leading to no resistivity or the electron
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mobility bringing to no conductivity? By using a cryostat filled with liquid helium, he re-
ported the jump of the resistance of an ultrapure mercury sample from about 122 to less
than 10790 within an interval of 0.01K, thus reporting the first evidence for a supercon-
ducting phase of matter. In the years after Onnes’ discovery, physicists, seeking for the
microscopic mechanism to explain superconductivity, focused on how to treat properly
Coulomb interaction or to define the role of the crystal in the superconducting process.
For a long time, people did not consider the possibility that phonons could have a role
until the isotopic effect was discovered in 1950 (Maxwell 1950; Reynolds, Serin, Wright,
and Nesbitt 1950), showing that transition temperature depends on the isotopic mass.
Soon after this important fact, it became clear that the screening by the ionic motion
can yield an attractive interaction be-
tween electrons with energies sufficienlty
close together (namely separated by less
than the typical phonon energy). Armed
with this discovery, Cooper (Cooper
1956) showed that this attractive inter-

action naturally leads to the creation

of electron pairs, now known as Cooper

pairs. Finally, within a year, Bardeen, __ . ) )
. Figure 1.3: Heike Kamerlingh Onnes (right)
Cooper, and Schrieffer 1957 (BCS) devel- and Gerrit Flim, his chief technician, at the

oped a microscopic description of the su-  helium liquefier in Leiden, circa 1911 (Van

perconducting state as a condensate state Delft and Kes 2010).
of Cooper pairs.

Although the phonon mechanism is the foundation for electron pairing in standard
superconductors, it is important to recognize that the BCS model only requires an at-
tractive interaction, no matter what is its origin. Different pairing mechanisms may
be responsible for superconductivity in high-temperature superconductors (Monthoux,
Pines, and Lonzarich 2007), nonetheless, the macroscopic phenomenology of the result-
ing superconducting state changes only very little. The superconducting order parameter
captures the essence of the macroscopic condensation of Cooper pairs, even in the ab-
sence of detailed knowledge about the microscopic origin of superconductivity. Hence,
the basic BCS model is expected to capture the fundamental properties of all supercon-

ductors.
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1.3.1 The BCS theory

The great achievement obtained by Bardeen, Cooper and Schrieffer was to write down
a simple and insightful variational wave function that describes the superconducting
phase. Here, the ground state can be pictured as a superposition of states where the

pair with momenta (q, —q) and opposite spins is either occupied or empty:

Upes) = [ (uq + vec] e, ) 10) (1.14)
q

where |0) represents the vacuum, c:g,(, creates an electron with momentum q and spin o;
uq and vy are variational parameters. Without loss of generality, we can take |uq|>+|v,[*=

1, in order to enforce the normalization of the BCS wave function. Indeed, we have that:

(Wpes | Vpes) = (0] H(U; + UgC—q,1Cq,1) H(“q’ + Uq'CZ/,TCT_q/,Q 0) =
q/

q
= (0] H H(uguq' + UZUQ/CL’,TCT—Q’,¢ + Uglq C—q,4Cqt + U;UQ’C—qyicq,TCj/,TCqu/,¢ 0) =
q q
= H(|uq’2+‘”q|2)
q
(1.15)

Notice that the BCS wave function does not describe a state with a fixed number of

particles and therefore we have

<\PBcs ‘ chrcl ol ‘ ‘lchs> #0 (1.16)

Microscopically, the electron pairing is originated from the attraction mediated by the
electron-phonon interaction. As originally proposed by Bardeen, Cooper, and Schrieffer
1957, we can consider an effective Hamiltonian for the reduced problem of electron pairs

with total momentum P = 0:

1 Pt
Hpes = Z E‘ICIIJCW + N Z Vo Cqpcg 1 C g1yt (1.17)
9,0 a9
where ¢, is the electron dispersion and V, o = =V if |¢;|< wp and |ey|< wp and zero

otherwise. This kind of Hamiltonian can be viewed as a low-energy model describing

the residual interactions V, , between the quasi-particles in the normal phase. By in-
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troducing the “pairon” operators:

_
b:fl = cipcl,y (1.18)

by = ¢4 14 (1.19)

and ng, = ¢h oCq.0, the effective Hamiltonian (1.17) can be written as:
1
Hpes = ) eqnga + 5 D Vaablby (1.20)
9,9 q,9'

For an attractive potential, the ground state of Hpcg has no pairs (q, T; —q, ) occupied
by a single electron. In this case, the operator n,+ + n_4 | can be replaced by 2b2;bq,

leading to:
1
Hpes =2 eqblby+ 5 D Vaablby (1.21)
q 7,9’

Then, whenever ng+ +n_g| = 2b:5bq, the “pairon” operators are equivalent to hard-
core boson creation and destruction operators; therefore, the effective BCS Hamilto-
nian (1.21) corresponds to a problem of hard-core bosons on a lattice, which is expected
to give rise to condensation and superfuidity. The BCS approach boils down to find a
variational estimate of the ground state energy by using the wave function of Eq. (1.14),

which is equivalent to solve the mean-field problem given by:

1
Hpds = Z echz,acq70 + N Z Vq,q’<(C;¢0T_q,¢>c—q’,¢cq’ﬁ + C;,TC]L_q,ﬂc—q’,icq’,T») (1.22)
4,0 a9

here, we dropped constant terms and included standard Hartree-Fock contributions in-

side the electron dispersion ¢;. By defining the superconducting parameter:
A= =S V(e o 1.23
T NZ 0.4’ <Cq’,TC—q’7¢> (1.23)
ql

and neglecting all the constant terms, Eq. (1.22) becomes:

HYL = Z echmcq,g + Z (ch—q,icq,T + A;C;TCL}&) (1.24)
q.0 q
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Solving Eq. (1.24) self-consistently, we obtain that A, satisfies:

Ay
Ag=-> ﬁ‘;%q, (1.25)
q/

E, = /e + A2 (1.26)

Then, the self-consistent parameter A, plays the role of an energy gap, which changes the

where

electronic spectrum. Indeed, a finite A, may open a full gap in the excitation spectrum,
for example, this is the case when A, is constant (A, = A). Finally, the variational

parameters of the BCS wave function u, and v, can be easily found and are given by:

1 €
2 _ - q
Ug = 5 <1 + q> (1.27)

1 €
vl = 2( —E?q> (1.28)

1.3.2 The meaning of the gap parameter A,

Within the BCS approach, the gap parameter A, is independent of the energy and only
depends upon the momentum q. In general, A; may have a non-trivial q dependence,
which reflects the symmetry of the underlying lattice. For instance, the crystal structures
of existing superconductors are all characterized by a center of inversion, then A, must
be even (A_; = Ay) or odd (A_; = —A,) under the inversion through the origin of the
q space (Tsuei and Kirtley 2000). Therefore, the gap parameter A, does not necessarily
have the same sign everywhere along the Fermi surface: in general regions of opposite
sign will be separated by nodal lines. Such states correspond to Cooper pairs with non-
zero internal angular momentum (allowed by the point group symmetry of the lattice).
The absence of nodes corresponds to a state with s symmetry, one nodal line to a p state,
two nodal lines to a d state and so on, see Fig. 1.4. While an s-wave superconductor
has a fully gapped Fermi surface, in a d-wave superconductor, the presence of the nodes
implies gapless excitations.

The symmetry of the superconducting gap function determines also the spin of the
Cooper pair (which can be either singlet or triplet). Because fermions obey anticommu-
tation relations, an even symmetry in the orbital part (e.g., s or d-wave) is associated
to a singlet wave function, while an odd orbital part (p-wave) corresponds to a triplet.
A mixture of spin-singlet and -triplet pair states in not possible as long as the spin-orbit

interaction is small.
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In sumamry, the gap parameter A, is a well defined quantity, whose symmetry can
be experimentally determined and the pair amplitude <c; Tci q ¢> captures the essence of

the macroscopic phase coherence in all the superconducting states.

dy

qx

s — wave dy2_y2 — Wave dyy — Wave

Figure 1.4: s, dy2_,2 and dyy symmetries of the gap function in the two-dimensional
square lattice. The Fermi surface is represented by a dashed line, while the solid curves
denote the first excited states. s-wave has an isotropic gap, whereas d,2_,2 (dz,) presents
a gap which is maximum (identically zero) along the Brillouin zone boundary and zero
(maximum) in diagonal directions.

1.4 Mottness and high-temperature superconductivity

Since the discovery of high-temperature superconductors in 1987, it has become clear
that superconductivity may arise from injecting charge carriers into a Mott insulator
(this procedure is called doping). Most importantly, the strength of the electronic pair-
ing seems not to be proportional to the electron-phonon coupling, as in the standard
BCS theory, but the superconducting mechanism seems to take benefit from the presence
of strong electronic correlations. Therefore, a lot of effort has been focused to under-
stand to what extent superconductivity may emerge from a doped Mott insulator within
microscopic models such the Hubbard model or its strong-coupling limit, the so-called
t — J model (Lee, Nagaosa, and Wen 2006).

One important family of high-temperature superconductors is given by Cuprates, in
which CuOg planes are separated by other layers of atoms (Ba, La, O...) that act as
charge reservoirs that may dope electrons or holes into the CuQO» planes. Superconduc-
tivity is due to processes occuring in these planes. Another relevant family of materials,
which attracted a lot of interest in the recent years, is given by the Iron-based super-

conductors, including the so-called Pnictides and Chalcogenides (Stewart 2011). Also
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in these compounds, the relevant building blocks are given by planes defined by the
Iron atoms. As far as the Cuprates is concerned, it is now widely recognized that su-
perconductivity is intimately related to doped Mott insulators (Lee, Nagaosa, and Wen
2006). Instead, for Iron-based superconductors, different approaches have been pursued,
also including the possibility that superconductivity may be due to the presence of a

concomitant Mott insulator (Song et al. 2016).

A general feature of these materials is that they contain transition metals, such
as Copper or Iron, whose properties are triggered by the presence of partially filled
d orbitals. The latter ones have total angular momentum L = 2, leading to a 10-
fold degenerate shell in the atom (when including the spin degrees of freedom). In
these compounds, the transition-metal ion is generally surrounded by ligand atoms (like
Oxygens) to form the solid. According to the symmetry of the cage formed by these
atoms, the crystal field splits the degeneracy in different ways. For example, within the
tetragonal symmetry, the 5-fold degeracy of the L = 2 shell is split into e, and to, levels,
with 2 and 3-fold degeneracy, respectively (not counting the spin). These can be further

split within the cubic or orthorhombic environments:

eg dw2 _y2
ds,2_ 2
PR dy >
t29 - dzm
Ay
free atom  tetragonal cubic orthorhombic

The (quasi) orbital degeneracy of these systems plays a very important role, being
the ultimate source of their complicated behavior. Here, charge, spin, and orbital fluc-
tuations are usually strong and determine the actual ground-state properties; in some
cases, when a sizable spin-orbit coupling is present, they are entangled, inducing peculiar
properties (Winter et al. 2017). One prominent role is played by the Hund coupling,
which may quench orbital fluctuations, favoring states with the highest possibile spin on

each transition metal ion.
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1.4.1 Cuprate superconductors

The first Copper-oxide superconductor was discovered in a Lanthanum-Barium-Copper
oxide material (Bednorz and Miiller 1986). This compound showed the highest transition
temperature (high-T.) ever recorded at that time: 30K (see Fig. 1.5). This outcome, as
well as the relatively small electron-phonon coupling constant, the fact that the material
was somehow “unexpected” (e.g., being a transition-metal oxide), and other anomalous
features (like for example the extraordinary linear behavior of the resistivity down to low
temperatures) made it clear that a different mechanism, with respect to the standard

superconductivity, was at work.

0.010

o]
LA gy,

0008 I~

0.006 —

o (Qom)
.

0.004 |~

° 7.5 AJem?
* 25 A/om?
. « 05 A/cm?
*o
0.002 —~
>

x
os W i I
10

o 20 3 50 B0

0 40
T(K)

Figure 1.5: Temperature dependence of resistivity of Ba,Las—;O5(3_,) with = 0.75
and y > 0, recorded for different current densities (Bednorz and Miiller 1986).

