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Introduction

Quantum many-body systems have captured the attention of researchers for more than five

decades. Nevertheless, even today, a significant portion of the proposed models remains

unsolved. On one hand, analytical treatments often require approximations that are not

fully justified in the strongly interacting regime. On the other hand, exact numerical

methods are limited to small clusters due to the exponential growth of the Hilbert space

with the number of particles. As a result, these small system sizes are typically insufficient

for capturing the physical properties in the thermodynamic limit.

Numerical techniques based on the variational principle, however, offer a viable alter-

native tool to assess the low-energy properties of these systems, even beyond the pertur-

bative regimes. While these methods overcome the limitations imposed by the exponen-

tially large Hilbert space, the key challenge lies in finding a compact representation of the

ground state encoding the correct physical properties of strongly-interacting systems. De-

spite this, variational approaches for studying quantum many-body systems have proved

fundamental for understanding the properties of extremely complicated physical systems,

famous examples being the Bardeen-Cooper-Schrieffer state [1] and Laughlin [2] wave

functions to explain superconductivity and fractional quantum Hall effect, respectively.

A particularly interesting class of quantum systems is represented by frustrated spin

models, characterized by the competition among various types of interactions. These mod-

els describe the behavior of strongly interacting fermions on a lattice, and understanding

their properties could potentially unlock a theoretical explanation for high-temperature

superconductivity [3]. Furthermore, due to the presence of competing interactions, these

systems can give rise to exotic non-magnetic phases at extremely low temperatures in two

or three spatial dimensions. One of the most iconic examples is the emergence of quantum

spin liquids, which represent a unique state of matter distinguished by distinctive proper-

ties such as the absence of broken symmetry, a high degree of entanglement and fractional

excitations [4]. From a numerical perspective, one difficulty in approaching frustrated spin
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models is related to the sign structure of the ground state, which is, in general, highly non-

trivial, implying the necessity of a full optimization of the variational state that involves

both moduli and signs. Consequently Quantum Monte Carlo methods cannot be applied

to obtain exact properties. For this reason, in the last thirty years, alternative approaches

have been developed. Density-matrix renormalization group (DMRG) [5] is free from sign

problems, but, while it gives excellent results for a variety of one-dimensional models, its

performance considerably worsens when dealing with two-dimensional systems. In this re-

gard, the extensions based on Tensor Networks (e.g., Projected-Entangled Pair States) [6]

represent a promising avenue to reach accurate results in more than one dimension, even

in the thermodynamic limit.

Recently, a new class of wave functions based on neural networks, known as Neural-

Network Quantum States (NQS), has been introduced and developed [7–9]. Starting

from Restricted Boltzmann Machines (RBMs) [7], which are the simplest neural-network

Ansatz (namely only one fully-connected hidden layer), numerous studies have been car-

ried out testing different types of architectures; examples include Convolutional-Neural

Networks (CNNs) [10–13], Recurrent-Neural Networks (RNNs) [14, 15], but also com-

binations of neural networks with standard variational wave functions (e.g., Gutzwiller-

projected fermionic ones) [16, 17]. In the last few years, Transformers [18] have emerged

as one of the most powerful deep learning tools [19–21]. The success of Transformers

lies in their remarkable flexibility: with minimal modifications, they excel in address-

ing diverse problem domains, often outperforming specialized approaches [22–24]. The

Transformer architecture has been also employed in the approximation of ground state,

achieving highly accurate results across different systems [25–33]. The original work

by Carleo and Troyer [7] was limited to Heisenberg models in one and two dimensions,

where the sign structure of the ground state was known by the Marshall-sign rule [34].

This fact largely facilitates the numerical treatment, giving rise to an impressive accuracy

of the neural-network states. More complicated models, such as the frustrated Heisenberg

model, are more difficult to deal with. At present, frustrated quantum spin models remain

extraordinarily challenging problems to be addressed by numerical techniques. From one

side, DMRG calculations have reached remarkable accuracies on a cylindrical geometry

(with large circumferences), thus approaching the two-dimensional limit [35]; from the

other side, NQS, which can represent quantum states in arbitrary dimensions, have pro-

gressively demonstrated highly accurate descriptions of two-dimensional frustrated spin

models. These results are competitive with, and often surpass, those obtained from stan-
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dard methods such as Gutzwiller-projected states and Tensor Networks [27, 28, 36, 37].

However, further improvements should be pursued, in order to be able to perform calcu-

lations on large clusters and assess the real nature of the exact ground state within the

highly-frustrated regime, where gapped or gapless spin liquids may exist.

Outlook

The focus of my PhD research was the investigation of exotic phases of matter that

arise in frustrated spin models, primarily through numerical simulations. A key aspect

of this work was the development of innovative approaches to obtain compact variational

representations of the ground states of these systems, using parametrizations based on

artificial neural networks. Specifically, the thesis presents numerical studies of frustrated

quantum spin models on both one- and two-dimensional lattices, employing variational

methods grounded on Neural-Network Quantum States.

While, from a theoretical standpoint, the accuracy of NQS can be systematically en-

hanced by increasing the number of parameters to efficiently represent highly-entangled

quantum states, achieving this in practice requires the careful design of suitable architec-

tures and optimization methods. The present research focused on developing and refining

these techniques to tackle models of increasing complexity that cannot be effectively ad-

dressed by other numerical methods, improving and adapting them to address the specific

challenges posed by each problem.

The thesis is organized as follows:

◦ In Chapter 1, we introduce the quantum many-body problem, providing an overview

of its significance and challenges. We then outline the stochastic methods employed

in this thesis to address this task. Specifically we focus on the Variational Monte

Carlo, a general framework for the approximation of the ground state of a generic

quantum many-body system.

◦ In Chapter 2, we explore gradient-based methods for the optimization of variational

wave functions. In particular, we focus on the Stochastic Reconfiguration technique

and we detail how to modify it for optimizing quantum states with a large number

of parameters. This latter discussion includes original contributions derived from

our work in Ref. [27].
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◦ In Chapter 3, we present a class of variational wave function known as Neural-

Network Quantum States. We compare the performance of both basic and advanced

neural-network architectures on the one-dimensional J1-J2 Heisenberg model. The

numerical results and the variational states discussed in this Chapter are adapted

from our works in Ref. [38] and Ref. [31].

◦ In Chapter 4, we introduce a general framework based on Representation Learn-

ing, adapted from Ref. [28], to define accurate neural-network wave functions. We

benchmark this approach on the J1-J2 Heisenberg model on the square lattice, with

the numerical results taken from Ref. [27]. Additionally, we discuss the fine-tuning

properties of neural networks elaborating the calculations from our work in Ref. [39].

◦ In Chapter 5, we present numerical calculations on the two-dimensional Shastry-

Sutherland model. Our results, adapted from Ref. [28], reveal the existence of a

small, but finite, region in the phase diagram which is consistent with a gapless spin

liquid state.

At the end, in the final chapter Conclusions and Future Directions, we summarize the

results of the thesis, drawing our conclusions and discussing some possible directions for

future research.
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Chapter 1

The Quantum Many-Body problem

The objective of this Chapter is to provide a brief introduction to the many-body problem,

highlighting the significant computational challenges, particularly related to the exponen-

tial growth of the Hilbert space, and the strategies devised to address them. Special

attention will be given to the formulation and implementation of methods to approxi-

mate the ground state of generic quantum many-body spin systems. Additionally, the

Chapter explores the Variational Monte Carlo framework, with a discussion on the choice

of appropriate variational wave functions and the importance of efficient sampling tech-

niques.

1.1 The origins

Technological advancements in the 20th century revealed fascinating physical phenomena

such as superconductivity [1], superfluidity [40], and the fractional quantum Hall effect [2,

41]. These phenomena could not be adequately explained by mean-field theories and

necessitated fully incorporating the electron-electron interactions, motivating significant

interest in the study of quantum many-body systems.

Specifically, the discovery of high-temperature superconductivity [42, 43] marked a

paradigm shift in the investigation of strongly correlated systems. Following Anderson’s

seminal contribution [3], the focus moved from studying increasingly complicated systems

via ab-initio approaches, such as those based on Density Functional Theory [44, 45],

to adopting a reductionist perspective. The latter approach aimed the construction of

simplified lattice models designed to capture the essential physics of strongly correlated

11



materials, disregarding from specific microscopic details. Notable examples include the

Hubbard [46] and the Heisenberg [47] Hamiltonians, which respectively represent minimal

descriptions of interacting electrons and spins on a lattice. These models have proven

essential in exploring exotic phases of matter, such as quantum spin liquids [37, 48–50]

and high-temperature superconductivity [51, 52].

However, despite their conceptual simplicity, determining the phase diagrams of these

models remains an open and formidable challenge [53]. The explicit treatment of electron-

electron interactions within these models leads to an exponential scaling of computational

complexity, rendering the exact solution of the many-body problem intractable. Conse-

quently, the development of approximate techniques continue to be a crucial area of

research to understand the rich physics of strongly correlated systems.

1.2 Exponential complexity?

Given an Hamiltonian Ĥ describing a generic quantum model defined on a lattice, a

complete characterization of its physical properties is obtained by solving the time-

independent Schrödinger equation:

Ĥ |Ψn⟩ = En |Ψn⟩ . (1.1)

From a numerical perspective, the eigenvalues En and the corresponding eigenstates |Ψn⟩
can be computed by diagonalizing the Hamiltonian Ĥ in a certain basis of the Hilbert

space. To be concrete we focus on a system of N spin S = 1/2 on a generic lattice; in

this case the most simple choice is the computational basis, namely |σ⟩ = |σz
1, σ

z
2, . . . , σ

z
N⟩,

with σz
i = ±1. Inserting a completeness in the form 1̂ =

∑
σ′ |σ′⟩ ⟨σ′| and projecting on

|σ⟩, Eq. (1.1) becomes: ∑
σ′

Hσ,σ′Ψn(σ′) = EnΨn(σ) , (1.2)

where Hσ,σ′ = ⟨σ|Ĥ|σ′⟩ are the matrix elements of the Hamiltonian in the chosen basis

and Ψn(σ) are the coefficients of the quantum state when expanded in the computational

basis, namely |Ψn⟩ =
∑

σ Ψn(σ) |σ⟩. The complete solution of Eq. (1.2) requires in general

the diagonalization of a 2N × 2N hermitian matrix. However physical models are usually

described in terms of local Hamiltonians, where a generic state |σ⟩ has a number of con-

nected elements |σ′⟩, such that ⟨σ|Ĥ|σ′⟩ ≠ 0, at most Poly(N). Therefore the Hamiltonian

matrix Hσ,σ′ is sparse with at most Poly(N)×2N non zero elements. Approaches in which
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the entire Hamiltonian matrix is stored in the computer are known as Exact Diagonaliza-

tion (ED) methods [54]. An additional simplification is given by the fact that, typically,

the physical properties of a quantum model can be extracted by knowing only the ground

state and the low-energy excitations. In this view, iterative Lanczos-type approaches [54]

allow us to obtain to the exact low-energy properties of the system without the need

to allocate the entire Hamiltonian matrix. Although more efficient in terms of memory

with respect to ED approaches, such methods still require the storage in memory of a

certain number of vectors of Hilbert space dimension. Consequently, their effectiveness is

typically limited to a number of sites N < 40 [54, 55].

The strategy to avoid the storage of the exponentially large full quantum state is

grounded on the observation that physical states, for example low-energy states of local

Hamiltonians or states produced by time evolution under local Hamiltonians, typically

occupy a small portion of the full Hilbert space contrary to a generic random state (see

left panel of Fig. 1.1) [56]. To clarify this concept, let us use an analogy with images.

Suppose fixing a certain number of pixels in an image. By varying the intensity of each

pixel, we can generate an exponentially vast number of possible images. However, if the

intensity of each pixel is random, the result will be a chaotic pattern with no discernible

meaning. In contrast, to produce an image with recognizable content, such as a person’s

face or an animal, there must be a structured pattern in the pixel intensities. Similarly, in

classification and recognition tasks, we focus on a small, meaningful subset of all possible

images that could be generated by modifying pixel intensities.

This parallels the idea of physical states in the Hilbert space: just as meaningful

images represent a small subset of all possible pixel combinations, the physical states in

a Hilbert space form a highly specific subset within the vast space of all possible states.

Starting from this observation, the alternative approach is to introduce a variational

parametrization of the quantum state depending on a set of P variational parameters θ:

|Ψθ⟩ =
∑
{σ}

Ψθ(σ) |σ⟩ , (1.3)

where we have defined Ψθ(σ) = ⟨σ|Ψθ⟩. In this way instead of storing the amplitude

of the wave function for each configuration of the basis (as required for ED or Lanczos

methods) we store the vector θ and, in order to have an efficient parametrization, we

require that P ∼ Poly(N), so P ≪ 2N . In practice, we are performing a compression of

the full quantum state, if this compression is efficient we should be able to span with this
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Quantum  
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Figure 1.1: Left Panel: Illustration of the Hilbert space associated with a quantum many-body system.

Physical states occupy a small, specific region within the whole space. An effective variational Ansatz

|Ψθ⟩ should accurately capture the relevant portion of the Hilbert space where these physical states

reside. Right Panel: Comparative representation of the expressive power of different classically tractable

variational states to capture the physical states within the Hilbert space. Neural-Network Quantum States

offer a more flexible parametrization of quantum states compared to tensor network-based methods like

Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). This image is adapted from

Ref. [57].

parametrization not the full Hilbert space but the corner of the physical states (see left

panel of Fig. 1.1).

In the last fifty years several variational parametrizations have been proposed to cap-

ture the low-energy properties of quantum Hamiltonians. The simplest examples are the

Mean-Field/Product States

Ψθ(σ) = Φ1(σ
z
1)Φ2(σ

z
2) · · ·ΦN(σz

N) . (1.4)

where Φj(σ
z
j ) is a scalar function which acts on a single spin variable σz

j . Typically this

kind of parametrization gives the correct picture of the phase diagram but they are not

able to capture exotic phases of matter, since they do not encode quantum correlations.

A powerful generalization of this kind of variational states are the Matrix Product

States (MPS). In this case, the wave function is defined by the contraction of several

tensors:

Ψθ(σ) =
∑

i1,i2,...,iN

A
(1)
i1

(σz
1)A

(2)
ii,i2

(σz
2) · · ·A(N)

iN
(σz

N) , (1.5)

where A
(j)
i,j (σz

j ) is a χ× χ× dlocal tensor. Here, dlocal is the local dimension of the Hilbert
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space, so for spin 1/2 we have dlocal = 2, and χ is called bond dimension, leading to a total

number of dlocalNχ2 variational parameters. Despite its simple structure, this kind of

Ansatz is able to accurately describe the ground state of gapped one-dimensional Hamil-

tonians, where χ is the control parameter that regulates the accuracy of the variational

approximations. In principle when χ is exponentially large in the system size it is possi-

ble to obtain an exact representation of the ground state, however in practice polynomial

resources are sufficient to obtain numerically exact result for one dimensional gapped

Hamiltonian [58, 59]. Although, this approach can accurately describe one-dimensional

systems, where a large bond dimension can be easily used, in two dimensions, serious lim-

itations appear, either imposing to work with a high-rank tensor structure, for instance

Projected Entangled Pair States (PEPS) [60], or with quasi-one-dimensional cluster with

low-rank tensors arranged in a snaked path [61]. Following S. White’s pioneering work

in 1992, where he introduced the Density Matrix Renormalization Group (DMRG) algo-

rithm [5], numerous strategies have been developed for optimizing tensor-network-based

states. However, this thesis will not delve into the specifics of these variational states

or their optimization techniques. For a detailed discussion on these topics, see for ex-

ample Refs. [58, 59]. Instead, our focus will be on using these approaches as a basis for

comparison with other methods.

Few years ago, in a seminal work Carleo and Troyer [7] propose an innovative parametriza-

tion of quantum states based on artificial neural networks, introducing the so-called

Neural-Network Quantum States (NQS)

Ψθ(σ) = exp [Gθ(σz
1, . . . , σ

z
N)] , (1.6)

where Gθ(σz
1, . . . , σ

z
N) is a neural network which has as input the physical spin configura-

tion. A comprehensive description of this type of wave function is provided in Chapter 3.

Here, we highlight that, in principle, this parametrization is highly flexible and does not

face the limitations that arise with tensor network-based approaches as the dimensionality

of the system increases. The primary advantage of these Ansätze lies in their ability to

systematically improve accuracy by increasing the number of parameters, making them

highly effective at representing complicated, highly-entangled quantum states. In the right

panel of Fig. 1.1 we represent in a diagram the expressive power of classically tractable

variational states. It shows that that there exist quantum states that are not efficiently

expressible in terms of MPS or PEPS but that are instead efficiently expressible with

NQS [57, 62].
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1.3 Variational Principle

Up to this point, we have introduced the concept of using a variational state |Ψθ⟩ that is

sufficiently expressive to capture the physically relevant states within Hilbert space. Let

us suppose we are interested in approximating the ground state of a given Hamiltonian

Ĥ. In this case, we introduce the variational energy Eθ, defined as the expectation value

of the Hamiltonian with respect to the variational state |Ψθ⟩, expressed as

Eθ =
⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

. (1.7)

A crucial observation is that this quantity is bounded from below by the exact ground

state energy E0. To see this, we expand the variational state in the basis of the Hamil-

tonian’s eigenstates, |Ψθ⟩ =
∑

n ⟨Ψn|Ψθ⟩ |Ψn⟩. Substituting this expansion into Eq. (1.7),

we can rewrite the variational energy as follows:

Eθ =
∑
n

En
| ⟨Ψn|Ψθ⟩ |2
⟨Ψθ|Ψθ⟩

= E0 +
∑
n̸=0

(En − E0)
| ⟨Ψn|Ψθ⟩ |2
⟨Ψθ|Ψθ⟩

≥ E0 . (1.8)

The previous equation embodies the Variational Principle, which provides a controlled

method for approximating the ground state wave function of a given Hamiltonian. Within

this framework, a specific trial wave function |Ψθ⟩ is proposed, and its parameters are

optimized to minimize the corresponding variational energy Eθ. This approach allows for

the comparison of different trial states: the trial state that yields the lowest energy is

then selected as the best approximation to the true ground state |Ψ0⟩.

1.4 Variational Monte Carlo Framework

The variational principle defines the loss function that must be minimized to find the

best approximation of the ground state of a given Hamiltonian within the manifold of

states defined by the chosen variational Ansatz. However, the principle itself does not

specify how to obtain this optimal state in practice. To address this, we introduce a

general framework known as Variational Monte Carlo (VMC), which not only enables us

to determine the optimal state but also allows for the evaluation of its physical properties.

Achieving this requires two key tasks:

i) Calculating the expectation values of operators with respect to the variational state;
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ii) Updating the variational parameters in a manner that minimizes the variational

energy.

In this Chapter, we will focus on the first task, while Chapter 2 will be dedicated to the

optimization of the variational parameters.

1.4.1 Expectation values of quantum operators

In general, given a variational state |Ψθ⟩ and a quantum operator Â, the exact evaluation

of its expectation value, ⟨Ψθ|Â|Ψθ⟩/⟨Ψθ|Ψθ⟩, requires a summation over all elements of

the Hilbert space basis {|σ⟩} which grows exponentially with system size:

⟨Ψθ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

=
∑
σ

⟨Ψθ|σ⟩ ⟨σ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

. (1.9)

The previous expression can be rewritten in a more convenient form by multiplying

and dividing by ⟨σ|Ψθ⟩:

⟨Ψθ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

=
∑
σ

| ⟨σ|Ψθ⟩ |2
⟨Ψθ|Ψθ⟩

⟨σ|Â|Ψθ⟩
⟨σ|Ψθ⟩

. (1.10)

Notably, this procedure remains valid even when ⟨σ|Ψθ⟩ = 0, since we can decompose the

sum in Eq. (1.9) as follows:

⟨Ψθ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

=
∑

σ : ⟨σ|Ψθ⟩≠0

⟨Ψθ|σ⟩ ⟨σ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

+
∑

σ : ⟨σ|Ψθ⟩=0
���������:0⟨Ψθ|σ⟩ ⟨σ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

. (1.11)

Thus, without loss of generality, we can assume that Eq. (1.10) is restricted to configura-

tions such that ⟨σ|Ψθ⟩ ≠ 0.

At this stage, we define the Born probability distribution as follows:

Pθ(σ) =
| ⟨σ|Ψθ⟩ |2
⟨Ψθ|Ψθ⟩

, (1.12)

along with the local observable AL
θ (σ) corresponding to the operator Â, expressed as:

AL
θ (σ) =

⟨σ|Â|Ψθ⟩
⟨σ|Ψθ⟩

=
∑
σ′

⟨σ|Â|σ⟩ Ψθ(σ
′)

Ψθ(σ)
. (1.13)
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Notably, solely the ratio between two amplitudes Ψθ(σ
′)/Ψθ(σ) is relevant for the com-

putation of the local observables, thereby permitting the use of unnormalized states (see

also Sec. 1.4.3).

Using the previous definitions, we can rewrite the expectation value of a quantum

operator as the expectation value of the local observable AL
θ (σ) over the probability dis-

tribution Pθ(σ). Thus, Eq. (1.10) can be reformulated as:

⟨Ψθ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

=
∑
σ

Pθ(σ)AL
θ (σ) . (1.14)

This expression is formally exact, but more importantly, it allows to introduce a controlled

approximation method for computing expectation values. Specifically, we can perform a

stochastic estimation of the expectation values:

⟨Ψθ|Â|Ψθ⟩
⟨Ψθ|Ψθ⟩

≈ 1

M

M∑
i=1

AL
θ (σi) , (1.15)

where {σ1, σ2, . . . , σM} ∼ Pθ(σ). To perform the stochastic estimation in Eq. (1.15) we

need to generate configurations σi that are distributed according to the desired probability

Pθ(σ) and computing the function AL
θ (σi) for all these configurations. Regarding the

latter point, the estimation of AL
θ (σi) generally involves summations over an exponential

number of terms in the system size [see Eq. (1.13)]. To perform the computation in

polynomial time with to the system size, we restrict our focus to a specific class of quantum

operators. Specifically, physically relevant observables are typically local, meaning they

can be expressed as Â =
∑

j Âj, where Âj acts on a small number of degrees of freedom.

For instance, in the Heisenberg model, the Hamiltonian Ĥ =
∑

⟨i,j⟩ Ŝi · Ŝj consists of

terms that act only on pairs of spins. Consequently, the sum in Eq. (1.13) is restricted

to configurations σ′ such that ⟨σ′|Â|σ⟩ ≠ 0. For local operators, the number of connected

configurations σ′ to a given configuration σ scales polynomially with the system size.

Therefore, AL
θ (σ) can be computed in polynomial time. Furthermore, it can be shown

that for local operators, the variance of the estimator in Eq. (1.15) is finite [56, 63].

Consequently, the error in the expectation value estimate decreases as O(1/
√
M), allowing

for arbitrary accuracy in the estimation of expectation values by increasing the number

of samples.
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1.4.2 Zero Variance property

In the special case where the operator Â is the Hamiltonian Ĥ and the variational state

|Ψθ⟩ coincides with an exact eigenstate of the Hamiltonian, such as |Ψn⟩, the local energy

EL(σ) =
⟨σ|Ĥ|Ψθ⟩
⟨σ|Ψθ⟩

, (1.16)

becomes independent of the configuration σ and equals the eigenvalue En. Consequently,

in this scenario, the local energy EL(σ) in Eq. (1.16) exhibits zero variance. This property

is significant within this framework, as a small variance in the local energy generally

indicates that the trial state is close to an exact eigenstate of the Hamiltonian. Indeed,

the variance of the Hamiltonian,

Var(H) =
⟨Ψθ|Ĥ2|Ψθ⟩
⟨Ψθ|Ψθ⟩

−
(
⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

)2

, (1.17)

is a non-negative quantity, Var(H) ≥ 0, providing a measure of the quality of the varia-

tional approximation [63].

1.4.3 Markov Chain Monte Carlo

In Section 1.4.1, we discussed how to compute expectation values of quantum operators

in an approximate manner. This stochastic estimation is based on evaluating the local

observables on a set of configurations {σ1, σ2, . . . , σM} that are distributed according to

Pθ(σ). When it is possible to generate configurations with a specific probability distri-

bution, this process is referred to as direct sampling. In this scenario, all configurations

are independent of each other. Unfortunately, this is feasible only in a limited number

of cases. In general, to perform direct sampling, one needs to know the normalization

constant of the probability distribution, which is given by ⟨Ψθ|Ψθ⟩ =
∑

σ |Ψ(σ)|2. This

normalization constant involves summing an exponential number of terms with respect

to the system size, making it computationally infeasible for generic variational states as

the system size increases. Generally, we are unable to directly sample from the desired

probability distribution, necessitating the use of indirect methods to obtain such config-

urations. This is where the concept of Markov Chain Monte Carlo (MCMC) becomes

relevant. Notably, the latter approach is highly versatile and can be applied to a wide

variety of cases without needing to compute the normalization constant explicitly [63].
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A Markov Chain is a sequence of configurations generated stochastically, where each con-

figuration in the sequence is obtained from the previous one by making random changes.

Specifically, the transition probability T (σ′|σ) at each step depends solely on the current

configuration. It can be shown that a sufficient condition for the sequence to have a

unique stationary target distribution Pθ(σ) is that it satisfies the Detailed Balance:

Pθ(σ)T (σ′|σ) = Pθ(σ
′)T (σ|σ′) . (1.18)

This condition ensures that, regardless of the initial configuration of the chain, the se-

quence will eventually converge to the correct distribution Pθ(σ) in the long-time limit.

Choosing an appropriate transition rule T (σ|σ′) is a non-trivial task. One of the most

well-known parameterizations is provided by the Metropolis-Hastings algorithm, where the

transition kernel T (σ′|σ) is decomposed into two local subprocesses that can be computed

efficiently [56, 64, 65]:

T (σ′|σ) = k(σ′|σ)A(σ′, σ) + δσ,σ′

∑
σ′′

k(σ′′|σ)[1− A(σ′′, σ)] , (1.19)

Here, k(σ′|σ) is the proposal kernel, which proposes the new configuration σ′ given σ,

while A(σ′, σ) is the acceptance probability for accepting the proposed state σ′. The

second term1, proportional to δσ,σ′ , in Eq. (1.19) accounts for the possibility that the

proposed configuration σ′ is identical to the current configuration σ [65–67]. Typically,

the proposal kernel k(σ′|σ) involves modifying only a few degrees of freedom, such as

flipping a single spin in a given configuration. Special care must be taken when dealing

with systems that exhibit symmetries. For example, in systems where the total magne-

tization along the direction of the computational basis is conserved, it may be necessary

to impose a transition rule that preserves it. For instance, a valid proposed move in

such a system could involve flipping two spins oriented in opposite directions to conserve

the total magnetization. This ensures that the Markov chain remains within a specific

subspace.

The simplest choice of acceptance probability that satisfies the Detailed Balance con-

dition in Eq. (1.18) with the previously defined transition kernel [see Eq. (1.19)] is given

by

A(σ′, σ) = min

(
1,

Pθ(σ
′)

Pθ(σ)

k(σ|σ′)

k(σ′|σ)

)
. (1.20)

1This contribution is essential for ensuring that the transition kernel is normalized, such that∑
σ′ T (σ′|σ) = 1 [65].
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The crucial point here is that the normalization constant cancels out, meaning that only

the ratio Pθ(σ
′)/Pθ(σ) = |Ψθ(σ

′)/Ψθ(σ)|2 is relevant [see Eq. (1.12)]. This allows us to

consider unnormalized variational states. In most cases, it is useful to consider symmet-

ric conditional probabilities, where k(σ|σ′) = k(σ′|σ). In this scenario, the acceptance

probability simplifies to

A(σ′, σ) = min

(
1,

Pθ(σ
′)

Pθ(σ)

)
, (1.21)

This case is simply known as the Metropolis algorithm. In our treatment of quantum

many-body systems on lattice, we will focus on this case.

The advantage of working with non-normalized wave functions is that it provides

considerable freedom in the choice of the parameterization. However, from a practical

standpoint, we may encounter numerical issues such as underflow and overflow when

evaluating the amplitude of the wave function. For this reason, instead of parameterizing

the wave function directly, we typically parameterize its logarithm. Assuming in general

that Ψθ(σ) ∈ C, we have:

Log[Ψθ(σ)] = log[|Ψθ(σ)|] + i arg(Ψθ(σ)) . (1.22)

where Log(·) denotes the complex logarithm and log(·) denotes the real logarithm. In the

following, we will show that the Metropolis algorithm can be implemented equivalently

without ever exponentiating the wave function. The key is to rewrite the algorithm in

logarithmic scale, leveraging the fact that the logarithm is a monotonic function of its

argument.