Cuprates have been the subject of an uncountable number of works. One of the most
studied materials is Lag_,Sr,CuQy4, which shows superconductivity in a wide range of
doping = (that can be achieved by atomic substitution, namely substituting La with
Sr). The undoped material with = 0 (which is usually called parent compound) has
a layered perovskite structure, in which the crystalline environment experienced by Cu
atoms is tetragonal (see Fig. 1.6); it is an insulator with antiferromagnetic order (with
a pitch vector Q = (m,7) in the CuOy plane). Still, the Mott physics is believed
to be relevant since many aspects cannot be understood within a simple band theory
approach. Its phase diagram, changing doping and temperature, fits into a universal
scenario that is reported in Fig. 1.7. Here, the antiferromagnetic order present in the
parent compound is rapidly suppressed and eventually disappears by doping with holes or
electrons and superconductivity appears. Quite interestingly, the metallic state above

the superconductos shows very anomalous features that cannot be described by the
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Landau theory of standard Fermi liquids. Finally, by further doping superconductivity
disappears and a conventional metallic phase is stabilied. It is generically believed
that the strong electronic correlation is the driving force to determine their physical
properties.

Within the undoped compound, every Copper atom has 9 electrons (with very small
fluctuations), namely there is one hole in the d shell. This hole predominantly occupies
the d,2_,2 orbital, which has a finite overlap with the p orbitals of the four neighboring
oxygen atoms in the CuO; planes, giving rise to Wannier orbitals centered around the
Copper atoms. The low-energy properties of Copper oxides are believed to be well
described by a single-band model (F. C. Zhang and Rice 1988). Then, the presence of a
strong on-site repulsion, due to the fact that the configurations with zero or two holes
are highly suppressed, gives rise to a microscopic description in terms of the Hubbard

model or its strong-coupling version.

° o o'/()
@+0-0
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Figure 1.6: Crystal structure of the tetragonal phase of LagCuQOy (left). The top view
(top-right) and CuOg octahedron (bottom-right) are also reported. Figure reproduced
from Hosono et al. 2015.

The discovery of high-temperature superconductivity in doped Mott insulators gen-
erated a great interest in RVB states, following a pioneering work by Anderson 1987,
who suggested that this kind of approach may capture the essence of electron pairing
within Cuprates. Remarkably, the RVB theory was found successful to describe the
d,2_,2 nature of the superconducting Cuprates state (Gros, Poilblanc, Rice, and F. C.
Zhang 1988; F. C. Zhang, Gros, Rice, and Shiba 1988; Kotliar and Liu 1988; Suzumura,
Hasegawa, and Fukuyama 1988; Gros 1988), even before the pairing symmetry was ex-
perimentally established (Tsuei, Kirtley, et al. 1994; Hardy, Bonn, Morgan, Liang, and
K. Zhang 1993).
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Figure 1.7: Accessible regions of the phase diagram for the different copper oxides su-
perconductors. (Figure reproduced from Erb, Lambacher, Habel, and Gross 2018.)

1.4.2 Iron-based superconductors

For almost 20 years, the Copper oxides seemed to offer the only way to get high-
temperature superconductivity. Then, in 2008, a new superconductor containing Iron
was discovered (Kamihara, Watanabe, Hirano, and Hosono 2008). In some way, the
story resembled what had been found earlier in the Cuprates. Subsequent data seemed
to strengthen the connection between Cuprates and the Iron-based superconductors
(Norman 2008 and Hu 2016). The parent compound was not superconducting but su-
perconductivity is obtained upon chemical substitution. Even the crystal structure made
of well separated layers was reminiscent of the one of Cuprates: in analogy with CuOq
planes in Cuprates, also the Fe atoms form a square lattice (see Fig. (1.8)). However, the
environment surrounding the Fe atoms is such that all five d orbitals are close in energy.
Therefore, while Cuprates may be well described by considering a single electronic band
close to the Fermi level, Iron-based superconductors are intrinsically multi-orbital sys-
tems with orbital fluctuations that involve the entire d shell of Iron. In this respect, the
Hund coupling is expected to play an important role, beside the standard Hubbard U
interaction (Georges, de’Medici, and Mravlje 2013). Moreover, the parent compounds of
the Iron-based superconductors are not antiferromagnetic insulators but metals. More

specifically, they are “bad” metals, meaning that they show a finite conductivity but vio-
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late the Ioffe-Mott-Regel limit (Emery and Kivelson 1995). Still, most of the Iron-based
superconductors show magnetically ordered phases, even if FeSe and some compounds
in the LaFePO family do not show any evidence of long-range magnetic ordering (Song
et al. 2016).

© As/Se ® Fe

Figure 1.8: Schematic crystal structure of an FeAs or FeSe plane, displaying the pucker-
ing of the As/Se atoms above and below the square Fe plane. (Figure reproduced from
Fernandes and Chubukov 2016.)

In contrast to Cuprates, where the magnetic order is characterized by the Q = (7, )
pitch vector, here the ordering vector is Q = (,0) [or (,0)]; In other words, the spins
on the Fe ions are ferromagnetically aligned along one direction and antiferromagneti-
cally aligned along the other (Si, Yu, and Abrahams 2016). Moreover, while Cuprates
are generally believed to fall within a strong-coupling regime, where the Hubbard U
term is larger than the average kinetic energy, Iron-based superconductors inhabit in
an intermediate region, which is neither weak nor strong coupling. Still, different works
have highlighted the existence of strong electron-electron interactions, suggesting that
the correct starting point should be a multi-band Hubbard model (Si, Yu, and Abra-
hams 2016). A possible explanation for the observed behavior, including both weak-
and strong-coupling aspects, can be given by the existence of an orbital-selective Mott
transition (de’Medici, Giovannetti, and Capone 2014). Here, the Hund coupling effec-
tively decouples the charge excitations in different orbitals, which are also differently
populated. In this case, the effective Coulomb interaction may be different for different
orbitals, thus leading to a mixed behavior in which strongly-correlated electrons coexist

with weakly-correlated ones.
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1.5 Multi-band Hubbard models

The minimal model that captures the interplay between kinetic energy, which favors
delocalized electrons over the whole lattice, and potential energy, which instead reduces
the mobility leading to a localization of the charge degrees of freedom, is given by the
single-band Hubbard model. However, limiting to the case in which there is a single
active orbital on each atom is often a very crude approximation, which cannot capture
the correct low-energy behavior of the majority of materials. For example, as discussed
before for generic transition-metal oxides, where there are unfilled d orbitals, orbital
fluctuations represent an important aspect that determine the ultimate physical proper-
ties. The generalization of the single-band model to include multi-orbital (multi-band)
effects is straightforward (Kanamori 1963). The case with two orbitals per atom (e.g.,
relevant to describe the e, doublet) represents the simplest example. The model takes
into account Hund’s exchange coupling as well as the intra- and inter-orbital Coulomb in-
teractions. Still, the study of the Mott physics in multi-orbital systems lacks a complete

understanding and requires substantial investigations in the future.

In the same spirit of the single-band Hubbard model, starting from the interacting
term (1.10), we can make the approximation in which only on-site terms with Ry =
Rs = R3 = Ry are kept, while all the other ones are dropped. At this stage, we can
distinguish various term depending on the values of the band indices. In particular, for

the two-band model, we have

e The case with a = § = v = 4, leading to the intra-band Coulomb repulsion U:

*ZZZ Ciao ZM Ci a,0'Cisao UZ ni1niay +nignizy)  (1.29)

o0 @ 7

e The case with a = § # 8 = 7, leading to the inter-band Coulomb repulsion U’:

/
5 Z Z Z C;‘r,oz,acz,,@,o’Ci,ﬁ,a’ci,oc,a =U' Z Z Ni1,0Mi,2,07 (1.30)

o0’ i a#P o0’ 4

e The case with a = v # 8 = 9§, leading to the Hund coupling term J:

E E E _ E E T T
5 z a,0C 6 oG a,o’ci,,@,a =—J ci,l,oci,l,a’ci,2,a’ci,2,cr (131>
o0’ i

o0’ i a#B
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e The case with a = 8 # v = 4, leading to the pair-hopping term J':

J! t P
D) YD s Cinaing ==Y chircli Ciog€in, + He (132)

o0’ 1 aFy i

All other terms in the interaction tensor, e.g., with a = 8 = 7 # 4, vanish by symmetry
(Georges, de’Medici, and Mravlje 2013). By choosing real-valued wave functions, the
spin-exchange and pair-hopping integrals are equal, namely J = J'. In addition, the
Hamiltonian is tailored for describing the physical e, orbitals. In this context, cubic

symmetry implies (Georges, de’Medici, and Mravlje 2013):

U=U-2J (1.33)

As far as the hopping parameters are concerned, tfff depend on the geometry of the
lattice and the form of the d orbitals that are considered. In the following, we will make
a simplified choice of the kinetic terms in which we will consider the same hopping for the
two orbitals and no inter-orbital contributions, i.e., tzf = —0q,3t for nearest-neighbor

sites 1, 7 and zero otherwise.

Therefore, the final Hamiltonian for the two-band model reads as:

H=—t Z c;a’gcj’aﬂ + H.c.+
(4.4),000
+ Uzni,a,Tni,mi + (U —2J) Z nit,eni2e + (U —3J) Zniylvgniygvg
b oo’ i (1.34)
-J Z C;r,l,aci,l,a’63,2,0/01‘,270
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Following the same arguments, the three-band model the Hamiltonian reads:

H=—t Z C;'r,a,acj,ap +H.c.+

<i7j)7a7o-
+UzniaTnia¢+(U_2J Z anaanzﬁa’+ U 3J Zznzaanzﬂa
1,070’ a<f i,0 a<f
—J Z D CaoCiaoCportip
i,0#0" a<f
(R
=YY (el aiCia Ciprtip, +He)
i a<f
(1.35)
where, here, the condition U’ = U — 2J is imposed to have rotationally invariance

(Georges, de’Medici, and Mravlje 2013).

One key point that has been addressed in the past is to understand how the Mott
metal-insulator transition at integer fillings is affected by orbital degeneracy, inter-orbital
Coulomb interaction, and Hund coupling. In this context, many works have been per-
formed in the “symmetric sector”, namely disregarding any possible magnetic or orbital
long-range order, in order to capture the correlation effects that are not spoiled by
weak-coupling effects. This approach is justified by the choice of describing the physical
picture that can be realized when magnetic and orbital order is suppressed by the pres-
ence of competing interactions, i.e., frustration (without including it explicitly in the
model). For the multi-orbital Hubbard model, in the absence of the Hund coupling J,
it has been observed by means of different computational methods that the value of the
Coulomb interaction, for which the metal-insulator transition occurs at commensurate
filling, reaches its maximum at half filling. This result has been obtained by using the
Gutzwiller approximation (Lu 1994), Dynamical Mean Field Theory (Rozenberg 1997
and Ono, Potthoff, and Bulla 2003) and quantum Monte Carlo techniques (Koch, Gun-
narsson, and Martin 1999). The presence of a finite J reduces the value of the critical
U at half filling (Han, Jarrell, and Cox 1998) while, recent studies (de’Medici, Mravlje,
and Georges 2011 and de’Medici 2011), have highlighted the opposite trend for all the

other (integer) fillings, where the presence of a finite J increases Upsrr.

One important issue that has been addressed in multi-orbital Hubbard models is
the nature of the MIT. Indeed, while in the single-orbital model different numerical
methods (Brinkman and Rice 1970, Georges, Kotliar, Krauth, and Rozenberg 1996,
Capello, Becca, Fabrizio, Sorella, and Tosatti 2005) established that the Mott metal-

insulator transition is continuous at zero temperature, former studies of multi orbital
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models, based on the Gutzwiller approximation, suggested that the transition, at half
filling, becomes first order whenever J > 0, while it remains continuous only at J =
0 (Biinemann and Weber 1997 and Biinemann, Weber, and Gebhard 1998). Similar
results have been obtained more recently by means of the Dynamical Mean Field Theory
(DMFT) method (Ono, Potthoff, and Bulla 2003 and Facio, Vildosola, Garcia, and
Cornaglia 2017).