Let us assume that σ is the current configuration of the Markov chain. To obtain the

new configuration of the Markov Chain according to the Metropolis algorithm, we iterate

through the following steps:

1. Generate a configuration σ′ according to the proposal kernel k(σ′|σ).

2. Evaluate the log-acceptance ratio of the proposed move using Eq. (1.21):

log[A(σ′, σ)] = min

(
0, log

[
Pθ(σ

′)

Pθ(σ)

])
, (1.23)

with

log

[
Pθ(σ

′)

Pθ(σ)

]
= 2ℜ{Log[Ψθ(σ

′)]} − 2ℜ{Log[Ψθ(σ)]} , (1.24)

where Pθ(σ) is the Born amplitude defined in Eq. (1.12).
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3. Accept the new configuration σ′ with probability A(σ′, σ). In practice, this is done

by drawing a random number u ∈ (0, 1] and proceeding as follows:

• Accept the move if log(u) ≤ log[A(σ′, σ)];

• Reject the move if log(u) > log[A(σ′, σ)], in this case the new configuration

in the Markov Chain remains σ.

This procedure allows us to generate a sample of configurations distributed according to

Pθ(σ), relying solely on the logarithm of the wave function Log[Ψθ(σ)].

It is important to note that the efficiency of the Metropolis algorithm in generating

a sample of configurations depends on the ability to compute the amplitude of the wave

function Ψθ(σ) (or equivalently its logarithm Log[Ψθ(σ)]) efficiently. Specifically, this

computation must require a number of operations that is polynomial in the size of the

system.
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Chapter 2

Optimization of Large-Scale

Variational Wave Functions

In Chapter 1, we introduced the VMC framework, with a particular focus on how stochas-

tically estimate the expectation values of quantum operators with respect to a generic

variational state using a sample of configurations generated via MCMC. It is important

to note that this procedure is performed with fixed variational state parameters; we have

not yet addressed how these parameters are adjusted. This addition will complete the

VMC framework by defining an iterative procedure that, starting from a variational state

with random parameters, optimizes the variational parameters and converges to an opti-

mal state at the end of the training process. Specifically, in this Chapter we will discuss

the Stochastic Reconfiguration (SR) method, a gradient-based approach for optimizing

variational wave functions. Developed by Sandro Sorella in the late 1990s [68, 69], SR has

become an important tool in quantum many-body physics. We will start by deriving the

equations for updating the variational parameters. Then, we will show how these equa-

tions can be adapted to efficiently optimize large-scale variational wave functions [27, 36],

allowing us to treat Ansatze with thousands to millions of variational parameters.

2.1 Gradient of the variational energy

Finding the ground state of a quantum system with the variational principle involves

minimizing the variational energy Eθ = ⟨Ψθ|Ĥ|Ψθ⟩ / ⟨Ψθ|Ψθ⟩, where |Ψθ⟩ is a variational

state parametrized through a set of P parameters θ (see Sec. 1.3).
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In a gradient-based optimization approach, the fundamental ingredient is the evalua-

tion of the gradient of the loss, which in this case is the variational energy Eθ, with respect

to the parameters, namely Fα = −∂Eθ/∂θα, with α = 1, . . . , P . The expectation value of

the Hamiltonian Ĥ with respect to the variational state |Ψθ⟩ in the computational basis

can be written as:

Eθ =
⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

=
∑
σ,σ′

Hσσ′
Ψ∗

θ(σ)Ψθ(σ
′)

⟨Ψθ|Ψθ⟩
, (2.1)

where we inserted two completeness of the form 1̂ =
∑

σ |σ⟩ ⟨σ|, and we have defined the

matrix elements Hσσ′ = ⟨σ|Ĥ|σ′⟩. Now we can perform the derivative of the previous

equation with respect to the parameter θα with α = 1, . . . , P . Specifically, assuming

real-valued parameters2 we obtain:

∂Eθ

∂θα
=
∑
σ,σ′

Hσσ′

[
1

⟨Ψθ|Ψθ⟩
(Ψθ(σ

′)∂αΨ∗
θ(σ) + Ψ∗

θ(σ)∂αΨθ(σ
′))−

Ψ∗
θ(σ)Ψθ(σ

′)

⟨Ψθ|Ψθ⟩
1

⟨Ψθ|Ψθ⟩
∑
σ′′

(Ψθ(σ
′′)∂αΨ∗

θ(σ
′′) + Ψ∗

θ(σ
′′)∂αΨθ(σ

′′))

]
,

(2.2)

where for brevity we have identified ∂α = ∂/∂θα. The first term in the previous sum can

be rewritten as ∑
σ,σ′

Hσσ′Ψθ(σ
′)∂αΨ∗

θ(σ) +
∑
σ,σ′

Hσσ′Ψ∗
θ(σ)∂αΨθ(σ

′)

=
∑
σ,σ′

[Hσσ′Ψθ(σ
′)∂αΨ∗

θ(σ) + H∗
σσ′Ψ∗

θ(σ
′)∂αΨθ(σ)]

(2.3)

where we have exploit the fact that the Hamiltonian matrix Hσσ′ is hermitian, namely

Hσσ′ = H∗
σ′σ. Then, with the hypothesis of real-valued parameters:

Hσσ′Ψθ(σ
′)∂αΨ∗

θ(σ) + H∗
σ′σΨ∗

θ(σ
′)∂αΨθ(σ) = 2ℜ{Hσσ′Ψθ(σ

′)∂αΨ∗
θ(σ)} ,

Ψθ(σ
′)∂αΨ∗

θ(σ) + Ψ∗
θ(σ)∂αΨθ(σ

′) = 2ℜ{Ψθ(σ
′)∂αΨ∗

θ(σ)} .
(2.4)

Combining the previous equations, the gradient in Eq. (2.2) becomes:

∂Eθ

∂θα
=
∑
σ,σ′

2ℜ{Hσσ′Ψθ(σ
′)∂αΨ∗

θ(σ)}
⟨Ψθ|Ψθ⟩

− ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

∑
σ′′

2ℜ{Ψθ(σ
′′)∂αΨ∗

θ(σ
′′)}

⟨Ψθ|Ψθ⟩
. (2.5)

2If the variational wave function is defined with complex-valued parameters, the latter can be treated

as couples of independent real-valued parameters.
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Noting that ⟨Ψθ|Ĥ|Ψθ⟩ ∈ R and ⟨Ψθ|Ψθ⟩ ∈ R, we obtain:

∂Eθ

∂θα
= 2ℜ

{
⟨∂αΨθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

− ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

⟨∂αΨθ|Ψθ⟩
⟨Ψθ|Ψθ⟩

}
. (2.6)

The expression in Eq. (2.6) requires further manipulations to derive a formula that involves

only expectation values with respect to the variational state |Ψθ⟩. This reformulation is

crucial as it allows an efficient estimation using Monte Carlo approaches (see Sec. 1.4.1).

Starting from Eq (2.6), we insert two completeness and then we multiple and divide for

Ψ∗
θ(σ) and Ψ∗

θ(σ
′′) in the first and in the second term, respectively, getting the following

expression:

∂Eθ

∂θα
= 2ℜ

{∑
σ,σ′

Hσσ′
∂αΨ∗

θ(σ)

Ψ∗
θ(σ)

Ψθ(σ
′)Ψ∗

θ(σ)

⟨Ψθ|Ψθ⟩
− ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

∑
σ′′

∂αΨ∗
θ(σ

′′)

Ψ∗
θ(σ

′′)

|Ψθ(σ
′′)|2

⟨Ψθ|Ψθ⟩

}
.

(2.7)

At this point we introduce the operator Ôα for α = 1, . . . , P such that:

⟨σ|Ôα|σ′⟩ = Oα(σ)δσσ′ ,

Oα(σ) =
1

Ψθ(σ)

∂Ψθ(σ)

∂θα
=

∂Log[Ψθ(σ)]

∂θα
.

(2.8)

In general, they depend upon the variational parameters θ, however, to keep the notation

simple, we prefer not to put the label in these local operators. From their definition it is

easy to show that ⟨σ|Ôα|Ψθ⟩ = ∂αΨθ(σ) ∀ |σ⟩ and consequently Ôα |Ψθ⟩ = |∂αΨθ⟩.
At the end we obtain the Gradient of the Variational Energy [63]:

Fα = −∂Eθ

∂θα
= −2ℜ

{
⟨Ψθ|Ô†

αĤ|Ψθ⟩
⟨Ψθ|Ψθ⟩

− ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

⟨Ψθ|Ô†
α|Ψθ⟩

⟨Ψθ|Ψθ⟩

}
. (2.9)

This final expression highlights the fact that the gradient of the energy can be recasted

as a correlation function between the Hamiltonian Ĥ and a local operator Ôα. Moreover,

it is easy to show that it can be alternatively written as follows:

Fα = −∂Eθ

∂θα
= −2ℜ

{
⟨
(
Ôα − ⟨Ôα⟩

)† (
Ĥ − ⟨Ĥ⟩

)
⟩
}

, (2.10)

where ⟨·⟩ = ⟨Ψθ| · |Ψθ⟩ / ⟨Ψθ|Ψθ⟩. In order to evaluate efficiently Eq. (2.10) by employing

Monte Carlo techniques, we insert a completeness relation:

Fα = −2ℜ
{∑

σ

[
EL(σ)− ⟨Ĥ⟩

]∗ [
Oα(σ)− ⟨Ôα⟩

] |Ψ(σ)|2
⟨Ψθ|Ψθ⟩

}
, (2.11)
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where EL(σ) = ⟨σ|Ĥ|Ψθ⟩ / ⟨σ|Ψθ⟩ is the local energy [see Eq. (1.16)]. For a given sample

of M configurations {σ1, σ2, . . . , σM}, sampled according to Pθ(σ) [see Eq. (1.12)], the

stochastic estimate of Fα can be obtained as:

F̄α = −2ℜ
{

1

M

M∑
i=1

[
EL(σi)− ĒL

]∗ [
Oα(σi)− Ōα

]}
, (2.12)

where ĒL = (1/M)
∑M

i=1 EL(σi) and Ōα = (1/M)
∑M

i=1Oα(σi) denote sample means.

Notice that if the variational state coincides with an eigenstate of the Hamiltonian

Ĥ, the local energy coincides with the corresponding exact eigenvalue, regardless the

configuration σi. Then F̄α identically vanishes without statistical fluctuations and thus

we recover the zero-variance property for energy derivatives [63].

2.2 Stochastic Reconfiguration

The most used methods for the optimization of loss functions with a large number of

parameters rely on stochastic gradient descent (SGD), where the gradient of the loss

function is estimated from a randomly selected subset of the data [see Eq. (2.12)]. Over the

years, variations of traditional SGD, such as Adam [70] or AdamW [71], have proven highly

effective, leading to more accurate results. In the late 1990s, Amari and collaborators [72,

73] suggested to use the knowledge of the geometric structure of the parameter space to

adjust the gradient direction for non-convex landscapes, defining the concept of Natural

Gradients. In the same years, Sorella [68, 69] proposed a similar method, now known as

Stochastic Reconfiguration (SR), to enhance the optimization of variational functions in

quantum many-body systems.

In general, starting from the variational state |Ψθ⟩, the exact ground state |Ψ0⟩ of the

Hamiltonian Ĥ can be obtained performing the imaginary time evolution, namely:

|Ψ0⟩ ∝ lim
β→+∞

e−βĤ |Ψθ⟩ . (2.13)

assuming that ⟨Ψθ|Ψ0⟩ ̸= 0. However, the exact application of the operator e−βĤ is

infeasible for large system size, being it in general a non-sparse exponentially large matrix

dNlocal × dNlocal, where dlocal is the dimension of the local Hilbert space (e.g., dlocal = 2 for

1/2 spins and dlocal = 4 for fermions) and N the number of particles in the system.
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Figure 2.1: Graphical representation of the manifold M, which contains the variational states |Ψθ⟩ as
the parameters θ vary. Generally, the state e−τĤ |Ψθ⟩ lies outsideM, but a variational state |Ψθ+δθ⟩ can
be constructed by projecting eτĤ |Ψθ⟩ onto the manifoldM, yielding an approximation of the imaginary

time-evolved state.

Formally, the operator e−βĤ can be decomposed into a product of Nτ operators of

the form e−τĤ , where τ = β/Nτ . Consequently, the ground state can be approximated

through an iterative application of these operators on the initial state:

|Ψ0⟩ ≈ e−τĤe−τĤ · · · e−τĤ︸ ︷︷ ︸
Nτ times

|Ψθ⟩ . (2.14)

It is important to note that while |Ψθ⟩ belongs to a manifoldM, which represents a subset

of states in the full Hilbert space parameterized by θ, the state e−τĤ |Ψθ⟩ generally does

not lie within M. This implies that there does not exist a set of parameters θ + δθ such

that |Ψθ+δθ⟩ matches e−τĤ |Ψθ⟩ exactly. However, if the variational Ansatz is sufficiently

expressive, we can approximate e−τĤ |Ψθ⟩ by changing the variational parameters. The

central idea of SR is to determine the optimal update δθ that best approximates the imag-

inary time evolution for a duration τ (see Fig. 2.1). This process effectively projects the

evolved state back onto the variational manifold M, allowing us to maintain a tractable

representation of the state which approximate the ground state. Consequently, the SR

approach can be interpreted as an effective imaginary time evolution in the variational

manifold.

From a mathematical perspective, our objective is to determine the optimal parameter

update δθ that minimizes the distance between the imaginary time-evolved state and the

updated variational state. This can be formulated as3 [74]:

δθ∗ = argmin
δθ

F
[
e−2τĤ |Ψθ⟩ , |Ψθ+δθ⟩

]
, (2.15)

3The factor of 2 in the exponent of Eq. (2.15) is introduced to simplify the resulting expressions,

eliminating numerical factors in the final results.
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where F [·, ·] denotes the Fubini-Study distance, a metric that quantifies the distance be-

tween two arbitrary states in the Hilbert space. The latter is defined as:

F [|Ψ⟩ , |Φ⟩] = arccos

√
⟨Ψ|Φ⟩ ⟨Φ|Ψ⟩
⟨Ψ|Ψ⟩ ⟨Φ|Φ⟩ . (2.16)

Finding the argmin in the Eq. (2.15) is formally equivalent to [74]:

δθ∗ = argmax
δθ

F2
[
e−2τĤ |Ψθ⟩ , |Ψθ+δθ⟩

]
, (2.17)

where F[·, ·] is known as fidelity, and it is defined as

F2 [|Ψ⟩ , |Φ⟩] =
⟨Ψ|Φ⟩ ⟨Φ|Ψ⟩
⟨Ψ|Ψ⟩ ⟨Φ|Φ⟩ . (2.18)

To simplify the notation we define the following states

|Ψτ ⟩ = e−2λτĤ |Ψθ⟩ |Ψδ⟩ = |Ψθ+λδθ⟩ , (2.19)

where we have introduces the control parameter λ which we will set equal to one at the

end of the calculation. Note that we are assuming τ and δθα to be of the same order of

magnitude, this assumption will be validated at the end of the calculation.

In the following we will solve Eq. (2.17) in an approximated way, specifically we will

neglect contributions of order O(λ3). First we expand both states in Eq. (2.19) up to the

same order:

|Ψτ ⟩ = e−2λτĤ |Ψθ⟩ =
(

1̂− 2λτĤ + 4λ2τ 2Ĥ2
)
|Ψθ⟩+ O(λ3)

=
(
1̂ + λε̂− λ2ε̂2

)
|Ψθ⟩+ O(λ3) ,

(2.20)

where we have introduced the hermitian operator ε̂ = −2τĤ. Analogously, assuming

real-valued parameters θ (in the case of complex-valued parameters we can always treat

real and imaginary part separately), we expand the other state in Eq. (2.19):

|Ψδ⟩ = |Ψθ+λδθ⟩ = |Ψθ⟩+ λ
P∑

α=1

δθα
∂

∂θα
|Ψθ⟩+ λ2

P∑
α,β=1

δθαδθβ
∂2

∂θαθβ
|Ψθ⟩+ O(λ3)

=

(
1̂ + λ

P∑
α=1

δθαÔα + λ2

P∑
α,β=1

δθαδθβÔαÔβ

)
|Ψθ⟩+ O(λ3) ,

(2.21)

28



here we have used the diagonal operator Ôα defined in Eq. (2.8). We can further simplify

the notation by defining4 R̂ =
∑P

α=1 δθαÔα :

|Ψδ⟩ =
(

1̂ + λR̂ + λ2R̂2
)
|Ψθ⟩+ O(λ3) . (2.22)

We stress that the states |Ψτ ⟩ in Eq. (2.20) and |Ψδ⟩ in Eq. (2.22) are in general not

normalized. Now we compute the various overlaps in the definition of the fidelity in

Eq. (2.17). We start estimating the overlap between |Ψτ ⟩ and |Ψδ⟩:

⟨Ψτ |Ψδ⟩ = ⟨Ψθ|
(
1̂ + λε̂− λ2ε̂2

) (
1̂ + λR̂ + λ2R̂2

)
|Ψθ⟩+ O(λ3)

= ⟨Ψθ|Ψθ⟩
[
1 + λ

(
⟨R̂⟩+ ⟨ε̂⟩

)
+ λ2

(
⟨ε̂R̂⟩ − ⟨ε̂2⟩+ ⟨R̂2⟩

)]
+ O(λ3) ,

(2.23)

where for brevity we indicate ⟨·⟩ = ⟨Ψθ| · |Ψθ⟩ / ⟨Ψθ|Ψθ⟩. In a similar way we obtain:

⟨Ψδ|Ψτ ⟩ = ⟨Ψθ|Ψθ⟩
[
1 + λ

(
⟨R̂†⟩+ ⟨ε̂⟩

)
+ λ2

(
⟨R̂†ε̂⟩ − ⟨ε̂2⟩+ ⟨(R̂†)2⟩

)]
+ O(λ3) . (2.24)

We can compute the numerator of the fidelity [see Eq. (2.18)] performing the product of

the overlaps in Eq. (2.23) and Eq. (2.24):

| ⟨Ψτ |Ψδ⟩ |2 = | ⟨Ψθ|Ψθ⟩ |2
[
1 + λ

(
⟨R̂⟩+ 2 ⟨ε̂⟩+ ⟨R̂†⟩

)
+

λ2
(
⟨ε̂R̂⟩+ ⟨R̂2⟩+ ⟨R̂†⟩ ⟨R̂⟩+ ⟨R̂†⟩ ⟨ε̂⟩+ ⟨ε̂⟩ ⟨R̂⟩+ ⟨ε̂⟩2 − 2 ⟨ε̂2⟩+

⟨R̂†ε̂⟩+ ⟨(R̂†)2⟩
)]

+ O(λ3) .

(2.25)

Then we focus on the denominator of the fidelity [see Eq. (2.18)]

⟨Ψτ |Ψτ ⟩ = ⟨Ψθ|
(
1̂ + λε̂− λ2ε̂2

) (
1̂ + λε̂− λ2ε̂2

)
|Ψθ⟩+ O(λ3)

= ⟨Ψθ|Ψθ⟩
(
1 + 2λ ⟨ε̂⟩ − λ2 ⟨ε̂2⟩

)
+ O(λ3) ,

(2.26)

analogously

⟨Ψδ|Ψδ⟩ = ⟨Ψθ|
(

1̂ + λR̂† + λ2(R̂†)2
)(

1̂ + λR̂ + λ2R̂2
)
|Ψθ⟩+ O(λ3)

= ⟨Ψθ|Ψθ⟩
[
1 + λ

(
⟨R̂⟩+ ⟨R̂†⟩

)
+ λ2

(
⟨R̂2⟩+ ⟨(R̂†)2⟩+ ⟨R̂†R⟩

)]
+ O(λ3) .

(2.27)

4It is important to point out that the operator R̂ is not hermitian, contrary to ε̂ that it is hermitian.
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Then we perform the product between the norms in Eq. (2.26) and in Eq. (2.27):

⟨Ψτ |Ψτ ⟩ ⟨Ψδ|Ψδ⟩ = | ⟨Ψθ|Ψθ⟩ |2
[
1 + λ

(
⟨R̂⟩+ ⟨R̂†⟩+ 2 ⟨ε̂⟩

)
+

λ2
(
⟨R̂2⟩+ ⟨(R̂†)2⟩+ ⟨R̂†R⟩+ 2 ⟨ε̂⟩ ⟨R̂⟩+ 2 ⟨ε̂⟩ ⟨R̂†⟩ − ⟨ε̂2⟩

)
+ O(λ3)

]
.

(2.28)

Employing the series expansion 1/(1 + x) = 1− x + x2 + O(x3) for x≪ 1 we obtain:

1

⟨Ψτ |Ψτ ⟩ ⟨Ψδ|Ψδ⟩
=

1

| ⟨Ψθ|Ψθ⟩ |2
[
1− λ

(
⟨R̂⟩+ ⟨R̂†⟩+ 2 ⟨ε̂⟩

)
+ λ2

(
⟨R̂⟩+ ⟨R̂†⟩+ 2 ⟨ε̂⟩

)2
−

λ2
(
⟨R̂2⟩+ ⟨(R̂†)2⟩+ ⟨R̂†R⟩+ 2 ⟨ε̂⟩ ⟨R̂⟩+ 2 ⟨ε̂⟩ ⟨R̂†⟩ − ⟨ε̂2⟩

)
+ O(λ3)

]
.

(2.29)

The fidelity in Eq. (2.18) can be computed by performing the product between the ex-

pression in Eq. (2.25) and in Eq. (2.29):

| ⟨Ψτ |Ψδ⟩ |2
⟨Ψτ |Ψτ ⟩ ⟨Ψδ|Ψδ⟩

= 1−
((((((((((((
λ
(
⟨R̂⟩+ ⟨R̂†⟩+ 2 ⟨ε̂⟩

)
+

(((((((((((((

λ2
(
⟨R̂⟩+ ⟨R̂†⟩+ 2 ⟨ε̂⟩

)2
−

λ2
(
�
��⟨R̂2⟩+����⟨(R̂†)2⟩+ ⟨R̂†R⟩+ 2 ⟨ε̂⟩ ⟨R̂⟩+ 2 ⟨ε̂⟩ ⟨R̂†⟩ − ⟨ε̂2⟩

)
+

((((((((((((
λ
(
⟨R̂⟩+ 2 ⟨ε̂⟩+ ⟨R̂†⟩

)
−

(((((((((((((

λ2
(
⟨R̂⟩+ 2 ⟨ε̂⟩+ ⟨R̂†⟩

)2
+

λ2
(
⟨ε̂R̂⟩+

�
��⟨R̂2⟩+ ⟨R̂†⟩ ⟨R̂⟩+ ⟨R̂†⟩ ⟨ε̂⟩+ ⟨ε̂⟩ ⟨R̂⟩+ ⟨ε̂⟩2 − 2 ⟨ε̂2⟩ +

⟨R̂†ε̂⟩+����⟨(R̂†)2⟩
)

+ O(λ3) .

(2.30)

After appropriate simplifications, the remaining terms can be arranged to define correla-

tions functions:

| ⟨Ψτ |Ψδ⟩ |2
⟨Ψτ |Ψτ ⟩ ⟨Ψδ|Ψδ⟩

= 1 + λ2
[(
⟨ε̂R̂⟩ − ⟨ε̂⟩ ⟨R̂⟩

)
+
(
⟨R̂†ε̂⟩ − ⟨R̂†⟩ ⟨ε̂⟩

)
−(

⟨ε̂2⟩ − ⟨ε̂⟩2
)
−
(
⟨R̂†R̂⟩ − ⟨R̂†⟩ ⟨R̂⟩

)]
+ O(λ3).

(2.31)

Notably, first order contributions in λ do not appear in the final expression. Moreover,

the above expression can be obtained also if the expansion of |Ψτ ⟩ [see Eq. (2.20)] and

|Ψδ⟩ [see Eq. (2.22)] are performed neglecting terms of order λ2, since all of them cancels

out when performing the ratio in Eq. (2.31) [75].

By using the definitions of R̂ and ε̂ we can rewrite the different terms:
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1. Quantum Geometric Tensor:

⟨R̂†R̂⟩−⟨R̂†⟩ ⟨R̂⟩ =
P∑

α,β=1

δθαδθβ

(
⟨Ô†

αÔβ⟩ − ⟨Ô†
α⟩ ⟨Ôβ⟩

)
=

P∑
α,β=1

δθαδθβQαβ . (2.32)

Here, we have introduced the Quantum Geometric Tensor :

Qαβ = ⟨Ô†
αÔβ⟩ − ⟨Ô†

α⟩ ⟨Ôβ⟩ , (2.33)

which it is an hermitian matrix Qαβ = Q∗
βα of P × P complex-valued numbers

(assuming to treat the the general case of complex-valued variational wave functions

Ψθ(σ) ∈ C).

2. Gradient of the Energy:

⟨R̂†ε̂⟩ − ⟨R̂†⟩ ⟨ε̂⟩ = −2τ
P∑

α=1

δθα

(
⟨Ô†

αĤ⟩ − ⟨Ô†
α⟩ ⟨Ĥ⟩

)
,

⟨ε̂R̂⟩ − ⟨ε̂⟩ ⟨R̂⟩ = −2τ
P∑

α=1

δθα

(
⟨ĤÔα⟩ − ⟨Ĥ⟩ ⟨Ôα⟩

)
,

(2.34)

assuming δθα ∈ R ∀α = 1, . . . , P , the two equations above are one the complex

conjugate of the other, and since in the fidelity the two terms are summed together

[see Eq. (2.31)] we can write:(
⟨ε̂R̂⟩ − ⟨ε̂⟩ ⟨R̂⟩

)
+
(
⟨R̂†ε̂⟩ − ⟨R̂†⟩ ⟨ε̂⟩

)
= −4τ

P∑
α=1

δθαℜ
{
⟨ĤÔα⟩ − ⟨Ĥ⟩ ⟨Ôα⟩

}
= 2τ

P∑
α=1

δθαFα.

(2.35)

In the last step we have used the definition of the gradient of the variational energy

with respect to the variational parameters Fα = −∂Eθ/∂θα [see Eq. (2.9)].

3. Variance of the energy:

⟨ε2⟩ − ⟨ε⟩2 = 4τ 2
(
⟨H2⟩ − ⟨H⟩2

)
= 4τ 2Var(H) , (2.36)

where Var(H) is the variance of the Hamiltonian defined in Eq. (1.17). This term

does not depend on the variation of the parameters δθα so it will not contribute to

the final equations for the parameter updates.
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We can rewrite the fidelity in Eq. (2.31) as:

F2[|Ψτ ⟩ , |Ψδ⟩] = 1 + λ2

[
2τ

P∑
α=1

δθαFα −
P∑

α,β=1

δθαδθβQαβ − 4τ 2Var(H)

]
+ O(λ3) . (2.37)

We emphasize that our derivation leads to the same expression of the fidelity obtained in

Ref. [74] and in the Supplemental Material of Ref. [75].

The update of the parameters δθ which maximize the fidelity can be obtained by

deriving the above expression with respect to them and set the result to zero:

P∑
β=1

(Qαβ + Qβα) δθβ = 2τFα . (2.38)

By exploiting the hermiticity of the Quantum Geometric Tensor Qαβ = Q∗
αβ we finally

obtain the equations for the update of the variational parameters:

P∑
β=1

Sα,βδθβ = τFα , (2.39)

where we have introduce the S matrix, namely the real part of the Quantum Geometric

Tensor Sα,β = ℜ{Qαβ}.
We emphasize that in the SR updates in Eq. (2.39), the variation of the parameters

δθα is proportional to τ , consistent with the assumption made at the beginning of the

calculation.

2.2.1 Geometrical Interpretation of the Quantum Geometric

Tensor

In the previous section the Quantum Geometric Tensor emerged naturally when deriving

the parameter updates of the SR. Here, we provide a geometrical interpretation of the

matrix Q. In order to do so, we measure the Fubini-Study distance [see Eq. (2.15)]

between the variational states |Ψθ⟩ and |Ψθ+δθ⟩. The latter can be written as

F2[|Ψθ⟩ , |Ψθ+δθ⟩] = arccos2 (F[|Ψθ⟩ , |Ψθ+δθ⟩]) , (2.40)
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where the fidelity [see Eq. (2.18)] between these two states is simply obtained by setting

τ = 0 in Eq. (2.37):

F2[|Ψθ⟩ , |Ψθ+δθ⟩] = 1− λ2

P∑
α,β=1

δθαδθβQαβ + O(λ3) . (2.41)

With the previous expressions we can compute the Fubini-Study distance:

F2[|Ψθ⟩ , |Ψθ+δθ⟩] = arccos2

√√√√1− λ2

P∑
α,β=1

δθαδθβQαβ + O(λ3)


= λ2

P∑
α,β=1

δθαδθβQαβ + O(λ4) ,

(2.42)

where in the last step we used the expansion arccos2(
√

1 + x) = −x + O(x2), for x≪ 1.