The analysis of the role of band degeneracy and Hund coupling in the development
of superconductivity in multi orbital Hubbard models represents another topic of great
interest, particularly relevant for Iron-based superconductors. However, treating nonlo-
cal pairing beyond perturbative approximations is particularly difficult. A recent DMFT
study on a three-orbital Hubbard model highlighted the emergence of on-site triplet su-
perconductivity at finite doping for J > 0 (Hoshino and Werner 2015), in agreement with
previous results obtained in the large J/U limit, within an Hartree-Fock-Bogoliubov ap-
proach (Spatek 2012) and the Gutzwiller approximation (Spalek and Biinemann 2013).
Here, spin-triplet superconductivity is related to the emergence of local magnetic mo-
ments, which originate from the Hund coupling and are enhanced by an Ising anisotropy
that suppresses fluctuations among different spin configurations. The presence of pairing
with d-wave symmetry is much more difficult to assess within the standard Dynamical
Mean Field Theory, because, in infinite spatial dimensions, it is not possible to deal with
spatial dependence of a pairing state.

In addition to superconductivity, long-range magnetic order may be stabilized in a
relatively large region of the phase diagram for J > 0. Within the two-band model,
various calculations highlighted the existence of itinerant ferromagnetism for 1 < n < 2,
which can be stabilized by the double-exchange mechanism for J > 0 (Held and Vollhardt
1998, Momoi and Kubo 1998, Kubo 2009 and Peters and Pruschke 2010). In addition, re-
cent DMFT calculations on the three-band model (Hoshino and Werner 2015) suggested
the possibility to have antiferromagnetism close to half filling and ferromagnetism in a
wide doping region at large values of the Coulomb repulsion.

In order to investigate the role of the inter-orbital Coulomb repulsion and Hund
coupling, in this thesis we consider the two- and three-band Hubbard model with degen-
erate bands on a square lattice with only nearest-neighbor hopping. We will show that,
despite the apparent simplicity of our model, the physics behind the phase-diagram can

be very rich.



Chapter 2

Variational Monte Carlo

Quantum Monte Carlo methods are a class of computational algorithms whose common
aim is to provide reliable and accurate solutions for interacting bosonic or fermionic sys-
tems (Becca and Sorella 2017 and Gubernatis, Kawashima, and Werner 2016). The core
of these numerical approaches is based upon the construction of a stochastic sampling
in which a bunch of relevant configurations are selected according to a given probability

distribution.

Among quantum Monte Carlo methods, the Variational Monte Carlo (VMC) allows
us to obtain the physical properties of a given many-body state, whose modulus square
defines the probability distribution. The major advantage of VMC is that it does not
suffer from the sign problem, thus allowing stable numerical simulations even for a large
number of particles. In addition, it satisfies the variational principle, i.e., the expectation
value of the Hamiltonian is bounded from below by the exact ground-state energy. The
main drawback comes from the fact that there is a potential bias due to the choice of
the variational state, which may miss the correct physical properties of the true ground
state. Still, remarkably accurate estimations of ground-state energies can be achieved in
a wide class of physical systems by optimizing the so-called Jastrow-Slater wave functions
that contain a large number of parameters (Becca and Sorella 2017). Furthermore, an
important advantage of the VMC approach is that quite general Hamiltonians may be
considered, without a dramatic increase of the computational cost; for example, we
can easily consider lattice models with long-range interactions and/or different atomic
orbitals, including Hund and spin-orbit coupling among them. Finally, VMC is easily
scalable to a large number of processors and, therefore, allows calculations on relatively

large cluster sizes.

In this chapter, we present the statistical formulation of the VMC approach. Specif-

23
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ically, we will focus on the Metropolis algorithm and the energy optimization scheme.
We conclude the chapter by describing the wave function used in this work, namely the

Jastrow-Slater wave function.

2.1 Variational Principle

In order to approximate the ground state of a quantum system, VMC takes advantage
of the variational principle, which we will describe in detail in the following. Let us
consider the time-independent Schrodinger equation with a discrete energy spectrum
{E;}. Then, any quantum state |¥) can be expanded in terms of the eigenstates “I’fxa‘:t>
of the Hamiltonian H:

T) =) a |yt (2.1)

i

where a; = (U$4°* | ¥). The normalization condition of the wave function (¥ |¥) =1
implies that Zi\ai|2: 1. It is easy to show that the variational energy, computed as the

expectation value of the Hamiltonian over |¥)

UIH W)

E:<<\IJ|\P> (2.2)

is bounded from below by the actual ground-state energy Fy. Indeed, by using the

expansion of (2.1) and the normalization condition, we have that
E =) Eial’>Ey Y |ai*= Ey (2.3)
i i

Clearly, if we were able to vary |¥) over all possible states within the Hilbert space,
minimizing the expectation value of H, then the lowest value would be Ey and the
corresponding state would be the ground state of H. However, this kind of procedure is
not affordable in realistic computations on large sizes where the Hilbert space is huge.
Therefore, a subspace of the entire Hilbert space is chosen, making an ansatz for the wave
function, namely choosing a functional form (e.g., the Jastrow-Slater one, see below) that
depends on a set of variational parameters. In general, the choice of the ansatz is crucial
to capture the presence of long-range order: for example, simple Hartree-Fock states
cannot describe a superconducting phase, even when the Jastrow factor is included and,
in this respect, a BCS wave function is necessary (in other words, there is no way to
get superconductivity if the approximate wave function does not contain some pairing

term like in the BCS wave function!). Still, some exceptions to this rule are known; in
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fact, it has been shown that charge-density waves may develop whenever a sufficiently
strong electron-electron repulsion is included in the Jastrow factor, without an explicit
symmetry breaking in the wave function (Kaneko, Tocchio, Valenti, Becca, and Gros
2016).

The best approximation of the true ground state can be chosen by comparing the
variational energies of different wave functions and taking the one with the lowest possible
value, since the variational principle ensures the best ansatz to have the minimal energy.
In this regard, the analytical evaluation of (2.2) is only possible in a few cases, like for
example when |¥) is an uncorrelated Slater determinant constructed from single-electron
orbitals. Otherwise, we have to devise a numerical technique to compute the variational
energy and determine the lowest-energy solution. To this purpose Markov chains and
the Metropolis algorithm are invaluable tools to compute quantum expectation values
over a given wave function (Becca and Sorella 2017). In addition, the evaluation of the
energy derivatives with respect to the variational parameters allows us to minimize F

and optimize the variational wave function.

In the following, we will consider the case where the Hilbert space is discrete, since
we will focus on interacting electrons on the lattice. Let us first define a many-body
basis {|z)} (orthogonal and normalized) for the Hilbert space, where each element is
specified by giving the positions (lattice site and orbital occupation) and the component
of the spin along the z axis of every electron. A statistical approach to evaluate the
quantum expectation value of (2.2) is obtained by inserting a completeness relation of
the basis set, i.e., > (vr]z) =1

o S ) ] Sl |0 P ST rwne e
. (¥ a) (@[ ¥) >l (T]2) [ ! |

Here, the variational energy is written as a sum over all the configurations of the basis
set of a probability distribution P(x) times the observable Er(x), which is called local

energy. In fact, we have that

[ | W) |2
2l W) 2

defines a bona-fide probability distribution, since it satisfies the conditions that P(z) > 0

P(z) = (2.5)

for every electron configuration and ) P(x) = 1. Then, the local energy

(x| H] V)

Euln) =0T

(2.6)
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can be evaluated by inserting a completeness relation

Bue) = Y (o ]y S @)

xl

since, for any local Hamiltonian, only a small number (i.e., proportional to the total
number of electrons N.) of matrix elements (x| H |2) are finite within our choice of a
local basis set.

Whenever we are able to extract configurations according to P(z) and compute
Er(x), a statistical estimation of the variational energy E can be obtained, as well as
its errorbar. A similar derivation can be done for any other observable. In the next
sections, we will discuss a practical way to implement an efficient Monte Carlo sampling
of the relevant electron configurations.

Finally, let us consider the variance of the variational state, which is defined by:

2 (Y(H-E?|¥) _ (P|H?|D)

o o .
e L R 1L R 28)

Again, by inserting a completeness relation of the basis set, we obtain (assuming a real

wave function and then a real local energy):

2
2 _ S (VI H ) (2| H|Y) o o
D SR TR T E TR %:P( JEL(x) (ZIIP( )EL( )) (2.9)

which shows that o2 is related to the variance of the statistical variable Ef(z).

It should be noticed that, whenever the variational state |¥) is an eigenstate of the
Hamiltonian, E (z) is constant. This fact, which goes under the name of zero-variance
property, is particularly important because it implies the reduction of the statistical fluc-

tuations of Er(x) when |¥) approaches the actual ground state eigenfunction |\118X30t>.

2.2 Markov Chains

A Markov chain is a stochastic procedure to construct a sequence of configurations x
(usually, defined at discrete time steps ¢57) whose probability distribution p(x,tys) con-
verges to the desired probability P(x). It should be emphasized that the time evolution
is not related to the actual dynamics of the system, but it is an artificial process to reach
a steady state from which static properties may be obtained. At every time, the configu-

ration depends only on the previous one and, therefore, the time evolution is determined
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by a transition probability w(z’, z), which gives the probability that the configuration x

at time t); evolves into 2’ at time ¢j7471. Its normalization is given by:

D w@z) =1 (2.10)

.T/

For the sake of simplicity, we will consider the case in which w(a’, z) is time-independent
(i.e., it does not depend upon the time ¢37). In the case of VMC, every configuration
x along the stochastic process denotes an element of the basis set {|z)} that has been
fixed at the beginning (see above). Finding a suitable transition probability to quickly

converge to P(x) is the core of the iterative Markov process.

Given p(x,tpr) at time ¢y, the probability p(z’,tys41) at time ¢j741 can be calculated

by considering the amount of probability that flows from x to z':
p(a tarsr) = p(a' ta) + Z [p(z, tar)w (2, z) — p(2, tar)w(z, 2')] (2.11)
x

which is called Master equation for the Markov chains. In order to reach a steady
evolution, in which the probability distribution converges to the desired probability
P(z) (i.e., p(z,trr) — P(z) for tpr — 00), it is sufficient to require the so-called detailed

balance condition:
P(x)w(x', z) = P(z")w(x, ") (2.12)

which states that there is no net flux of probability along x <> 2/, implying that the
distribution is stationary. A necessary condition for a Markov chain to reach a unique
equilibrium distribution, starting from an arbitrary initial probability distribution, is a
property called ergodicity. A process can be defined ergodic if it is possible to reach any
state from any other state with a finite number of applications of the Markov process
(Van Kampen 1992). This fact imposes constraints on the choice of the transition

probability w(a’, ).

Formally, the equilibrium distribution is reached only in the limit ¢3; — oo; however,
in practice, we can imagine that configurations are distributed according to P(z) for
large (but finite) times, i.e., after a thermalization time tiper,. Therefore, averages to
estimate observables can be computed starting from tiperm, for a suitable number of

steps.



28 CHAPTER 2. VARIATIONAL MONTE CARLO

2.3 Metropolis Monte Carlo Algorithm

Within the detailed balance condition, a simple solution for the transition probability
w(z’, z) can be obtained, which goes under the name of Metropolis algorthim (Metropo-
lis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller 1953). In order to
do that, we split the probability w(z’, z) by taking:

w(z',x) =T(2',2)A(2', z) (2.13)

where T'(2/,2) and A(2/,x) are the trial and acceptance probability distributions, re-
spectively. Then, the Metropolis algorithm can be described as follows: for a given
configuration x, we propose a new (trial) configuration z’ based on T'(z’, z), which can
be chosen in an arbitrary way (it should be as simple as possible in order to have an ef-
ficient process). Then, the configuration 2’ is accepted or rejected according to A(z', z),
which is obtained from the detailed balance condition (2.12):

= (2.14)

The Metropolis solution of this set of equations (for every configurations z and z’) is
given by

A(z',z) = min{1,q(z', 2)} (2.15)
where
P(2"T(z,2")

P(x)T (2, ) (2.16)

q(xla .CL‘) =

Therefore, a new configuration is accepted or rejected according to the value of ¢(z/, x).
A simplified version of this algorithm consists in taking a symmetric trial probability,
e, T(x,2') =T (2, z), such that:

q(a’,x) = (2.17)

It is worth noting that in VMC it is not necessary to know the normalization constant
S (¥ | x) |2 to generate configurations according to the probability distribution P(z).
Indeed, only ratios of weights P(z')/P(z) = |¥(2")|?/|¥(x)|> between different configu-

rations are needed.

In our case, where z represents the full many-electron configuration, the basic pro-

cedure is described as follows:
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1) Generate random numbers to select two sites ¢ and j and the component of the

spin o along the quantization axis, this defines the trial probability T'(2’, x);

2) If one electron with spin o can hop from i to j, compute the acceptance probability
A(2', xz); otherwise go back to the 1);

3) Generate a uniform random number u € (0, 1];
4) Accept the new configuration if A(z/,x) > u otherwise reject it;

5) Every N, steps (where N, is the number of electrons), compute the local energy

(or other correlation functions) for the configuration z’
6) Goto 1)

After a suitable thermalization time, configurations are distributed according to P(x)
and, denoting by {x;1...2zx} the set of equilibrated configurations, the final estimation

of the variational energy is given by:

E= A}gnoo EN (2.18)
where
1 N
N = z; Er(z;) (2.19)

Whenever the values of the local energy E(z;) are uncorrelated (corresponding to con-
siderably different electronic configurations), the errorbar Aey associated to ey can be

estimated by computing

1
Aey = \/N—l(mv ) (2.20)
where
1 N
_ E 2(.

However, given the algorithm described above, subsequent configurations may be corre-
lated, especially when the acceptance ratio is small. As a consequence, also the values
of the local energy may be correlated and we have to consider an alternative procedure
to obtain an unbiased estimation of the errorbar. A commonly used way to decrease the
correlation is the so-called binning technique, in which subsequent L; measurements are

blocked together to compute partial averages over them:

bLy

_ 1
Eb:L—bA > Ep(w) (2.22)
i=(b—1)Lp+1
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with b=1,..., Npip, (N = Npip, X Lp). Whenever Ly is larger than the correlation time,
the resulting variables £}, are almost uncorrelated. While, their average coincides with

what can be computed without binning, namely:

1 Nbin
eEN = Ey, 2.23

the binned variables are much less correlated with respect to the original ones. In fact,
their correlation only comes from the values of ¢ that are close to the borders of the bin,
ie,i=(b—1)Ly+1and i =bL; in (2.22). Therefore, whenever L; is much larger than
the correlation time, we can assume that the new variables are almost uncorrelated and

the error can be estimated as

1 Nyin

Aey = 4| ————— E, — E)2 2.24
N Nbin(Nbin - 1) bz:;( b ) ( )

2.4 The minimization algorithm: the stochastic reconfigu-

ration method

A significant advantage of the Monte Carlo method for obtaining quantum expectation
values is the possibility to consider wave functions with a large number of variational
parameters {ax} and perform an energy minimization. One possibility for this optimiza-
tion is based on the zero-variance property, which relies on the fact that the variance of
the random variable E7(x) goes to zero whenever the trial state coincides with an eigen-
state of H. This optimization scheme was proposed by Umrigar, Wilson, and Wilkins
1988, who developed a procedure to find the variational parameters that minimize the
variance to improve the trial wave function. The aim of VMC, however, consists in
dealing with the lowest possible energy. Unlike variance minimization, where the mini-
mum value (equal to zero) is evident, the minimum of the energy is not known a priori.
Nevertheless, it has been noticed (Snajdr and Rothstein 2000) that, for a given form
of the trial wave function, energy-minimized wave functions yield more accurate values
of expectation values than wave functions whose variance is minimized. Moreover, a
lower value of the energy is associated with a higher quality wave function (Casula and
Sorella 2003). This fact holds for both continuous and lattice problems (Umrigar and
Filippi 2005). Therefore, in this thesis, we will consider an optimization method that is

very efficient to get the lowest energy within Jastrow-Slater wave functions, namely the
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so-called stochastic reconfiguration algorithm (Sorella 1998 and Sorella 2001).

Let the “initial” Jastrow-Slater wave function ’\If(ozg)> depend on the variational
parameters {al}, with k = 1,...,p. In the following, for the sake of simplicity, we will
denote ’\Il(a,g)> by |\110>. Its variational energy can be improved by the application of

the projection operator (A — H), where A is an appropriate constant shift:
[Wp) = (A —H)|P?) (2.25)

However, in general, the new state |¥,) will not be written in the Jastrow-Slater form.
Therefore, the idea is to find the quantum state |¥') = |¥(«},)), which gives the best
possible approximation of |¥,). In order to do that, we consider a small variation {day }

in the variational parameters {a}:
o, = af + doy, (2.26)

This modification induces a change in the wave function, which, at first order in {day},

reads as

AN 0 . 8“;[/0> 2
W) = b0 [T%) + > dey, Jar T Oad) (2.27)
k=1

where dag has been considered to match the normalization condition. By defining the
local operators O(a?) (with k = 1,...,p) on the configuration |z) as the logarithmic

derivatives with respect to the variational parameters

_ 9 oy _ 1 AN
Ok(z) = @ In{z|¥’) = W) dal (2.28)
and Og = 1, it is possible to write |¥’) in a compact form:
P P
W) = bag [9°) + 3~ 603,05 [W°) = 3 60,05, |9°) (2.29)
k=1 k=0

Within the stochastic reconfiguration method, we impose that the projections of |¥x)

and |¥’) into the subspace defined by O; |\IIO> (with j =0,...,p) are equal, namely
(W0, W) = (1|0 | w,) (230

This ensures that the energy computed on |¥’) is lower than the one computed on ‘\IIO>.
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By substituting the expression (2.25) and (2.29) in (2.30) we obtain:

" 601, (0,04) = (05(A — H)) (2.31)
k=0

where (...) stands for <\IIO| . ‘\I’0>. In particular, the equation for j = 0 reads as

P
> S0 (Og) = A — (H) (2.32)
k=0

while the ones for j = 1,...,p are given by:

p
Y 6ai(0;01) = MO;) — (O;H) (2.33)
k=0

these can be rewritten as:

P
Sog + Y dap(Og) = A — (H) (2.34)
k=1

and ,

300(0;) + Y 80y (0;08) = AO;) — (O;H) (2.35)
k=1

We have that dayg is related to the normalization of the trial wave function and such
parameter does not affect any physical observable of the system. Therefore, we can
solve (2.34) for dap and substitute it in (2.35), obtaining:

> 6 {{0;0x) = (0;)(Or)} = (0;)(H) — (O;H) (2.36)
k=1

This linear system, in the unknowns {0ay}, can be written in a compact form:
P
> darSik = f; (2.37)
k=1

here, we have defined the p x p symmetric and (semi) positive-definite matrix

Sik = (0;j0k) = (05)(Ok) (2.38)
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and the vector (with p components) of the generalized forces
f; = (0;)(H) = (OjH) (2.39)

The latter ones are indeed related to the derivative of the variational energy with respect
to the set of the variational parameters:
OE 9 (WO |H|wO)

oy D, (WOwOy i (2.40)

Indeed, we have that:

OE (VY| (O;H +HO;) | %) _2<x1:0|0j]\1f0><\1/0]%\\1f0>
Oaj (PO wo) (D0 | P02

(2.41)

In practice, we can perform an iterative Monte Carlo simulation with fized parame-
ters, where both the covariance matrix Sj; and the generalized forces f; are computed
by a stochastic sampling; then, the linear system (2.37) is solved and the variational

parameters are updated:

p
o = S f
pecili (2.42)

o, = ap + Téay,

Here, the parameter 7 must be chosen as large as possible to ensure rapid convergence,
but small enough for the algorithm to remain stable. A sufficiently small 7 ensures that
the energy is not increasing (in average) at each step. Indeed, the Taylor expansion of

E(¥’) to linear order in 7 is:

p
E(W) =B+ 8E(O:I;O) Sy, + O(7?) (2.43)
k
which gives
p
E(¥) - B(¥%) ==Y S fifu + O(7) (2.44)
J,k

The fact that the matrix Sj, is semi-positive definite (and hence its inverse) implies that
E(V') — E(UY) < 0 at linear order in 7. When all the forces vanish, the energy certainly

converges to a minimum.
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2.5 The wave function of a two-band model

The accurate choice of the trial wave function is a key aspect of VMC since all the physical
properties will descend from it. Therefore, the trial wave functions must be flexible
enough to describe different phases of matter (metals, insulators, superconductors .. .)
but also simple to allow efficient calculations. A good compromise between efficiency

and accuracy is presented by the Jastrow-Slater wave functions:
W) = J|D) (2.45)

where |D) is the uncorrelated part, built from an auxiliary Hamiltonian that can easily
be diagonalized, and J is a density-density Jastrow factor, which is crucial to include
correlation effects (Capello, Becca, Fabrizio, Sorella, and Tosatti 2005 and Tocchio, F.
Arrigoni, Sorella, and Becca 2016).

2.5.1 Determinantal part

In the following, we will focus on the square lattice with L sites and two orbitals per site
(i.e., a two-band model). The Slater determinant is built from the diagonalization of a

suitable quadratic Hamiltonian H ., defined as:
Haux - Hkin + Hsc + Hmag + Horb (246)

The kinetic term Hy;n describes hopping processes of electrons within the two orbitals:

Hkln - Z G/OCB Z Cza»a'cjzﬂva' + HC (247)
CM,IB <7:,j>,0'

where (i, j) indicates nearest-neighbor sites, o and /3 the orbitals and o the spin compo-
nent along the z axis. The hopping parameters a®? are variational parameters that can
be optimized (one of them can be always fixed, in order to set the energy scale of the

auxiliary Hamiltonian). Then, Hg. contains BCS pairing terms:

Hse = Z A% (e arehas e arclay) + He.
(i,

f -
tAL Z (Cz‘ 146G, ~ Ci,z,TCi,1,¢> +He. (2.48)

+Z'u’ zoza Ci,a,0

1,0
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This term allows us to take into account different superconductive gaps. First of all,
a nearest-neighbor intra-orbital singlet. It may exhibit a dy2_,2 symmetry, i.e., Ag =
2A9[cos(q,) — cos(gy)], stabilized by strong Hubbard-U interactions, as in the single-
band model (Tocchio, Becca, and Sorella 2016); then, also an on-site inter-orbital triplet
pairing A (with different spins along z), which is expected to exist in the presence of
a finite Hund coupling J (Tocchio, F. Arrigoni, Sorella, and Becca 2016). In addition,
a chemical potential u® is also considered. All these parameters (i.e., u®, A9, and A))
are optimized to minimize the variational energy. We would like to mention that a finite
pairing amplitude is also important to capture the essence of the resonating-valence
bond state, which may be relevant to describe Mott insulators and high-temperature

superconductors (Anderson 1987).

Finally, Hmag and Hep, incorporate magnetic and orbital orders:

— R; (. T
Hinag = D Akt D (D™ (10t — asCiny)
a %

T T (2.49)
«
> hEa) (Cz'mcm,T - Ci,oc,icm,i)
a i
Horb = AAFO Z(—l)Ri (Cj,l,aci,l,a - 01,2,0%,2,0)
“ (2.50)

Z i T
+ hFO (Ci71,0'ci,1,0' - ci7270'ci72va

1,0

here, A .5y, Aaro and hpo are further variational parameters to include (staggered

and uniform) magnetic and orbital orders.