In general for complex-valued wave functions, Q is a complex-valued hermitian matrix,

hence we can write Qαβ = Sαβ + iCαβ, where Sαβ = ℜ{Qαβ} is a symmetric matrix

(Sαβ = Sβα) and Cαβ = ℑ{Qαβ} is an antisymmetric matrix (Cαβ = −Cβα). Assuming

real-valued parameters, δθαδθβ is a symmetric matrix, therefore
∑P

α,β=1 δθαδθβCαβ = 0.

At the end, the infinitesimal distance in the Hilbert space between the two quantum states

|Ψθ⟩ and |Ψθ+δθ⟩ is given by:

F2[|Ψθ⟩ , |Ψθ+δθ⟩] =
P∑

α,β=1

δθαδθβSαβ . (2.43)

The S matrix, which is the real part of the Quantum Geometric Tensor Q, can be shown

to be a symmetric and positive-definite matrix [63]. Hence, it defines the metric in

Hilbert space used to measure the distance between quantum states. The Quantum

Geometric Tensor represents a generalization of the Fisher information metric for classical

probability distributions [76].

2.2.2 Gauge Invariance of the Quantum Geometric Tensor

Each quantum state in the Hilbert space can be defined up to a phase. In this sec-

tion we show that the S matrix is invariant with respect to the gauge transformation

|Ψθ⟩ → |Ψ′
θ⟩ = eiϕθ |Ψθ⟩, where ϕθ ∈ R is a generic function of the variational parameters,
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thus defining an appropriate metric to measure distances in the Hilbert space.

The aim of this section is to evaluate the QGT on the state |Ψ′
θ⟩:

Q′
α,β =

⟨Ψ′
θ|Ô†

αÔβ|Ψ′
θ⟩

⟨Ψ′
θ|Ψ′

θ⟩
− ⟨Ψ

′
θ|Ô†

α|Ψ′
θ⟩

⟨Ψ′
θ|Ψ′

θ⟩
⟨Ψ′

θ|Ôβ|Ψ′
θ⟩

⟨Ψ′
θ|Ψ′

θ⟩
. (2.44)

First we note that ⟨Ψ′
θ|Ψ′

θ⟩ = ⟨Ψθ|Ψθ⟩ since they are related by a gauge transformation.

Then, given a physical configuration |σ⟩ we evaluate:

⟨σ|Ôα|Ψ′
θ⟩ =

∂

∂θα

[
Log

(
eiϕθ ⟨σ|Ψθ⟩

)]
= i

∂ϕθ

∂θα
+

∂Log (⟨σ|Ψθ⟩)
∂θα

= ⟨σ|
(
i
∂ϕθ

∂θα
+ Ôα |Ψθ⟩

)
.

(2.45)

Since the previous relation is valid for each configuration |σ⟩ of the basis of the Hilbert

space, then it is a relation between the operators:

Ôα |Ψ′
θ⟩ = i

∂ϕθ

∂θα
+ Ôα |Ψθ⟩ . (2.46)

At this point we can compute the first term in Eq. (2.44) using the previous expression

for Ôα |Ψ′
θ⟩:

⟨Ψ′
θ|Ô†

αÔβ|Ψ′
θ⟩ = ⟨Ψθ|

(
−i∂ϕθ

∂θα
+ Ô†

α

)(
i
∂ϕθ

∂θβ
+ Ôβ

)
|Ψθ⟩

= ⟨Ψθ|Ô†
αÔβ|Ψθ⟩ − i

∂ϕθ

∂θα
⟨Ψθ|Ôβ|Ψθ⟩+ i

∂ϕθ

∂θβ
⟨Ψθ|Ô†

α|Ψθ⟩+
∂ϕθ

∂θα

∂ϕθ

∂θβ
,

(2.47)

with the proper normalization we obtain:

⟨Ψ′
θ|Ô†

αÔβ|Ψ′
θ⟩

⟨Ψ′
θ|Ψ′

θ⟩
= ⟨Ô†

αÔβ⟩+ i
∂ϕθ

∂θβ
⟨Ô†

α⟩ − i
∂ϕθ

∂θα
⟨Ôβ⟩+

∂ϕθ

∂θα

∂ϕθ

∂θβ
, (2.48)

where as in the previous section we indicate ⟨·⟩ = ⟨Ψθ| · |Ψθ⟩ / ⟨Ψθ|Ψθ⟩.
Analogously we compute the second term in Eq. (2.44), namely:

⟨Ψ′
θ|Ôβ|Ψ′

θ⟩ = e−iϕθ ⟨Ψθ|
(
i
∂ϕθ

∂θβ
+ Ôβ

)
|Ψθ⟩

= e−iϕθ

(
i
∂ϕθ

∂θβ
⟨Ψθ|Ψθ⟩+ ⟨Ψθ|Ôβ|Ψθ⟩

)
,

(2.49)
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in the same way we obtain ⟨Ψ′
θ|Ô†

α|Ψ′
θ⟩ = eiϕθ

(
−i∂ϕθ

∂θα
⟨Ψθ|Ψθ⟩+ ⟨Ψθ|Ô†

α|Ψθ⟩
)

.

Normalizing the expectation values we get:

⟨Ψ′
θ|Ô†

α|Ψ′
θ⟩

⟨Ψ′
θ|Ψ′

θ⟩
⟨Ψ′

θ|Ôβ|Ψ′
θ⟩

⟨Ψ′
θ|Ψ′

θ⟩
= ⟨Ô†

α⟩ ⟨Ôβ⟩+ i
∂ϕθ

∂θβ
⟨Ô†

α⟩ − i
∂ϕθ

∂θα
⟨Ôβ⟩+

∂ϕθ

∂θα

∂ϕθ

∂θβ
. (2.50)

At the end, replacing the results of Eq. (2.49) and Eq. (2.50) in the definition of the

Quantum Geometric Tensor [see Eq. (2.44)]

Q′
α,β = ⟨Ô†

αÔβ⟩ − ⟨Ô†
α⟩ ⟨Ôβ⟩ = Qα,β . (2.51)

Note that being Sα,β = ℜ{Qα,β}, as a result the S matrix is invariant with respect to

gauge transformations, hence it is a proper metric in the Hilbert space.

2.3 A simple linear algebra identity to optimize large-

scale variational states

Over the past few years, neural networks have been extensively used as powerful varia-

tional Ansätze for studying interacting spin models [7], and the number of parameters have

increased significantly5. These deep learning models have great performances when the

number of parameters is large. A significant bottleneck arises when employing the original

formulation of SR for optimization, as it is based on the inversion of a matrix of size P×P ,

where P denotes the number of parameters [see Eq. (2.39)]. Consequently, this approach

becomes computationally infeasible as the parameter count exceeds O(104), primarily due

to the constraints imposed by the limited memory capacity of current-generation Graph-

ics Processing Units (GPUs). Recently, Chen and Heyl [36] made a step forward in the

optimization procedure by introducing an alternative method, dubbed MinSR, to train

Neural-Network Quantum States. MinSR does not require inverting the original P × P

matrix but instead a much smaller M ×M one, where M is the number of configurations

used to estimate the SR matrix. This is convenient in the deep learning setup where

P ≫M . Most importantly, this procedure avoids allocating the P × P matrix, reducing

the memory cost. However, this formulation is obtained by minimizing the Fubini-Study

distance with an ad hoc constraint. In this section, we first use a simple relation from

linear algebra to show, in a transparent way, that SR can be rewritten exactly in a form

5For a detailed discussion on Neural-Network Quantum States refer to Chapter 3.
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which involves inverting a small M ×M matrix (in case of real-valued wave functions and

a 2M × 2M matrix for complex-valued ones) and that only a standard regularization of

the SR matrix is required.

2.3.1 How to solve Stochastic Reconfiguration’s equations?

The SR updates [63, 68, 74] are constructed solving the linear system in Eq. (2.39). It

is important to consider that the matrix S may possess extremely small or even negli-

gible eigenvalues. This characteristic implies that applying its inverse to the vector F

[see Eq. (2.39)] can lead to numerical instability [63]. Such a situation may arise, for

instance, when the matrix S becomes singular due to redundancies in the wave function

parametrization. To mitigate these potential issues, we use the following modified update

scheme:

δθ = τ (S + λ1P )−1 F , (2.52)

where τ is the learning rate and λ > 0 is a regularization parameter to ensure the invert-

ibility of the S matrix. The matrix S has shape P × P and it is defined in terms of the

Ôα operators [63] (see Sec. 2.2)

Sα,β = ℜ
[
⟨(Ôα − ⟨Ôα⟩)†(Ôβ − ⟨Ôβ⟩)⟩

]
. (2.53)

The Eq. (2.52) defines the standard formulation of the SR, which involves the inversion

of a P ×P matrix, being the bottleneck of this approach when the number of parameters

is larger than O(104). To address this problem, we start reformulating Eq. (2.52) in a

more convenient way. For a given sample of M spin configurations {σ1, . . . , σM} sampled

according to Pθ(σ) [see Eq. (1.12)], the stochastic estimate of Fα can be obtained as

reported in Eq. (2.12). Equivalently, Eq. (2.53) can be stochastically estimated as

S̄α,β = ℜ
[

1

M

M∑
i=1

[
Oα(σi)− Ōα

]∗ [
Oβ(σi)− Ōβ

]]
. (2.54)

Notice that we adopt the convention of using latin and greek indices to run over configura-

tions and parameters, respectively. To simplify further, we introduce Yαi = (Oα(σi)− Ōα)/
√
M

and εi = −2[EL(σi)− ĒL]∗/
√
M , allowing us to express Eq. (2.12) in matrix notation as

F̄ = ℜ[Y ε] and Eq. (2.53) as S̄ = ℜ[Y Y †]. Writing Y = YR + iYI we obtain:

S̄ = YRY
T
R + YIY

T
I = XXT (2.55)
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where X = Concat(YR, YI) ∈ RP×2M , the concatenation being along the last axis. Fur-

thermore, using ε = εR + iεI , the gradient of the energy can be recast as

F̄ = YRεR − YIεI = Xf , (2.56)

with f = Concat(εR,−εI) ∈ R2M . Then, the update of the parameters in Eq. (2.52) can

be written as

δθ = τ(XXT + λ1P )−1Xf . (2.57)

This reformulation of the SR updates is a crucial step, which allows the use of a simple

linear algebra identity.

Push-through / Woodbury identity

Given A and B matrices respectively with dimensions n×m and m×n, the following

matrix identity holds for each λ > 0 [77, 78]:

(AB + λ1n)−1A = A(BA + λ1m)−1 . (2.58)

This identity can be proved starting from

1m = (BA + λ1m)(BA + λ1m)−1 , (2.59)

then, multiplying from the left by A, we get

A = A(BA + λ1m)(BA + λ1m)−1 , (2.60)

and exploiting the fact that A1m = 1nA, we obtain

A = (AB + λ1n)A(BA + λ1m)−1 . (2.61)

At the end, multiplying from the left by (AB + λ1n)−1, we recover Eq. (2.58).

As a result, Eq. (2.57) can be rewritten as [27]

δθ = τX(XTX + λ12M)−1f . (2.62)

Although very simple, this derivation is an important result, indeed it shows, in a simple

and transparent way, how to exactly perform the SR with the inversion of a 2M × 2M

37



matrix and, therefore, without allocating a P × P matrix. We emphasize that the last

formulation is very useful in the typical deep learning setup, where P ≫ M . Employing

Eq. (2.62) instead of Eq. (2.57) proves to be more efficient in terms of both computational

complexity and memory usage. The required operations for this new formulation are

O(M2P ) + O(M3) instead of O(P 3), and the memory usage is only O(MP ) instead of

O(P 2). For deep neural networks with nl layers the memory usage can be further reduced

roughly to O(MP/nl) (see Ref. [79]).

Other methods, based on iterative solvers, require O(nMP ) operations, where n is

the number of steps needed to solve the linear problem in Eq. (2.52). However, this

number increases significantly for ill-conditioned matrices (the matrix S has a number of

zero eigenvalues equal to P −M), leading to many non-parallelizable iteration steps and

consequently higher computational costs [80]. Our proof also highlights that the diagonal-

shift regularization of the S matrix in parameter space [see Eq. (2.52)] is equivalent to

the same diagonal shift in sample space [see Eq. (2.62)]. In contrast, for the MinSR

update [36], a pseudo-inverse regularization is applied in order to truncate the effect of

vanishing singular values during inversion.

2.3.2 Parallel and memory-efficient implementation on multiple

GPUs

We developed a memory-efficient implementation of SR that is optimized for deployment

on a multi-node GPU cluster, ensuring scalability and practicality for real-world applica-

tions. Indeed, the algorithm proposed in Eq. (2.62) can be efficiently distributed, both in

terms of computational operations and memory, across multiple GPUs. To illustrate this,

we consider for simplicity the case of a real-valued wave function, where X = YR ≡ Y .

Given a number M of configurations, they can be distributed across nG GPUs, facil-

itating parallel simulation of Markov chains. In this way, on the g-th GPU, the ele-

ments i ∈ [gM/nG, (g + 1)M/nG) of the vector f are obtained, along with the columns

i ∈ [gM/nG, (g + 1)M/nG) of the matrix X, which we indicate using X[:,g]. To efficiently

apply Eq. (2.62), we employ the Message Passing Interface (MPI) alltoall collective op-

eration to transpose X, yielding the sub-matrix X[g,:] on g-th GPU. This sub-matrix

comprises the rows elements in [gP/nG, (g + 1)P/nG) of the original matrix X (see right
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Figure 2.2: Left panel: Graphical representation of MPI alltoall operation to transpose the X matrix

distributed across multiple GPUs. For example, GPU:0 initially contains sub-matrices A0, A1, A2, A3,

while following the transposition, GPU:0 contains sub-matrices A0, B0, C0, D0. Right panel: Memory

usage in Gigabytes (panel a) and computational time per optimization step in seconds (panel b) as a

function of the number of GPUs. The reported values are related to a Vision Transformer architeture

with h = 12, d = 72, nl = 8, fully symmetrized and optimized with M = 6000 samples (see Sec. 4.2.3).

panel of Fig. 2.2). Consequently, we can express:

XTX =

nG−1∑
g=0

XT
[g,:]X[g,:] . (2.63)

The inner products can be computed in parallel on each GPU, while the outer sum is

performed using the MPI primitive reduce with the sum operation. The master GPU

performs the inversion, computes the vector t = (XTX + λ12M)−1f , and then scatters

it across the other GPUs. Finally, after transposing again the matrix X with the MPI

alltoall operation, the parameter update can be computed as follows:

δθ = τ

nG−1∑
g=0

X[:,g]tg . (2.64)

This procedure significantly reduces the memory requirement per GPU to O(MP/nG),

enabling the optimization of an arbitrary number of parameters using the SR approach.

In the left panel of Fig. 2.2 we report the memory usage and the computational time per

optimization step.

This formulation of the Stochastic Reconfiguration is implemented in NetKet [81],

under the name of VMC SRt.
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2.4 Pseudocode of the Variational Monte Carlo algo-

rithm

At this stage, we have established all the necessary components to define the VMC al-

gorithm for optimizing a variational state |Ψθ⟩ to minimize the variational energy Eθ

associated with a given Hamiltonian Ĥ. For clarity, the main steps of the algorithm are

summarized in the following pseudocode:

Algorithm 1 Variational Monte Carlo
1: Require: Define a variational state Ψθ(σ)

2: Require: Initialize randomly the variational parameters θ

3: for t = 1, Nopt do

4: samples of M configurations {σ1, . . . , σM} ∼ Pθ(σ) via MCMC

5: Stochastic estimation of the gradient of the energy : Fα = −∂αEθ with α = 1, . . . , P

6: Stochastic estimation of the Quantum Geometric Tensor : Sα,β with α, β = 1, . . . , P

7: Update of the parameters with SR: δθ = τ (S + λ1P )
−1 F

8: New parameters : θα ← θα + δθα with α = 1, . . . , P

9: end for

It is important to note that the number of optimization steps, Nopt, is not known

a priori. The required number of steps can vary significantly depending on the type

of wave function being optimized. Typically, convergence is monitored by tracking the

variational energy Eθ; however, other observables may require additional steps to achieve

convergence.

We also point out that for the stochastic estimation of the energy gradient [see

Eq. (2.12)] and the S-matrix [see Eq. (2.54)], only the derivatives of the logarithm of the

wave function are required [see Eq. (2.8)]. These log-derivatives can be efficiently com-

puted using automatic differentiation techniques [82], which is particularly advantageous

when the wave function is parameterized by a large number of variational parameters, as

is the case with Neural-Network Quantum States. Notably, both the MCMC sampling

process for estimating observables (see Sec. 1.4) and parameter optimization (see Secs. 2.1

and 2.2) can be implemented using only the logarithm of the wave function, Log[Ψθ(σ)].

This fact helps to avoid numerical instabilities, such as overflow or underflow [81], when

computing the wave function’s amplitude, as discussed in Sec. 1.4.3.
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Chapter 3

Neural-Network Quantum States

In this Chapter, we explore a class of variational wave functions known as Neural-Network

Quantum States (NQS), recently introduced by Carleo and Troyer [7]. We begin by

introducing the foundational concepts that contribute to the success of neural-network

architectures, and their adaptability to the quantum many-body problem. Then, we

will progress from basic NQS architectures to more sophisticated ones, highlighting their

increasing complexity and effectiveness showing their performances and limitations on a

benchmark model: the J1-J2 Heisenberg model in one dimension.

3.1 Basic Concepts of Neural Networks

From a mathematical perspective, an artificial neural network, or simply a neural network,

is a non-linear function that maps inputs from a potentially high-dimensional space to a

desired output space [83]. The fundamental components of a neural network are known

as neurons. A neuron is defined as the composition of two functions that take k input

variables x = (x1, . . . , xk) and return a scalar output F (x), expressed as:

F (x) = g ◦ q(x) , (3.1)

where the function q(·) is a linear transformation given by:

q(x) = w · x + b . (3.2)

Here, w = (w1, . . . , wk) is a vector of k elements referred to as weights, and b is a scalar

parameter called bias. The non-linear function g(·), typically non-polynomial, operates
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Figure 3.1: Left panel: Schematic representation of a single neuron. Right panel: Architecture of a

feed-forward neural network composed by a visible layer, a output layer and two hidden layers.

on a scalar input and returns a scalar output. The latter is commonly referred to as

activation function (see left panel of Fig. 3.1). It is important to emphasize that its choice

is a crucial part of the neural network architecture and remains fixed during training.

In contrast, the weights and biases are parameters that are adjusted iteratively during

the training process. The structure of neural networks is inspired by the way biological

organisms process information. In brains, neurons, electrically activated nerve cells, are

interconnected by synapses that facilitate the transfer of information between neurons.

Similarly, in artificial neural networks, once the functionality of a single neuron is defined,

multiple neurons can be connected to form a network.

The connections between neurons imply that the output from one set of neurons in a

given layer serves as the input for the next set of neurons in the subsequent layer. This

sequential flow of information defines a specific direction from layer to layer, characterizing

the architecture as a feed-forward neural network (FFN). As an example, in the right panel

of Fig. 3.1, we show a graphical representation of a FFN.

The general structure of a neural network can be summarized in three main compo-

nents:

• Input/Visible Layer : This is the first layer of the network, where the raw data is

introduced.

• Output Layer : This is the final layer of the network, where the predicted results are

produced.
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• Hidden Layers : These layers lie between the input and output layers. They are

termed hidden because they do not directly interact with the input data or produce

direct output; instead, they perform intermediate computations that enable the

network to learn complicated representations.

We point out that feed-forward neural networks represent one of the simplest neural net-

work architectures. Over the years, neural networks have been progressively enhanced

with additional fundamental components, such as layer normalization [84] and skip con-

nections [85], which are crucial for facilitating the optimization process. Despite these

enhancements, FFNs remain mathematically sufficient to represent any function with

arbitrary precision, as we will discuss in the next section.

3.1.1 Universal approximators of arbitrary functions

The power of neural networks lies in the use of hidden layers with non-linear activa-

tion functions, which significantly enhance their representational capacity compared to

simple linear regression models. From a mathematical perspective, Universal Approxima-

tion Theorems guarantee that any sufficiently smooth function, regardless of input and

output dimensions, can be approximated with arbitrary accuracy by a neural network

with a single hidden layer, dubbed shallow neural network [86–89]. The accuracy of this

approximation is controlled by the number of neurons in the hidden layer. However, de-

spite these theoretical results, it is important to emphasize that, in practical scenarios,

the number of neurons in a shallow network cannot be increased indefinitely to achieve

arbitrary accuracy. Approximating complicated functions with a shallow network may re-

quire an impractically large number of neurons, and scaling up the network can introduce

significant optimization challenges due to the increasing complexity of the optimization

landscape [90, 91].

To address these limitations, real-world applications often necessitate the use of mul-

tiple hidden layers, leading to the development of deep neural networks (DNNs) [90, 92–

94]. The hierarchical structure of DNNs allows them to effectively capture the underlying

structure of data. For example, in image recognition tasks, early layers learn low-level

features, that are then combined into higher-level, more abstract features in the deeper

layers [95]. This hierarchical learning approach is more natural and efficient than a flat,

one-layer network attempting to learn all features simultaneously. A particularly inter-

esting example was proposed by Eldan and Shamir [91], where they show that a simple
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function, which can be expressed by a small 3-layer feed-forward neural network, cannot

be approximated by any 2-layer network beyond a certain constant accuracy unless the

network’s width is exponentially large in the input dimension. Their work formally proves

that even a single additional layer can provide exponentially greater expressive power than

merely increasing the width of a standard feed-forward neural network.

At the end, empirical evidences show that deep networks consistently outperform

shallow networks across a wide range of tasks, including image classification [95, 96] and

natural language processing [18, 97].

In the following sections, we will show practical examples related to quantum many-

body systems that illustrate how performance improves as the parameters in a neural

network are increased, considering both shallow and deep neural network architectures.

3.2 Neural Networks for representing Many-BodyWave

Functions

In Chapter 1 we introduced the idea of using a variational parametrization Ψθ(σ) of the

quantum state which allows for an efficient approximation of the exact ground state with

polynomial resources. In 2017, Carleo and Troyer [7] proposed to use neural networks to

parametrize Ψθ(σ), with the variational parameters θ optimized within the VMC frame-

work (refer to Chapter 1 and Chapter 2). The mathematical foundations underlying this

novel parametrization, known as Neural-Network Quantum States (NQS), are grounded

on the representation theorems discussed in the previous section (see Sec. 3.1.1). In this

context, the input of a NQS is typically the physical configuration σ, while the output

is a single complex number Ψθ(σ) ∈ C. Common machine learning applications, such

as image classification or natural language processing tasks, involves only the use of real

valued-networks. This difference requires careful modifications in order to adapt standard

machine learning architectures to handle with complex-valued outputs.

Over the years, NQS have attracted significant interest within the quantum many-

body community. This interest is primarily due to two key features of NQS:

• Unlike physically inspired Ansatze, such as Gutzwiller-projected states [98], the

accuracy of NQS can be systematically improved by increasing the number of pa-

rameters [7];
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• NQS do not face the theoretical limitations that tensor network-based approaches

often encounter when describing quantum states in more than one dimension [61,

99].

Notably, NQS have been successfully applied to some of the most challenging and tra-

ditionally unsolved problems in quantum many-body physics, achieving state-of-the-art

results. Examples include the approximation of the ground state for two-dimensional

frustrated spin [27, 36, 37], fermionic [100–103], and bosonic [104] systems; as well as the

computation of excited states [37, 105–107] and spectral functions [108].

In the following sections, we will focus on two specific neural network architectures:

a basic one, consisting of a single fully-connected layer, and a more advanced one based

on the Transformer neural network [18]. We will test these architectures on the J1-J2

Heisenberg model on a chain. Specifically, we will discuss the properties of each neural

network but more importantly their limitations.

3.2.1 Benchmark model : J1-J2 Heisenberg on a chain

In this Chapter, we will test the performances of different NQS on a non-trivial benchmark

model. Specifically, we focus on to the one-dimensional J1-J2 Heisenberg model on finite

clusters of N sites, imposing periodic boundary conditions. The Hamiltonian is defined

by

Ĥ = J1

N∑
R=1

ŜR · ŜR+1 + J2

N∑
R=1

ŜR · ŜR+2 (3.3)

where ŜR = (Sx
R, S

y
R, S

z
R) is the S = 1/2 spin operator at site R and J1 > 0 and J2 ≥ 0 are

nearest- and next-nearest-neighbor antiferromagnetic couplings, respectively. Its phase

diagram is well established by analytical and numerical studies [109]. For small val-

ues of J2/J1, the ground state has power-law spin-spin correlations and the excitation

spectrum is gapless; for large values of J2/J1, the ground state is two-fold degenerate,

leading to long-range dimer order (but exponentially decaying spin-spin correlations),

and the spectrum is fully gapped. These two phases are separated by a critical point

at (J2/J1)c = 0.24116(7) [54, 110]. Interestingly, for J2/J1 > 0.5, incommensurate (but

short-range) spin-spin correlations have been found, whereas dimer–dimer correlations are

always commensurate.

We emphasize that this model is frustrated, meaning that the amplitudes of the ground

state do not have a definite sign in the computational basis. Specifically, the ground
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state of this model exhibits a non-trivial sign structure, particularly for J2/J1 > 0.5.

Consequently, it necessitates the use of complex-valued neural networks, as we will discuss

in the following sections.

3.3 Basic architectures : Shallow neural networks

In this section, we discuss how to define a wave function using the simplest neural network

architecture: a fully-connected network with a single layer, namely a shallow neural net-

work. Specifically, generalizing the structure of neural networks used in machine learning

to take into account the necessity to learn the sign structure of the wave function. We

begin by introducing a method to approximate classical probability distributions and then

generalize this approach to the case of wave functions [38].

3.3.1 Parametrization of probability distributions

A class of powerful energy-based models called Restricted Boltzmann Machines (RBMs)

has been widely employed in the context of machine learning to obtain accurate approxi-

mations of probability distributions [89]. Here, we give a brief introduction to this class

of neural networks. Let us consider the case of a set of N binary variables that can take

values ±1, this case will be relevant for quantum S = 1/2 spin models, σ = (σ1, . . . , σN),

distributed according to a certain probability distribution P0(σ). In order to define the

RBM probability distribution PRBM(σ), we introduce an auxiliary set of K binary (hid-

den) variables h = (h1, . . . , hK), which are coupled to the physical variables in the energy

function [89]

ERBM(σ, h; θ) = −
N∑
i=1

aiσi −
K∑

µ=1

bµhµ −
N∑
i=1

K∑
µ=1

σiwi,µhµ. (3.4)

The parameters w entering the above expression are called weights, while b and a are

the so-called hidden and input biases, respectively; the set of all parameters is denoted

in a compact form as θ = {w, b,a}. The probability PRBM(σ, θ) is defined by tracing

out the hidden variables h from the Boltzmann distribution of the RBM model, i.e.,

PRBM(σ; θ) ∝∑{h} exp {−ERBM(σ, h; θ)}. Due to the absence of a direct coupling between
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hidden variables in ERBM [see Eq. (3.4)], the trace can be performed analytically, giving:

PRBM(σ; θ) ∝ exp

{
N∑
i=1

aiσi +
K∑

µ=1

log

[
cosh

(
bµ +

N∑
i=1

wi,µσi

)]}
. (3.5)

The result of this construction is a probability distribution function with non-trivial cor-

relations between physical variables, parametrized by the set of parameters θ. For a

fixed number N of physical variables, the representational power of the RBM probabil-

ity distribution increases with the number of hidden variables K (or, equivalently, with

the complexity parameter α = K/N). The theoretical foundation of RBM models lies in

the fact that they are universal approximators of probability distributions for sufficiently

large values of K [111, 112]. Indeed, by a suitable definition of a loss function, the pa-

rameters θ of the RBM model can be tuned such that PRBM(σ; θ) approximates the target

distribution function P0(σ).

3.3.2 Parametrization of wave functions

Recently, RBMs have been used as variational wave functions to approximate the ground

state of quantum many-body systems [7]. In contrast to probability distributions, quan-

tum states are in general complex functions, i.e., their amplitudes in the computational

basis are complex-valued. Therefore, a standard RBM parametrization making use of

the PRBM(σ; θ) ≥ 0 function discussed above is suitable only for those cases where the

wave function is known to be real and positive definite in the computational basis (e.g.,

in bosonic systems). For all other cases, a generalization of the above construction is

required.

For time-reversal symmetric models, the amplitudes of the ground-state wave function

can be chosen to be real (⟨σ|Ψ0⟩ ∈ R), but their signs are not known in general. Rep-

resenting the sign structure of the wave function with a real-valued parametrization is a

difficult task, which requires the treatment of non-differentiable quantities or the use of

gradient-free methods for the optimization [113]. For this reason, it is often convenient

to adopt a complex-valued parametrization of the wave function. In this regard, two

alternative formulations are presented in the following.