The auxiliary Hamiltonian H,.x can be easily diagonalized (in real space) to define
the uncorrelated state; in the presence of the pairing terms, its ground state is not a
Slater determinant, but a BCS state. Still, whenever the superconducting terms couple
only opposite spins, it is possible to perform a simple transformation that leads to a
Slater determinant defined in terms of single-particle orbitals. Indeed, we can perform
a particle-hole transformation on electron operators with spin down:

dt

_ T
o, T UCi,a,TUT
d

Ue Ut

i,Oé,l, - i,a,J,

(2.51)
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Thus we can rewrite the BCS part (2.48) as (apart from constant terms)

Hoo= D AF ( Lot Ja7¢+djomdwc¢> +He.
(i,5),0x

+AL Z (] iy = dl iy ) + He. (2.52)

+ Z ’LL ( ’L (0% T 7’ & T d;a,id@avi)

In addition, the kinetic term Hy;, turns out into the following form:
Hin = Y _a*” ) (d;r,a,deﬁ,T - d:'r,a,idjﬁ,O +He. (2.53)

Similarly, for Hmag and Hopn:

T
Humag = Z AXrM Z ( patdiar T di,a,¢di,a,¢)

+ Z him Z (di,a,Tdi,a,T + d;'r,a,idi,a,i)

(2.54)

i i i
Hory = Aaro Z ( g ~ Qoo = diy ydig | + di,2,¢dz‘,2,¢>
T T T (2.55)
+hro ) (dz',l,sz‘,m g iy =iy iyl ds) )
%

Notice that the density operators of the new operators are simply related to the ones

before the particle-hole transformation:

N N _ N
Noy= Z CiotCiat = Z i1 b0 = Nat

; . (2.56)
C

Nay = Z CodCio, = L = Zdzw o, = L= Nay
The total density (summed over the orbitals and the spin components) and the z com-

ponent of the spin are given by:

S (NG + N5 ) => (Ni, =N +2L
“ “ (2.57)
S (NS4 = NG ) =D (N +NE ) —2L

« «
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Therefore, whenever before the particle-hole transformation there is an equal number of
electrons with up and down spins, after it, the total number of particles is equal to 2L
(i.e., the system is half filled).

Now we can rewrite H,ux in a simple quadratic form:
Haux = d'Td (2.58)

where df = (d%, dD is a vector with 4L componets (df = dh’o, . ,dTLJJ, dJ{,Za’ s d}f:’?,a)

and T a 4L x 4L matrix. Using a suitable unitary matrix V we can diagonalize Haux:
Hax =d VVITVVId=fTEf (2.59)

where E contains the eigenvalues of T. Then, the Slater determinant that is used
in (2.45) is obtained by filling the Ng lowest-energy levels of the auxiliary Hamiltonian
(Ns = 2L whenever the particle-hole transformation is considered and the numbers of

up and down spins are equal):
D) = Ta f110) (2.60)

where a =1,..., Ng.

2.5.2 Jastrow factor

In order to include electron-electron correlations within the variational wave function,
we consider the density-density Jastrow factor. For simplicity, let us start from the
single-band Hubbard model:

H=—t Z c;f’acjﬂa +U Z i 4NG | (2.61)
<i7j>’0- l

The effect of the on-site repulsion U is to reduce the number of doubly occupied sites,
since they become energetically unfavoured. As a consequence, within the ground-state
wave function, the amplitudes of all configurations with one or more doubly occupied
sites will be reduced with respect to the non-interacting case with U = 0. With this
idea in mind, Gutzwiller 1963 suggested a simple and elegant variational state, where,
starting from the non-interacting many-body state, a “penalty” is associated to these

energetic configurations:

W) = e~9 20 matmid | D) (2.62)
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here, g is a variational parameter that depends upon U and |Dy) is the Slater determinant
constructed from plane waves (more generally, |Dp) can be substituted by any other
non-interacting state). When expanding |W¢) in the basis set with electrons localized

on every site, we can appreciate the effect of the Gutwiller factor:

We) =Y e 9N (3] Dy) |) (2.63)

T

where Ny(x) is the number of doubly-occupied sites in the configuration |z).

Of course, for U = 0, the exact ground state is obtained by taking g = 0. By contrast,
far from U/t — oo the Gutzwiller parameter diverges (i.e., ¢ — o0), corresponding to a
state with no doubly-occupied sites. When the number of electrons equals the number
of sites (i.e., N. = L), the fully-projected Gutzwiller state corresponds to an insulator,
where the charge degrees of freedom are frozen (while the spin degrees of freedom are
still dynamical). Instead, for any finite values of g, the Gutzwiller state corresponds to a
metal. Indeed, whenever a positive background is considered to compensate the electron
charges, empty (doubly) occupied sites carry a positive (negative) charge. The Gutzwiller
factor gives a penalty for the creation of such objects, which, however, can move freely
without any further obstacle. Therefore, they give rise to electrical conduction in the
presence of an external field (Capello, Becca, Fabrizio, Sorella, and Tosatti 2005). Only
when g — oo, there is no conduction, since the creation of empty and doubly occupied
sites is prohibited. In this regard, a few improvements have been achieved in the past
(Fazekas and Penc 1988 and Yokoyama and Shiba 1990), by allowing nearest-neighbor
correlations between an empty and a double occupied site. However, to have a faithful
description of a Mott insulator, it is crucial (Capello, Becca, Fabrizio, Sorella, and Tosatti
2005) to take into account all the spatial correlations. This can be realized by applying

a long-range Jastrow J factor to the uncorrelated wave function:
1
J = exp —3 Zvi’jnmj , (2.64)
/L?]

where n; = ) _n;, is the electron density on site ¢ and v;; are the pseudo-potential
that depend upon the distance |R; —R;| and may be optimized in order to minimize the
variational energy. The Jastrow factor can be easily generalized to include multi-orbital
effects:
1 o8
J=exp|—= Z v; 5 Mianyg |, (2.65)

2 <
Z7]7a75
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where n; o = Y, Niac is the electron density on site ¢ and orbital a. We will indicate

af

the terms v;;” as U}}“m whenever o = 8 and Ul’.;?te’” ifa#p.

aMB
4,J 0

stances, can be used to detect the insulating or metallic character of the wave function.

In the next section we will see that the psudopotentials v under some circum-

2.6 Metals and Insulators

The physical states of matter we are trying to describe are metals (or superconductors)
and insulators. At zero temperature, they can be distinguished by looking at their
conductivity, which is finite for a metal (or infinite for a superconductor) and vanishing
for an insulator. Unfortunately, a straightforward computation of the conductivity would
require the knowledge of the low-energy spectrum and not only the ground-state wave
function. Therefore, we have to identify another quantity which must be relatively easy
to evaluate by having only the ground state. This quantity is the static structure factor
N(q) = Ng (in the following, for simplicity, we will refer to a single-band model; the

generalization to a multi-band case is straightforward):

(V[ngn_q|¥)

Na =" y|0)

(2.66)
where ng is the Fourier-transformed particle density summed over spin and orbital in-
dices. Its behavior at small momenta (or, equivalently, at large wavelengths) reveals
us the nature of the state associated with that wave function (Capello, Becca, Yunoki,
and Sorella 2006). To show this, let us recall the Feynman single-mode approximation,
originally formulated in the context of collective excitations in liquid Helium (Feynman
1954). At long wavelength, these systems show a linearly dispersive collective (sound)

mode. In the Feynman idea, the variational excited-state |¥q) for the density wave is:

Wq) = nq|¥) (2.67)
where |U) is the exact ground state. The variational estimator of the excitation energy
is then given by:

_ <‘I’q|(/H*E )’\Ijq> _ <\I””7q[%anq]|\l’>
B g Ty T N (268)

The commutator can be evaluated once the specific form of the Hamiltonian is given (the

non-trivial terms come from the kinetic part, while the interaction usually commutes with
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nq (Tocchio, Becca, and Gros 2011), giving:

(U [n_g[H,ng] | )

~ const x q° (2.69)
(W]w)

Therefore, the variational expression for the excitation energy is found to be:

const X q2

. (2.70)

Eq — EO ~
Then, whenever Vg is linear in q the energy spectrum is gapless, suggesting that the
system is metallic; by contrast, if Ngq ~ q? this construction gives a finite gap, leading
to an insulator. In this latter case, we cannot exclude that other kind of excitations
are gapless; still, we will always assume that the low-energy excitations are collective

plasmonic excitations (Tocchio, Becca, and Gros 2011).

There is a relation between Ny and the Fourier-transformed pseudopotentials of the
Jastrow factor vg, which can be derived calculating the correlation function within a

Gaussian approximation. The explicit relation that we are going to prove is:

0
Nq

Ny=—"— 2.71
a 1+2’UqNg ( )

where Ng is the static structure factor computed with the uncorrelated wave function.
Even tough this formula is rigorously valid in the weak-coupling regime, it still holds in
the strong-coupling regime when q — 0, see Fig. (2.1). Given the definition of our wave

function

V) = J |D) (2.72)

we consider
(U |nin; | ¥) _ (D] T*nin; | D)
(V] W) (D|J*|D)

Ny = (2.73)

which is valid since [J,n;] = 0. The Jastrow factor (squared) can be rewritten by using
the Hubbard-Stratonovich transformation (Altland and Simons 2010):

1 1
J? = W /d0 exp | =5 > Opvp 0 =1 ngby (2.74)
k.l k

where df = df; ...d0, (L being the number of sites) and W is a normalization constant.
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The structure factor becomes:

1 1 - —i ng 0k
Nij = Z/dO exp —4;0kvk1161 <D‘nmje 25, Ok D> (2.75)
Then, by denoting
F(0) = <D(e‘izk"k9k D> (2.76)
we have that
—09,00,1(0) = <D ‘ ninje 2o w0k D> (2.77)
Therefore
1 1 -
Nij = —Z/d9 exp —Zzekka@z 0p; 09, F(0) (2.78)
k,l

where Z comes from the normalization condition <D ‘ J? ‘ D>.
This expression can be further manipulated by integrating by parts (and using the fact

that the boundary terms are vanishing):

Z

i) ()%

So far everything is exact. Now, we consider the Gaussian approximation and make an

1 1
Niyj=——= /d@ exp |In F(0) — 1 g kak_llel
k.l (2.79)

expansion around a suitable saddle point 8* such that
1 —1
Oy, |InF(0) — 5 ;916%1 6, L* —0 (2.80)

Then, we will indicate ¢; = 6; — 67 and

Ny = —09,09,F () (2.81)

0*
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Then, the integral (2.79) can be rewritten as

—1 -1
Ny~ [ dé e —;;m (N;?l T ”’;> o [i (Zv,;-lqbk) (Z vjzlqbl) .

k !

(2.82)
Finally, by using the relation:

1 0 Ul;ll 0o, 1 1 -
d¢ exp —52% Nkl"’T dr| dipj =~ | N T (2.83)

k.l ij

We get:
NO

Nij~ | ———r 2.84
" (1+2vN0>ij (2:84)

which, coincides with the Reatto and Chester formula found in Random Phase Approx-
imation (Reatto and Chester 1967).

0-4 T T T T T T T T T T T T
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U/t = 10 numerical - analytical - © - |
U/t = 13 numerical —-4— analytical - & - |
U/t = 16 numerical —— analytical - & - |

0.35
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0.25

N(q)/l|d|

<

—_

(@)}
T

0.1

Figure 2.1: Trend of the density-density structure factor divided by |q| obtained by the
analytical formula (2.71) (empty symbols) and by VMC (solid symbols) for the two-band
Hubbard model on the 12 x 12 square lattice at half filling. Different values of U/t are
reported, the metal-insulator transition is located at Upsyp/t = 13 4 1.
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Chapter 3

Results: The Two-Band Hubbard
Model

In this chapter we explore the ground-state properties of the two-band Hubbard model
with degenerate electronic orbitals, as described previously in Chap. 1. For the sake of

clarity, we remind here the Hamiltonian:

H=—t Z CzT,a,aCj,a,a + H.c.

(i,9),000
+UD niatniay + U =2J) Y nigenise + (U =3J)> ni1onize
(e T T 1,070’ 1,0 (31)
—J Z Ci1,0%.1,6'Ci2,0'Ci2,0
1,07#0’

toog
=Y (el g€l €ioqi, T He)
7

where t is the nearest-neighbor hopping parameter, U and U’ define the intra- and inter-
orbital Coulomb repulsion and J > 0 is the Hund coupling.

By means of Jastrow-Slater wave functions, we will first detect the occurrence of the
Mott transition in the paramagnetic and paraorbital case at half filling and quarter
filling, then we analyze the occurrence of magnetic and orbital order and the existence
of superconductivity in the presence and in the absence of magnetic/orbital orders.
Unless specifically told, all simulations reported in this chapter refer to a square lattice
of L = 12 x 12 sites, with periodic boundary conditions on one axis and anti-periodic
on the other, in order to ensure that the eigenstates of the mean-field Hamiltonian (for

U = J =0) form a closed shell, i.e., a non degenerate ground state.

43
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3.1 The metal-insulator transitions in the absence of mag-

netic/orbital orders

3.1.1 J >0 case

Let us start to study the MIT at commensurate electron densities, n = 2 and n = 1; at
the moment we shall not consider any magnetic or orbital order within the variational

wave function:
|¥) =J D) (3.2)

Therefore in the auxiliary Hamiltonian of Hayux of Eq. (2.46) we consider a kinetic term:

Hiin =0 3 clogt;p0 +He (3.3)
where, in order to set the energy scale, we have fixed a'! = a?2 = 1 and a'? = a?! = 0.

In addition to Hyi,, we take into account also an on-site interband spin triplet term,
i = A1 Y (efygela, = clagely,) + e (3.4)
i

This term is necessary to correctly describe the Mott phase in the presence of a finite
Hund’s coupling J (Tocchio, F. Arrigoni, Sorella, and Becca 2016; Biinemann and Spatek
2014). Indeed, it promotes the formation of localized (on-site) inter-orbital spin triplets.
The results for n = 2 and J > 0 are reported in Fig. 3.1. For J/U = 0.01, 0.05, and 0.1,
the Mott transition is first order, since two different wave functions, whose energies cross
at U = Upr, can be stabilized in the vicinity of the MIT. In particular for J/U = 0.01
the transition is located at Unirr/t = 10.8+0.2, for J/U = 0.05 is at Uyprr/t = 8.3 £0.4,
while Uypr/t = 6.9 £0.1 for J/U = 0.1. In Fig. 3.2 it is reported the behavior of
the static structure factor as defined in Sec. 2.6 for wave functions having the lowest
variational energy of Fig. 3.1. While for small values of the Coulomb interaction, the
best variational state is metallic with N(q) o |q| in the limit of |g|— 0, for large U/t,
the lowest-energy state is insulating with N(g) o |q|?>. As explained in Sec. 2.6, this
modification in the density-density correlations is triggered by the Jastrow factor, e.g.,

intra(

v (g) o< 1/|q| in the metal, while v q) o< 1/|q|? in the insulator.

We mention that the region where metastable solutions can be stabilized, shrinks as J
increases, thus suggesting that the transition may become second order for a large enough
value of the Hund coupling (Facio, Vildosola, Garcia, and Cornaglia 2017; Lechermann,

Georges, Kotliar, and Parcollet 2007; de’Medici and Capone 2017). Indeed, for J/U =
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Figure 3.1: Energies (per site) of the metallic (empty symbols) and insulating (full
symbols) states as a function of U/t for n = 2 and different values of the Hund coupling
J. For clarity a constant shift of U — 3J, which is the ground-state energy (per site)

in the U/t — oo limit, has been considered. Insets: zoom around the metal insulator
transitions.

0.3, the MIT appears to be continuous, with no metastable solutions that can be obtained
(see Fig. 3.1). Still, the small-q behavior of the Jastrow factor is different for U <
Uit = 4.94+0.1 and U > Upppr (see Fig. 3.2 (d)), as in the single-band Hubbard model,
where the Mott transition is continuous (Capello, Becca, Yunoki, and Sorella 2006). We
mention that, at least up to J/U = 0.25, the metal to Mott insulator transition is first
order also in a model with three degenerate bands (modeled by Eq. (1.35)) at half filling.
The behavior of Uy as a function of the Hund coupling J was studied by means of
different computational methods such as Quantum Monte Carlo (Han, Jarrell, and Cox
1998), Dynamical Mean Field Theory (Koga, Imai, and Kawakami 2002; Pruschke and
Bulla 2005) or slave-spin mean field method (de’Medici 2011).
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Figure 3.2: Upper panels: Density-density structure factor N(q) (divided by |q|) for
various values of U/t for the lowest energy solutions of Fig. 3.1. Lower panels: The
Fourier transform of the intra-orbital Jastrow factor v'™"(q) (multiplied by |q|?) for the
same set of parameters as in the upper panels. The results for metallic (insulating) wave
functions are denoted by empty (full) symbols. Data are reported for J/U = 0.01(a),
J/U = 0.05(b), J/U = 0.1(c) and J/U = 0.3(d)



3.1. THE METAL-INSULATOR TRANSITION 47

In all these studies J is shown to reduce the Uyt /t needed for the Mott transition since
the Mott insulator with localized moments may take advantage of the Hund coupling.
Also our variational approach reproduces this evidence.

Remarkably, a strong (on-site inter-orbital) triplet pairing A is stabilized by the pres-
ence of a finite Hund coupling, giving a sizable gain in the variational energy with respect
to the case with no pairing (see also Sec. 3.4).

For small values of J/U (and also J = 0, see Sec. 3.1.2) the energy of the insulating
phase can be further lowered by adding a nearest-neighbor intra-orbital singlet pairing

with dy2_,» symmetry (see Fig. 3.3) that in the auxiliary Hamiltonian reads:

Hee = Z A (C;-r7a7TC;a7¢ + Cj,a,TCjir,a,O + H.c. (3.5)
<l’]>7a
where A, = 2A;4(cosq, — cosgqy) is the Fourier transform of A;;. Nonetheless, we

must emphasize that the Jastrow factor with v'™"(q) o 1/|q|? and v'™*"(q) o 1/|q|?,
typical of a Mott insulator, is able to destroy the superconducting long-range order
that is present in the uncorrelated wave function |D) (Pitaevskii and Stringari 1991).
Therefore, the presence of electronic pairing in |D) leads to the existence of “preformed
pairs” without phase coherence in the full correlated wave function |¥) of Eq. (3.2), as
in the single-band Hubbard model. As discussed also in Sec. 3.4, the relevant difference
with respect to the latter case is that, when doping, in the two-orbital Hubbard model
“preformed pairs” do not form singlets with d,2_,» symmetry (except for small values

of J/U) but triplets with s (on-site) symmetry.

n=2
J/U =0.1 ]

1l
o
)
(@4

n
- JU

01510 105 11 11575 8 85 9 65 675 7 725 7.5
U/t U/t U/t

Figure 3.3: Energies (per site) of the metallic (empty symbols) and insulating (full
symbols) states as a function of U/t for n = 2 and different values of the Hund coupling
J. The stars denote the energies of the insulating state when Ay is allowed. All the
Energies are shifted by U — 3.J.
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Within the metallic regime, there is no appreciable gain when including supercon-
ducting pairing (either singlet or triplet); a similar result has been obtained in the para-
magnetic solution of the single-band Hubbard model, where the metallic phase at half
filling has vanishingly small pairing correlations (Capello, Becca, Yunoki, and Sorella
2006; Tocchio, Becca, and Gros 2012; Dayal, Clay, and Mazumdar 2012). In addition,
in this metallic phase, the intra- and inter-orbital Jastrow pseudopotentials are approx-
imately equal for every distance, indicating that the correlation between two electrons
on the same orbital is similar to the one between two electrons on different orbitals.
By contrast, in the insulating phase the intra-orbital Jastrow factor is larger than the
inter-orbital one, implying that configurations with two electrons on the same orbital are
penalized with respect to the ones with two electrons on different orbitals, as expected
in the presence of a finite value of J.

The results for J/U = 0.1, 0.15 and 0.2 at quarter-filling, n = 1, are shown in

Fig. 3.4. In contrast to the half-filled case, here the Mott transition is always continuous
(see Fig. 3.4 (a)) and is marked by a progressive change in the small-q behavior of the
Jastrow factor (see Fig. 3.4 (b), (¢) and (d)).
When no magnetic or orbital order are allowed, the effect of the Hund coupling J at n = 1
is to shift upward the MIT, as already pointed out by slave-spin mean field calculations
(de’Medici 2011) and Dynamical Mean Field Theory (Georges, de’Medici, and Mravlje
2013). Indeed, the insulator with one electron per site does not have any substantial
advantage from the presence of the Hund coupling, while the metallic phase, where the
number of double occupancies is higher than in the insulator, gains potential energy
when two electrons with the same spin are on the same site (and different orbitals).

Remarkably, no gain in the variational energy is detected by allowing (on-site inter-
orbital) triplet or (nearest-neighbor intra- or inter-orbital) singlet pairings, both in the
metallic and the insulating phases. In addition, the intra- and inter-orbital Jastrow pseu-
dopotentials are very similar, implying that the variational wave function |¥) remains

fully symmetric.
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Figure 3.4: (a): Energy (per site) of the metallic and insulating states as a function of
U/t for n = 1 and different values of the Hund coupling J. (b), (¢), (d): Density-density
structure factor N(q) (divided by |q|) for various values of U/t and J/U (upper panels)
and the Fourier transform of the intra-orbital Jastrow factor v'"%2(q) (multiplied by
|q|?) (lower panels) for the same set of parameters as in the upper panels. The results
for metallic (insulating) wave functions are denoted by empty (full) symbols.
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3.1.2 J =0 case

In the J = 0 limit the model with degenerate bands possesses an enlarged SU(4) sym-
metry, which is generated by spin and orbital degrees of freedom. At n = 2, whenever
the variational wave function is taken to have a full SU(4) symmetry (i.e., by only con-
sidering the kinetic term in the auxiliary Hamiltonian and imposing U%“a = v;?jter), the
transition appears to be continuous (at Unir/t = 15 + 1), with no metastable solutions
in the energy optimization (see Fig. 3.5 (a)).

By allowing different intra- and inter-orbital Jastrow factors in the variational optimiza-
tion, we break the full SU(4) symmetry and another insulating solution appears, which
is energetically favorable for U/t 2 13 (see Fig. 3.5 (b)), so the transition turns out to
be first order. In fact, whenever the intra-orbital Jastrow factor is different with respect
to the inter-orbital one, this implies that configurations with two electrons on the same
orbital are weighted in a different way in the ground state with respect to the ones

with two electrons on different orbitals. In particular, in this new insulating solution,
intra
ij

metallic state the two Jastrow factors remain similar.

inter

i terms, while in the

the pseudopotential v are, in modulus, greater than the v
Then, this insulating state can be further improved by considering the electron (singlet)
pairing (with d,2_,» symmetry) in the auxiliary Hamiltonian, further lowering the tran-
sition to Unirr/t = 114£0.5 (see Fig. 3.5 (¢)). As before, the Jastrow factor prevents the
existence of off-diagonal superconducting order.

The same considerations hold when adding another degenerate band. Also in this case at
half filling, n = 3, the Mott metal-insulator transition is continuous when the SU(4) sym-
metry is not broken (see Fig. 3.6 (a)), while becoming first order allowing v]"* # v}""
(see Fig. 3.6 (b)). Similarly to the two-band case, an energy gain in the insulating so-
lution can be obtained by adding a singlet superconductive pairing with d 2_,2 in the

auxiliary Hamiltonian (see Fig. 3.6 (¢)).
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Figure 3.5: Results for n = 2 and J = 0. Upper panels: Variational energies (per site)
for (a) the metallic (red empty squares) and insulating states (blue full squares) when
the wave function does not break the SU(4) symmetry; (b) when the insulating state
(green full circles) has no pairing but v'™(q) # v™%?(q); (c) when the insulating state
(black full triangles) has a finite Ay pairing. For clarity the energies are shifted by U.
Middle panels: The density-density structure factor N(q) of Eq. (2.66) (divided by
|q|) at various values of U/t, for the best variational state. Lower panels: The Fourier
transform of the intra-orbital Jastrow factor (multiplied by |q|?) for the same set of
parameters as in the middle panel. No magnetic or orbital orders are considered within
the variational wave functions.
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Figure 3.6: Results for three degenerate bands at half filling, n = 3, and J = 0. Upper
panels: Variational energies (per site) for (a) the metallic (orange empty squares) and
insulating states (violet full squares) when the wave function does not break the SU(4)
symmetry; (b) when the insulating state (green full circles) has no pairing but v'"**(q) #
v"2(q): (c) when the insulating state (black full triangles) has a finite A4 pairing. For
clarity the energies are shifted by 3U. Middle panels: The density-density structure
factor N(q) of Eq. (2.66) (divided by |q|) at various values of U/t, for the best variational
state. Lower panels: The Fourier transform of the intra-orbital Jastrow factor (multiplied
by |q|?) for the same set of parameters as in the middle panel. No magnetic or orbital
orders are considered within the variational wave functions.