As a first possibility, we can employ two (independent) RBM probability functions, one

for the modulus PRBM(σ; θm) and one for the phase PRBM(σ; θp) of the wave function [114].
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Figure 3.2: Schematic illustration of the feed-forward neural networks representation of the cRBM state

of Eq. (3.8) (left panel) and pmRBM state of Eq. (3.6) (right panel). The cRBM Ansatz has complex-

valued parameters; instead, the pmRBM state has real parameters. In both networks, the activation

function of the hidden neurons is g(·) = log cosh(·).

The amplitudes of the quantum state are then given by:

Log[ΨpmRBM(σ; θm, θp)] =
1

2
log[PRBM(σ; θm)] +

i

2
log[PRBM(σ; θp)]. (3.6)

Here, the parameters of the RBMs, i.e., θm and θp, are all real. The structure of the

variational state is characterized by the number of hidden variables for the modulus Km

and the phase Kp, giving the total number of hidden units being K = Kp + Km. The

complexity of the network is defined as the ratio between the number of hidden variables

and visible ones, leading to:

αm = Km/N αp = Kp/N . (3.7)

We emphasize that a different number of hidden variables can be taken for the modulus

and the phase. This variational Ansatz is dubbed phase-modulus RBM (pmRBM) wave

function.

The second option is taking a single RBM with complex parameters, in order to provide

a complete description of both amplitude and phase of the wave function with a single

complex-valued network [7]:

Log[ΨcRBM(σ; θc)] =
N∑
i=1

aiσi +
Kc∑
µ=1

log cosh

(
bµ +

N∑
i=1

wi,µσi

)
. (3.8)

48



0.1 0.5 1.0 1.5 1.9
Æp

10°5

10°4

10°3

10°2

10°1
" r

el

pBCS

cRBM

cRBM + MSR

J2/J1 = 0.3 pmRBM + MSR

pmRBM

0.1 0.5 1.0 1.5 1.9
Æp

10°3

10°2

10°1

pBCS

cRBM + MSR

J2/J1 = 1.0

Figure 3.3: Accuracy of the variational energy for the J1-J2 Heisenberg model with N = 20 sites, for

J2/J1 = 0.3 (left panel) and J2/J1 = 1 (right panel). The pmRBM Ansatz of Eq. (3.6) is reported as a

function of αp, with αm + αp = 2. The results for the cRBM wave function of Eq. (3.8) are reported for

αc = 1, such that the total number of real parameters (840) is the same as for the pmRBM state. The

results obtained by including the Marshall-sign rule are also shown. For J2/J1 = 1 (right panel), the

accuracy of the cRBM with and without the Marshall-sign rule do not differ, thus we included only the

former one in the plot. In both panels the results obtained by pBCS states are shown for comparison.

Here, θc ∈ C and the number of hidden variables is Kc corresponding to a complexity

given by:

αc = Kc/N . (3.9)

This state is dubbed complex RBM (cRBM) wave function. In the following, we set input

biases equal to zero (ai = 0) in both phase-modulus and complex RBMs [37, 106, 115].

The variational wave functions defined in Eq. (3.6) and Eq. (3.8) can be seen as feed-

forward neural networks [83] with a visible layer of N neurons that represent the physical

configuration σ, one hidden layer of neurons with activation function g(·) = log cosh(·),
and one output neuron which performs the sum of the outputs of the hidden layer and

returns the logarithm of the amplitude (see Fig. 3.2).

3.3.3 Numerical Results

In the following sections we perform a systematic study on the J1-J2 Heisenberg model on a

chain (see Sec. 3.2.1) on small clusters in which we compare the variational results achieved

by RBMs with exact quantities, computed by Lanczos diagonalization [54]. Additionally,

a comparison with the variational results obtained by projected fermionic states (denoted

as pBCS) is reported [116].
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Figure 3.4: Accuracy of the variational energy for the J1-J2 Heisenberg model with N = 20 sites, for

J2/J1 = 0.3 (left panel) and J2/J1 = 1 (right panel). The results for the cRBM of Eq. (3.8) are reported

as a function of αc, with and without including the Marshall signs. The accuracy of the pBCS state is

also shown for comparison.

The optimization of the variational parameters can be implemented within stochastic

approaches (see Chapter 1). Here, an optimization step is made by O(103) Monte Carlo

samples, each of which consists in O(N) Metropolis moves (two-spin flips); variational

parameters are updated at the end of every optimization step by using the Stochastic

Reconfiguration algorithm [69] (see Chapter 2). In all the calculations, we make use of

the the RBM wave function symmetrized with respect to translations (see Appendix B).

3.3.3.1 Accuracy of the ground-state wave function

Let us start by comparing pmRBM and cRBM Ansätze on a cluster with N = 20 sites,

for which exact results can be obtained by Lanczos diagonalization. Two values of the

frustrating ratio are considered, J2/J1 = 0.3 and J2/J1 = 1, corresponding to cases

in which the Marshall-sign rule6 gives good and poor approximations of the exact sign

structure. In Fig. 3.3, we report the accuracy obtained by the pmRBM wave function

in Eq. (3.6) for different values of αp [see Eq. (3.7)], by plotting the relative error of the

variational energy with respect to the exact one, namely ∆ε = | (E0 − Evar) /E0| where

E0 and Evar are the exact and variational energies, respectively. We choose to consider

αm + αp = 2, in order to fix the total number of variational parameters. The results

for the cRBM state in Eq. (3.8) with the same number of parameters, i.e., αc = 1 [see

6See Appendix A for a detailed discussion about the Marshall-sign rule.
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Figure 3.5: Evolution of the average sign ⟨s⟩ defined in Eq. (3.10) along the optimization procedure of

the cRBM state, for J2/J1 = 0.3 (left panel) and J2/J1 = 1 (right panel). Here, for each optimization

step Nopt, ⟨s⟩ is computed (exactly) for the corresponding variational parameters.

Eq. (3.9)], are reported. In both cases, calculations attaching the Marshall-sign rule to

the wave-function amplitudes are also considered. Without including Marshall signs, the

best energy of the pmRBM state is obtained for αp ≈ 1, for both J2/J1 = 0.3 and

J2/J1 = 1. This means that taking the same number of variational parameters for the

modulus and the phase represents the best strategy for this kind of wave function. By

contrast, when including the Marshall signs, a different behavior occurs for the two values

of the frustrating ratio. For J2/J1 = 0.3, where the Marshall signs represent an excellent

approximation of the exact ones, the best energy of the pmRBM Ansatz is obtained for

αp ≪ 1; instead, for J2/J1 = 1, the optimal energy is still obtained when αp ≈ 1. Still,

the lowest variational energies in Fig. 3.3 are those of the cRBM state. For this state,

the inclusion of the Marshall-sign rule provides a substantial energy gain at J2/J1 = 0.3,

while being almost ineffective for the accuracy at J2/J1 = 1. A consistent improvement

with respect to pBCS wave functions [116] is achieved, even though the latter variational

states require a significantly smaller number of variational parameters. In particular, for

J2/J1 = 0.3 the energy accuracy of the cRBM is almost three orders of magnitude better

than the pBCS Ansatz. Having certified the better accuracy of the cRBM wave function

with respect to the pmRBM state, we choose to stick to the former architecture. In Fig. 3.4

we report the accuracy of the cRBM Ansatz when varying the network complexity αc [see

Eq. (3.9)]. The inclusion of the Marshall-sign rule proves to be particularly effective for

J2/J1 = 0.3 and αc ≳ 0.5, while being less relevant for J2/J1 = 1.
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Now, let us define a measure of the difference between the phases of the cRBM wave

function and the signs of the exact ground state, namely

⟨s⟩ =

∣∣∣∣∣∣
∑
{σ}
|Ψ0(σ)|2sign[Ψ0(σ)]eiΘcRBM(σ)

∣∣∣∣∣∣ , (3.10)

where ΘcRBM(σ) = arg [⟨σ|ΨcRBM⟩]. The absolute value is taken to overcome a possible

global phase in the cRBM state. Then, ⟨s⟩ = 1 whenever the phases (but not necessarily

the moduli) of the cRBM state match the exact values. In Fig. 3.5, we track this quantity

along the optimization procedure of the variational parameters, for the cases with and

without the Marshall-sign rule. An evident speed-up in the convergence of the above

quantity is observed when the Marshall sign structure is included, even for the case with

J2/J1 = 1, for which, at the end of the simulation, no substantial energy gain is obtained

by the addition of Marhsall signs.

Another instructive analysis of the learning process of the cRBM wave function is

achieved by tracking the evolution of ΘcRBM(σ) during the optimization procedure, com-

puting it for the various spin configurations σ visited along the Monte Carlo simulation.

As a benchmark, it is particularly insightful to consider the case with J2 = 0, where the

sign structure of the exact result is given by the Marshall-sign rule. In additon, the case

with J2/J1 = 1, where the Marshall-sign rule is heavily violated, is also considered. For

both cases, the values of Θ0(σ) = arg [⟨σ|Ψ0⟩] are either 0 or π, since the exact ground

state is a real-valued wave function. The evolution of ΘcRBM(σ) during optimizations is

shown in panel (a) and (b) of Fig. 3.6, where blue (red) points indicate configurations for

which the exact phase is Θ0(σ) = 0 [Θ0(σ) = π]. After an initial transient, the values of

ΘcRBM(σ) quickly converge towards the exact values. This is particularly true for J2 = 0,

where ΘcRBM(σ) approaches 0 or π with very small statistical fluctuations. A similar

result is also obtained for J2/J1 = 1, even though larger fluctuations remain after con-

vergence. It is interesting to remark that the exact signs are recovered only for the most

relevant spin configurations (i.e., the ones with the largest weights), which are frequently

visited in the Monte Carlo optimization, and contribute the most to the variational en-

ergy. This fact can be appreciated by looking at panel (c) and (d) of Fig. 3.6, where all

the phases of the final cRBM state are shown as a function of the exact weights |Ψ0(σ)|2
of the corresponding spin configurations.

The results of the average sign ⟨s⟩ in Eq. (3.10), together with the ones for the overlap

between the exact ground state and the best-energy cRBM Ansatz |⟨Ψ0|ΨcRBM⟩|, are
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Figure 3.6: Evolution of the phases ΘcRBM(σ) for the cRBM wave function with αc = 1 along the Monte

Carlo optimization for J2 = 0 (panel a) and J2/J1 = 1 (panel b). The colors of the dots denote the phase

of the exact ground state wave function. The number of sites is N = 20. The results are plotted as a

function of the number of Monte Carlo steps NMC and the variational parameters are updated every 103

steps. In panels c and d we show ΘcRBM(σ) phases of the optimal cRBM state with αc = 1 for all the

spin configurations with Sz
tot = 0 and momentum k = 0 (for N = 20 sites). The phases are plotted as a

function of the exact weight |Ψ0(σ)|2 of the configurations. Results for J2 = 0 (panel c) and J2/J1 = 1

(panel d) are shown. The colors of the dots denote the phase of the exact ground-state wave function.

reported in Fig. 3.7 for different values of J2/J1 (N = 20 sites). A comparison with the

results of the pBCS wave functions is also shown. We emphasize that the complex RBM

always gives a better approximation of the exact ground state than the pBCS states,

especially for J2/J1 > 0.5.

3.3.3.2 Spin-spin correlation functions

For each component ν = x, y, and z of the spin operator, we consider the expectation

value of the spin-spin correlations in real space:

Cνν(r) =
1

N

∑
R

⟨Ŝν
RŜ

ν
R+r⟩, (3.11)
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Figure 3.7: Average sign ⟨s⟩ defined in Eq. (3.10) (left panel) and overlap |⟨Ψ0|ΨcRBM⟩| (right panel) for
the best-energy cRBM Ansatz with αc = 1 as a function of the frustrating ratio J2/J1. The results of

the pBCS state are also reported for comparison. The number of sites is N = 20.

and its Fourier transform in momentum space:

Sνν(k) =
∑
r

eikrCνν(r). (3.12)

Since the RBM Ansatz is a function of the z-component of the spins only, it explicitly

breaks the spin SU(2) symmetry, leading to a difference between the z axis and the

x-y plane. However, by using a large number of variational parameters, it is possible

to reduce this anisotropy and obtain almost SU(2) symmetric results. In Fig. 3.8, we

report the relative error of the Czz(r) and Cxy(r) = [Cxx(r) + Cyy(r)]/2 of the cRBM

state with respect to the exact spin-spin correlations, for J2/J1 = 0.3 and J2/J1 = 1 (for

N = 20 sites). By increasing the network complexity αc, the accuracy strongly improves

and, consequently, also the anisotropy decreases. The pBCS wave function has SU(2)

symmetry by construction and is reported for comparison. Still, its accuracy is about

one order of magnitude worse than the one obtained by the best cRBM with αc = 1.

However, it is worth remarking that the number of variational parameters is considerably

different for the two classes of wave functions, with the pBCS state requiring a maximum

of 6 parameters, against the 840 parameters of the cRBM state.

Given the tiny residual anisotropy of the cRBM Ansatz, we report in Fig. 3.9 the re-

sults for Czz(r) and Szz(k) for three representative values of the frustrating ratio, namely

J2 = 0 (gapless regime), J2/J1 = 0.3 (gapped regime, with commensurate spin-spin cor-

relations), and J2/J1 = 1 (gapped regime, with incommensurate spin-spin correlations).

These calculations confirm the excellent degree of approximation obtained by cRBM in

all regimes. Indeed, even though the pBCS Ansatz also gives remarkably accurate results,
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Figure 3.8: Relative error of the spin-spin correlation functions of the cRBM state with respect to the

exact values, for J2/J1 = 0.3 (upper panels) and J2/J1 = 1 (lower panels). Results for Czz(r) (blue

squares) and Cxy(r) (red circles) are shown as a function of αc, for several distances r on a N = 20 sites

chain. The results of the (spin-isotropic) pBCS wave function are also reported for comparison.

the complex RBM is able to perfectly reproduce even the most challenging case with

J2/J1 = 1, e.g., where the peak of Szz(k) is close to k = π/2.

3.3.3.3 Excited states

We finally report the calculations of excited states at finite momenta. Indeed, by using

translational symmetry, it is possible to fix the momentum k of the variational Ansatz in

the cRBM state (see Appendix B). In order to target the lowest-energy triplet excitation

for each momentum, we restrict the wave function to the sector of the Hilbert space with

Sz
tot = 1. The variational gaps for the lowest-lying triplets are shown in Fig. 3.10 for two

values of the frustrating ratio in the gapped phase, J2/J1 = 0.45 and J2/J1 = 1. The

results for the gapless regime J2 = 0 are perfectly compatible with the ones shown in

Refs. [105, 115], and are thus not reported. The comparison of the variational energies
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Figure 3.9: Spin-spin correlation function Czz(r) (left panels) and Szz(k) (right panels) for different

values of J2/J1 and N = 20 sites. Results for the best cRBM wave function with αc = 1 (full circles),

the pBCS state (full triangles), and the exact ground state (empty circles) are reported.

to the exact values confirm the high accuracy of the cRBM to reproduce not only the

ground-state properties, but also low-energy states.

3.3.3.4 Limitations

In the previous sections, we demonstrated the ability of RBM wave functions to reproduce

the ground state of a frustrated spin model in one dimension, where the sign structure

can be highly non-trivial (e.g., completely different from the one given by the Marshall-

sign rule). The accuracy is not limited to the ground-state energy but extends to the

lowest-energy triplet excitations. However, the number of variational parameters grows

as O (αN2) where N is the number of sites and α the complexity of the network. Hence,
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Figure 3.10: Lowest-energy triplet excitation of the J1-J2 Heisenberg model for J2/J1 = 0.45 (left panel)

and J2/J1 = 1 (right panel), for a chain of N = 20 sites. ∆Ek is the difference between the lowest triplet

energy at momentum k and the ground state energy. Results obtained by the best cRBM Ansatz with

αc = 1 (full circles) and the pBCS state (full triangles) are shown, together with exact values (empty

circles). The insets show the relative error of the variational results, i.e., ∆ε = | (Eex,k − Evar,k) /Eex,k|,
where Eex,k and Evar,k are the exact and variational energies of the excited states, respectively.

the optimization of the variational wave function becomes very difficult for large lattices.

We emphasize the fact that, due to the fully-connected structure of the network, the

transferability of the parameters when increasing the size is not possible for RBMs. By

contrast, pBCS wave functions have very few variational parameters (independently on

the number of spins N), whose optimal values rapidly converge when increasing the system

size. Thus, the results of numerical optimizations on smaller system sizes often provide

an excellent starting point for optimizations on larger lattices. Calculations with N = 10,

20, and 30 sites exemplify the issue of size consistency. In Fig. 3.11, we show the results

for the relative error of the variational energy for J2/J1 = 0.3 and J2/J1 = 1 (fixing the

complexity at αc = 1). While the accuracy of the pBCS is lower than that of cRBMs

for all sizes, pBCS states are size-consistent with very good approximation; by contrast,

cRBMs with fixed complexity slightly lose accuracy when increasing the system size. As a

consequence, an increase of complexity with the system size could be necessary to obtain

size-consistent results. An additional remark deals with the physical interpretation of

the variational states. Indeed, Gutzwiller-projected fermionic states have a transparent

physical interpretation, providing a clear physical description of the phases of the system,
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Figure 3.11: Size scaling of the relative error of the variational energy for the best-energy cRBM Ansatz

with αc = 1. The results of the pBCS state are also reported for comparison. Calculations are done for

J2/J1 = 0.3 (left panel) and J2/J1 = 1 (right panel) and N = 10, 20, and 30 sites.

even without computing correlation functions and observables. By contrast, RBM states

lack of a physical interpretability of their variational parameters. One possible strategy to

simplify the optimization and favor a size consistent behavior could be combining it with

Gutzwiller-projected wave functions, e.g., using the RBM as correlator (a generalization of

the standard Jastrow factor). A few works have taken this direction [16, 17, 37], showing

that with this hybrid approach it is possible to obtain very accurate results also increasing

the size of the system. Our aim, however, is to improve neural network architectures

without combining them with other types of variational states. In the following sections,

we will explore more complicated architectures that have been developed in the field of

machine learning and adapt them specifically for this type of problems.

3.4 Advanced architectures : Transformer neural net-

works

In the last few years, the Transformer architecture [18] has emerged as the state-of-

art choice in natural-language processing tasks. Its key feature is the ability to model

relationships among all elements of an input sequence (regardless of their positions),

by efficiently transforming input sequences into abstract representations. Specifically,

Transformers map a set of input vectors within a given representation space into a new

set of vectors, maintaining the same dimensionality but situated in a new representation

space. This transformation is based on the idea that the new representation space is

58



better suited for solving the target task. Although the Transformer architecture may

appear complicated, with multiple components working together, in this section we will

provide an intuitive explanations to clarify and motivate the design of its various elements.

3.4.1 Multi-Head Attention Mechanism

The fundamental ingredient which characterizes the Transformer architecture is the at-

tention mechanism. To illustrate the idea at the basis of this mechanism, we report a nice

example from Ref. [117]. Consider the following two sentences:

1. I swam across the river to get to the other bank.

2. I walked across the road to get cash from the bank.

Clearly, the meaning of the word “bank” differs between the two sentences. However,

correctly interpreting it requires considering the other words of the sentence. In sentence

(1), the words “swam” and “river” strongly indicate that “bank” refers to the side of a

river. Conversely, in sentence (2), the word “cash” suggests that “bank” refers to a finan-

cial institution. Generally, the correct interpretation of a word depends on the context

provided by the other words of the sentence, specifically some words are more relevant

than others to determine the right meaning. In standard neural networks, the output

of a given input is influenced by the weights that multiply those inputs. However, once

the network is trained these weights are fixed. The core idea of the attention mechanism

is to use weights that dynamically depend on the input data to efficiently distinguish

the different meaning of a given word. For instance, through the attention mechanism

the Transformer should be able to map the word “bank” to different points in the new

representation space depending on the context provided by the two different sentences.

At this point we have to formulate in mathematical terms a mechanism that exhibits

the features we have just discussed. Consider a set of N input vectors {x1, . . . ,xN},
each of dimensionality d. In practice, each vector corresponds to an element of the input

sequence, such as a word within a sentence, a patch within an image (see Sec. 3.4.3), or an

amino acid within a protein. These vectors are typically constructed using an embedding

procedure, which maps the original elements of the input sequence into vectors of real

numbers, making them suitable for manipulation through mathematical operations [117].

The attention mechanism transforms the original set of vectors in another set of vec-

tors {A1, . . . ,AN}, dubbed attention vectors, of the same dimensionality but in a new
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representation space. In this space, each new vector encodes information from all the

input vectors. Specifically, the value of each attention vector Ai depends not only on the

corresponding input vector xi, but on the entire set of input vectors {x1, . . . ,xN}. The

simplest way to achieve this property is to define:

Ai =
N∑
j=1

αijxj . (3.13)

By adjusting the values of the attention weights αij, we can encode the fact that certain

inputs are more influential in determining the transformed representation of Ai. For

example, in sentence (1) from the previous example, the vectors corresponding to the

words “swam” and “river” should have large attention weights in the construction of the

new vector associated with the word “bank”.

While the attention vectors defined in Eq. (3.13) possess the correct properties, we

can improve their definition by carefully defining the functional form of the coefficient αij

and introducing other variational parameters in order to enhance flexibility. To give an

intuition for the specific choices we consider another example from Ref. [117]. Consider

constructing a catalog of movies for an online movie streaming service. Each movie can

be associate to a vector encoding all its attributes (genre, the names of the leading actors,

the length of the movie, etc.), called key vector. The movie file itself is dubbed value.

The user provides a personal vector of desired attributes, defined as the query vector.

The streaming service compares the query vector with all the key vectors to find the

best match and suggest the corresponding movie to the user in the form of the value file.

Mathematically, this setup can be translated into the introduction of value vi, query qi,

and key ki vectors, each defined as a linear transformation of the input vectors xi:

vi = V xi qi = Qxi ki = Kxi . (3.14)

Here, the matrices V , Q, and K represent parameters that are optimized during the

training of the full Transformer architecture. These matrices have dimensionality d × d,

ensuring that the output representation maintains the same dimensionality as the input.

To determine how relevant the vector xj is for the new representation of the vector

xi, we measure the similarity between these vectors. A simple measure of similarity is to

take their dot product between their corresponding key and query vectors, namely qT
i kj.

However, in practice it is useful to constrain the attention weights to be non-negative
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(αij ≥ 0) and to sum to unity (
∑N

j=1 αij = 1). These constraints can be imposed by

defining the coefficients αij by using the softmax function to transform the dot products7:

α(qi,kj) =
exp

(
qT
i kj√
d

)
∑N

k=1 exp
(

qT
i kk√
d

) = softmax

(
qT
i kj√
d

)
. (3.15)

With the functional form of the attention weights now defined, we can generalize the

earlier definition of the attention vectors in Eq. (3.13) as follows:

Ai =
N∑
j=1

α(qi,kj)vj , (3.16)

where α(qi,kj) are the ones defined in Eq. (3.15) and we have replaced the input vectors

xi with the value vectors vi defined in Eq. (3.14). This process, introduced by Vaswani

et al. [18], is known as scaled dot-product self-attention. The term self-attention arises

because the same sequence is used to determine the queries, keys, and values, while the

similarity between query and key vectors is evaluated through a scaled dot product.

Notice that the matrices V , Q ank K are shared accross all the input vectors. As

a result, the attention mechanism defined in Eq. (3.16) is permutationally equivariant.

This means that permuting the order of the input vectors leads to the same permutation

of the output vectors, consequently the representation learned by a transformer will be

independent of the input vectors ordering. For example, the two sentences [117]:

1. The food was bad, not good at all.

2. The food was good, not bad at all.

contains the same words and, consequently, they correspond to the same set of input

vectors. However, their meaning is different due to the word order. Therefore, it becomes

necessary to inject positional information into the attention mechanism. In the original

work of Vaswani et al. [18] they propose an approach known as absolute positional encod-

ing, where a set of position vectors ri associated with each input position, are combined

with the corresponding input vector as xi + ri. Alternatively, positional information can

7The re-scaling of the product of the query and key vectors by a factor
√
d is used to prevent expo-

nentially small gradients due to the softmax function [18].
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be encoded directly into the attention mechanism. Shaw et al. [118] introduce the relative

positional encoding which allows to effectively capture the relative word orders:

αij(qi,kj) =
exp

(
qT
i (kj+pi−j)√

d

)
∑N

k=1 exp
(

qT
i (kj+pi−j)√

d

) , (3.17)

where pi−j is a vector of d learnable parameters that encode the relative position of the

vectors. Following this work several methods have been proposed to improve the relative

positional encoding. One well-known example is the T5 attention mechanism, discussed

in Ref. [119].

Notice that the two main ingredients that characterize the attention mechanism are

the semantic structure, captured by the dynamically dependence of the attention weights

on the input vectors, and the positional structure, introduced through the dependence on

the position of the input vectors. In certain applications, one of these features can be more

relevant than the other. For instance, Cui et al. [120] develop a toy model where a phase

transition between semantic and positional regimes can be observed, highlighting how

these two aspects of the attention mechanism can dominate under different conditions.

The attention mechanism described above is referred to as a single attention head.

However, the set of input vectors can contain different patters, using a single attention

head to detect them can result in averaging these different features, thereby losing im-

portant information. To address this, several heads are employed simultaneously, each

of them with independent learnable parameters. This approach is similar to the use of

multiple channels in a convolutional layer and leads to the formulation of the Multi-Head

Attention Mechanism:

Aµ
i =

N∑
j=1

αµ
ij(q

µ
i ,k

µ
j )vµ

j , (3.18)

where µ = 1, . . . , h, with h the total number of heads, an hyperparameter of the architec-

ture. Here, the queries, keys and values vectors are defined as:

vµ
i = V µxi qµ

i = Qµxi kµ
i = Kµxi , (3.19)

where the matrices Qµ, Kµ, V µ have dimension d/h× d for each head µ = 1, . . . , h. This

results in a set of h intermediate vectors Aµ
i of dimensionality d/h for each i. Then, this

vectors are concatenated Concat[A1
i , . . . ,A

h
i ] to form a set of N d-dimensional vectors.

Finally, an additional linear transformation with a d × d matrix W is applied to each
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Figure 3.12: Left panel Graphical representation of the Multi-Head Attention Mechanism. The differ-

ent heads process the input vectors in parallel. The intermediate results from all attention heads are

concatenated and then linearly projected to mix the information across heads. Right panel Graphical

representation of a Transformer Layer. The input vectors, are first processed by a Multi-Head Attention

Mechanism, which mixes the vectors, followed by a two-layers Feed-Forward neural network, which is used

to introduce a non-linearity. Skip connections and Layer Normalization are also employed to stabilize

the training and improve the convergence.

attention vector to mix the representations generated by the different heads. The final

result is the set of attention vectors {A1, . . . ,AN}, which are the output of the Multi-Head

Attention Mechanism (see left panel of Fig. 3.12 for a graphical representation).

3.4.2 Structure of a Transformer Layer

The set of output vectors generated by the attention mechanism is a linear combination

of the input vectors [see Eq. (3.18)]. Despite using non-linear functions to compute the

attention weights, for a fixed set of inputs, the resulting output vectors are restricted to the

subspace spanned by the input vectors. This constraint can reduce the expressive power

of the attention layer. To overcome this limitation and enhance the representational

power of the Transformer layer, a non-linear transformation is applied to the output

vectors of the attention mechanism. This is typically done through a multilayer perceptron

(MLP), which processes each output vector identically and independently. In practice,
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this MLP is implemented as a two-layer fully-connected network with input and output

dimensions both equal to d, and a hidden layer that typically has 2d neurons with ReLU

activation functions. Moreover, to improve training efficiency, residual connections [85,

121] are introduced within the Transformer architecture. These skip connections are

employed to bypass the Multi-Head mechanism and the MLP. Crucially, the fact that each

component of the Transformer layer preserves the dimensionality of the vectors is essential

for the effective use of residual connections. In addition pre-layer normalization [84, 121]

is applied before both the attention mechanism and the MLP, to further enhance the

optimization process (see the right panel Fig. 3.12 for a schematic representation of a

Transformer layer).

In summary, a single Transformer layer consists of two main components. The first is

the attention mechanism, which combines features from different input vectors, producing

a new set of vectors where each one contains information from all the input vectors. The

second component transforms non linearly the features within each vector independently.

Thus, a single Transformer layer can be viewed as a non-linear function that takes an input

set of vectors, {x1, . . . ,xN}, and produces a transformed set of vectors {y1, . . . ,yN}, of

the same dimensionality, as output. This property allows to stack multiple layers on

top of each other to construct deep networks capable of learning highly complicated

representations. It is important to stress that while the architecture of each layer is

identical, every layer has its own set of learnable parameters.

3.4.3 Vision Transformer

Inspired by successes of Transformers in natural-language processing, very small modi-

fications led to the so-called Vision Transformer (ViT) [122], which has been applied to

image classification tasks, achieving competitive results with respect to state-of-art deep

CNNs, while being much more efficient than them.