3.1. THE METAL-INSULATOR TRANSITION 93

As for J > 0, also for J = 0 at quarter filling (n = 1) the variational wave function
is fully symmetric and no gain in the variational energy is detected by allowing (on-site
inter-orbital) triplet or (nearest-neighbor intra- or inter-orbital) singlet pairings, both in
the metallic and the insulating phases. Here, we find that Uypr/t = 13£1 (see Fig. 3.7).
Also when considering three degenerate band and n = 2 the transition appears to be
continuous (see Fig. 3.8).

This result indicates that, within SU(4) symmetric solutions, the maximum value of
Uit is obtained at half filling, in agreement with previous results (Lu 1994; Rozenberg
1997; Koch, Gunnarsson, and Martin 1999; Ono, Potthoff, and Bulla 2003). Instead,
when we allow for a breaking of the SU(4) symmetry, the situation reverses, with the

Umir being lower at half filling (where the transition is no longer continuous).
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Figure 3.7: Results for n = 1 and J = 0. Upper panel: Variational energies for the
metallic (empty symbols) and insulating (full symbols) states. Middle panel: density-
density structure factor N(q) (divided by |q|) for various values of U/t. The results for
metallic and insulating wave functions are denoted by empty and full symbols, respec-
tively. Lower panel: The Fourier transform of the intra-orbital Jastrow factor (multiplied
by |q|?) for the same set of parameters as in the middle panel. No magnetic or orbital
orders are considered within the variational wave functions.
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Figure 3.8: Results for three degenerate band model, with n = 2 and J = 0. Upper
panel: Variational energies for the metallic (empty symbols) and insulating (full symbols)
states. The energies are shifted by U. Middle panel: density-density structure factor
N(q) (divided by |q|) for various values of U/t. The results for metallic and insulating
wave functions are denoted by empty and full symbols, respectively. Lower panel: The
Fourier transform of the intra-orbital Jastrow factor (multiplied by |q|?) for the same
set of parameters as in the middle panel. No magnetic or orbital orders are considered
within the variational wave functions.

3.2 Phase separation close to the Mott insulator

A distinctive property of metals and Mott insulators is their electronic compressibility.
It is inversely proportional to the variation of the chemical potential p with respect to
the number of particles, i.e. the linear response of the chemical potential with respect

to the electron density n. The inverse compressibility x~! is defined as:

O OFE

= o2 (36)

where F is the ground state energy.
In general, for a physical system in thermodynamic equilibrium, the inverse compressibil-
ity =1 is > 0, which requires the energy to be a convex function of the electron density

n. When this condition is violated, the system separates into two spatially distinct re-
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gions at different densities, in order to reduce the free energy. This phase separation
enhances antiferromagnetic correlation, while reducing the kinetic energy. In a truly
infinite system, such a phase separation would be associated with a vanishing inverse
compressibility x~!, that may even become negative in finite systems. In the latter
case, we can conveniently locate the density range in which phase separation occurs, by
examining the energy-density diagram and looking at the slope of the secant between
two different densities (Emery, Kivelson, and Lin 1990; Cosentini, Capone, Guidoni, and

Bachelet 1998):
E(n)— E(n=2)

— (3.7)

where a presence of a maximum at a given density 7 < 2 marks the occurrence of phase
separation between n and n = 2. In Fig. 3.9 we show the ratio (3.7) for the param-
agnetic/paraorbital solutions. We can see that, just above the MIT, at U/t = 10 e
J/U = 0.1 there is no sign of phase separation (in the paramagnetic sector below Uy,
the ground-state is metallic and there is no phase separation). However, for a larger
value of the Coulomb interaction, i.e. U/t = 20, both for J/U = 0.1 and J/U = 0.2,
there is a distinctive mark of phase separation close to half-filling. This finding is similar
to what was found in one- and three-orbital Hubbard models for Cuprates, where, as
here, a phase separation may occur in the interaction-doping phase diagram (Emery,
Kivelson, and Lin 1990; Bang, Kotliar, Castellani, Grilli, and Raimondi 1991; Imada,
Fujimori, and Tokura 1998; Aichhorn, E. Arrigoni, Potthoff, and Hanke 2006).

S U/t =20,J/U =01 &
U/t =10,J/U =0.1 -e- |
U/t =20,JJU =02
1.1 12 13 14 15 16 1.7 18 19 2
n

Figure 3.9: Behavior of the function of Eq.(3.7) as a function of the doping density n
for U/t = 10 and J/U = 0.1 (green circles), U/t = 20,J/U = 0.2 (cyan triangles) and
U/t =20,J/U = 0.1 (violet squares).
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3.3 The metal-insulator transitions with magnetic/orbital

orders

The above picture for the metal-insulator transitions for the two-band model at n = 1
and 2 drastically changes when magnetic and/or orbital order is allowed within the

non-interacting wave function i.e.:

_ R; (.1 T
Himag = > Ak D_(~1) (Cz‘,a,ﬁci,an - Ci,a,¢cz',a,¢>
« %

(3.8)
t t
Y b (Cvz,a,TCi,a,T - Ci,a,ici,a,i)
«@ 7
Horb = AAFO Z(—l)Ri (C},l,aci,l,o - 63,2,001‘,2@)
7 (3.9)

+ T
+ hro E (%1,061’,1,0 —C20% 2,0

2,0

where A}y ,hiv Aaro and hro include (staggered and uniform) magnetic and orbital
orders.

At half filling, a finite (staggered) magnetic order can be clearly stabilized for J > 0
(while no orbital order is detected). Notice that, in the case with J = 0, magnetic and
orbital orders are related by SU(4) symmetry and, therefore, also an orbital order can
be found. The optimized antiferromagnetic parameter Axpy of Eq. (2.54) is reported
in Fig. 3.10, for J = 0 and J/U = 0.1. In the former case, Aapy is significantly reduced
with respect to the single-band model, which is also reported for comparison. The
general trend of the antiferromagnetic parameter at J = 0 as a function of the number
if the bands is showed in Fig. 3.11. Here we can notice that its value is reduced as the

number of degenerate bands is increased.

In the presence of a finite Aarn, at half-filling, the triplet pairing A, is vanishing
(or very small); however, a variational wave function with no magnetic order but a finite
triplet pairing can be still stabilized as a local minimum at higher variational energies.
Our results for Aapy in the two band-model are compatible with a finite magnetic or-
der down to U = 0, with an exponentially small magnetization for U/t — 0. Given the
smallness of the energy gain due to Axpy in the weak-coupling limit (i.e., U/t < 2),
we are not able to exclude the possibility that antiferromagnetism sets in at a (small)

finite value of U/t and not exactly at U = 0. Nevertheless, our variational calculations
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clearly support the existence of antiferromagnetism at half filling for intermediate values
of U/t. Moreover, since the SU(4) Heisenberg model with two (fermionic) particles per
site is expected to be ordered (Kim, Penc, Nataf, and Mila 2017) and since a finite Hund
coupling cooperates with the super-exchange mechanism to favor staggered magnetism,
we foresee that magnetic order in the two-band model should survive for any value of
U/t up to U/t — oo. For the three-band model the situation is less clear and there could

be a finite value of U/t for the onset of antiferromagnetic order.

1.6 ‘ ‘ ‘ ‘ ‘
Lol n=2J/U=01=

one-band model n = 1 —a-

Figure 3.10: Antiferromagnetic parameter Aapy of Eq. (2.54) for n = 2, as a function
of U/t. The cases with J = 0 (full circles) and J/U = 0.1 (full squares) are reported
for the two-band Hamiltonian, as well as the results for the single-band Hubbard model
(full triangles).
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Figure 3.11:  Antiferromagnetic parameter Aapy of Eq. (2.54) for the one- (green
triangles),two- (blue circles) and three-band model (orange squares) as a function of
U/t. In the case of two- and three-band model we set J/U=0.

A region of particular interest is that at quarter-filling, n = 1. Here, there is not
evidence for antiferromagnetic order, at least for U/t < 25. Instead, in the presence of a
finite Hund coupling, a considerable energy gain is found in the strong-coupling regime by
allowing both ferromagnetic and antiferro-orbital order, since virtual-hopping processes
favor configurations in which two electrons on neighbor sites have parallel spins and reside
on different orbitals. Indeed, for sufficiently large electron-electron repulsion, the best
variational state is insulating with saturated magnetization m = (ny —ny)/(ny+n;) =1
(where n, = Zi,a Ni.a,0) and a finite Aaro in Eq. (3.9). By contrast, for small values of
U/t, a fully-symmetric metal with m = 0 and no orbital order is found. No intermediate
values of m can be stabilized with orbital order. The results for J/U = 0.1 are reported
in Fig. 3.12, where a first-order phase transition between a metallic state with m = 0

and no orbital order and an insulator with m = 1 appears at U/t = 12.5 £ 0.5.
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Figure 3.12: Variational energies (per site) for the fully-symmetric wave function (empty
squares) and the one that contains ferromagnetic (FM) and antiferro-orbital (AFO)
orders (full squares), for n =1 and J/U = 0.1.

3.4 Superconductivity and magnetism

We already saw in Chap. 1 that a common ingredient to both Cuprates and Iron-based
superconductors is the emergence of superconductivity in doping. On the other hand,
the most striking difference is the multi orbital nature of the Iron-based materials. We
want then to investigate how the orbitals degree of freedom affects the energetics of
superconductivity.

Let us start from the single-band model, where a finite BCS pairing with d-wave sym-
metry can be stabilized for moderate and large values of U/t (Halboth and Metzner 2000;
Maier, Jarrell, Schulthess, Kent, and White 2005; Eichenberger and Baeriswyl 2007;
Gull, Parcollet, and Millis 2013; Yokoyama, Ogata, Tanaka, Kobayashi, and Tsuchiura
2012; Kaczmarczyk, Spalek, Schickling, and Biinemann 2013; Deng, Kozik, Prokof’ev,
and Svistunov 2015; Tocchio, Becca, and Sorella 2016). This picture becomes less robust
in the multi orbital Hubbard model with degenerate electronic bands. For very small
values of the Hund coupling (including J = 0), a finite pairing amplitude Ay with dy2_ 2
symmetry can be stabilized at half filling (see Fig. 3.3 and 3.5); however, Ay drops to
zero for very small doping, i.e., around n = 1.95. Singlet pairing is not present at fi-
nite doping also when different symmetries of the gap function are taken into account;
in this respect, we have considered also an extended s-wave pairing with nearest- and
next-nearest-neighbor coupling. In addition, for J/U 2 0.1, no intra-orbital pairing can

be stabilized in the wave function, even at half filling (see Fig. 3.3).
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We would like to mention that one way to recover a finite singlet pairing at reasonably
large dopings is to break the symmetry between the inter- and the intra-orbital Coulomb
repulsion, e.g., considering J = 0 but still U > U’. In this case, orbital fluctuations
are reduced (since configurations with two electrons on different orbitals are favored
over the ones with a doubly-occupied orbital) and the resulting physical behavior can
be assimilated to the one of two (weakly-coupled) single-band Hubbard models (one for
each orbital). Therefore, a finite d-wave pairing can be stabilized at finite dopings (see
Fig. 3.13).

0.4
0.35
0.3
0.25

0.15
0.1
0.05
0
0

Figure 3.13: Ay with d,2_ 2 symmetry at doping n = 1.94 for J = 0 and U/t = 10 when
the inter orbital Coulomb coupling U’ is varied.

We also mention that, in the opposite limit with U < U’, an on-site s-wave pairing
is present close to half filling, since doubly-occupied orbitals are favored over singly-
occupied ones. Remarkably, these two kinds of pairings compete with each other and no
singlet pairing can be stabilized away from half filling in the isotropic case with U = U’.