In a Transformer architecture, the input consists of a set of vectors. When dealing with

images, the key aspect is to decide how to convert the input image into a set of vectors.

A straightforward approach would be to treat each pixel as a vector and apply a linear

projection. However, the computational cost of the Transformer scales quadratically with

the number of input vectors. Given that images contain millions of pixels, this scaling

renders this approach impractical for real-world applications. The most common strategy

introduced by Dosovitskiy et al. [122] consists in splitting the image into a set of patches,
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each of the same size. Specifically, the image is divided into non-overlapping patches of

size b×b, which are then flattened into one-dimensional vectors. Each vector, of dimension

b2, is subsequently embedded into a d-dimensional space via a linear projection, defining

the input set of vectors for the Transformer.

In the following sections we propose an adaptation of the ViT architecture for the

parametrization of a variational wave function for quantum spin models [31].

3.4.4 Transformer Variational Wave Functions

From the numerical perspective, density-matrix renormalization group (DMRG) [5] or

its modern variations based upon tensor networks Ansätze [58] represent one of the few

approaches that can accurately assess the ground-state properties of frustrated systems in

one dimension, as the J1-J2 Heisenberg model of Eq. (3.3). In fact, the main limitation to

the use of quantum Monte Carlo techniques [64] relies on the unknown sign structure of

the ground-state wave function, which prevents one to perform unbiased projection tech-

niques. From the NQS perspective, RBM states are able to reach an excellent accuracy;

however, they suffer from poor scaling behavior, due to their fully-connected structure

in which a single hidden layer is connected to all physical degrees of freedom [38] (see

Sec. 3.3.3). This fact limits the applicability their relatively small clusters.

In order to overcome these problems, we propose a simplified version of the standard

ViT architecture. The main advantage of this Ansatz lies in the possibility to mix both

local and global structures, thus limiting the number of variational parameters and sim-

plifying the learning process. We emphasize that a complex-valued parametrization is

adopted without an a priori encoding of the sign structure (i.e., no information about the

exact signs). In the following sections, we show that the ViT wave function can reach

very high accurate results compared to DMRG calculations, even on large clusters, with

less then one thousand parameters and few computational resources compared to other

neural-network wave functions. Most importantly, the ViT accuracy can be systematically

improved by changing the hyper-parameters of the architecture.

Our goal is to use the Transformer to parameterize the many-body wave function, in or-

der to map spin configurations of the Hilbert space σ = (σz
1, . . . , σ

z
N), with σz

R = 2Sz
R = ±1,

to complex numbers Ψθ(σ) ∈ C. We take inspiration from the ViT [122] introduced

for computer vision tasks, where the images are split into patches and these are taken

as the input sequence to a Transformer (see Sec. 3.4.3). In the same way, starting
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Figure 3.13: Scheme of the ViT wave function. The input spin configuration σ is split into patches of

size b (which define a set of N vectors of dimension b). Each of them is linearly projected h times with

different linear projections to produce N vectors of dimensionsionaly d/h. Then the attention function

is applied in parallel and the h different r dimensional output vectors Aµ
i are obtained. Then, they

are concatenated to a d dimensional vector Concat(A1
i , . . . ,A

h
i ) and, after another linear projection, the

non-linear function logcosh(·) is applied. This architecture can be replicated and stacked nl times. The

last layer simply sums all the outputs and returns the logarithm of the ViT wave function.

from a spin configuration σ = (σz
1, . . . , σ

z
N), we split it into N patches of b elements:

(σz
(i−1)b+1, . . . , σ

z
(i−1)b+b), for i = 1, . . . ,N (the total number of sites N must be a multiple

of b, as a results N = N/b for the one-dimensional case). The sequence of these patches

define the input sequence of vectors {x1, . . . ,xN}, which are used to compute the atten-

tion vectors8. Then, a simplification of the original attention mechanism is considered,

taking the attention weights only depending on positions i and j, but not on the actual

values of the spins in these patches, thus leading to:

Aµ
i =

N∑
j=1

αµ
ijV

µxj, (3.20)

where µ = 1, . . . , h, V µ is a d/h× b matrix, with d the embedding dimension that must be

8We remark that in this simplified version of the ViT architecture we do not embed the sequence of

input vectors in a d-dimensional space, but the vectors {x1, . . . ,xN } are defined directly through the

spin configuration σ.
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a multiple of the number of heads h and αµ a N ×N matrix. Crucially, in order to study

frustrated quantum spin models with a non-positive ground state (in the computational

basis), we choose all the parameters of the architecture to be complex numbers.

The input-independent attention mechanism in Eq. (3.20) is dictated by the fact that

the attention weights should mainly depend on the relative positions among groups of

spins and not on the actual values of the spins in the patches. This is expected to be true

when the patches are far apart and is extended for generic positions i and j. The standard

dot-product self-attention [see Eq. (3.18)] was originally developed for natural language

processing tasks. As such, it can be modified to adapt to other types of problems. For

instance, the positional or factored attention mechanism in Eq. (3.20) has been shown

to outperform the standard one in tasks such as protein sequence analysis [123] and

approximating conditional probabilities in generalized Potts models [124], and it also

achieves competitive performance in image recognition tasks [125]. Additionally, since

the attention weights αµ
ij are complex-valued, it is not straightforward to define a suitable

generalization of the softmax function employed in the standard attention mechanism

[see Eq. (3.15) and Eq. (3.17)]. For a detailed and systematic comparison of different

attention mechanisms in approximating the ground state of quantum spin models refer

to Sec. 4.2.3.1.

Finally, after the concatenation of the heads, a further linear projection is taken, before

the non linearity, here chosen as logcosh(·). This block can be repeated nl times before

applying the output layer in which all the values are summed to obtain the logarithm

of the ViT wave function Log[Ψθ(σ)] (see Fig. 3.13). Furthermore, a translationally-

invariant wave function with k = 0 can be easily defined by considering the following

two steps. First, we adapt the relative positional encoding [118] to periodic systems,

taking αµ
i,j = αµ

i−j; as a result, the number of variational parameters for computing the

attention vectors[see Eq. (3.20)] is reduced from O(N2) to O(N). This procedure induces

translational invariance between patches. To include also the one within patches, we

perform the linear combination (see Appendix B):

Ψ̃θ(σ) =
b−1∑
r=0

Ψθ(Trσ) , (3.21)

where Tr is the translation operator. We emphasize that this approach requires a small

summation (of b terms), which does not grow with the system size N .

The optimization process of all the complex parameters is performed by using stan-
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Figure 3.14: Panel a: Relative error ∆ε = |(EViT − EDMRG)/EDMRG| of the ViT wave function by

varying the hyper-parameters of the architecture for a cluster with N = 100 sites. Left panel: ∆ε as a

function of d/h, with a fixed number of heads h, for the unfrustrated case. Right panel: ∆ε as a function

of the number of heads h, with d/h = 1, for different values of frustration ratio. The reference energies

are computed by DMRG [126] with a bond dimension up to χ = 600 obtaining E/J1 = −0.4432295 for

J2/J1 = 0, E/J1 = −0.3803882 for J2/J1 = 0.4, and E/J1 = −0.4216664 for J2/J1 = 0.8. Panel b: The

isotropic spin-spin correlations in real space C(r) as computed by the ViT wave function (full dots) for

the unfrustrated Heisenberg model (J2/J1 = 0) on a cluster with N = 100 sites. The DMRG results are

also shown for comparison (empty circles). Inset: Log-log plot of the same correlation function.

dard variational Monte Carlo techniques (see Chapter 1), in particular the Stochastic

Reconfiguration method [64, 69] (see Chapter 2). In the following, we mainly take nl = 1,

which represents the simplest possible adaptation of the Transformer architecture; in-

deed, even within this drastic assumption, we obtain excellent results in both gapless and

gapped phases. At the end, we show the effect of a deeper network with nl > 1. All the

simulations are performed by fixing the patch size b = 4.

3.4.5 Numerical Results

3.4.5.1 Accuracy for the ground state energy

We start by discussing how the accuracy of the ViT wave function with one layer can be

systematically improved by varying its two hyper-parameters, i.e., the number of heads h

and the ratio d/h. We consider a cluster with N = 100 sites and three different values of

the frustration ratio: J2/J1 = 0 (unfrustrated, gapless), J2/J1 = 0.4 (weakly-frustrated,

gapped), and J2/J1 = 0.8 (strongly-frustrated, gapped); the reference energy is computed

by using the standard DMRG approach (imposing periodic-boundary conditions on the

Hamiltonian [126]). In the panel (a) of Fig. 3.14, we show the accuracy of the ground-
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state energy for the unfrustrated case as a function of d/h fixing the number of heads h,

and for the three values of J2/J1 when increasing the number of heads h, at fixed ratio

d/h. Even though there is a general difficulty in reconstructing the exact sign structure

in highly-frustrated regimes [38, 127–130], we obtain an excellent approximation of the

correct energy for all the values of J2/J1 that have been considered, e.g., an accuracy

∆ε ≲ 0.1% for J2/J1 = 0.8 and ∆ε ≈ 0.01% for J2/J1 = 0.4.

3.4.5.2 Correlation functions

Let us now move to the analysis of the correlation functions. From the previous results,

we choose h = 8 and d/h = 1 as a good compromise between accuracy and complexity,

for which the network can be trained on N = 100 sites in a few hours on ten CPUs or in

a few minutes on a GPU. The spin-spin correlations are defined as

Cνν(r) =
1

L

L−1∑
R=0

⟨Ŝν
RŜ

ν
R+r⟩, (3.22)

where ν = x, y, or z and ⟨. . . ⟩ represents the expectation value over the variational

quantum state.

In particular, we focus on isotropic spin-spin correlations C(r) = [Czz(r) + Cxx(r) +

Cyy(r)]/3 and the corresponding structure factor in Fourier space S(k) = 1
N

∑N−1
r=0 eikrC(r).

In panel (b) of Fig. 3.14, we show the results of the real-space correlations C(r) for the

unfrustrated Heisenberg model (J2/J1 = 0) on a cluster with N = 100 sites, comparing

them to the DMRG outcomes (with periodic-boundary conditions). Remarkably, the ViT

Ansatz is able to match the DMRG calculations at all distances, demonstrating that the

global structure of the multi-head attention layer is able to build the algebraic long-range

tail.

The high flexibility of the ViT state is also demonstrated by considering the three

different regimes, with commensurate (i.e., S(k) peaked at k = π) or incommensurate

(i.e., S(k) peaked at k ̸= π) correlations, see panel (a) of Fig. 3.14.

The gapped phase is characterized by a finite dimer order (implied by the two-fold

degeneracy of the ground state, in the thermodynamic limit). On any finite system, there

is an exponentially small gap between the two states, with k = 0 and k = π, and the

insurgence can be detected from the connected dimer-dimer correlations:

D(r) =
1

L

L−1∑
R=0

⟨Ŝz
RŜ

z
R+1Ŝ

z
R+rŜ

z
R+r+1⟩ − [Czz(r = 1)]2, (3.23)
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b: Dimer-dimer correlations as computed by the ViT wave function (full circles) for J2/J1 = 0 (upper

panel), J2/J1 = 0.4 (middle panel) and J2/J1 = 0.8 (lower panel) on a cluster with N = 100 sites. The

DMRG results are also shown for comparison (empty circles).

where Czz(r = 1) is the z component of the spin-spin correlation function at distance

r = 1 defined in Eq. (3.22). Notice that this definition considers only the z component

of the spin operators [131]. In panel (b) of Fig. 3.15, we show the results for the three

regimes which characterize the model. Again, the agreement with DMRG calculations

is excellent in all cases, and the ViT state is able to perfectly reproduce the presence of

dimer order.

3.4.5.3 Limitations

The ViT wave function can be systematically improved not only by increasing the embed-

ding dimension d or the number of heads h (as shown in panel (a) of Fig. 3.14) but also by

making deep the architecture by the stacking of multiple Transformer layers. However,

optimizing deep complex-valued networks poses significant challenges [10], as standard

techniques used to facilitate the training of deep architectures, such as layer normal-

ization and appropriate activation functions, do not easily generalize to complex-valued

networks. For this reason we develop a procedure based on the physical interpretation of

the attention weights. We start by setting for each head and layer αi−j = 0 if |i−j| > cut,

with cut < N/b, training only the remaining weights. Small cut values (e.g., cut = 1)
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Figure 3.16: Optimization of the DeepViT with nl = 4, where each layer has h = 2 and d/h = 2, for the

Heisenberg model with N = 40 sites. Along the process, the cut in the attention is fixed and progressively

increased from 1 to 10 (the first two values are not shown for better readability). At the end, once the cut

has been completely relaxed, the full translational invariance is restored [see Eq. (3.21)] to compute the

accuracy in the energy. Inset: Relative error ∆ε of the DeepViT wave function by varying the number of

layers. The reference energy is computed by DMRG [126] with a bond dimension up to χ = 600 obtaining

E/J1 = −0.443663.

are good starting points for stable optimizations. Then the cut is relaxed until reaching

N = N/b, where all-to-all connections among the inputs of each layer are restored. As an

example, the results for the Heisenberg model with N = 40 are shown in Fig. 3.16. Here,

we take nl = 4 (each layer has h = 2 and d/h = 2) and perform the optimization stages

with cut = 1, . . . , 10. Every time, when the cut is relaxed, the accuracy of the energy

improves.

While a single layer of a complex-valued Transformer suffices to achieve highly accu-

rate results for one-dimensional models, we expect that deeper networks will be crucial

for competitive performance in two-dimensional systems compared to state-of-the-art nu-

merical methods (see Sec. 5.2.2). In such cases, the relax-cut procedure may not be the

optimal solution. In the next Chapter, we develop a general framework that enables

the use of standard deep architectures from machine learning community to parametrize

variational quantum states.
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Chapter 4

A Representation Learning

perspective on Neural-Network

Quantum States

In this Chapter, we propose a general framework for constructing highly accurate NQS by

leveraging the principles of Representation Learning [28], a cornerstone of modern deep

learning [132]. We apply this framework, in combination with the optimization method

described in Chapter 2, to tackle the challenging J1-J2 Heisenberg model on a square

lattice. Specifically, we demonstrate the effectiveness of this approach by achieving the

state-of-the-art ground state energy on the 10× 10 lattice, a well-established benchmark

in the study of highly-frustrated magnetism for evaluating the accuracy of new variational

wave functions [27]. Moreover, we show the flexibility of this framework by demonstrating

that a NQS pretrained close to the phase transition point yields features that can be fine-

tuned to accurately describe a wide region of the phase diagram [39].

4.1 What is Representation Learning?

The performance of an algorithm strongly depends on the representation of the data [132,

133]. For instance, searching for an element in a collection of data can be exponentially

faster if the data are suitably structured. Similarly, simple arithmetic operations with

Arabic numerals can become more complicated when using Roman numerals. In general,

many problems can be easily solved by designing the right set of features and subsequently
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Figure 4.1: Left panel Example of two different representations of the same dataset. While the data

are not linearly separable in Cartesian coordinates, they becomes trivially separable in polar coordinates.

Right panel: Schematic representation of how a deep neural network hierarchically learns features from

input data. It first extracts low-level features such as edges in the first hidden layer, followed by more

complicated ones such corners and contours in subsequent layers, allowing the recognition of high-level

objects (e.g., car, person, animal) in the output layer. Both images are adapted from the book Deep

Learning by Goodfellow et al. [132].

providing them to a simple algorithm. Consider for example the task of separating two

sets of data by drawing a line between them. In the left panel of Fig. 4.1, the data are

represented in both Cartesian and polar coordinates. While the separation task cannot

be solved in Cartesian coordinates, it becomes trivial when the data is transformed into

polar coordinates.

For decades, during the classical machine learning era, researchers first designed a

set of well-suited features to describe the inputs, requiring careful engineering and con-

siderable domain expertise, and then trained a simple machine learning algorithm (e.g.,

linear regression) on top of those features to perform a given task. While handcrafting

suitable features are feasible for simple problems (as in the one described above), the

challenge arises in determining the optimal features for more complicated tasks. In the

deep learning era, the paradigm shifted towards using machine learning to discover not

only the mapping from representation to output, but also the representation itself [132,

133]. This approach, dubbed Representation Learning, outperforms hand-crafted rep-

resentations in a variety of domains. Furthermore, methods based on neural networks

that automatically discover the right set of features can rapidly adapt to new tasks with
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minimal modifications.

In particular, deep neural networks are able to extract high-level and abstract features

from raw data by constructing hierarchical representations, where complicated features

are expressed in terms of other, simpler features. In the right panel of Fig. 4.1 we show how

an image of a person can be identified by combining simpler concepts such as corners and

contours, which are themselves defined by even more basic concepts such as edges. Thus,

the application of successive layers of a deep neural network can be seen as performing a

sequence of transformation on the original data, thereby facilitating the resolution of the

task.

The general structure of a modern deep neural networks [23, 96, 134] consists of two

components:

1. The first component is a deep neural network which maps the original input data

into a representation, dubbed hidden representation, which lives in a feature space.

2. The second is simple neural network (e.g., a linear classifier for image classification

tasks), dubbed output layer, which acts on the hidden representation and generates

the final output.

Interestingly, when the output layer is applied directly to the original data, the results

are poor for complicated tasks. However, when it acts on the hidden representation, the

results are significantly improved [134]. This demonstrates that while the problem may

not be linearly separable in the original input space, the deep neural network transforms

the data into a new space where linear classifier, such as those commonly used in output

layers, can effectively solve the problem. The situation is analogous to the toy example in

the left panel of Fig. 4.1, once the appropriate set of coordinates (in the example the polar

coordinates) is identified, then the problem can be solved with a simple linear classifier.

4.2 A new parametrization for Neural-Network Quan-

tum States

In the previous Chapter, we introduced the concept of NQS and discussed two examples

of such variational states applied to the one-dimensional J1-J2 Heisenberg model. Among

these, the Transformer wave function emerged as a promising candidate, demonstrat-

ing high accuracy. However, it still presents limitations, particularly due to the use of
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Figure 4.2: Left panel: The NQS is defined as the composition of two functions: first, a deep neural net-

work V (σ;ϕ) (with real-valued parameters) maps the input configurations σ into hidden representations

z; then, a simple shallow network f(z;W ) (with complex-valued parameters) generates the logarithm of

the amplitudes Log[Ψθ(σ)] starting from hidden representations. Right panel: Pictorial illustration of

the mapping process carried out by the deep neural network. During this process, the spin configurations

of the Hilbert space σ are embedded into a feature space z ∈ Rd. The colours of the clusters in the feature

space are related to the sign of the amplitudes Log[Ψθ(σ)], corresponding to the physical configurations

σ, as discussed in Section 4.3.1.

complex-valued parameters. In this Chapter, we overcome these limitations by adopting

a new perspective on NQS, leveraging the principles of Representation Learning [133].

We start by reframing the NQS as feature extractors rather than just universal ap-

proximators of complicated functions. In this framework, the variational state is naturally

perceived as the composite result of two distinct functions, each with a specific role:

z = V (σ;ϕ) ,

Log[Ψθ(σ)] = f (z;W ) ,
(4.1)

where the variational parameters are partitioned into two blocks θ = {ϕ,W}. The func-

tion V (·;ϕ) is parameterized as a deep neural network, mapping physical configurations

σ to the hidden representations vectors z, which belong to a d-dimensional feature space.

Conversely, f(·;W ) is a shallow neural network used to generate a single scalar value

f(z;W ) from the hidden representations z. This final value is used to predict the am-

plitude corresponding to the input spin configuration. In order to predict both modulus

and phase of the variational state (which is fundamental in cases where the exact sign is

not known a priori), it is convenient to employ a complex-valued variational state. The

structure of the Ansatz in Eq. (4.1) suggests the possibility of taking ϕ as real-valued

parameters in the deep neural network V (·;ϕ). Subsequently, only the parameters W of

the shallow function f(·;W ) can be taken complex-valued. We schematically represent
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these two steps in the left panel of Fig. 4.2; instead, a pictorial scheme of the mapping

process from the physical space of the spin configurations to the feature space is depicted

in the right panel of Fig. 4.2.

In the recent past, a few works showed that depth is crucial to achieve high accu-

racies on two-dimensional systems [36, 135–137]. However, training deep networks is a

complicated task and leveraging standard building blocks simplifies the procedure. In

particular, Layer Normalization [121], skip connections [96], and appropriate activation

functions [138] have been developed for real-valued architectures. Unfortunately, these

key elements do not have straightforward generalizations for complex-valued neural net-

works. For these reasons, the optimization of a deep Transformer architecture having

complex-valued parameters necessitated the development of a heuristic procedure involv-

ing for example the introduction of a cut in the attention weights (see Sec. 3.4.5.3).

Instead, within the current approach, such constraints are no longer required. The newly

proposed Ansatz can be trained straightforwardly from scratch, without the need for

additional restrictions and obtaining more accurate results. Moreover, working with real-

valued parameters facilitates to gain physical insights into what the neural network is

learning during the optimization by visualizing, for example, the hidden representations

(see Section 4.3).

4.2.1 The choice of deep and shallow architectures

The composition in Eq. (4.1), inspired by Representation Learning, is general and, in prin-

ciple, works for any choice of V (·;ϕ) and f(·;W ). However, in practice, the performance of

this approach can be highly dependent on the specific properties of these functions, which

must be well-suited to the specific problem. In Chapter 3, we discussed the adaptation of

the ViT architecture (see Sec. 3.4.3) for parameterizing variational states to study one-

dimensional frustrated systems [31], achieving results comparable with DMRG on large

clusters. Given the excellent results of the ViT architecture, we aim to exploit its prop-

erties within this new framework. Specifically, we propose to parametrize the function

V (·;ϕ) with a Vision Transformer. Unlike the previous complex-valued parametrization,

due to the structure in Eq. (4.1), all parameters can be taken to be real-valued. This

allows us to employ the full ViT architecture (see right panel of Fig. 3.12) using the

standard building blocks which allow the efficient optimization of deep architectures.
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Figure 4.3: The input spin configuration σ is partitioned into patches, which are linearly projected in a

d-dimensional embedding space and then processed by a Vision Transformer. The latter one builds new

representations of the patches, which are then combined through summation and fed into a final single

complex-valued fully-connected layer in order to obtain the logarithm of the (complex) wave function.

Notice that this is a particular instantiation of the more general scheme proposed in the left panel of

Fig. 4.2.

Instead, the function f which constitute the output layer is chosen to be:

f(z;W ) =
K∑

α=1

g (bα + wα · z) , (4.2)

where the variational the parameters W = {bα,wα}Kα=1 of the linear transformation in

Eq. (4.2) are taken to be complex valued in order to describe non-positive ground states.

The number of hidden neurons K is a hyperparameter of the network. Here, we set

g(·) = log cosh(·) and K = d, thus f(z,W ) has the same functional form as the well-

known Restricted-Boltzmann Machine introduced by Carleo and Troyer [7]. Crucially,

in this case it is not applied to the physical configuration σ but instead to the hidden

representation z. This is the change of paradigm that we want to emphasize.

With these choices, the process of constructing the amplitude corresponding to a

physical spin configuration σ involves the following steps (see Fig. 4.3):

1. The input spin configuration σ is initially divided into N patches.

2. The patches are linearly projected into a d-dimensional embedding space, resulting

in a sequence of vectors (x1, · · · ,xN ), where xi ∈ Rd.
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3. A ViT processes these embedded patches, producing another sequence of vectors

(y1, · · · ,yN ), where yi ∈ Rd.

4. The hidden representation z of the configuration σ is defined by summing all these

output vectors: z =
∑N

i=1 yi ∈ Rd.

5. A fully-connected layer with complex-valued parameters, defined in Eq. (4.2), pro-

duces the amplitude Log[Ψθ(σ)] corresponding to the input configuration σ.

Moreover, we want to emphasize that while the vector xi depends solely on the spins

contained in the i-th patch, the resulting vector yi, due to the attention mechanism, is

a function of all the spins in the configuration. The ViT architecture is constructed as

a sequence of nl Transformer layers, in each of them, the Multi-Head Attention Mecha-

nism (with h heads) is followed by a two layers fully-connected network (for a detailed

description of the Transformer Layer refer to Section 3.4.2).

The only custom modification we introduce to the standard Vision Transformer ar-

chitecture [139] is the use of the Factored/Positional attention mechanism [31, 123–125,

140, 141], in which the attention weights are input-independent variational parameters

(see Section 4.2.3.1 for a detailed comparison of different attention mechanisms) [141].

The Multi-Head Factored Attention (MHFA) mechanism can be formally implemented as

follows:

Ai,p =
d∑

q=1

Wp,q

N∑
j=1

α
µ(q)
i,j

d∑
r=1

Vq,rxj,r , (4.3)

where µ(q) = ⌈q h/d⌉ select the correct attention weights of the corresponding head, being

h the total number of heads. The matrix V ∈ Rd×d linearly transforms each input vector

identically and independently. Instead, the attention matrices αµ ∈ RN×N combine the

different input vectors and the linear transformation W ∈ Rd×d mixes the representations

of the different heads. To enforce translational symmetry, we define the attention weights

as αµ
i,j = αµ

i−j, thereby ensuring translational symmetry among patches. This choice re-

duces the computational cost during the restoration of the full translational symmetry

through quantum number projection [142, 143]. Under the specific assumption of transla-

tionally invariant attention weights, the Factored attention mechanism can be technically

implemented as a convolutional layer with d input channels, d output channels and a very

specific choice of the convolutional kernel: Kp,r,k =
∑d

q=1Wp,qα
µ(q)
k

∑d
r=1 Vq,r ∈ Rd×d×N .

However, it is well-established that weight sharing and low-rank factorizations in learn-
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able tensors within neural networks can lead to significantly different learning dynamics

and, consequently, different final solutions [144–146].

At the end, we provide a pseudocode (see Algorithm 2) describing the steps for the

implementation of the Vision Transformer architecture described above. In particular we

emphasize that skip connections and Layer Normalization are implemented as described

in Ref. [121].

Algorithm 2 Vision Transformer Wave Function

1: Input configuration σ ∈ {−1, 1}N
2: Patch and Embed: X ← (x1, . . .xN ) ∈ RN×d

3: for i = 1, nl do

4: X ← X + MHFA(LayerNorm(X ))

5: X ← X + MLP(LayerNorm(X ))

6: end for

7: (y1, . . .yN )← LayerNorm(X )

8: z ←∑d
i=1 yi

9: Log[Ψθ(σ)]←∑d
α=1 g(bα + wα · z)

Notice that the structure of this variational Ansatz requires a large number of param-

eters. In order to optimize them, modern formulations of the Stochastic Reconfiguration

technique [69], able to deal with a large number of variational parameters [27, 36], are

used (see Sec. 2.3).

4.2.2 Benchmark model : J1-J2 Heisenberg on the square lattice

One of the most paradigmatic example of quantum many-body spin model is the J1-J2

Heisenberg model on the square lattice:

Ĥ = J1
∑
⟨i,j⟩

Ŝi · Ŝj + J2
∑
⟨⟨i,j⟩⟩

Ŝi · Ŝj (4.4)

where Ŝi = (Sx
i , S

y
i , S

z
i ) is the S = 1/2 spin operator at site i and J1 and J2 are nearest-

and next-nearest-neighbour antiferromagnetic couplings, respectively.

The ground state of this model features magnetic order in the two limits J1 ≪ J2

and J1 ≫ J2. Specifically, when J2 = 0 the model reduces to the unfrustrated Heisen-

berg model where long-range Néel order is present [147, 148]. In the opposite regime

79



J2/J1 →∞, the system exhibits instead columnar magnetic order. The presence of mag-

netic order can be characterized with the spin structure factor

S(k) =
∑
R

eik·R ⟨Ŝ0 · ŜR⟩ , (4.5)

where R runs over all the lattice sites of the square lattice. Specifically, the long-range

Néel order can be detected by measuring the square magnetization as

m2
Néel =

S(π, π)

L2
, (4.6)

instead, the columnar magnetic order is identified by the following order parameter

m2
stripe =

S(0, π) + S(π, 0)

2L2
. (4.7)

In the intermediate region, around J2/J1 ≈ 0.5 the system is highly frustrated and

the ground-state properties have been the subject of many studies over the years, of-

ten with conflicting results [37, 98, 149]. In particular, several works focused on the

highly-frustrated regime, which turns out to be challenging for numerical methods [10,

11, 17, 36, 37, 98, 128, 143, 149–156].

4.2.3 Numerical Results

Our objective is to approximate the ground state of the J1-J2 Heisenberg model on the

square lattice [see Eq. (4.4)]. Specifically, we use the parametrization outlined in Sec. 4.2.1,

where a ViT architecture is employed for the deep neural network, and a fully-connected

network for the output layer. The J1-J2 Heisenberg model is a translationally invariant

Hamiltonian. However, as discussed in Sec. 3.4.3, a key element of the Vision Transformer

is the division of the input into non-overlapping patches of shape b×b (for two-dimensional

input). In general, the clustering b is an hyperparameter of the architecture and an op-

timal selection involves a trade-off. From one side, large patches enhance computational

complexity, due to the quadratic scaling of attention mechanism with the input sequence

lenght. On the other side, augmenting patch size implies an additional cost to restore

translational symmetry within the system. To reduce the cost of the a posteriori sym-

metrization, we employ translational invariant attention weights (as detailed in Sec. 4.2.1),

requiring only a summation involving b2 terms for the restoration of the translational

symmetry. Other symmetries of the Hamiltonian in Eq. (4.4) [rotations, reflections (C4v

80



point group) and spin parity] can also be restored within quantum number projection (see

Appendix B). As a result, the symmetrized wave function reads:

Ψ̃θ(σ) =
b2−1∑
i=0

7∑
j=0

[Ψθ(TiRjσ) + Ψθ(−TiRjσ)] . (4.8)

In the last equation, Ti and Rj are the translation and the rotation/reflection operators,

respectively. Furthermore, due to the SU(2) spin symmetry of the J1-J2 Heisenberg

model, the total magnetization is also conserved and the Monte Carlo sampling can be

limited in the Sz = 0 sector for the ground state search.

In the following Sections, we first conduct a systematic comparison of different atten-

tion mechanisms on a small lattice to identify the most suitable one for parametrizing

the Transformer wave function. Then, we use the selected architecture to determine the

ground state energy on larger lattices.

4.2.3.1 Are queries and keys always relevant in the attention mechanism?

While elements like the MLP, Layer Normalization, and skip connections are task-agnostic

and offer broad applicability, the functional form of the dot product attention mechanism

was originally tailored for natural language processing tasks. One wonders if the dot

product attention mechanism (see Sec. 3.4.1) provides an inductive bias which is the

most appropriate in any data domain [141]. In this Section, we tackle this question

by systematically investigating the performance of different attention mechanism within

Transformer wave functions.

During the years, several works proposed different parametrizations of the attention

weights [118, 158, 159]. Here, we consider three different mechanisms, all based on relative

positional encoding [118], as appropriate for our purpose.

1. T5 attention, introduced in Ref. [119], is one of the most popular attention mecha-

nisms:

αT5
ij (xi,xj) =

exp
(

xT
i QTKxj√

d
+ pi−j

)
∑n

k=1 exp
(

xT
i QTKxk√

d
+ pi−k

) . (4.9)

2. Decoupled attention, introduced in Ref. [157]:

αD
ij (xi,xj) =

exp
(

xT
i QTKxj√

d

)
∑n

k=1 exp
(

xT
i QTKxk√

d

) + pi−j . (4.10)
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Figure 4.4: Schematic representation of the attention mechanisms employed in this work: T5 [119] (left

panel), Decoupled [157] (central panel) and Factored/Positional [123–125] (right panel) attention. In

each of them, relative positional encoding is used. The matrices Q, K, V and P are referred to queries,

keys, values and positional encoding matrix, respectively. Refer to Eqs. (4.9),(4.10) and (4.11) in the

main text for the analytical expressions.

3. Factored/Positional attention, introduced in Refs. [123–125]:

αF
ij(xi,xj) = pi−j . (4.11)

In Fig. 4.4, we show a schematic representation of these three different attention mech-

anisms. The Factored version has a reduced number of parameters, being the attention

weights input independent. Regarding the computational cost for the calculation of each

attention weight, we have O(1) complexity in the Factored case and O(Nd2) + O(N 2d)

in the other two cases, where N is the number of input vectors. Decoupled attention, as

represented by Eq. (4.10), is the simplest extension of the Factored version in Eq. (4.11),

where the attention weights now factor in the input dependence: setting Q = K = 0

allows to recover the Factored attention, albeit with a constant shift. Instead, in T5

attention [see Eq. (4.9)] all the attention weights are constrained to be positive due to

the global softmax activation. In order to assess the efficacy of the three distinct atten-

tion mechanisms introduced above, we perform simulations utilizing ViT architectures to

approximate the ground state of the J1-J2 Heisenberg model [see Eq. (4.4)] on a 6 × 6

lattice with periodic boundary conditions. We employ identical hyperparameters (em-

bedding dimension d, number of heads h, and number of layers nl), modifying only the

attention mechanism, namely T5 [see Eq. (4.9)], Decoupled [see Eq. (4.10)], and Factored

[see Eq. (4.11)]. In Fig. 4.5, we report the optimization curves of the relative error of the
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Figure 4.5: Relative error ∆ε = |(E0 − EViT)/E0| during the optimization of the ViT wave function

on the J1-J2 Heisenberg model at J2/J1 = 0 (panels a and b) and at J2/J1 = 0.5 (panels c and d)

on a 6× 6 lattice with periodic boundary conditions. The exact energies E0 are computed with exact-

diagonalization approaches. All architectures are trained with the same optimization protocol, using SR

with cosine decay scheduler for the learning rate with an initial value of τ = 0.03. The optimization

curves are consistent across multiple runs with different random initialization of the parameters.

variational energy with respect to the exact ground-state energy as a function of the op-

timization steps. On the left, we present the results for the unfrustrated case (J2/J1 = 0)

using ViT architectures with one [panel (a)] and four [panel (b)] layers. Instead, on the

right we report the results in the frustrated regime (J2/J1 = 0.5), again using one [panel

(c)] and four [panel (d)] layers architectures. We highlight that, while it is feasible to

enhance the performance of the variational state by employing larger architectures (such

as increasing the number of layers), utilizing T5 or Decoupled attention mechanisms with

input-dependent attention weights, and subsequently increasing the computational com-

plexity and parameter count via the matrices Q and K, does not yield improved results

compared to the Factored attention with input-independent attention weights. Notably,

not only the final accuracies are practically identical, but also the learning dynamics ex-

hibit similar behavior. In Table 4.1 we report the results of the J1-J2 Heisenberg model

on a 6 × 6 lattice at J2/J1 = 0.5, obtained using a four-layer architecture (as in panel

(d) of Fig. 4.7). The first column shows the final mean energy achieved by the different

attention mechanisms, the second column indicates the number of parameters employed

in the architectures, and the last column presents the computational time measured on

a single GPU A100. The exact energy for this model can be computed using exact-

diagonalization techniques, yielding E0/J1 = −0.503810. Although the accuracy of the

results can be further enhanced by restoring the physical symmetries of the model through
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quantum number projection approaches [106, 160] (see Sec. 4.2.3.2), this goes beyond the

scope this Section.

The main result of the numerical simulations reported in Fig. 4.7 is that, using a ViT

employing T5, Decoupled and Factored attention, the final accuracy is practically the

same (see Table 4.1). This suggests that, in the case of T5 and Decoupled attention,

queries and keys are effectively not used in the optimized solution. To validate this

statement we study the attention weights in the different solutions, here dubbed attention

maps. For the analysis, we use a single-layer architecture, where the interpretation of

the results is simplified since the patches are only mixed within the attention mechanism,

and the subsequent MLP cannot modify the relative weights among the various attention

vectors. In panel (a) of Fig. 4.6, we consider the case of T5 attention, plotting the

attention weights defined in Eq. (4.9) for three different input spin configurations. We

first check that at the beginning, with random parameters, the attention maps depend on

the inputs (top row), ensuring that we have an unbiased initialization. In the bottom row,

we show that the architecture after optimization produces input-independent attention

maps, thus automatically recovering a positional only solution. In panel (b) of Fig. 4.6,

we consider the case of Decoupled attention, plotting separately the input dependent

and the positional contributions of the attention weights [see Eq. (4.10)]. Again, after

optimization the network swaps from an unbiased solution (top row) to a positional only

solution (bottom row), where the input-dependent term converges approximately to the

identity matrix shifted element-wise by a constant. In other words, Factored attention

is spontaneously recovered from the Decoupled version. Additionally, in Appendix C,

we provide also analytic calculations about the efficacy of input-independent attention

mechanisms for approximating quantum states.

Table 4.1: Simulations on the 6×6 lattice at J2/J1 = 0.5 with four layers ViT. The exact

ground state energy of the model is E0/J1 = −0.503810.

Energy Parameters Time

T5 -0.50318(1) 184,260 10h

Decoupled -0.50324(1) 184,260 10h

Factored -0.50321(1) 154,980 6h
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Figure 4.6: Panel a: Visualizations of the attention maps of a ViT with T5 attention mechanism [see

Eq. (4.9)] for three different input spin configurations. When using initial random parameters there is

a clear input dependence in the attention maps (top row). Instead, at the end of the optimization, the

attention maps are practically input independent (bottom row). Panel b: Visualizations of the input-

dependent term (left panels) and of the input-independent term (right panels) of a ViT with Decoupled

attention mechanism [see Eq. (4.10)]. After the optimization (bottom row), the input-dependent term is

approximately the identity matrix shifted element-wise by a constant, thus Factored attention is recov-

ered [see Eq. (4.11)]. In the plots, the input-dependent term has been averaged over M = 6000 input

configurations sampled from the optimized state. In both cases, the ViT architecture with a single layer

nl = 1, embedding dimension d = 60 and h = 10 different heads is optimized on a 6 × 6 lattice at

J2/J1 = 0.5 (see panel (c) of Fig. 4.7). The plots are obtained by averaging the attention weights over

all heads.

4.2.3.2 State-of-the-art ground state energy on the 10× 10 lattice

After conducting a systematic study on the attention mechanism for the 6× 6 lattice in

the previous Section, where exact diagonalization calculations are feasible, the objective

now is to approximate the ground state of the J1–J2 Heisenberg model at the highly

frustrated point J2/J1 = 0.5 on the 10 × 10 square lattice, where the exact solution is

not known. This challenging model has been extensively studied in recent years, and

numerous calculations using various variational approaches are available (see Table 4.2).

Here, we consider as variational Ansatz the symmetrized ViT architecture in Eq. (4.8)

using b = 2, nl = 8 layers, embedding dimension d = 72, and h = 12 heads per layer. This

variational state has in total 267720 real parameters (the complex-valued parameters of the

output layer are treated as couples of independent real-valued parameters). Regarding the

optimization protocol, we choose the learning rate τ = 0.03 (with cosine decay annealing)
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Table 4.2: Ground-state energy on the 10×10 square lattice at J2/J1 = 0.5 obtained with

different variational states.

Energy per site Wave function # parameters Marshall prior Reference Year

-0.48941(1) MLP 893994 Not available [156] 2023

-0.494757(12) CNN Not available No [128] 2020

-0.4947359(1) Shallow CNN 11009 Not available [11] 2018

-0.49516(1) Deep CNN 7676 Yes [10] 2019

-0.495502(1) PEPS + Deep CNN 3531 No [155] 2021

-0.495530 DMRG 8192 SU(2) states No [149] 2014

-0.495627(6) aCNN 6538 Yes [154] 2023

-0.49575(3) RBM-fermionic 2000 Yes [17] 2019

-0.49586(4) CNN 10952 Yes [143] 2023

-0.4968(4) RBM (p = 1) Not available Yes [153] 2022

-0.49717(1) Deep CNN 106529 Yes [152] 2022

-0.497437(7) GCNN 67548 No [151] 2023

-0.497468(1) Deep CNN 421953 Yes [150] 2022

-0.4975490(2) VMC (p = 2) 5 Yes [98] 2013

-0.497627(1) Deep CNN 146320 Yes [36] 2023

-0.497629(1) RBM+PP 13132 Yes [37] 2021

-0.497634(1) Deep ViT 267720 No Present work 2023

and the number of samples is fixed to be M = 6000. We emphasize that using Eq. (2.57)

to optimize this number of parameters would be infeasible on available GPUs: the memory

requirement would be more than ∼ 103 gigabytes, one order of magnitude bigger than

the highest available memory capacity. Instead, with the formulation of Eq. (2.62), the

memory requirement can be easily handled by available GPUs (see Sec. 2.3.2). The

simulations took four days on twenty A100 GPUs. Remarkably, as illustrated in Table 4.2,

we are able to obtain the state-of-the-art ground-state energy using an architecture solely

based on neural networks9, without using any other regularization than the diagonal shift

reported in Eq. (2.62), fixed to λ = 10−4.

We stress that a completely unbiased simulation, without assuming any prior for the

sign structure is performed. Furthermore, we verified with numerical simulations that

the final results is not affected by the Marshall prior. Within variational methods, one

of the main difficulties comes from the fact that the sign structure of the the ground

state is not known for J2/J1 > 0. Indeed, the Marshall sign rule [34] gives the correct

signs (for every cluster size) only when J2 = 0 (see Appendix A). However, in order to

stabilize the optimizations, many previous works imposed the Marshall sign rule as a

first approximation for the sign structure (see Marshall prior in Table 4.2). By contrast,

within the present approach, we do not need to use any prior knowledge of the signs, thus

defining a very general and flexible variational Ansatz. This is an important point since

9During the revision process of our work in Ref. [27], we became aware of an updated version of

Ref. [36] where a variational energy per site of -0.4976921(4) has been obtained.
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Figure 4.7: Left panel: Optimization of the Deep ViT with patch size b = 2, nl = 8 layers, embedding

dimension d = 72 and h = 12 heads per layer, on the J1-J2 Heisenberg model at J2/J1 = 0.5 on the 10×10
square lattice. The first 200 optimization steps are not shown for better readability. Inset: first and last

200 optimization steps when recovering sequentially the full translational (green curve), rotational (orange

curve) and reflections and parity (red curve) symmetries. The total number of steps after restoring the

symmetries is 5000 for translations, 5000 for rotations and 4000 for reflections and parity. The mean

energy obtained without quantum number projection is also reported for comparison (blue dashed line).

Right panel: Panel a: Energy per site as a function of the number of samples M for a ViT with nl = 8

layers, embedding dimension d = 72 and h = 12 heads per layer. Panel b: Energy per site as a function

of the number of parameters P , increased by adding heads h and taking larger embedding dimensions d,

for a fixed number of layers nl = 8. For both panels, the energy values (blue circles) are obtained without

restoring the symmetries; for comparison we also show the energy corresponding to the fully symmetrized

state in Eq. (4.8) (red star) which is the one reported in Table 4.2.

a simple sign prior is not available for the majority of the models (e.g., the Heisenberg

model on the triangular or Kagome lattices). Moreover, we would like also to stress

that the definition of a suitable architecture is fundamental to take advantage of having a

large number of parameters. Indeed, while a stable simulation with a simple regularization

scheme (only defined by a finite value of λ) is possible within the ViT wave function, other

architectures require more sophisticated regularizations. For example, to optimize Deep

GCNNs it is necessary to add a temperature-dependent term to the loss function [151] or,

for Deep CNNs, a process of variance reduction and reweighting [36] helps in escaping local

minima. We also point out that physically inspired wave functions, as the Gutzwiller-

projected states [98], which give a remarkable result with only a few parameters, are not

always equally accurate in other cases.

In the left panel of Fig. 4.7 we show a typical optimization on the 10 × 10 lattice at

J2/J1 = 0.5. First, we optimize the Transformer having translational invariance among
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patches (blue curve). Then, starting from the previously optimized parameters, we restore

sequentially the full translational invariance (green curve), rotational symmetry (orange

curve) and lastly, reflections and spin parity symmetry (red curve). Whenever a new

symmetry is restored, the energy reliably decreases [142]. We stress that our optimization

process, which combines the SR formulation of Eq. (2.62) with a real-valued ViT followed

by a complex-valued fully connected output layer [28], is highly stable and insensitive to

the initial seed, ensuring consistent results across multiple optimization runs.

At the end, we discuss the impact of the number of samples M and parameters P on

the variational energy wave function, showing the results in the right panel of Fig. 4.7.

Specifically, in panel (b), we show the variational energy as a function of the number

of parameters for a fixed number of layers nl = 8, performing the optimizations with

M = 6000 samples. The number of parameters is increased by enlarging the width of each

layer. In particular, we take the following architectures: (h = 10, d = 40), (h = 10, d =

60), (h = 12, d = 72), and (h = 14, d = 140) with P = 85400, 187100, 267720, and 994700

parameters, respectively. Instead, in panel (a), we fix an architecture (h = 12, d = 72)

with nl = 8 and increase the number of samples M up to 104. Both analyses are performed

without restoring the symmetries by quantum number projection; for comparison, we

report in the left panel the energy obtained after restoring the symmetries [see Eq. (4.8)].

The latter one coincides with the ViT wave function used to obtain the energy reported

in Table 4.2.

In summary, we have introduced a novel approach, motivated by Representation Learn-

ing, to define variational states based on neural networks. The key feature of this method

is its ability to map physical configurations into a real feature space, where it is then easy

to predict amplitudes, even with a single fully-connected layer. Looking at NQS as feature

extractors is an original contribution, compared to the common interpretation of them as

just universal function approximators, which often involves complex-valued parameters

and leads to optimization challenges in deep architectures. Crucially, we demonstrate the

effectiveness of this approach by achieving state-of-the-art results on the J1-J2 Heisenberg

model on the 10× 10 square lattice, a widely recognized benchmark model for frustrated

spin models on two-dimensional lattices.
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4.3 Hidden representations

The composition defined in Eq. (4.1) plays a crucial role in determining the accuracy of our

results. Here, we focus on the ability of the ViT state to automatically construct, during

the minimization of the variational energy, physically meaningful hidden representations.

Firstly, we show the hidden representation obtained at the end of the optimization process

for a Heisenberg model and discuss its connection to the physical properties of its ground

state [28]. Subsequently, we apply a technique referred to as fine tuning, demonstrating

that the optimization of a NQS at a highly expressive point of the phase diagram (i.e.,

close to a phase transition) yields features that can be reused to accurately describe a

wide region across the transition [39].

4.3.1 A case study on the two-dimensional Heisenberg model

For a given set of configurations {σi}Mi=1 (sampled along the Monte Carlo procedure), we

compute the corresponding hidden vectors {zi}Mi=1 of size d≫ 1, which can be visualized

in two dimensions after a dimensional reduction. For this task, we apply the standard

Uniform Manifold Approximation and Projection (UMAP) [161]. An exemplification of

this approach is easily given in the limit J2 = 0, where the system in Eq. (4.4) reduces

to the (unfrustrated) Heisenberg model for which the exact sign structure of the ground

state is known from the Marshall-sign rule [34]. In Fig. 4.8, we assign to each zi a color

representing the exact sign of the amplitude corresponding to the spin configuration σi.

For random parameters, no discernible structure is apparent (see panel (a) of Fig. 4.8).

Then, along with the minimization of the variational energy, the ViT learns automatically

how to map the input configurations into different clusters of the hidden space, accord-

ing to their amplitudes (see panel (b) of Fig. 4.8). In particular, the spin configurations

in a given cluster have the same number of flipped spins with respect to the Néel one

and, therefore, the same sign (according to the Marshall rule) and similar modulus. The

crucial point is that, by using a single fully-connected layer, the prediction of the correct

amplitudes is much easier when acting on these representations rather than using the

original spin configurations. This result confirms that the Representation Learning ap-

proach for constructing variational wave functions performs as anticipated. Specifically,

the deep neural network determines a set of features that simplify the original problem,

and then the output layer behaves analogously as the linear classifier used in classification

tasks. This process mirrors the illustrative toy example described at the beginning of the
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Figure 4.8: Dimensional reduction of the hidden representations for a set of configurations built using a

ViT in the limit of J2 = 0, leading to the Heisenberg model. Points are colored according to the exact

signs given by the Marshall sign rule [34]. The calculations are performed on an 8× 8 cluster. Panel a:

Projections of the hidden representations built by a ViT with random parameters. Panel b: Projections

built using the parameters after optimization of the variational energy.

Chapter (see right panel of Fig. 4.1).

4.3.2 Fine-Tuning Neural-Network Quantum States

In this Section, we address a key conceptual question that the Representation Learning

approach raises: given a system that exhibits a phase transition, do the representations

learned to approximate the ground state near the transition point generalize to other points

of the phase diagram? This question holds significance not only from a theoretical per-

spective but also from a practical one, offering a concrete advantage by eliminating the

need to optimize the wave function from scratch for each point in the phase diagram.

Given a system undergoing a phase transition, we want to investigate whether the

representations learned near the transition point generalize to other points of the phase

diagram. By referring to the composition in Eq. (4.1), we perform the following experi-

ment in two steps, as illustrated in Fig. 4.9:
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Figure 4.9: Graphical representation of the pretraining and fine-tuning procedures. Initially, during

the pretraining, the entire architecture is trained in proximity to the transition point of a given system,

yielding a set of parameters θp = {ϕp,Wp}. Subsequently, in the fine-tuning stage, the parameters of the

deep neural network ϕp are fixed, while the optimization process focuses exclusively on the weights of the

shallow network W at various points across the phase diagram.

1. We pretrain the entire network, optimizing it to approximate the ground state at

a single point of the phase diagram situated in the vicinity of the phase transition.

The pretraining stage yields a set of optimized parameters {ϕp,Wp}.

2. Using the features constructed by the deep network (thus fixing its variational pa-

rameters ϕp) we fine-tune the model by optimizing only the parameters W of the

output layer to approximate the ground states in the other points of the phase

diagram, before and after the phase transition.

The pretraining of the architecture is carried out near the critical point, such that op-

timizing physical states with long-range correlations shape the representation learnt by

the network. In the following, it is possible for the last (shallow) readout layer, which is

fine-tuned in a different point in the phase diagram, to either reinforce long-range cor-

relations and establish true long-range order or weaken them and yield to a short-range

state (or even keep the state critical). On the contrary, in trivial phases, where only a

few configurations have non-zero amplitudes, the ability of pretrained networks to gener-

alize away from these phases is likely limited. We apply this procedure on finite systems

and measure physical properties (e.g., order parameters) of various systems exhibiting, in
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the thermodynamic limit, phase transitions of different nature. In all cases, the features

extracted during the pretraining stage, close to transition points, lead to excellent results

after fine-tuning at all the other points of the phase diagram [162]. This result reflects

how neural networks can capture the essential quantum fluctuations in the vicinity of a

phase transition. We stress that this approach differs from the standard transfer-learning

paradigm in which a neural network is initially trained to solve a specific task, and then

all of the parameters are trained to solve a different task. To the best of our knowledge,

fine-tuning experiments on NQS have not been explored previously.

The methodology outlined is generally applicable to any deep neural network, but

to be concrete, in the following we employ the parametrization described in Sec. 4.2.1.

Specifically, we parameterize the function V (σ;ϕ) using a Vision Transformer and the

function f(z,W ) is an RBM [7] defined in Eq. (4.2) where the number of neurons K

is chosen to be equal to d and 2 × d in the pretraining and in the fine-tuning steps,

respectively.

We remark that this framework offers a huge computational advantage, since it requires

the costly optimization of the full architecture, including the feature extractor V (σ;ϕ),

only once in the pretraining step. Then, with the addition of a minimal cost, the targeted

optimization of the output layer f(z,W ) can be used to obtain an accurate description

of the physical properties of the system in a wide region across the transition point. In

what follows, we focus on spin S = 1/2 models on a lattice considering system sizes where

numerically exact solutions are available for comparison.

4.3.2.1 Numerical Results

For all the simulations in this Section we perform Nopt = 104 optimization steps during

the pretraining stage. Then, during the fine-tuning stage, the number of steps is re-

duced to Nopt = 3× 103. In both stages the observables are estimate stochastically using

M = 3× 103 configurations. The optimization of the variational parameters is performed

with the Stochastic Reconfiguration (SR) method [69]. In particular, working with vari-

ational states featuring approximately P ∼ 106 parameters, we employ the alternative

formulation of SR [27, 36] efficient in the regime P ≫ M (see Sec. 2.3). We use a cosine

decay scheduler for the learning rate, setting the initial value to τ = 0.03.

Ising model in a transverse field. We start by considering the one-dimensional
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Ising model in transverse magnetic field, described by the following Hamiltonian

Ĥ = −Γ
N∑
i=1

Ŝz
i Ŝ

z
i+1 − g

N∑
i=1

Ŝx
i , (4.12)

where Ŝx
i and Ŝz

i are spin-1/2 operators on site i. The ground-state wave function, for

g ≥ 0, is positive definite in the computational basis.

In the thermodynamic limit, the ground state exhibits a second-order phase transition

at g/Γ = 1, from a ferromagnetic (g/Γ < 1) to a paramagnetic (g/Γ > 1) phase. On finite

systems with N sites, the estimation of the critical point can be obtained from the long-

range behavior of the spin-spin correlations, i.e., m2(r) = 1/N
∑N

i=1⟨Ŝz
i Ŝ

z
i+r⟩ (specifically,

we can consider the largest distance r = N/2, which gives the square magnetization).

First, we pretrain the full architecture at the critical point g/Γ = 1. Then, we fine-

tune only the output layer at different values of the external field, from g/Γ = 0.4 to

g/Γ = 1.6, i.e., in both ferromagnetic and paramagnetic phases. The results for N = 100

with periodic-boundary conditions are shown in the panel (a) of Fig. 4.10, in comparison

with density-matrix renormalization group (DMRG) [5] calculations (on the same sys-

tem). The high level of accuracy demonstrates that the fine-tuned network is effective

in the prediction of the order parameter. Remarkably, the fine-tuning procedure involves

optimizing merely 6.6% of the total parameters, which is ten times faster than optimizing

the entire network and demands significantly less GPU memory (see Sec. 4.3.2.2 for a

detailed description of the GPU memory requirements). The remarkable fact is that, by

exclusively adjusting the parameters of the output (fully-connected) layer and keeping

the clusters of the hidden representation fixed, it is possible to effectively describe both

ordered and disordered phases.

In the following, we want to gain insights into the learning process of the fine-tuning

stage. For that, we sample a set of M configurations {σ1, . . . , σM} ∼ |Ψ(σ; θp)|2 from the

pretrained network and show the corresponding amplitudes after the finetuning proce-

dure (visualizing them on top of UMAP [161] projections of the hidden representations

zp(σi), for i = 1, . . . ,M), see Fig. 4.11. To highlight the differences, both color and size

of each point are proportional to their amplitudes. At the transition point (g/Γ = 1),

the configurations with all parallel spins (either up or down along z) have the largest

amplitude; other configurations, with a few spin flips have also considerable weights (see

middle panel). In the ordered phase (g/Γ = 0.4), only one of these fully-polarized con-

figurations is “selected”, i.e., frequently visited along the Monte Carlo sampling, and the

93



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

J2/J1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
im

er
or

d
er

p
ar

am
et

er

DMRG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

g/°

0.00

0.05

0.10

0.15

0.20

0.25

S
qu

ar
e

m
ag

n
et

iz
at

io
n

DMRG

Pretraining

Fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0

J2/J1

0.00

0.05

0.10

0.15

0.20

S
tr

u
ct

u
re

fa
ct

or

Exact k = (º, º)

Exact k = (º, 0)

0.1 0.2 0.3 0.4 0.5 0.6
J2/J1

10°5

10°4

10°3

10°2

10°1

R
el

at
iv

e
er

ro
r

¢
"

RBM

Fine-tuning

Figure 4.10: Panel a: Ising chain. A ViT with hyperparameters h = 12, d = 72, nl = 4 is pretrained at

g/Γ = 1, on a chain with N = 100 sites. After the fine-tuning, the square magnetization order parameter

is computed and compared to DMRG results (bond dimension χ = 103). Panel b: Heisenberg J1-J2

chain. A ViT with hyperparameters h = 12, d = 192, nl = 4 is pretrained at J2/J1 = 0.4, on a chain

with N = 100 sites. After the fine-tuning, the dimer order parameter is computed and compared to

DMRG results (χ = 103). Inset : Relative error ∆ε (with respect to DMRG) of the same fully-connected

network (RBM) trained on the hidden representations generated by the pretrained ViT and directly

on configurations. Panel c: Two dimensional Heisenberg J1-J2. A ViT with hyperparameters h = 18,

d = 216, nl = 8 is pretrained at J2/J1 = 0.5, on a 6×6 square lattice. After the fine-tuning, the structure

factors at k = (π, π) and k = (0, π) are computed and compared to exact diagonalization results.

amplitudes for all other configurations are practically negligible (left panel). This effect

is related to the difficulty of simple sampling (that performs local spin flips) to overcome

the (large) barrier that separates the two ground states, which are almost degenerate on

finite systems. By contrast, in the disordered phase (g/Γ = 1.6), many configurations

have similar amplitudes: the two fully-polarized configurations showing a reduced weight

compared to all the others (right panel).

Moreover, we can connect the features learned by the ViT optimized at g/Γ = 1 and

the magnetization order parameter that controls the phase transition. To achieve this, we

then compute the hidden representations for fixed batch of physical spin configurations

and then we perform Principal Component Analysis (PCA) on it. In the panel (a) of

Fig. 4.12, we plot the principal component against the local magnetizations of the spin

configurations, i.e.,
∑N

i=1 σi. The two quantities exhibit a strong correlation. This orga-

nization of configurations in the feature space simplifies the description of the physics of

the system, allowing for an easy transition from the ordered phase to the disordered phase.