Unlike what happens when a singlet pairing is considered in the auxiliary Hamil-
tonian, a sizable interband triplet pairing A can be stabilized when no magnetic and
orbital order are considered. The state with pairing A, is present in the vicinity of
n = 2 for J > 0 and sufficiently large Coulomb repulsion U, see Fig. 3.14. An s-wave
spin triplet state has been already suggested as a possible pairing state in the two de-
generate orbital Hubbard model by means, for instance, of Gutzwiller approximation
(Biinemann and Spalek 2014), Fluctuation Exchange Approximation (Kubo 2007) or
Dynamical Mean Field Theory (Han 2004). Indeed the emergence of spin-triplet super-
conductivity is a consequence of the fact that, on each site, S = 1 states are favored

when J > 0. As expected, the strength of triplet superconductivity is proportional to
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the Hund coupling, thus implying that the doping region in which A; # 0 enlarges
with increasing J (see Fig. 3.14). It is worth mention that, in principle, to analyze the
existence of the superconductive order, one should compute the off-diagonal long-range

order correlator

(Sin ST Y (3.10)

L g,

where Sl u= c;%c;r 4ul T c;.r n MTC;ri creates an electron singlet pair in the neighboring sites
(i,7 + p). However, in our variational picture, a necessary condition for having finite
superconducting correlations is the presence of a finite pairing amplitude in the auxiliary
Hamiltonian of Eq. 2.52. It must be emphasized that, away from half filling, the presence
of a finite electron pairing in the uncorrelated wave function implies a true long-range
order, since the Jastrow pseudopotential has v'"™2(q) ~ v'"*(q) o 1/|q].

A sizable A can be stabilized also with the three degenerate bands Hubbard model

(see Fig. 3.16). The generalization of Hg. for multi-orbital models reads:

_ SR T
Hie = D13 (hagelny = chapela) +He (3.11)
i a#B

This kind of pairing has also been found as the best candidate of superconductivity in a
three-band model by Dynamical Mean Field Theory calculations (Hoshino and Werner
2015). However, in contrast to the latter work, which found that an Ising anisotropy in
the Hund coupling is important to stabilize triplet superconductivity, we have evidence
that a finite triplet pairing is present also in the isotropic case, which is modeled by the
Hamiltonian of Eq. (1.35).

In several Iron-based superconductors, similar to what happens in Cuprates, super-
conductivity emerges from the suppression of the static antiferromagnetic order in their
parent compounds (Dai 2015). In this respect, it is very important to scrutinize a global
stability of the spin-triplet phase against the presence of antiferromagnetism, when both
magnetism and pairing are treated on an equal footing, being simultaneously optimized
in the auxiliary Hamiltonian. We have found that, when including magnetism in the
variational wave function, superconductivity is largely suppressed, with antiferromag-
netic correlations being strong for electron densities close to half filling. The results are
shown in Fig. 3.15 for J/U = 0.1. When Appy is present, triplet pairing is strongly
reduced close to half filling, leading to an antiferromagnetic metal with no pairing cor-
relations. For U/t = 15, a tiny triplet superconductivity emerges around n = 1.5, where
antiferromagnetism is still present, thus leading to a coexistence between these two order

parameters. The pairing amplitude becomes much stronger when increasing the value
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of the Coulomb interaction, e.g., for U/t = 20, where A, displays a dome-like feature

with a broad maximum at n =~ 1.6. However, in the presence of a finite Hund coupling

also ferromagnetism becomes competitive in energy, especially when U/t is large (see

the discussion in the next section).
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Figure 3.14: Triplet pairing A | in the auxil-
iary Hamiltonian of Eq. (2.46) when no mag-
netic or orbital order is considered. Results
are reported for U/t = 15 (upper panel) and
U/t = 10 (lower panel) for two values of the
Hund coupling J/U = 0.05 (empty squares)
and J/U = 0.1 (full squares).
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Figure 3.15: Triplet pairing A, (full cir-
cles) and antiferromagnetic order parame-
ter Aapm (empty circles) in the auxiliary
Hamiltonian of Eq. (2.46). Results are re-
ported for U/t = 20 (upper panel) and
U/t =15 (lower panel), for J/U = 0.1.
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Figure 3.16: Triplet pairing A, in the auxiliary Hamiltonian of Eq. (2.46) when no
magnetic or orbital order is considered in tre three-band Hubbard model. Results are
reported for U/t = 10 (orange squares) and U/t = 17 (violet circles) for the Hund
coupling J/U = 0.25.

3.5 Phase Diagram

In contrast to what happens in the one-orbital Hubbard model, in a multi-orbital system
the ferromagnetism based on Hund coupling is expected to be relevant, as suggested by
Slater 1936 in the context of ferromagnetism in d-orbital systems. A direct comparison
between the superconducting state (with or without antiferromagnetic order) and the
ferromagnetic one (with or without orbital order) allows us to draw the two phase dia-
grams of Fig. 3.17 for J/U = 0.1 and J/U = 0.2.

In both cases, in the strong-coupling regime (U/t > 13 and U/t > 14 respectively) at
n = 1, the best variational state has ferromagnetic and antiferro-orbital order. The oc-
currence of both these kind of orders at quarter filling in one dimension was proposed by
Harthree-Fock calculations (Roth 1966), Monte Carlo method (Gill and Scalapino 1987),
Lanczos diagonalization (Kuei and Scalettar 1997) and density-matrix renormalization-
group (Sakamoto, Momoi, and Kubo 2002); in two dimensions by Variational Monte
Carlo (Kubo 2009) and by Dynamical Mean Field Theory (Held and Vollhardt 1998;
Peters and Pruschke 2010).
Starting from quarter filling, the ferromagnetic state with antiferro-orbital order extends
up to (at least) n ~ 1.1 for J/U = 0.2. On the largest cluster that we considered (i.e.,
18 x 18), n &~ 1.1 is is the closest available density to quarter filling that allows a direct

comparison between ferromagnetic and paramagnetic states. The orbital order close to
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n =~ 1 should survive also when J/U = 0.1, even if at n ~ 1.1 the ferromagnetic wave
function has a slightly higher energy than the paramagnetic one. Away from quarter-
filling, a uniform ferromagnetic phase without orbital order occurs, as already proposed
in one dimension by Density Matrix Renormalization Group (Sakamoto, Momoi, and
Kubo 2002), and in two dimensions by VMC (Kubo 2009) and by Dynamical Mean
Field Theory (Held and Vollhardt 1998; Peters and Pruschke 2010). For J/U = 0.2
the uniform ferromagnetic region is connected with the state with antiferro-orbital order
and extends up to n ~ 1.8. For J/U = 0.1 a paramagnetic metal intrudes between the
uniform ferromagnet and the one with orbital order. These results confirm the role of
Hund coupling in favoring the ferromagnetic phase. Note that at J/U = 0.1 a phase
separation takes place close to the first order transition between the paramagnetic and
the ferromagnetic metal. Finally, a large region of antiferromagnetism is present at half
filling, extending up to intermediate filling, i.e. n = 1.5. Here, a small region of co-
existence of antiferromagnetism and triplet superconductivity is found. Notice that for
J/U = 0.2 triplet superconductivity is present in a region closer to n = 2 and at larger

values of the Coulomb repulsion U/t, with respect to the J/U = 0.1 case.
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Figure 3.17: Schematic phase diagrams of the two-band Hubbard model in the (n,U/t)
plane, for J/U = 0.1, (a), and J/U = 0.2, (b). The yellow region denotes ferromagnetism
(FM), which includes also antiferro-orbital order (AFO) in a region close to n = 1
(shaded region). The blue region has an antiferromagnetic ground state (AFM), while
the red one shows a coexistence of antiferromagnetism and superconductivity with triplet
pairing (AFM+SC). Finally, the pink region is a paramagnetic metal (PM). Data, shown
as black points, are obtained on clusters with 12 x 12, 16 x 16, and 18 x 18 sites.
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Chapter 4

Concluding Remarks

4.1 Summary of the thesis

In this thesis we have considered the two-band Hubbard model with degenerate electronic
bands. Ground states of different nature have been investigated by using variational wave
functions and Monte Carlo techniques.

At integer fillings with n = 1 and n = 2, we have first investigated the metal-insulator
transitions in the paramagnetic phase. In this regime, our results for the determination
of the MIT as a function of the Hund coupling J, are qualitatively in agreement with pre-
vious Dynamical Mean Field Theory and slave-particle approaches (de’Medici, Mravlje,
and Georges 2011; de’Medici 2011). At half filling for J > 0, the transition is first (sec-
ond) order for small (large) values of the Hund coupling, with a sizable triplet pairing
within the Mott insulator (still, no superconducting long-range order is established at
half filling, because of the strongly repulsive Jastrow factor). At quarter filling, the tran-
sition is second order with no finite pairing neither in the metallic nor in the insulating
phase. We have also showed that the addition of another degenerate band does not
change qualitatively these results.

Then we have included the possibility of stabilizing magnetic and/or orbital orders.
At half filling, a clear evidence for antiferromagnetic order has been obtained for J > 0.
In particular, the qualitative behavior of the magnetic variational parameter resembles
the one of the single-band Hubbard model, where antiferromagnetic order sets at U = 0;
therefore, our results suggest that the ground state for n = 2 is antiferromagnetically
ordered for any positive value of the Coulomb interaction U. At quarter filling, no
sign of antiferromagnetic order is detected (up to U/t = 25); instead for J > 0, the

ground state shows a first-order phase transition from a metallic state for small values

67
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of the electron-electron interaction to an insulator with staggered orbital order and
ferromagnetic correlations in the strong-coupling regime.

At intermediate electron dopings with 1 < n < 2, when both magnetic and orbital
order are not included, a sizable triplet pairing is present for finite values of the Hund
coupling and sufficiently large electron-electron interactions, i.e., when the Mott insu-
lator at n = 2 is doped. Analogously, for electron filling between n = 2 and n = 3, an
appreciable triplet pairing is detectable also in the three-band model. When magnetic
order is also considered within the variational wave function, triplet superconductivity
is strongly suppressed by antiferromagnetic order close to n = 2; furthermore, the region
where superconductivity can be stabilized is also reduced by the presence of ferromag-
netism, which is competitive in a wide range of densities for large Coulomb repulsions.
Finally, Two main tendencies have been identified. First of all the fundamental part
played by Hund coupling in determining the properties of the two-band Hubbard model.
Second, the presence of multiple competing magnetic states in the phase diagram, indica-
tive of a complex landscape of energies. Our results attest the validity of Jastrow-Slater

variational wave function in detecting ground states of different phase diagram sectors.

4.2 Future problems

Concerning future work, there are some issues that we would like to mention.
Throughout the thesis we have discussed the phase diagram of the two-band Hubbard
model in which, for the sake of simplicity, we have assumed the orbitals having the same
dispersion. For real materials, the situation is more complicated. For instance, the d or-
bitals have anisotropic lobes, which give preferential directions for the kinetic processes
(namely, the presence of hopping terms that would in general depend on the orbitals
and the directions). This fact is expected to have important consequences. Indeed it
is possible that the superconducting state of the Iron-based superconductors is intrinsi-
cally sensitive to the electronic structure, both in “tuning” the pairing interaction and
in the determination of pairing symmetry (Kemper, Maier, Graser, Cheng, Hirschfeld,
and Scalapino 2010).

We would like to emphasize that the physical properties of a multi-band Hubbard
model may crucially depend on the number of bands and their filling. Indeed, there are
aspects that should be common to all of them, such as the nature of the Mott transition
and the presence of antiferromagnetic order at half-filling. Instead, other properties,
related to a possible orbital ordering, can be typical of a particular value of the band

degeneracy. For example, while the antiferro-orbital order is clearly obtained in the



4.2. FUTURE PROBLEMS 69

two-band model at quarter filling, it is not obvious whether it may be stabilized within
a three-band model away from half filling.

Finally, our variational Monte Carlo analysis was based on the definition of a set
of distinct wave functions describing different phases, e.g., magnetic, superconducting
etc. The comparison of their energies led to the construction of the ground state phase
diagram. The main drawback of this approach is that transitions between these phases
are often first order (as for instance the transition between the ferromagnetic metal and
the triplet superconductor), leading to large regions of phase separation. A possible
improvement is given by the definition of variational wave functions describing states
with coexisting orders. However this kind of ansatz may require a non-trivial generaliza-
tion of the Monte Carlo method: a Pfaffian wave function is necessary whenever triplet
superconductivity is present on top of a ferromagnetic order (Spanu, Lugas, Becca, and
Sorella 2008). Within this context, we could also check the real occurrence of phase sep-
aration close to the Mott insulator, which was widely discussed for Cuprates materials
(Emery, Kivelson, and Lin 1990) as well as for Manganite oxides (Yunoki, Hu, Malvezzi,
Moreo, Furukawa, and Dagotto 1998; Dagotto, Burgy, and Moreo 2003) and Iron-based

superconductors (de’Medici 2017), and its connection with superconductivity.
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