J1-J2 Heisenberg model on a chain. In order to assess the accuracy of our

method on more complicated systems, specifically with non-positive ground states in
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Figure 4.11: Dimensional reduction of the hidden representations for a set of M = 3000 configurations

built using a ViT pretrained at g/Γ = 1 with hyperparameters h = 12, d = 72, and nl = 4 for a system

of N = 100 sites. The data points represent UMAP projections of vectors z. Both the colors and sizes of

the points are related to the amplitudes predicted after the fine-tuning procedure at three distinct points

along the phase diagram: ordered phase g/Γ = 0.4 (left panel), transition point g/Γ = 1 (central panel)

and disordered phase g/Γ = 1.6 (right panel).

the computational basis, we investigate the one dimensional frustrated J1-J2 Heisenberg

model, whose Hamiltonians is defined in Eq. (3.3) (see Sec. 3.2.1). On finite systems,

the phase transition between a gapless phase with no order whatsoever and a gapped

one, with long-range dimer order may be extracted from the long-distance behavior

of the dimer-dimer correlation functions defined in Eq. (3.23). Specifically, perform-

ing a finite-size scaling, an estimation of the dimer order parameter can be obtained as

D2 = 9|D(N/2 − 1) − 2D(N/2) + D(N/2 + 1)| [131, 163]. However, we emphasize that

the order parameter is exponentially small close to the transition, making it difficult to

extract an accurate estimation of the actual value of (J2/J1)c (indeed, the location of the

transition may be easily obtained by looking at the level crossing between the lowest-

energy triplet and singlet excitations [110]). As before, we pretrain at a given point, here

J2/J1 = 0.4, and optimize the output layer of the network for different values of the

frustrating ratio, both in the gapless and gapped regions. The results for N = 100 (with

periodic boundary conditions) are reported in the panel (b) of Fig. 4.10, again compared

to DMRG calculations on the same system. In Table 4.3, we report the ground state ener-

gies obtained through three distinct methodologies: DMRG (with a bond dimension up to

χ = 103), ViT trained from scratch, and ViT pretrained at J2/J1 = 0.4 and subsequently

fine-tuned for other frustration ratios. Notably, the fine-tuned ViT exhibits remarkable

accuracy when compared to DMRG results, reaching a relative error ∆ε ≲ 10−3 for all

the values of the frustration ratio in the interval J2/J1 ∈ [0.1, 0.6]. In addition, in the
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Figure 4.12: Panel a: Correlation between the local magnetization
∑N

i=1 σi and the principal component

of the hidden representations of the configurations associated to the ViT used to obtain the results for

the Ising model in transverse field. In the inset, the PCA spectrum is shown. Panel b: Relative error

∆ε of the energy with respect to DMRG for the J1-J2 Heisenberg model on a chain [see Eq. (3.3)] of

N = 100 sites. The curves are obtained performing the fine-tuning procedure starting from different

pretraining points generated by a ViT with hyperparameters h = 12, d = 192, nl = 4. Specifically, we

set J2/J1 = 0.4 (green triangles), J2/J1 = 0.1 (blue circles), J2/J1 = 0.6 (red squares). The accuracy

of the same fully-connected network (RBM) optimized on the physical configurations is also reported for

comparison (orange diamonds).

inset of the panel (b) of Fig. 4.10, we compare the relative energy error ∆ε (with respect

to the DMRG energies) of an RBM trained directly on the physical configurations [7] and

of the fine-tuned ViT. This result underscores the importance of exploiting the features

constructed by the pretrained ViT, resulting in an accuracy gain of more than two orders

of magnitude with respect to the same network trained directly on configurations.

Furthermore, we want to stress that the accuracy of the fine-tuning across various

points on the phase diagram is influenced by the choice of the pretraining point. In our

calculations, we have always pretrained near transition points, where we expect better

generalization properties as discussed previously. Here, we investigate how the accuracy

of the fine-tuned results varies when choosing different pretraining points, for example

within the bulk of one phase. In the panel (b) of Fig. 4.12, we show the accuracy of

the energy ∆ε relative to DMRG calculations. The transition point of the model in the

thermodynamic limit is (J2/J1)c = 0.24116(7); however, on a finite system with N = 100

sites, the point exhibiting the maximum slope in the dimer order parameter occurs around

J2/J1 = 0.4 (refer to the central panel of Fig. 4.10). The accuracy of the fine-tuned

energies, using J2/J1 = 0.4 as the pretraining point, is approximately ∆ε ≈ 10−3 within
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the interval J2/J1 ∈ [0.1, 0.6] (green triangles). Conversely, pretraining from J2/J1 = 0.1

(blue circles) yields higher accuracy before J2/J1 = 0.4, but as the distance from the

pretraining point increases the accuracy deteriorates to approximately ∆ε ≈ 10−2. A

similar behavior can be observed when choosing J2/J1 = 0.6 as the pretraining point

(red squares). It is interesting to note that the accuracy of the network pretrained at

J2/J1 = 0.1 (blue circles) deteriorates by four orders of magnitude when fine-tuning at

J2/J1 = 0.4. In contrast, the network pretrained at J2/J1 = 0.4 (green triangles) loses

less than one order of magnitude in accuracy when finetuning at J2/J1 = 0.1, with the

error rising from ∆ϵ ≈ 10−4 to ∆ϵ ≈ 10−3. This result suggests that features learned

near the phase transition are more robust for generalization compared to those learned

within the bulk of a phase. Consequently, selecting a pretraining point that lies near the

transition appears to strike the optimal balance, yielding an accuracy roughly consistent

across all other points within the phase diagram.

Let us move on the discussion of how the output layer can modify the sign structure

during the fine-tuning step. For the J1-J2 Heisenberg chain, the sign structure of the

ground state wave function is not known except for J2 = 0, where the so-called Marshall

sign rule (MSR) [34] applies. However, even for large system sizes, the MSR constitutes

an accurate approximation of the sign structure up to J2/J1 ≤ 0.5 [38]. In the panel (a)

of Fig. 4.13, we show the predicted phases (0 or π), on top of the UMAP projections of

the vectors zp generated by the pretrained network at J2/J1 = 0.4. At J2/J1 = 0.1 (see

the left panel), after the fine-tuning procedure, the signs exactly match the ones obtained

at J2/J1 = 0.4 (not shown). This is because, at the pretraining point, where the clusters

are formed, the MSR remains a highly accurate approximation of the ground state sign

Table 4.3: Variational ground state energies for the J1-J2 Heisenberg chain with system

size N = 100. The Monte Carlo error attributed to finite sampling effects in the ViT

wave functions affects the last digit of the reported results.

J2/J1 DMRG ViT Fine-tuning

0.10 -0.425417395 -0.4254174 -0.425218

0.20 -0.408572967 -0.4085728 -0.408453

0.30 -0.393126745 -0.3931204 -0.393059

0.40 -0.380387370 -0.3803726 -0.380370

0.60 -0.380804138 -0.3807913 -0.379902
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Figure 4.13: Panel a: Graphical representation of the hidden representations for the J1-J2 Heisenberg

chain. The data points, corresponding to a sample of M = 3000 physical configurations, represent

UMAP projections of vectors zp generated by a ViT with hyperparameters h = 12, d = 192, and nl = 4,

pretrained at the point J2/J1 = 0.4 for a system size of N = 100. The depicted colors correspond to the

predicted phases (0 or π) after fine-tuning at two specific points within the phase diagram: J2/J1 = 0.1

(left panel) and J2/J1 = 0.6 (right panel). The left panel reveals a close resemblance between the cluster

structure identified during the pretraining at J2/J1 = 0.4 which match the Marshall sign rule. Panel b:

Relative error in energy ∆ε, compared to DMRG, plotted as a function of the optimization steps for the

J1-J2 Heisenberg model [refer to Eq. (3.3)] with J2/J1 = 0.6 on a system of N = 100 sites. The orange

curve represents the variational energy obtained using a RBM with K = 384 hidden neurons and 77568

parameters. The blue curve depicts the same network with the addition of the Marshall Sign Rule as a

prior for the sign structure. In contrast, the green curve is obtained by optimizing the same network on

top of the hidden representation z generated by the Transformer with hyperparameters h = 12, d = 192,

nl = 4 at J2/J1 = 0.4. Inset: Relative error in energy ∆ε of a RBM trained with the MSR prior as

a function of the number of parameters. For comparison, the accuracy of the finetuned network is also

shown.

structure. By contrast, for J2/J1 = 0.6, this is no longer true, and the output layer must

adjust the phases accordingly (see the right panel); still, the fine-tuned ViT performs

better than a RBM trained on spin configurations.

At the end, in order to understand which kind of prior information is encoded in the

features generated by the pretrained network we focus on the frustration ratio J2/J1 = 0.6

and we study it with a RBM [see Eq. (4.2)]. This network is employed in two distinct

manners: trained directly on the physical configurations σ, and trained on the hidden

representations zp, which are generated by a pretrained ViT at J2/J1 = 0.4. As depicted

in the panel (b) of Fig. 4.13, using the hidden representations (green curve) achieves an

accuracy of ∆ε ≈ 10−3, which is two orders of magnitude higher compared to the same

network defined directly on the physical configurations (∆ε ≈ 10−1, orange curve). The

difference primarily arises from the physical properties of the system that are encoded in
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the hidden representations, such as sign structure, amplitudes, and symmetries. Further-

more, given that the sign structure at J2/J1 = 0.4 is well approximated by the MSR, we

optimize an RBM, directly on the physical configurations, but implementing the Marshall

sign prior (blue curve). This RBM achieves an accuracy of ∆ε ≈ 10−2, underscoring that

the information compressed in the hidden representation exceeds that provided by the

Marshall sign prior. Despite increasing the number of parameters in RBMs, their perfor-

mance remains inferior to the fine-tuned network due to the poor scaling behavior of the

relative error in energy with the growth of network parameters and complicated structure

of the landscape with a lot of local minima emerging when increasing the number hidden

neurons (refer to the inset of the panel (b) of Fig. 4.13).

J1-J2 Heisenberg model on the square lattice. Finally, we consider the two-

dimensional J1-J2 Heisenberg model on an L×L square lattice (see Sec. 4.2.2). Here, we

limit ourselves to the 6× 6 system, where exact diagonalizations are possible (no DMRG

calculations on the structure factor are available on larger systems with periodic boundary

conditions). In the panel (c) of Fig. 4.10 we show the results obtained by first performing

the pretraining at J1/J2 = 0.5, then the fine-tuning for 0.2 < J2/J1 < 1 and evaluating

the order parameters m2
Néel and m2

stripe defined in Eq. (4.6) and Eq. (4.7), respectively.

Remarkably, even for this complicated two-dimensional model, the correct behavior of the

two magnetic order parameters can be reconstructed with great accuracy starting from a

single pretrained deep neural network.

4.3.2.2 Memory Efficiency in Fine-tuning and Pretraining Processes

In this Section, we discuss the advantages of the fine-tuning procedure in terms of mem-

ory requirements, compared to performing optimizations from scratch. The primary con-

straint in training neural networks with a large number of parameters arises from the

restricted memory capacity of contemporary graphical processing units (GPUs), rather

than their computational speed. Specifically, this limitation is associated to the back-

propagation algorithm [133], that is crucial for evaluating the gradients of the network

efficiently, but whose memory cost scales with the depth of the computation. Consider a

deep neural network that takes an input vector x and produces a scalar output f(x, θ) ∈ R,

where θ is a vector of trainable parameters. For simplicity, we arrange these parameters

as θ = Concat(θ0, . . . , θnl
), where θl is a vector containing all the Pl parameters of the l-th
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layer, and P is the total number of parameters across all layers, i.e., P =
∑nl

l=1 Pl. Addi-

tionally, assume that, when computing the output, the network generates K intermediate

activations ak, each of size Ak, and A is the overall number of activations calculated as

A =
∑K

k=1Ak. For a batch of M distinct input vectors, the loss function can be defined as

L(θ) = (1/M)
∑M

i=1 L[f(xi, θ)]. To efficiently backpropagate the gradients of the loss with

respect to the parameters, it is necessary to store all the A activations. Thus the total

memory cost of the algorithm scales with the depth of the computations and is expressed

as M × (A + maxlPl) (neglecting the cost of storing all P weights). On the contrary, for

the forward pass the memory cost is independent of the computation depth and is equal

to M × (maxkAk + maxlPl). Further details can be found in Ref. [79]. Notice that, dur-

ing the fine-tuning process, the memory-intensive backward pass over the deep network

becomes unnecessary. In the context of this paper, for the used ViT architectures, the

memory needed during the fine-tuning stage is approximately ten times less than what

is required during the pretraining stage. The backpropagation of gradients constitutes

the primary memory bottleneck, even when employing the Stochastic Reconfiguration

optimization method [27]. This method requires the allocation of a matrix containing

4M2 real numbers, where M denotes the number of samples used in optimization. With

double precision, this memory requirement translates to 32M2/109 GB. In our optimiza-

tions, with M = 3000, the memory usage is approximately 0.3 GB. This is two orders of

magnitude smaller than the memory required for the backward pass during pretraining.
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Chapter 5

Emergence of a Spin-Liquid Phase in

the Shastry-Sutherland Model

In most cases the use of Neural-Network Quantum States has been limited to rather simple

models, where the exact solutions were already known from other methods (e.g., the un-

frustrated Heisenberg model on the square lattice or one-dimensional systems). Attempts

to address challenging cases have been pursued, but without addressing important open

questions on the ground-state properties. In this Chapter, we aim to push the bound-

aries by demonstrating that an Ansatz exclusively reliant on neural networks enables us

to achieve unprecedented accuracy in solving the challenging Shastry-Sutherland model.

This model poses a particularly demanding problem in the realm of highly-frustrated

magnetism. Leveraging an architecture based on the Transformer architecture within the

Representation Learning framework, we carry out simulations on L × L clusters, up to

L = 18, with periodic-boundary conditions. Our results reveal the existence of a small,

but finite, region in the phase diagram in which both the antiferromagnetic and plaquette

order parameters vanish in the thermodynamic limit. As a result, this region is consistent

with the existence of a spin-liquid state.

5.1 The Shastry-Sutherland Model

Among the variety of quantum spin models, the one introduced by Shastry and Suther-

land [164] deserves particular attention since it gives an example in which the magnetic

order can be melted by tuning the super-exchange interactions, eventually leading to a par-
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Figure 5.1: Panel a: The ground-state phase diagram of the Shastry-Sutherland model as obtained

in this work. The super-exchange J (J ′) is denoted by solid (dashed) lines. Panel b: The (nearest-

neighbor) coupling J is denoted by solid lines and (next-nearest-neighbor one) J ′ by dashed lines. The

standard unit cell contains 4 sites, implying translations Tx and Ty (along x and y axis) by 2 lattice

points. The point-group symmetries, C4 rotations and σxy reflection, are also shown.

ticularly simple ground-state wave function, where nearby spins form singlets10. Most im-

portantly, this Hamiltonian captures the low-temperature properties of SrCu2(BO3)2 [165,

166]. The main interest in this material comes from its properties when external mag-

netic fields are applied. Indeed, a complicated magnetization curve is observed, with

various magnetization plateaus (most notably at magnetization 1/8) that show intriguing

properties [165, 167–169]. The Shastry-Sutherland model is defined by

Ĥ = J
∑

⟨R,R′⟩
ŜR · ŜR′ + J ′

∑
⟨⟨R,R′⟩⟩

ŜR · ŜR′ (5.1)

where ŜR is the S = 1/2 operator on the site R = (x, y). Here, the first sum goes over

nearest-neighbor sites on the square lattice, while the second sum is over next-nearest-

neighbor sites on orthogonal dimers, according to the bond pattern of Fig. 5.1. For a de-

tailed description of the lattice structure, including its symmetries, refer to Section 5.2.1.

The ground-state properties of the Shastry-Sutherland model are well known in two lim-

iting cases. When J = 0, the model reduces to a collection of decoupled dimers and its

ground state is a product of singlets connected by J ′; this state remains the exact ground

state also for finite values of J/J ′, up to a certain value [164]. In the opposite limit, when

J ′ = 0, the Heisenberg model on the square lattice is recovered, whose ground state is the

Néel antiferromagnet; also in this case, the ground state is robust in a finite region when

J ′ > 0. Despite the substantial effort that has been invested in understanding the ap-

pearance of magnetization plateaus, the ground-state properties of the Shastry-Sutherland

10See Appendix C for a detailed discussion on the dimer state of the Shastry-Sutherland model.
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model have been investigated in much less depth. One of the first studies based on the

mean-field approximation predicted an intermediate helical phase between the dimer and

the Néel phases [170], while other works suggested a direct transition between these two

phases [166, 171]. Later, an intermediate phase with plaquette order has been found

by series expansion approaches [172] and confirmed within the generalization to Sp(2N)

symmetry and large-N expansion [173], by exact diagonalizations, and a combination of

dimer- and quadrumer-boson methods [174]. Subsequent tensor-network approaches have

corroborated the presence of the plaquette phase, for 0.675 ≲ J/J ′ ≲ 0.765 [175]. This

phase breaks the reflection symmetry across the lines containing the J ′ bonds (leading

to a two-fold degenerate ground state) and is described by resonating singlets on half of

the plaquettes with no J ′ bonds, see panel (a) of Fig. 5.1. The stabilization of plaque-

tte order in SrCu2(BO3)2 has been obtained when hydrostatic pressure is applied, even

though there is evidence that the broken symmetry is related to the fourfold rotations

around the center of plaquettes with no J ′ bonds [176, 177]. In addition, high-pressure

thermodynamics provided evidence of a deconfined quantum critical point between the

Néel and plaquette phases [178]. The latter aspect has been supported by a numerical

analysis, also suggesting the emergence of the O(4) symmetry at the critical point [97,

179]. However, recent density-matrix renormalization group (DMRG) and exact diag-

onalization calculations [180, 181] pushed forward the idea that a spin liquid intrudes

between the antiferromagnetic and plaquette phases, around 0.79 ≲ J/J ′ ≲ 0.82. The

existence of an intruding spin-liquid phase has been also suggested by renormalization

group calculations [182].

5.2 Numerical Results

Numerical methods have proven crucial to obtain a description of the physical properties

of the Shastry-Sutherland model. In this Section we show the results obtained employing

the ViT architecture in the Representation Learning framework as described in Chapter 4.

5.2.1 Lattice and symmetries

The Shastry-Sutherland lattice is shown in the panel (b) of Fig. 5.1, where each site is

labeled by the Cartesian coordinate R = (x, y), with x, y ∈ Z. The lattice is invariant

under translations Tx : (x, y) → (x + 2, y) and Ty : (x, y) → (x, y + 2). This symmetry
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can be easily encoded in the Transformer architecture by taking as input patches the four

spins in an empty plaquette (i.e., plaquettes with no J ′ bonds), which constitute the unit

cell and then choosing the translationally invariant attention weights, namely αi,j = αi−j.

In addition, the lattice is invariant under the rotation with respect to the center of the

empty plaquette at the origin of the lattice Rπ/2 : (x, y) → (−y + 1, x) and the diagonal

reflection σxy : (x, y) → (y + 1, x − 1). For the ground state which lies in the k = (0, 0)

sector, all these symmetries can be enforced by a projector operator (see Appendix B),

leading to a total-symmetric state [37, 106, 183]:

Ψ̃θ(σ) =
∑
r,R

Ψθ(rRσ), (5.2)

where r ∈ {I, σxy} and R ∈ {I, Rπ/2, R
2
π/2, R

3
π/2}. Notice that the sum in Eq. (5.2) is

over a fixed number of terms and does not scale with the size of the system. In general

this procedure gets an improvement in the accuracy of the variational state, which is

difficult to obtain by just increasing the number of variational parameters. The numerical

simulations shown in this Chapter are performed with the symmetrized state in Eq. (5.2).

Furthermore, the Monte Carlo sampling for obtaining the ground state can be limited in

the Sz = 0 sector due to the SU(2) symmetry of the Shastry-Sutherland model.

5.2.2 Benchmarks

In order to validate our approach, we compare the results obtained by the ViT wave

function with those obtained by exact diagonalizations on a small 6×6 cluster. Specifically,

we focus on the challenging point J/J ′ = 0.8. We first examine the accuracy of the

variational energies while varying the hyperparameters of the neural network. In Fig. 5.2a,

we present the relative energy error as a function of the number of parameters, distributed

in two different ways within the architecture. Initially, we maintain a single layer (nl = 1)

and increase the number of heads h and embedding dimension d. Subsequently, we fix

a specific width (h = 12 and d = 72) and increment the number of layers from nl = 2

to nl = 16. We emphasize that to effectively use deep neural networks with nearly one

million of parameters (see panel (a) of Fig. 5.2), we adopt the modern formulation of the

Stochastic Reconfiguration [27, 36] (detailed in Chapter 2) taking τ = 0.03 with a cosine

decay scheduler, the regularization parameter λ = 10−4 and the number of samples is fixed

to be M = 6000. The energies for different values of nl are reported in Table 5.1. Previous

works [27, 36, 135–137] emphasized that, for two-dimensional frustrated systems, the use
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Figure 5.2: Panel a: Relative error ∆ε = |(Eexact −EViT)/Eexact| of the ViT wave function on a 6× 6

lattice at J/J ′ = 0.8. First, fixing only one layer and measuring the accuracy by increasing the width

(blue dots). Then, for a fixed width, by increasing the number of layers (green squares). Panel b: The

isotropic spin-spin correlations in real space as computed by the ViT wave function (full dots) on a 6× 6

lattice at J/J ′ = 0.8. Values from exact diagonalization (empty dots) are also shown for comparison.

Inset: The red line shows how the spin-spin correlations are ordered in the panel (b). Panel c: The

comparison between the energies per site obtained by the ViT wave function (green circles) on L × L

lattices with periodic-boundary conditions and the ones obtained by DMRG (orange squares) on 2L×L

cylinders with open-boundary conditions along the x direction [180]. The exact result on the 6×6 lattice

is denoted with an empty red circle.

of deep neural networks is imperative to attain precise results. In fact, for an equivalent

number of parameters, architectures distributing parameters across multiple layers exhibit

superior accuracy. In addition, the comparison of isotropic spin-spin correlation functions

⟨Ŝ0 · ŜR⟩ with exact results (see Fig. 5.2b) illustrates that our variational wave function

not only yields accurate energies, but also faithfully correlation functions at all distances.

For cluster sizes exceeding L = 6, exact results become unattainable. Consequently,

in Fig. 5.2c, we compare the variational energies of the ViT Ansatz on L × L clusters

(with periodic-boundary conditions) to the ones obtained using the DMRG method on

Lx×Ly cylinders with open and periodic boundaries in the x and y direction, respectively

(Lx = 2Ly and Ly = L are considered) [180]. Due to the global receptive field of the

attention mechanism, its computational complexity scales quadratically with respect to

the length of the input sequence. To improve the efficiency of the variational states for

large systems with L = 16 and L = 18, we consider a local attention with a 5×5 filter and

architectures with nl = 4 and nl = 8 layers to have a structure that connects all patches,

albeit indirectly. The actual energies for L = 14, 16 and 18 are reported in Table 5.1

We mention that the energies obtained by the ViT wave function reveal a 1/L2 term as

the leading correction, whereas the DMRG results exhibit an additional 1/L term. Most
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importantly, the energy extrapolated in the thermodynamic limit is compatible within

the two approaches. In addition, we emphasize that this approach allows us to achieve

larger sizes than are currently feasible with state-of-the-art methods such as the DMRG.

Table 5.1: Ground-state variational energy (in unit of J ′) for different number of layers

nl at J/J ′ = 0.8. The Monte Carlo error due to finite sampling effects is on the last digit.

In the case of a 6× 6 lattice, the ground-state energy per site from exact diagonalization

is E = −0.4517531.

4 layers 8 layers

6× 6 -0.451699 -0.451707

14× 14 -0.448839 -0.448925

16× 16 -0.448822 -0.448882

18× 18 -0.448813 -0.448859

5.2.3 Phase diagram

Having proved the high accuracy of our Ansatz, we now focus on the region 0.7 ≤ J/J ′ ≤
0.9, which is expected to include both antiferromagnetic and plaquette phases, as well as

the putative spin-liquid one. All calculations are done on L × L clusters with L ≤ 18.

The presence of antiferromagnetic order is extracted from the thermodynamic limit of the

staggered magnetization m2(L) = S(π, π)/L2 [180], where

S(k) =
∑
R

eik·R ⟨Ŝ0 · ŜR⟩ (5.3)

is the spin structure factor. Notice that S(k) is defined by the Fourier transform on the

square lattice denoted by the sites R, i.e., without considering the basis of the Shastry-

Sutherland lattice. In addition, the insurgence of the plaquette order is detected by a

suitably defined order parameter

mp(L) = |C(L/2, L/2)− C(L/2− 1, L/2− 1)| , (5.4)

where the function C(R) is defined as follows: starting from the operator P̂R, which

performs a cyclic permutation of the four spins of a plaquette with the top-right site at

R [180], the following correlation functions are evaluated:

C(R) =
1

4
⟨[P̂R + P̂−1

R ][P̂0 + P̂−1
0 ]⟩ . (5.5)
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Figure 5.3: Fourier transform of the spin-spin (upper panels) and plaquette-plaquette (lower panels)

correlations for L = 12 for different values of the frustration ratio J/J ′. The calculations are performed

with a Vision Transformer characterized by a number of heads equal to h = 12, an embedding dimension

d = 72, and number of layers nl = 8.

Therefore, the plaquette order parameter mp(L) of Eq. (5.4) measures the difference,

along the diagonal, of the plaquette correlation at the maximum distance and the second

maximum distance; whenever the plaquette order is present, the correlation along the

diagonal does not decay to zero, implying a non-vanishing value of mp(L) for large L.

Similarly, the Fourier transform of the correlation functions in Eq. (5.5) (with the same

conventions as for spins) denoted by C(k) can be analyzed. The presence of the plaquette

order can be identified by a diverging peak at kp = (0, π) or (π, 0). The results for

L = 12 are shown in Fig. 5.3, for three values of the frustration ratio: for J/J ′ = 0.7 the

ground state has strong peaks in C(k) and a rather smooth spin structure factor S(k),

which is typical of a state with plaquette order; by contrast, for J/J ′ = 0.9 there are

strong spin-spin correlations and weak plaquette-plaquette ones, which is characteristic

of antiferromagnetic states. In between, for J/J ′ = 0.8, the spin-spin correlations still

have a peak, with moderate plaquette correlations. In order to get information on the

thermodynamic limit, a size scaling is necessary. In general, if magnetic order is stabilized,
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Figure 5.4: Panel a: Size scaling of the square magnetization m2(L) (left panel), and the plaquette order

parameter mp(L) (right panel) as a function of 1/L from L = 6 up to L = 14. For the frustration ratio

J/J ′ = 0.80 we include also L = 16 and 18. The values reported for each size L are obtained by extrap-

olating to an infinite number of layers. The error bars of the extrapolated values in the thermodynamic

limit are estimated via a resampling technique with gaussian noise. The fits associated to dashed curves

are obtained using second-order polynomials in 1/L, while solid curves are obtained using the critical

form in Eq. (5.7) of the main text. Panel b: In the left (right) panel we show the correlation ratio RNéel

(Rplaq) for the antiferromagnetic (plaquette) order in the interval J/J ′ ∈ [0.80, 0.84] (J/J ′ ∈ [0.76, 0.80]).

System sizes from L = 10 to L = 14 are used. Inset: Crossing points of the correlation ratio for Néel

(orange diamond) and plaquette (red squares) order parameter as a function of the system size. The

crossing points are obtained using L1×L1 and L2×L2 clusters with (L1, L2) = (10, 12), (10, 14), (12, 14),

with Lm = (L1 + L2)/2.

the square magnetization scales asintotically as [147, 148]:

m2(L) ≈ m2
0 +

A1

L
+

A2

L2
, (5.6)

where m0 is the magnetization in the thermodinamic limit. In a disordered phase, the

magnetization vanishes in the thermodynamic limit. The size corrections can be either

exponential (for a gapped state) or power law (for a gapless one). In the vicinity of the

Néel transition, the gap is relatively small and we use the “critical” form [37]:

m2(L) ≈ L−(1+η) . (5.7)

Similar scaling behaviors are considered for mp(L) (within the plaquette phase, exponen-

tial corrections should be present, but no appreciable differences in the fits are observed

with respect to the choice of a polynomial fit). In Fig. 5.4a, we perform a size-scaling

extrapolation of both order parameters. For J ′/J = 0.84 (J ′/J = 0.76), the numerical val-

ues of the square magnetization (plaquette order parameter) fit well with a second-order
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Figure 5.5: Panel a: The values of the square magnetization m2(L) (plaquette order parameter mp(L))

are reported in the left (right) panel by increasing the number of layers nl from 2 to 8 at J/J ′ = 0.8 from

L = 6 to L = 14 (empty symbols). The extrapolated results in the limit of an infinite number of layers

are also shown (full symbols). The exact values for L = 6 are reported in both cases for comparison (red

circle). The error bars on the extrapolated values are obtained via resampling techniques with gaussian

noise. Panel b: Size scaling of the square magnetization m2(L) as a function of 1/L from L = 6 up

to L = 14 at J ′/J = 0.8. The numerical data encompasses varying numbers of layers, specifically from

nl = 2 to nl = 8, along with the extrapolated values for an infinite number of layers (see Fig. 5.5). The

curves for the extrapolations in the thermodynamic limit are performed using as fitting curve a second-

order polynomial in 1/L [see Eq. (5.6)] (left panel) and the critical form of Eq. (5.7) (right panel). The

error bars of the extrapolated values in the thermodynamic limit are obtained with resampling techniques

with gaussian noise.

polynomial in 1/L and suggest the existence of long-range order in the thermodynamic

limit. By contrast, for J ′/J = 0.78, 0.8 (J ′/J = 0.82, 0.84), a more appropriate description

of the scaling behavior of m2 (mp) is obtained by the critical relation of Eq. (5.7). Inter-

estingly, fitting the data of the square magnetization at J ′/J = 0.8 with m2 ≈ L−(1+η),

we get η ≈ 0.3, in agreement with the DMRG calculations of Ref. [180]. Remarkably, for

the most challenging point J/J ′ = 0.8 we estimate the order parameters also for larger

lattices, in particular L = 16 and L = 18 (see panel (a) of Fig. 5.4). These further cal-

culations provide convincing evidence that for J/J ′ = 0.8 both order parameters vanish

in the thermodynamic limit, strongly suggesting the existence of an intermediate phase

compatible with a liquid spin phase [180]. The results in the panel (a) of Fig. 5.4 are

obtained by measuring the order parameters as a function of the number of layers nl, and

then extrapolating their values for a network with an infinite number of layers nl → ∞
(see panel (a) of Fig. 5.5). For L = 6, we validate these numerical extrapolations against

exact diagonalization results, finding excellent agreement. Additionally, the extrapolated

results exhibit minimal deviation from the results for nl = 8 layers, underscoring the
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robustness of the calculations.

Moreover, in the panel (b) of Fig. 5.5, we show the size scaling of the square mag-

netization in 1/L as the number of layers increases. Then we perform extrapolations

in the thermodynamic limit, considering the square magnetization values obtained for a

fixed number of layers nl. Specifically, as cross validation we use both a second-order

polynomial in 1/L [see Eq. (5.6)] and the critical form in Eq. (5.7) to carry out the ex-

trapolations. The resulting fitting curves display remarkably similar behaviors, further

confirming the consistency and reliability of our extrapolated results.

In summary, we find that the magnetization (plaquette order) vanishes for J/J ′ ≈ 0.82

(J/J ′ ≈ 0.77). These results suggest that a spin liquid exists between (J/J ′)plaq ≈
0.77 and (J/J ′)Néel ≈ 0.82. To further support the present outcome, we measure the

correlation ratio for the plaquette order as Rplaq = 1− C(kp + δk)/C(kp), and for the

magnetic order as RNéel = 1− S(kp + δk)/S(kp), where ||δk|| = 2π/L. When plaquette

(magnetic) order is not present, C(k) (S(k)) is a smooth function of k, which implies that

Rplaq → 0 (RNéel → 0) in the thermodynamic limit; instead, when plaquette (magnetic)

order settles down, C(k) (S(k)) is finite for all the momenta except for kp, leading to

Rplaq → 1 (RNéel → 1). Then, the transition point may be accurately determined by

locating the crossing point of the correlation ratio curves for different system sizes. The

results for the plaquette (magnetic) order are shown in Fig. 5.4b, in the relevant interval

J/J ′ ∈ [0.76, 0.80] (J/J ′ ∈ [0.80, 0.84]), increasing the system size, i.e., for L = 10, 12,

and 14. The various curves cross at (J/J ′)plaq ≈ 0.78 ((J/J ′)Néel ≈ 0.81), validating the

phase boundary derived from the extrapolations of the order parameters.

5.2.4 Nature of the Spin Liquid Phase

The difficulty of the problem resides in the smallness of the spin liquid region, which

require extremely accurate calculations and large system sizes. The present definition

of the ViT wave function (that combines a real-valued attention mechanism and a final

complex-valued fully-connected layer) allows us to detect the existence of a finite region

0.78 ≲ J/J ′ ≲ 0.82 in which both magnetic and plaquette orders vanish in the thermo-

dynamic limit, then supporting the presence of the intermediate spin-liquid phase [180].

Our results are important because they show that the magnetically ordered Néel phase

is melted into a spin liquid, similar to what happens in the J1-J2 Heisenberg model on

the square lattice [184]. This suggests that this kind of (continuous) transition is rather
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Figure 5.6: Energy gap ∆ obtained with the ViT wave function between the ground state with total spin

along the z direction Sz = 0 at momentum k = (0, 0) and the excited state with Sz = 1 at momentum

k = (0, 0) as a function of inverse linear length 1/L from L = 6 to L = 18 at J/J ′ = 0.8. The exact gap

for the 6× 6 lattice is also reported for comparison (green empty circle).

generic and may represent the habit, and not the exception, for the melting of the Néel

order due to magnetic frustration.

A further step in comprehending the physical properties of the Shastry-Sutherland

model is the characterization of the spin liquid phase. Of particular significance is the

question of whether the liquid spin state is gapless or gapped. However, the spin-liquid

region is rather small and extracting the gap is extremely difficult. Indeed, the gap is

expected to be small, thus implying that very large clusters must be considered. We

focus on J/J ′ = 0.8, namely the most challenging point in the middle of the exotic spin

liquid phase. We study the energy gap between the triplet state (S = 1) at momentum

k = (0, 0), which represents the lowest excitation in the Néel phase (within the folded

Brillouin zone), and is expected to remain the lowest near the transition to the spin liquid

phase, and the singlet state (S = 0) at momentum k = (0, 0), which correspond to the

symmetry sectors of the ground state.

As described in Sec. 5.2.1 the ViT wave function has by construction zero momentum

by choosing as input patches the unit cell of the Shastry-Sutherland lattice. However, since

the ViT wave function is constructed in a basis aligned with the z-axis, it explicitly breaks

the SU(2) symmetry [149, 180, 185–187]. For this reason, to approximate the triplet state

we restrict the wave function to the sector of the Hilbert space with Sz = 1, which can be

easily implemented in the Monte Carlo sampling. Instead for the approximation of the

ground state we restrict the sampling to the Sz = 0 sector as detailed in Sec. 5.2.1. In

Fig. 5.6 we show the energy gap ∆ = Etriplet − E0 obtained with the ViT wave function
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as a function of inverse linear length 1/L from L = 6 to L = 18 at J/J ′ = 0.8. The

extrapolation with a quadratic fit ∆ = a + b/L + c/L2 produces, with a small fitting

error, a vanishing gap ∆ = 0.00(7) in the thermodynamic limit. This result provides,

for the first time, compelling evidence about the gapless nature of liquid spin in the

Shastry-Sutherland model [28].
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Conclusions and Future Directions

The research work presented in this Thesis has focused on the characterization of frus-

trated spin models using variational approaches grounded on neural networks. Over the

past three decades, this challenging task has been addressed through the introduction and

development of several numerical methods. Although a comprehensive understanding of

the physical properties of strongly correlated systems in the highly-frustrated regime re-

mains an open challenge, we have demonstrated that our methods provide accurate results

to previously inaccessible problems. This underscores the potential of Neural-Network

Quantum States as a valuable tool for probing uncharted phases of matter, opening op-

portunities to establish the properties of many-body systems.

While NQS have achieved remarkable results in the unfrustrated regime [7], where the

knowledge of the sign structure significantly simplified the numerical computations [34],

the study of frustrated systems has posed considerable complications. In Chapter 3 we

first looked into what happens when the ground state is not positive definite in the com-

putational basis. Specifically, we wanted to understand how neural networks can figure

out the sign structure of ground state and low-energy excited states. We started with a

simple neural network architecture, namely a single fully-connected layer, analogous to

the one utilized in the original work of Carleo and Troyer [7]. We focused on small clusters

for the J1-J2 Heisenberg model on a chain, comparing our results with the exact ones.

We checked how well this kind of neural network can understand the tricky sign structure

of the ground state during training, especially in different frustration scenarios [38]. It

turns out, while this simple architecture works well for small systems, it is not suitable for

larger clusters. That is why we need to consider more complicated architectures. Specif-

ically, we propose a variational state based on Transformer architectures [31], which are

advanced models known for their effectiveness in natural language processing tasks [18].

Transformers are constructed to efficiently capture long-range correlations, a challenge

for other types of neural networks. Describing these correlations accurately is crucial in
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understanding the physical properties of many complicated models. We tested our ap-

proach on the J1-J2 Heisenberg model on a chain with one hundred sites. Our results

compete well with Density Matrix Renormalization Group calculations, indicating that

our approach accurately describes ground state properties for both gapless and gapped

states with incommensurate correlations.

However, using large-scale neural networks creates challenges for traditional optimiza-

tion methods. Specifically, the Stochastic Reconfiguration, a powerful method for opti-

mizing variational quantum states, becomes impractical when dealing with a large number

of parameters. This is because it requires inverting a matrix with a side length equal to

the number of parameters. To address this issue, in Chapter 2 we discussed a method

that we recently proposed, that relies on a simple linear algebra identity. This identity

reduces the problem to inverting a smaller matrix with a side length equal to the number

of samples used for stochastic estimations [27]. This approach is particularly useful in

deep learning scenarios where the number of parameters is much greater than the number

of samples, enabling the efficient optimization of variational states with millions of param-

eters. In Chapter 4 we showcase the efficacy of this method by achieving state-of-the-art

ground state energy for the J1-J2 Heisenberg model on a 10× 10 lattice at J2/J1 = 0.5, a

challenging benchmark in highly-frustrated magnetism, with a variational Ansatz based

on a Deep Vision Transformer.

In Chapter 5 we further demonstrated the effectiveness of our methodology focusing

on the Shastry-Sutherland lattice, a frustrated two-dimensional system that mimics the

low-energy properties of SrCu2(BO3)2. This material exhibits remarkable behavior under

an external magnetic field. Our study focused on determining the ground state proper-

ties. We found a region where the order parameters describing well-established orders,

such as plaquette valence bond and antiferromagnetic orders, both approach zero in the

thermodynamic limit. This evidence suggests the presence of a small region consistent

with a spin liquid state, a conclusion also reached in a recent study using DMRG [180].

This result, achieved by combining state-of-the-art Neural-Network Quantum States with

a powerful optimization technique, not only highlights the utility of neural networks as

effective parametrizations for obtaining reliable benchmarks but also unveils new physical

phenomena in complicated models.

Future directions can take various paths. On one hand, we are particularly interested

in using these variational states for exploring more complicated problems, such as the

Kagome lattice [35, 188]. Additionally, there is an interest in applying them for deter-
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mining physical properties which are relevant from an experimental perspective, such as

the magnetization plateaus in the Shastry-Sutherland lattice [169]. On the other hand,

the success in describing quantum systems of spins through variational states based on

neural networks has no counterpart in correlated models of fermions [189]. For exam-

ple, the Hubbard model on the square lattice, which represents the most iconic model of

interacting fermions, has been the subject of intense numerical and theoretical studies;

nevertheless, a complete understanding of its properties has not been achieved yet [51,

190]. Considering the results obtained in studying one and two dimensional spin models

with the Transformer architecture, we would like to extend this approach to deal with

fermionic ones. To do that, a generalization of the architecture is necessary.

Generally, deep neural networks process inputs (like the physical configurations of

a model) to create hidden representations in high-dimensional spaces. As presented in

Chapter 4 their success lies in the simplicity of problem-solving within this space, often

characterized by clusters that are linearly separable. Consequently, even simple networks

operating in this representation can effectively tackle complicated problems. This philos-

ophy guided our approach in defining the Ansatz for spin models [27].

In this case, a spin configuration is mapped into a vector z ∈ Rd by the Transformer.

Subsequently, a straightforward network can predict the amplitude of the corresponding

configuration. For fermionic problems, an additional step is needed. Starting from the

hidden representation z, we construct a matrix of orbitals, and the final amplitude is

determined by the determinant of the matrix. This approach offers an advantage as

the obtained orbitals are configuration-dependent, similar to backflow methods [191]. In

principle, a single determinant proves sufficient to construct highly accurate variational

states by refining the hidden representations. Additionally, a similar strategy can be

applied to address fermionic problems on the continuum with minor adjustments [102,

103, 107].

Moreover, from a methodological perspective, the approach introduced for optimiz-

ing networks with a large number of parameters [27], making minor modifications to the

equations describing parameter updates, enables to describe the unitary time evolution of

quantum many-body systems according to the time-dependent variational principle [75,

192–194]. Consequently it can find application in the determination of dynamical struc-

ture factors [108]. Specifically, the latter ones can be estimated as the Fourier transform

of a dynamical correlation function ⟨Ψ0|Ô1(t)Ô2|Ψ0⟩ = ⟨Ψ0|eiĤtÔ1e
−iĤtÔ2|Ψ0⟩. Thus, it

is essential to have an efficient way to accurately estimate e−iĤt |Ψ0⟩. Dynamical structure
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factors offer the possibility to build a connection between theoretical/numerical results

and experimental analysis such as inelastic neutron scattering. This makes them crucial

methods for characterizing two dimensional quantum many-body systems. In particular

they play an important role for the experimental detection of significant properties (e.g.,

fractionalized excitations) in candidate materials able to realize exotic phases of matter.

In conclusion, the results presented in this Thesis demonstrate that Neural-Network

Quantum States are an effective tool for investigating the ground-state properties of frus-

trated quantum magnets, competing, and also surpassing, existing state-of-the-art nu-

merical methods developed over the past three decades. We believe that future research

focused on improving these techniques will be crucial for advancing our understanding of

the physical properties of strongly interacting quantum systems.
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Appendix A

Marshall Sign Rule Prior

For any bipartite lattice the exact signs of the ground state wave function of an Hamilto-

nian with nearest-neighbor interactions (e.g., the Heisenberg model) satisfy the so-called

Marshall-sign rule [34]. Specifically, the sign of the wave function in the computational

basis is given by sign[Ψ0(σ)] = (−1)N↑,A(σ), where N↑,A(σ) is the number of up spins on

the A sublattice. Motivated by this fact, it is common to consider variational states in

which (−1)N↑,A(σ) is attached to the amplitudes of the variational states for studying frus-

trated systems (see Table 4.2), although the Marhsall-sign rule gives the exact signs of

the ground state only in the unfrustrated limit. However, it still turns out to constitute

a reasonable approximation for the sign structure of the exact wave function in a certain

regime of frustration (see Fig. A.1). The accuracy of the Marshall-sign rule can be as-

sessed by evaluating the following average on relatively small clusters, such as the ones

that can be tackled by exact diagonalization:

⟨sMSR⟩ =

∣∣∣∣∣∣
∑
{σ}
|Ψ0(σ)|2sign [Ψ0(σ)]M(σ)

∣∣∣∣∣∣ , (A.1)

where Ψ0(σ) is the exact ground-state amplitude andM(σ) = (−1)N↑,A(σ) is the Marshall

sign of the configuration σ. The absolute value is taken to overcome a possible global

sign in the exact state. Whenever the Marshall-sign rule is exact, ⟨sMSR⟩ = 1, otherwise

0 ≤ ⟨sMSR⟩ < 1.

In panels (a) and (b) of Fig. A.1, we show the values of ⟨sMSR⟩ for the one-dimensional

J1-J2 Heisenberg model [see Eq. (3.3)] for a cluster of N = 20 and N = 30 sites. The

momentum of the ground state is either k = 0 or π: while for J2/J1 ≤ 0.5 it does not
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Figure A.1: Panel a and b: Average Marshall-sign for the one-dimensional chain as a function of J2/J1

for N = 20 [see panel (a)] and 30 [see panel (b)]. For J2/J1 < 0.5 the ground state has momentum k = 0

(for N = 20) and k = π (for N = 30); for J2/J1 > 0.5, the momentum of the ground state is not fixed.

For that reason, we report both states, the actual ground state is marked by a filled symbol. Panel c:

Average Marshall-sign for the square lattice as a function of J2/J1 for 4 × 4 (blue squares) and 6 × 6

(green circles) and the extrapolated value at J2/J1 = 0.5 from Ref. [128] for the 10 × 10 (orange star)

lattice.

depend on J2/J1 but only on the parity of N/2, for J2/J1 > 0.5 it changes with the

frustrating ratio and N . Therefore, for this latter case, we compute ⟨sMSR⟩ for both the

lowest-energy wave functions with k = 0 and π. The remarkable outcome is that, even

on a relatively large cluster, ⟨sMSR⟩ is very close to 1 in the whole region 0 ≤ J2/J1 ≤ 0.5

(it is exactly 1 for J2/J1 = 0 and 0.5), while it rapidly drops to zero for J2/J1 > 0.5. As

an example, on N = 30 sites, ⟨sMSR⟩ = 0.99994 for J2/J1 = 0.3 and ⟨sMSR⟩ = 0.08195 for

J2/J1 = 1 [38].

As shown in the panel (c) of Fig. A.1, a similar behavior is observed in the J1-J2

Heisenberg model on the square lattice [see Eq. (4.4)]. Around J2/J1 = 0.5, the average

Marshall-sign, ⟨sMSR⟩, begins to deviate significantly from 1.0 [195]. In Ref. [128], this

value for a 10× 10 lattice is extrapolated from smaller system sizes under the assumption

of exponential decay with the number of spins, yielding an estimate of ⟨sMSR⟩ ≈ 0.88.
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Appendix B

Quantum Number Projection

Variational wave functions do not necessarily possess the symmetries of the physical model

under investigation. In principle, the correct symmetries of the exact ground state can

be potentially recovered by the variational state in the limit of a large number of param-

eters, since NQS states have the property of being universal approximators of arbitrary

functions. However, in practice, the optimized variational wave functions do not fulfill

exactly the symmetries of the Hamiltonian. A possible way to overcome this issue is

applying a projection operator to enforce the desired symmetries with definite quantum

numbers [196]. In general, for a symmetry group G and a variational state |Ψθ⟩, which

does not exhibit the desired symmetry, we can enforce it by applying the projection op-

erator:

P̂G =
1

|G|
∑
g∈G

χ∗
g ĝ , (B.1)

where {ĝ0, ĝ1, . . . , ĝ|G|−1} is the set of operators corresponding to the elements of the group,

and {χg} represent the characters of the group. This operator projects the non-symmetric

state onto the subspace that is invariant under the group action. The symmetry-enforced

invariant state is defined as |Ψ̃θ⟩ = P̂G |Ψθ⟩, whose corresponding amplitudes (neglecting

the irrelevant scaling factor 1/|G|) are given by :

Ψ̃θ(σ) =
∑
g∈G

χ∗
gΨθ(σg), (B.2)

where ⟨σ|ĝ|Ψθ⟩ = Ψθ(σg), meaning that σg represents the transformed configuration under

the group element ĝ. It is straightforward to demonstrate that Ψ̃θ(σg′) = χ∗
g′Ψ̃θ(σ) by

exploiting the property of group characters, which satisfies χg′g = χg′χg. This ensures
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that the projected state correctly transforms according to the the action of the group

elements.

To be concrete, as an example we consider a non-translational invariant wave function,

such as the RBM discussed in Sec. 3.3. The translational symmetry can be restored by

defining:

Ψθ(σ) =
N−1∑
R=0

eikRΨθ(σR) , (B.3)

where, for simplicity, we restrict ourselves to the one-dimensional case. Here, k = (2π/N)n

with n = 0, . . . , N−1 is the crystal momentum, eikR represents the character of the trans-

lation group, with R = 0, . . . , N−1 the lattice vectors of the one-dimensional lattice. The

term Ψθ(σR) = ⟨σ|T̂R|Ψθ⟩ is the wave function evaluated in the translated configuration,

where {T̂R} denotes the set of translation operators.

We emphasize that this projection procedure not only leads to a substantial improve-

ment in the accuracy of the variational Ansätze [31, 36, 37, 106, 185], but also gives

the possibility of approximating excited states, for example varying the momentum k in

Eq. (B.3) [106].

However, from a practical standpoint, careful attention must be given to the imple-

mentation of the symmetrized wave function in Eq. (B.2) to avoid numerical instabilities.

Typically, we parametrize the logarithm of the wave function, Log[Ψθ(σ)] (see Sec. 1.4.3),

and for symmetrized states, the idea is to evaluate the logarithm of the wave function

Log[Ψ̃θ(σ)] by exploiting the known values of Log[Ψθ(σg)], without explicitly exponenti-

ating the wave function. To achieve this, we select a reference element of the group ḡ,

and rewrite the sum in Eq. (B.2) as follows:

Log[Ψ̃θ(σ)] = Log[Ψθ(σḡ)] + Log

(
χ∗
ḡ +

∑
g ̸=ḡ

χ∗
g eLog[Ψθ(σg)]−Log[Ψθ(σḡ)]

)
. (B.4)

The standard procedure to optimize the symmetrized state involves first optimizing the

non-symmetric state Ψθ(σ). If the state is sufficiently accurate, we expect it to approx-

imately recover the symmetries of the Hamiltonian. In this case, the differences in the

exponents Log[Ψθ(σg)]−Log[Ψθ(σḡ)] will be O(1), preventing numerical instabilities when

evaluating their exponentials. After the initial optimization of the non-symmetric state,

we can use the optimized parameters to further train the symmetrized state. This proce-

dure can be iterated for the different symmetries of the Hamiltonian, as shown in inset of

the left panel of Fig. 4.7.
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Appendix C

Analytical Representation of

Physical Ground States with

Transformer Wave Functions

In this Appendix we examine an analytical solvable quantum many-body Hamiltonian,

developing an exact mapping between its ground state and a single layer of two-headed

Factored attention. Building upon this result, we extend our analysis to scenarios where

the ground state lacks analytical solutions, providing insights into why attention mech-

anisms including queries and keys [as in Eq. (4.9) and Eq. (4.10)] should converge to

positional only solutions when studying large systems.

As illustrative example of solvable quantum many-body Hamiltonian, we consider the

Shastry-Sutherland model [164] (see Chapter 5 for a detailed description). In a finite range

of the frustration ratio (J/J ′ ≲ 0.675), the ground state of this model is represented as a

product of singlets between next-nearest-neighbor spins arranged on a square lattice [164],

refer to Fig. C.1 for a graphical representation. Here, we want to show that a single-layer

ViT with Factored attention [see Eq. (4.11)] can represent exactly this ground state.

Working on a L×L square lattice with periodic boundary conditions, we partition input

spin configurations into b×b patches, with b = 2 (see Fig. C.1), which are then flattened to

construct input sequences. Assuming an embedding dimension of d = b2 = 4 and choosing

the embedding matrix to be the identity, the i-th input vector is xi = (σi,1, σi,2, σi,3, σi,4)
T ,

where i = 1, . . . , L2/b2. Then, we apply the Multi-Head attention mechanism [18] with

124



Figure C.1: Graphical representation of the ground state of the Shastry-Sutherland model in the dimer

phase [164] on a 6 × 6 lattice (periodic boundary connections not shown for clarity). The green shaded

regions denote singlet states between two next-nearest neighbors spins. The blue squares b × b indicate

the patches used to construct the input set of vectors for the Transformer.

h = 2 heads. Considering the value matrices:

V (1) =

(
0 0 0 V

(1)
11

0 V
(1)
22 V

(1)
23 0

)
V (2) =

(
V

(2)
14 0 0 0

0 0 0 0

)
, (C.1)

the value vectors are computed as v
(µ)
i = V (µ)xi ∈ Rd/h:

v
(1)
i =

(
V

(1)
11 σi,4, V

(1)
22 σi,2 + V

(1)
23 σi,3

)T
v
(2)
i =

(
V

(2)
14 σi,1, 0

)T
. (C.2)

Now, we assume the L2/b2 × L2/b2 attention matrices to be α
(1)
ij = δi,j and α

(2)
ij = δi,S(i),

where:

S(i) =

(i + 1)%(L2/b2) if i%(L/b) = 0,

(i + L/b)%(L2/b2) + 1 otherwise,
(C.3)

to take into account the periodic boundary conditions. Notably, the role of the two

different heads is to encode the intra-patches correlations through the attention matrix

α(1) and the inter-patches correlations through α(2). It is worth noting that, to reproduce

the same attention maps with T5 [see Eq. (4.9)] or Decoupled [see Eq. (4.10)] attention

mechanisms, we have to set Q = K = 0. The resulting attention vectors are:

A
(1)
i =

(
V

(1)
11 σi,4, V

(1)
22 σi,2 + V

(1)
23 σi,3

)T
A

(2)
i =

(
V

(2)
14 σS(i),1, 0

)T
. (C.4)
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Following the Multi-Head mechanism [18], we concatenate the vectors A
(µ)
i of the different

heads and apply another matrix W ∈ Rd×d to mix the different representations. Choosing

W to be:

W =


1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

 , (C.5)

we obtain:

Ai =
(
V

(1)
11 σi,4 + V

(2)
14 σS(i),1, V

(1)
22 σi,2 + V

(1)
23 σi,3, 0, 0

)T
. (C.6)

At this point, in the standard architecture each attention vector is fed to a MLP; in our

analytical computations, we substitute it with a generic nonlinearity F (Ai + c), where c

is a constant bias. The output of this operation is the sequence of vectors:

yi =
(
F (V

(1)
11 σi,4 + V

(2)
14 σS(i),1 + c), F (V

(1)
22 σi,2 + V

(1)
23 σi,3 + c), 0, 0

)T
. (C.7)

The hidden representation is obtained by summing all the output vectors z =
∑L2/b2

i=1 yi,

where z ∈ Rd:

z =

L2/b2∑
i=1

F (V
(1)
11 σi,4 + V

(2)
14 σS(i),1 + c),

L2/b2∑
i=1

F (V
(1)
22 σi,2 + V

(1)
23 σi,3 + c), 0, 0

T

. (C.8)

Replacing the fully-connected network that acts on z [27, 28, 39] with a simpler sum, we

get the amplitude of the input spin configuration :

Log[Ψθ(σ)] =

L2/b2∑
i=1

[
F (V

(1)
11 σi,4 + V

(2)
14 σS(i),1 + c) + F (V

(1)
22 σi,2 + V

(1)
23 σi,3 + c)

]
. (C.9)

At the end, by choosing F (·) = logcos(·) and setting V
(1)
11 = V

(1)
23 = π/4, V

(2)
14 = V

(1)
22 =

3π/4 and c = π/2 we obtain an exact representation that fully complies with the ground

state of the model, specifically a product of singlets arranged on a square lattice, as

illustrated in Fig. C.1:

Ψ0(σ) =

L2/4∏
i=1

cos
(π

2
+ π(σi,4 + 3σS(i),1)

)
cos
(π

2
+ π(σi,2 + 3σi,3)

)
. (C.10)

We want to emphasize that, to keep the analytical calculation manageable, we did not to

include Layer Norm and skip connections. The mapping between the exact ground state
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of the Shastry-Sutherland model and the Transformer wave function highlights the role

played by the different components of the architecture. In particular, this example reveals

that the attention weights are used to describe the correlations in the ground state, and

the attention weights connecting two patches containing uncorrelated spins should be zero

to have an exact representation of the ground state.

In general, physical events that are sufficiently far apart (either in space or time) are

essentially independent or uncorrelated. From a mathematical perspective, this funda-

mental concept is formalized through the cluster property [197, 198]:

lim
|i−j|→+∞

⟨ÂiÂj⟩ = ⟨Âi⟩ ⟨Âj⟩ , (C.11)

where Âi is a generic local operator. According to the cluster property, correlations must

decay with distance and, in the thermodynamic limit, sites that are infinitely distant

become uncorrelated. As shown in the previous mapping, the role of the attention weights

is to connect correlated inputs. Therefore, for systems for which the property in Eq. (C.11)

holds, we expect the attention weights connecting spins far apart in the system to be close

to zero, regardless the specific values of the spins. Interestingly, to reproduce this long-

distance behavior using standard T5 [Eq. (4.9)] or Decoupled [see Eq. (4.10)] attention

mechanisms we have to require Q = K = 0. In other words, the standard attention

mechanisms should converge to positional only solutions, thereby to the Factored version

[see Eq. (4.11)].
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183M. Reh, M. Schmitt, and M. Gärttner, “Optimizing design choices for neural quantum

states”, Phys. Rev. B 107, 195115 (2023).

184W.-J. Hu, F. Becca, A. Parola, and S. Sorella, “Direct evidence for a gapless Z2 spin
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